
AFRL-AFOSR-VA-TR-2018-0325

Structure and Reactivity of Transient Species in Homogeneous Catalytic Water Splitting and CO2 
Reduction Using Cryogenic Ion Spectroscopy

Mark Johnson
YALE UNIV NEW HAVEN CT

Final Report
07/29/2018

DISTRIBUTION A: Distribution approved for public release.

AF Office Of Scientific Research (AFOSR)/ RTB2
Arlington, Virginia 22203

Air Force Research Laboratory

Air Force Materiel Command

DISTRIBUTION A: Distribution approved for public release.



REPORT DOCUMENTATION PAGE

Standard Form 298 (Rev. 8/98) 
Prescribed by ANSI Std. Z39.18

Form Approved 
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other 
aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information 
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other 
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a.  CONTRACT NUMBER

5b.  GRANT NUMBER

5c.  PROGRAM ELEMENT NUMBER  

5d.  PROJECT NUMBER

5e.  TASK NUMBER

5f.  WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a.  NAME OF RESPONSIBLE PERSON

19b.  TELEPHONE NUMBER (Include area code)

Final
28-07-2018 1 Feb 13 - 30 Apr 18

Structure and Reactivity of Transient Species in Homogeneous
Catalytic Water Splitting and CO2 Reduction Using Cryogenic Ion 
Spectroscopy FA9550-13-1-0007

YALE UNIVERSITY
105 WALL ST
NEW HAVEN CT 06511-6614

AF OFFICE OF SCIENTIFIC RESEARCH
875 NORTH RANDOLPH STREET, RM 3112
ARLI NGTON VA 22203-1954

Approved for public release.

U U U UU
Mark A. Johnson

DISTRIBUTION A: Distribution approved for public release.



INSTRUCTIONS FOR COMPLETING SF 298

1. REPORT DATE.  Full publication date, including
day, month, if available. Must cite at least the year
and be Year 2000 compliant, e.g. 30-06-1998;
xx-06-1998; xx-xx-1998.

2. REPORT TYPE.  State the type of report, such as
final, technical, interim, memorandum, master's
thesis, progress, quarterly, research, special, group
study, etc.

3. DATE COVERED.  Indicate the time during
which the work was performed and the report was
written, e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996;
May - Nov 1998; Nov 1998.

4. TITLE.  Enter title and subtitle with volume
number and part number, if applicable. On classified
documents, enter the title classification in
parentheses.

5a.  CONTRACT NUMBER.  Enter all contract 
numbers as they appear in the report, e.g. 
F33315-86-C-5169. 

5b.  GRANT NUMBER.  Enter all grant numbers as 
they appear in the report. e.g. AFOSR-82-1234. 

5c.  PROGRAM ELEMENT NUMBER.  Enter all 
program element numbers as they appear in the  
report, e.g. 61101A. 

5e.  TASK NUMBER.  Enter all task numbers as they 
appear in the report, e.g. 05; RF0330201; T4112. 

5f.  WORK UNIT NUMBER.  Enter all work unit 
numbers as they appear in the report, e.g. 001; 
AFAPL30480105. 

6. AUTHOR(S).  Enter name(s) of person(s)
responsible for writing the report, performing the
research, or credited with the content of the report.
The form of entry is the last name, first name, middle
initial, and additional qualifiers separated by commas,
e.g. Smith, Richard, J, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND
ADDRESS(ES).  Self-explanatory.

8. PERFORMING ORGANIZATION REPORT NUMBER.
Enter all unique alphanumeric report numbers assigned
by the performing organization, e.g. BRL-1234;
AFWL-TR-85-4017-Vol-21-PT-2.

9. SPONSORING/MONITORING AGENCY NAME(S)
AND ADDRESS(ES).  Enter the name and address of
the organization(s) financially responsible for and
monitoring the work.

