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ABSTRACT 

A current need exists to develop a lightweight, low-profile armor system capable 

of defeating a 7.62x39mm ball round at muzzle velocity. Three design requirements must 

be met within the development of this system: areal density less than 5lbs/ft2, an overall 

thickness of less than 8mm, and formability to match torso contours. This study focuses 

on pure titanium (Ti) (Grade 2) and a single titanium alloy, Ti6Al-4V (Grade 5). Both 

materials exhibit superplastic behavior to enable shaping to the torso. Initial studies focus 

on laminate systems of both homogeneous and heterogeneous layered structures to 

investigate pressure reduction mechanisms. In addition to layered systems, hard front 

face coatings are studied as an alternative approach to reducing the penetration pressure 

through initial blunting of the incident projectile. Test configurations are investigated 

both experimentally and through hydrocode modeling. 

v 



THIS PAGE INTENTIONALLY LEFT BLANK 

vi 



 vii 

TABLE OF CONTENTS 

I. INTRODUCTION..................................................................................................1 
A. MOTIVATION ..........................................................................................1 
B. OBJECTIVE ..............................................................................................1 

1. Design Constraints .........................................................................1 
2. Threat Analysis ..............................................................................2 

C. THESIS ORGANIZATION ......................................................................2 

II. BACKGROUND ....................................................................................................5 
A. IMPACT DYNAMICS ..............................................................................5 
B. MEASURING BALLISTIC PERFORMANCE OF ARMOR ..............5 
C. ARMOR DESIGN APPROACHES .........................................................6 
D. DUAL-HARDNESS TITANIUM ARMOR .............................................7 
E. TITANIUM SURFACE COATING TREATMENTS ............................8 
F. FORMING OF TITANIUM AND TITANIUM ALLOYS ....................8 

III. EXPERIMENTATION AND MODELING ......................................................11 
A. EXPERIMENTAL SETUP .....................................................................11 
B. TARGET DESIGN AND FABRICATION ...........................................12 

1. Dual-Hardness Laminae ..............................................................13 
2. Ceramic and Titanium Plates .....................................................14 
3. Ceramic Surface Coatings ...........................................................15 
4. Ceramic Balls ...............................................................................18 
5. Fiber-Backed System ...................................................................19 

C. COATING HARDNESS MEASUREMENT .........................................19 
1. Brinell ............................................................................................20 
2. Rockwell C ....................................................................................21 
3. Vickers Micro-indentation ..........................................................21 
4. Nanoindentation ...........................................................................22 

D. COMPUTATIONAL MODELS .............................................................23 
1. CTH ...............................................................................................23 
2. Projectile Modeling ......................................................................24 
3. Laminate Studies ..........................................................................27 
4. Coating Studies.............................................................................28 

IV. EXPERIMENTAL DATA ...................................................................................29 
A. TEST SERIES 1 .......................................................................................30 
B. TEST SERIES 2 .......................................................................................38 



 viii 

C. TEST SERIES 3 .......................................................................................41 
D. TEST SERIES 4 .......................................................................................42 
E. HARDNESS MEASUREMENTS...........................................................44 
F. COMPUTATIONAL MODELS .............................................................45 

1. Laminate Studies ..........................................................................47 
2. Coating Studies.............................................................................50 

V. DATA ANALYSIS ...............................................................................................53 
A. KEY FINDINGS FROM BALLISTIC TESTS .....................................53 

1. Laminar Systems ..........................................................................53 
2. Ceramic Plate Systems ................................................................54 
3. Surface Coatings ..........................................................................55 
4. Ceramic Balls and Fiber-Backed Systems .................................56 

B. KEY FINDINGS FROM HARDNESS MEASUREMENTS ...............57 
1. Indentation Depth Must Be Considered ....................................57 
2. Lower Loads Allow More Variation in Vickers 

Measurements ..............................................................................58 
3. TiB2 Is the Hardest Coating .......................................................59 
4. Great Care Must Be Taken When Polishing 

Nanoindentation Samples ............................................................59 
C. KEY FINDINGS FROM CTH MODELS .............................................59 

1. Laminate Studies ..........................................................................59 
2. Coating Studies.............................................................................60 

VI. CONCLUSION ....................................................................................................63 
A. SUMMARY ..............................................................................................63 
B. FUTURE WORK: SUPERPLASTIC FORMATION ..........................64 

1. Theory ...........................................................................................64 
2. Methodology .................................................................................64 
3. Proof of Concept ..........................................................................65 

LIST OF REFERENCES ................................................................................................67 

INITIAL DISTRIBUTION LIST ...................................................................................69 

 

  



 ix 

LIST OF FIGURES  

Figure 1. Cutaway of 7.62x39mm ball round .............................................................2 

Figure 2. Schematic of ballistic test setup. Source: [5]. ............................................11 

Figure 3. Prepared target assembly with polycarbonate blocks ................................12 

Figure 4. Dual-hardness titanium laminae ................................................................14 

Figure 5. Ceramic and titanium plates .......................................................................15 

Figure 6. Ceramic surface coatings ...........................................................................16 

Figure 7. Ceramic balls (Polyurea not shown) ..........................................................18 

Figure 8. Fiber-backed system ..................................................................................19 

Figure 9. Brinell hardness test ...................................................................................20 

Figure 10. Rockwell C hardness test ...........................................................................21 

Figure 11. Vickers microhardness test ........................................................................22 

Figure 12. Nano Indenter G200. Source:  [8]. .............................................................23 

Figure 13. Cutaway of SolidWorks model ..................................................................25 

Figure 14. CTH-generated bullet model ......................................................................26 

Figure 15. Starting position of materials in CTH simulation for laminate studies .....27 

Figure 16. Starting position of materials in CTH simulation for coating studies .......28 

Figure 17. Prepared targets ..........................................................................................29 

Figure 18. Tracer placement for CTH simulations......................................................46 

Figure 19. Laminate studies: Material positions during penetration (binary) .............47 

Figure 20. Laminate studies: Velocity of materials during penetration (binary) ........48 

Figure 21. Laminate studies: Bullet velocity over time ..............................................49 

Figure 22. Laminate studies: Bullet tip position over time .........................................49 



 x 

Figure 23. Coating studies: Material positions during penetration (0.5 mm 
coating) ......................................................................................................50 

Figure 24. Coating studies: Velocity of materials during penetration (0.5 mm 
coating) ......................................................................................................51 

Figure 25. Coating studies: Bullet core radius over time for even-numbered 
tests ............................................................................................................52 

Figure 26. Coating studies: Bullet velocity over time for even-numbered tests .........52 

Figure 27. Vickers hardness side-by-side comparison ................................................58 

Figure 28. Maximum core radius for TiB2 coating thicknesses (0.0–1.0 mm) ...........61 

Figure 29. Exit velocity for TiB2 coating thicknesses (0.0–1.0 mm) ..........................62 

Figure 30. Potential solution .......................................................................................64 

Figure 31. Schematic of superplastic forming .............................................................65 

Figure 32. Proof-of-concept die for superplastic formation studies ............................65 

 

  



 xi 

LIST OF TABLES 

Table 1. Superplastic characteristics of titanium alloys. Adapted from [4]. ..............9 

Table 2. Material properties of titanium diboride. Adapted from: [7]. ....................16 

Table 3. Material properties of titanium nitride. Adapted from [7]. ........................17 

Table 4. Material properties of aluminum titanium nitride. Adapted from [7]. .......17 

Table 5. Test series 1: Titanium grade 2 monolithic................................................30 

Table 6. Test series 1: Titanium grade 2 laminar homogeneous .............................31 

Table 7. Test series 1: Titanium grade 5 (Ti6AlV) monolithic ...............................31 

Table 8. Test series 1: Titanium grade 5 (Ti6Al4V) laminar homogeneous ...........32 

Table 9. Test series 1: Titanium grade 5 (Ti6Al4V) and titanium grade 2 
laminar heterogeneous ...............................................................................32 

Table 10. Test series 1: Ceramic front plate ..............................................................36 

Table 11. Test series 2: Ceramic coatings..................................................................39 

Table 12. Test series 2: Titanium grade 5 (Ti6Al4V) laminar homogeneous ...........40 

Table 13. Test series 3: Binary titanium grade 5 (Ti6Al4V) with varying 
polycarbonate thickness .............................................................................41 

Table 14. Test series 3: Ceramic coatings..................................................................42 

Table 15. Test series 4: Ceramic balls .......................................................................43 

Table 16. Test series 4: Fiber-backed system ............................................................43 

Table 17. Hardness test measurements ......................................................................44 

Table 18. Nanoindentation hardness (GPa) ...............................................................45 

Table 19. Laminate-monolithic comparison ..............................................................53 

Table 20. Titanium grade 2 and grade 5 (Ti6Al4V) comparison ...............................54 

Table 21. Binary-monolithic comparison ..................................................................54 

Table 22. Ceramic plate thickness comparison ..........................................................55 



 xii 

Table 23. Titanium grade 5 (Ti6Al4V) and grade 2 ceramic plate substrate 
comparison .................................................................................................55 

Table 24. Single and double coating comparison ......................................................56 

Table 25. 4-layer coat and 6-layer coat comparison ..................................................56 

Table 26. Hardness measurement comparison ...........................................................57 

Table 27. Deviation in Vickers measurements (9.8N and 4.9N) ...............................58 

Table 28. Nanoindentation hardness (GPa and HV) comparison ..............................59 

 

  



 xiii 

LIST OF ACRONYMS AND ABBREVIATIONS 

Al2O3  Alumina 

AlTiN Aluminum Titanium Nitride 

BN Boron Nitride 

(E)SAPI  (Enhanced) Small Arms Protective Inserts 

G2 Titanium Grade 2 

HEL  Hugoniot Elastic Limit 

IBA  Interceptor multi-threat Body Armor system 

PC  Polycarbonate 

PVD Physical Vapor Deposition 

Ti  Titanium 

SiC  Silicon Carbide 

Ti6Al4V or G5  Titanium-6-Aluminum-4-Valadium (Grade 5) 

TiB2  Titanium Diboride 

TiN  Titanium Nitride 

UHMWPE  Ultra-High Molecular Weight Polyethylene 

  



 xiv 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 xv 

ACKNOWLEDGMENTS 

Special thanks to the gun range crew at NSWC Dahlgren who were instrumental in 

getting ballistics tests done. 

 



 xvi 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 1 

I. INTRODUCTION 

A. MOTIVATION 

The United States conducts operations all around the globe. Many of these 

operations involve “high-priority” personnel such as diplomats, intelligence agents, and 

special operators. Individuals working in this capacity may occasionally find themselves 

in need of protection from small arms fire.  

