REPO	ORT DOCU	MENTATI	ON PAGE		Form	n Ap	pproved OMB NO. 0704-0188
The public report searching existi regarding this Headquarters S Respondents sh of information if PLEASE DO NO	orting burden for th ing data sources, g burden estimate o Services, Directora nould be aware tha it does not display DT RETURN YOUF	nis collection of in jathering and mair r any other aspe te for Information t notwithstanding a a currently valid O R FORM TO THE A	formation is estimated to ntaining the data needed ct of this collection of i Operations and Repor any other provision of law MB control number. NBOVE ADDRESS.	averag , and co informati ts, 1215 , no pers	ge 1 hour per mpleting and on, including 5 Jefferson E son shall be s	r resp revie sugo Davis ubjec	ponse, including the time for reviewing instructions, awing the collection of information. Send comments gesstions for reducing this burden, to Washington Highway, Suite 1204, Arlington VA, 22202-4302. It to any oenalty for failing to comply with a collection
1. REPORT I	DATE (DD-MM-	YYYY)	2. REPORT TYPE				3. DATES COVERED (From - To)
15-03-2017	7		Final Report				15-Aug-2016 - 14-Feb-2017
4. TITLE AN	ND SUBTITLE				5a. CO	NTF	RACT NUMBER
Final Repor	rt: Acousticall	y/Vibrational	ly Enhanced High				
Frequency	Electromagnet	tic Detector fo	or Buried Landmin	es	5b. GR	AN	Г NUMBER
					W911	NF-	-16-P-0043
					5c. PRO	OGR	AM ELEMENT NUMBER
					66550	2	
6. AUTHOR	S				5d. PRO	OJE	CT NUMBER
David Bout	te, Vincent Radzi	cki, Adam Web	b, Brian Thelan, Josep	h			
Burns					5e. TA	SK N	NUMBER
					5f. WO	RK	UNIT NUMBER
7. PERFOR	MING ORGANI	ZATION NAM	ES AND ADDRESSE	S		8.	PERFORMING ORGANIZATION REPORT
AKELA, In	c.					NU	IMBER
5551 Ekwill	l St.						
Suite A Santa Barba	ra CA	0311	1 _2355				
9. SPONSO (ES)	RING/MONITO	RING AGENCY	V NAME(S) AND AD	DRESS		10. A	SPONSOR/MONITOR'S ACRONYM(S) ARO
U.S. Army R P.O. Box 12	Research Office				-	11. NUN	SPONSOR/MONITOR'S REPORT MBER(S)
Research Tr	iangle Park, NC	27709-2211				693	51-EL-ST1.1
12. DISTRIB	UTION AVAIL	IBILITY STATE	EMENT				
Approved for	Public Release;	Distribution Unl	imited				
13. SUPPLE The views, op of the Army	MENTARY NO pinions and/or fir position, policy o	TES ndings contained or decision, unles	in this report are those s so designated by oth	e of the er docu	author(s) an mentation.	nd sh	ould not contrued as an official Department
14. ABSTRA Detection, of important p investigation improving to realized by discriminat	ACT classification a problems for boons have sugged target detectab adding an adding feature.	and discrimination oth soldier pro- ested that acou- bility through litional degree	ation of buried land otection and mobili istically or vibratic a characteristic res e of freedom, modu	dmines ity and onally i ponse ilation	s and explo humanita inducing n related to due to mo	osiv ariar noti diff otior	re hazards remain open and critically n remediation. Earlier laboratory fon in buried targets can aid in ferential target motion. This gain is n in the GPR return signal, to use as a
15. SUBJEC GPR, vibrati	on, multi-modal,	Doppler process	sing				
16. SECURI	TY CLASSIFICA	ATION OF:	17. LIMITATION	OF	15. NUMBI	ER	19a. NAME OF RESPONSIBLE PERSON
a. REPORT	b. ABSTRACT	c. THIS PAGE	ABSTRACT	0	OF PAGES	ŀ	David Boutte
UU	UU	UU	UU				805-683-6414

Т

Γ

٦

Report Title

Final Report: Acoustically/Vibrationally Enhanced High Frequency Electromagnetic Detector for Buried Landmines

ABSTRACT

Detection, classification and discrimination of buried landmines and explosive hazards remain open and critically important problems for both soldier protection and mobility and humanitarian remediation. Earlier laboratory investigations have suggested that acoustically or vibrationally inducing motion in buried targets can aid in improving target detectability through a characteristic response related to differential target motion. This gain is realized by adding an additional degree of freedom, modulation due to motion in the GPR return signal, to use as a discriminating feature.