10. SPONSOR/MONITOR'S ACRONYM(S). Enter, if
available, e.g. BRL, ARDEC, NADC.

11. SPONSOR/MONITOR'S REPORT NUMBER(S).
Enter report number as assigned by the sponsoring/
monitoring agency, if available, e.g. BRL-TR-829; -215.

12. DISTRIBUTION/AVAILABILITY STATEMENT.
Use agency-mandated availability statements to indicate
the public availability or distribution limitations of the
report. If additional limitations/ restrictions or special
markings are indicated, follow agency authorization
procedures, e.g. RD/FRD, PROPIN,
ITAR, etc. Include copyright information.

13. SUPPLEMENTARY NOTES.  Enter information
not included elsewhere such as: prepared in cooperation
with; translation of; report supersedes; old edition
number, etc.

14. ABSTRACT.  A brief (approximately 200 words)
factual summary of the most significant information.

15. SUBJECT TERMS.  Key words or phrases
identifying major concepts in the report.

16. SECURITY CLASSIFICATION.  Enter security
classification in accordance with security classification
regulations, e.g. U, C, S, etc. If this form contains
classified information, stamp classification level on the
top and bottom of this page.

17. LIMITATION OF ABSTRACT.  This block must be
completed to assign a distribution limitation to the
abstract. Enter UU (Unclassified Unlimited) or SAR
(Same as Report). An entry in this block is necessary if
the abstract is to be limited.

Standard Form 298 Back (Rev. 8/98)

DISTRIBUTION A: Distribution approved for public release.



1 

AFOSR Final Performance Report 

FA9550-13-1-0007 

Structure and Reactivity of Transient Species in Homogeneous Catalytic Water Splitting 
and CO2 Reduction Using Cryogenic Ion Spectroscopy 

Mark A. Johnson 
Department of Chemistry 

Yale University 
New Haven, CT 

28 February 2013 

Under this grant, we have designed, commissioned and exploited new and general 
experimental methods for the purpose of identifying the reaction pathways that govern the 
catalytic activation of small, stable molecules like H2O, N2 and CO2. We accomplished this by 
trapping key chemical species deep in the catalytic cycle that have been calculated or inferred to 
play an important role but have never been isolated. This endeavor involved the development of 
a new type of instrument that combines high resolution mass spectrometry, cryogenic ion 
processing, and laser photofragmentation spectroscopy.  In our approach, we first extract the 
resting state of the catalyst from solution and transport it into vacuum where collisional 
dissociation exposes the reactive metal center. Substrate molecules are then introduced directly 
to the active site by temperature controlled, gas phase condensation in a radio frequency ion trap, 
and the extent of their activation is monitored as a function of ligand structure and oxidation state 
of the metal center.  The method is general, as illustrated by its application to N2, CO and N2O 
molecules attached to the open coordination site of a Ni coordination compound specifically 
designed to facilitate control of the metal oxidation states. Transformation of these stable species 
to useful chemicals (NH3, CH3OH, etc.) involves formation of NH, CH and OH chemical bonds.  
Therefore, during this grant period, we also established a theoretical framework that allows 
experimental determination of bond forming events involving mobile protons by analyzing their 
diffuse vibrational signatures.  Finally, we demonstrated a method for monitoring the reductive 
activation of CO2 starting from the fully reduced radical anion, and applied this technique to 
reveal the structures of intermediates invoked to understand the different mechanisms displayed 
by imidazole and pyridine in the photoelectrocatalytic transformation of CO2 to formic acid.    

DISTRIBUTION A: Distribution approved for public release.



