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ABSTRACT 

 On August 27, 2015, the Naval Postgraduate School’s (NPS) Advanced Robotic 

Systems Engineering Laboratory flew 50 autonomous drones simultaneously. This 

demonstration proved that autonomous drone swarm technology is evolving at a daunting 

pace and drone deployment and control can now be done en mass. As academia, industry, 

and defense sectors continue to miniaturize sensors and enhance swarm operating 

systems, the transition from demonstrations to tactical employment will occur quickly. 

Doing so efficiently requires dedicated efforts to determine swarm sensor requirements 

and employment tactics, techniques, and procedures. This thesis uses agent-based 

simulation, cutting-edge design of experiments, and parallel computing to thoroughly 

explore drone swarm employment in support of a Marine infantry company. The scenario 

is a deliberate clearing mission, based on real events, in which an infantry company fights 

a peer enemy in restricted terrain. Analysis of the data obtained from 30,000 simulated 

missions reveals that, on average, the drone swarms enable the fire support team to target 

and engage twice as many enemy combatants when compared to the current ISR drone 

available at the company level. For the hierarchical swarm, this results in up to 50% 

fewer U.S. casualties. Data analysis and visual study of the emergent swarm also shows 

that the volume of the swarm, coupled with inherent sensor overlap, results in the largest 

reduction in sensor requirements. 
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 vii 

THESIS DISCLAIMER 

The reader is cautioned that the computer programs presented in this research may 

not have been exercised for all cases of interest. While every effort has been made within 

the time available to ensure that the programs are free of computational and logical errors, 

they cannot be considered validated. Any application of these programs without additional 

verification is at the risk of the user.  
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EXECUTIVE SUMMARY 

For the last thirty years, the United States (U.S.) military enjoyed unchallenged 

supremacy as the world’s most technologically advanced fighting force. During conflicts 

in Iraq and Afghanistan, the U.S. military employed net centric warfare with devastating 

effect and efficiency (Scharre, 2014). However, after sixteen years of sustained combat 

operations, geo-political competitors and belligerent non-state actors are challenging the 

U.S. military’s ability to maintain “all domain access” within the global commons (Trump, 

2017).  

As the world community shifts from a unipolar paradigm to a multipolar system, 

future operating environments promise to be even more complex and chaotic. The 2016 

Marine Corps Operating Concept (MOC) warns that the nation’s adversaries are taking 

advantage of technology proliferation, deploying hybrid forces, and using robust anti-

access and area denial (A2/AD) capabilities to challenge the U.S. military at all levels of 

warfare. Further complicating matters, improvised explosive devices (IEDs), commercial 

drone systems, and cyber tools continue to become more affordable and are improving at 

an alarming rate. As the nation’s enemies become more proficient with these technologies, 

they will seek to gain leverage over local populations and engage in urban conflicts to 

mitigate U.S. advantages in mounted maneuver and firepower (United States Marine Corps 

[MOC], 2016).  

To prepare for the future operating environment and ensure access across the range 

of military operations, the U.S. needs to seek new and innovative ways to regain the tactical 

advantage (Trump, 2017). Although the Department of Defense (DoD) will need many 

technologies to combat these emerging threats, autonomous swarms are maturing at a rapid 

pace and offer viable solutions for gaining access to areas either unreachable or too 

dangerous to send military personnel (Scharre, 2014). Over the last ten years, significant 

efforts in the robotics research community have progressed autonomous swarm 

technologies from mere concept to reality. 



 xx 

Currently, the Naval Postgraduate School (NPS) is at the forefront of autonomous 

drone swarm technology. On August 27, 2015, NPS’s Advanced Robotic Systems 

Engineering Laboratory (ARSENL) set a record by flying 50 commercial-off-the-shelf 

(COTS) autonomous drones simultaneously (Chung et al., 2016). Since this ground-

breaking event, other national laboratories have built upon this technology and deployed 

nearly twice that number. Thus, as ARSENL and other peer programs continue to enhance 

drone hardware and swarm operating systems, the transition from experimentation to 

employment may occur quickly. Undoubtedly, simulation and experimentation will define 

how 21st Century forces employ swarms on future battlefields. 

This thesis uses agent-based simulation (ABS), cutting-edge design of experiments 

(DOE), and parallel computing to thoroughly explore drone swarm employment in support 

of a Marine infantry company. Through the execution of 30,000 simulated battles, the 

thesis quantifies swarm system performance under combat conditions. The primary thesis 

questions focus on how command and control (C2) configurations, system operational 

thresholds, and swarm scaling affect overall unit performance. Collectively, the research 

seeks to inform decision makers on how different control strategies affect swarm 

performance and sensor requirements.  

The author uses the ABS modeling environment MANA-V to create a realistic 

battlefield and appropriately capture the complexity and autonomous nature of the swarm. 

The thesis scenario is a real-world mission set experienced by the author while deployed 

in support of Operation Enduring Freedom. The simulation realistically depicts a 

challenging hybrid threat that seeks to deny U.S. forces access to an enemy stronghold. 

Furthermore, the drone swarm is modeled after the ARSENL C2 architecture. The 

ARSENL architecture and the author’s combat experiences serve as the basis for this study.  

MANA-V is an agent-based, time stepped, stochastic modeling environment 

intended for “quick turn,” mission-level analysis (Lucas, 2015). For a decision maker or 

lead analyst, MANA-V provides mission visualization, valuable insight into an evolving 

battle, and intuition on sensor employment (McIntosh, Galligan, Anderson, & Lauren, 

2007). As an analytic tool, MANA-V provides an intuitive interface to efficiently build 

scenarios and a data farming capability which allows a research team to run multiple 
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experiments over a broad range of factors (Zappa, 2009). Figure ES-1 shows a simplified 

version of how a real operational environment is converted into a MANA-V terrain map 

and built into a combat model. 

 

 
(Map chip is adapted from Google Maps 2018) [Best viewed in color] 
 

Figure ES-1. Translating the Real World into a Model. Initial Starting Conditions 
for the Thesis Scenario  

 

Thesis Scenario – The Mission MANA-V Terrain Editor – The Model

Scenario Starting Conditions w/ 
Battlefield Overlay
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The conclusions for this thesis are grounded in a realistic model, efficient design of 

experiments, and the rigorous analysis of three experiment sets that produced unique results 

for 30,000 simulated battles. The thesis findings show that different unmanned aerial 

vehicle (UAV) control strategies have a profound effect on sensor coverage, indirect fire 

employment, and unit casualties. Six primary findings include: 

• The hierarchical swarm demonstrates the greatest potential for casualty 

reduction and can do so with fewer UAVs than the emergent swarm. 

When implementing the preferred swarm configuration, Blue force 

casualties can potentially be reduced by 50 percent. 

• On average, both drone swarms enabled the FiST to target and engage two 

to three times more enemy targets than the singular ISR drone.  

• Data analysis and visual study of the emergent swarm show that the 

volume of the swarm, coupled with inherent sensor overlap, results in the 

largest reduction in sensor requirements.  

• The preferred employment strategy for the hierarchical swarm calls for 

two subswarms of six drones. Each subswarm consists of two verification 

and four seeker drones. Under scenario conditions, 48 UAVs are needed to 

provide ISR for the company during the 2.5-hour battle. 

• The preferred employment strategy for the emergent swarm recommends 

deploying a 15-drone swarm consisting of three verification and 12 seeker 

drones. Under scenario conditions, 60 UAVs are needed to provide ISR 

for the company during the 2.5-hour battle. 

• ISR planners must be aware of swarm scaling and its implications on 

combat service support. Although the preferred employment 

configurations for the swarms only differ by three drones, the overall 

mission requirement differs by 12 UAVs. This fundamental concept will 

be important when developing swarm delivery/launcher platforms. 
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 1 

I. INTRODUCTION 

A significant advantage can be gained by being first to exploit a 
development in the art and science of war. A military that is slow to exploit 
technological advances and adapt new ways of fighting opens itself to 
catastrophic defeat.  

—The Marine Corps Operating Concept:  
How an Expeditionary Force Operates in the 21st Century 

A. GAINING ACCESS IN CURRENT AND FUTURE OPERATING 
ENVIRONMENTS 

For the last thirty years, the United States (U.S.) military enjoyed unchallenged 

supremacy as the world’s most technologically advanced fighting force. During conflicts 

in Iraq and Afghanistan, the U.S. military employed net centric warfare with devastating 

effect and efficiency (Scharre, 2014). However, after sixteen years of sustained combat 

operations, peer competitors and belligerent non-state actors are challenging the U.S. 

military’s ability to maintain “all domain access” within the global commons (Trump, 

2017). As commercial research and development efforts continue to outpace the military’s 

acquisitions process, “standoff weapons such as surface to air missiles, precision-guided 

munitions, and armed unmanned aerial systems (UAS) are becoming commonplace” 

(Marine Corps Operating Concept [MOC], 2016, p. 5).” Adversaries are rapidly taking 

advantage of this access and establishing robust anti-access and area denial (A2/AD) 

capabilities across the spectrum of conflict. 

With an increase in technology proliferation, the future operating environment 

promises to be even more complex and chaotic. Rather than facing uniformed enemies in 

conventional, open conflict, it is likely that U.S. ground forces will fight hybrid threats in 

challenging, urban terrain (MOC, 2016). Army Doctrine Publication (ADRP) 3–0 defines 

a hybrid threat as, “the diverse and dynamic combination of regular forces, irregular forces, 

terrorist forces, criminal elements, or a combination of these forces and elements all unified 

to achieve mutually benefitting effects” (p. 1–3). Further complicating matters, improvised 

explosive devices (IEDs), commercial drone systems, and cyber tools will continue to 
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improve and be employed with greater expertise and lethality at low cost. Adversaries will 

seek to leverage the local population and fight in urban terrain to mitigate U.S. advantages 

in mounted maneuver and firepower (MOC 2016).  

To prepare for the future operating environment and ensure access across the range 

of military operations, the U.S. needs to seek new and innovative ways to regain the tactical 

advantage (Trump, 2017). Although many technologies will assist in this effort, 

advancements in automation, manufacturing, and uninhabited vehicles (UV) offer viable 

solutions for gaining access to areas either unreachable or too dangerous to send military 

personnel (Scharre, 2014). Uninhabited vehicles will continue to play a critical role in 

collecting intelligence, reconnoitering the battlefield, and prosecuting targets; however, as 

they become more common, the substantial benefits once enjoyed by U.S. forces may be 

less pronounced.  

B. BACKGROUND AND MOTIVATION 

Conflicts in Iraq and Afghanistan resulted in a distinct change in the employment 

of unmanned aerial vehicles (UAVs). Over the two decades, military UAVs conducted long 

range reconnaissance missions and provided commanders a “real time” picture of the 

battlefield during mission execution (Newcome, 2004). Following the terrorist attacks on 

September 11, 2001, the demand for UAVs increased dramatically (Fuhrmann & Horowitz, 

2017, p. 1). With mass production of precision guided munitions and the miniaturization 

of advanced sensors, UAVs transitioned from their traditional reconnaissance role to 

become premier, strategic strike platforms (Fuhrmann & Horowitz, 2017, p. 1). The 

undeniable success of platforms like the MQ-1 Predator and the MQ-9 Reaper changed 

how warfighters view UAS employment and procurement. 

Currently, all U.S. military services are seeking to enhance UAV employment by 

incorporating autonomous operating systems. In 2010, the Department of Defense restated 

autonomy as the “single greatest theme” for today’s unmanned systems (Barry, 2014). 

More recently, in the Marine Corps’ Capstone Operating Concept (MOC) 2016, the 

Commandant of the Marine Corps, expressed the need to incorporate autonomy into the 

Fleet stating: 
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As we continue to reap the benefits of technological progress in many 
warfighting areas, we must capture the full potential inherent in automation. 
Automation can mitigate risk, reducing the exposure of humans to harm, 
and reduce the workload on personnel…The challenge, as machines 
become more capable and autonomous, is how to put people and things 
together in the most effective pairings for the mission at hand (MOC 2016, 
p. 16).  

Just as the airplane circumvented traditional forms of combat power and changed 

the tactics used to prosecute missions, campaigns, and wars, so too will autonomous drone 

swarms. Autonomous warfare is “an operational concept that exploits the advantages of 

unmanned, autonomous, and robotic systems to increase autonomy and freedom for the 

human warfighter” (Barry, 2014, p.45). In effect, this “produces a comparatively faster 

tempo for tactical and operational decision-making” (Barry, 2014, p. 45).  

Swarming can take on several distinct meanings, but this thesis will use a definition 

based in a military context. Swarming is a “network of uninhabited vehicles that 

autonomously coordinate their actions to accomplish a task. The assigned task must be 

under some degree of mission-level human direction” (Scharre, 2014, p. 29).  

Currently, the Naval Postgraduate School (NPS) is at the forefront of autonomous 

drone swarm technology. On August 27th, 2015, NPS’s Advanced Robotic Systems 

Engineering Laboratory (ARSENL) set a record by flying 50 commercial off-the-shelf 

(COTS) autonomous drones simultaneously (Chung et al., 2016). This demonstration 

proved that not only is drone swarm technology evolving at a daunting pace, but it can now 

be done in mass.  

Since this ground-breaking event, other national laboratories have built upon this 

technology and deployed even greater numbers. For example, on 16 October 2016, 

Massachusetts Institute of Technology’s Lincoln Laboratory deployed 103 micro drones 

from three FA-18 Fighter jets. (Department of Defense [DoD] Press Operations 2017). 

Thus, as ARSENL and other peer programs continue to enhance drone hardware and 

swarm operating systems, the transition from demonstrations to experimentation will occur 

quickly. More importantly, this research and experimentation will define how 21st Century 

forces employ swarms on future battlefields. In fact, ground forces are already gaining 
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exposure to swarm systems. According to Dr. Kevin Jones, an ARSENL team member, 

ARSENL swarms are currently used as training aids in the Marine Corps’ premier training 

event, the Integrated Training Exercise (personal communication, November 30, 2017).  

In a restrictive fiscal environment, the military needs efficient ways to conduct 

experimentation and showcase program improvements (Trump, 2017). Now more than 

ever, program sponsors are challenging innovators to demonstrate their technology’s worth 

and meet the requirements outlined by the Department of Defense (DoD). Simulation 

serves as the logical tool for showcasing UAV capabilities and tactics in a cost-effective 

manner. This thesis uses agent-based simulation (ABS) to model the current ARSENL 

drone swarm architecture and apply the swarm in a combat scenario. Conclusions from the 

model’s outputs can be used to inform drone swarm sensor development, enhancement, 

and employment in future live-fly field experiments. 

C. SCOPE 

1. Military Concepts Defined 

The following terms explain common military concepts important to understanding 

the context of this thesis research and the scope of the problem statement: 

• Anti-Access (A2) – “An attempt to prevent or degrade the ability to enter 

an operational area. These challenges can be geographic, military, or 

diplomatic” (Gordon & Matsumura, 2013, p. xi). 

• Area Denial (AD) – “Threats to forces within the operational area. As they 

relate to U.S. ground forces (the Army and Marine Corps), AD threats are 

characterized by the opponent’s ability to obstruct the actions of U.S. 

forces once they have deployed” (Gordon & Matsumura, 2013, p. xi).  

• Autonomous Warfare – “An operational concept that exploits the 

advantages of unmanned, autonomous, and robotic systems to increase 

autonomy and freedom for the human warfighter.” (Barry, 2014, p. 45).  
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• Intelligence, Surveillance, and Reconnaissance (ISR) – “An integrated 

operations and intelligence activity that synchronizes and integrates the 

planning and operation of sensors, assets, and processing, exploitation, 

and dissemination systems in direct support of current and future 

operations” (Joint Chiefs of Staff [JCS], 2017, p. GL-10). 

• Net Centric Warfare (NCW) – “An information superiority-enabled 

concept of operations that generates increased combat power by 

networking sensors, decision makers, and shooters to achieve shared 

awareness, increased speed of command, higher tempo of operations, 

greater lethality, increased survivability, and a degree of self-

synchronization” (Alberts et al., 1999, p. 2). 

• Swarming – A “network of uninhabited vehicles that autonomously 

coordinate their actions to accomplish a task under some degree of 

mission-level human direction” (Scharre, 2014, p. 29).  

• Tactical Level of Warfare – “The level of war at which battles and 

engagements are planned and executed to accomplish military objectives 

assigned to tactical units or task forces. Activities at this level focus on the 

ordered arrangement and maneuver of combat elements in relation to each 

other and to the enemy to achieve combat objectives” (United States 

Marine Corps [USMC], 1997, p. 101). 

• Unmanned Aerial Vehicle – “Military aircraft that is guided 

autonomously, by remote control, or both and that carries sensors, target 

designators, offensive ordnance, or electronic transmitters designed to 

interfere with or destroy enemy targets” (Unmanned Aerial Vehicle, n.d.).  

• Unmanned Aerial System – “A UAS is comprised of an unmanned 

aircraft, payload, human element, weapons systems platform, display, 

communication architecture, life cycle logistics, and includes supported 

troops” (United States Army [USA], 2010, p. 8). 
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2. The Scope of the Military Problem  

Anti-access and area denial (A2/AD) are not new military concepts. To the 

contrary, past conflicts provide countless examples of adversaries using different types of 

tactics and technologies to prevent an enemy from gaining access to areas of advantage. 

This thesis explores the use of autonomous drone swarms to defeat A2/AD technologies at 

the tactical level. More specifically, the model scenario represents combat experiences 

from Iraq and Afghanistan, modified to reflect potential threats in the future operating 

environment. 

D. PROBLEM STATEMENT 

While A2/AD is not a new phenomenon, emerging technologies and innovative 

TTPs are allowing adversaries to challenge U.S. interests across the spectrum of conflict. 

As technology proliferation accelerates and adversaries adapt their strategies to mitigate 

U.S. advantages in maneuver and firepower, autonomous drone systems will be critical in 

ensuring U.S. forces can physically access any location, at any time. Whether it is ground 

troops trying to seize a heavily defended urban objective or naval forces trying to seize a 

contested port, UASs allow U.S. forces to circumvent physical barriers such as mines, 

IEDs, or well-developed defensive belts and minimize human exposure to enemy fire. 