Existing body armor systems are bulky and cumbersome. The most common type 

of body armor employed by the United States armed forces is the Interceptor Multi-threat 

Body Armor System (IBA), which consists of a tactical vest and optional groin, throat, and 

bicep protectors. The IBA has four pockets that enable the placement of four ceramic plates 

called Small Arms Protective Inserts (SAPIs). The plates can be over 1 inch thick (ESAPI) 

and can weigh in excess of 7 pounds each. In total, the IBA system with protective plates 

can add up to 16.4 pounds of weight to the wearer.  

These systems are conspicuous. For various reasons, many government actors may 

not want to draw attention to themselves in the performance of their duties. Wearing a large 

camouflage bullet-proof vest is not ideal for covert operations. 

Current composite armor systems are fragile. Printed prominently on the front of 

the SAPI plate is the familiar phrase, “HANDLE WITH CARE.” While incredibly hard 

and effective for stopping bullets, the brittle nature of ceramics makes them highly 

susceptible to inadvertent damage, rendering them useless to the wearer. 

B. OBJECTIVE 

The current research aims to create a durable, lightweight, concealable body armor 

system for use by U.S. government actors in potentially hostile operating areas. 

1. Design Constraints 

The sponsors have provided specific requirements for the system.  

• Maximum areal density of 5 pounds per square foot 
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• Maximum thickness of 8 millimeters 

• Effective against AK-47 7.62x39mm ball round 

2. Threat Analysis 

The AK-47 fires a 7.62x39mm ball round at a muzzle velocity of approximately 

747 meters per second (2450 fps). The projectile is 2.7 centimeters long and has a diameter 

of 7.9 millimeters, and a mass of 124 grains (8 grams). It comprises a low carbon steel core 

encased in a copper jacket and lead filler. A cutaway of the projectile is shown in Figure 1. 

As shown in Figure 1, the core has a flat tip, making it less effective for penetrating hard 

armors. 

 

Figure 1.  Cutaway of 7.62x39mm ball round 

C. THESIS ORGANIZATION 

This thesis is divided into six chapters. Chapter I introduced the current problem 

and the objective of this research. Chapter II provides an explanation of the key concepts 

and realistic evaluation of armors and titanium alloys as they pertain to this investigation. 

Chapter III details the experimental setup as well as the various approaches with which the 

problem is addressed. Experimental work was done in parallel with computer modeling, 

also discussed in Chapter III. Chapter IV is a chronological explanation of each ballistic 

test series along with the data collected for each case. Chapter V is an analysis of the data 

tabulated in Chapter IV and includes validation of trends by computational modeling. 

Finally, Chapter VI provides a succinct summary of the findings, successes, and 
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shortcomings of this research. The feasibility of a concealable titanium body armor is 

discussed along with further work that is yet to be completed. 

As is customary in the field of ballistics, imperial units will be used for some 

measurements (areal density, mass efficiency, muzzle velocity, etc.) while metric units will 

be used for others. 
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II. BACKGROUND 

A. IMPACT DYNAMICS 

Impact pressure from a ballistic impact is dependent on multiple factors, including 

impact velocity material densities and strengths (both projectile and target). Depending on 

the impact pressure and material behavior, both projectile and target may exhibit fluid-like 

behavior when the impact pressures exceed the mechanical strength of either, or both, the 

impactor and target materials. 

Tate demonstrated that at high velocities, penetrators impacting hard surfaces 

behaved as fluids rather than rigid objects [1]. Within every solid material there are 

measurable strength properties that affect their behavior under these conditions. He found 

this to be dependent on two quantities: the pressure within the target at which the material 

begins to flow hydrodynamically, and the pressure at which the penetrating rod begins to 

flow hydrodynamically. The hydrodynamic behavior is dependent on the impact pressure 

exceeding the elastic limit and beginning to plasticly deform. Under dynamic conditions, 

the Hugoniot Elastic Limit (HEL) defines the impact pressure beyond which plastic 

deformation is initiated [1]. Tate calculated that for targets and penetrators of the same 

material, the target’s flow pressure is greater than that of the penetrator, and that the 

assumption of constant velocity during penetration is a valid approximation. This 

information can serve as a simplistic view of the incorporation of a hard front face applied 

to an armor system where an initial hard front face can introduce plastic deformation to an 

incident sharp ogive projectile enabling a decrease in pressure. 

B. MEASURING BALLISTIC PERFORMANCE OF ARMOR 

The dynamic behavior of ballistic penetration creates variations in damage 

mechanisms as compared to static conditions. Armor performance must be assessed under 

dynamic conditions. Testing under dynamic conditions is typically performed using one of 

two techniques: V-50 or V-0. 

V-50 testing is a technique that enables a specific performance level to be measured 

by a specific round. V-50 is defined as the velocity for a specific projectile where it will 
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penetrate the studied target 50% of the time. V-50 testing can incorporate specific bullets 

or fragment simulating projectiles. Within a V-50 test the impact velocity of a selected 

projectile is varied enabling conditions of both complete and partial penetrations. Based on 

the number of tests, the difference in impact velocity between complete and partial 

penetrations have an allowed variance between 15 and 30 m/s. V-50 measurements are 

very important in understanding the specific performance of an armor system for a 

specific round.  

V-0 testing typically involves a specific projectile impacting a target and providing 

a statistical confidence that target penetration will have a 0% probability. The number of 

impacts to provide statistical certainty are typically dictated by an end user requirement or 

governing agency. 

As a rule of thumb, V-50 testing is typically performed within the research and 

development community and V-0 is performed within matured armor technologies in 

preparation for fielding. 

C. ARMOR DESIGN APPROACHES 

Within this thesis, the ability to enable the target material to resist penetration is of 

great importance. Many techniques exist to reduce the penetration pressure of the projectile 

through purposely designed components. From a fundamental view, the impact pressure 

can be simply viewed as the force divided by the area of the projectile. In addition, the 

force can be further viewed as the change in momentum over time. 

 𝐼𝐼𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
𝐴𝐴𝐹𝐹𝐹𝐹𝐴𝐴

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝐴𝐴𝐹𝐹𝐹𝐹𝐴𝐴
  (1) 

Based on equation 1, we can observe two paths to decrease the penetration pressure 

of projectile on the armor system. The first technique is to increase the time period within 

which the projectile momentum is arrested and the second is to increase the surface area of 

the projectile through blunting or breakup. Both techniques can contribute to a reduction 

in penetration within an armor system. 

Standard techniques to reduce the penetration pressure through impact area 

amplification include blunting, breaking/shattering and tripping of an incident projectile. 
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An approach to perform both blunting and projectile breakup is through a hard front surface 

which exceeds the strength of the incident projectile. During impact either surface area 

amplification or projectile breakup can occur. Issues exist with this approach as hardened 

materials lack the ductility to dissipate energy through deformation of the target. The 

hardened materials tend to generate a higher dP/dt term and will cause unwanted failures 

through sheer plugging or shattering of the target front face. 

Techniques to increase the arresting time of a projectile can greatly reduce the 

forces during projectile deceleration. Key materials include mild steel and textiles that 

enable deformation and flexure. Issues with this approach include the inability to deform 

projectiles and susceptibility to premature perforation from sharp ogive projectiles. 

Current high-performance armor includes a hard front face material backed by a 

compliant textile armor system. This type of composite armor system enables both 

projectile incident surface area amplification and a longer period of time to arrest the 

projectile. Typical materials include ceramics for a hard front face and a textile fabric 

system to arrest the projectile. These types of systems have mass efficiencies over four 

times greater than traditional steel armor systems (rolled homogeneous armor). Issues with 

ceramic/textile armor systems are typically related to fracture from mishandling and 

limited multi-hit performance. In summary approaches that can address both amplification 

of projectile surface area and an increase in the time duration to arrest or projectile will 

greatly improve the mass efficiency of the armor system. 

D. DUAL-HARDNESS TITANIUM ARMOR 

In 1974, Roger Perkins at Lockheed Missiles and Space Company, published an 

extensive report on dual-hardness titanium armor for the Army Materials and Mechanics 

Research Center. He found that “a dual-hardness titanium armor consisting of a 

Ti3Si3Fe0.5N hard-face alloy bonded to a Ti7Al2.5Mo back-face alloy provides good 

protection against 30-cal AP threats at low areal densities (6 to 8 lbs/ft2)” [2]. The armor 

concept was shown to be more effective than homogeneous titanium alloy armor. Perkins 

also reported that the key factor governing the ballistic limit of dual-hardness titanium 
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armor is surface hardness, which must exceed Rockwell C 60 before it becomes more 

effective than commercial steel armors. 

E. TITANIUM SURFACE COATING TREATMENTS 

Surface engineering techniques may be applied to titanium alloys to improve 

performance for various applications. To this end, methods exist in three main categories: 

heat treatment, coatings, and thermochemical treatment. This research makes use of a 

coating technique called physical vapor deposition (PVD). 

PVD is a blanket term that encompasses several process (including evaporation, 

ion plating, and sputtering) to deposit ceramics, alloys, or metastable  materials on a wide 

variety of substrates [3]. A relevant application is using PVD for the coating of tool material 

with titanium nitride in order to lengthen the lifetime of the tool through decreased wear. 

Usually, this is accomplished through reactive ion plating or reactive sputtering. 

F. FORMING OF TITANIUM AND TITANIUM ALLOYS 

This thesis examines two types of titanium in particular: Titanium Grade 2 (G2) 

which is over 99% pure, and titanium grade 5 (Ti6Al4V), a much harder, alpha-beta alloy. 

Ti6Al4V is the most widely used titanium alloy, accounting for about 60% of all titanium 

production [4]. 

In the manufacture of body armors, wearability must be considered. That is, the 

armor system must conform comfortably to the wearer’s natural contours and cannot be 

simply a flat plate. Thus, formability should be considered. Titanium and titanium alloys 

were considered for this application because they exhibit the unique property called 

superplasticity. Superplastic materials, like Ti6Al4V, can be formed to over 1000% 

elongation without succumbing to the harmful effects of necking or material property 

changes. Some of titanium’s superplastic characteristics are tabulated in Table 1. 
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Table 1.   Superplastic characteristics of titanium alloys. Adapted from [4]. 

Alloy Test Temperature Strain 
rate,1/s 

Strain-rate 
sensitivity 
factor, m 

Elongation, % 
°C °F 

Commercially 
pure titanium 850 1560 17E-4 … 115 

Ti6Al4V 840-870 1545-1600 1.3E-4 to E-3 0.75 750-1170 
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III. EXPERIMENTATION AND MODELING 

A. EXPERIMENTAL SETUP 

Ballistic tests were conducted at an NPS gun range facility setup at the Naval 

Surface Warfare Center in Dahlgren, Virginia. Within the facility, a Mann barrel gun 

system is used to launch projectiles against armor coupons at controlled positions and 

orientations. The incident projectile velocity is measured using four Ohler IR break screens 

and knowledge of both time of arrival and screen separation distances. A schematic of this 

configuration is shown in Figure 2.  