The AKELA/Michigan Tech Research Institute (MTRI) team has conducted a successful Phase I program resulting in significant phenomenological knowledge, vibratory exploitation algorithm development, full wave modeling and simulation capability, feasibility analysis and performance assessment. Exploiting an induced vibratory response in a buried landmine surrogate was shown to be feasible using a UWB GPR and results in significant SCR improvement over traditional GPR techniques. Similarly, the ability to discriminate both between resonant landmine surrogates as well as between landmine surrogates and discrete clutter based on vibratory frequency response was also demonstrated.

Enter List of papers submitted or published that acknowledge ARO support from the start of the project to the date of this printing. List the papers, including journal references, in the following categories:

(a) Papers published in peer-reviewed journals (N/A for none)

Received

TOTAL:

Number of Papers published in peer-reviewed journals:

Paper

(h)	Danana	nublished in	non no	n noviowod	iouwnala		for	nona	•
U)) rapers	published in	non-pee	er-revieweu	Journais	$(1 \mathbf{N} / \mathbf{A})$	101	none	,

Received Paper

TOTAL:

Number of Papers published in non peer-reviewed journals:

(c) Presentations

NONE

	Non Peer-Reviewed Conference Proceeding publications (other than abstracts):
Received	Paper
TOTAL:	
Number of Non	Peer-Reviewed Conference Proceeding publications (other than abstracts):
	Peer-Reviewed Conference Proceeding publications (other than abstracts):
Received	Paper
TOTAL:	
Number of Peer	-Reviewed Conference Proceeding publications (other than abstracts):
	(d) Manuscripts
Received	Paper
TOTAL:	
Number of Man	uscripts:
	Books
Received	Book
TOTAL:	

Received Book Chapte	<u>51</u>
TOTAL:	
	Patents Submitted
NONE	
	Patents Awarded
NONE	
	A
NONE	Awards
	Graduate Students
NAME	PERCENT_SUPPORTED
FTE Equivalent: Total Number:	
	Names of Post Doctorates
NAME	PERCENT_SUPPORTED
FTE Equivalent:	
Total Number:	
	Names of Faculty Supported
NAME	PERCENT_SUPPORTED
FTE Equivalent:	
Total Number:	
	Names of Under Graduate students supported
NAME	PERCENT_SUPPORTED
FTE Equivalent: Total Number:	

Student Metrics This section only applies to graduating undergraduates supported by this agreement in this reporting period	
The number of undergraduates funded by this agreement who graduated during this period: 0.00 The number of undergraduates funded by this agreement who graduated during this period with a degree in science, mathematics, engineering, or technology fields: 0.00	
The number of undergraduates funded by your agreement who graduated during this period and will continue to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields: 0.00	
Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale): 0.00 Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for Education, Research and Engineering: 0.00	
The number of undergraduates funded by your agreement who graduated during this period and intend to work for the Department of Defense 0.00	
The number of undergraduates funded by your agreement who graduated during this period and will receive scholarships or fellowships for further studies in science, mathematics, engineering or technology fields: 0.00	

Names of Personnel receiving masters degrees

<u>NAME</u>

Total Number:

Names of personnel receiving PHDs

<u>NAME</u>

Total Number:

Names of other research staff

NAME

PERCENT_SUPPORTED

FTE Equivalent: Total Number:

