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ABSTRACT 

Nowcasting is a modern technique in weather prediction that seeks to produce 

highly accurate analysis and short-term forecasts of up to six hours. Challenges to 

nowcasting include numerical forecasting spatial and temporal resolution and data 

availability, especially in data-denied or limited regions. Nowcasting cloud ceiling height 

and horizontal visibility is a specific example of a challenging nowcasting problem. 

A nowcast system is applied and tested on summertime conditions from June to 

August 2017 over the Monterey Regional Airport in California. The system 

post-processes 12 km North American Mesoscale Model (NAM) data from a local grid 

point to produce short-term multivariate probabilistic predictions of ceiling of height and 

visibility. Bayesian Estimation (BE) and Monte Carlo Markov Chain (MCMC) methods 

are used to train the system from a set of past predictor variables and observations. 

The approach demonstrates error reduction and skill improvement over the raw 

NAM ceiling height and visibility forecasts. The computationally cheap system also 

explicitly communicates uncertainty and requires a relatively limited training data set 

compared to other statistical post-processing techniques. Using short training periods 

and/or analog techniques, this system can be used to nowcast in regions with limited or 

no observational data availability. 
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I. INTRODUCTION 

A. CONTEXT 

In order to make the best strategic, operational, and tactical decisions, military 

commanders must maintain superior battlespace awareness and prevent the adversary 

from gaining a competitive advantage in awareness. To that end, the United States’ 

competitors are currently accelerating their ability to acquire and use information in 

warfare. According to the Chief of Naval Operations, Admiral John Richardson, our 

adversaries are closing the gap on our information advantage (U.S. Navy 2016). Physical 

battlespace awareness, or superior knowledge of the operating environment, is an 

important pillar in maintaining an overall information advantage. As early as Sun Tzu, 

who identified the knowledge of the “seasons” as a key factor for success against an 

enemy, strategists have known that awareness of the physical environment is vital to 

acquiring and maintaining a competitive advantage in warfare (Sun-Tzu 1964).  

Naval Oceanography’s recent Information Warfare Strategy echoes this theme 

with the goal of delivering “secure, accurate, timely and precise environmental 

information in support of Navy Information Warfare” (Gallaudet 2017). Similarly, in 

2017 the Oceanographer of the Navy, under the direction of the Chief of Naval 

Operations, established the Navy’s Task Force Ocean. Seeking to maintain our Navy’s 

key advantage in ocean science and Under Sea Warfare (USW), the task force’s mission 

is to assess the state of the Navy’s ability to collect, process, and use ocean data (U.S. 

Navy 2017). The scope of Task Force Ocean extends beyond just the undersea domain. 

The ability to dominate the ocean battlespace includes the unrivaled ability to predict the 

physical battlespace from the seafloor to the stars, including the weather. Thus, today’s 

military commanders need the most accurate weather information in order to make better 

decisions faster than our opponents, especially in situations with high degrees of 

uncertainty. Naval Oceanography has made great progress in providing critical 

environmental information to commanders, but progress is still needed in short-term 
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probabilistic forecasting in regions of limited data availability. This thesis will explore 

one such challenge in short-term forecasting: ceiling height and visibility.  

B. MOTIVATION 

Short-term forecasting of sensible aviation weather parameters, such as ceiling 

height and visibility, continues to prove difficult for the operational forecaster despite 

significant advances in numerical weather prediction (NWP) and statistical post-

processing (Bankert et al. 2004). Ceiling height is defined as the height above ground 

level (AGL) of the lowest layer of cloud that covers more than half the sky (AMS 2012). 

Visibility is defined as the greatest horizontal distance at which it is possible to identify 

an object with an unaided eye (AMS 2012). Critical for aviation safety and military 

operational planning, accurate and useful short-term forecasts of ceiling height and 

visibility are necessary to make high-stakes decisions and plans. In order to better impact 

decision-making processes, forecasts for ceiling height and visibility should be 

probabilistic in order to better communicate the inherent uncertainty in weather 

forecasting and allow the decision-maker to explicitly understand all possible outcomes 

(NRC 2006). Most current operational techniques fail to capture and communicate the 

inherent uncertainty in ceiling and visibility forecasting. The highly sensitive and chaotic 

nature of ceiling height and visibility often renders deterministic NWP guidance useless 

due to limited model spatial and temporal resolution, time latency of availability, and 

poor communication of uncertainty. Moreover, contemporary statistical techniques 

require unrealistically large training data sets and fail to communicate useful probabilistic 

information. 

Short-term forecasts of ceiling height and visibility are important because the 

ability to predict such microscale atmospheric phenomena at short lead times impacts a 

wide variety of aviation and other military operations. According to the Federal Aviation 

Administration (FAA), from 1994 to 2003, 21.3% of aviation mishaps were weather-

related and one fifth were due to ceiling height and visibility (2017). Moreover, 19% of 

Class A Navy and Marine Corps aviation mishaps from 1990 to 1998 were weather 

related, with half related to “visibility related weather elements” (Cantu 2001). Clearly, 
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despite advances in weather forecasting, poor early warning of low ceilings and visibility 

continue to add risk and challenges to aviation and military operations. In addition to 

safety and risk mitigation, accurate predictions of ceiling height and visibility impact 

military planning and operations. From operating unmanned aerial vehicles (UAVs) and 

launching F-18 fighter jets off of an aircraft carrier to determining visual weapons ranges, 

knowledge of the physical battlespace requires the ability to accurately predict the height 

of the cloud deck and visibility range (JCS 2018). For example, operations at the Naval 

Strike and Air Warfare Center from May through June 2005, were impacted by weather 

24% of the time, with 50% of those (or 12% of all) due to ceiling and visibility (Butler 

2005). Furthermore, military forecasters are often placed in forecasting situations with 

limited regional expertise, observational history, and sensing capabilities. These factors 

introduce extra challenges in providing accurate and timely forecasts. 

The use of probabilistic forecasting can help enhance the ability to issue accurate 

short-term forecasts because it explicitly communicates uncertainty and mitigates issues 

of chaos. Conceptually, numerical weather forecasting is an attempt to simulate realistic 

outcomes of the atmosphere. Based on simplifications of the Navier-Stokes questions and 

required numerical simplifications and parametrizations, numerical weather models 

traditionally generate deterministic results that aim to represent the evolution of the real 

atmosphere. Deterministic, single-valued forecasts, while offering a specific possible 

outcome, do not communicate the underlying stochastic and chaotic nature of the 

atmosphere. Lorenz (1963 and 1993) described the inherent sensitivity to initial and 

boundary conditions and nonlinear growth of error in atmospheric models. Termed Chaos 

Theory, our inability to accurately determine the initial and boundary conditions of the 

atmosphere and the nonlinearity of the dynamics limits long-term prediction of the 

atmosphere. This same atmospheric chaos impacts short-term predictions as well because 

smaller-scale phenomena entail shorter time periods of predictability due to enhanced 

turbulence (chaotic dynamics) (Li 2013). At small scales, the intractability of chaotic 

dynamics leads to necessarily treating some variables as stochastic or random variables. 

Moreover, because we do not know exactly which (and to what degree) weather variables 

determine ceiling height and visibility at any given time, we cannot accurately sense the 
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environment to a high enough spatial and temporal scale to determine the exact initial and 

boundary conditions. As a result, there may be value in treating ceiling height and 

visibility themselves as stochastic variables and generating probabilistic versus 

deterministic forecasts. 

Probabilistic forecasts can explicitly communicate this underlying uncertainty of 

how ceiling height and visibility conditions evolve. Decision-makers need the most 

accurate and up-to-date weather information in order to make the best decisions. In fact, 

LeClerc and Joslyn (2015) found that including uncertainty information in weather 

forecasts led to better decision-making when choosing or not choosing to salt roads 

during possibly freezing temperatures. For forecasts of ceiling height and visibility, 

offering probabilistic forecasts of likely ranges or categories allows the consumer to 

understand the full spectrum of possible outcomes and the associated uncertainty of the 

forecast based on computational and physical limitations. A probabilistic forecast 

communicating the most likely outcome, out of a range of possibilities given the current 

forecasted conditions, would clearly add value to the prediction and allow a commander 

planning a mission to weigh costs and benefits. 

C. SCOPE OF RESEARCH 

The goal of this thesis is to demonstrate a prototype system of statistical NWP 

post-processing for short-term probabilistic ceiling height and visibility forecasting using 

a Bayesian estimation scheme and Markov Chain Monte Carlo sampling methods. 

Adapted from Wendt (2017), the machine-learning algorithm constructs realistic 

distributions of ceiling height and visibility forecasts based on small data sets of North 

American Mesoscale (NAM) model output near Monterey, CA Airport (KMRY) and 

corresponding observations from June through August of 2017. The resultant posterior 

predictive distributions (PPDs) provide the forecaster and decision-maker with 

statistically rigorous information about the seemingly stochastic nature of the phenomena 

and the associated uncertainty. The ultimate goal of this research is to incrementally 

improve the ability to generate accurate short-term probabilistic weather forecasts for 

aviation safety and military battlespace awareness and decision-making. This study’s 
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hypothesis is that Bayesian post-processed NWP data will reduce error over raw model 

data and provide useful probabilistic information. 

  



 

 
 

6

 

THIS PAGE INTENTIONALLY LEFT BLANK  



7

II. BACKGROUND

A. CURRENT FORECASTING TECHNIQUES 

Modern techniques used in short-term forecasts of ceiling height and visibility 

include nowcasting, high-density observation-based statistical forecasting, and NWP 

post-processing. As a formal technique, nowcasting seeks to predict the state of 

atmosphere into the near future (less than 6 hours) by extrapolating the current weather 

based on knowledge of physical principles and observations, including remote sensing 

products (Mass 2011). Nowcasting can be accurate in certain situations, such as 

forecasting the advance of a squall line or mesoscale convective complex. In fact, Dixon 

(2004) demonstrated the feasibility of a system for nowcasting visibility using 

observations and RADAR reflectivity. Using an empirical relationship between 

reflectivity and visibility, the system extrapolates current reflectivity to determine 

visibility in snow conditions. Modern nowcasting methods, such as the NCAR Auto-

Nowcast System, blend observations, remote sensing data and mesoscale models in order 

to generate short-term forecasts (Mueller et al. 2003). However, nowcasting is limited by 

chaos in the atmosphere, our incomplete knowledge of the atmosphere at the turbulent 

scale, the individual ability of the forecaster, and the limited availability of observations 

and remote sensing tools and products. Moreover, military forecasters in remote regions 

will always face challenges in regional expertise as well as data, sensor, and mesoscale 

model availability.  