2 

IA. Instrument development  

The work described below was carried out during the past five years (2013-2018) under 
this grant. A key aspect of our program is the design and implementation of innovative 
instrumentation specifically tailored to capture and spectroscopically characterize very fragile 
reaction intermediates invoked in the mechanisms of catalytic systems currently under 
development by synthetic groups. This required the development of a custom apparatus which 
involves the interface of versatile atmospheric electrospray ionization (ESI) sources to a 
cryogenic ion processing stage coupled to a triple focusing time-of-flight (TOF) 
photofragmentation mass spectrometer. The overall schematic is displayed in Fig. 1a. To 
overcome the limited mass resolution of the TOF-based photodissociation spectrometer, we 
augmented this instrument with a customized, very high resolution 7T FT ICR (based on a 
Bruker Apex II modified with the Predator data acquisition system from the National Magnet 
Laboratory, Fig. 1b).  

It is useful to emphasize that this research direction represented a substantial departure 
from our long standing emphasis on microhydration, in both chemical scope and required 

Fig. 1. Schematics of a) the Yale cryogenic ion trap and time of flight photofragmentation mass spectrometer 
and b) FT-ICR coupled to a tunable infrared laser. 
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instrumentation. The capabilities of the photofragmentation spectrometer developed at Yale for 
this purpose were optimized to extract air sensitive species from solution in an encapsulated 
electrospray interface and deliver them to two temperature-controlled ion traps for further ion 
processing. The overall scheme at the heart of our approach is illustrated in Scheme I. This 

creates a systematic way to expose the active sites of homogeneous catalysts isolated in the gas 
phase so that a variety of substrate molecules can 
be docked onto the open coordination site using a 
temperature controlled ion trap.  The second trap is 
cooled below 10K where either inert rare gas 
atoms or weakly interacting molecules (e.g. H2 or 
N2) are condensed on the substrate/catalyst 
complex so that its vibrational spectrum can be 
acquired in a linear action regime using IR 
photodissociation. This cryogenic variation of the 
so-called “tagging” method for structurally 
characterizing cold, mass selected ions was 
awarded a US Patent (USPTO #8890059 B2) 
during this grant period (2014). The typical 
performance of this cryogenic ion vibrational 
predissociation (CIVP) approach is illustrated by a 
recent application to characterize molecular 
ionophores (in this case, D3O+ embedded in the 
18-crown-6 scaffold) in Fig. 2. These results were

Scheme 1. The resting state of the catalyst is extracted from solution with an ESI interface. The anion X is 
exchanged with a solvent molecule (solv) under ESI extraction of the cation. Collisional induced dissociation 
(CID) leads to desolvation and exposes an open coordination site of the compound. In a second step, a 
substrate molecule (S) is introduced to the active site in a temperature-controlled (T1) ion trap. This complex is 
then cooled in a second, cryogenically cooled ion trap (T2) where an inert “mass tag” (rare gas (RG), e.g. N2, 
H2) is formed by condensation, which is then injected into a time-of-flight photofragmentation mass 
spectrometer for structural characterization with IR and UV/vis spectroscopy.  

Fig. 2. A representative D2-predissociation
vibrational spectrum of cryogenically cooled (10
K) D3O+(18-crown-6 ether).  The broad spectral
coverage and sharp features provides an FTIR 
like capability with the sensitivity of mass 
spectrometry.  
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reported in publication (15), which addresses the 
important role that vibrationally adiabatic 
processes play in systems involving a mobile 
proton. That work was undertaken in the course of 
our AFOSR program as part of the fundamental 
background required to understand the new 
paradigms required to decode the spectroscopic 
signatures of mobile protons at the heart of proton-
coupled electron transfer, a ubiquitous charge 
transport process in a variety of bio-mimetic 
catalysis platforms. This instrument also has the 
capability to record isomer and conformer-specific 
spectra in the case that several distinct species 
contribute to a particular mass. This aspect was 
originally developed a decade ago under AFOSR 
support and has recently been implemented on a 
similar system currently online at the IR free 
electron laser at the Fritz-Haber Institute in Berlin. 
Because of the close overlap with our work, we 
have an active and on-going collaboration with 
that group so that we can gain access to the much 
larger spectral (150-2000 cm-1) range afforded by 
that facility.  