Sub	Contractors	(DD882)
-----	-------------	---------

1 a. Michigan Tech Research Institute	1 b. 1400 Townse	nd Dr.	
	Houghton	MI	499311295
Sub Contractor Numbers (c):			
Patent Clause Number (d-1):			
Patent Date (d-2):			
Work Description (e): Development of ac	oustic/seismic simulations to charact	erize target	motion and virbation (
Sub Contract Award Date (f-1): 10/15/16 12:00AM	1		
Sub Contract Est Completion Date(f-2): 2/14/17 12:00AM			
1 a. Michigan Tech Research Institute	1 b. 1400 Townse	nd Dr.	
	Houghton	MI	499311295
Sub Contractor Numbers (c):			
Patent Clause Number (d-1):			
Patent Date (d-2):			
Work Description (e): Development of ac	oustic/seismic simulations to charact	erize target	motion and virbation (
Sub Contract Award Date (f-1): 10/15/16 12:00AM	1		
Sub Contract Est Completion Date(f-2): 2/14/17 12:00AM			
Invent	ions (DD882)		

Scientific Progress

See attached technical report.

Technology Transfer

See final technical report attachment.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

The public reporting sources, gathering aspect of this collec Operations and Re provision of law, no PLEASE DO NOT	g burden for this colle and maintaining the ction of information, ir ports (0704-0188), 1 person shall be subje RETURN YOUR FOR	ection of informatio data needed, and cluding suggestion 215 Jefferson Dav ect to any penalty for M TO THE ABOVI	n is estimated to average 1 completing and reviewing th s for reducing the burden, t is Highway, Suite 1204, A or failing to comply with a co E ADDRESS.	hour per resport the collection of ir to Department of rlington, VA 2220 Illection of inform	ise, including the formation. Send Defense, Washin)2-4302. Respon ation if it does no	time for reviewing instructions, searching existing data comments regarding this burden estimate or any other igton Headquarters Services, Directorate for Information dents should be aware that notwithstanding any other t display a currently valid OMB control number.
1. REPORT DA	TE (DD-MM-YYYY) 2. REPOR	ГТҮРЕ			3. DATES COVERED (From - To)
03/15/2017		Final tech	inical report for W9	11NF-16-P-(043	08/15/2016-02/14/2017
4. TITLE AND S	SUBTITLE	I			5a. C0	
Acoustically/	/ibrationally En	hanced High	Frequency Electror	nagnetic	W911	NF-16-P-0043
Detector for E	Buried Landmin	es	, ,	0		
					50. Gi	KANT NUMBER
					5c. PF	ROGRAM ELEMENT NUMBER
6. AUTHOR(S) David Boutte	, Vincent Radzi	cki, Adam We	ebb, Brian Thelan, J	loseph Burn	5d. PF S	ROJECT NUMBER
					50 TA	
					5e. 1A	ASK NUMBER
					5f. W0	ORK UNIT NUMBER
	551 Ekwill St	N NAME(S) AND Suite & Sant:	$\frac{1}{2} \operatorname{ADDRE33(E3)}{2} \operatorname{Barbara} CA 0311$	1		8. PERFORMING ORGANIZATION REPORT NUMBER
	3600 Green Ct	Ste 100 An	n Arbor MI 48105	1		W911NF-16-
						P-0043 AKELA FINAL REPORT
9. SPONSORIN	G/MONITORING	GENCY NAME	(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)
ARMY RESE	ARCH OFFICE	<u> </u>				ARO
ARO						
800 Park Offi	ce Drive					11. SPONSOR/MONITOR'S REPORT
Suite 4229						NUMBER(S)
Triangle Rese	earch Park NC	27709				
12. DISTRIBUT	ION/AVAILABILIT	Y STATEMENT				
Approved for	public release;	distribution u	nlimited			
13. SUPPLEME	NTARY NOTES					
l echnical rep	ort detailing the	e results of A	KELA/Michigan Te	ch Research	i Institute (IV	ITRI) team investigations into
exploitation o	of induced vibra	tory response	es in buried targets	using GPR.	Results sno	w significant improvement in SCR
possible usin	g these technic	ues. Range-l	Doppler filtering is p	resented all	ong with enn	lanced SAR imagery in a laboratory
setting demo	nstrating teasing	lity of GPR e	nnancement. Full w	ave simulat	ions are use	durarmia mada analysia
along with a d	betalled non-lin	ear classifica	lion scheme based	on cyclostal	ionanty and	dynamic mode analysis.
15 SUBJECT T	FRMS					
Radar GPR	multi-modal co	llection vibra	tion analysis FHD			
16. SECURITY	CLASSIFICATION	OF:	17. LIMITATION OF	18. NUMBER	19a. NAME	OF RESPONSIBLE PERSON
a. REPORT	b. ABSTRACT	c. THIS PAGE	ABSTRACT	OF	David Bou	tte
		Unclose		FAGES	19b. TELFP	HONE NUMBER (Include area code)
	Lindoosifiad	onciassifie	Nono		805-683 6	414
Unclassified	Unclassified	u	INUTIE		000-000-0	T 1 T