Next, high density observations-based systems use a robust network of surface 

and upper-air weather observations as predictors in a statistical forecasting system. 

Vislocky and Fritsch (1997) demonstrated a highly successful technique using 

observations as both predictors and predictands and least squares multiple linear 

regression to generate short-term probabilistic forecasts that outperformed model output 

statistics (MOS) out to six hours. Application of this technique at San Francisco 

International Airport yielded useful results and a 32% reduction in mean square error 

compared to MOS (Hilliker and Fritsch 1999). This technique can be highly accurate, but 
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it requires availability of a dense network of observations in order to add value beyond 

MOS (Leyton and Fritsch 2004). Furthermore, this technique ignores errors in the 

predictors and does not necessarily eliminate bias (Marzban et al. 2006). Over the 

continental United States with large training sets of observational history, this technique 

is realistic but not in remote regions across the globe. 

Statistical post-processing seeks to link raw NWP model output with observations 

to find linear or nonlinear relationships. Ryerson (2012) analyzed mesoscale visibility 

forecasts using uncalibrated ensembles and identified errors associated with initial 

conditions, parametrizations, and errors in deriving visibility from forecasted variables. 

He concluded that “under most conditions,” post-processing is required to generate useful 

forecasts. The canonical example of statistical post-processing is Model Output Statistics 

(MOS). It is an attempt to reduce bias, limit error variance and reduce mean square error 

(Marzban et al. 2006). Developed by the National Weather Service (NWS) in 1972, MOS 

is a statistical post-processing technique that uses a list of predictors, both observations 

and model output, that are chosen based on correlations to the predictands (in this context 

ceiling height and visibility) in a multiple linear regression scheme (Glahn and Lowry 

1972). The regression scheme determines appropriate regression coefficients and 

develops the linear regression equation for forecasting. The MOS forecast output for 

ceiling height and visibility is a categorical forecast that attempts to adjust for model bias 

and local affects (Bocchieri and Glahn 1972). Table 1 lists the forecast categories and 

related aviation flight categories. The aviation flight categories are low instrument flight 

rules (LIFR), instrument flight rules (IFR), marginal visual flight rules (MVFR), and 

visual flight rules (VFR) (NWS 2010). 
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 Ceiling Height and Visibility Categories and Associated Aviation 
Flight Categories. Adapted from NOAA, 

http://www.nws.noaa.gov/mdl/synop/namcard.php 

Ceiling Height Visibility 
Category Height 

(ft) 
Aviation 
Flight 
Category

Category Range 
(miles) 

Aviation 
Flight 
Category 

1 <200 LIFR 1 <.5 LIFR
2 200-500 LIFR 2 .5-1 LIFR
3 500-1000 IFR 3 1-2 IFR
4 1000-2000 MVFR 4 2-3 IFR
5 2000-3000 MVFR 5 3-5 MVFR
6 3000-6500 VFR 6 5-6 VFR
7 6500-12000 VFR 7 >6 VFR
8 >12000 VFR

Similarly, the Localized Aviation Model Output Statistics Program (LAMP) 

downscales the MOS process and products for specific airfields, provides hourly updates 

to the MOS forecast production cycle, and also provides probabilities of different ceiling 

height and visibility categories (Rudack and Ghirardelli 2010). This method is currently 

the standard forecast product at NWS Weather Forecast Offices (WFO) for Terminal 

Aerodrome Forecasts (TAFs) at U.S. airfields. While statistically robust and tailorable, 

the MOS and LAMP forecast products do not communicate the associated uncertainty, 

such as error or confidence intervals. Moreover, development of the regression questions 

requires large data sets of model output and observations, both of which are unrealistic in 

military operation scenarios. Finally, this system is not available at worldwide airfields, 

let alone in remote regions. 

Advanced machine learning techniques include using artificial neural networks to 

forecast ceiling and visibility that allow for nonlinear relationships and use continuous 

feedback loops to update forecasts (Marzban et al. 2006). Similarly, data-mining 

techniques at single-stations have shown promise at accurate short-term forecasts 

(Bankert et al. 2004). Fuzzy logic systems, advanced by Hansen (2007), use the idea of 

partial truth, as opposed to Boolean logic, to collect similar analogs to make ceiling and 
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visibility predictions. Other advanced statistical post-processing techniques include 

Bayesian Model Averaging (BMA). This technique, as demonstrated by Chmielecki and 

Raftery (2011), calibrates forecast ensembles and produces predictive distributions by 

combining mixed conditional probability distributions of predictors. All of these 

techniques show great promise but still contend with the severe environmental sensitivity 

in ceiling height and visibility processes and the dearth of requisite historical model data 

and observational history for model training. 

B. BAYESIAN INFERENCE IN WEATHER FORECASTING 

This thesis will apply a Bayesian Estimation (BE) scheme and Monte Carlo 

Markov Chain (MCMC) sampling methods scheme adapted from LCDR Travis Wendt’s 

doctoral research in order to generate short-term probabilistic forecasts of ceiling height 

and visibility. In simple terms, Wendt’s model formalizes forecasting heuristics by 

discovering the most significant predictors that influence the predictands. Using a limited 

training period, Bayesian thinking, and MCMC to complete the inference, the model uses 

stochastic multivariate multiple linear regression to learn the appropriate distributions of 

regression coefficients that most efficiently explain the relationships between the training 

data predictors and predictands (Wendt 2017). Wendt’s research application focused on 

forecasting weather parameters for the North American collegiate weather forecasting 

competition called The Weather Challenge. He successfully used predictor variables 

derived from the NCEP Short Range Ensemble Forecast (SREF) ensemble means to 

forecast PPDs of 24-hour maximum temperature, minimum temperature and maximum 

wind speed (Wendt 2017). Using a limited training data set of just one year, Wendt’s 

model matched or exceeded forecast reliability (forecasted probability of occurrence is 

close to actual occurrence) of the unprocessed SREF output (Wendt 2017). His research 

demonstrated the ability to use short training periods to generate useful and competitive 

probabilistic forecasts. Details about the theory and mechanics of this model will be 

discussed in the next chapter.  
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III. DATA/METHODOLOGY

A. OVERVIEW 

In general, the ceiling height and visibility nowcast system of this research post-

processes raw mesoscale NWP model output by finding the appropriate distributions of 

regression coefficients in a stochastic multivariate multiple linear regression scheme. The 

system can produce hourly probabilistic forecasts of ceiling height and visibility by 

finding the statistical relationship between past observations and predictors. What 

differentiates this system’s method and standard multiple linear regression schemes, such 

as MOS, is that the model is finding distributions of regression coefficients, instead of 

deterministically valued coefficients, and therefore generates predictive posterior 

distributions (PPD). Specifically, Bayesian Estimation is used to invert the probability 

statement to find the probability of the model parameters given training data. Markov 

Chain Monte Carlo methods are used to complete the inference between multiple 

predictor variables and the multivariate predictands. Multiple combinations of predictor 

variables are used and compared against raw NWP model predictions. K-means 

clustering is used to logically partition the training and test data in order to minimize 

variance. Although this research attempts to post-process NWP output at a single grid 

point near Monterey Regional Airport (KMRY), the method can be applied to multiple 

grid points to develop a gridded forecast. Errors are then compared between raw NWP 

forecasts and the mean and median of the PPDs. The forecast trial with the set of 

predictors that produce the smallest error is scored for skill over the raw NWP forecast. 

Finally, although not scored, the probabilistic capability of the system is demonstrated by 

considering the PPD credible intervals and categorical probabilities. 

B. DATA SET 

1. Automated Surface Observing System (ASOS) History

To develop the training data and scoring observational history, ASOS 

observations are used from KMRY from June to August 2017. The station elevation is 
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257 ft above mean sea level (MSL). Hourly surface observations are retrieved from the 

National Centers for Environmental Information (https://www.ncei.noaa.gov). The data is 

downloaded in text format and decoded using MATLAB. The date time group (DTG), 

ceiling (CLG), and visibility (VIS) variables are saved and the remaining data is 

discarded. The ceiling data is encoded in hundreds of feet up to 12,000 ft. For example, a 

CLG observation of “12” is decoded at “1200 ft” above ground level (AGL). Visibility 

data is encoded in statute miles up to 10 miles. For example, a visibility observation of 

“10.0” is decoded at 10 statute miles. The ceiling and visibility observations are the 

predictands (the variables to be predicted) in the model. A total of 3369 hourly 

observations were pulled from June 1, 2017 0100Z to August, 31, 2017 2300Z. 

2. NWP Model Output 

The predictor variables were extracted from the 12 km resolution North American 

Mesoscale (NAM) model at the grid point located at 36.65N 121.74W, about 7.36 miles 

north east of Monterey Regional Airport. This grid point was chosen because it is the 

nearest geographically similar grid point. Figure 1 portrays the location of the grid point 

at 36.65N 121.74W and the airport. Table 2 lists the variables obtained from the NAM 

model for investigation as predictors. A total of 2142 hours of NAM model output was 

extracted from Gridded Binary files (GRIB). Hourly forecasts extended out several hours 

in time, or taus, of 0 to 11. Not all hours of the time period were extracted due to various 

errors in the model output. 
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 Map of Monterey Bay. 
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 Extracted NWP Variables 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C. DATA QUALITY CONTROL AND MERGING 

Initial quality control of the data was first accomplished in MATLAB. ASOS 

observations without ceiling height or visibility readings were discarded. After this initial 

data cleaning, 2950 observations were left. Next, the NAM predictor data was quality 

controlled. Hours missing model data were discarded which left 1972 hours of data. 

Finally, the observational data and model data were joined based on date time group. This 

produced a full merged data set of 1379 hours of observation and model data. The first 

1183 hours were used at training data and the last 196 hours were used as test (forecast) 

data. 