As experimentation continues and swarms are considered for integration into 

ground units, many questions need to be answered to ensure that these systems do not 

inhibit the mobility or effectiveness of a fighting force. This thesis seeks to answer 

questions in the following two areas:  

1. Integration and Deployment of Swarm Technology: What capabilities 

or characteristics do reconnaissance drone swarms need to outperform 

current ISR capabilities available at the company level? Does the 

command and control (C2) method used in deploying the drone swarm 

affect overall measures of effectiveness? Understanding how different 

control strategies affects swarm performance will enable decision makers 

to identify which type of swarm they need to accomplish the mission.  
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2. System Requirements: How many drones are needed to support a Marine 

infantry company conducting clearing operations in complex terrain? 

Identifying the number of drones needed to support a specific mission type 

will assist planners in identifying swarm delivery requirements. What 

sensor parameters are critical to swarm performance? What sensor 

thresholds make a swarm viable in this scenario? Determining key 

performance parameters for future sensors will assist program sponsors in 

specifying system requirements. 

E. METHODOLOGY 

Swarming networks, microdrone technology, and miniaturized sensors are still in 

their infancy. This thesis uses ABS to model current drone swarm capabilities and apply 

them to a real-world mission set experienced in Afghanistan. Through an extensive 

literature review and conversations with subject matter experts located at NPS, drone 

swarm agents are modeled after existing drone platforms and ARSENL’s swarm C2 

architecture. The following research process was implemented to answer the thesis 

problem statement (modified from Treml, 2013, p. 7): 

1. Define Measures of Effectiveness (MOEs) for the different ISR 

capabilities (i.e., individual drone or drone swarms). 

2. Develop and program a real-world scenario in MANA-V to study likely 

drone swarm employment. 

3. Apply design of experiments (DOE) and data farming techniques to 

establish factor ranges for sensitivity analysis of swarm performance 

parameters. 

4. Run simulations and organize data collection. 

5. Identify the most influential model factors affecting the defined MOEs. 
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6. Apply data analysis techniques to develop metamodels. The metamodels 

are used to explain factor relationships observed through thousands of 

simulation battles. 

F. THESIS ORGANIZATION 

Chapter II is devoted to familiarizing the reader to the major concepts and tools 

used in this thesis. The chapter reviews drone platforms, defines swarm theory and 

potential control methods, and discusses Modeling and Simulation (M&S) approaches. 

Chapter III informs the reader on model methodology and development. The author 

presents the thesis scenario, covers agent characteristics, and discusses key model 

assumptions. Chapter IV discusses factor selection, the implementation of the design of 

experiments (DOE), and the use of the nearly orthogonal Latin hypercube (NOLH) to 

efficiently and effectively select input combinations to run. Chapter V discusses data 

collection, post processing, and the data analysis derived from model outputs. Chapter VI 

presents thesis conclusions and recommendations for future research.  
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II. APPLICATIONS OF SWARM THEORY, AN INTRODUCTION 
TO UAS, AND THE MODELING ENVIRONMENT 

This chapter discusses concepts used to develop the thesis model. Section 2.A 

covers swarm theory and how the military seeks to harness the advantages of collective 

behavior. Section 2.B explains the basic elements of unmanned aerial systems (UAS) and 

introduces unmanned aerial vehicle (UAV) characteristics. Section 2.C defines modeling 

and simulation (M&S) and how the military uses M&S to study complex systems. Section 

2.D discusses agent-based simulation (ABS) and reviews some previous ABS studies 

applied to military problems.  

A. FROM NATURE TO ROBOTICS: SWARM APPLICATIONS 

1. Swarm Theory and General Use 

With technological revolutions in computing, robotics, and artificial intelligence, 

multiple disciplines are pursuing ways to transition swarm behavior from the natural 

environment to artificial systems. The word “swarm” is a derivative of the Old English 

term swearm, meaning a group of bees (Dickie, 2002, p. 6). In a modern context, biologists 

and naturalists commonly use the term swarm to describe a collective of social insects. 

Although not an exhaustive list, specific swarm behaviors “include path planning, nest 

construction, architectural engineering, and task allocation.” (Ilachinski, 2017, p.107). 

The attraction of swarm behavior is rooted in the idea that a network of insects can 

efficiently work together to accomplish a common task. Often the swarm is managed by 

an exchange of information between members of the swarm without any reliance on 

information from the global environment (Ilanchinki, 2017, p. 107). This idea naturally 

applies to modern concepts such as algorithm development, network design, and the 

employment of robotic systems. Currently, the academic community is effectively using 

swarm behavior in algorithm development to solve complex optimization or network 

problems (Bonabeau, Dorigo, & Theraulaz, 1999, p. 8). In the cyber realm, swarming 

programs are used to attack and defend critical information networks. Within the 
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commercial industry, collective behaviors are being applied in many areas ranging from 

pollution detection to search and rescue (Barca & Sekercioglu, 2012, p. 346).  

2. Military Application 1: Swarm Theory as a Form of Engagement 

The military is beginning to view swarming as both a form of engagement and a 

capability set. Historically, military studies focused on three traditional forms of 

engagement: melee, massing, and maneuver. In 2000, Arquilla and Ronfeldt convincingly 

argued that developments in information systems, communications, intelligence gathering 

platforms, and precision munitions justified the addition of swarming as a fourth option.  

Melee, the most primitive of the forms, represents duels between individual 

soldiers. Historically, battles started in linear formations, but quickly devolved into clashes 

between chaotic masses, absent of any command or control (Arquilla & Ronfeldt, 2000). 

Improvements in communications and the establishment of military drilling enabled 

commanders to fight forces in mass. Massing allowed a commander to more effectively 

command and control his force and direct combat power during the battle to exploit enemy 

weaknesses. Maneuver warfare is representative of current military doctrine and serves as 

the preferable form of modern combat. In maneuver warfare, a commander moves to a 

position of advantage and then rapidly masses combat power at a decisive point, 

overwhelming the enemy’s ability to respond (Arquilla & Ronfeldt, 2000).  

As a form of engagement, Arquilla and Ronfeldt (2000) define swarming as “a 

seemingly amorphous, but deliberately structured, coordinated, and strategic way to strike 

from all directions, by means of a sustainable pulsing of force and/or fire” (p. 45). Critical 

components to this swarming approach are a robust communications network, 

“internetted” sensor capabilities, and flexible C2 organization (Edwards, 2000, p.75). 

Small, dispersed maneuver units use these components to develop a collective 

understanding of the battlefield, coordinate targeting, attack in mass, and then redistribute 

to avoid detection or counter-attack (Arquilla & Ronfeldt, 2000). 

In the future operating environment, multi-UAV systems may be critical to 

achieving collective situational awareness and massing lethal capabilities due to large 

military formations being susceptible to standoff, precision fires. The recent use of 
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Network Centric Warfare (NCW) in Iraq and Afghanistan shows that swarming is 

transitioning from concept to reality. Table 1 briefly summarizes information covered in 

this section and provides historic examples for greater context.  

Table 1.   Forms of Engagement  

 

Table constructed with data from Arquilla and Ronfeldt (2000) and Edwards (2000). 

 

3. Military Application 2: Swarms as a Capability Set 

Currently, UAVs are synonymous with ISR. Premier UAVs, such as the Predator 

and Reaper, provide multiple capabilities in one platform (e.g., ISR, jamming, strike) and 

have enhanced our ISR capabilities immensely. However, these singular systems are 

typically theater or operational level assets, rarely accessible to front line, ground units. 

Deploying these systems in mass is impractical due to excessive costs. Additionally, in the 

author’s experience, smaller UAVs, currently employed by ground units (i.e., infantry 

companies and below), can become manpower intensive. Most tactical level UAVs are 
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launched while a unit is conducting a mission. If the UAV operator is not located in a 

secure location, additional personnel must protect the pilot during flight execution. While 

units gain some situational awareness, it often comes at the expense of combat power. 

Multi-system UAVs and swarms seek to alleviate both shortfalls. Significant 

developments in automation, sensor miniaturization, and commercial-off-the-shelf 

(COTS) alternatives are changing the way the defense sector thinks about UAV 

employment. Instead of trying to build one high cost platform that performs many tasks, 

multi-UAV systems can be organized as a distributed capability set accomplishing the 

same mission, but with greater mass and survivability (Abatti, 2005). This is a 

revolutionary concept.  

Currently, a single UAV can only address a singular battlefield event. To the 

contrary, a UAV swarm can be distributed across the battlefield, further developing a 

commander’s situational awareness and response potential. In the future operating 

environment, particularly in a near peer conflict, swarms offer two distinct advantages. At 

the tactical level, ground forces can deploy autonomous swarms without significantly 

reducing combat power. Second, the smaller, more cost-effective systems can be deployed 

in mass, thereby enhancing system survivability, adding multiple system redundancies, and 

presenting a reduced or distributed signature (Abatti, 2005, p.175). Ultimately, a swarm 

forces an adversary to deploy more resources to locate and defeat the threat.  

Drawing upon the definitions and concepts discussed in this section, this thesis 

studies swarming from the military perspective, with a focus on multiple UAVs being 

deployed as a capability set. Formally, swarming is defined as a “network of uninhabited 

vehicles that autonomously coordinate their actions to accomplish a task under some 

degree of mission-level human direction” (Scharre, 2014, p. 29).  

The thesis scenario explores the deployment of two heterogeneous swarms working 

together to autonomously conduct ISR in support of a Marine infantry company. One UAV 

swarm consists of seeker drones responsible for locating possible hostiles. The other swarm 

is comprised of more sophisticated observation drones that aid the human supervisor in 

positively identifying a target and collecting information that can be passed to an indirect 
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firing agency. For more information on swarm theory and multi-UAV concepts, see 

references: (Bamberger et al., 2006), (Barca & Sekercioglu, 2012), (Chung et al., 2013), 

(Davis et al., 2016), (Scharre, 2014) and (Valavanis, 2015). 

B. UNMANNED AERIAL SYSTEMS: AN INTRODUCTION 

1. Components of an Unmanned Aerial System 

Although UASs vary in mission set and scope, they include the same basic 

components. Military variants are comprised of an air vehicle, payload, communication 

architecture, ground control station (GCS), launch and recovery equipment, and troop 

support (Fahlstrom, Gerin, & Gleason, 2012, p. 8), (USA, 2010, p. 8). The air vehicle (AV) 

is the airborne part of the system that transports the payload to a desired location for 

mission execution (Falhstrom et al., 2012, p.8). The payload provides a capability to a user 

and serves as the ultimate reason for choosing a UAS for a given task (Fahlstrom et al., 

2012, p.10). Common military payloads are ISR sensors, communication relays, jammers, 

and weapons packages.  

The communications architecture is the subsystem that links the ground operator 

with the AVs. Through a two-way datalink, an operator can control the AVs and payloads 

while collecting sensor data and status information from the AV (Fahlstrom et al., 2012, 

p. 10–11). The GCS serves as the “nucleus” of the UAS. It allows a human operator to 

interface with the AVs and payload, while managing incoming UAS telemetry data 

(Fahlstrom et al., 2012, p. 8–9; Bürkle, Segor, & Kollman, 2011, p. 344). Launch and 

recovery equipment assists a ground unit in deploying and retrieving a UAS. Methods 

range from hand launched micro systems to more sophisticated AV launchers and airstrips 

needed for the largest of platforms (Falhstrom et al., 2012, p. 9–10). Launch and recovery 

procedures become increasingly more important as a UAS grows from a singular AV to 

multiple AVs.  

The final component of a UAS is troop support. Austere and unforgiving combat 

environments can quickly degrade a UAS’s effectiveness. As UASs grow in sophistication 

and complexity, the personnel needed to C2, manage flight operations, and maintain these 

systems also increases. Like manned aircraft, UASs require logistical support to include 
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transport, communication enablers, and sustainment (USA, 2010, p. 10). Figure 1 shows 

an example of a hypothetical UAS construct. 

 
[Best viewed in color] 

Figure 1.  Common UAS Construct. Source: USA (2010).  

2. Types of UAVs 

UAV design significantly affects mission profiles and performance factors, such as 

endurance, speed, and payload capacity. This thesis uses the following four descriptor types 

to orient the reader to the more common UAVs used in the military and civilian sectors.  

The four UAV types are: fixed-wing, multi-rotor, single rotor helicopter, and fixed-

wing hybrid Vertical Take-Off Landing (VTOL) (Chapman, 2017). Fixed-wing UAVs 

operate at higher speeds, which gives them enhanced endurance and greater area coverage. 

Unfortunately, fixed-wing UAVs are typically more expensive and require a more 

sophisticated launch and landing plan (Olson, 2017). Multi-rotor UAVs are easy to deploy 

and offer a controlled hover capability ideal for reconnaissance; however, the operating 
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systems are inherently inefficient, resulting in limited endurance and payload capacity 

(Chapman, 2017).  

Single rotor UAVs offer better on-station times and can carry heavier payloads 

when compared to multi-rotor systems, yet they are harder to control, and their heavy 

spinning blades can be dangerous (Olson, 2017). Finally, as the name implies, fixed-wing, 

hybrid UAVs offer a middle ground between fixed and rotor platforms. While the VTOL 

capability simplifies launch and landing plans, the hybrid design results in a lack of 

endurance compared to its fixed-wing counterpart and no hover capability. Table 2 

provides a more comprehensive list of capabilities and limitations for each UAV type. 

Additionally, for more information regarding types of UAVs see references: Department 

of Defense (DoD), (2013), Fahlstrom et al. (2012), Newcome (2004), USA (2010), USMC 

(2015), and Valavanis (2015). 

Table 2.   UAV Characteristics and Limitations. 
Adapted from Chapman (2016). 

 

Type of 
UAV/Characteristics

Basic Characteristics Limitations

Fixed Wing - High Endurance 
- Longer Range
- Large Area Coverage
- The Fastest of the UAV Types

- Large launch and recovery 
requirement

- No hover capability
- More complex; Require more training
- Expensive

Multi-Rotor - Easy to use
- Inexpensive
- Hover capability
- Can operate in confined spaces
- Limited launch requirement; Vertical 

takeoff

- Short range
- Short flight times
- Small payload capacity

Single Rotor 
Helicopter

- Easy to use
- Longer Endurance than Multi-Rotor (w/ 

gas power)
- Can carry heavier payload

- Expensive
- Require more training.
- More dangerous due to heavy blade

Fixed-Wing Hybrid 
Vertical Take-Off 
Landing (VTOL)

- More endurance than rotor UAV’s
- Can operate in confined spaces
- Limited launch requirement; Vertical 

takeoff

- Expensive
- As a hybrid they don’t outperform the 

other UAV’s in speed or hovering 
capabilities

- Unproven as many platforms are still in 
development
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3. Military Group Classifications of UASs 

In 2008, the DoD formally established five UAS classification groups to promote 

interoperability and a common understanding of UAS employment across the military 

services (MCWP 3–42.1, 2015, p. 1–4). The classification methodology focuses on a 

UAV’s speed, weight, and altitude, instead of vehicle composition (USA, 2010, p. 12). 

Table 3 shows the group thresholds for each attribute. 

Table 3.   Unmanned Aircraft Group Categories. 
Adapted from MCWP 3–42.1 (2015). 

 
 

Group 1 UASs are typically small, portable systems employed at the small unit 

level (USA, 2010, p. 12). Group 2 characteristics apply to medium-sized UAS which often 

require launching mechanisms, identified landing zones, and/or operator teams during 

mission execution. Group 2 UASs typically have a larger logistics requirement than Group 

1 and are most commonly seen at the Regimental or Brigade level (USA, 2010, p. 12). 

UAS 
Category

Max Gross 
Weight

Normal Operating 
Altitude (Ft.) Airspeed

Group 1 < 20 lbs. < 1200 AGL < 100 Knots

Group 2 21 – 55 lbs. < 3500 AGL
< 250 Knots

Group 3 < 1320 lbs. < 18,000 MSL
Group 4

> 1320 lbs. Any 
AirspeedGroup 5 > 18,000 MSL

Note: If a UAS has two characteristics in Group 1 and one 
characteristic in Group 2, it is a Group 2 UAS.

Acronym Key: 
Lbs. = Pounds (U.S. Customary System); AGL = Above ground level; 
MSL = Mean sea level
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Group 3 UASs have greater endurance, fly at medium altitudes, and are large enough to be 

equipped with advanced sensor payloads and lethal capabilities (USA, 2010, p. 13).  

Group 4 UASs are larger systems with greater endurance and payload capacity than 

the previous groups; however, improved areas are required to launch and recover the 

system as well as conduct high echelon maintenance (USA, 2010, p. 13). Group 5 UAS are 

the largest and most capable of the groups and they cover a much larger area. Improved 

surfaces are required for launch and recovery and the logistics footprint is similar to that 

of a manned aircraft (USA, 2010, p. 13). Figure 2 is a visual depiction of the military 

classification methodology and several joint UASs common to military operations since 

2013. 

 
[Best viewed in color] 

Figure 2.  Classification Groups and Unmanned Aircraft Systems. 
Source: DoD (2013).  
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4. Swarming from a Concept to Reality: Control Strategies  

In robotic research, the advantages of swarming hinge upon mass, autonomy, and 

the idea of swarm intelligence. Swarm intelligence is “the collective intelligence that 

emerges from interactions among large groups of autonomous individuals” (Barca & 

Sekercioglu, 2012, p. 345). To the military, swarm intelligence naturally compliments ISR 

collection. A UAV swarm can rapidly deploy multiple sensors, in mass, to help build a 

collective understanding of the environment and inform or assist in future actions.  

Autonomous action within a swarm allows a unit to maximize UAV employment 

while minimizing manpower requirements. Currently, most UASs, regardless of 

classification group, are controlled by a pilot from a GCS. Using this approach, “swarms 

of remotely controlled UAVs require as many skilled pilots as there are swarm UAVs. 

These pilots must be able to deconflict airspace demands, mission requirements, and 

situational changes in near real time” (Bamberger, Watson, Scheidt, & Moore, 2006, p. 