Acoustically/Vibrationally Enhanced High Frequency Electromagnetic Detector for Buried Landmines

Final Report for W911NF-16-P-0013

> Date 15 March 2016

David Boutte, Vincent Radzicki,

AKELA, Inc 5551 Ekwill Street, Suite A Santa Barbara, CA 93111 <u>dboutte@akelainc.com</u>

Adam Webb, Brian Thelen and Joseph Burns

Michigan Tech Research Institute Michigan Technological University 3600 Green Ct., Ste. 100 Ann Arbor, MI 48105

joseph.burns@mtu.edu

Table of figures

Figure 1 AKELA Radar Sensor Unit (a.) and experiment apparatus (b.)
Figure 2 Surrogate EXH targets used in this research program
Figure 3 Aura NSW2 Loud-speaker (a.) and its frequency response (b.)
Figure 4 Block diagram of experimental radar/acoustic sensor system
Figure 5 Spring suspended metallic plate (a.) and target being buried underground (b.)
Figure 6 Range-Doppler map collected at a single aperture position of vibrating plate
Figure 7 Raw and filtered range profiles of vibrating plate
Figure 8 Acceleration data of metallic plate collected from independent accelerometer sensor
Figure 9 Spectrogram from SAR data of stationary plate (a.) and vibrating plate (b.)
Figure 10 FIR filter response used to extract harmonic signal from radar data
Figure 11 Raw waterfall plot (a.) and filtered waterfall plot (b.) of SAR data collected on vibrating plate
Figure 12 Experimental setup (a.) diagram (b.) unfiltered image reconstruction (c.) and the filtered image reconstruction (d.) of a vibrating plate
Figure 13 Subsurface clutter mitigation tests with (a.) test configurations, (b.) experimental data collection system (c.) raw B-scan and (d.) vibrating plate signature
Figure 14 Subsurface mine characterization experiments
Figure 15 Range profiles of stationary (a.) and vibrating (b.) 155mm artillery shell
Figure 16 Range profiles of stationary (a.) and vibrating (b.) M20 landmine
Figure 17 M20 landmine resonance detection test
Figure 18 M20 landmine resonance detection test B-Scans with (a.) raw data and (b.) resonant filtered data
Figure 19 Multiple target discrimination test
Figure 20 Multiple target discrimination test with (a.) raw B-scan and (b.) resonant detection response
Figure 21. A vibro-acoustic model is constructed to characterize the response to a localized pressure source applied to the ground layer

Figure 22. The motion of the scene in response to the pressure excitation is shown on the surface (left), through the magnitude of the ground surface velocity, and the target (right) through the magnitude of the displacement vector
Figure 23. The magnitude and phase of the y-component of the displacement as a function of frequency is compared for the buried target and a point on the surface directly above the buried target
Figure 24 The y-component of the displacement as a function of time is compared for the buried target (left) and a point on the surface directly above the buried target right
Figure 25 The frequency response of the z-compoennt of the displacement is shown for the buried target and the surface
Figure 26. A small peak in the z-component of the amplitude response can be seen corresponding to the delay between the location of the excitation and the target
Figure 27. The magnitude of the displacement oscillations is higher at the lower end of the frequency band
Figure 28. (a) shows the spectrum of above ground vibrating plate, (b) the below ground vibrating plate
Figure 29 (a) shows the eigenvalues of the vibrating plate on the surface, (b) shows the eigenvalues of the buried plate