Level (mb) Variables (units) 

surface mean sea level pressure 
(mb); temperature (F); dew 
point (F); wind (kts); wind 
gusts (kts); height of 
planetary boundary layer 
(m); precipitation (in); 
surface pressure (mb); 
visibility (km); u wind 
component (m/s); v wind 
component (m/s); cloud 
cover (%); cloud base height 
(m) 

500, 700, 850, 875, 900, 
925, 950, 975, 1000  

height (m); temperature (C); 
relative humidity (%); dew 
point (C); wind speed (m/s); 
wind direction (degrees); u 
wind component (m/s); v 
wind component (m/s); 
vertical velocity (m/s) 
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D. CORRELATIONS AND CLUSTERING 

1. Correlations 

In order to choose the most influential predictors, linear correlations were run on 

each predictand-predictor relationship. First, the NAM cloud base height predictor was 

adjusted from above MSL to AGL by subtracting 257 ft (KMRY ASOS station height) 

from the cloud base height forecast. This ensures that the heights are consistent since the 

ASOS ceiling height is reported as height AGL. Next, Pearson correlation coefficients 

were used to characterize the linear relationships. Correlations were accomplished on the 

full data set as well as the data set conditioned on ceiling height observations of less than 

6000 ft. This was necessary because the ceiling height observations were artificially 

capped at 12200 ft by the ASOS observations. This means that any ceiling above 12000 ft 

was coded as 12200 ft. Similarly, visibility observations were capped at 10 miles. This 

drastically limits the ability to find linear relationships between predictors and 

predictands for high ceilings and extended visibility ranges. These issues will be 

discussed more in the results section. 

2. Clustering 

K-means clustering was used to cluster both the training and test data. In general, 

clustering is used to group similar data based on specified rules. The goal of clustering is 

to find the groupings that minimize variance and lead to error reduction in predictive 

analytics (Pedregosa et al. 2011). Clustering is used in pattern recognition, data mining, 

and supervised and unsupervised learning to find the hidden patterns in data (Pedregosa 

et al. 2011). In 2 and 3 dimensions, the human eye can visually group most data, given 

there are clusters. In Figure 2, it is readily apparent there are 3 clusters of data. 

 

 

 



 

 
 

16

 Simple Clustering in 2 Dimensions. Source: “Cluster Analysis, 
Wikipedia, https://en.wikipedia.org/wiki/Cluster_analysis# 

/media/File:Cluster-2.svg 

 

Another simple example in 2 dimensions is identifying patterns between low and 

high ceiling heights. Figure 3 portrays the joint plot of ceiling height in feet (x-axis) and 

surface temperature in degrees F (y-axis) for data from this study. The associated 

histograms and kernel density estimation are plotted along the opposite respective axes 

(ceiling height on top and temperature on far right). The Pearson correlation coefficient is 

r=0.45. It is apparent that there are two clear clusters of ceiling height data: low and high. 

The logical break is around 5000–6000 ft. This bimodal distribution affects the linear 

regression between the two variables. The problem with ceiling height observations 

capped at 12200 ft is apparent here where there is a vertical line of data on the right-hand 

side of the plot. This also severely skews the regression. To easily adjust, we can 

manually cluster the data by conditioning the regression on ceilings less than 6000 ft. 

This eliminates the bimodal distribution and changes the regression. Figure 4 portrays the 

conditional regression with r=.019. By manually clustering 2-D data based on a single 

dimension (ceiling height), the regression is dramatically adjusted. The interpretation is 

that surface temperature is not a good predictor of ceiling heights of less than 6000 ft, 

based on available data and assuming a linear relationship. 

 

 

 



17

Joint Plot of Ceiling Height and Surface Temperature 
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Joint Plot of Ceiling Height Less than 6000 ft and Surface 
Temperature 

In more than 3 dimensions, humans cannot cluster data because we cannot 

visualize 4 dimensions and higher. To do this, clustering algorithms can accomplish the 

task using a variety of methods. This thesis utilizes K-means clustering, which minimizes 
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the variance, or the sum-of-squares, within the cluster from its Euclidean center of mass 

(Pedregosa et al. 2011). This method requires the user to specify the number of clusters, 

and the algorithm then finds the most efficient partitioning of the data to minimize the 

distance between each data point and the clusters’ centers of mass. K-means randomly 

chooses the centers of mass and then iterates repeatedly until convergence where the 

variance, or inertia, is minimized (Pedregosa et al. 2011).  

K-means does not identify the optimal number of clusters itself (Pedregosa et al. 

2011). In order to determine the optimal numbers of clusters, this thesis employs 

silhouette analysis to subjectively choose the number of clusters. Silhouette analysis 

measures the distances between clusters and assigns the cluster a silhouette score from -1 

to 1. A value of 1 means the clusters is clearly distinct and separate from nearby clusters. 

A value of 0 means the cluster is very nearby a neighboring cluster. Negative values 

mean data may have been assigned to the wrong cluster (Pedregosa et al. 2011). High 

scores close to 1 with low variability are desirable. The score is a representation of how 

different numbers of clusters successfully group that data. The shape of the silhouette 

communicates relative sizes or density of the clusters (Pedregosa et al. 2011). The user 

identifies the range of clusters for analysis. In addition, for each silhouette analysis, this 

study compares the silhouette score distribution for 100 samples. This allows the user to 

understand the uncertainty in the analysis by repeating it many times and considering the 

variability of the mean silhouette scores for each k, or number of clusters (Zoufaly 2017).  

For example, Figure 5 displays the mean score distribution for k=2-8 clusters 

using 2 predictors and 2 predictands for a total of 4 dimensions. The distributions consist 

of 57 and 28 subsamples from a sample of 100 cluster analyses. Based on subjective 

visual score analysis alone, k=3 or k=4 appears to be the most optimal number of clusters 

because they each have low mean variability, especially at 57 subsamples. Figure 6 

portrays the silhouette scores for 10 trials (left image) and the 2-D plot (right image) of 

the clustered data for the 2 predictand dimensions (ceiling height and visibility 

observations). The x-axis of the left image measures the silhouette coefficient or score 

from -1 to 1. The red vertical line is the average score for the 10 trials. The y-axis of the 



20

left image identifies the cluster number. Looking at N=3 clusters, all clusters are above 

the average score and they have similar density (shape). Clusters 1 and 2 (do) have some 

data that may be assigned to the wrong cluster as shown by data less than 0. The 2-D plot 

shows that clusters 1 and 3 are near each other but are distinguished by the other 2 

dimensions. Looking at N=4 clusters, all clusters are above the average score, but cluster 

3 has a wildly different shape and lower density than the other 3. Cluster 2 has a 

significant number of data possibly assigned to the wrong cluster. Moreover, three of the 

clusters appear to be near each other, at least in two dimensions, based on the 2-D plot. 

Based on this subjective analysis, the plot for k=3 clusters appears to be the optimal 

number of clusters to use for partitioning the data. 

Violin Plot of Silhouette Score Distribution 
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Silhouette Analysis, N=3 Clusters 
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 Silhouette Analysis, N=4 Clusters 

 

For this study, K-means clustering was used to cluster up to 8 dimensions: 2 

dimensions of predictands and 6 dimensions of predictors. The training set was clustered 

on all 8 dimensions. In order to ensure the training data, which includes the observational 

history, does not bleed into the test data, the 2 predictand dimensions in the test data are 

replaced by the respective raw model predictions in the test set clustering. This operation 

introduces some error because the choice of raw NWP forecasts to replace the predictand 

dimensions is an imperfect inference. In this way, the use of k-means to organize the 

training and test data into optimal clusters can be considered a limited case of supervised 

machine learning (Pedregosa et al. 2011). 

E. BAYESIAN POSTPROCESSING METHOD 

1. Concept 

This thesis applies Bayesian Estimation and Monte Carlo Markov Chain sampling 

methods adapted from Wendt (2017). This method explicitly applies Bayes’ Rule in order 

to determine information about the model parameters given the training data. Predictor 
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and predictand training data is used to develop generalized linear model (GLM) 

parameters via Bayesian Estimation, which is then used to forecast ceiling height and 

visibility given test predictor data in the test or forecast step. The forecast is 

communicated via a posterior predictive distribution (PPD). The mean or median of the 

distribution or the calculated cumulative probability for certain conditions can be used to 

generate specific forecasts. Conceptually, the model determines the sensitivity of the 

predictands to the chosen predictors, and then uses that knowledge to make predictions 

probabilistically. In this way, the model quantifies forecasting thumb-rules, or heuristics. 

Figure 8 summarizes the process visually. 

Bayesian Post-Processing Model Schematic 

2. Bayesian Estimation and MCMC Method

Equation 1 details Bayes’ Rule, which inverts the conditional probability 

statement. The rule states that the probability of model parameters , given training data 

Y, is equal to the probability of the data Y, given the model parameters  multiplied by 

the probability of the model parameters , and divided by the probability of the data Y. 

p( |Y) is known as the posterior probability or belief in Bayesian terms. p(Y|) is known 

as the likelihood function. p() is known as the prior probability. p(Y) is the marginal 

probability, or evidence, of Y and serves as a normalizing factor (Wilks 2011). 
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The power of this model is that Bayesian thinking is superior to frequentist 

thinking for scientific tests and predictions. Traditional frequentist statistics typically 

make predictions in terms of p(Y|). In words, the prediction is the probability of forecast 

data Y, given the parameters  of a normal likelihood distribution N~(,2) derived from 

a set of sample data. The misuse of frequentist statistics in the task of scientific 

predictions is well-known and documented by data scientists (VanderPlas 2013). The 

simplest way to understand the difference between Bayesian statistics and frequentist 

statistics is to examine the differences in the way each communicates uncertainty. 