41). Therefore, autonomy is essential to deploying many UAVs simultaneously as swarms 

quickly become unmanageable with respect to manning and C2. 

Successfully incorporating all three traits, mass, autonomy, and collective 

intelligence, into a swarm is highly dependent upon the system communication architecture 

and software design (Barca & Sekercioglu, 2012; Chung et al., 2016). Just as UAV 

hardware defines the physical capabilities and limitations of a swarm (i.e., speed, altitude, 

endurance), communications and software design determine the control strategies available 

to deploy a swarm. A well-designed control strategy allows an operator to effectively 

deploy multiple UAVs while efficiently collecting mission critical information. The 

seminal literature addresses three broad categories for swarm control strategies. 

a. Control Strategies 

Control strategy defines how a swarm communicates both internally and externally. 

The three categories of control strategy are centralized, decentralized, and hybrid. In 

centralized systems, a central planner is responsible for managing a swarm’s behavior at a 

global level (Valavanis, 2015, pp. 977–978). This means that the planner interacts with 

individual robots to direct flight paths, allocate payload distribution, and collect data (Barca 
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& Sekercioglu, 2012 p. 347). Because a planner can interact directly with any UAV in the 

system, the overall behavior of the swarm is more predictable and immediate corrective 

action can be initiated if a UAV deviates from the mission plan. 

Unfortunately, superior control comes at a price. Centralized architectures do not 

scale well with additional UAVs (Barca & Sekercioglu, 2012, p. 347; Chung et al., 2016, 

p. 1256). As the number of UAVs increases, the system’s bandwidth can be overwhelmed, 

resulting in missed information. Moreover, the central planner can experience task 

overload and fatigue. This breakdown in the system often results in a rapid loss of 

situational awareness and swarm control (Valavanis, 2015, pp. 977–978).  

A decentralized system uses a distributed approach to reduce the complexity of 

deploying multiple UAVs simultaneously. Decentralized systems combine multiple UAVs 

to create subswarms that operate under a single leader drone. This allows the mission 

supervisor to interact with subswarm leaders that disseminate information to their 

subordinate UAVs. This reduces the stress that centralized systems place on their 

communications architecture and allows a mission planner to maintain control over a larger 

number of UAVs (Barca & Sekercioglu, 2012, p. 347; Valavanis, 2015, pp. 977–978).  

The disadvantage to this approach is that the mission planner can no longer control 

the swarm at the individual level. Often, little information will be known about the 

subordinate drones’ activities unless observed through the subswarm leader. This lack of 

global knowledge can result in either unpredictable or undesirable behavior that is neither 

observed nor known to the mission planner (Barca & Sekercioglu, 2012, p. 347).  

Innovation in control strategy will continue to improve swarm capabilities and 

overall swarm behavior. Currently, many of the top performing control systems use a 

hybrid approach in which both centralized and decentralized methods are combined to 

minimize system limitations while maximizing swarm potential (i.e., deploying additional 

UAVs). Barca and Sekercioglu (2012) contend that maintaining a balance of centralized 

and decentralized characteristics is essential to future robotic swarm development. Hybrid 

control strategies allow a central planner to exert control over the swarm while reducing 

the complexity of trying to manage multiple UAVs simultaneously (p. 347). Figure 3 offers 
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a brief description and visual depiction of the two traditional control strategies discussed 

and two theoretical, hybrid models.  

  
[Best viewed in color] 

Figure 3.  Swarm Control Strategy. Source: Scharre (2014).  
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5. Transitioning the Swarm from Experimentation to the Tactical Edge: 
Advanced Robotic Systems Engineering Laboratory (ARSENL) 
Swarm Architecture 

In 2011, the Secretary of the Navy authorized the Naval Postgraduate School to 

host the Consortium for Robotics and Unmanned Systems Education and Research 

(CRUSER), (Work, 2011). Six years later, CRUSER is a diverse program that promotes 

research, education, concept design, and experimentation in the maritime application of 

automation, robotics, and the deployment of unmanned systems (Work, 2017). More 

specifically, CRUSER is at the forefront of human robotic interfacing and autonomous 

networks.  

The Advanced Robotic Systems Engineering Laboratory (ARSENL), a subset of 

CRUSER, represents a multi-disciplinary research group dedicated to designing robotic 

and unmanned systems of the future. The ARSENL team combines cutting-edge research 

with student military experiences to create materiel solutions ideally suited for the 

military’s most daunting capability gaps. It is ARSENL’s research in UAV drone swarms 

that serves as the foundation and enabler for this thesis. 

In August 2015, ARSENL conducted the world’s largest autonomous live-fly 

experiment (at that time), successfully controlling 50 fixed-winged UAVs simultaneously 

(Chung et al., 2016). Within two years, MIT’s Lincoln Laboratory doubled this feat by 

deploying 103 nano-UAVs from two F-18 fighter attack aircraft (DoD Press Operations, 

2017). Although aerial swarms are still in a demonstration phase, the military’s focus on 

swarms will quickly shift from engineering and technology-based exploration to tactical 

employment and sustainment.  

ARSENL’s groundbreaking experiment was profound in two ways. The experiment 

proved that a large number of fixed-wing UAVs could be deployed and controlled in mass. 

Additionally, ARSENL’s demonstration marked the need to consider other factors external 

to the swarm. The ARSENL team highlighted new research challenges to include efficient 

human-swarm interaction, maintainability of the swarm, protecting the swarm against 

jamming and cyber technologies, and the need to consider logistics support for operating 

large numbers of robots (Chung et al., 2016, p. 1255).  
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6. Modeling the ARSENL Swarm Architecture 

This thesis uses modeling and simulation (M&S) to gain insight into deploying an 

ISR swarm in a combat environment. The swarm in the model is grounded in the current 

control strategies and hardware configuration successfully used by ARSENL. The swarm 

UAS consists of a ground control station, the air vehicles, a three-component 

communication system, two robotic launchers, and a support team of six personnel.  

The most common air vehicle used by ARSENL is the Zephyr II fixed-wing UAV. 

The Zephyr II is a cost effective and capable commercial off-the-shelf (COTS) system that 

allows the team to leverage open-source components (Chung et al., 2016, p. 1256). This 

acquisition approach is necessary as the cost of a swarm UAS can increase drastically as 

the number of UAVs increases. Additionally, ARSENL has proven that their swarm 

architecture design can be used on different air vehicles. Currently, ARSENL is deploying 

small quad-copter swarms in support of Marine Corps training in 29 Palms, California. 

This thesis does not focus on a specific UAV platform, rather exploratory analysis is used 

to gain insight into the preferred characteristics of a swarm UAV.  

For communications, ARSENL uses a three-component communication system on 

each UAV. The system contains an 802.11 wireless radio, a radio control receiver (RC), 

and a serial “telemetry” radio (Chung et al., 2016, p. 1258). The 802.11 serves as the 

primary communications system used to command and control the swarm. The wireless 

radio allows air vehicles to communicate with other aircraft and ground stations (Chung et 

al., 2016, p.1257-1258). This configuration can be deployed as a mesh network between 

aircraft. The radio control receiver allows the central planner to assume manual control of 

the AV and the “telemetry” link serves an auxiliary way of communicating with individual 

vehicles during emergency situations (Chung et al., 2016, pp.1257–1258).  

The ARSENL swarm uses a central planner, hybrid control strategy. Due to limited 

bandwidth, orders from the central planner are disseminated to sub-swarm leaders who are 

responsible for managing the air vehicles under their hierarchy. Recall the hierarchical 

coordination strategy shown in Figure 3. Taking advantage of parallelism, a central control 

method using sub-swarm leaders maximizes both C2 and scaling within the swarm.  
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This thesis investigates both the hierarchical and emergent coordination strategies. 

As defined by Scharre (2014), in a hierarchical swarm, “swarm elements are controlled by 

“squad” level agents, who are in turn controlled by higher-level controllers” (p. 39). In an 

emergent swarm, “coordination arises naturally by individual swarm elements reacting to 

one another” (p. 39). Due to the complexity of the swarm, this thesis only focuses on the 

swarming system. Other details such as launch devices and ground support are not directly 

studied. For more information on ARSENL efforts and swarm configurations see 

references: Bamberger et al. (2006), Barca and Sekercioglu (2012), Chung et al. (2013), 

Chung et al. (2016), Davis et al. (2016), Scharre (2014), and Valavanis (2015). 

C. MODELING AND SIMULATION (M&S) 

A “system” is defined as a collection of entities that act and interact to accomplish 

some logical end (Law, 2007, p. 3). Modern warfare is a complex set of integrated systems 

designed to identify and exploit an adversary’s weaknesses. Weapons systems, force 

organization, and operational battle plans contain so many variables that analytical 

solutions have difficulty in providing comprehensive insight into a system’s behavior. By 

combining mathematical models with modern computing resources, M&S is becoming a 

viable and powerful tool for exploring future combat systems, their effects on the 

battlefield, and optimal employment techniques.  

The Department of Defense defines a model as “a physical, mathematical, or 

otherwise logical representation of a system, entity, phenomenon, or process” (DoD, 1998, 

p. 136). A simulation is the “method of applying a model over time” (DoD, 1998, p. 57). 

Due to the size, scope, and complexity of military systems, traditional experiments are 

becoming constrained, infeasible, and costly (Lucas, Kelton, Sanchez, Sanchez, & 

Anderson, 2015). Modeling and simulation is a practical and cost-effective way of gaining 

insight into complex problems. The military uses M&S to develop models of the real-

world, define system performance parameters, generate data, and perform data analytics to 

gain insight into operational, managerial, and technical systems (DoD, 1998, p. 136).  

The military M&S process begins with developing a model of a real-world system 

and identifying the experiment measures of effectiveness (MOEs). A MOE is a metric used 
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to quantify mission performance under specified conditions (Zappa, 2009). Next, an 

analyst identifies UAV performance characteristics or factors (e.g., system speed, range, 

or probability of detection) and builds a design of experiment to study how these 

characteristics effect overall mission effectiveness. Once the desired measurement space is 

defined, computers and other technologies are used to run simulated experiments of the 

model. Analytic techniques are applied to simulation outputs, creating quantitative insight 

into mission performance. These insights help drive military decisions, seeking to ensure 

that service members have the equipment they need to fight and win the nation’s wars. 

See Figure 4 for a visual representation of the M&S process taught at the Naval 

Postgraduate School. 

 

Figure 4.  M&S Process. Adapted from Lucas (2017). 

D. AGENT-BASED SIMULATION (ABS) 

1. ABS Defined 

An agent is an autonomous decision making entity that can assess its situation and 

act based upon established rules (Kuiken, 2009, p. 8). Furthermore, agents typically possess 
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the ability to communicate with other agents, possess their own resources (e.g., energy 

source, sensing capability), and maintain a partial knowledge of a model scenario (Kuiken, 

2009, p. 8). An agent’s ability to sense, maneuver, and act are only a subset of the larger 

system being explored. 

Agent-based simulation is a type of computer-based modeling that seeks to study 

how individual entities act and interact within a larger, real-world system. Examining agent 

actions allows analysts and decision makers to gain valuable insight into emerging system 

behavior and individual agent properties. Due to the complexity of robotic swarms and 

their tactical role on future battlefields, ABS is the most appropriate modeling environment 

for studying ISR swarms at the combat mission level.  

2. Using ABS to Study Military Robotic Swarms 

The author’s literature review uncovered that the majority of swarm research 

focuses on the technical and engineering aspects of swarming. While the defense 

community relies heavily on M&S for drone development and procurement, simulation 

efforts to investigate the tactical employment of drone swarms is still in its infancy. 

Gaudiano, Shargel, Bonabeau, and Clough developed an agent-based model to simulate 

different types of control strategies for a swarm of UAVs (Gaudiano et al., 2003, p. 1). 

Their study provided a strong argument for developing a quantitative, analytic approach 

when developing TTPs for swarm ISR deployment.  

Dickie developed the Multi-Agent Robot Swarm Simulation (MARSS) which 

enables an analyst to explore the effects that agent behavioral factors have on swarm 

performance during search missions. His research showed that swarm performance is 

dependent on the level of communication between fellow UAVs. Additionally, he 

highlighted the importance of how drones react to information, both good and bad. He 

discovered that swarm performance reduces drastically if the swarm begins to react to 

global information in the wrong way (Dickie, 2002, p. 91).  

Kuiken (2009) used agent-based simulation to explore the effects of deploying 

multiple UAVs in different configurations to search for SCUD missile sites. Kuiken 

compared individual drone employment to a multi-UAS variant. He concluded that 
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formation configurations play a significant role in search and detection missions and that 

target confirmation rules can reduce the effectiveness of deploying multiple UAVs 

simultaneously.  

Building on the efforts described above, this thesis uses MANA-V, an agent-based 

model, to study the employment of ISR swarms in support of a Marine infantry company. 

Over the last 16 years of war, many promising technologies proved too burdensome for 

use at the tactical edge. Undoubtedly, robotic integration will enhance unit lethality; 

however, many questions remain with respect to swarm integration at lower levels. ABS 

offers a unique modeling environment for exploring the complex nature of robotic swarms 

and their use in locating and prosecuting enemy targets. 
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III. THE MODEL: TRANSITIONING CONCEPTS AND 
CHARACTERISTICS INTO AN AGENT-BASED SIMULATION 

All models are wrong, but some are useful. 

—George Box 

This chapter describes the thesis model and discusses model development. Section 

3.A provides a brief introduction to Map Aware Non-Uniform Automata (MANA-V), the 

simulation software package used for this study. Section 3.B describes the thesis model 

scenario and explains the tactical distribution of allied and enemy forces. Section 3.C 

discusses building the terrain in MANA-V. Section 3.D discusses agent behaviors and 

characteristics, applying Chapter II concepts and Unmanned Aerial Vehicle (UAV) 

specifications to agent types. Section 3.E identifies the limitations of MANA-V and 

recommends enhancements to future software editions.  

A. MAP AWARE NON-UNIFORM AUTOMATA (MANA-V) 

Three distinct characteristics reinforced the author’s decision to use MANA-V to 

explore the internal and external interactions of an ISR drone swarm.  

1. MANA-V Is Designed to Run Advanced Designs of Experiments to 
Explore Combat Interactions  

In 2000, the New Zealand Defense Agency created the Map Aware Non-Uniform 

Automata (MANA) agent-based model environment to explore the behavior of entities in 

real-world combat (McIntosh, Galligan, Anderson, & Lauren, 2007). Currently, MANA-

V is an agent-based, time stepped, stochastic modeling environment intended for “quick 

turn,” mission-level analysis (Lucas, 2015, p. 2). For a decision maker or lead analyst, 

MANA-V provides mission visualization, valuable insight into an evolving battle, and 

intuition on sensor employment (McIntosh et al., 2007, p. 5). As an analytic tool, MANA-

V provides an intuitive interface to efficiently build scenarios and a data farming capability 

which allows a research team to run multiple experiments over a broad range of factors 

(Zappa, 2009, p. 19).  
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MANA-V is designed to support operations analysts. The data farming capability 

allows an analyst to apply advanced design of experiments (DOE) techniques which can 

populate thousands of unique experiments in a relatively short period of time. This thesis 

uses MANA-V to create a realistic simulated environment and then study drone swarm 

employment in support of a Marine infantry company. Multiple DOEs were run to identify 

influential factors, interactions, and thresholds that effect swarm performance.  

2. MANA-V Measures and Tracks Situational Awareness (SA)  

MANA-V uses agents, also referred to as agent squads, to represent autonomous 

military units. An agent squad is a set of homogenous elements with the same 

characteristics. Agents are modified with sensors and personality traits which govern how 

an agent senses and interacts within the simulated environment (Zappa, 2009, p. 19). Agent 

sensors detect and classify other agents in the scenario. Personality traits dictate how an 

agent responds to friendly, enemy, and neutral entities in terms of movement, 

communications, and aggression. As a scenario unfolds, different sensors and behaviors 

begin to develop an agent’s individual SA. This SA is tracked by two distinct “awareness 

maps” (Zappa, 2009). 

The two types of SA maps used in MANA-V are organic and inorganic. An organic 

map holds direct contacts, interactions, and knowledge experienced by an individual agent. 

The inorganic SA map captures shared information between agents of the same force. 

Through established communication links, agents begin to develop a shared understanding 

of the battlefield (McIntosh et al., 2007, p 5). Combining these two features results in each 

agent having a unique understanding of the unfolding scenario (Zappa, 2009). 

Measuring and tracking situational awareness is essential to understanding the 

effectiveness of a drone swarm ISR platform. Taking advantage of MANA-V’s unique data 

farming capability, this thesis investigates how sensor and behavior manipulation effect 

swarm performance in support of a Marine infantry company. 



 29 

3. MANA-V Models Internal and External Communications 

In MANA-V, communication links control the flow of SA internal and external to 

an agent. Internal squad communication parameters control SA flow within an agent squad. 

Control parameters include communication range, time to disseminate information within 

the squad, and contact persistence (McIntosh et al., 2007). External squad communication 

parameters, also referred to as inter-communications, “determine how information is 

treated once it arrives at the squad via a communications link” (McIntosh et al., 2007, 

p. 68). External squad communication parameters allow for a more detailed exploration of 

the communication network between agents. Parameter examples include communication 

net latency, accuracy of information passed between agents, and link capacities. For more 

details on how communications are modeled in MANA, see the MANA 4 User’s Manual, 

pages 68–71. 

As discussed in Chapter II, swarm communication architecture directly affects 

control strategy and information collection. Due to the intricacies of swarm communication 

networks, it was crucial to find simulation software that could accurately model the 

ARSENL communication architecture. Although MANA-V does not provide engineer 

level detail for communication links, it is well suited to study communication networks at 

the mission level and the effects of varying that capability. MANA-V’s basic approach, 

coupled with an easy to use interface, allows the user to accurately model multiple ISR 

control strategies, a swarm ground control element, and the fires agencies needed to 

prosecute enemy targets identified by the swarm. Section 3.E discusses individual agent 

characteristics and modeling approaches in greater detail.  