Introduction and Problem Statement

Development of remote sensing technologies that can accurately and reliably detect and classify explosive hazard (EXH) threats such as buried landmines and improvised explosive devices (IEDs) remains a critically important endeavor. The variety of EXH threats encountered in terms of size, material composition, camouflaging, and other factors pose many difficult technical problems, limiting the rate of progress in this field. Radar sensors have emerged as popular tool for this problem, given their ability to detect objects below ground and through optically opaque materials. Radar detection of EXH threats still face other issues, such as weak radar scattering from targets, spatial resolvability, and large amounts of reflecting clutter. Classification techniques and methodologies of EXH targets using radar sensors require mitigating these effects that drastically reduce the overall signal-to-noise ratio.

Classical radar systems will compute reflectivity maps, or images, of surveyed areas and from this classification algorithms will try to estimate the position and class of any EXH threats in the scene. As stated, this method tends to be susceptible to high clutter reflections and small scattering targets. To yield a higher signal-to-noise ratio for EXH targets, it would be beneficial to measure an additional physical parameter beyond reflectivity. For example, if the system could measure the vibratory resonance of an object while under excitation from an external acoustic source this could be used to discriminate objects with known shape and size from a building or wall. Radar systems that can measure motion, or Doppler, of targets can potentially also measure vibration in the form of micro-doppler [1][2][3].

The research and development conducted to evaluate the performance gains of acoustically coupling vibration energy into EXH targets for radar sensing detection and classification is presented here. A prototype acoustic excitation and radar measurement unit was developed and utilized to measure experimental data on surrogate EXH targets. A test apparatus similar to the likely field environment was used for all data collection experiments to ensure realistic data.

Experimentation and Data Acquisition System

Close experimental validation was performed in conjunction with the system development for this research program. Careful measurements were carried out in an incremental fashion exploring the phenomenology of the problem while determining the performance limitations of the measurement systems. After a firm understanding of the phenomenology was established, surrogate EXH targets were measured and the ultimate detection performance gains that could be expected for such targets were determined.

The radar hardware system used for all data collection consisted of three main units: a two-port AKELA RF Vector Measurement Unit (AVMU), a linear antenna array, and a personal computer to control and program all the devices. The radar unit was completely programmable and

operated in the stepped-FMCW mode. The transmission signal parameters such as the frequency hopping rate, bandwidth, and frequency resolution are all user defined. The transmit power is approximately 50mW, and the operating frequency range chosen was 0.9GHz to 2.9GHz with 201 points for a total bandwidth of 1.1GHz. The frequency hopping rate was programmed up to 90,000 hops per second. The radar system was configured in a synthetic aperture spotlight mode to generate high resolution radar images of targets. To achieve the SAR scan, the entire radar array was mounted to an electronically controlled motorized rail system that would track position as the radar array moves. The entire radar system mounted to the rail above the test apparatus can be seen in Figure 1.

(a.)

(b.)

Figure 1 AKELA Radar Sensor Unit (a.) and experiment apparatus (b.)

The test apparatus consisted of an 8 ft. x 8ft. sandbox filled with homogenous dry sand with a dielectric constant of approximately 4. For most experiments the antennas pointed directly down at the sandbox which produces a large ground reflection that typically impacts detection performance. The surrogate targets of interest were measured both above the sand and in certain scenarios buried beneath the surface. This test apparatus allowed for consistent data quality and comparable experiments due to similar background environments. With the desired application of this research program in mind, a set of test targets were aggregated to measure and characterize. Firstly, a canonical radar target was constructed comprising of a flat metal plate suspended to a wooden frame via four springs. The spring suspension was designed so that vibration motion of the metal plate could be easily excited and thus serve as an optimal vibrating target. For a more realistic set of targets, a set of stimulant EXH mines were chosen and subsequently tested. The test targets utilized throughout the research study can be seen in Figure 2.