Uncertainty is typically communicated via credible intervals in Bayesian statistics and 

confidence intervals in frequentist statistics. Both intervals are calculated in the same way 

by adding and subtracting a multiple (1 for 68.27%, 2 for 95.45% and 3 for 99.72%) of 

the standard deviation from the mean (VanderPlas 2013). The difference is in the 

interpretation and mathematical meaning. Bayesian statistics treats the bounds of the 

intervals as fixed, and the sample parameters  and  as random variables (VanderPlas 

2013). Thus, when communicating the 95% credible interval, for example, it is accurate 

to state that there is a 95% probability that the sample parameter  falls within the 

interval bounds. This is sound reasoning because the Bayes’ Theorem computes the 

probability of model parameters given training data. The intervals are constructed by the 

training data while the prediction is a probabilistic statement about the belief that a trial’s 

parameters will fall within the expected range. On the other hand, frequentist statistics 

treats the sample parameters  and , derived from the sample statistics, as fixed and 

treats the bounds of the interval as random (VanderPlas 2013). Thus, stating that there is 

a 95% chance of a trial’s parameters falling within the 95% confidence interval is not 

correct reasoning. Confidence intervals refer to the probability that if the experiment is 

repeated 100 times, 95 of the computed intervals will contain the true mean and standard 

Equation (1) p( |Y ) 
p(Y | ) p( )

p(Y )
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deviation. It is also important to note that when calculating credible intervals, if a normal 

likelihood function and non-informative prior p() =1 are used, then the credible interval 

and confidence interval will be numerically exactly the same (VanderPlas 2013). So, 

while credible intervals and confidence intervals are computed exactly the same and are 

often numerically similar, they have drastically different meanings (VanderPlas 2013). 

When making scientific predictions, as in weather forecasting, it is more accurate to use 

Bayesian statistics and credible intervals. 

In this model,  is the set of regression coefficients corresponding to each 

intercept, predictor weight, variance and covariance. This model forecasts for 2 

predictands, ceiling height and visibility, using combinations of 2–6 predictors. So, for a 

trial with 2 predictors, there will be 9 regression coefficients. The 9 regression 

coefficients consist of the intercepts for each predictand (0 and 1), a coefficient for each 

predictor (2-5), the variances of the 2 predictands respectively (6-7), and the 

predictands’ covariance 8. During the training step, Y is the observed ceiling height and 

visibility observations. During the test step, Y is the prediction for ceiling height and 

visibility. In this way, this application of the Bayesian post-processing model seeks to 

make PPDs of Y test data inferred from a GLM based on past training data.  

The complexity of Bayesian estimation lies in the method to complete the 

inference. Looking back at Equation 1, p(Y) is not always known, and it must be removed 

to complete the task. 

 

 

 

So, knowing that p(Yሻൌ׬pሺY|θሻpሺθሻdθ,	Equation 1 can be rewritten as: 

   

 

 (1) p( |Y ) 
p(Y | ) p( )

p(Y )

p( |Y ) 
p(Y | ) p( )

 p(Y | ) p( )d
(2) 
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Equation 2 is the inference needed to successfully calculate the probability of 

parameters  , given training data Y from the likelihood function p(Y|) and the prior 

p(). For this study, no assumption is made about the prior so p()=1 and p(Y|) is 

assumed to be a normal likelihood function, or the assumption about how the data is 

distributed. In order to complete the inference of equation 2, MCMC methods are used to 

estimate the distribution. MCMC method are necessary due to the multivariate 

predictands and multiple predictors that make the inference computationally intensive 

(Gelman 2013). Specifically, this study utilizes the Metropolis algorithm, which creates 

the Markov Chain using random jumps or walks (Gelman 2013). By taking random 

jumps, the process makes no assumptions about the path of the Markov Chain. For each 

regression parameter , the algorithm computes p(n |Y) at the current location in sample 

space n and then randomly jumps to a new location and computes p(n+1 |Y) at n+1. 

Equation 3 is the ratio of the 2 jumps. Notice, p(Y) cancels, which eliminates the problem 

of the denominator in equation 1.  

 

 

 

When the ratio r is greater than a randomly drawn number from the interval (0,1), 

the algorithm accepts the jump to the location of phase space of n+1 (Wendt, 2017). If 

not, the jump is rejected and the algorithm retains the location of n as the next step in the 

chain. Acceptance of the jump is not guaranteed so as to ensure the chain visits the 

locations of sample space with higher posterior probability more often than regions of 

low posterior probability and maintains balance (Wendt 2017). The accepted jumps build 

the posterior sampling distribution. Remembering that the parameters  represent the 

regression coefficients in the GLM, the chain of states of  in the sample space is the 

Markov Chain representing the distribution of respective regression coefficients. The 

algorithm generates a Markov Chain for each regression parameter  in the GLM. Each 

chain converges when the sampling distribution reaches stationary behavior (Wendt 2017 

 (3) r 
p(

n1
|Y )

p(
n

|Y )


p(Y |
n1

) p(
n1

) p(Y )

p(Y |
n
) p(

n
) p(Y )



27

and Gelman 2013). In this application, the model computes 1x106 proposals for each 

chain. After the samples converges, or after 5x105 samples and half the chain, the model 

randomly draws 1x104 samples of the chain to build the discrete posterior distribution. 

Kernel Density Estimation (KDE) is used to estimate the continuous probability 

distribution form of the discrete histogram by fitting a normal distribution to each sample 

and then linearly summing to produce a continuous distribution (Wendt 2017). Each 

parameter  corresponds to regression coefficients called betas () in the GLM.  

For example, for a model with two predictands Y1 and Y2 and two predictors X1 

and X2, the GLM is described in equation set 4.  

Here, YሬሬԦ	refers to a vector containing the 2 predictands, ceiling height and 

visibility, which is a function of the predictors X given parameters 0-8 (0-8). The GLM 

of YሬሬԦ	is approximated by a normal distribution with parameters μሬԦ and . The vector μሬԦ 

contains the parameters 1 and 2 , which are defined as linear summations of the 

regression parameters (betas) and the predictors. The parameter  is the covariance 

matrix containing the variances 1
2 and 2

2 of the predictands on the diagonal plus the 

product of covariance and correlation coefficient of the predictands: 1212. Note, the 

covariance term is redundant in the off-diagonals. Parameters 6-8 are the variance 

parameter estimates of the covariance matrix . Thus, they are not literally the values of 

the variances and covariance. Cholesky decomposition must be performed to retrieve the 

actual values (Wendt 2017). In this context, it is not necessary to perform the 

 (4) 
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transformation. Unlike simple linear regression, this GLM includes the variance and 

covariance of the predictors in the regression.  

Finally, in the forecast or test step, test data predictors are input into the GLM. 

The model is trained with log-transformed and z-scored (standardized) data, and, 

therefore, the forecast includes exponentiation and un-standardization of the posterior. 

The log-transformation is necessary to handle the relatively non-normal distributions for 

the predictors by forcing them to be more normal, to ensure forecasts are positively-

valued (no negative ceiling heights and visibility forecasts), and to produce asymmetric 

PPDs that capture the true and intrinsic skewness of the weather variables (Wendt 2017). 

The z-score transformation (standardization) is necessary because the multiple predictors 

and predictands are in different units and scales (Wendt 2017 and Pedregosa et al. 2011). 

The transformation standardizes each data point by subtracting the mean and dividing by 

the standard deviation, which produces unit-less z-scores. Finally, the forecasts are 

transformed back into their respective original units in the test step. Lastly, the mean and 

median of the posterior distributions are calculated for scoring purposes against the raw 

NAM forecast. Credible intervals are then calculated to communicate uncertainty. 

In summary, test predictors are inputted into the GLM trained on past 

relationships for the two predictands. The output is a predictive posterior probability 

distribution. Through Bayesian reasoning, the interpretation of the posterior distribution 

and credible intervals correctly reflect the probability, or belief, of the ceiling height and 

visibility predictions. 

F. SCORING 

For each run, the mean and the median of each prediction is calculated. Next, 

mean error (ME), mean absolute error (MAE), root mean square error (RMSE) and skill 

score (SS) are calculated for both the mean and median forecast sets. Equations 5–8 list 

the equations for ME, MAE, RMSE and SS. 
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In the calculations, n is the number of forecasts, fi is the mean or median of ith 

forecast, ti is the corresponding truth from the observation and ei is the error. Next, the 

ME, MAE, and RMSE is calculated for the raw NAM forecasts of ceiling and visibility 

and compared to the model’s post-processed errors. Mean error indicates the model’s 

average simple performance. Mean absolute error calculates the overall average error 

without distinguishing between under and over-forecasting. Root mean square error is 

similar to MAE but it penalizes severe individual errors more. Skill score represents the 

percent improvement (or degradation) in RMSE. All four error calculations are standard 

scoring metrics in meteorology (Wilks 2011). In addition to being calculated on the full 

set of forecasts, the errors are also calculated on the subset of forecasts corresponding to 

the aviation flight categories (table 1) for Run 8a (the best performing trial).  

Next, forecast skill for Run 8a is scored against NAM using contingency tables 

and associated metrics conditioned on the aviation flight categories. An example 

contingency table is shown in table 3. A contingency table tabulates the number or ratio 

of correct forecasts compared to observations (Wilks 2011). For example, this study 

compares the number of times LIFR ceiling height conditions are forecasted by the model 
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(NAM or NPS) and LIFR do conditions occur (box a). Second, the number of times LIFR 

conditions are not forecasted (some other condition is forecasted) and they do occur is 

counted (box c). Third, the number of times LIFR conditions are forecasted and they do 

not occur is counted (box b). Fourth, the number of number of times LIFR conditions are 

not forecasted and some other conditions occurs is counted (box d).  

 Contingency Table Example. Adapted from “Verification Measures,” 
http://www.wxonline.info/topics/verif2.html 

LIFR Observed 
Yes No 

Forecasted Yes a b a+b 
No c d c+d 

a+c b+d n=a+b+c+d 

From this table, standard weather verification metrics are calculated to include: 

percent correct (PC), hit rate (HR), false alarm ratio (FAR), threat score (TS), bias, and 

Heidke Skill Score (HSS). Equations 9-14 list the mathematical calculation for the 

example in table 3.  