B. THE SCENARIO 

This section discusses the scenario, force locations, and how the author built the 

modeling environment in MANA-V. An abbreviated version of a company operations 

order is used to succinctly introduce the reader to the scenario. The author intentionally 

simplifies the scenario and avoids using complex military terminology. For additional 

resources on military tactical tasks and vocabulary see Marine Corps Warfighting 

Publication (MCWP) 3–11.1: Infantry Company Operations. 
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1. Selection Criteria 

Scenario selection for this thesis was challenging. Initially, stakeholders wanted to 

explore swarm employment in larger tactical scenarios, such as clearing maneuver 

corridors or targeting enemy in support of amphibious operations. Accomplishing this task 

requires making large assumptions and amplifying current swarm capabilities. To avoid 

making unsubstantiated claims, the author chose a personally familiar scenario experienced 

in Afghanistan compatible with current ARSENL swarm performance. Additionally, the 

following matters were considered: 

• It must be grounded in a real, military mission set. 

• The terrain should represent a realistic battlefield that Blue forces are 

likely to encounter in future operating environments.  

• The battlefield should challenge the Blue force’s ability to develop 

situational awareness and employ ISR assets. 

• The scenario should be designed to demonstrate swarm performance 

against a challenging adversary with similar fighting capabilities. 

Casualties should be indicative of fighting in a high intensity conflict. This 

is one of the few ways to gain insight into system improvement (Treml, 

2013, p. 35). 

• The number of agents must not become excessive, otherwise runtimes for 

MANA-V become excessive. It was identified that exploring units above 

the company level starts to add too many agents, which inhibits data 

collection efforts (Treml, 2013, p. 35).  

2. The Battlefield 

For the thesis model scenario, the author chose a mission personally experienced 

while deployed to Afghanistan. During the seven-month deployment, coalition forces 

fought to defeat a robust “hybrid force” consisting of local criminal elements, hardened 

Taliban fighters, and foreign military advisers. Additionally, the battlefield was a complex 
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environment along the Helmand River characterized by primitive towns surrounded by 

agricultural zones. Figure 5 provides a satellite view of the scenario battlefield.  

 
[Best viewed in color] 

Figure 5.  Scenario Battlefield: Southern Afghanistan. 
Adapted from Google Earth (2018).  

The agricultural areas are a mixture of open fields, irrigation ditches, poppy crops, 

and corn fields. The towns consist of narrow alleyways, livestock pens, and compounds 

surrounded by 6- to 8-foot mud walls. Population centers typically house 250–500 people. 

This unique area stressed the company’s organic ISR assets as the enemy used the terrain 

and local population to conceal their actions and conduct attacks to their advantage. Figures 

6 and 7 provide pictures representative of the local terrain. 
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[Best viewed in color] 

Figure 6.   Corn Fields in the Agricultural Zone. Source: Steele (2010).  

 
[Best viewed in color] 

Figure 7.  Typical Urban Infrastructure. Source: Stancati (2014). 
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3. The Operations Order: Introducing the Scenario 

a. Orientation: The Scenario Story and Events Leading to the Mission 

A successful allied offensive in southern Helmand Province resulted in the defeat 

of a sizeable Taliban force. Within the past three months, sources report that mid-level 

Taliban leaders fled north to the Helmand River Valley to consolidate their soldiers and 

gain access to a reliable revenue source. As attacks on Afghan Army outposts and local 

police stations increase, there is a fear that the Taliban are trying to gain control of the 

opium market fueled by local poppy crops.  

The U.S. regional command recently sent a Marine Infantry Regiment (Blue force) 

to secure the town of Zahra, the largest population center in the area. While in Zahra, 

the Marines discovered through reliable intelligence that mid-level Taliban leadership is 

hiding in the farming communities at the outskirts of the city. Figure 8 shows the 

Regimental Area of Operations and Area of Interest where the Taliban are attempting to 

establish a stronghold.  

 
[Best viewed in color] 

Figure 8.  Regimental Area of Operations and Contested Area. 
Adapted from Google Earth (2018).  
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Recognizing that the Taliban’s influence continues to grow, allied forces identify 

that decisive action is needed to thwart enemy momentum. A local informant reported that 

key Taliban leaders are hiding in Talafar, a village sympathetic to the insurgency. 

Within the next 72 hours, a Marine infantry battalion will conduct combat operations in 

the area of interest. Companies A and B will establish blocking positions to the southwest 

and northeast of Talafar to prevent the Taliban from fleeing the area. Company C is tasked 

with clearing the enemy stronghold and capturing Taliban leaders and weapon stockpiles. 

Ultimately, the regimental command wants to prevent the Taliban from gaining control 

of the poppy trade. Figure 9 shows a military depiction of the infantry battalion’s 

operational plan. 

 
[Best viewed in color] 

Figure 9.  Battalion’s Operations Plan to Capture Taliban Leaders in Talafar. 
Adapted from Google Earth (2018).  

N 
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The remainder of the modified operations order discusses the forces and actions 

located within Company A’s battlespace, the geographical region outlined on the left in 

Figure 9.  

4. Situation: The Units Involved in the Company Fight 

a. Enemy Forces  

Intelligence reports that 10–20 enemy fighters are operating in Company A’s area 

southwest of Talafar. The enemy force consists of IED teams, several rifle squads, and a 

local command element. The IED teams are using explosive devices to murder local leaders 

aligned with U.S. forces. The rifle squads are intimidating the local population and 

demanding tax payments to expand their drug smuggling operation. A local informant 

reports that the enemy is stockpiling weapons and explosives in an orchard just outside the 

village.  

The enemy is armed with small arms to include: AK-47 assault rifles, general 

purpose (GP)—40mm grenade launchers, rocket propelled grenades, and medium machine 

guns (RPK). Improvised explosive devices typically contain homemade explosive 

materials; however, military grade items such as anti-tank mines, anti-personnel devices, 

and artillery shells are growing in frequency. Due to a tenuous relationship with the locals 

and several instances where children were killed by pressure plate IEDs, the IED teams 

shifted from remote controlled bombs to command wire devices.  

The most likely course of action is that the enemy delays U.S. forces until Taliban 

leaders depart Talafar. To accomplish this task the enemy will defend in depth. This means 

that local scouts will be deployed forward to report U.S. positions to enemy units. IED 

teams and rifle squads will use the civilian population to move into positions of advantage. 

They will then initiate complex attacks using command wire IEDs and small arms to induce 

a high number of casualties. U.S. forces can expect enemy fighters to fight to the death 

until the local commander confirms that the Taliban leadership is clear of the area. See 

Figure 10 for the proposed enemy’s situation template, a military document used to 

visualize how an enemy force will fight.  
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[Best viewed in color] 

Figure 10.  Enemy Situation Template. Proposed Distribution of Forces. 
Adapted from Google Earth (2018).  

b. Civilian Population 

The arrival of the Marines prompted the departure of women and children as locals 

expect a clash between U.S. and Taliban forces. Unfortunately, many of the farmers and 

their sons remained behind to protect their homes, making it difficult to distinguish Taliban 

fighters from the civilian population. The enemy uses this to their advantage by wearing 

local garb and using civilian traffic to mask their movements. Currently, the enemy can 

move freely within the area, allowing them to choose when and where to strike.  

Of note, this thesis does not seek to evaluate civilian casualties or civilian behavior. 

The focus of the thesis is to identify how many drones are needed in this operation and 

determine which factors are most important in enhancing swarm performance. Since target 

selection and engagement is a function of the company fire support team, no effort was 
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included in the model to track civilian casualties. However, a civilian agent squad was 

added to stress the search and detection capabilities of the ISR swarm.  

c. Friendly Forces 

The Marine infantry battalion consists of three infantry line companies, one Afghan 

infantry company, and a UAV company. Additionally, one M777 Lightweight Howitzer 

battery is in direct support of the battalion. 

The battalion’s mission is to defeat enemy forces in the vicinity of Talafar in order 

to deny the Taliban safe haven and a source of revenue.  

5. Mission: Company A 

Company A will kill or capture enemy fighters and seize weapon caches in order 

to deny Taliban forces safe haven in the vicinity of Talafar. The company must be prepared 

to establish blocking positions southwest of Talafar in support of Company C’s mission. 

6. Execution: Company A 

a. Commander’s Intent: Company A’s role in the Battalion Operation 

The purpose of this operation is to defeat enemy forces and prevent enemy 

leadership from escaping the area. The company will conduct a clear in zone and seize a 

weapons cache located in the agriculture zone. Additionally, the company will establish 

blocking positions southwest of Talafar to ensure that the enemy does not evade Company 

C. At end state, enemy forces are killed or captured, the weapons cache is destroyed, and 

the company blocking positions effectively prevent the enemy from egressing the area.  

b. Concept of the Operations: How Company A Will Accomplish the 
Mission  

See Figure 11 for a visual depiction of Company A’s mission. 
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[Best viewed in color] 

Figure 11.  Company Scheme of Maneuver. Adapted from Google Earth (2018).  

c. Tasks: What Company A Units are Doing during the Operation 

First platoon will clear the agricultural zone of enemy fighters and seize the 

weapons cache. After the weapons cache is collected or destroyed, the platoon will 

reinforce company blocking positions. Second platoon will clear the primary routes 

running through the local village and establish the company’s primary blocking positions. 

Local homes will only be entered or fired upon if enemy fighters use the structures to 

initiate ambushes. Forces must apply proportional response when using either direct or 
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indirect fires against targets located in the village. Although forces have the right to self-

defense, civilians must be considered when applying lethal force. First squad, third platoon 

is the company’s reserve. 

The company fire support team (FiST) controls all indirect and aerial fires during 

the mission. External units attached to the company include an 81mm mortar section 

and a UAV team, equipped with an ISR swarm system. The 81mm mortar section will 

provide immediate fire support during the mission. The UAV team will assist the FiST in 

locating and targeting enemy combatants. At the beginning of the operation, the artillery 

battery will be in direct support of the company. This means that the company FiST will 

have priority. 

This ends the operations order. The admin and logistics and command and signal 

paragraphs are intentionally omitted as they do not play a role in this thesis model scenario. 

C. BUILDING THE VIRTUAL ENVIRONMENT: TERRAIN IN MANA-V 

In MANA-V, the model environment is comprised of three-layers. The first layer 

is an elevation map which uses greyscale colors ranging from 0 to 255 to represent terrain 

elevations (McIntosh et al., 2007). The color black depicts low areas of elevation. Lighter 

areas represent an increase in elevation, with white being the highest point on the map. For 

this thesis model scenario, the map elevation ranges from 0 to 20 meters in height. 

Any terrain map can be converted to bitmap, greyscale and uploaded into the 

MANA-V software. The elevation map effects agent movement, weapons effects, and 

sensor line-of-sight calculations. The author used data from the National Imagery and 

Mapping Agency to develop Figure 12, the elevation map for this scenario. 
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Figure 12.  Scenario Elevation Map 

The second and more complex layer is the terrain map. Using a red, green, blue 

color scale, a user can build the geographical characteristics that define their battlefield. 

The MANA-V Terrain Editor requires several parameter inputs. On a scale from zero to 

one, users weight three terrain characteristics: terrain trafficability, referred to as “Going,” 

“Cover,” and “Concealment.”  
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For the “Going” parameter, a weight of zero inhibits any agent movement and a 

weight of one results in free maneuver. Values between zero and one limit an agent’s speed 

by that fraction. Overall, the “Going” parameter allows a user to accurately model how 

terrain and buildings effect unit maneuver and movement speed. 

The “Cover” parameter represents the level to which terrain protects an agent 

against direct fire weapons. A weight of zero represents open terrain in which an agent is 

fully exposed to enemy fire. A weight of one means that the terrain protects the agent in 

total. Values between zero and one limit agent exposure by that fraction and play a key role 

in adjudicating kinetic exchanges between agents (McIntosh et al., 2007).  

The “Concealment” parameter models an agent’s visibility in the terrain. A weight 

of zero infers that an agent is fully visible to all agent squads while a value of one means 

an agent is totally concealed (McIntosh et al., 2007). When combining all three parameters, 

a rich model environment begins to emerge. In a more practical sense, the MANA-V 

Terrain Editor allows a user to control traffic patterns, restrict agent movement, and capture 

realistic sensing and weapons effects based on terrain and structures. Figure 13 shows the 

terrain map for this scenario.  
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[Best viewed in color] 

Figure 13.  Scenario Terrain Map with Terrain Characteristics  

Thesis Scenario Battlefield
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The final layer is a background bitmap. Unlike the first two maps, the background 

image is purely aesthetic. It allows the user to overlay a map chip that assists in orienting 

the audience to the real-world location the user is modelling. The background image does 

not affect agent movement or model calculations. Figure 14 is the full scenario modeled in 

MANA-V. The different captions describe how the scenario description translates into the 

model environment. 

Figure 14.  The Thesis Scenario in MANA-V 

D. MODEL ASSUMPTIONS CRITICAL TO MODEL DESIGN 

In modeling and simulation, assumptions are needed to frame the scenario and 

explain agent characteristics. The following assumptions are the main influencers that 

drove agent development and model design.  
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• This thesis seeks to gain insight into swarm performance, not ground unit 

proficiency. To focus on the swarm, Marine infantry and enemy security 

forces are modeled as near peer adversaries. 

• The battlefield and mission set are appropriate for current swarm 

capabilities. While this makes the thesis scenario more believable, it 

forced the author to reduce weapon ranges and sensor distances to 

accurately reflect true battlefield conditions. 

• The enemy fighters fight to the death to protect the notional Taliban 

leaders to the northeast of the battlefield. The battle stops when the model 

reaches 9,000 timesteps. One timestep represents one second in real time, 

which means that the longest the battle can last is 2.5 hours. The author is 

aware that it is unlikely that enemy forces fight to the death; however, the 

small map makes it difficult for the enemy fighters to escape to a safe 

area. 

• Due to a small battlefield, high UAV speeds disproportionately affect 

swarm performance. Recognizing this modeling shortfall, speed 

considerations are not included in the design of experiment. 

• Fire support planners and air controllers prefer Group 1 UAVs to operate 

below 500 feet above ground level (AGL). This constraint serves as the 

upper bound for all field of view and search area calculations. 

• All UAVs are equipped with gimbal optics or sensors to allow the vehicle 

to sense in 360 degrees. None of the UAVs are modeled with fixed or 

directional sensor suites. 

• UAVs are not subject to attrition. Enemy fighters are not programmed to 

attack the single UAV or AVs in the swarm. 

• The UAV support section discussed in this thesis is a hypothetical 

construct and does not currently exist. Based on conversations with 
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ARSENL team members, it is recommended that the smallest UAV 

support section consist of six Marines: central planner, assistant central 

planner, two targeteers, and two launch and recovery specialists. The 

author uses this task organization and terminology throughout the thesis. 

• ISR coverage is constant. During combat operations, the UAV support 

section is responsible for ensuring that there are no gaps in ISR 

employment. More specifically, this means that swarm deployment and 

recovery do not interfere with ISR coverage. 

• No swarm launch or recovery platforms are modeled as part of the Blue 

force. Launch is assumed to be instantaneous once the company 

headquarters is established. Additionally, recovery actions are not factored 

into swarm employment due to limitations in the MANA software. The 

effect of this assumption is that the findings on drone swarm size represent 

an optimistic estimate.  

E. THE AGENT SQUADS AND BASIC CHARACTERISTICS 

This section provides a detailed description of the 16 different types of agent squads 

modeled for this scenario. The author used assumptions, combat experiences, input from 

subject matter experts, and open source publications to design each agent squad. 

Additionally, the author explored 100 simulated battles of the base scenario varying sensor 

and weapon parameters. This verification process assisted in fine tuning parameter inputs, 

verifying that simulation outputs were practical, and ensured that the scenario represented 

the author’s experience when conducting a similar mission. The fixed weapon ranges and 

sensor values presented below are the results from the verification experiment.  

Unfortunately, all simulation packages are limited in their ability to precisely replicate the 

“real world.” MANA is no different. 

a. Drone Swarm Agents 

For this thesis, an ISR drone swarm consists of two distinct types of UAVs. The 

seeker UAV serves as the swarm’s contact sensor tasked with locating targets of interest. 
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Theoretically, the seeker UAV is cheap and expendable, allowing a UAV support section 

to launch seekers in mass to cover more of the battlefield and deny enemy forces a first 

strike advantage.  

The verification UAV is an autonomous member of the swarm, outfitted with an 

enhanced camera system. Once the seekers locate a potential enemy target, they signal to 

the closest verification UAV. The verification UAV serves as the “eyes” of the UAV 

support section, providing the central planner with a live video feed of the target area. 

Theoretically, the central planner can manage the different feeds and a targeteer can extract 

targeting data from the ground control station. Ultimately, confirmed enemy targets are 

passed to the company’s Fire Support Team (FiST) for prosecution. The agent descriptions 

below capture how the emergent and hierarchical swarms are modeled in MANA-V. 

(1) Emergent_Seeker_Drones 

This agent squad represents the seeker part of the swarm. Individual agents can 

detect contacts out to 100 meters but rely on the verification agent to classify a contact. 

The squad travels in a linear formation with heavy priority given to mission waypoints such 

as the known cache and village. If an agent locates a contact, a signal is sent to the closest 

verification drone for further investigation. Note that during experimentation, the DOE 

varies the seeker drone’s sensor characteristics with the intent of identifying operational 

thresholds that enhance swarm performance.  

The seeker agent is a blue fixed-wing icon. The icon jitters when investigating 

unknown contacts. Once a seeker drone detects an agent, the drone will continue to 

investigate the contact for up to 300 seconds or until the verification drone classifies the 

agent as hostile or neutral. After 300 seconds, the seeker drone moves on to the next agent 

or continues to the next predetermined waypoint. At the beginning of the scenario, the 

seeker squad moves to investigate the weapons cache in the agricultural zone and then 

shifts focus to the village.  
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(2) Emergent_Verification_Drones 

For the emergent swarm, there is one verification drone per group of seeker drones. 