 
(A) Mann barrel gun system; (B) computer and data acquisition interface; (C) remote, manual 
trigger; (D) velocity screens; (E) high speed video camera; (F) mounting stand; (G) sand-
filled box to catch projectile and spall [5]. 

Figure 2.  Schematic of ballistic test setup. Source: [5]. 

The impact velocity is controlled by the amount and type of gun powder placed in 

each projectile casing. The powder was carefully measured and correlated to the required 

impact velocity (2450 feet/second). Each of the tested targets was backed by two 1-inch-

thick polycarbonate blocks (areal dimensions 4” x 4”). The polycarbonate blocks served to 

gauge the penetration depth for the targets that failed to stop the incident bullet. A prepared 

target with polycarbonate backing is shown in Figure 3. 
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Targets were held together by common clear/masking tape, which has a negligible effect 
on ballistic performance. Assemblies like this one were then affixed to the mounting stand 
using duct tape. 

Figure 3.  Prepared target assembly with polycarbonate blocks 

B. TARGET DESIGN AND FABRICATION 

To determine the optimal design for a titanium armor system, several target 

configurations were prepared and tested. Each of the targets were 3-inch by 3-inch squares 

and had overall thicknesses equal to or less than 8 millimeters and an overall areal density 

under 5lbs/ft2, as required by the design constraints (see I.B.1). The following list 

summarizes the approaches considered during this research. 

• Monolithic plates 

• Homogeneous laminate systems 

• Heterogeneous laminate systems 

• Hard front face systems 
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o Ceramic 

o Thin coatings varied thickness 

 TiB2 

 TiN 

 AlTiN 

• Ceramic ball front face 

• Fiber backing systems 

Homogeneous and heterogeneous laminate systems are described together as “dual-

hardness laminae.” 

1. Dual-Hardness Laminae 

This approach comprises multiple thin layers of Ti6Al4V and titanium grade 2 (G2) 

arranged in various configurations, to include alternating laminae, totaling no more than 8 

millimeters in thickness and an areal density not to exceed 5lbs/ft2.  

The idea being explored here is that the harder Ti6Al4V layers will blunt the 

projectile, providing a wider surface area of interaction between the projectile and the 

target, thus decreasing pressure, while the softer, purer G2 layers will absorb the impact by 

more readily undergoing plastic deformation and spread the force over a larger surface area 

[6]. Figure 4 is a diagram of this system. 
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Figure 4.  Dual-hardness titanium laminae 

2. Ceramic and Titanium Plates 

For this approach, the same concepts are employed as in the dual-hardness laminar 

system. The front layer is a thin ceramic plate intended to blunt the bullet’s ogive while the 

ceramic layers behind that are expected to absorb the impact. Figure 5 is a diagram of this 

system. The front hard surface will enable an increased surface area on the projectile 

enabling the softer titanium alloy to perform more work against the incident target. 
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Figure 5.  Ceramic and titanium plates 

3. Ceramic Surface Coatings 

Targets prepared for this approach are composed of Ti6Al4V that have been treated 

with a thin layer of a ceramic coating as opposed to entire plates. Behind the coated plate 

is an untreated Ti6Al4V plate. Figure 6 is a diagram of this system.  

The surface coatings were applied by Kyocera Hardcoating Technologies Ltd using 

physical vapor deposition (PVD). Three types of ceramic were tested: titanium diboride 

(TiB2), aluminum titanium nitride (AlTiN), and titanium nitride (TiN). 
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Figure 6.  Ceramic surface coatings 

a. Titanium Diboride (TiB2) 

Titanium diboride is an extremely hard ceramic used for various specialized 

applications including use in cutting tools, crucibles, and most notably, impact resistant 

armor. Because it does not exist in nature, TiB2 must be synthesized. Thin films of TiB2 

can be applied to substrates via PVD, chemical vapor deposition (CVD), or electroplating. 

For these samples, the Ti6Al4V plates were coated using PVD in up to six layers of 2 

microns each. From Kyocera’s website [7], some characteristics of TiB2 coatings are 

tabulated in Table 2. 

Table 2.   Material properties of titanium diboride. Adapted from: [7]. 

Coating TiB2 

Color Light Gray  

Structure Graded 

Microhardness 4000 HV 

Density 4.52 g/cm3 
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b. Titanium Nitride (TiN) 

Titanium nitride is an extremely hard ceramic used for coating tools and surfaces 

that may otherwise experience significant wear during their lifetime. Because of its 

biostability, TiN is often used in medical implants and protheses. These samples were 

prepared with a thickness of 4 microns using PVD. Some characteristics of TiN coatings 

are tabulated in Table 3. 

Table 3.   Material properties of titanium nitride. Adapted from [7]. 

Coating TiN 

Color Gold 

Structure Multi-layered 

Microhardness 2200HV 0.05 

Density 5.40 g/cm3 

 

c. Aluminum Titanium Nitride (AlTiN) 

Aluminum titanium nitride or titanium aluminum nitride (TiAlN, for variations 

containing less than 50% Al) are an improved version of TiN for hardening the surface of 

tools. It exhibits both higher resistance to oxidation, and increased hardness compared to 

TiN. AlTiN coatings are almost always applied using PVD, specifically cathodic arc 

deposition. These samples were prepared in the standard manner with a film thickness of 

4 microns. Some characteristics of AlTiN coatings are tabulated in Table 4. 

Table 4.   Material properties of aluminum titanium nitride. 
Adapted from [7]. 

Coating Aluminum Titanium Nitride 

Color Dark Gray-Black 

Structure Graded 

Microhardness 3300HV 0.05 

Density 5.22 g/cm3 
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4. Ceramic Balls 

This approach involves the use of a Ti6Al4V plate as a substrate for a high tensile 

strength (7000 psi) polyurea encapsulating close-packed ceramic spheres. The spheres are 

made of either Alumina (Al2O3) or Silicon Carbide (SiC). The spheres range in diameter 

from 7/32” to 1/8.” The objective here was to make use of a hard ceramic front face for 

blunting the projectile while using the Ti as a spall catcher on the back side. Figure 7 is a 

diagram of this system.  

 

Figure 7.  Ceramic balls (Polyurea not shown) 
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5. Fiber-Backed System 

Targets prepared for this approach comprised a Ti64AlV plate backed by a 

multilayered fibrous composite. The composite was made of Ultrahigh Molecular Weight 

Polyethylene (UHMWPE) (Spectrashield 3136) sheets that were heated to 135 ℃ and 

pressed together at 3000 psi, making for a rigid, but comparatively lightweight (<1g/cm3) 

textile layer capable of absorbing kinetic energy of a projectile. Figure 8 is a diagram of 

this system. 

 

Figure 8.  Fiber-backed system 

C. COATING HARDNESS MEASUREMENT 

Because hardness is such an important material characteristic in impact dynamics, 

several evaluations were made on the ceramic coated Ti6Al4V samples. The samples, 

coated in either TiB2 (of 1, 2, 4, or 6 layers), TiN, or AlTiN were tested using 3 common 

methods: Brinell, Rockwell C, and Vickers Micro-indentation. A less common method 

called Nanoindentation was also used to test the surface hardness of TiB2 (of 2 layers), 

TiN, and AlTiN. 
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1. Brinell 

The Brinell hardness scale is one of many definitions of hardness used in material 

science. It makes use of a spherical tungsten indenter that is applied to a surface with a 

known force (shown in Figure 9). After the load is removed, the diameter of the remaining 

indentation (left through plastic deformation) is measured under a magnifying glass. The 

Brinell Hardness (HBW) is then calculated with the following equation: 

𝐻𝐻𝐻𝐻𝐻𝐻 = 0.102
2𝐹𝐹

𝜋𝜋𝜋𝜋(𝜋𝜋 − √𝜋𝜋2 − 𝑑𝑑2)
 

where F is the applied load in Newtons, D is the diameter of the indenter, and d is the 

diameter of the indentation. This resulting number, which is unitless thanks to the leading 

coefficient, is used to describe the relative hardness of the material.  

 
Image licensed by Creative Commons; obtained through a 
Microsoft Office image search, June 2018. 

Figure 9.  Brinell hardness test 
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2. Rockwell C 

Unlike Brinell, the Rockwell hardness scale uses penetration depth, not indentation 

size, to measure surface hardness. It makes use of a spherical or conical indenter which is 

applied to a sample with a small “pre-load” followed by a larger load. One of several 

Rockwell scales, the “C” scale uses a 120° sphero-conical, hardened steel (sometimes 

diamond tipped) indenter and a 150 kgf load. Figure 10 is a diagram of this test. 

 

 
Image licensed by Creative Commons; obtained through a Microsoft 
Office image search, June 2018. 

Figure 10.  Rockwell C hardness test 

3. Vickers Micro-indentation 

The Vickers hardness scale is similar to Brinell in that it uses indentation size to 

determine surface hardness, but instead of a spherical tungsten indenter, it makes use of a 

diamond in the shape of a 136° square-based pyramid. The indentation is then measured 

across opposing corners and the following equation is used to calculate Vickers 

hardness (HV): 

𝐻𝐻𝐻𝐻 =
𝐹𝐹
𝐴𝐴
≈

1.8544𝐹𝐹
𝑑𝑑2

 



 22 

where F is the applied load in kilograms force, and d is the diagonal distance between 

corners in millimeters. Microhardness, as measured by a Vickers micro-indenter, has much 

shallower penetration depths than those of the methods previously discussed, and the 

indention can only be viewed using a microscope. Figure 11 is a diagram of this process. 

 
Image licensed by Creative Commons; obtained through a Microsoft 
Office image search, June 2018. 

Figure 11.  Vickers microhardness test 

4. Nanoindentation 

Because surface coatings can be extremely thin, a method of measuring hardness 

must be employed which does not penetrate past the layer. Nanoindentation is essentially 

an even more precise, computer-controlled version of the Vickers Microhardness testing. 

Measurement with a nanoindenter is highly automated and makes use of a tiny diamond 

tip that can be one of many various shapes. Due to the small indentation area, which can 

be on the order of microns or even nanometers, accurate testing requires that the surface of 

the sample be well polished. KLA-Tencor’s Nano Indenter G200 (Figure 12) was used for 

this particular experiment. 
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Figure 12.  Nano Indenter G200. Source:  [8]. 

D. COMPUTATIONAL MODELS 

As with most research, coupling of both experimental and theoretical studies can 

enable a better understanding of an event. Within this study, initial ballistic impacts of the 

titanium laminate systems were used to anchor hydrocode modeling.  

Computer simulations can be an informative tool in penetration studies because 

they can provide highly detailed material stress information. Through parallel efforts with 

experimentation, a grounding of experimental results to modeling parameters can be 

performed. More important predictive capabilities anchored on experimental comparisons 

can occur. During this research, a simulation code known as CTH was employed to 

investigate specific phenomena and make predictions about ballistic performance of 

various armor systems. 