PC 
(a  d )

n

HR 
a

(a  c)

FAR 
b

(a  b)

TS 
a

(a  b c)

 (9) 

(10) 

(11) 

(12) 
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The percent correct (PC) calculates the percent of the forecasts that are correct 

with 1 being perfect (Wilks 2011). The hit rate (HR) is the ratio of observed events that 

are forecast with 1 being perfect (Wilks 2011). The false alarm rate (FAR) is the rate of 

yes forecasts that were incorrect with 0 being best. The threat score (TS) combines HR 

and FAR into one score with 1 being best (Wilks 2011). Bias compares the number of 

times a condition was forecasted and the number of times it occurred. A bias=1 means the 

event occurred as many times as it was forecasted. A bias<1 means a condition was 

forecasted less times than it occurred. A bias>1 means a condition was forecasted more 

times than it occurred (Wilks 2011). The Heidke Skill Score (HSS) compares the 

proportion correct to that which would occur from random forecasts that are independent 

of the observations. An HSS=1 means the forecast is perfect compared to a random 

forecast, HSS=0 means no skill over random forecasting, and HSS<0 means worse than a 

random forecast (Wilks 2011). Finally, to better understand the probabilistic capability of 

the model, posterior predictive distributions from a select forecast from Run 8a is 

presented and discussed. 

Bias 
(a  b)

(a  c)  (13) 

 
(14) HSS 

2(ad  bc)

[(a  c)(c  d) (a  b)(b d)]



 

 
 

32

THIS PAGE INTENTIONALLY LEFT BLANK  



 

 
 

33

IV. RESULTS 

A. PREDICTOR SELECTION AND DATA CONDITIONING 

1. Correlations for Unconditioned Data 

Predictor selection was based on 2 approaches. First, the raw NAM forecasts for 

cloud base height (index 13) and visibility (index 11) were used as predictors to test this 

nowcast system’s ability to post-process explicit NWP cloud base height and visibility 

forecasts. It is important to note that cloud base height and ceiling are not the same thing. 

As defined earlier, ceiling height is the height of the lowest layer of clouds covering at 

least half the sky (AMS 2012). Cloud base height above mean sea level (MSL) is the 

height of the lowest layer of clouds covering any portion of the sky (AMS 2012). As 

discussed previously, the height of the station must be subtracted from the forecast to 

maintain consistency of height reference. Thus, NAM forecasts of low cloud base may 

not necessarily generate a ceiling and are modified by the elevation of the station. 

However, the cloud base height forecast is a good approximation of ceiling height given 

that a ceiling exists. 

Second, predictors were chosen based on correlations to both ceiling height and 

visibility predictands as well as their physical relevance. The second set of predictors 

does not include the raw NAM cloud base height and visibility forecasts in order to 

investigate the ability to make predictions using the relationships between ceiling height 

and visibility and physical variables other than the explicit forecasts. For this study, the 

physical variables chosen based on high correlation coefficients and physical relevance to 

the phenomena include: surface wind (index 6), 950mb relative humidity (index 39), 

975mb relative humidity (index 42), 975mb wind speed (index 43), 1000mb relative 

humidity (index 46), and 1000mb wind speed (index 47). Pearson correlation coefficients 

for the raw data (unconditioned) are shown in Table 4. 
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 Correlation Coefficients for Raw Predictors 

Index Level Variable Name (units) Ceiling r Visibility r 
6 surface Wind speed (knots) 0.331583 0.343562 
11 surface Visibility (km) 0.100516 0.085129 
13 surface Cloud base height (m) 0.461871 0.114438 
39 950 Relative humidity (%) 0.354242 0.075211 
42 975 Relative humidity (%) 0.522398 0.064485 
43 975 Wind speed (m/s) 0.20513 0.327587 
46 1000 Relative humidity (%) 0.549819 0.149936 
47 1000 Wind speed (m/s) 0.312252 0.329551 

 

Figures 9-12 display the joint plot (simple linear regression with KDE and 95% 

confidence interval in blue shading along best fit line) between select predictors and 

predictands. The figure axes are labeled according to the index numbers in table 4. 
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 Joint Plot of Ceiling Height and Surface Wind Speed 
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 Joint Plot of Visibility and Surface Wind Speed 
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 Joint Plot of Visibility and NAM Visibility Forecast 
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 Joint Plot of Ceiling Height and NAM Cloud Base Height 
Forecast 
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Comparing each predictand-predictor correlation for the unconditioned data, a 

number of interesting and important points are apparent. First, figures 9 and 10 show the 

regressions between ceiling height (r=0.33) and visibility (r=0.34) respectively with 

surface wind speed. Both appear to be moderately correlated (r=0.3-0.5), but the 

regression between ceiling height and surface wind speed is problematic because of the 

bimodal distribution of ceiling height and its artificial cap at 12,200 ft. The regression 

between visibility and wind speed is similarly impacted by a cap of 10 miles. Next, 

figures 11 and 12 show the regression between visibility (r=-0.09) and ceiling height 

(r=0.46) with the NAM visibility and cloud base height forecasts respectively. The NAM 

visibility forecast is bimodal while the observations are log-normal. This means the 

correlation between NAM visibility forecast and the observation could be trivial. The 

predictand and predictor for ceiling height and cloud base are both bimodal which 

complicates the relationship. The regressions for the remainder of the predictand-

predictor relationships were also examined. The bimodal distribution of ceiling height is 

problematic for all the regressions. Despite these problems, the nowcast system is tested 

on the unconditioned data to demonstrate its direct application without any intervention 

via conditioning and clustering. 

2. Correlations for Conditioned Data

As previously discussed, the ceiling and visibility observations (predictands) are 

artificially capped at 12,200 ft and 10 miles respectively. This limits the ability to find 

relationships between the predictors and predictands. So, conditioning is necessary to 

focus the investigation on usable data for correlation and regression purposes. Figure 13 

displays the histogram and KDE of ceiling height observations (index 1). Figure 14 

displays the histogram and KDE of visibility observations (index 2). There is a natural 

break in the ceiling height data between low (<6000 ft) and high ceilings (>6000 ft). 

There is not a readily apparent break in the visibility data. So, conditioning was applied 

to investigate relationships between the predictors and predictands given that the 

observed ceiling was less than 6000 ft. The correlations before and after conditioning are 

shown in Table 5. 
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 Histogram and KDE of Ceiling Height Observations 

 

 

 

 

 

 

 Histogram and KDE of Visibility Observations 
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 Correlation Coefficients for Conditioned and Raw Predictors 

Index Level 
Variable Name 
(units) 

Ceiling 
Conditional r 

Raw 
r 

Visibility
Conditional r 

Raw r

6 sfc Wind speed (knots) 0.65 0.33 0.36 0.34
11 sfc Visibility (km) 0.06 0.10 -0.12 -0.09 

13 sfc 
Cloud base height 
(m) -0.11 0.46 -0.08 0.11

39 950 
Relative humidity 
(%) 0.41 -0.35 0.28 0.08

42 975 
Relative humidity 
(%) 0.16 -0.52 0.20 -0.06

43 975 Wind speed (m/s) 0.60 0.21 0.34 0.33

46 1000 
Relative humidity 
(%) -0.09 -0.55 0.03 -0.15

47 1000 Wind speed (m/s) 0.66 0.31 0.32 0.331

The conditional correlations have changed significantly compared to the raw 

correlations. Most striking is that wind speeds tend to dominate the correlations after 

conditioning compared to relative humidity and the raw cloud base height and visibility 

forecasts. This is reasonable since higher winds could tend to produce higher ceilings and 

extended visibility ranges if they advect out any marine stratus. The issue with ceiling 

predictand data being capped is removed, and the model regression will not be biased by 

the artificial caps. The updated joint plots are shown in figures 15-18. The new regression 

for ceiling and surface wind speed (figure 15) improved because the artificial height cap 

at 12,200 ft is removed when we look at low ceilings only. This produced a more useful 

regression and correlation. Next, the regression for visibility and surface wind speed 

(figure 16) was not improved because the data was not conditioned on visibility. The new 

regression for visibility and NAM visibility forecast (figure 17) was similarly not 

improved. Finally, the regression for ceiling cloud base height (figure 18) was not 

improved because the predictor is still bimodal. The regressions for the remainder of the 

predictand-predictor relationships were also examined. The problem of bimodal 

distribution of ceiling height was resolved for the other predictors. 
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Joint Plot of Ceiling Height <6000 ft and Surface Wind Speed 
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 Joint Plot of Visibility (Given Ceiling Height <6000 ft) and 
Surface Wind Speed 
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 Joint Plot of Visibility (Given Ceiling Height <6000 ft) and 
NAM Visibility Forecast 
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 Joint Plot of Ceiling Height <6000 ft and NAM Cloud Base 
Height Forecast 
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B. MODEL TRIAL SETTINGS AND METADATA 

After investigating the differences in correlations between unconditioned and 

conditioned data, the following conditions in table 6 were used to test the model. 

 Model Conditions for Each Trial 

Run Predictors Clustering 
Method 

Conditioning 
Method 

1 Cloud base; visibility none none 
2 Cloud base; visibility none Trained and tested 

on ceilings 
<6000ft 

3 Cloud base; visibility K-means none 
4a Cloud base; visibility K-means Trained and tested 

on ceilings 
<6000ft 

4b Cloud base; visibility K-means Trained on 
ceilings <6000ft, 
tested on ceilings 
>6000ft 

4c Cloud base; visibility K-means Trained and tested 
on ceilings 
>6000ft 

5 surface wind, 950mb relative humidity, 975mb 
relative humidity, 975mb wind speed, 1000mb 
relative humidity, and 1000mb wind speed 

none none 

6 surface wind, 950mb relative humidity, 975mb 
relative humidity, 975mb wind speed, 1000mb 
relative humidity, and 1000mb wind speed 

none Trained and tested 
on ceilings 
<6000ft 

7 surface wind, 950mb relative humidity, 975mb 
relative humidity, 975mb wind speed, 1000mb 
relative humidity, and 1000mb wind speed 

K-means none 

8a surface wind, 950mb relative humidity, 975mb 
relative humidity, 975mb wind speed, 1000mb 
relative humidity, and 1000mb wind speed 

K-means Trained and tested 
on ceilings 
<6000ft 

8b surface wind, 950mb relative humidity, 975mb 
relative humidity, 975mb wind speed, 1000mb 
relative humidity, and 1000mb wind speed 

K-means Trained on 
ceilings <6000ft, 
tested on ceilings 
>6000ft 

8c surface wind, 950mb relative humidity, 975mb 
relative humidity, 975mb wind speed, 1000mb 
relative humidity, and 1000mb wind speed 

K-means Trained and tested 
on ceilings 
>6000ft 
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Each combination of predictors was tested: raw, conditioned without clustering, 

clustered without conditioning, and clustered and conditioned. Moreover, the clustered 

and conditioned trials were tested on the opposing conditions to investigate false alarm 

rates. For example, the predictors were trained and tested on ceilings less than 6000 ft, 

trained on ceilings less than 6000 ft and tested on ceilings greater than 6000 ft, and 

trained and tested in ceilings greater than 6000 ft. For trials with clustered data, the 

nowcast model is run on each cluster and errors are calculated separately. Then, the 

overall errors are calculated for the results from the combined clusters. The predictands 

for ceiling height and visibility are coupled in the multivariate approach. 