In the design of experiment (DOE), the number of verification drones is varied to gain 

insight into how many drones are required to support the company in this scenario. The 

verification drone agent cannot physically detect enemy contacts, rather it can only classify 

contacts. This action models the verification drone’s relationship with its seeker 

counterpart. Ultimately, once a seeker identifies a potential target, the verification drone 

must move to the suspected target area to classify the agent as friendly, neutral, or hostile. 

A single verification drone can classify out to 200 meters, but the probability of accurately 

classifying a contact drops significantly outside of 50 meters. Similar to the number of 

drones, the DOE varies the verification drone’s sensor characteristics with the intent of 

identifying operational thresholds that enhance swarm performance. The DOE is further 

discussed in Chapter IV.  

The emergent verification agent is a blue UAV icon. The icon remains blue during 

mission transit. If a seeker drone locates an unidentified contact, a verification drone 

increases its speed and turns green. This action signifies that the verification drone is 

actively trying to classify an unknown contact. Once the drone classifies an enemy agent, 

the drone will continue to follow the hostile contact for up to 100 seconds or until the FiST 

destroys the enemy agent with indirect fires. The FiST engages enemy agents in the order 

they enter the queue for as long as the enemy agent remains visible on the SA map. If the 

hostile agent is still alive after 100 seconds, the verification drone must re-classify the 

target or the hostile agent will be removed from the SA map. Additionally, while the UAV 

icon is green, the agent’s propensity to pursue enemy agents increases.  

The verification agent travels in a dispersed, linear formation with heavy priority 

given to mission waypoints. If an agent locates a contact, it will attempt to classify the 

contact and report to the Company HQ agent. The Company HQ updates the inorganic 

situational map for all Blue forces. This action simulates the UAV support section 

confirming a contact’s status and updating the company headquarters. Furthermore, if a 

contact is classified as hostile, the FiST sends a report to a firing agency to engage the 

enemy combatant.  



 48 

(3) Hierarchical Seeker Drones, Hierarchical Verification Drones 

These two agents have the exact same characteristics as their emergent 

counterparts. The only significant difference between the agents is their task organization. 

As discussed in Chapter II, the hierarchical swarm allows the central planner to divide the 

swarm into subswarms. Each subswarm contains its own seeker and verification drones. 

This approach allows the central planner to disperse his or her resources and sectorize the 

reconnaissance effort. In the thesis scenario, one subswarm is sent to investigate likely 

enemy locations in the agricultural zone while the second subswarm reconnoiters the 

village. 

b. Friendly Forces 

(1) Marine_Squad 1_1– 2_3 

Each Marine infantry squad consists of 13 infantrymen. Individual agents have an 

“Eyes_Advanced Optic” sensor which allows them to detect and classify other agents out 

to 200 meters. Organic squad weapons include the M-4 assault rifle, the M-27 Infantry 

Automatic Rifle (IAR), and an M203: 40mm Grenade Launcher. While the two rifles are 

modeled as direct fire, point weapons, the M203 fires an indirect, explosive munition with 

a kill radius of five meters. Due to a small battlefield, the nature of the terrain, and the 

author’s combat experiences, the engagement ranges for each weapon system are limited 

to 150 meters. Note that the sensor and weapons’ ranges for this agent are fixed in 

accordance with the parameter thresholds identified in the verification experiment. 

All squads move along predetermined tactical waypoints towards mission 

objectives. First platoon moves to seize the enemy weapons cache in the agricultural zone. 

Second platoon, clears a route through the urban zone to establish a blocking position on 

the north side of the village.  

The default behavior for each squad is to patrol in a linear formation with priority 

given to mission waypoints. If a Marine squad locates an enemy agent, the friendly agents 

pursue the hostile element and engage with organic weapons. If agents locate an IED, they 

are programmed to report the device and avoid the area. When fired upon, the Marine squad 
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icon changes to the prone position (an agent lying on the ground) to represent an agent 

seeking cover to reduce the probability of being hit by a bullet.  

Squad communications follow doctrinal reporting procedures. Infantry Squads 1_2 

and 2_2 represent the location of the platoon commander. Any information on enemy 

forces is reported to the squad’s respective platoon commander via radio. In turn, the 

platoon commanders pass situation updates to the Company_Headquarters (HQ) agent for 

action. 

(2) Company_HQ (FiST Capable) 

The Company_HQ agent represents the location of the company commander, the 

FiST, and the UAV support section. This agent can sense out to a fixed distance of 

500 meters; however, the probability of detecting enemy agents is extremely low. The 

agent’s organic weapons are the same as those assigned to the Marine squads. Ultimately, 

the Company HQ can defend itself against close combat attacks; however, its primary 

function is to collect and disseminate information to the Blue force. 

At the beginning of the scenario, the Company HQ moves into an elevated position 

overseeing the battlefield. Once in position, the agent remains static to exercise command 

and control of Blue’s mission. The UAV support section is responsible for controlling ISR 

assets and locating enemy combatants. If an enemy is located, the UAV support section 

reports targeting information to the FiST. The FiST sends a concise report to either the 

M777 artillery battery or the 81mm mortar section to prosecute enemy combatants. 

The Company_HQ agent serves as the communications hub for all Blue units. 

Marine squads report enemy contacts via radio. The UAV support section is co-located 

with the FiST, using a live video feed to assist fire supporters in locating and targeting 

enemy agents. To gain insight into the UAV support section’s proficiency level, the author 

varied the communication latency parameter. Latency determines how quickly information 

is processed before updating the inorganic situational awareness map. Essentially, 

manipulating latency helps gain insight into how a central planner or UAV operator’s level 

of proficiency affects the targeting process. Once the UAV support section confirms the 
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target’s location, the FiST uses radio communications to pass targeting data to the two 

firing agencies supporting the mission.  

(3) RQ-11B_Raven_UAS (SingleUAS) 

This agent models the Marine infantry company’s organic ISR asset. The Raven 

UAS is a hand launched, fixed-wing drone with 90 minutes of endurance. Although the 

Raven can perform at higher altitudes, fire support coordinators prefer the UAV remain 

below 500 feet AGL to deconflict with manned aircraft and close air support missions. 

Coupling this constraint with the limitations of the Raven’s electro-optic (EO) camera, the 

agent can sense out to 200 meters. In Experiment Set 1, this parameter value remains fixed.  

The Raven agent follows waypoints to likely enemy positions in the vicinity of the 

weapons cache and the village. In its default state, the Raven is programmed to navigate to 

mission waypoints or investigate unknown entities with equal preference. In its contact 

state, the agent will aggressively seek out enemy infantry, IEDs, or IED triggermen.  

(4) M777_155mm (M777) 

The M777_155mm agent represents an artillery battery in direct support of a 

Marine infantry company. The M777 does not have any organic sensors and relies on 

information from the Company HQ to engage enemy targets. This communications link 

simulates how the FiST sends targeting data to the M777 artillery battery during a fire 

mission.  

The M777 agent has a max effective range of 10,000 meters, which allows the 

battery to engage any target on the map. Additionally, the agent is modeled as an indirect 

weapon system with a kill radius of 25 meters per round. At the beginning of the scenario, 

the battery is equipped with 50 rounds. After firing all ammunition, it takes the battery 

10 minutes to reload.  
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(5) 81mm_Mortar_Section 

The 81mm_Mortar_Section agent serves as the second indirect firing agency 

available to prosecute enemy agents. Like the M777, the mortar section does not have any 

organic sensors and relies on information from the Company HQ to engage enemy targets.  

The mortar section has a max effective range of 5,600 meters and a shot kill radius 

of 10 meters per round. At the beginning of the scenario, the section moves into a firing 

position near the Company HQ and establishes its firing point. All fire missions are sent 

from the FiST to the mortar section via radio. The agent is equipped with 50 high explosive 

rounds. Due to the short duration of the mission, it is assumed that emergency resupply 

will not be needed, thus the mortar section cannot reload after expending its initial 

stockpile. 

c. Enemy Forces 

(1) Local Scout Agents: Local_Scouts_Scouts_Gzone, Local_Scouts_Uzone  

The local scout agents represent the enemy’s forward deployed reconnaissance 

element tasked with reporting Blue force movements. The scout agents are divided into 

zones with GZone representing those scouts in the agricultural area and the Uzone 

pertaining to those scouts in the urban sprawl. It is common for hybrid forces to recruit or 

pay locals to collect information on U.S. forces. Killing or detaining a local scout typically 

results in the population resisting allied efforts to bring security to the region. To accurately 

model this relationship, the Local Scouts’ concealment parameter is set to 100%. This 

modeling technique simulates that the scouts can move freely on the battlefield and report 

Blue force locations without being targeted by Marine infantry or ISR assets. Furthermore, 

this agent is programmed to seek out, follow, and report Blue movements to the enemy 

commander via cell phone.  

(2) ENY_Local_Commander 

Like the Company HQ, this agent is static and serves as the communications hub 

for all Red units. Organic sensors and weapons are defensive in nature, allowing the agent 

to sense and engage Blue forces out to 200 meters. Upon receiving local scouting reports 
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on Blue force movement, the ENY Local Commander radios to the safe houses, releasing 

enemy fighters to defend in sector. Ultimately, the commander’s primary function is to 

identify Blue force locations and disseminate that information to the IED teams and 

security forces.  

(3) Enemy Safehouse Agents: Safehouse_North, Safehouse_South 

Safehouse agents determine the starting locations for the four enemy security 

squads. Safehouse_North applies to the enemy defending in the agricultural zone. 

Safehouse_South applies to the force defending in the village.  

The safehouse agents are denoted by yellow mast icons. Using MANA’s 

“homebox” feature, the safehouse locations are randomly placed at the beginning of each 

simulated run. This modeling technique simulates uncertainty prior to the battle and adds 

variability to the model.  

At the beginning of the scenario, the enemy security forces are tethered to the 

starting location. Once Blue forces are located, the ENY Local Commander calls the 

safehouses via radio. This action releases enemy fighters from their respective safehouse 

to defend in sector. To verify that an enemy security force is properly released from the 

safehouse, the mast icon changes from yellow to red.  

(4) Enemy Security Forces by Zone: Eny_Local_SecFor_Gzone1, Gzone2, 
Urban1, Urban2 

Each security force (SecFor) consists of five well trained fighters. Individual agents 

have an “Eyes_Binos” sensor allowing them to detect and classify other agents out to 

225 meters. This slight detection advantage models the disadvantage U.S. forces 

experience when operating in urban environments. Because the Marines cannot blend in 

with the local population, they can be detected at a greater distance. To the contrary, enemy 

fighters can hide within the civilian population and initiate attacks to their advantage. 

Organic squad weapons include the AK-47 assault rifle, the PKM medium machinegun, 

and a 40mm grenade launcher. Like the Marine infantry, the engagement ranges for each 

weapon system are limited to 150 meters and all sensors and weapons ranges for this type 
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of agent are fixed in accordance with the parameter thresholds identified in the verification 

experiment. 

Once activated, the SecFor teams move along predetermined waypoints towards 

their defensive positions. Once at their defensive position, they spread out to simulate a 

linear defense. The agents are programmed to stay close together to mass fires on the 

Marine infantry. If a SecFor agent takes fire from the Blue force, their icon changes to the 

prone position (an agent lying on the ground) to represent an agent seeking local cover. As 

addressed in the assumptions section, the SecFor agents fight to the death. The stopping 

condition for the simulation is based on time, not a defined stopping condition.  

(5) ENY_IED_Tm1_(Uzone), ENY_IED_Tm2_(Gzone) 

There are two enemy IED teams located on the battlefield. Both teams seek out and 

arm neutral IED agents. The agent’s concealment parameter is 90%, simulating the 

triggerman’s ability blend in with the population and detonate a device from a position of 

advantage. At the beginning of the scenario, each team is assigned to one of the seven 

IEDs. This means that only two IED agents can be active during an experiment run. When 

enemy scouts report Blue movements to the commander, the IED teams move to arm their 

assigned device. If an IED team gets within 150 meters of an IED, the team refuels the 

device. The refuel action changes the IED agent from its default state to armed. As long as 

the triggerman (IED Tm agent) is alive, the IED remains capable of attacking Blue forces. 

(6) IED 

There are seven IED agents on the battlefield. The IEDs represent an obstacle belt 

designed to inflict casualties and prevent Blue forces from achieving their mission. Green 

cross icons mark each IED location. At the beginning of the scenario, all IEDs are benign. 

When an IED team comes within 150 meters of the IED agent, the device is activated. This 

simulates a triggerman preparing the IED for detonation.  

Two actions occur when an IED agent is activated. The IED icon changes from 

green to red and the agent’s allegiance setting shifts from neutral to enemy. The allegiance 
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shift allows Blue forces to see the device if in the right location. The location of all IED 

agents resets at the beginning of each simulation run to add variability to the model. 

d. Neutral Forces 

(1) Civilian NonHostile 

This agent simulates civilian presence in both the village and agricultural zone. All 

civilian agents are randomly distributed across the battlefield and challenge the Blue force 

ISR assets in locating and identifying enemy forces.  

F. MODEL LIMITATIONS 

Recall that models are merely a representation of the “real world.” No matter how 

sophisticated the software, models will be limited in their ability to capture every aspect of 

a complex operating environment. In order to understand the findings and conclusions of 

this thesis, readers must be aware of the model’s shortcomings. The following points 

address software limitations that inhibited both model design and study conclusions.  

1. Aerial Sensors and Sensor Characteristics  

MANA is a low-resolution modeling environment. The elevation and terrain maps 

affect agent movement, line-of-sight calculations, and weapons affects at the ground level. 

Users may input an agent’s sensor height or remove movement restrictions to simulate 

flight; however, the program does not provide advanced options for aerial platforms. To be 

more specific, MANA gives no consideration to air centric factors to include air delivered 

munitions (i.e., sensor frames per minute, sensor/camera angle, or sensor performance at 

different altitudes). Instead, a user must accept “work arounds” or parameter manipulations 

to model air vehicles. This approach limits MANA’s utility in studying a platform’s 

detailed technical specifications.  

2. No Dynamic Re-tasking 

During ISR missions, it is common for UAS operators to deviate from the initial 

flight plan to investigate possible enemy contacts in vicinity of the ground force. This 

process is called dynamic re-tasking. For swarms, this concept is even more important as 
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a central planner can task subswarms to investigate unknown contacts as the rest of the 

swarm continues along its tactical route. While MANA does allow a user to assign very 

specific agent behaviors, none of the behavior settings replicate dynamic re-tasking. This 

limitation prevented the author for exploring the advantages and disadvantages of using 

subswarms during mission execution. Perhaps follow-on efforts can work with the MANA-

V team to build in a dynamic re-tasking behavior or find a modelling technique that can 

more accurately model subswarm employment during mission execution. 
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IV. DESIGN OF EXPERIMENT: EFFICIENTLY EXPLORING 
THE FACTOR SPACE TO GAIN INSIGHT INTO 

SWARM PERFORMANCE 

Designing an experiment is both an art and a science. The art involves properly 

framing the problem, identifying factors related to the response, and determining 

experimental constraints. The science includes developing a well-balanced design that 

efficiently explores the factor space without confounding factor effects. While simulation 

is a cost effective and powerful tool for exploring complex systems, without a proper 

design of experiment (DOE), a simulation study can become unwieldy. To the contrary, 

when simulation and DOE are synchronized, the potential for studying the factor space 

increases dramatically.  

This section discusses the thesis experiments and their associated DOE. Section 

4.A. examines the measures of effectiveness (MOEs) used to analyze swarm performance 

during mission execution. Section 4.B presents the thesis experiments and identifies the 

factors used for each DOE. Section 4.C introduces the nearly orthogonal Latin hypercube 

(NOLH) and quantifies how this advanced DOE technique saves an analyst both time and 

computing resources. 

A. THESIS EXPERIMENTS: QUANTIFYING MISSION SUCCESS 

The Defense Acquisition University defines a measure of effectiveness as “the 

metric that measures the military effect that comes from using the system in its expected 

environment” (“Measure of Effectiveness,” n.d.). More simply, a MOE is a metric that 

quantifies mission performance under specified conditions (Zappa, 2009). In this thesis, 

ISR assets seek to locate and target enemy combatants before the enemy can initiate a 

complex attack. Company fire support personnel, to include UAV operators, accomplish 

this task by efficiently locating enemy fighters in zone and effectively prosecuting those 

targets with IDF assets. Ultimately, the FiST and UAV support section are responsible for 

denying the enemy freedom of maneuver and the element of surprise. 
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In this thesis, the author studies the Blue force’s performance, as defined by thesis 

MOEs, by varying factors for unit lethality, ISR performance characteristics, and UAV 

employment. In each experiment set, the author uses advanced DOEs to vary factors with 

the intent of gaining insight into operational thresholds and unit performance measures. 

When combining MOEs and factors, a design of experiment begins to take form.  

B. THESIS EXPERIMENTS  

1. Experiment Set 1: Base Case—Current Company Configuration 

The first experiment set studies the deployment of the RQ-11B Raven 

reconnaissance drone. The Raven is an organic company asset and uses a gimbal, stabilized 

camera with fields of view (FOV) ranging from 9–35 degrees. For this scenario, the Raven 

flies at 500 feet above ground level (AGL) with 90 minutes of endurance. Additionally, the 

UAV employs a sensor which is capable of viewing out to 200 meters.  

The author used Experiment Set 1 to develop a baseline understanding of the thesis 

scenario when deploying current ISR assets. To efficiently explore the design space, the 

author chose an NOLH DOE consisting of 33 design points (DPs). The design was then 

stacked and rotated to create a combined DOE of 65 DPs. Each DP was replicated 100 

times for a total of 6,500 simulated missions. See Tables 4 and 5 for the primary MOEs 

studied in this experiment and the eight factors used to explore the design space. 

Table 4.   Experiment Set 1 MOEs  
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Table 5.   Experiment Set 1: Factors with Variable Type and Range 

 

 

2. Experiment Sets 2 and 3: Swarm Employment 

The second and third experiment sets focus on the deployment of the ISR swarm. 

These experiment sets examine the impact of different control strategies on the MOEs as 

defined in the base case. Experiment Set 2 focuses on the emergent swarm in which the 

seeker and verification drones travel as one heterogenous flock during mission execution. 