1. CTH 

Developed by Sandia National Laboratory, CTH is a “multi-material, Eulerian, 

large deformation, strong shock wave, solid mechanics code” [9]. It is capable of producing 

time-variable two and three-dimensional models of visco-plastic, multiphase, elastic, 

porous and explosive materials. CTH comes with hundreds of built in material definitions 

and includes equation of state models. 
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As a government owned export controlled software, distribution is limited to U.S. 

citizens and requires licensure from Sandia National Laboratory. 

The code, built in both FORTRAN and C, is designed to run on most mainstream 

operating systems. For this research, text format input files were written and run using a 

desktop workstation with Windows 7. Due to the sheer number of advanced calculations 

that CTH makes during simulation, work must be limited in detail so as to avoid 

overburdening the machine. Thus, models were limited to two dimensions for these studies. 

It should be noted that by default, CTH uses a centimeter-gram-second (cgs) system 

of units and all descriptions of the simulation created therein will follow accordingly. 

2. Projectile Modeling 

In order to achieve realistic simulations, an accurate model of the penetrator had to 

be developed. The 7.62x39mm ball round (discussed in section I.B.2) was first recreated 

in SolidWorks with accurate material definitions so that the built in mass analysis 

functionality could be leveraged, and thus dimensional accuracy could be verified. This 

model, shown in Figure 13, was initially created with the intention of be uploaded to CTH 

(through a proprietary software known as Cubit) and simulated in three dimensions. 

Unfortunately, as previously mentioned, the workstation was unable to handle the 

calculations.  
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Figure 13.  Cutaway of SolidWorks model 

Consequently, work began on creating a two-dimensional model using CTH’s 

built-in geometry functions (Figure 14). As the model was iteratively refined to accurately 

reflect the dimensions of the bullet, a note-worthy trend was observed through interim 

penetration simulations. A bullet of appropriate dimensions made entirely of steel was a 

less effective penetrator for titanium targets than a bullet with a more realistic anatomy 

(steel core, lead filler, and copper casing). Presumably this is due to the “lubricating” effect 

that the softer outer materials have between the steel core and the titanium target during 

hydrodynamic flow (see section II.A.). Alternatively, this could be a product of an 

increased core cross-section and thus a larger impact area (see II.C.). 
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Figure 14.  CTH-generated bullet model  

The simulated bullet is composed of three parts: steel core, lead filler, and a copper 

jacket. The steel core is a near-cylindrical, blunted ogive of length 1.99 cm and radius 0.29 

cm. Its material equation of state (EOS) is defined by 100STEEL_TEP of the Mie-

Gruneisen (MGR) model and its strength is defined by STEEL of the Johnson-Cook 

Strength (JO) model. The lead filler is a hollow ogive shape with an outer radius of 0.35 

cm and a length appropriate to fill the gap between the core and the jacket. Its material 

EOS is defined by LEAD of the MGR model and its strength is defined by LEAD of the 

Steinberg-Guinan-Lund (ST) model. Finally, the copper jacket is a hollow ogive shape 

(curvature radius 5 cm) with a length of 2.67 cm and an outer radius of 0.4 cm. These 

dimensions agree with those of an actual 7.62x39mm bullet to within a hundredth of a 

centimeter. The material EOS is defined by Ti6AL4V of the MGR model and its strength 

side fined by COPPER of the JO model. Descriptions of these material models can be found 

in the CTH user manual, distributed by Sandia National Laboratory [10]. 
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3. Laminate Studies 

A series of simulations were conducted to determine if CTH could realistically 

model the ballistic behavior of laminar armor systems. Three input files were created that 

closely resembled experimental conditions so that the results could be compared to those 

of the ballistics tests. Each scenario involved a 7.62x39mm ball round impacting a 0.25” 

(0.635 cm) thick Ti6Al4V target at 750 m/s (approximately muzzle velocity). The targets 

were each backed with a 1” polycarbonate (LEXAN) block and a large steel backboard and 

are described as follows: 

• 1 Ti6Al4V plate of thickness 0.25” (0.635 cm) 

• 2 Ti6Al4V plates of thickness 0.125” (0.3175 cm) each 

• 8 Ti6Al4V plates of thickness 0.03125” (0.079375 cm) each 

 

Figure 15.  Starting position of materials in CTH simulation for laminate studies 
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4. Coating Studies 

A series of simulations were conducted to determine what effect, if any, a film of 

ceramic would have on the stopping power of a Ti6Al4V target and at approximately what 

thickness would it be useful. In particular, this study examines the relationship between 

ceramic coating thickness and dilation of the steel core’s front face (see II.C). TiB2 was 

used for this study because its material properties were already well defined in CTH.  

Each scenario involved a 7.62x39mm ball round impacting the target at 750 m/s 

(~ muzzle velocity AK-47). The targets were comprised of two Ti6Al4V plates and a layer 

of TiB2 on the front face. Holding the total target thickness constant at 0.55232 cm in total 

thickness (5 lb/ft2 areal density), the thickness of the ceramic front face was increased (and 

the thickness of the Ti6Al4V plate was decreased) by 0.01 cm for run and data was 

recorded respectively. 

No PC backing was used for this simulation so that final projectile velocity could 

be examined. Instead, the target width was extended to 2000 cm (effectively infinite) to 

render it stationary. 

 
Figure 16.  Starting position of materials in CTH simulation for coating studies 
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IV. EXPERIMENTAL DATA 

As outlined in the previous chapter, experiments were conducted in a consistent 

manner. Targets representing variations of each of the five design approaches were 

prepared and shot. The four test series are numbered in chronological order, the first of 

which represents a wide variety of target configurations and variables (Figure 17). Each 

successive test series represents a narrower focus on iterations of the higher-performing 

configurations along with yet untested design approaches. Within this chapter, brief 

descriptions of the objectives, and tables of performance data are provided for each 

test series. 

 

Figure 17.  Prepared targets 

Also detailed in this chapter are results of surface material evaluations for the 

ceramic-coated targets and data obtained from CTH simulations. 
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A. TEST SERIES 1 

This test series was the largest and widest ranging of the four. The objective was to 

examine the effects, if any, of changes in target material, laminae thickness, and laminae 

order with the purpose of directing subsequent research toward promising solutions. As 

shown if Figure 17, Nearly 130 targets were prepared for this set with a focus on dual-

hardness laminae (see III.B.1) and ceramic/titanium plate (see III.B.2) systems.  

The data table was split into sections (Tables 5–10) specific to the target 

configuration being studied. Figures in the “Penetration Depth” column denote depth of 

penetration into the polycarbonate blocks (described in III.A). Note that the polycarbonate 

blocks represent a measure of the residual energy of the target system when complete 

penetration of the titanium target occurs to enable a relative comparison of the penetration 

resistance performance. The term homogeneous is used to describe targets with laminae 

that are adjacent to laminae of the same material, whereas heterogeneous describes dual-

hardness targets with alternating (Ti6Al4V and G2) laminae. 

Table 5.   Test series 1: Titanium grade 2 monolithic 

Target 
# 

Target 
Description 

Areal density 
(lb/ft2) 

Thickness 
(in) 

Velocity 
(ft/s) 

Penetration 
Depth 

96. 1 x 0.125” G2 2.86848 0.1245 2443 > 2” 
97. 1 x 0.15” G2 3.744 0.1625 2412 > 2” 
98. 1 x 0.15” G2 3.744 0.1625 2422 > 2” 
101. 1 x 0.25” G2 5.8176 0.2525 2420 1.95” 
102. 1 x 0.25” G2 5.95584 0.2585 2333 > 2” 
105. 1 x 0.313” G2 7.68384 0.3335 2361 1.194 
106. 1 x 0.313” G2 7.56864 0.3285 2510 1.357 

 
  



 31 

Table 6.   Test series 1: Titanium grade 2 laminar homogeneous 

Target 
# 

Target 
Description 

Areal density 
(lb/ft2) 

Thickness 
(in) 

Velocity 
(ft/s) 

Penetration 
Depth 

1. 7 x 0.032” G2 5.2812 0.225 2489 2” 
2. 7 x 0.032” G2 5.433768 0.2315 2479 > 2” 
5. 1 x 0.09” G2 

1 x 0.032” G2 
1 x 0.09” G2 

5.140368 0.219 2402 > 2” 

6. 1 x 0.09” G2 
1 x 0.032” G2 
1 x 0.09” G2 

5.199048 0.2215 2472 > 2” 

77. 8 x 0.032” G2  5.762376 0.2455 2435 > 2” 
78. 8 x 0.032” G2  5.891472 0.251 2438 > 2” 
81. 9 x 0.032” G2 6.583896 0.2805 2423 > 2” 
82. 9 x 0.032” G2 6.583896 0.2805 2426 > 2” 
85. 10 x 0.032” G2 7.323264 0.312 2437 > 2” 
86. 10 x 0.032” G2 7.499304 0.3195 2446 > 2” 
119. 2 x 0.125” G2 5.856264 0.2495 2300 > 2” 
120. 2 x 0.125” G2 5.832792 0.2485 2511 > 2” 
121. 2 x 0.15” G2 7.675344 0.327 2272 1.609” 
122. 2 x 0.15” G2 7.616664 0.3245 2371 > 2” 
125. 2 x 0.25” G2 11.97072 0.51 2389 0 
126. 2 x 0.25” G2 11.653848 0.4965 2415 0 

 

Table 7.   Test series 1: Titanium grade 5 (Ti6AlV) monolithic 

Target 
# 

Target 
Description 

Areal density 
(lb/ft2) 

Thickness 
(in) 

Velocity 
(ft/s) 

Penetration 
Depth 

109. 1 x 0.15” G5 3.708576 0.158 2489 > 2” 
110. 1 x 0.15” G5 3.661632 0.156 2327 > 2” 
111. 1 x 0.16” G5 4.51836 0.1925 2535 > 2” 
112. 1 x 0.16” G5 4.483152 0.191 2570 0.55” 
113. 1 x 0.25” G5 5.938416 0.253 2533 > 2” 
114. 1 x 0.25” G5 6.008832 0.256 2521 > 2” 
115. 1 x 0.28” G5 6.771672 0.2885 2402 0” 
116. 1 x 0.28” G5 6.818616 0.2905 2524 0.33 
117. 1 x 0.313” G5 7.604928 0.324 2489 1” 
118. 1 x 0.313” G5 7.546248 0.3215 2503 1” 
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Table 8.   Test series 1: Titanium grade 5 (Ti6Al4V) laminar homogeneous 

Target 
# 

Target 
Description 

Areal density 
(lb/ft2) 

Thickness 
(in) 

Velocity 
(ft/s) 

Penetration 
Depth 

3.  7 x 0.032” G5 5.39136 0.234 2399 1” 
4. 7 x 0.032” G5 5.3568 0.2325 2475 1.449” 
7. 1 x 0.09” G5 