Metadata for each trial is listed here in table 7. Train and test sample size refers to 

the number (hours) of predictand-predictor data sets used to train the model and test the 

model. The MCMC run time is the total computer time needed to complete the MCMC 

and BE process. The number of proposals N is the chain length. This number is required 

to be large to allow for convergence and must be increased if a predictor parameter does 

not converge (r<<1). The burn value refers the point specified by the user to begin 

sampling the distributions to construct the PPDs. The burn value must be set to a point 

after convergence and may need to be adjusted. The number of clusters k refers to the 

number of clusters chosen using k-means cluster analysis for trials that included 

clustering. Finally, PPD samples refers to the numbers of samples taken from the 

distribution to construct the PPDs 
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 Trial Metadata 

Run Train Test Run Time N Burn 

Value 

k PPD samples 

1 1183 196 4 min 1e6 5e5 N/A 1e4 

2 359 85 3.65 min 1e6 5e5 N/A 1e4 

3 874 196 4 min 1e6 5e5 4 1e4 

4a 491 125 3.4 min 1e6 5e5 4 1e4 

4b 610 71 3.5 min 1e6 5e5 2 1e4 

4c 336 71 3.2 min 1e6 5e5 3 1e4 

5 1183 196 4 min 1e6 5e5 N/A 1e4 

6 359 85 3.55 min 1e6 5e5 N/A 1e4 

7 1183 196 4 min 1e6 5e5 4 1e4 

8a 573 125 4 min 1e6 5e5 3 1e4 

8b 573 71 3.2 min 1e6 5e5 3 1e4 

8c 287 71 3 min 1e6 5e5 3 1e4 
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C. RESULTS 

1. Error Comparison 

The following tables display the results for the various trials listed in table 6. 

First, ME, MAE and RMSE are reported for the two-predictor scenario for both ceiling 

and visibility in tables 8-13. Next, the same is reported for the 6-predictor scenario in 

tables 14-19. The first column “None” refers to the disuse of both conditioning and 

clustering. The next column refers to events conditioned on low ceilings only. The third 

column refers to errors using clustering only. Finally, the last column lists the errors 

when both conditioning and clustering are used. For trials with clustering, errors are for 

the overall (combined) test sample. 

 Mean Error (ft) for Ceiling (2 Predictors) 

 None Conditioned Clustered Clustered and 
Conditioned 

NAM 2242 2242 1817 5674 
NPS 
Mean 

3156 2802 2488 5.25 

NPS 
Median 

-2161 2358 1991 -98.5 

 Mean Absolute Error (ft) for Ceiling (2 Predictors) 

 None Conditioned Clustered Clustered and 
Conditioned 

NAM 3301 3301 3037 5964 
NPS 
Mean 

3864 3562 3353 459 

NPS 
Median 

4000 3309 3048 461 
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 Root Mean Square Error (ft) for Ceiling (2 Predictors) 

 None Conditioned Clustered Clustered and 
Conditioned 

NAM 6007 6007 5372 6402 
NPS 
Mean 

6001 5984 5292 959 

NPS 
Median 

5337 5993 5314 939 

 

 Mean Error (miles) for Visibility (2 Predictors) 

 None Conditioned Clustered Clustered and 
Conditioned 

NAM 3.19 3.19 3.28 3.72 
NPS 
Mean 

0.43 0.75 -0.10 0.86 

NPS 
Median 

-0.43 0.44 0.88 0.62 

 Mean Absolute Error (miles) for Visibility (2 Predictors) 

 None Conditioned Clustered Clustered and 
Conditioned 

NAM 3.50 3.50 3.53 4.07 
NPS 
Mean 

1.48 1.42 1.51 1.76 

NPS 
Median 

1.76 1.49 1.53 1.75 

 Root Mean Square Error (miles) for Visibility (2 Predictors) 

 None Conditioned Clustered Clustered and 
Conditioned 

NAM 4.46 4.47 4.47 5.01 
NPS 
Mean 

2.09 2.20 2.22 2.46 

NPS 
Median 

2.10 2.20 2.17 2.39 
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 Mean Error (ft) for Ceiling (6 Predictors) 

None Conditioned Clustered Clustered and
Conditioned 

NAM 2242 4169 2550 4614 
NPS 
Mean 

587 3318 1202 -66.8 

NPS 
Median 

-2234 1670 -344 -145 

 Mean Absolute Error (ft) for Ceiling (6 Predictors) 

None Conditioned Clustered Clustered and
Conditioned 

NAM 3301 4523 3587 4868 
NPS 
Mean 

3765 3322 3986 263 

NPS 
Median 

3640 1961 3716 293 

 Root Mean Square Error (ft) for Ceiling (6 Predictors) 

None Conditioned Clustered Clustered and
Conditioned 

NAM 6007 6999 6245 6522 
NPS 
Mean 

5187 5216 5762 338 

NPS 
Median 

5371 3883 5396 364 

 Mean Error (miles) for Visibility (6 Predictors) 

None Conditioned Clustered Clustered and
Conditioned 

NAM 3.19 3.66 3.22 3.44 
NPS 
Mean 

0.07 0.24 0.64 0.29 

NPS 
Median 

-0.48 -0.45 0.08 -0.58 
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 Mean Absolute Error (miles) for Visibility (6 Predictors) 

None Conditioned Clustered Clustered and
Conditioned 

NAM 3.50 4.09 3.50 3.79 
NPS 
Mean 

1.66 1.85 1.58 1.94 

NPS 
Median 

1.86 2.07 1.83 2.28 

 Root Mean Square Error (miles) for Visibility (6 Predictors) 

None Conditioned Clustered Clustered and
Conditioned 

NAM 4.46 5.09 4.23 4.63 
NPS 
Mean 

2.35 2.48 2.31 2.52 

NPS 
Median 

2.39 2.48 2.49 2.77 

2. Interpretation

First, considering the two-predictor scheme using NAM cloud base height and 

visibility forecasts to forecast ceiling height, tables 8-10 show that ME, MAE and RMSE 

are significantly reduced only when both clustering and conditioning are applied (run 4a). 

This result makes sense because the bimodal ceiling predictand behavior is removed by 

conditioning. Moreover, clustering reduces variance by finding the appropriate groupings 

of data. Clustering alone did not improve forecasts most likely because the bimodal 

predictand distribution resulted in many incorrect cluster assignments thereby increasing 

variance.  

For visibility, the post-processing of raw data (run 1:no conditioning or 

clustering) produced the lowest values of ME, MAE, and RMSE for the two-predictor 

scheme (see tables 11-13). This is most likely because the predictand distribution is log-

normal and therefore does not pose a significant problem compared to the ceiling height 

distribution. All methods improve the visibility forecast compared to the raw NAM 

visibility forecast, but conditioning and/or clustering were not advantageous over the use 
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of the raw data. In most cases, the NPS mean forecast performed better (smaller errors) 

than the median forecast. 

Next, considering the 6-predictor scheme using NAM cloud base height and 

visibility forecasts to forecast ceiling height, tables 14-16 show that ME, MAE and 

RMSE are also significantly reduced only when both clustering and conditioning are 

applied (run 8a). This result makes sense for the same reasons as before. For visibility, 

the post-processing of clustered data (run 7) produced the lowest values of ME and MAE 

for the 6-predictor scheme (see tables17-19). The smallest RMSE was produced using the 

raw data. This is most likely because the predictand distribution is log-normal and 

therefore does not pose a significant problem compared to the ceiling height distribution. 

All methods improve the visibility forecast compared to the raw NAM visibility forecast, 

but clustering was usually advantageous over the use of the raw data. In most cases, the 

NPS mean forecast performed better than the median forecast. 

Comparing the two-predictor and the 6-predictor scheme for ceiling height 

forecasts, all error calculations were improved most significantly by the 6-predictor 

scheme. For example, the MAE for the raw NAM ceiling height forecast was over 4,000 

ft. The best performing NPS forecast reduced MAE to 459 ft for the 2-predictor scheme 

and 263 ft for the 6-predictor scheme. The RMSE for the raw NAM ceiling height 

forecast was over 6,000 ft. The best performing NPS forecast reduced RMSE to 939 ft for 

the 2-predictor scheme and 338 ft for the 6-predictor scheme. 

Next, comparing the two-predictor and the 6-predictor scheme for visibility 

forecasts, all error calculations were improved most significantly by the 2-predictor 

scheme. For example, the MAE for the raw NAM visibility forecast was over 3 miles. 

The best performing NPS forecast reduced MAE to 1.42 miles for the 2-predictor scheme 

and 1.58 miles for the 6-predictor scheme. The RMSE for the raw NAM visibility 

forecast was over 4 miles. The best performing NPS forecast reduced RMSE to 2.09 

miles for the 2-predictor scheme and 2.31 miles for the 6-predictor scheme. 

Thus, in general, the 6-predictor NPS mean forecast using conditioning and 

clustering resulted in the smallest errors for ceiling height forecasts. The two-predictor 
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NPS mean forecast without conditioning or clustering resulted in the smallest errors for 

visibility forecasts. When examining only low ceiling test days (conditioned data), the 

NPS nowcast using physical predictors dramatically improved upon the raw NAM 

forecasts. However, these results must be taken in context. This model trial was trained 

on cases when the ceiling height observation (predictand) was less than 6000 ft, and 

tested on cases when the verifying observation was also less than 6000 ft. The model was 

not given this information, but was it was tuned for low ceiling events. So, while the 

nowcast system greatly reduced error for low ceiling forecasts, the model must be tested 

on the opposite condition to test for false alarms. Run 8b tested the model tuned for low 

ceilings on cases when the verifying observation was greater than 6000 ft. This resulted 

in the NPS model dramatically increasing ceiling height error by over 100% for this 

scenario. This means that the model tuned for low ceilings cannot be applied to cases of 

high ceilings. Operationally this is significant, because if this model were to be 

operational as-is, the forecaster would need to make an inference about whether or not 

the real outcome of the ceiling forecast will be less than or greater than 6000 ft. This 

inference can be made practically by assuming persistence (a recent observation indicates 

a ceiling less than 6000 ft) or using remote sensing such as satellite imagery to confirm 

the presence of low clouds a priori. 