Experiment Set 3 studies the hierarchical control strategy, deploying the swarm in two 

small subswarms that are assigned to patrol along parallel sectors. Both scenarios assume 

that the swarm flies at 500 feet AGL and that each drone type (verification and seeker) has 

45 minutes of flight endurance.  

The only difference between the two experiments is the control strategy used during 

mission execution. The author intentionally mirrored the DOE to address the thesis 

question of whether or not control strategy affects swarm performance. Additionally, the 

factors for each experiment pertain to only swarm capabilities. Concentrating solely on 

swarm performance parameters allows the author to answer the second thesis question by 

identifying performance measures that enhance swarm effectiveness.  
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Experiment Sets 2 and 3 each consist of seven factors. To efficiently study the 

design space, the author chose an NOLH DOE consisting of 65 design points. The design 

was then stacked and rotated to create a combined DOE of 129 DPs. Each DP was 

replicated 100 times for a total of 12,900 simulated missions per experiment set. Table 6 

displays the MOEs and factors for the experiments.  

Table 6.   Swarm Experiment Set: MOEs and Factors with 
Variable Type and Range 

 

 
The first two factors affect the overall capacity of the swarm. The seeker drones 

scale off the verification drones. For example, if the design point in the DOE calls for three 

verification drones and two seeker drones per verification drone, then the total number of 

drones in the swarm equals six.  

Factors three and four examine the technical aspects of the swarm. For probability 

of detection, MANA uses the inverse and allows a user to manipulate the mean time 

between detections. Thus, factor three addresses the seeker drone’s ability to detect enemy 

combatants based on a sensor with a detection range of 50 to 100 meters. As the distance 

Experiment Sets 2 and 3:  Control Strategies 
Measures of Effectiveness

MOE 1
How long does it take the Blue force to classify the first hostile agent? (A 

number between 0 and 9,000 seconds).

MOE 2 How many Blue casualties are sustained during mission execution?  

Factors for Drone Employment
Factor List Ranges Type of Variable

1. Number of Verification Drones 1 - 5 Discrete Numeric
2. Number of Seeker Drones per 

Verification Drone
1-5 Discrete Numeric

3. Seeker Drone Mean Time Between 
Detections (sec)

10 - 300 Continuous

4. Verification Drone Probability of 
Classification (Pclass)

0.10 – 0.90 Continuous

5. Dispersion b/t Seeker Drones (m) 10 – 300 Continuous
6. Dispersion b/t Verification Drones (m) 10 – 300 Continuous
7. Swarm Latency (sec) 30 - 300 Continuous
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increases towards 100 meters, the time to detect increases. Factor four is the key tactical 

employment factor of interest for the verification drone. The verification drone can classify 

out to 200 meters. As the classification distance increases, the probability of classification 

decreases. 

Factors five and six manipulate the dispersion between drones within an agent 

squad. These parameters change the behavior settings in an agent squad, directing 

individual agents to maintain an approximate distance. MANA does offer a formations 

option consisting of traditional military movement patterns. Unfortunately, the thesis 

battlefield was too small to benefit from this feature.  

The final factor, swarm latency, models the central planner and targeteer’s ability 

to effectively manage the swarm, collect data from the ground control station, and pass the 

information to the FiST. More concisely, the latency parameter affects how quickly swarm 

agents process information and pass it to the FiST. In the author’s experience, a support 

section’s data management and battle drills are just as important as controlling the UAV. 

Well trained teams can quickly identify enemy combatants, position the UAV to collect 

targeting data, and accurately transmit that data to prosecute a target. This factor models 

the proficiency of the UAV support section and provides insight into the minimum skill 

level needed for the section to effectively support the ground force.  

C. DOE METHODOLOGY: SPACE-FILLING NEARLY ORTHOGONAL 
LATIN HYPERCUBE (NOLH) 

In simulation, the design space involves all combinatorial possibilities between 

input factors. To illustrate this concept, consider a full factorial design containing eight 

factors. Each factor is categorically divided into five settings (referred to as levels). Under 

these circumstances, the design space sampled for the experiment is comprised of 58 or 

390,625 factor combinations. 

On average, it takes 10 minutes to run one simulated attack on the author’s 

Microsoft Surface 4 Laptop. Combining the full factorial DOE with the average simulation 

run time, it would take 7.43 years to complete one replication of the full factorial design. 
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While the full factorial approach explores the design space completely, the time and money 

needed to conduct such an experiment is untenable. A more efficient design is needed. 

In 2002, Thomas Cioppa developed an advanced algorithm that generates nearly 

orthogonal Latin hypercubes (LHs) with good space-filling properties (Cioppa & Lucas, 

2007). “A good space-filling design is one in which the design points are scattered 

throughout the experimental region with minimal unsampled regions” (Cioppa & Lucas, 

2007, p. 45). Essentially, the NOLH allows a user to achieve the same insight as the 

full factorial design at a fraction of the cost. For more flexible or extended NOLHs, 

see references MacCalman, Vieira, and Lucas (2017) and Hernandez, Lucas, and Carlyle 

(2012).  

D. SWARM DESIGN OF EXPERIMENT 

The correlation and scatterplot matrices from Experiment Sets 2 and 3 demonstrate 

the characteristics of the NOLH DOE. Figure 15, the correlation matrix, shows that the 

correlation between any two factors is in the interval (-.04, .04). This confirms that the 

DOE maintained a nearly orthogonal structure which ensures that follow-on analysis 

should not be affected by multicollinearity (Zappa, 2009).  

 

Figure 15.  Correlation Matrix for the NOLH DOE Consisting of 129 DPs. 

Figure 16, the scatterplot matrix, is a visual representation of the space-filling 

power of the NOLH. Each point represents a unique design point. The matrix panes denote 

the various input combinations between pairs of factors (Zappa, 2009). Collectively, the 

scatterplots represent the combinatorial interactions between factors. Thus, with only seven 

factors and 129 DPs, the NOLH DOE explores a vast part of the design space. Additionally, 
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the NOLH gives the analyst the ability to fit a diverse set of metamodels to multiple 

different MOEs. 

 

 

Figure 16.  Scatterplot Matrix for the NOLH DOE Consisting of 129 DPs. 
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V. DATA ANALYSIS AND EXPERIMENT RESULTS 

This chapter contains the author’s analysis of the thesis simulation experiments. 

Section 5.A gives a brief description of JMP Pro 13, the statistical software package used. 

Furthermore, the section explains how the author uses stepwise regression and partition 

trees to answer the thesis research questions. Sections 5.B – 5.D discuss the results for each 

thesis experiment set. Ultimately, Chapter V is the culmination of this study and presents 

quantitative information intended to enhance swarm employment in future operating 

environments. 

A. JMP PRO 13 AND ANALYTIC METHODS 

JMP Pro 13 is an advanced statistical package developed by SAS Analytics to 

upload, clean, organize, and analyze massive amounts of data. The Pro Series provides an 

analyst with an easy to use desktop interface and powerful predictive modeling tools to 

explore simulation design spaces efficiently. Additionally, JMP Pro 13 uses advanced 

algorithms, dynamically linked data, and graphic interfaces to produce professional visual 

products that help an analyst convey their story to stakeholders (“JMP Pro,” 2018). Taking 

advantage of JMP’s versatility, the author used the software package for initial data 

preparation, exploration of summary statistics, regression analysis, partition analysis, and 

data visualization. 

1. Stepwise AIC Regression 

Stepwise regression is an automated selection process designed to identify the best 

subset of predictor variables for a regression model (SAS Analytics, 2016). This form of 

regression works well under the following circumstances (SAS Analytics, 2018):  

• There is limited information to guide factor selection during model 

development. 

• An analyst wants to explore various models to identify which factors are 

most influential in predicting the response. 
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• The user seeks to remove unnecessary terms to better fit a model to the 

data and reduce model variability.  

As the astute reader can see, all three situations apply to this study. The author 

recognized early in the study that the complex nature of the ISR swarm and his limited 

experience with swarm technology could lead to bias when analyzing results. Thus, for all 

three experiment outputs, the author uses stepwise regression to identify statistically 

significant predictor variables to a significance level of 0.05. 

2. Partition Tree Analysis 

A partition tree is a nonparametric technique “that splits output data to form 

homogeneous subsets, resulting in a hierarchical tree of decision rules. This process is 

useful for prediction or classification” (Zappa, 2009, p. 39). In JMP, the partition 

“algorithm searches all possible splits of predictors to best predict the response. These 

splits (or partitions) of the data are done recursively. The splits continue until the desired 

fit is reached” (SAS Analytics, 2016). For this thesis, the author uses partition trees to 

identify influential factors, performance thresholds, and create powerful visuals to explain 

factor interactions. In most cases, the partition tree and stepwise regression results are 

reinforcing mechanisms and powerful data discovery tools. 

As an important aside, while conducting partition tree analysis, the author 

discovered that certain factors dominate tree splits and appear in multiple levels of the tree. 

This occurrence shows the powerful influence of such factors but typically offers less in 

terms of identifying useful operational thresholds for a decision maker. To gain greater 

insight into factor interactions and important performance thresholds, the author comments 

on dominant factors but only allows a factor to appear once within a partition tree. 

B. STOCHASTIC VARIABILITY WITHIN A DESIGN POINT 

Combat is a complex process often defined by surprise, aggression, and uncertainty. 

In an effort to capture the “Fog” or uncertainty of combat, MANA-V implements stochastic 

principles. This means that a user can run hundreds of battles with the same factor values 

and get a different MOE outcome each time due to random model variability.  
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To demonstrate this phenomenon, Figure 17 presents the factor values and 

summary statistics for DP 0, Experiment Set 1. The histograms and summary statistics are 

derived from the raw output collected by running 100 simulated battles with the factor 

levels in the table below. More simply, the histograms and summary statistics show the 

variability “within” the unique DP. All thesis experiments apply the same DOE approach 

and each unique DP is run for 100 replications.  

 

Figure 17.   DP 0: Factor Values and Summary Statistics 
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The histogram for MOE 1:1 (time to classify the first Red fighter) shows that even 

with a sample size of 100 observations, there is still a fair amount of variability within the 

DP. While the mean time it takes to detect the first enemy fighter is 690 seconds (11.5 

mins), the standard deviation is 215 seconds (3.6 mins). Additionally, we see that the 

outlier battles, circled in dark orange, slightly skew the distribution to the right. Although 

unlikely, it is possible that the first enemy fighter is not classified until around 1,400 

seconds (23 mins) into the battle.  In short, the stochastic elements of the model account 

for system complexities and environmental uncertainty, a desirable modeling trait often 

missing in deterministic models.  

Additionally, stochastic models provide a decision maker with a distribution or 

performance profile for a given MOE rather a single closed form solution common to 

deterministic models. For example, the histogram for Blue force casualties shows a 

relatively normal distribution (as we might expect due to the Central Limit Theorem); 

however, the four outlier battles offer additional insight into possible best and worst-case 

scenarios. While a battlefield commander may plan to receive 27 to 28 casualties on 

average, they must also be prepared to assume the risk or reward associated with the 

extremes, meaning there is a minimal chance of receiving as few as 15 casualties or as high 

as 40 casualties. In chaotic and uncertain environments like combat, these performance 

profiles can be helpful during mission planning.  

C. EXPERIMENT SET 1: BASE CASE ANALYSIS AND RESULTS 

Experiment Set 1 is the baseline model consisting of 65 design points. In the design 

of experiment (DOE), the author varies four Blue force variables and three drone variables 

which results in simulation data for 6,500 missions. During analysis, the author uses “the 

mean outcomes for each design point (DP)” over 100 replications to enable regression and 

partition analysis (Zappa, 2009). This approach reduces variability within each DP and 

allows us to study the variability “between” design points rather than focusing on the 

variability “within” design points. Furthermore, this approach allows the author to reduce 

clutter when presenting visual products and helps identify DPs that exhibit interesting 

behaviors. It is important to note that a regression model created using the raw experiment 
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data is the same as the model derived using this analysis approach on design point means. 

The author organizes the data in a similar manner for Experiment Sets 2 and 3.  

1. Measure of Effectiveness (MOE) 1:1—ISR Integration: How Long 
Does it Take the Blue Force to Classify the First Hostile Agent?  

During combat operations, the unit that strikes first can change the dynamic of the 

battle. MOE 1:1, the time it takes to identify the first hostile agent, focuses on the how 

quickly the company, supported by a Raven ISR drone, can locate the first enemy 

combatant during mission execution. Furthermore, this MOE provides insight into how 

well the Raven supports the infantry company under scenario conditions.   

To begin the analysis of MOE 1:1, the author studies the summary statistics from 

the experiment’s raw output data. The mean, the standard deviation, and the 95 percent 

confidence interval are derived using a sample size of 6,500 observations. Under these 

conditions, the summary statistics for MOE 1:1 show that on average, the infantry company 

identifies the first enemy combatant in 930 seconds (15.5 mins) with a standard deviation 

of 563 seconds (9.4 mins). The 95 percent confidence interval for the mean is [916, 943 

secs]. Note that this standard deviation is quite large, which suggests that there is quite a 

bit of variability between DPs. In an operational sense, the data shows that on average it 

takes the Raven operator 15.5 minutes [15.3, 15.7 mins] to locate enemy forces in vicinity 

of Company Objective 1, the weapons cache.  

Next, the author uses Stepwise AIC regression to explore how all seven predictor 

variables and their interactions, to include quadratic relationships, affect the Raven’s 

performance. The regression results allow the author to identify which variables are 

statistically significant and warrant further analysis using partition trees. Figure 18 displays 

the regression results and highlights the statistically significant variables for MOE 1:1. 
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Figure 18.  Stepwise Regression for the Single UAV: How Long Does it Take 
the Blue Force to Identify the First Enemy Fighter (MOE 1:1)?  

As discussed in the beginning of this section, by collapsing the data, the prediction 

plot shows the model fit for the 65 design points. The R-squared statistic informs the reader 

that the significant factors identified in the parameter estimate box account for over 98% 

of the model’s variability. More simply, both the predicted plot and the high R-squared 

show that the model fits the data well and may be useful in gaining insight into drone 

employment under conditions similar to those modeled in the scenario.  

The parameter estimate chart lists those factors and interactions that are statistically 

significant at a significance level of 0.05. We see that “Blue infantry movement speed,” 

“drone sensor range,” and “drone time to sense between detections” are the most influential 

primary factors. For example, as the linear term for Blue movement speed increases by one 

unit (a rate of one meter/sec), the average time it takes to detect the first enemy fighter 

decreases by 1,394 seconds (23 mins). Similarly, for each one second increase in the linear 
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term for “drone time to sense between detections,” the time to classify the first enemy 

fighter increases by 1.88 seconds. 

At first glance this claim can appear confusing. How is it possible for movement 

speed to so drastically reduce detection time? First, it is important to remember that the 

factor range for “Blue infantry movement speed” is 0.3–1.0 m/sec. Additionally, the 

parameter estimate chart shows that all the significant primary factors also have quadratic 

terms in the regression model.  

Figure 19 shows the JMP 13 Prediction Profiler tool for this regression model. The 

Prediction Profiler offers a visual depiction of the regression model and allows an analyst 

to interact with each factor graph to see how the regression coefficients affect the response. 

Interestingly, both drone sensor range and Blue force movement speed show positive 

quadratic relationships with the response. This suggests that there are minimum values for 

both factors and that these minimum values may represent a preferred employment 

strategy. The quadratic term for “drone time to sense between detections,” shares a negative 

relationship with the response, thus there is a maximum point in the curve that represents 

a degraded or least preferred operational threshold. More succinctly, Figure 19 shows that 

all three quadratic terms have diminishing returns over the range of the design. 

 

Figure 19.  Visual Depiction of MOE 1:1 Regression Model 

The factors highlighted by the regression make sense both logically and tactically. 

Of the seven variables, only those factors that pertain to observing the enemy prove to be 

statistically significant. For Blue force movement speed, the faster the infantry moves, the 
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sooner the infantry reaches the enemy, increasing the likelihood of seeing an enemy 

combatant. Concurrently, with better sensors, the Raven operator can classify unknown 

agents faster and observe more area, improving the operator’s ability to find enemies in 

zone. 

In addition to the primary factors, the parameter estimate chart shows factor 

interactions which positively and negatively affect the drone operator’s ability to find 

enemy forces. Although JMP 13 provides tools to observe these interactions and identify 

operational thresholds, this process becomes labor intensive. Thus, the results from 

stepwise regression help the author gain insight into the Raven’s performance and serve as 

a guide during partition tree analysis.  

Figure 20 is the partition tree for MOE 1:1. The green boxes represent the preferred 

employment strategy and denote desirable characteristics. The red boxes highlight a 

degraded path through the tree and should be avoided if possible. While conducting this 

analysis, the factors for “Blue infantry movement speed” and “drone sensor range” 

dominate the splits, appearing in several levels of the model. As discussed in the partition 

tree section of this chapter, this occurrence shows the powerful influence of the two factors 

but offers less in terms of data interpretation. To gain greater insight into factor interactions 

and important performance thresholds, the author only allows a factor to appear once 

throughout the partition tree. 
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Figure 20.  Partition Tree for the Single UAV: How Long Does it Take the Blue 
Force to Identify the First Enemy Fighter (MOE 1:1)?  

The partition tree begins with 65 observations. The first level splits the data on the 

most influential factor, “Blue infantry movement speed.” The tree identifies the operational 

threshold for speed at 0.6 meters per second. The left limb of the tree represents a more 

aggressive patrolling style. If the Raven is unable to find enemy fighters during its first 

patrol loop, the infantry agents are not far behind to observe into sensor “dead zones.”  

Continuing to work through the partition tree, troop presence appears to have 

profound effects on sensor requirements. When comparing numbered “leaves” 1 and 2 in 

Figure 20, we see that the interaction on the left limb of the tree finds the first enemy fighter 

two times faster and with a reduced sensor requirement. Tactically, this finding reinforces 

the importance of integrating ISR coverage and ground movement. 