1 x 0.032” G5 
1 x 0.09” G5  

5.05728 0.2195 2361 1.196” 

8. 1 x 0.09” G5 
1 x 0.032” G5 
1 x 0.09” G5 

5.08032 0.2205 2438 > 2” 

79. 8 x 0.032” G5 5.94432 0.258 2458 0.756” 
80. 8 x 0.032” G5 6.03648 0.262 2455 0.684” 
83. 9 x 0.032” G5 6.77376 0.294 2465 0.125” 
84. 9 x 0.032” G5 6.63552 0.288 2435 0.125” 
87. 10 x 0.032” G5 7.47648 0.3245 2441 0.0” 
88. 10 x 0.032” G5 7.58016 0.329 2446 0.0” 
127. 2 x 0.125” G5 5.78304 0.251 2448 0.0” 
128. 2 x 0.125” G5 5.79456 0.2515 2428 0.0” 

 
129. 2 x 0.15” G5 7.24608 0.3145 2425 0.0” 
130. 2 x 0.15” G5 7.2576 0.315 2431 0.0” 
131. 2 x 0.16” G5 8.88192 0.3855 2412 0.0” 
132. 2 x 0.16” G5 8.85312 0.38425 2415 0.0” 
133. 2 x 0.25” G5 11.7504 0.51 2428 0.0” 
134. 2 x 0.25” G5 11.68128 0.507 2422 0.0” 

 

Table 9.   Test series 1: Titanium grade 5 (Ti6Al4V) and titanium grade 2 
laminar heterogeneous 

Target 
# 

Target 
Description 

Areal density 
(lb/ft2) 

Thickness 
(in) 

Velocity 
(ft/s) 

Penetration 
Depth 

9. 3 x 0.032” G2 
4 x 0.032” G5  

5.393808 0.23225 2472 > 2” 

10. 3 x 0.032” G2 
4 x 0.032” G5 

5.307408 0.2285 2448 > 2” 

11. 3 x 0.032” G5 
4 x 0.032” G2  

5.391432 0.2315 2431 > 2” 

12. 3 x 0.032” G5 
4 x 0.032” G2 

5.379696 0.231 2426 > 2” 

13. 4 x 0.032” G5 
3 x 0.032” G2  

5.353056 0.2305 2380 > 2” 

14. 4 x 0.032” G5 
3 x 0.032” G2  

5.458032 0.235 2345 1.386” 
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Target 
# 

Target 
Description 

Areal density 
(lb/ft2) 

Thickness 
(in) 

Velocity 
(ft/s) 

Penetration 
Depth 

15. 4 x 0.032” G2 
3 x 0.032” G5  

5.354712 0.23 2396 > 2” 

16. 4 x 0.032” G2 
3 x 0.032” G5  

5.3658 0.2305 2475 > 2” 

17. 1 x 0.032” G5 
1 x 0.09” G2 
1 x 0.09” G5 

5.20452 0.2235 2383 > 2” 

18. 1 x 0.032” G5 
1 x 0.09” G2 
1 x 0.09” G5 

5.135616 0.2205 2486 > 2” 

19. 1 x 0.032” G2 
1 x 0.09” G5 
1 x 0.09” G2 

5.12136 0.2205 2493 > 2” 

20. 1 x 0.032” G2 
1 x 0.09” G5 
1 x 0.09” G2 

5.132016 0.221 2458 > 2” 

45. 1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 

5.35392 0.2305 2490 > 2” 

46. 1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 

5.306328 0.2285 2554 > 2” 

47. 1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 

5.38992 0.2315 2465 > 2” 

48. 1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 

5.413824 0.2325 2503 > 2” 

49. 1 x 0.032” G2 
2 x 0.09” G5 

5.060448 0.219 2484 1.9” 

50. 1 x 0.032” G2 
2 x 0.09” G5 

4.967424 0.215 2473 > 2” 
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Target 
# 

Target 
Description 

Areal density 
(lb/ft2) 

Thickness 
(in) 

Velocity 
(ft/s) 

Penetration 
Depth 

51. 1 x 0.032” G5 
2 x 0.09” G2 

5.208048 0.2225 2465 > 2” 

52. 1 x 0.032” G5 
2 x 0.09” G2 

5.23152 0.2235 2503 > 2” 

53. 1 x 0.032” G2 
6 x 0.032” G5 

5.301936 0.2295 2479 1.50” 

54. 1 x 0.032” G2 
6 x 0.032” G5 

5.313672 0.23 2506 1.875” 

55. 2 x 0.032” G2 
5 x 0.032” G5 

5.316192 0.2295 2490 > 2” 

56. 2 x 0.032” G2 
5 x 0.032” G5 

5.223384 0.2255 2446 > 2” 

57. 1 x 0.032” G5 
6 x 0.032” G2 

5.303232 0.2265 2508 2” 

58. 1 x 0.032” G5 
6 x 0.032” G2 

5.348664 0.2285 2505 > 2” 

59. 2 x 0.032” G5 
5 x 0.032” G2 

5.322672 0.228 2367 > 2” 

60. 2 x 0.032” G5 
5 x 0.032” G2 

5.205528 0.223 2486 > 2” 

61. 1 x 0.032” G2 
1 x 0.09” G2 
1 x 0.09” G5 

5.100408 0.219 2466 > 2” 

62. 1 x 0.032” G2 
1 x 0.09” G2 
1 x 0.09” G5 

5.076936 0.218 2389 > 2” 

63. 1 x 0.032” G5 
1 x 0.09” G5 
1 x 0.09” G2 

5.109624 0.22 2308 1.27” 

64. 1 x 0.032” G2 
1 x 0.09” G2 
1 x 0.09” G5 

5.086368 0.219 2327 1.285” 

65. 1 x 0.09” G5 
1 x 0.09” G2 
1 x 0.032” G2 

5.076936 0.218 2520 > 2” 

66. 1 x 0.09” G5 
1 x 0.09” G2 
1 x 0.032” G2 

5.155488 0.222 2482 > 2” 

67. 1 x 0.09” G2 
1 x 0.09” G5 
1 x 0.032” G5 

5.04108 0.2165 2360 > 2” 

68. 1 x 0.09” G2 
1 x 0.09” G5 
1 x 0.032” G5 

5.110848 0.2195 2455 > 2” 
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Target 
# 

Target 
Description 

Areal density 
(lb/ft2) 

Thickness 
(in) 

Velocity 
(ft/s) 

Penetration 
Depth 

89. 1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 

5.986584 0.2575 2465 > 2” 

90. 1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 

5.943096 0.2555 2458 > 2” 

91. 1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 

6.633 0.2855 2438 > 2” 

92. 1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 

6.74712 0.2905 2455 > 2” 

93. 1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 

7.245432 0.3115 2425 1.97” 
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Target 
# 

Target 
Description 

Areal density 
(lb/ft2) 

Thickness 
(in) 

Velocity 
(ft/s) 

Penetration 
Depth 

94. 1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 

7.404984 0.3185 2443 1.455” 

 

Table 10.   Test series 1: Ceramic front plate 

Target # 
 

Target Description Areal density 
(lb/ft2) 

Thickness 
(in) 

Velocity (ft/s) Penetration Depth 

21. 1 x 0.065” BN 
5 x 0.032” G2 

4.545936 0.2255 2478 > 2” 

22. 1 x 0.065” BN 
5 x 0.032” G2 

4.47552 0.2225 2472 > 2” 

23. 1 x 0.065” BN 
5 x 0.032” G5 

4.581504 0.2301 2441 > 2” 

24. 1 x 0.065” BN 
5 x 0.032” G5 

4.53312 0.228 2409 > 2” 

25. 1 x 0.125” SiC 
3 x 0.032” G2 

4.359456 0.228 2371 1.25” 

26. 1 x 0.125” SiC 
3 x 0.032” G2 

4.34772 0.2275 2468 1.489” 

27. 1 x 0.125” SiC 
3 x 0.032” G5 

4.37472 0.2305 2380 0.69” 

28. 1 x 0.125” SiC 
3 x 0.032” G5 

4.4064 0.2325 2409 0.789” 

29. 1 x 0.065” BN 
1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 

4.573368 0.2285 2479 > 2” 

30. 1 x 0.065” BN 
1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 

4.515336 0.226 2383 > 2” 
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Target # 
 

Target Description Areal density 
(lb/ft2) 

Thickness 
(in) 

Velocity (ft/s) Penetration Depth 

31. 1 x 0.065” BN 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 

4.622616 0.23 2462 > 2” 

32. 1 x 0.065” BN 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 

4.52916 0.226 2462 > 2” 

33. 1 x 0.125” BN 
1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 

3.769776 0.227 2468 1.285” 

34. 1 x 0.125” BN 
1 x 0.032” G5 
1 x 0.032” G2 
1 x 0.032” G5 

3.781296 0.2305 2499 0.344” 

35. 1 x 0.125” SiC 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 

4.424184 0.233 2405 0.898” 

36. 1 x 0.125” SiC 
1 x 0.032” G2 
1 x 0.032” G5 
1 x 0.032” G2 

4.388616 0.2305 2321 0.946” 

37. 1 x 0.05” BN 
3 x 0.032” G5 
2 x 0.032” G2 

4.370472 0.2135 2491 2” 

38. 1 x 0.05” BN 
3 x 0.032” G5 
2 x 0.032” G2 

4.341672 0.2125 2492 > 2” 

39. 1 x 0.05” BN 
3 x 0.032” G2 
2 x 0.032” G5 

4.39776 0.214 2545 > 2” 

40. 1 x 0.05” BN 
3 x 0.032” G2 
2 x 0.032” G5 

4.498416 0.2186 2396 > 2” 

41. 1 x 0.125” SiC 
2 x 0.032” G5 
1 x 0.032” G2 

4.350888 0.2295 2365 1.223 

43. 1 x 0.125” SiC 
1 x 0.032” G5 
2 x 0.032” G2 

4.243176 0.222 2399 0.67” 

69. 1 x 0.125” BN 
1 x 0.09” G2 

3.6950112 0.2226 2496 0.786” 
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Target # 
 

Target Description Areal density 
(lb/ft2) 

Thickness 
(in) 

Velocity (ft/s) Penetration Depth 

70. 1 x 0.190” SiC 
1 x 0.09” G2 

5.20776 0.283 2358 0.0” 

71. 1 x 0.125” BN 
1 x 0.09” G5 

3.66336 0.2245 2478 > 2” 

72. 1 x 0.190” SiC 
1 x 0.09” G5 

5.15232 0.283 2510 0.0” 

73. 1 x 0.05” Al2O3 
1 x 0.09” G2 
2 x 0.032” G2 

4.716576 0.208 2461 1.75” 

74. 1 x 0.05” Al2O3 
1 x 0.09” G2 
2 x 0.032” G2 

4.716576 0.208 2399 > 2” 

75. 1 x 0.05” Al2O3 
1 x 0.09” G5 
2 x 0.032” G5 

4.658688 0.20845 2481 0.771” 

76. 1 x 0.05” Al2O3 
1 x 0.09” G5 
2 x 0.032” G5 

4.60224 0.206 2425 0.574” 

 

B. TEST SERIES 2 

The objective of the second test series was to test the performance of targets with 

ceramic surface coatings, shown in Table 11. Targets are described by their coating 

chemistry (TiB2, or AlTiN) followed by “SC” for single-coat and “DC” for double-coat. A 

single coating is approximately 4 microns thick, while a double coating is approximately 

8 microns thick. 