D. CLUSTERING RESULTS AND MCMC DIAGNOSTICS 

For each trial, diagnostics were collected to examine the k-means clustering 

results and MCMC and BE performance. A sample of the diagnostics for trials 8a, the 

best performing scheme, are included here for review. First, the silhouette score 

distribution and analysis for trial 8a (6 predictors, conditioned and clustered) are shown 

in figures 19 and 20. Based on the clustering analysis, n=3 clusters was chosen because it 

had a relatively high score/low variance and minimal cluster misassignment (negative 

scores). Other clustering combinations either lower or similar scores but with more 

misassignment. Refer to the methods section for cluster analysis discussion. 
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 Silhouette Scores for Trial 8a 
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 Silhouette Analysis for Trial 8a 

 

 

Next, figure 21 displays the MCMC chain trace for 4 (4) from trial 8a cluster 2, 

which is the regression coefficient distribution for the NAM cloud base height predictor 

and ceiling height predictand. Cluster 2 was chosen for review because it had the greatest 

number of training and test data points. From before, the correlation coefficient between 

the cloud base height predictor and ceiling height predictand was only r=.11. After post-

processing, the Bayesian estimation of the regression weight is around .5 (the mean of the 

distribution as identified by the thin blue line). Relative to the other predictor (NAM 

visibility forecast), the cloud base height predictor was a more explanatory predictor. 

This makes sense because it is reasonable to assume that as the NAM cloud base height 

forecast increases, so should the ceiling height. 
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MCMC Chain Trace of 4 

Figure 22 shows the model parameter boxplot for trial 8a cluster 2, which 

summarizes the distributions for all parameters. Each box plot corresponds to the 

intercepts and regression parameters for the ceiling height and visibility GLM 

respectively. So, 0 and 1 are the intercepts for ceilings height and visibility, 2 and 3

are the coefficients for the NAM visibility forecast predictor, 4 and 5 are the 

coefficients for the NAM cloud base height forecast predictor, and 6-8 are the 

parameter estimates of the covariance matrix. A similar figure was produced for all trials 

and all clusters to evaluate the relative differences in predictor regression coefficient 

distributions. The results indicate that predictors with high correlations coefficients were 

the best explanatory variables for predictions 
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 Boxplot of Coefficient Distributions for Trial 4a Cluster  

 
 
 
 

E. SUMMARY OF RESULTS AND INTERPRETATION 

1. Run 8a Ceiling Height Forecasts 

Tables 20-22 display a sample set of ceiling forecasts for Run 8a per flight 

category: LIFR, IFR and MVFR. Forecasts for VFR are not shown because they 

correspond to Run 8b. The first column is the date time group (DTG). They are not in 

DTG order because they are sorted by flight category. The second column is the ceiling 

height observation. The third column is the corresponding flight category for scoring 

purposes. The next 2 columns are the NAM cloud base height forecast and the 

corresponding flight category. The final 2 columns are the NPS mean ceiling height 

forecast and the corresponding flight category. Only the NPS mean is shown because it is 

the best performing forecast compared to the median in this case. 
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 LIFR Ceiling Forecasts 

DTG 
Cig 
Ob 

Flight 
Category NAM 

Flight 
Category 

NPS 
mean 

Flight 
Category 

17081912 400 LIFR 649.82 IFR 568.68 IFR 
17082805 400 LIFR 11941.16 VFR 282.78 LIFR 
17082806 300 LIFR 11941.16 VFR 317.72 LIFR 
17082807 400 LIFR 11941.16 VFR 302.39 LIFR 
17082808 300 LIFR 11941.16 VFR 273.84 LIFR 

 IFR Ceiling Forecasts 

DTG 
Cig 
Ob 

Flight 
Category NAM 

Flight 
Category 

NPS 
mean 

Flight 
Category

17081412 500 IFR 617.01 IFR 845.93 IFR
17081414 500 IFR 249.56 LIFR 693.64 IFR 
17081415 600 IFR 256.12 LIFR 670.63 IFR 
17081416 700 IFR 341.42 LIFR 695.64 IFR 
17081417 800 IFR 396.54 LIFR 736.95 IFR 

 MVFR Ceiling Forecasts 

DTG 
Cig 
Ob 

Flight 
Category NAM 

Flight 
Category NPS mean 

Flight 
Category

17081421 1600 MVFR 661.6319 IFR 1697.8408 MVFR 
17081422 1900 MVFR 640.63452 IFR 1922.2985 MVFR 
17081423 1400 MVFR 523.83662 IFR 2016.5738 MVFR 
17081600 2000 MVFR 11941.163 VFR 1911.4016 MVFR 
17081601 2400 MVFR 11941.163 VFR 1914.3565 MVFR 

2. Run 8a Visibility Forecasts

Tables 23-26 display a sample set of visibility forecasts for Run 8a per flight 

category: LIFR, IFR MVFR, and VFR. The first column is the date time group (DTG). 

They are not in DTG order because they are sorted by flight category. The second column 

is the visibility observation. The third column is the corresponding MOS flight category 

for scoring purposes. The next 2 columns are the NAM visibility forecast and the 
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corresponding flight category. The final 2 columns are the NPS mean visibility forecast 

and the corresponding MOS and flight category. Only the NPS mean is shown because it 

is the best performing forecast compared to the median in this case. 

 LIFR Visibility Forecasts 

DTG 
Vis 
Ob 

Flight 
Category NAM 

Flight 
Category 

NPS 
mean 

Flight 
Category

17082914 0.5 LIFR 8.82 VFR 8.12 VFR 
 

 IFR Visibility Forecasts 

DTG 
Vis 
Ob 

Flight 
Category NAM

Flight 
Category 

NPS 
mean 

Flight 
Category 

17081413 2.5 IFR 14.98 VFR 9.08 VFR 
17082314 3 IFR 12.61 VFR 8.86 VFR 
17082315 2.5 IFR 9.51 VFR 8.62 VFR 
17082316 3 IFR 12.61 VFR 8.30 VFR 
17082912 3 IFR 14.98 VFR 8.40 VFR 

 

 MVFR Visibility Forecasts 

DTG 
Vis 
Ob 

Flight 
Category NAM

Flight 
Category 

NPS 
mean 

Flight 
Category 

17081414 5 MVFR 10.50 VFR 9.15 VFR 
17081415 5 MVFR 11.25 VFR 8.97 VFR 
17081417 5 MVFR 14.98 VFR 8.96 VFR 
17082015 5 MVFR 14.98 VFR 8.15 VFR 
17082318 5 MVFR 14.98 VFR 7.82 VFR 
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 VFR Visibility Forecasts 

DTG 
Vis 
Ob 

Flight 
Category NAM

Flight 
Category 

NPS 
mean 

Flight 
Category 

17081412 7 VFR 14.98 VFR 9.87 VFR 
17081416 6 VFR 10.56 VFR 8.86 VFR 
17081815 10 VFR 14.98 VFR 8.36 VFR 
17081816 7 VFR 14.98 VFR 7.67 VFR 
17081905 10 VFR 11.12 VFR 8.32 VFR 

 

a. Run 8a scoring 

When reviewing the scoring, it is important to remember that Run 8a forecasts are 

conditional upon low ceilings. Tables 27 and 28 display the overall percent correct (PC) 

and skill scores (SS) for the full set ceiling and visibility forecasts for Run 8a. In terms of 

skill scores, the NPS mean ceiling height forecast greatly reduced RMSE by almost 100% 

compared to the raw NAM cloud base height forecast. The NPS mean forecast reduced 

error by about 50% for visibility. However, this improvement did not translate to forecast 

skill improvement. This is because a visibility forecast over 10 miles is penalized for 

distance over 10 miles. So, if the observation is 10 miles, then any forecast for both NAM 

and NPS is penalized if it is greater than 10 miles even though it is not operationally 

wrong. The raw NAM visibility forecast was correct most of the time, even though it 

tended to miss the low visibility cases. The NPS model was not able to do any better than 

the raw forecast because the predictand data is log-normal and highly skewed left. The 

NPS model assumes a normal likelihood function and was not able to catch the extreme 

events any better than the pre-processed forecast. 

 Run 8a Skill Scores 

   Ceiling  Visibility
NPS Mean 0.94 0.46 
NPS Median 0.94 0.40 

 

 



 

 
 

62

 Run 8a Percent Correct by Flight Category 

 Ceiling Visibility
NAM 0.19 0.82 
NPS Mean 0.62 0.82 
NPS Median 0.45 0.74 

 

Focusing on ceiling height forecasts, table 29 displays the percent correct for the 

full set of NAM and NPS ceiling height forecasts by flight category. Forecast skill was 

greatly improved in the LIFR and MVFR flight categories and modestly improved in the 

IFR category. The RMSE skill scores for the NPS forecast are also displayed in table 30. 

Across the board, the NPS forecasts reduced error by 90 to 96% for low ceiling events 

(LIFR, IFR, and MVFR). 