 The other significant advance in our instrumentation has been the integration of high 
resolution mass spectrometry. The importance of this capability is illustrated in Fig. 3, which 
highlights an example where this performance was essential in a study of the controlled 
reduction of Ni(II)Cyclam to the Ni(I) oxidation state critical for activating CO2. The key 
obstacle in this project is to suppress a competitive deprotonation reaction that dominates 
production of the desired Ni(I) species, and is less than 0.02 amu away from the target peak. The 
mass peaks are easily separated, however, using our high resolution instruments as illustrated in 
Fig. 3.  

An additional refinement of our methods under this grant period concerns the control of 
temperature to determine the binding energies of trapped intermediates as well as the spectral 
evolution of floppy systems as they are warmed to enable large amplitude motion in the potential 
energy landscape. An example of the temperature dependent trapping of a CO2 molecule onto the 
open coordination site of a specifically designed ligand to support this Ni(I) oxidation state is 
presented in Fig. 4. We have also introduced a cryogenically cooled octopole trap as an 
alternative scheme to achieve even better temperature control. This is indeed a superior 

Fig. 3. A solution of Ni(II)Cyclam and the 
chemical reductant agent dodecamethyl-
cobaltocene in acetonitrile is electrosprayed into 
a high-resolution mass spectrometer. The 
resolution of the instrument (50,000) is required 
to separate the peaks originating from 
overlapping isotopologues of different 
molecules: the deprotonated [Ni(II)Cyclam-H]+ 
(left structure) and the its chemically reduced 
form [Ni(I)Cyclam]+. 
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methodology over the commercially available 3D Paul trap (Jordan) as evidenced by our 
successful execution of He tagging in several molecular ion systems.  

IB. Applications to activation mechanisms in homogeneous water splitting catalysts  

Coincident with the instrumentation 
development, we have engaged several productive 
collaborations with synthesis groups (Miller, 
Crabtree, Holland, and Brudvig at Yale, Krüger at 
TU Kaiserslautern, Jackson at University of 
Kansas) in order to maximize the impact of the 
new methods and indeed tailor them to meet the 
needs presented by specific “real world” systems. 
An early example of this involved the 
understanding of the mechanism of an Ir-based 
homogeneous water splitting catalyst recently 
introduced by the Yale Solar Group 
(Crabtree/Brudvig). The initial goal was to capture 

the elusive Ir(V)=O species invoked in the 
initial hypothesis of the catalytic cycle 
indicated in red at the top of Fig. 5. 
Working in close collaboration with Zare’s 
high resolution mass spectrometry team at 
Stanford, we established that the 
atomically correct assembly created upon 
initial activation of the catalyst actually 
corresponds to oxidation of the Cp* ring as 
opposed to the metal-oxo species. This was 
immediately clear in the vibrational 
spectrum of the putative intermediate with 
the appearance of strong OH stretching 
vibrations (black trace in the middle of 
Fig. 5). This observation, in turn, led to a 
re-evaluation of the mechanism of action, 
from which emerged the current 
hypothesis that the bi-metallic, μ-oxo 

Fig. 4. Mass spectrometry reveals the 
temperature dependence of the uptake of CO2 by 
the Ni(I)(L-N4Me2)+ compound, where the onset 
for CO2 addition occurs at ~ 200 K. 

Fig. 5. Mass spectra (a) and vibrational predissociation 
spectrum (b) of the putative intermediate iridium oxide 
compound (red box) demonstrated that it is actually 
comprised of an oxidized Cp* group. The new mechanism 
involves the formation of a μ-oxo bridged Ir complex (in 
orange) rather than the metal-oxo species (in red). The 
blue trace in (c) corresponds to the spectrum of the 
cationic form of the precursor (blue box and top).  
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bridged species (orange box in Fig. 5) 
is actually the activated form of the 
catalyst. This work appeared on the 
cover of the January 6th, 2014 issue of 
Inorganic Chemistry in a joint 
publication along with the Zare and 
Crabtree groups.  