Additionally, a further examination of the laminar Ti6Al4V homogeneous 

configuration was conducted. Four uncoated targets were prepared to test if adding a foam 

(Polytetrafluoroethylene) gap between the Ti6Al4V plates had any effect on performance 

of binary targets (Table 12). Twenty-seven targets were shot in total. For these targets only 

one 1-inch polycarbonate block was used. 
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Table 11.   Test series 2: Ceramic coatings 

Target 
# 

Target 
Description 

Areal Density 
(lb/ft2) 

Thickness 
(in) 

Velocity 
(ft/s) 

Penetration Depth 
(in) 

1. 0.093” G5 TiB2 
SC 
0.125” G5 

5.02272 0.218 2506 1” 

2. 0.093” G5 TiB2 
SC 
0.125” G5 

5.02272 0.218 2458 1” 

3. 0.093” G5 TiB2 
SC 
0.125” G5 

5.02272 0.218 2465 1” 

4. 0.093” G5 AlTiN 
SC 
0.125” G5 

5.02272 0.218 2475 1” 

5. 0.093” G5 AlTiN 
SC 
0.125” G5 

5.02272 0.218 2435 1” 

6. 0.093” G5 AlTiN 
SC 
0.125” G5 

5.02272 0.218 2505 1” 

7. 0.093” G5  TiB2 
DC 
0.125” G5 

5.02272 0.218 2445 0.5” 

8. 0.093” G5  TiB2 
DC 
0.125” G5 

5.02272 0.218 2468 1” 

9. 0.093” G5  TiB2 
DC 
0.125” G5 

5.02272 0.218 2448 0.98” 

10. 0.093” G5 AlTiN 
DC 
0.125” G5 

5.02272 0.218 2441 0.5” 

11. 0.093” G5 AlTiN 
DC 
0.125” G5 

5.02272 0.218 2438 1” 

12. 0.093” G5 AlTiN 
DC 
0.125” G5 

5.02272 0.218 2472 1” 

13. 0.093” G5  TiB2 
SC 
0.033 G5 
0.093” G5  TiB2 
SC 

5.04576 0.219 2448  1” 

14. 0.093” G5  TiB2 
SC 
0.033 G5 
0.093” G5  TiB2 
SC 

5.04576 0.219 2445  1” 
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Target 
# 

Target 
Description 

Areal Density 
(lb/ft2) 

Thickness 
(in) 

Velocity 
(ft/s) 

Penetration Depth 
(in) 

15. 0.093” G5  TiB2 
DC 
0.033 G5 
0.093” G5  TiB2 
DC 

5.04576 0.219 2451  1” 

16. 0.093” G5  TiB2 
DC 
0.033 G5 
0.093” G5  TiB2 
DC 

5.04576 0.219 2462  1” 

17. 0.093” G5  AlTiN 
SC 
0.033 G5 
0.093” G5  AlTiN 
SC 

5.04576 0.219 2468  1” 

18. 0.093” G5  AlTiN 
SC 
0.033 G5 
0.093” G5  AlTiN 
SC 

5.04576 0.219 2458  1” 

19. 0.093” G5  AlTiN 
DC 
0.033 G5 
0.093” G5  AlTiN 
DC 

5.04576 0.219 2428  1” 

 

Table 12.   Test series 2: Titanium grade 5 (Ti6Al4V) laminar homogeneous 

Target 
# 

Target 
Description 

Areal Density 
(lb/ft2) 

Thickness 
(in) 

Velocity 
(ft/s) 

Penetration Depth 
(in) 

21. 0.093” G5 
0.125” G5 

5.02272 0.218 2451  1” 

22. 0.093” G5 
0.125” G5 

5.02272 0.218 2455  0.5” 

23. 0.093” G5 
0.02 PTFE 
0.125” G5 

5.25162 0.238 2438  1” 

24. 0.093” G5 
0.02 PTFE 
0.125” G5 

5.25162 0.238 2423  1” 

25. 0.093” G5 
0.094” PTFE 
0.125” G5 

6.09855 0.312 2431  1” 

26. 0.093” G5 
0.094 PTFE 
0.125” G5 

6.09855 0.312 2445  1” 
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Target 
# 

Target 
Description 

Areal Density 
(lb/ft2) 

Thickness 
(in) 

Velocity 
(ft/s) 

Penetration Depth 
(in) 

27. 0.777 G5 x 3 5.370624 0.2331 2465 0.9” 
28. 0.777 G5 x 3 5.370624 0.2331 2449 0.9” 

 

C. TEST SERIES 3 

The third test series was an extension of the second test series. Within this test series 

two key studies were performed: verification of the 0.125” G5 bilayer performance and 

thicker coating studies. The first effort studied the performance of the 0.125” G5 bilayer 

performance as a function of the quantity of 1” polycarbonate backing plates. Several 

identical binary Ti6Al4V targets were shot, three with single 1” thickness polycarbonate 

blocks and three with two 1” polycarbonate blocks, shown in Table 13. 

 

Ceramic coatings were again examined, but this time TiN and thicker TiB2 coatings 

were tested. Targets coated with TiB2 are described as either “4 coat” (16 microns thick) 

or “6 coat” (24 microns thick). Targets coated with TiN were all single-coat. Table 14 

tabulates the results. 

Table 13.   Test series 3: Binary titanium grade 5 (Ti6Al4V) with varying 
polycarbonate thickness 

Target 
# 

Target 
Description 

Areal Density 
(lb/ft2) 

Thickness 
(in) 

Velocity 
(ft/s) 

Penetration Depth 
(in) 

1. 2 x 0.125 G5 
2” PC 

5.76 0.25 2425 0.0” 

2. 2 x 0.125” G5 
2” PC 

5.76 0.25 2455 0.0” 

3. 2 x 0.125” G5 
2” PC 

5.76 0.25 2466 0.0” 

4. 2 x 0.125” G5 
1” PC 

5.76 0.25 2437 0.0” 

5. 2 x 0.125” G5  
1” PC 

5.76 0.25 2458 0.0” 

6. 2 x 0.125” G5  
1” PC 

5.76 0.25 2451 0.0” 
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Table 14.   Test series 3: Ceramic coatings 

Target 
# 

Target 
Description 

Areal Density 
(lb/ft2) 

Thickness 
(in) 

Velocity 
(ft/s) 

Penetration Depth 
(in) 

7. 1 x 0.93” G5 TiN 
1 x 0.125” G5  

5.02272 0.218 2482 > 2” 

8. 1 x 0.93” G5 TiN 
1 x 0.125” G5 

5.02272 0.218 2462 > 2” 

9. 1 x 0.93” G5 TiN 
1 x 0.125” G5 1 

5.02272 0.218 2469 > 2” 

10. 1 x 0.93” G5 
TiB2 4 coat 
1 x 0.125” G5 

5.02272 0.218 2438 1” 

11. 1 x 0.93” G5 
TiB2 4 coat  
1 x 0.125” G5 

5.02272 0.218 2425 1.5” 

12. 1 x 0.93” G5 
TiB2 6 coat 
1 x 0.125” G5  

5.02272 0.218 2466 1” 

13. 1 x 0.93” G5 
TiB2 6 coat 
1 x 0.125” G5 

5.02272 0.218 2486 1” 

 

D. TEST SERIES 4 

The final test series focused on the ceramic ball and fiber backed systems described 

in III.B.4-5. As previously mentioned, the ceramic balls of diameters 1/8,” 5/32,” 3/16,” 

and 7/32,” were suspended in a high-tensile strength polyurea foam on the front surface of 

Ti6Al4V plates. The plate thickness was chosen for each ball diameter so that the overall 

areal density would not exceed 5 lbs/in2. The results of these ballistics tests are tabulated 

in Table 15. 

For targets prepared using the fiber backed approach, the number of UHMWPE 

sheets was chosen to meet the maximum 8 millimeter (0.315 in) overall thickness for plates 

of thickness 0.032 in, 0.093 in, 0.125 in, and 0.155 in. None of these targets (shown in 

Table 16) came close to exceeding the areal density constraint. In this table, “CP” indicates 

that the bullet penetrated the entire system. PC blocks were not utilized for these targets. 
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Table 15.   Test series 4: Ceramic balls 

Target 
# 

Target 
Description 

Areal Density 
(lb/ft2) 

Thickness 
(in) 

Velocity 
(ft/s) 

Penetration Depth 
(in) 

61. 1/8 Al2O3 
0.155” G5 

5.160161568 0.28 2458 1” 

62. 5/32 SiC 
0.125” G5 

4.701631047 0.28125 2446 1” 

63. 3/16 Al2O3 
0.093” G5 

4.526162352 0.2805 2432 1” 

64. 7/32 Al2O3 
0.093” G5 

4.923402744 2.426333 2476 1” 

Table 16.   Test series 4: Fiber-backed system 

Target 
# 

Target 
Descriptio
n 

Areal Density 
(lb/ft2) 

Thickness 
(in) 

Velocity 
(ft/s) 

Penetration Depth 
(in) 

65 0.032” G5  
26 ply 
UHMWPE 

0.747144482 0.315 2395 CP 

67 0.0935” G5  
21 ply 
UHMWPE 

2.150888459 0.315 2435 CP 

69 0.125” G5  
18 ply 
UHMWPE 

2.887278743 0.315 2484 CP 

71 0.155” G5  
15 ply 
UHMWPE 

3.577644633 0.315 2448 CP 
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E. HARDNESS MEASUREMENTS 

Table 17 was produced by performing Brinell, Rockwell C, and Vickers (Micro) 

hardness tests on 8 different samples. For each test, multiple measurements were taken and 

then averaged (averaged values shown in dark cells). Table 18 are the results of the 

nanoindentation process.  