 Run 8a Ceiling Percent Correct by Flight Category 

Ceiling LIFR IFR MVFR
NAM 0.43 0.19 0.00 
NPS mean 0.50 0.79 0.4 
NPS median 0.48 0.48 0.33 

 Run 8a Ceiling Skill Scores by Flight Category 

Ceiling LIFR IFR MVFR
NPS mean 0.96 0.96 0.91 
NPS median 0.96 0.96 0.90 

 

Next, contingencies tables for NAM and NPS forecasts per flight category are 

listed in table 31 and 32 respectively. The marginals are the check-sums to ensure all 

forecasts are counted. 
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 Run 8a Contingency Tables by Flight Category for NAM Cloud Base 
Height Forecast 

NAM   Observed     
    LIFR Other  Marginals 

Forecasted LIFR 12 48 60 
  other 16 49 65 
   Marginals 28 97 125 
     

    Observed     
    IFR Other Marginals  

Forecasted IFR 12 6 18 
  other 50 57 107 
   Marginals 62 63 125 
     

    Observed     
    MVFR Other  Marginals 

Forecasted MVFR 0 0 0 
  other 125 0 125 
   Marginals 125 0 125 
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 Run 8a Contingency Tables for NPS Mean Ceiling Height Forecasts 

NPS Mean   Observed     
    LIFR Other Marginals 

Forecasted LIFR 14 6 20 
  Other 14 91 105 
  Marginals 28 97 125 
     

    Observed     
    IFR Other Marginals 

Forecasted IFR 48 35 83 
  Other 13 29 42 
  Marginals 61 64 125 
     

    Observed     
    MVFR Other Marginals 

Forecast MVFR 14 8 22 
  Other 21 82 103 
  Marginals 35 90 125 
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From the contingency tables, forecast metrics are calculated in table 33. 

 Run 8a Contingency Table Metrics 

Flight 
Category Metric NAM NPS Mean Difference 
LIFR PC 0.49 0.84 0.35 
  HR 0.43 0.5 0.07 
  FAR 0.80 0.3 -0.50 
  TS 0.16 0.41 0.25 
  Bias 2.14 1.36 -0.78 
  HSS -0.05 0.49 0.54 
IFR   NAM NPS Mean   
  PC 0.55 0.62 0.07 
  HR 0.19 0.79 0.60 
  FAR 0.33 0.42 0.09 
  TS 0.18 0.5 0.32 
  Bias 0.29 1.36 1.07 
  HSS 0.10 0.24 0.14 
MVFR   NAM NPS Mean   
  PC 0.00 0.77 0.77 
  HR 0.00 0.4 0.40 
  FAR 0.00 0.36 0.36 
  TS 0.00 0.33 0.33 
  Bias 0.00 0.63 0.63 
  HSS 0.00 0.35 0.35 

 

For LIFR conditions, the NPS forecast improved PC by 35%, HR by 7%, 

decreased FAR by 50%, increased TS by 25%, decreased bias (over forecasted less often) 

and increased HSS by 54%. For IFR conditions, the NPS forecast improved PC by 7%, 

HR by 60%, slightly increased FAR by 9%, increased TS by 32%, and increased HSS by 

14%. Bias did increase significantly for the NPS mean, but the magnitude it over 

forecasts (1.36) is less than the magnitude NAM under forecasts (.29). For MVFR 

conditions, NAM did not make any forecasts in this run. Forecasts for LIFR and IFR 

conditions were improved most dramatically, which is promising because very low 

ceilings (LIFR indicates ceilings below 500ft AGL and IFR between 500 ft and 1000 ft 



 

 
 

66

AGL) are difficult to forecast and dangerous to operations. Improving forecast skill for 

these flight categories is most critical to safety and mission success. 

b. Probabilistic Forecasts 

The aforementioned error statistics and skill scores are important and demonstrate 

improvement of the raw NAM forecasts. Surely, any system that reduces error and 

improves skill is potentially useful, especially when it is computationally efficient. 

However, the most important aspect that the NPS nowcast system offers is the explicit 

probabilistic information offered through Bayesian inference (Wendt 2017). The key 

attribute that the nowcast system offers is the ability to generate probabilistic forecasts 

from deterministic data without using ensemble forecasting (Wendt 2017). For example, 

table 34 displays one forecast trial’s observation, NAM forecasts and NPS mean forecasts 

for ceiling height and visibility. The NPS mean improves the ceiling height forecast by 

post-processing the NAM forecast of 375 ft to 569 ft, which is much closer to the truth of 

700 ft. 

 Ceiling and Visibility Forecasts for 2017081907 

 
 

Figures 23 and 24 below display the posterior predictive distributions for the 

forecast (DTG 2017082109) from Run 8a. The grey shading is the 10,000 discrete 

forecast samples forming the forecast histogram. The solid gray line is the KDE 

estimating the continuous probability density function (PDF) from the histogram. The 

horizontal blue dashed line is the interquartile range (IQR). The vertical black line is the 

median. The horizontal red line is the 95% high density interval (analogous to confidence 

interval). The solid blue curve is the cumulative density function (CDF). 
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 Ceiling Height PPD for 2017082109 
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 Visibility PPD for 2017082109 

 

 High Density Intervals for 2017081907 

 68% 80% 95% 
Ceiling height (ft) (124,653) (96,809) (65,1391) 
Visibility (miles) (1.1,10.3) (.87,13.6) (.43,25.7) 

 

First, from figure 23, most of the density of the ceiling height samples for 

2017082109 is visually below 1000 ft, and the median is 454 ft. The mean of the 

distribution is pulled to the right to 569 ft by the skewness. As discussed previously, the 

mean of the distribution is most often a better prediction than the median in this 

application. This is due in part to the log-transformation of the data which preserves the 

inherent skewness of the predictors and predictands. The mean better includes the log-

normal skewness of the posterior distribution. Table 35 displays the high density 

(credible) intervals for 68%, 80% and 95%. While analogous to confidence intervals, 
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these credible intervals literally correspond to the probability that an observed value will 

fall within the interval. For example, for this case, there is a 68% chance the observed 

ceiling height will fall between 124 ft and 653 ft. 

Next, using the PPDs, probabilistic forecasts for univariate or multivariate 

conditions can be calculated. Table 36 displays univariate probabilistic forecast for 

ceiling height and visibility. 

 Probabilistic Forecasts for 2017091907 

 Ceiling (%) Visibility (%) 
LIFR (<500 ft, <1 mile) .56 .01 
IFR (500-1000 ft, 1-3 miles .28 .16 
MVFR (1000-3000 ft, 3-5 miles) .11 .29 
VFR (>3000ft, >5 miles) .003 .64 

 

Now, comparing all the probabilistic data for the ceiling height forecast, there was 

an 80% chance that the observed ceiling height would be between 96 ft and 809 ft. The 

probability of it being less than 500 ft (LIFR) was 56% and between 500 ft and 1000ft 

(IFR) was 28%. However, there is a good probability (44% chance) that the ceiling will 

be greater than 500 ft. Given the NAM forecast for the cloud base height was 375 ft and 

the NPS mean was 569 ft, the probabilistic information suggests that the observed ceiling 

height will most likely be greater than the NAM forecast of 375 ft, and could be more 

than 500 ft. Surprisingly, the observed ceiling height of 700 ft is higher than both the 

NAM and NPS forecasts but does fit into the 80% credible interval. Most importantly, the 

NPS forecast successfully pushed the ceiling height forecast into IFR conditions instead 

of LIFR conditions. The NAM forecast would have resulted in LIFR conditions. This is a 

useful result because different flight categories have drastically different rules and 

limitations for aviation operations. 

The above analysis can be conducted on every forecast to test the probabilistic 

information. This type of uncertainty communication is of immense value in decision-

making, especially for low ceilings or decreased visibility. 
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V. CONCLUSION 

A. SYSTEM LIMITATIONS 

1. Supervision 

The nowcast system is an example of supervised machine learning use in weather 

forecasting and can be applied to almost any forecasting application. In the ceiling height 

and visibility application, the nowcast system can post-process raw forecasts to reduce 

error, improve skill, and generate PPDs to explicitly communicate uncertainty. However, 

the forecaster or system, if automated, would need to choose the clustering and 

conditioning method. Improvements are still needed to transition the system to 

unsupervised learning for full automation. 

2. Data and Model Assumptions 

Much of the residual error the postprocessed forecast can likely be attributed to 

the choice of predictor and predictand data and the model assumptions. The predictor 

data was extracted from a grid point geographically dislocated from the predictand 

location. Strictly speaking, this is not necessarily an issue if the relationship between the 

two locations is assumed to be linear. This may not necessarily be true and was not 

investigated. Moreover, the choice of using NAM NWP data was due to its assumed skill 

over the continental U.S. Future studies should test the use of different NWP data sets 

with varying model resolutions as predictors. Next, the use of ASOS observations as 

predictand data was limited due to artificial caps at 12,200 ft for ceiling and 10 miles for 

visibility. Future studies should investigate the use of different and more continuous 

predictand data. Finally, the GLM assumes the posterior distributions are modeled as a 

normal likelihood function. This is not necessarily wrong but may not be always true for 

atmospheric phenomena. Future studies should test the use of different likelihood 

functions. 
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3. Data Availability 

A major goal of this thesis was to demonstrate the ability to generate rigorous and 

reliable probabilistic forecasts with limited data and short training periods. For military 

applications, this is a key requirement for usable statistical forecasting systems because 

much of the world is atmospheric data-sparse, especially for ceiling height and visibility. 

Future studies should test different training period lengths and seasonal compositing as 

well as analog forecasting applications in remote locations. 

B. SUMMARY 

Despite the aforementioned limitations, this study successfully demonstrated the 

ability to use BE and MCMC methods to construct a nowcasting system that post-

processes raw NWP data. The posterior forecasts reduced error, improved forecast skill 

and communicated useful probabilistic information. The system is computationally 

efficient with average model run times of about 3-4 minutes on an off-the-shelf MacBook 

Pro. Similarly, the system requires short training periods a just a few months of data, as 

opposed to other statistical post-processing systems that require years of data. This is due 

to large part to the power of the direct application of Bayesian inference to the 

forecasting problem, simple yet effective machine learning techniques, and MCMC 

methods. It cannot be overstated that the single most important value in a nowcasting 

system of this type is the ability to generate posterior predictive distributions that 

explicitly communicate uncertainty. In the hands of a forecaster or decision-maker, this 

information can be the deciding factor in the confidence of a forecast or a go/no-go call 

due to weather. Moreover, this dynamically-forced statistical post-processing system has 

a wide scope of physical battlespace awareness applications and can be generally applied 

to most physical phenomena from advanced climate support to ocean acoustics to 

physical oceanography. Finally, this system is meant to complement, not replace, 

dynamical forecasting. Both methods generate unique and useful results, and each 

method has its strengths and weaknesses. The hallmark of a good forecaster is the ability 

to know when to use one, the other, or both. 
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