Finally, the lowest level of the tree supports the trend that slower patrol speeds 

require more capable detection sensors to develop the situation and find the first enemy 

fighter. To prevent further performance degradation, the right path in the tree (leaf 4) 

requires a sensor capable of detecting targets out to 425 meters. This requirement is more 

than double the current capability of the Raven UAS (200 meters). While the preferred 

employment strategy, represented by the path leading to leaf 3, does require a sensor 
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capable of detecting out to 331 meters, there is a significant increase in overall MOE 

performance when compared against the model mean.  

Overall, the partition tree helps us see that integrating ISR coverage and infantry 

movement leads to significant reductions in sensor requirements and the average time it 

takes to classify the first enemy fighter. The preferred interaction path dominates the 

degraded path at every level of the tree. In short, the partition tree effectively captures the 

complexity of the company’s ISR employment and adds insight into how different factors 

either enhance or degrade unit performance. 

It is important to note that speed does affect mission execution. Although the left 

limb path offers the greatest potential reduction in time, moving at a patrol pace of 

0.6 meters or greater will affect troop endurance and how much equipment the Marine 

squads can carry. Additionally, the faster a unit patrols in a combat zone, the less time is 

available to develop the situation and use ISR assets to locate enemy combatants. The next 

MOE looks at Blue casualty rates.  

2. Measure of Effectiveness 1:2—Force Protection: How Many Blue 
Casualties are Sustained during Mission Execution? 

Protecting the force is critical to sustained operations. An increase in casualties 

reduces combat power and forces a commander to commit resources to retrieve wounded 

personnel. Additionally, high casualty rates devastate morale both within the unit and on 

the home front. To maintain tempo and esprit de corps, it is essential that units integrate 

ISR and maneuver assets to reduce unit casualties. MOE 1:2 examines how unit 

performance parameters affect the number of Blue force casualties received during mission 

execution. Although the author investigates Blue force lethality and ISR employment, the 

primary focus remains on Raven integration.  

Like the analysis for MOE 1:1, the summary statistics for MOE 1:2 are calculated 

from the experiment raw output with a sample size of 6,500. On average, the Blue force 

takes 28.5 casualties during the 2.5-hour (9,000 second) battle with a standard deviation of 

4.3 casualties. The 95 percent confidence interval for the mean is [27.5, 27.7 casualties]. 

Operationally, this casualty rate is unacceptable. Assuming the Marine infantry company 



 75 

consists of 174 Marines (standard task organization), on average, the Red force destroys or 

neutralizes 15.8 percent [15.7, 16.0%] of the Marine unit’s combat power.  

Figure 21 displays the stepwise regression results for MOE 1:2 (Blue casualties). 

The significant factors in the model account for over 91% of the model’s variability. The 

most influential factors and interactions relate to patrol speed, Blue lethality, and Raven 

employment. For patrol speed, each one unit (one-meter/sec) increase in speed results in 

4.2 additional casualties, while increasing the lethality variables decreases Blue losses as 

denoted by the negative relationship with the response. For example, each one percent 

increase in Blue infantry probability of hit reduces friendly casualties by 0.4 personnel. In 

a tactical sense, this finding suggests that higher patrol rates prevent reconnaissance assets 

from locating enemy forces prior to close combat engagements. To the contrary, when the 

Blue force reduces patrol speed, the Raven operator and FiST have more time to locate and 

destroy enemy fighters with indirect fires.  
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Figure 21.  Stepwise Regression for the Single UAV: How Many Blue 
Casualties Are Sustained during Mission Execution (MOE 1:2)? 

Using indirect fires to destroy the enemy prior to small arms battle is commonly 

referred to as “shaping” or applying “shaping fires.” The regression results reinforce the 

idea that a commander can reduce unit casualties by using ISR assets to properly develop 

battlefield awareness. Once locating the enemy, the commander can use strike assets to 

reduce enemy presence near the objective. Ultimately, “shaping” the objective does require 

time, but it gives the Blue force infantry troops a numerical advantage when engaging the 

enemy with squad weapons. 
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The next most significant factors, “Blue infantry probability of hit” and “81mm 

probability of hit,” focus on unit lethality. Both factors are negatively correlated to the 

average number of Blue force casualties. As an agent’s probability of hit increases, the 

average number of Blue force casualties decreases. This finding implies that locating the 

enemy is not enough. Marines must be well equipped and proficient. Weapons lethality 

saves lives. 

Note that the regression model does not identify individual drone factors as 

statistically significant. Instead, several interactions involving the factors “drone time to 

sense between detections” and “SUAS Operator Proficiency” offer insight into how drone 

capabilities effect the average number of Blue force casualties. The parameter estimate 

chart shows that the interaction is positively correlated to the average number of Blue force 

casualties. The author uses partition tree analysis to further explore this interaction. 

Figure 22, the partition tree for MOE 1:2, shows the relationship of “Blue infantry 

movement speed,” “drone time to sense between detections,” and “SUAS proficiency” on 

Blue force casualties. The author intentionally left out the lethality variables during tree 

construction. Lethality metrics are difficult to quantify, especially under combat 

conditions. Additionally, during a combat situation, lethality thresholds do not provide a 

commander with any actionable information. To the contrary, a commander can adjust 

patrol speeds or enhance drone performance to meet the thresholds shown below.  
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Figure 22.  Partition Tree for the Single UAV: How Many Blue Casualties Are 
Sustained during Mission Execution (MOE 1:2)? 

The left limb of the tree represents the best opportunity to reduce Blue force 

casualties. Similar to the partition tree for MOE 1:1 (average time it takes to classify the 

first enemy fighter), the first threshold splits on the movement speed 0.6 m/sec. When 

comparing the mean number of Blue casualties across the split, there is only a six percent 

difference between numbered “leaves” 1 and 3. While the preferred interaction path does 

show improved performance, movement speed does not drastically reduce overall unit 

casualties to an acceptable level. 

The next split occurs on the factor “drone time to sense between detections.” This 

split reinforces the findings discovered in the partition tree for MOE 1:1, showing that 

slower patrol speeds require a sensor that can detect enemy fighters two times faster to gain 

any reduction in Blue force casualties. When comparing the mean number of casualties 

across the split (“leaves” 3 and 4), we see that the differential between the preferred and 

degraded paths is only two casualties. Unfortunately, it appears that sensor enhancement 
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does little to improve unit performance as it applies to casualty reduction and begins to 

suggest that the Raven platform may be reaching its operational limitations for this MOE. 

The right limb of the tree represents a more aggressive patrol style or a situation in 

which time takes priority over mission safety. Interestingly, the third level of the tree splits 

on “SUAS operator proficiency;” however, the factor does not appear to have much impact 

on overall casualty reduction. Regardless of interaction approach, the combinations on the 

right limb of the tree fail to outperform the preferred path. 

Overall, the partition tree enables the reader to see that a slower patrol pace and 

better Raven sensor can reduce casualties and gives the drone operator more time to 

disseminate targeting data to the FiST. Unfortunately, the tree also highlights that the 

Raven ISR drone is limited in its ability to further affect force protection. Without drastic 

improvements to the system or significant improvements to unit performance, the average 

number of Blue force casualties remains around 25.5, or 15 percent of the company’s 

combat power. In a modern context, this casualty level is unacceptable.  

D. EXPERIMENT SET TWO: THE EMERGENT SWARM ANALYSIS AND 
RESULTS 

Experiment Set 2 studies the emergent swarm. The experiment DOE consists of 

129 DPs developed from seven factors. For each DP, 100 independent replications are 

made. The experiment set ran for three days and harvested data for 12,900 simulated 

battles. Similar to Experiment Set 1, the author uses the mean of each DP to conduct data 

analysis.  

The results from Experiment Set 1 identify performance thresholds and TTPs for 

integrating the Raven UAV into ground combat operations. Experiment Sets 2 and 3 

investigate the Marine infantry company’s performance when deploying different swarm 

control strategies. Concurrently, the analysis from this section seeks to identify operational 

thresholds intended to answer primary thesis questions. 
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1. Measure of Effectiveness (MOE) 2:1—Swarm Integration: How Long 
Does it Take the Blue Force to Classify the First Hostile Agent?  

The summary statistics from the raw experiment output show that, on average, the 

emergent swarm identifies the first enemy combatant in 1,371 seconds (22.85 mins) with 

a standard deviation of 400 seconds (7 mins). The 95 percent confidence interval for the 

mean is [1,364, 1,378 secs]. On average, the swarm central planner locates the first enemy 

combatant within 22.8 minutes [22.7, 23.0 mins]. When comparing the emergent swarm 

mean to the company’s performance using the Raven, the emergent swarm takes 6.5 

minutes longer, on average, to locate an enemy fighter on the battlefield.  

Figure 23 displays the stepwise regression results for MOE 2:1. The significant 

factors and interactions in the model account for over 97% of the model’s variability. When 

applying a significance level of 0.05, six of the seven primary factors are statistically 

significant. The regression shows that the “number of verification drones” dominates the 

model. With each verification drone added to the swarm, the associated linear term in the 

regression decreases the response (MOE 2:1) by 155 seconds (2.5 mins). Furthermore, the 

verification drone’s “probability to classify” factor reduces the average time to detect the 

first Red fighter by two seconds per percentage point. 

In addition to highlighting the most influential primary factors, the regression 

model identifies statistically significant interactions between the number of drones in the 

swarm, drone dispersion, and sensor thresholds. Note that the number of statistically 

significant factors highlights the complexity of the swarm system. This reinforces the 

author’s decision to use simulation to study swarm technologies. A single stochastic 

process simply cannot account for the swarm’s complexity. To further explore these 

relationships, the author uses partition analysis. 
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Figure 23.  Stepwise Regression for the Emergent Swarm: How Long Does it 
Take the Blue Force to Identify the First Enemy Fighter (MOE 2:1)?  

Figure 24 is the left limb of the partition tree and identifies the swarm 

characteristics with the greatest potential to reduce the average time to locate the first 

enemy fighter. Additionally, each characteristic displays an operational threshold which 

represents a change in the system’s performance continuum. Identifying these thresholds 

can offer great insight into system interactions and help an analyst identify parameter 

values that either enhance or degrade overall system performance. This concept is often 

referred to as identifying “the knee in the curve.”  
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Preferred Performance Path (Left Limb) 

Partition Tree for the Emergent Swarm: How Long Does it Take the Blue 
Force to Identify the First Enemy Fighter (MOE 2:1)?  

The partition tree begins with 129 observations and an overall mean time to detect 

the first enemy fighter of 1371 seconds. The first split occurs on the most significant factor, 

which is the “number of verification drones.” Note that the partition tree highlights the 

limitations of the emergent swarm with respect to MOE 2:1. Regardless of swarm 

enhancement, the emergent swarm fails to outperform the Raven. In fact, when compared 

against the Raven scenario’s most efficient employment strategy, on average, it takes the 

central planner twice as long to locate the first enemy fighter. 

This finding is consistent with the seminal research included in the thesis literature 

review. In most cases, piloted UAVs do not require complex feedback loops or interactions 

between multiple systems. If the UAV pilot locates a target, he or she can pass targeting 

information directly to the FiST in accordance with the company’s standard operating 

procedures. The limitation to this process is the proficiency of the drone operator or the 

complexity of the unit’s targeting procedures.  
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To the contrary, the swarm targeting process requires an additional step. The seeker 

drones must contact the nearest verification UAV before the central planner can classify 

the unknown contact. Thus, the autonomous interactions within the swarm account for the 

additional time required to detect an enemy fighter. Further research should be conducted 

to determine if this observation is a system limitation, vulnerability, or both. 

Next, the tree shows that that the preferred employment strategy requires three 

verification drones and four seeker drones per verification drone. This results in a total of 

15 drones per swarm. Recall, that the assumed operational flight time for each drone is 

45 minutes. Under this assumption, the UAV support section must deploy four emergent 

swarms or 60 individual drones to provide ISR coverage for the 2.5-hour battle. 

As a final observation, an increase in drones does reduce sensor requirements. To 

enhance swarm performance, seeker drones must maintain an average time between 

detection of less than 205 seconds and the verification drone must meet a classification 

threshold of 18 percent. When compared to the Raven, a seeker drone’s “average time 

between detections” can be three times as long. This means that the Raven requires a sensor 

capable of detecting an enemy fighter three times faster than the seeker drone. Typically, 

as drone capability requirements increase, so does platform cost and maintenance. Further 

research must be conducted to determine if the reduction in sensor requirements produces 

enough cost savings to make the emergent employment strategy viable.  

For completeness, Figure 25 presents the right limb of the tree. The right limb 

represents a degraded employment strategy. Under no conditions can this approach 

outperform the left limb of the tree. Note that as the number of verification drones 

decreases, the sensor requirements increase threefold. This observation supports the claim 

that a greater number of less capable drones can reduce overall sensor requirements.  
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Degraded Performance Path (Right Limb) 

Figure 24.  Partition Tree for the Emergent Swarm: How Long Does it Take the 
Blue Force to Identify the First Enemy Fighter (MOE 2:1)?  

2. Measure of Effectiveness 2:2—Force Protection: How Many Blue 
Casualties Are Sustained during Mission Execution? 

For MOE 2:2, the presented summary statistics come from the raw data with a 

sample size of 12,900 observations. On average, the Blue force takes 31.1 casualties during 

the 2.5-hour battle with a standard deviation of 10.1 casualties. The 95 percent confidence 

interval for the mean is [30.9, 31.3 casualties]. Assuming a standard Marine infantry 

company, on average, the Red force destroys or neutralizes 17.9 percent [17.8, 18.0%] of 

the Marine unit’s combat power. When compared to the results from Experiment Set 1, the 

Marine infantry company receives approximately four more casualties. 
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Figure 26 displays the stepwise regression results for MOE 2:2. The significant 

factors and interactions in the model account for over 88% of the model’s variability. The 

stepwise regression identifies that five of the seven primary factors are statistically 

significant at a significance level of 0.05. The most influential factor in the regression is 

“FiST latency.” For each 20 second increase in “FiST latency,” the number of Blue 

casualties increases by one Marine.  

Recall that FiST latency represents the proficiency of the UAV support section and 

its ability to relay targeting data to the FiST. This relationship is not surprising. The 

regression results support common knowledge that poor or inefficient targeting practices 

result in delayed indirect fires. Without timely fire support, the Blue force receives more 

casualties. 

Additionally, the regression model shows that the size of the swarm can 

dramatically effect casualty levels. The negative signs associated with the regression 

coefficients for “number of verification drones” and “number of seeker drones per 

verification drone” signify that the addition of one drone results in a reduction in casualties. 

The partition tree in Figure 27 shows how properly aligning the most influential factors 

can result in significant casualty reduction.  
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Figure 25.  Stepwise Regression for the Emergent Swarm: How Many Blue 
Casualties Are Sustained during Mission Execution (MOE 2:2)? 

Figure 27 is the left limb of the partition tree and identifies the swarm 

characteristics with the greatest potential to reduce the average number of Blue force 

casualties. Similar to Experiment Set 1, the author only splits on a factor once to gain more 

insight into factor interactions. Interestingly, drone sensor requirements play a limited role 

in minimizing casualties. Instead, “FiST latency” and the “number of verification drones” 

dominate the splits. The presented partition tree is a combination of the most influential 

factors identified in the stepwise regression with the addition of sensor factors. This 

approach attempts to provide insight into drone employment strategy as well as answer the 

questions introduced in the thesis problem statement. 
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Preferred Performance Path (Left Limb) 

Figure 26.  Partition Tree for the Emergent Swarm: How Many Blue Casualties 
Are Sustained during Mission Execution (MOE 2:2)?  

The first split occurs on the most significant factor, which is “FiST latency.” In 

order to reduce Blue force casualties, the UAV support section must be able to confirm and 

transmit targeting data to the FiST in less than 102 seconds, or just under two minutes. 

Note that failing to achieve this performance measure can have dire consequences. The 

casualty difference between the higher and lower latency times is 8.6 Marines. In an 

operational context, 8.6 Marines represents just over half an infantry squad. Furthermore, 

the casualty differential widens even more to 12.1 Marines when comparing the preferred 

employment strategy (the left limb, green boxes) against the higher FiST latencies. In short, 

it is important that the UAV support section is well trained and properly organized to 

efficiently and effectively pass targeting data to the FiST. 

Since there is no current targeting standard for ISR swarms, it is difficult to 

determine if this time requirement is achievable; however, this latency level provides an 
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initial requirement goal. Additionally, further investigation is required to determine if the 

time threshold applies to other scenarios. Identifying operational thresholds will assist fire 

support personnel in developing practical reporting procedures that enhance unit 

performance and reduce casualties. 

The next significant factor is “seeker average time between detections.” The 

partition tree identifies the sensor threshold as less than 196 seconds. This requirement fits 

well with the seeker sensor threshold discovered in MOE 2:1. Recall that the preferred 

employment strategy for MOE 2:1 recommends the “seeker average time between 

detections” meet an operational threshold of 205 seconds or less. Thus, reducing that 

requirement further to 196 seconds meets the needs of both MOEs. 

The final factor important to this interaction is the “number of verification drones.” 

The partition tree suggests that at least four verification drones are required in the preferred 

employment strategy. Since the partition model did not split on the factor “number of 

seeker drones per verification drone,” the author applies the finding from MOE 2:1 to nest 

the two findings and remain consistent. Recall that the preferred employment strategy for 

MOE 2:1 recommends deploying four seeker drones for every one verification drone. 

Combining the two findings suggests that an individual swarm consists of four verification 

drones and 16 seeker drones, for a total of 20 drones per swarm. Under the scenario 

assumptions, the UAV support section must prepare and deploy 80 individual drones to 

meet the infantry company’s needs during the 2.5-hour battle.  

Figure 28 is the right limb of the tree for MOE 2:2 (Blue casualties). Consistent 

with the other partition tree models, the right limb represents the degraded employment 

strategy. The regression shows that failing to reduce “FiST Latency” below 102 seconds 

has dire consequences. The first order effect is the need for a seeker sensor that is twice as 

capable as the need in the preferred employment strategy. In addition to the need for a 

better sensor, on average, the degraded path results in 12 more casualties when compared 

against the mean for the lower latencies. 
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Degraded Performance Path (Right Limb) 

Figure 27.   Partition Tree for the Emergent Swarm: How Many Blue Casualties 
Are Sustained during Mission Execution (MOE 2:2)?  