Table 17.   Hardness test measurements 

 
Plain TiN 

AlTiN TiB2 
 Single Double Single Double 4 coats 6 coats 

HBW 

337 345 297 337 331 317 325 507 
335 341 350 341 337 348 345 354 
329 345 331 339 339 333 363 378 
319 341 354 333 321 345 341 335 
313 333 323 339 317 309 383 350 

HBW avg 326.6 341 331 337.8 329 330.4 351.4 384.8 

HRC 

35.3 36 39 39.5 39 38 39 39.5 
36 36 39 39.5 40 38.5 39 39.5 
36 35 39 39 39.5 39 40 40 
37 35.5 38 39 40 39 39 39 

 36.5 39 39 39.5 39 40 39 

HRC avg 36.075 35.8 38.8 39.2 39.6 38.7 39.4 39.4 

HV (9.8N) 

301.7 891.8 585 455.6 527.4 741.8 665.2 1284.2 
358.7 712.9 459.9 545.6 545.6 744.8 808.2 839.5 
339.6 699.2 553.2 551.3 572.8 628.9 688.4 801.5 
357.7 670.2 479.3 477.8 553.2 672.8 652.8 853.9 

HV avg 339.425 743.525 519.35 507.575 549.75 697.075 703.65 944.775 

HV (4.9N) 

348.3 445.9 883.2 638.8 579.5 851.4 774.5 662.9 
376.9 594.3 638.8 485.5 510.9 958.6 474.6 579.5 
349.6 645.5 503.8 548.9 612.8 695.9 752.6 821.3 
356.5 603.4 711.5 487.8 565.3 905.5 802.1 856.6 

HV avg 357.825 572.275 684.325 540.25 567.125 852.85 700.95 730.075 
HV total avg 348.625 657.9 601.8375 523.9125 558.4375 774.9625 702.3 837.425 
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Table 18.   Nanoindentation hardness (GPa) 

 AlTiN Ti6Al4V TiB2 TiN 

Test 
Avg 

Modulus 

Avg 

Hardness 

Avg 
Modulu

s  

Avg 
Hardnes

s  

Avg 
Modulu

s  

Avg 
Hardnes

s  

Avg 
Modulu

s  

Avg 
Hardnes

s  

1 102.2 3.06 123.8 4.89 315.1 25.83 232.5 10.17 

2 69.4 2.24 83 2.7 241.8 17.03 **** **** 

3 103.5 4.97 114.5 4.5 311.3 27.62 163.7 7.87 

Mean 91.7 3.42 107.1 4.03 289.4 23.5 198.1 9.02 

Std. 

Dev. 
19.4 1.4 21.4 1.17 41.3 5.67 48.6 1.63 

% COV 21.11 41 19.99 28.94 14.26 24.13 24.55 18.07 

 

F. COMPUTATIONAL MODELS 

After running a CTH program, an output file is generated that details information 

(position, velocity, density, pressure, temperature, etc.) of predefined tracers for each time 

step of a simulation. Four tracers were placed in the following locations (Figure 18): 

1. Along the y-axis at the back face of the target 

2. Along the y-axis at the middle of the target (Ti6Al4V plate interface for 

binary targets) 

3. Along the y-axis at the tip of the bullet (in contact with the target face) 

4. At the front right edge of the core’s face 

5. Along the y-axis at the widest part of the bullet’s steel core 
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Tracer 3 was used to indicate the position of the bullet as it relates to penetration 

depth into the target. Tracer 5 was used for velocity values because it represents the 

approximately the center of mass of the bullet after deformation occurs. The x-position of 

Tracer 4 was used to gauge changes in the radius of the core during impact. 

 

Figure 18.  Tracer placement for CTH simulations 
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1. Laminate Studies 

The following figures are visual representations of the simulation results. 

 

Figure 19.  Laminate studies: Material positions during penetration (binary) 
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Figure 20.  Laminate studies: Velocity of materials during penetration (binary) 
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Y-velocity of tracer 5 (VY.5) for monolithic (1), binary (2), and laminate (3) targets. 

Figure 21.  Laminate studies: Bullet velocity over time 

 
Y-position of tracer 5 (YPOS.3) for monolithic (1), binary (2), and laminate (3) targets. 

Figure 22.  Laminate studies: Bullet tip position over time 
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2. Coating Studies 

The following figures are visual representations of the simulation results. 

 

Figure 23.  Coating studies: Material positions during penetration 
(0.5 mm coating) 
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Figure 24.  Coating studies: Velocity of materials during penetration 
(0.5 mm coating) 
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X-position of tracer 4 (XPOS.4) for targets with coating thickness 0.00 mm (1), 0.20 mm 
(2), 0.40 mm (3), 0.60 mm (4), 0.80 mm (5), and 1.00 mm (6) recorded every 1.00E-7 
seconds. 

Figure 25.  Coating studies: Bullet core radius over time for even-numbered tests 

 
Y-velocity of tracer 5 (VY.5) for targets with coating thickness 0.00 mm (1), 0.20 mm (2), 
0.40 mm (3), 0.60 mm (4), 0.80 mm (5), and 1.00 mm (6) recorded every 1.00E-7 seconds. 

Figure 26.  Coating studies: Bullet velocity over time for even-numbered tests 
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V. DATA ANALYSIS 

A. KEY FINDINGS FROM BALLISTIC TESTS 

1. Laminar Systems 

a. Laminates perform better than monolithic 

Several tests demonstrated that targets with multiple layers (laminate) performed 

better than monolithic targets of the same thickness. One example is shown in Table 18, in 

which two targets, one composed of ten thin Ti6Al4V plates and the other composed of a 

single thick Ti6Al4V plate, are compared. The laminate system successfully stopped the 

bullet, while the monolithic system allowed 1 inch of penetration into the polycarbonate 

backing, despite all other variables being the same. This phenomenon suggests that the 

absence of shear stresses between laminar plates creates better conditions for kinetic energy 

absorption. A theory is that as the projectile propagates through the laminates an 

amplification of the front face of the projectile occurs. 

Table 19.   Laminate-monolithic comparison 

Target # Target Description Total 
Thickness (in) 

Penetration 
depth (in) 

87 10 G5 plates (0.032” 
ea) 

0.3245 0 

118 1 G5 plate 0.3215 1 

 

b. Titanium grade 2 is ineffective 

Virtually every target which contained titanium G2 performed poorly as compared 

to homogeneous Ti6Al4V targets of approximately the same thickness and areal density. 

This is demonstrated in Table 19, in which a clear trend between three otherwise identical 

targets can be observed. Data such as these suggest titanium G2 is not a viable material for 

armor systems. 
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Table 20.   Titanium grade 2 and grade 5 (Ti6Al4V) comparison 

Target # Target Description Total Thickness (in) Penetration depth (in) 
85 10 G2 plates (0.032” ea) 0.320 > 2 
87 10 G5 plates (0.032” ea) 0.325 0 
94 10 Alternating plates (0.032” ea) 0.318 1.45 

 

c. Binary systems are reliably effective 

Targets comprising only two Ti6Al4V plates are markedly more effective at 

preventing penetration than monolithic targets of the same thickness. Table 20, along with 

the data in Table 13 from Test Series 3, shows this clearly. Two plates of thickness 

0.125 inches are enough to stop a bullet fired from an AK-47 regardless of the PC backing 

thickness. This suggests that if the areal density can be slightly reduced (see design 

constraints I.B.1), a binary armor system is a possible solution for this problem. 

Table 21.   Binary-monolithic comparison 

Target # Target Description Total Thickness 
(in) 

Penetration depth 
(in) 

113 1 G5 plate 0.253 > 2 

127 2 G5 plates (0.125” ea) 0.251 0 

 

2. Ceramic Plate Systems 

a. Thicker ceramic front face plates perform better 

During Test Series 1, twenty-nine targets with ceramic front faces were shot (Table 

10). The data showed that a ceramic layer is extremely effective at improving the 

performance of the target. Further, the effectiveness of the ceramic plate is highly 

dependent on its thickness. This is an unsurprising result, as thick ceramic plates are 

already used in modern armor systems (see I.A). Table 21 is one example of this trend. 

Both targets include 0.09-inch monolithic Ti6Al4V plates which, alone, would certainly 

be incapable of stopping a bullet. A difference of 0.06 inches in ceramic thickness was 

observed to turn complete penetration of the target/backing assembly into complete 
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stoppage, despite Boron Nitride (BN) and Silicon Carbide (SiC) having similar hardness 

ratings (BN is rated 9.5 and SiC is rated 9 on the Mohs scale) [11].  

Table 22.   Ceramic plate thickness comparison 

Target # Target Description Total Thickness 
(in) 

Penetration depth 
(in) 

71 1 G5 plate (0.09”), 
0.125” BN 

0.224 > 2 

72 1 G5 plate (0.09”), 
0.190” SiC 

0.283 0 

 

b. Ti6Al4V is the best substrate 

Targets comprising ceramic plates of the same material and thickness were shown 

to be more effective if backed by Ti6Al4V plates than if backed by similar titanium G2 

plates. This result concurs with the previous observation (see V.A.b.) that G2 is a generally 

less suitable material for armor systems. Table 22 shows one example of this occurrence. 

Table 23.   Titanium grade 5 (Ti6Al4V) and grade 2 ceramic plate 
substrate comparison 

Target # Target Description Total Thickness 
(in) 

Penetration depth 
(in) 

76 2 G5 plates, 0.0625” 
Al2O3 

0.206 0.574 

74 2 G2 plate, 0.0625” 
Al2O3 

0.208 > 2 

 

3. Surface Coatings 

a. Multi-layer coatings are generally more effective 

Ceramic coatings did improve ballistic performance of Ti6Al4V targets. Further, 

thicker coatings were shown to be more effective at improving penetration resistance than 

thinner coatings. A single layer of TiB2 is approximately 2 microns thick, whereas single 
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layers of the other surface coatings were about twice that. From test series 2, Table 23 

shows this trend for single and double coats of TiB2 and AlTiN. However, this correlation 

was weak and did not hold true during test series 3 when 4-layer and 6-layer coats of TiB2 

were observed to perform similarly (Table 24) and to allow deeper penetration than the 

double coat (Table 23, target 7). 

Table 24.   Single and double coating comparison 

Target # Target Description Thickness (in) Penetration Depth (in) 
2. 0.093” G5 TiB2 SC 

0.125” G5 
0.218 1” 

4. 0.093” G5 AlTiN SC 
0.125” G5 

0.218 1” 

7. 0.093” G5  TiB2 DC 
0.125” G5 

0.218 0.5” 

10. 0.093” G5 AlTiN DC 
0.125” G5 

0.218 0.5” 

Table 25.   4-layer coat and 6-layer coat comparison 

Target # Target Description Thickness (in) Penetration Depth (in) 
10. 1 x 0.93” G5 

TiB2 4 coat 
1 x 0.125” G5 

0.218 1” 

12. 1 x 0.93” G5 
TiB2 6 coat 
1 x 0.125” G5  

0.218 1” 

 

b. TiB2 is the most effective coating 

From the data, it can be inferred that TiB2 is the most effective coating, since it 

performed just as well as AlTiN despite being half as thick. TiN, which allowed 2” of 

penetration into the PC, was shown to be the least effective. These results could be 

predicted from the nominal hardness values of each ceramic (Tables 2–4). 