With this initial successful 
contribution to the synthetic effort, we 
continued to work with the Brudvig 
group, this time on their Mn-based 
water splitting catalyst inspired by the 
multi-metallic oxygen evolving 
complex (OEC) in photosystem II. 
Three ligands with highly donating 
pyridine alkoxide moieties, including 2-
(pyridin-2-yl)propan-2-ol (pyalkH), 
2,2’- (pyridine-2,6-diyl)bis(propan-2-
ol) (pydialkH2), and 2-[(2,2’-bipyridin)-
6-yl]propan-2-ol  (bipy- alkH), were screened for activity, and the complexes with the ligand
bipy-alkH (such as that shown in Fig. 6a) were shown to evolve O2 when driven by Oxone
(potassium peroxymonosulfate). The catalytic mixture generated from the precursor complex
[Mn(bipy-alkH)Cl2 ] retained activity in unbuffered solution for more than 160 h. In this case,
we were able to characterize the species present in the reaction mixture using high resolution
mass spectrometry, and in particular identified a dimeric, μ-oxo species (bottom of Fig. 6a) that
appears as a likely candidate for the active species involved in O2 evolution. These first results
were published in ChemPlusChem in 2016 (publication 13).

IC. Characterization of oxidation-state dependent activation of small molecules  

Our first efforts in the area of CO2 activation involved a collaboration with the Kubiak 
group at UCSD in the context of NiCyclam (see Fig. 3) because it is a well characterized system. 
The key questions to be addressed regard the mechanism of CO2 attachment to the metal center 
and the degree of charge displacement onto the CO2 moiety held in that coordination site. It 
became immediately clear, however, that, although Ni(II)Cyclam is readily introduced into the 
gas phase with an ESI interface, it is not straightforward to isolate the critical reduced Ni(I) form 
necessary to activate CO2. Instead, the dominant product by far is due to deprotonation of an NH 
group with retention of the Ni(II) core. We therefore turned to an alternative, tetra-coordinated 
ligand platform related to Cyclam but distorted out of plane in such a way that it supports a more 
stable Ni(I) metal center in addition to the Ni(II) analogue. This unusual compound was accessed 

Fig. 6. Mass spectrometry reveals that in the gas phase, the 
precursor molecule together with Oxone form a variety of high 
mass species corresponding to dimeric products which are 
thought to be those involved in oxygen evolution.  
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using the bimetallic scaffold (left of Fig. 7) synthesized by the Krüger group in Kaiserslautern 
for the specific purpose of controlling the overall spin in bi- and tri-metallic molecular platforms. 

This compound can be crystalized with intact Ni(I) centers that survive ESI injection in the mass 
spectrometer as a di-cation. The open coordination site was exposed using collision induced 
dissociation (CID) of the bi-metallic compound as illustrated in Fig. 7. This was carried out in 
the high pressure region of the ion source. Substrate molecules such as CO, N2 and N2O were 
next coordinated in the active site in a temperature-controlled reactive trap (red box in Fig. 1. 
These complexes were then transferred to the low temperature cryogenic ion trap (blue box in 
Fig. 1) where the weakly bound mass tags, needed for characterization with vibrational 
predissociation spectroscopy, were condensed onto the cold ions. Finally, the tagged ions were 

injected in to the time-of-flight 
photofragmentation mass spectrometer 
for acquisition of their vibrational spectra.  