E. EXPERIMENT SET THREE: THE HIERARCHICAL SWARM 
ANALYSIS AND RESULTS 

Experiment Set 3 examines the hierarchal swarm, which distributes drone teams to 

search along two parallel axes. More specifically, the swarm is decomposed into two 

distinct squads, one that patrols the agricultural area and the other the urban sprawl. The 

experiment DOE is identical to Experiment Set 2 and consists of 129 DPs developed from 

seven factors. The experiment set ran for three days and harvested data for 12,900 

simulated battles. The author continues to use the mean across DPs in the conduct of his 

data analysis.  

1. Measure of Effectiveness (MOE) 3:1—Swarm Integration: How Long 
Does it Take the Blue Force to Classify the First Hostile Agent?  

For MOE 3:1, the presented summary statistics come from the raw data with a 

sample size of 12,900 observations. On average, the hierarchical swarm identifies the first 

enemy combatant in 1,834 seconds with a standard deviation of 385 seconds (6 mins). The 

95 percent confidence interval for the mean is [1,827, 1,841 secs]. On average, the swarm 

central planner locates the first enemy combatant within 30.6 minutes [30.5, 30.7 min]. 
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When comparing the model mean of the three different ISR approaches, the hierarchical 

swarm takes significantly longer to locate the first enemy combatant. 

Figure 29 displays the stepwise regression results for MOE 3:1. The significant 

factors and interactions in the model account for over 96% of the model’s variability. The 

regression model shows that six of the seven primary factors are statistically significant at 

a significance level of 0.05. The only factor not included in the model is FiST latency, 

which should have no impact on the time to first detection.  

The most influential primary factors are the “number of verification drones per 

zone,” “the dispersion between verification drones,” and the “seeker’s average time 

between detections.” Adding two verification drones, one in each zone, decreases the 

average time it takes to locate the first enemy fighter by 237 seconds or roughly four 

minutes. The significant factors seem to suggest that the power of the hierarchical control 

strategy is related to sensor distribution across the battlefield. To further explore the 

complex interactions of the swarm, the author uses partition trees.  
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Figure 28.  Stepwise Regression for the Hierarchical Swarm: How Long Does it 
Take the Blue Force to Identify the First Enemy Fighter (MOE 3:1) 

Figure 30 is the left limb of the partition tree and identifies the swarm 

characteristics with the greatest potential to reduce the average time to locate the first 

enemy fighter. Similar to the emergent swarm, the regression tree begins with 129 

observations. The first split occurs on the most significant factor, which is “number of 

verification drones per zone.” Regardless of swarm enhancement, the hierarchical swarm 

fails to outperform the Raven or the emergent control strategy. In fact, when compared 

against the Raven scenario’s most efficient employment strategy, on average, it takes the 

central planner two and a half times as long to locate the first enemy fighter. When 

compared to the emergent swarm, the hierarchical control strategy takes 5.9 minutes longer 

to locate the first hostile agent.  
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Preferred Performance Path (Left Limb) 

Figure 29.  Partition Tree for the Hierarchical Swarm: How Long Does it Take 
the Blue Force to Identify the First Enemy Fighter (MOE 3:1)?  

Two of the most influential factors in the partition tree pertain to swarm size. The 

results show that that the preferred employment strategy requires two verification drones 

per zone and two seeker drones per verification drone. More simply, each subswarm 

contains six drones for a swarm total of 12 drones. Applying scenario assumptions, the 

UAV support section must deploy four hierarchal swarms or 48 individual drones to 

provide ISR coverage for the 2.5-hour battle. This is a significant reduction when compared 

to the emergent control strategy. 

As a final observation, the hierarchical swarm requires more capable sensors than 

the emergent control strategy. To enhance swarm performance, seeker drones must 

maintain an average time between detection of less than 146 seconds and the verification 

drone must meet a classification threshold of 69 percent. Surprisingly, the sensor 

requirements are closer to the Raven characteristics than the emergent swarm, particularly 

with respect to “verification drone probability of classification.” Further research must be 

conducted to determine if the hierarchical swarm configuration produces enough cost 

savings to make the swarm employment strategy viable.  
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At first glance, the hierarchical swarm’s inability to reach performance parity with 

the emergent swarm and the increase in sensor requirements did not make sense. The author 

believed that minor adjustments to the hierarchical swarm, particularly increasing the 

number of drones per zone, would result in the hierarchical swarm locating fighters on the 

battlefield much more efficiently. Perplexed by this finding, the author conducted a more 

thorough investigation and entered several scenario “seeds” with characteristics close to 

the partition thresholds. By visually studying each “seeded scenario,” the author discovered 

that distributing sensors across the battlefield comes at a price. While the central planner 

is able to investigate more locations, that does not translate into more area. Rather, splitting 

the swarm into two equal subswarms reduces ISR volume at each location, affecting the 

swarm’s ability to locate the first enemy combatant. Further research should be conducted 

to examine how other subswarm distributions (e.g., increasing the number of subswarms) 

affect locating enemy forces. 

For completeness, Figure 31 is provided to show the right limb of the tree. Under 

no conditions can this approach outperform the left limb of the tree. Note that as the number 

of verification drones decreases, both the number of seeker drones and the sensor 

requirements increase. The degraded path results in a significant increase in the average 

time to locate the first enemy fighter and implies an increased cost when employing the 

swarm. 
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Degraded Performance Path (Right Limb) 

Figure 30.  Partition Tree for the Hierarchical Swarm: How Long Does it Take 
the Blue Force to Identify the First Enemy Fighter (MOE 3:1)? 

2. Measure of Effectiveness 3:2—Force Protection: How Many Blue 
Casualties are Sustained during Mission Execution? 

Using the raw output data, with a sample size of 12,900 observations, on average, 

the Blue force takes 25.6 casualties with a standard deviation of 12.5 casualties. The 95 

percent confidence interval for the mean is [25.4, 25.8 casualties]. Assuming a standard 

Marine infantry company, on average, the Red force destroys or neutralizes 14.7 percent 

[14.6, 14.8%] of the Marine unit’s combat power. When compared to the mean results from 

Experiment Sets 1 and 2, on average, the Marine infantry company receives less casualties. 

Overall results show that the hierarchical control strategy offers the best potential options 

for casualty reduction even though it takes the longest to locate the enemy. 

Figure 32 displays the stepwise regression results for MOE 3:2. The significant 

factors and interactions in the model account for over 90% of the model’s variability. The 

stepwise regression identifies that six of the seven primary factors are statistically 
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significant at a significance level of 0.05. The only factor not included in the model is 

“dispersion between seeker drones.”  

While the regression identifies “FiST latency” as the most influential factor, the 

factor “number of verification drones per zone” emerges as a close second. Similar to the 

emergent swarm, the regression model shows that both swarm size and sensor capabilities 

have a profound effect on Blue force casualties. Almost all of the regression coefficients 

for factors related to the number of drones or drone sensor capabilities have a negative 

correlation to the response. Thus, as the size of each subswarm grows and the probabilities 

of detection and classification increase, the number of Marine casualties decreases.  

 

Figure 31.  Stepwise Regression for the Hierarchical Swarm: How Many Blue 
Casualties Are Sustained during Mission Execution (MOE 3:2)? 
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Figure 33 is the left limb of the partition tree and identifies the swarm 

characteristics with the greatest potential to reduce the average number of Blue force 

casualties. Like the emergent swarm, the number of drones dominates the splits; however, 

the effect of the FiST is reduced. The presented partition tree represents the best splits 

according to the JMP 13 algorithm.  

 
Preferred Performance Path (Left Limb) 

Figure 32.  Partition Tree for the Hierarchical Swarm: How Many Blue 
Casualties Are Sustained during Mission Execution (MOE 3:2)?  

The first split occurs on the factor “number of verification drones per zone.” Swarm 

size continues to have an important influence on unit performance and the tree results 

reinforce the need for two verification drones per zone and two seeker drones per 

verification drone. Interestingly, the preferred swarm size for MOEs 3:1 and 3:2 are the 

same. It appears that two subswarms of six drones offers the most potential for decreasing 

the time it takes to locate the first enemy combatant and reduce Blue force casualties.  
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The next significant factor is “seeker average time between detections.” The 

regression identifies the sensor threshold as less than 137 seconds, only nine seconds less 

than the operational threshold discovered during analysis of MOE 3:1. This could represent 

another cost savings advantage of the hierarchical swarm. Investing in a slightly more 

capable sensor both increases the central planner’s ability to quickly locate enemy forces 

and can potentially decrease the mean number of Blue force casualties from 26.8 to 18.9. 

The final factor important to this interaction is “FiST Latency.” In order to further 

reduce Blue force casualties, the UAV support section must be able to confirm and transmit 

targeting data to the FiST in less than 173 seconds, or just under three minutes. Achieving 

the operational threshold can potentially reduce casualties by an additional three to four 

personnel.  

Overall, the hierarchical swarm significantly outperforms the other ISR 

employment strategies with respect to casualty reduction. It appears that distributing the 

swarm allows the central planner to locate more of the enemy for FiST prosecution. The 

effective use of “shaping fires” provides the infantry company with a potent advantage. As 

the preferred path shows, employing the hierarchical swarm with the proper characteristics 

can potentially reduce the mean number of Blue force casualties by 50 percent. Moreover, 

the hierarchical approach requires less UAVs, reducing the UAV support section’s 

workload. It is recommended that follow-on studies explore larger battlefields and study 

how subswarm management affects the central planner. 

Figure 34, is the right limb of the tree for MOE 3:2. Consistent with the other 

partition tree models, the right limb represents the degraded employment strategy. Failing 

to plan appropriately for swarm employment can have dire consequences. The partition 

tree shows that getting the swarm composition wrong results in significantly more 

casualties and greater requirements with respect to sensor capabilities and UAV support 

section proficiency. 
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Degraded Performance Path (Right Limb) 

Figure 33.  Partition Tree for the Hierarchical Swarm: How Many Blue 
Casualties Are Sustained during Mission Execution (MOE 3:2)?  

3. Explaining the Significant Difference in Casualty Reduction 

In an effort to explain why the hierarchical swarm offers such a significant 

reduction in Blue force casualties over the other two employment strategies, the author 

returned to data analysis and the simulation model to see if there was a clear explanation 

for this phenomenon. A thorough review in both areas reveals that while distributing 

sensors across the battlefield takes more time and effort (when comparing the swarms 

against a single UAV), the overall increase in battlefield situational awareness allows the 

FiST and UAV support section to target a greater number of enemies. More simply, a single 

drone can only investigate a single event in a single area. To the contrary, a swarm increases 

visibility into an area and allows the UAV support section to prosecute multiple targets 

simultaneously. To show this concept visually, Figure 35 provides a line-of-sight (LOS) 

study for each of the three ISR approaches.  
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[Best Viewed in Color] 

Figure 34.  LOS Studies Extracted from MANA-V Simulation Runs.  

The three LOS studies show the stark differences between the ISR employment 

strategies. Without question, the swarms surveil a greater amount of the battlefield. When 

comparing sensor distribution between swarms, the emergent swarm concentrates around 

the verification drones. From the visual in Figure 35, it appears that the emergent swarm 

effectively reconnoiters one axis of advance (the agricultural area), but fails to locate 

enemy fighters in the urban area before Blue infantry units enter the village. To the 

contrary, the hierarchical swarm effectively covers both axes of advance and begins to 

destroy or neutralize enemy fighters with indirect fires (IDF). To further investigate this 

claim, Figure 36 displays the summary statistics for Red fighters killed by IDF.  
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Figure 35.  Summary Statistics for Number of Red Fighters Killed by IDF 

Figure 36 shows that the swarms, on average, engage and destroy twice as many 

enemy fighters with IDF when compared to the single UAV. Interestingly, there is 

practically no difference in the targeting performance between swarms (i.e., one additional 

Red fighter killed on average). Initially the author assumed that the hierarchical swarm’s 

superior potential for reducing Blue force casualties was linked to destroying more of the 

enemy through IDF; however, the summary statistics do not strongly support this 

hypothesis. While it seems plausible that the distributed nature of the hierarchical swarm 

accounts for its potential reduction in Blue casualties, more research is needed to explore 

how the subswarm distribution effects protecting the force.  
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VI. THESIS CONCLUSION AND FUTURE RESEARCH 

Future operating environments promise to be complex and chaotic. Adversaries are 

taking advantage of technology proliferation, deploying hybrid forces, and using robust 

anti-access and area denial (A2/AD) capabilities to challenge U.S. military supremacy 

within the global commons. Although the Department of Defense (DoD) will need many 

technologies to combat these emerging threats, autonomous swarms are maturing at a rapid 

pace and offer viable solutions for gaining access to areas either unreachable or too 

dangerous to send military personnel (Scharre, 2014). Additionally, ISR swarms offer a 

unique ability to deploy multiple sensors and capabilities with a potential reduction in 

manpower requirements. As these complex systems integrate into manned units, simulation 

will be a valuable tool for studying swarm employment and optimizing performance. 

A. STUDY SUMMARY 

This thesis explores drone swarm employment in support of a Marine infantry 

company and attempts to quantify system performance under combat conditions. The thesis 

scenario realistically depicts a challenging hybrid threat that seeks to deny U.S. forces 

access to an enemy stronghold. Based on current events and DoD forecasts, it is likely that 

U.S. ground forces will fight similar threats for the foreseeable future. The ARSENL drone 

swarm architecture and the author’s combat experiences serve as the basis for this study. 

A realistic model, efficient design of experiment, and rigorous analysis process produced 

interesting results based on the output from 30,000 simulated battles.  

B. STUDY FINDINGS 

The thesis findings show that the different UAV control strategies have a profound 

effect on sensor coverage, indirect fire employment, and unit casualties. Both the 

regressions and partition trees illustrate that integrating ISR platforms with maneuver 

involves complex relationships that require optimal planning and skill to manage. Insights 

from this study and recommended follow-on work can help shape planning tools that 

ground forces will need to properly leverage ISR technologies on future battlefields.  
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It is important to note that while some of the findings may be applicable in a general 

context, the remarks on swarm size and swarm configurations apply specifically to the 

thesis scenario.  

1. Primary Findings:  

• The hierarchical swarm demonstrates the greatest potential for casualty 

reduction and can do so with fewer UAVs than the emergent swarm. 

When implementing the preferred swarm configuration, Blue force 

casualties can potentially be reduced by 50 percent. 

• Data analysis and visual study of the emergent swarm show that the 

volume of the swarm, coupled with inherent sensor overlap, results in the 

largest reduction in sensor capability requirements.  

• On average, both drone swarms enabled the FiST to target and engage 

twice as many enemy targets when compared to the singular ISR drone, 

despite requiring more time to detect the first enemy fighter.  

• The preferred employment strategy for the hierarchical swarm calls for 

two subswarms of six drones. Each subswarm consists of two verification 

and four seeker drones. Under scenario conditions, 48 UAVs are needed to 

provide ISR for the company during the 2.5-hour battle. 

• The preferred employment strategy for the emergent swarm recommends 

deploying a 15-drone swarm consisting of three verification and 12 seeker 

drones. Under scenario conditions, 60 UAVs are needed to provide ISR 

for the company during the 2.5-hour battle. 

• ISR planners must be aware of swarm scaling and its implications on 

combat service support. Although the preferred employment 

configurations for the swarms only differ by three drones, the overall 

mission requirement differs by 12 UAVs.  
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2. Secondary Findings: 

• On average, the Raven UAV discovers the first enemy fighter two times 

faster than the emergent swarm and three times faster than the hierarchical 

swarm. This shows that the autonomous coordination between the seeker 

and verification drones adds time to the target detection process. 

Combining single UAV employment with the hierarchical swarm may be 

an effective strategy for maximizing unit performance.  

• For the Raven experiment, unit movement speed is the most influential 

factor on company performance, followed by unit lethality factors.  

• When deploying a singular UAV like the Raven, an aggressive patrolling 

speed allows the infantry units to close with the enemy and cover down on 

UAV sensor “dead zones.” This integrated coverage gives the UAV 

operator more time to “sense between detections,” and accomplish the 

mission with a less capable detection sensor.  

• When deploying a singular UAV, it is important to balance unit patrol 

speed with mission execution. Although an aggressive patrol pace allows 

the company to locate enemy fighters faster, the Raven operator and 

company fire support team (FiST) have less time to reconnoiter the 

battlefield. This reduced reconnaissance time results in a higher average 

number of Blue force casualties.  

• When the Blue force reduces patrol speed, the Raven operator and FiST 

have more time to locate and destroy enemy fighters with indirect fires. 

Shaping the battlefield prior to moving into direct fire range reduces the 

number of friendly casualties.  

• Failing to plan appropriately for swarm employment can have dire 

consequences. Partition trees for both the emergent and hierarchical 

control strategies show that implementing the wrong swarm composition 
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results in significant increases to swarm MOEs (the time it takes to locate 

the first enemy fighter and Blue force casualties).  

C. FOLLOW-ON WORK 

• Analyze drone employment and performance on a larger battlefield. The 

author recommends employing the swarms in support of reconnaissance or 

armored units. 

• Analyze different delivery profiles/approaches (e.g., aerial platforms, 

ground vehicles, canon delivered, etc.).  

• Expand factor exploration to include Blue force parameters in order to 

gain a better understanding of how the infantry unit’s performance effects 

swarm employment. 

• Expand factor exploration to include enemy and civilian parameters in 

order to gain insight into how non-decision factors effect drone 

performance.  

• Analyze the cost/savings relationship between reduced sensor 

requirements and swarm size.  

• Conduct further research on UAV support section task organization, C2 

configurations, and single drone / swarm combinations. 

• Further research using MANA-V to model and analyze aerial swarm 

behavior.  

• Perform a human factors study on central planner interaction with the 

ground control station to determine appropriate scope of control.  
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