4. Ceramic Balls and Fiber-Backed Systems 

The ceramic ball and fiber backed approaches were shown to be ineffective. No 

target during Test Series 4 was successful at preventing penetration. It is believed that the 
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diameters of the incorporated spheres were not large enough to enable blunting/blunting of 

the incident threat.  

Presumably, to make an effective titanium/UHMWPE armor, the front Ti6Al4V 

layer would need to provide a harder front face to enable further blunting of the incident 

projectile and ultimately reducing the projectile pressure on the UHMWPE textile backing 

system. 

B. KEY FINDINGS FROM HARDNESS MEASUREMENTS 

1. Indentation Depth Must Be Considered 

Shown in Table 26, differences in the Brinell and Rockwell hardness ratings of the 

ceramic coatings do not seem to be significant. Plain Ti6Al4V was shown to be 36 HRC 

while Ti6Al4V with 6 coatings of TiB2 were found to be only 39 HRC. This is likely 

because the indenters pierced through the very thin (~12 µm) layers and measured the 

hardness of the titanium substrate instead. The Vickers microhardness, on the other hand, 

did vary in the expected manner with coated samples being over twice as hard as uncoated 

samples (Figure 27). Microhardness tests typically resulted in indentations on the order of 

tenths of micrometers (hundreds of nanometers) in depth. While this is certainly enough to 

penetrate the ceramic coatings, the improved precision does result in a noticeable 

difference in measurements. For all of these cases, the resulting hardness values are likely 

a combination of both ceramic and titanium material properties as the indenter penetrated 

through the coating layers.  

Table 26.   Hardness measurement comparison 

 
Plain TiN 

AlTiN TiB2 
 Single Double Single Double 4 coats 6 coats 

HBW avg 326.6 341 331 337.8 329 330.4 351.4 384.8 

HRC avg 36.08 35.8 38.8 39.2 39.6 38.7 39.4 39.4 
HV avg 348.6 657.9 601.8 523.9 558.4 775.0 702.3 837.4 
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Figure 27.  Vickers hardness side-by-side comparison 

2. Lower Loads Allow More Variation in Vickers Measurements 

As previously discussed, Vickers measurements are made with known applied 

loads. Theoretically, the hardness value obtained would be the same for a given material 

regardless of load. However, due to the nature of Vickers micro-indentation, which requires 

the experimenter to visually inspect the indent under a microscope, there is variation in this 

method. If the sample surface is not polished, or if the load is too small to make a well-

defined impression on the material, it can be difficult to see the edges of the indent, 

resulting in measurement error. This effect is shown in Table 27, in which the standard 

deviation of each data set is recorded. The average standard deviation for microhardness 

tests using a load of 9.8N is 65.85HV, while the average standard deviation for 4.9N tests 

is 83.31HV. This result implies that high loads allow for more accurate measurements but 

they cause a further penetration depth into the sample. 

Table 27.   Deviation in Vickers measurements (9.8N and 4.9N) 

 Plain TiN 
AlTiN TiB2 

Single Double Single Double 4 Coat 6 Coat 
HV (9.8N) Std Dev 23.07 86.98 51.46 41.67 16.28 48.77 61.70 196.9 
HV (4.9N) Std Dev 11.45 75.48 136.9 62.32 36.76 98.22 131.86 113.5 
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3. TiB2 Is the Hardest Coating 

According to Kyocera, the nominal hardness of the TiB2 coating is 4000HV. This 

value was not corroborated by any of the tests conducted. The nanoindentation hardness 

was found to be only 23.5 GPa, which is equivalent to 2396HV. However, this result is 

much higher than any of the others, suggesting that TiB2 is in fact harder than the other 

coating materials. The lower value is believed to be due to the thin coating layers and the 

required polishing which further removes from the coating thickness. 

4. Great Care Must Be Taken When Polishing Nanoindentation Samples 

Shown in Table 28, the Ti6Al4V sample coated with AlTiN was just as soft as the 

one without. This is likely due to the coating being abraded off during the preparation 

process. Samples for future tests should be polished using only very fine (>1200 grit) 

abrasive.   

Table 28.   Nanoindentation hardness (GPa and HV) comparison 

 Plain Ti6Al4V TiN AlTiN TiB2 

Nano Hardness (GPa) 4.03 9.02 3.42 23.5 

Nano Hardness (HV) 410.9 919.8 348.7 2396 

Nominal 350 2200 3300 4000 

 

C. KEY FINDINGS FROM CTH MODELS 

1. Laminate Studies 

a. CTH does not accurately reflect ballistics tests 

In the ballistics tests analyzed above, 0.25” monolithic targets proved incapable of 

stopping a 7.62x39 mm ball round traveling at muzzle velocity while a binary target of the 

same thickness was reliably effective (see V.A.1.b.). In the CTH simulations, however, the 

performances of monolithic and binary targets were virtually identical. The 8-layer laminar 

target was slightly more effective, limiting the penetration distance to 8.0 mm into the 
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target (approximately 0.5 mm shallower than monolithic and binary targets). In ballistics 

tests, the corresponding targets were not this successful (Table 8). This result suggests that 

CTH simulations alone are not sufficient for designing armor concepts. 

b. All targets prevented penetration  

Discussed above, the three tested target configurations were all successful in 

stopping the bullet. With this information, along with ballistics test data, it can be 

concluded that a binary laminate equaling 0.25” thickness of Ti6Al4V is sufficient for 

absorbing the kinetic energy of an AK-47 round. Unfortunately, this thickness exceeds the 

areal density constraint by 0.75 lbs/ft2. 

2. Coating Studies 

a. No target prevented penetration 

It is worth noting that, for the simulated configuration, none of the targets with TiB2 

coating thickness of 1.00 mm or less successfully prevented penetration. This result implies 

that a successful design that conforms to the constraints outlined in I.B.1. would need a 

very thick (> 1.00 mm) ceramic coating. To achieve this thickness with TiB2, at least five-

hundred coats would need to be applied to the Ti6Al4V face. 

However, this result should not be directly compared to those of ballistics tests 

because the conditions were not set up in the same way. No PC backing was present which 

allowed more deformation of the Ti6Al4V plates than would likely be seen in a real 

scenario. Therefore, data should be considered only relative to similar CTH simulations 

and acted on qualitatively. 

b. Impact area amplification is a function of coating thickness 

It can be easily seen that increased coating thicknesses resulted in greater core radii 

after impact. In the uncoated simulation, the radius of the core’s front face increased from 

1.9 cm to a maximum of approximately 4.0 cm. This means Ti6Al4V alone is capable of 

amplifying impact area of the bullet by over 300%. When a 0.40 mm layer of was TiB2 

was added, this number quadrupled to over 1200%. Dilation of the bullet’s core can thus 
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be attributed to the harder impact surface provided by ceramic. As discussed in II.C., 

impact area amplification results in decreased impact pressure and therefore greater 

penetration resistance. Figure 28 shows a weak trend in maximum core radius with respect 

to core radius. The improvement becomes apparent after 0.30 mm. 

 

Figure 28.  Maximum core radius for TiB2 coating thicknesses (0.0–1.0 mm) 

c. Exit velocity is a function of coating thickness 

There is a loose correlation between exit velocity (the velocity of the bullet after 

complete penetration has occurred) and coating thickness. When passing through the plain 

target, the projectile loses over half of its initial kinetic energy. When passing through 

targets coated with at least 0.30 mm of TiB2, this effect is even greater. This result is useful 

because it gives us an idea of how effective the armor system would be at absorbing impact 

energy. 
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Figure 29.  Exit velocity for TiB2 coating thicknesses (0.0–1.0 mm) 
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VI. CONCLUSION 

A. SUMMARY 

In an effort to produce a lightweight, low-profile body armor, several approaches 

were explored and tested with varying success. Titanium was chosen as an armor material 

because of its relatively low density (4.5 g/cm3), high strength (up to 895 MPa for 

Ti6Al4V) and its superplastic formation behavior. 

Ballistic tests demonstrated that performance of a titanium armor system could be 

improved through the employment of a layered, or laminar, system which is understood to 

reduce shear stresses in the material during penetration. Test samples prepared using two 

0.125” Ti6Al4V plates were consistently effective at stopping 7.52x39mm ball rounds 

traveling at or near AK-47 muzzle velocity (747 m/s). This result was validated by 

computer simulations. Adding a hard ceramic front face to any titanium system was also 

shown to significantly improve ballistic performance. Titanium grade 2 was found to be 

ineffective in virtually any configuration, even when paired with Ti6Al4V in 

heterogeneous laminar targets. Monolithic G2 targets demonstrated little penetration 

resistance even at thickness of up to 0.313.” Monolithic Ti6Al4V targets performed slightly 

better but penetration depth was inconsistent.  

Computer models suggest that a binary Ti6Al4V system with a very thick (>1 mm) 

front coating of TiB2 is a solution to the proposed problem (Figure 30). While simulation 

results indicate a residual projectile velocity of approximately 230 m/s, it is reasonable to 

expect ballistic experimentation to demonstrate the improved penetration resistance of 

binary systems. 
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Figure 30.  Potential solution 

B. FUTURE WORK: SUPERPLASTIC FORMATION 

1. Theory 

As discussed in I.F., Ti6Al4V exhibits superplastic behavior, allowing it to be 

formed to over 1000% elongation without undergoing harmful material property changes. 

If such an armor system were to be fabricated, this property could be leveraged to simplify 

the process. That is, the titanium plates could be superplastically formed into a torso-shaped 

die or mold and coated with a thick layer of ceramic. Future work should explore this 

possibility before a dual-hardness laminar Ti6Al4V body armor concept is employed. 

2. Methodology 

Ti6Al4V begins to behave superplastically between 840°C and 870° [4]. Sheet 

Ti6Al4V would be placed on an airtight steel die and heated in a furnace to this 

temperature. Next, an inert gas such as Argon would be pumped in at an appropriate 

pressure, uniformly pressing the now malleable sheet into the die. This must be done 

slowly, or hardening will occur preventing any further superplastic strain. After cooling, 

the gas would be released and the formed Ti6Al4V would be extracted. It is possible this 

process could be done with multiple plates at a time, resulting in a homogeneous laminar 

system held together by its own geometry. Figure 31 is a basic diagram of this process. 
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Licensed by Creative Commons and obtained through Microsoft Office image search 

Figure 31.  Schematic of superplastic forming 

3. Proof of Concept 

In anticipation of this future work, a proof-of-concept die was designed and 

machined (shown in Figure 32). Fabricated from steel, the cylindrical die is 5” in diameter 

with a 3” diameter hemispherical cavity. 1/8” deep groves provide a place for a rubber 

gasket to sit and create an airtight seal around the chamber. The lid or platen is designed to 

be secured with six 1/4” fasteners and features a tapped hole for connecting an air pump. 

The Ti6Al4V plates, which are 5” diameter circles with six bolt holes would be placed 

between the die and the platen. 

 

Figure 32.  Proof-of-concept die for superplastic formation studies 
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