Figure 8 presents representative 
spectroscopic results from the CO2 
activation study. The top trace (8a) 
confirms that CO2 is not activated by the 
Ni(II) atom in the macrocycle by the fact 
that the antisymmetric stretch (ν3) is 
essentially unchanged from that in the 
isolated neutral molecule. On the other 
hand, the Ni(I) complex yields a very 
strongly red-shifted antisymmetric stretch 
consistent with a strongly bent (148°) 
CO2 in the binding site. Interestingly, the 
calculated structure (inset in Fig. 8b) 
indicates that the molecule binds to the 
metal center in a η2-C,O coordination 
motif. This was confirmed using partial 
isotopic labeling in the C18O16O 

 

Fig. 8. Vibrational predissociation spectra of a) Ni(II)(L-
N4Me2)2+CO2 and b) Ni(I)(L-N4Me2)+CO2. A large shift of 
the asymmetric CO2 stretch (ν3) is observed from the Ni(II) 
to Ni(I) species, indicating activation of the CO2 in the 
Ni(I) case. Isotopically labeled CO2 was used to confirm 
the η2-C,O binding motif shown as insets in b). 

 

Fig. 7. Mechanism to release the active Ni(I) compound with an open coordination site on which to trap CO2.  
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isotopologue, which yields a doubling of the all-important antisymmetric stretch highlighted in 
the colored inset in (Fig. 8b). These results were published as a “hot paper” in Ang. Chem. Int. 
Ed. (publication 11) in 2016 as a joint effort with Prof. Kruger’s group.  

 
We then followed up the CO2 

work with a second paper (publication 14) 
in which we compared the distortions 
displayed by N2 and CO with that 
observed for CO2. All of these systems 
attach directly to the metal center with 
significant reduction in their bond 
strengths as evidenced by their shifts 
relative to the fundamentals in the isolated 
molecules (horizontal arrows in Fig. 9). 
Interestingly, N2 actually displays a larger 
perturbation than does CO. We also 
explored the reactive uptake of N2O, 
which does not feature a Ni-O bond but 
rather occurs by oxidation of the ligand to 
yield an OH group on the ring.  
 In the last year of this grant, we 
carried out two experiments designed to 
control the oxidation states of both the 
catalysts and the substrate independently, which are reported in publications 18 and 19.  Of 
particular interest  is the successful generation of the critical Ni(I) oxidation state in the gas 
phase using ion chemistry techniques borrowed from bioanalytical mass spectrometry.  This 
involved first generating the Ni(II) cyclam precursor (which carries a +2 charge) and storing it in 
an ion trap. We then merged these ions with 
molecular anions in order to directly inject one 
electron in the Ni(II) species by ion-ion 
recombination, thus generating the Ni(I) single 
charged cation,.  The hot nascent product ions 
were cooled by collisions with the buffer gas 
in the trap and structurally characterized with 
vibrational spectroscopy, carried out in 
collaboration with the FELIX team at 
Radboud University in The Netherlands.  This 
verified that the coordination environment was 
preserved after exothermic electron transfer.  
This is an important development because it 

 

Fig. 9. Vibrational spectra of a) CO2, b) CO and c) N2 on 
Ni(I)(L-N4Me2)+ show significant redshifts of the 
corresponding adduct stretches from those of the isolated 
neutral molecules, implying transfer of electron density to 
the small molecule upon complexation to the metal. 

Fig. 10. Structures and electrostatic potentials, 
calculated at the B3LYP/aug-cc-pVDZ level of 
theory, of imidazole (Im) and pyridine (Py) with red 
and blue indicating negative and positive electrostatic 
domains, respectively. 
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provides a rational scheme for the preparation of extremely reactive oxidation states in an 
isolated environment where one can introduce substrates in a controlled fashion.  In another 
study, we followed how a fully reduced (activated) CO2 molecule (the CO2‾• radical anion) 
interacts with the N atoms on the heterocycles imidazole and pyridine (Fig. 10), which are both 
effective catalysts for CO2 reduction.  In this case, vibrational spectroscopy was used to monitor 
covalent C-N bond formation.  Interestingly, only pyridine appears to operate by this mechanism, 
indicating that the imidazole likely involves the acidic C(2)-H group rather than the ring N atom, 
supporting the suggestion raised by Bocarsly and co-workers in their kinetic analysis of the bulk 
electrochemistry.  
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