(b.) M20 Landmine

(c.) VS 2.2 Landmine (d.) M19 Landmine Figure 2 Surrogate EXH targets used in this research program

In addition to the radar measurement system, an acoustic source that could potentially excite targets with sufficient energy was required. For this task, the AURA NSW2 a high power low-frequency loud-speaker was utilized. The device and its frequency response can be seen in Figure 3. This device was driven by a current amplifier at low audio frequencies to yield large vibrational displacement of targets under test. For most experiments these devices were buried underground, so that the acoustic waves could propagate and induce motion in the test targets. To understand the acoustical coupling and vibration behavior of the environment and targets, additional motion sensors were employed. A geo-phone (SM24-UB) and accelerometer (ADXL103) were selected for this task. The geo-phones were typically buried to measure the local acoustic vibrations of the sand, and the accelerometer was fixated to targets to measure their vibration.

Figure 3 Aura NSW2 Loud-speaker (a.) and its frequency response (b.)

During the data collection experiments, the sensor systems were instrumented to measure the various physical parameters of interest including target vibration, seismic vibration, radar signal reflections, and antennas' positions. The sensor instruments and radar system were all controlled through a single computer for synchronization and further post-processing. A block diagram outlining the high-level measurement system is shown in Figure 5. With the measurement system configured as shown, all the various physical variables could be measured and compared to the radar detection performance so as to establish the requisite conditions and radar design parameters.

Figure 4 Block diagram of experimental radar/acoustic sensor system

Analysis

A sequence of experiments studying the key issues of this research program was designed, executed, and the appropriate conclusions were drawn. Firstly, the performance limitations of the radar system's ability to measure vibratory targets were established. Here, a few operating specifications such as signal-to-noise ratio and measurement sensitivity were determined and the feasibility of target detection was analyzed. Following this basic verification, more advanced testing was conducted to localize vibration targets as well as differentiate them from stationary clutter. Using these results, a final series of experiments were carried out to measure the

detection performance on surrogate EXH targets and verify the feasibility of the proposed methodology.

Measurement of Vibrations through Radar

The initial vibration testing with the radar system mainly focused on the spring suspended metal plate. The surrogate vibrating target was excited to vibrate in a periodic manner by attaching a small motor to its face that would rotate at a fixed frequency, thus inducing a proportional vibration. The target was instrumented with an accelerometer sensor and enclosed by non-reflective foam so that it could be buried during data collection experiments. The target was first measured directly below the transceiver array buried approximately 3in. in the sand, as can be seen in Figure 5. The plate was excited using a motor with an offset weight to vibrate at an oscillation frequency of approximately 20Hz. A time-sequence of range profiles was measured with the radar array in a stationary position while sampling fast enough to avoid aliasing. The Range-Doppler map of those measurements was processed and can be seen in Figure 6. The majority of the energy in the scene is concentrated around the zero-Doppler bins as would be expected given a stationary scene and target. However, a large peak in spectral energy is evident around 20Hz and at the correct range of the target and corresponds to the correct rate of vibration.

(a.)

(b.)

The target was first measured directly below the transceiver array. The plate was excited using a motor with an offset weight to vibrate at an oscillation frequency of approximately 20Hz. A time-sequence of range profiles was measured with the GPR array in a stationary position while sampling fast enough to avoid aliasing. The Range-Doppler map of those measurements was processed and can be seen in Figure 6. The majority of the energy in the scene is concentrated around the zero-Doppler bins as would be expected given a stationary scene and target.

However, a large peak in spectral energy is evident around 22Hz and at the correct range of the target which corresponds to the correct rate of vibration for the target.

Figure 6 Range-Doppler map collected at a single aperture position of vibrating plate

The range-profile corresponding to the highest non-zero Doppler peak was extracted and compared to a raw range-profile of the target as plotted in Figure 7. The unprocessed range profile includes numerous peaks from many clutter objects including the antenna-leakage, ground reflection and others. Filtering out the non-zero Doppler peak at the equivalent rate of vibration of the target, however, yields a single large peak at the range of the target, with the surface reflection and antenna leakage attenuated by more than *50dB*. As can be seen the target peak falls in magnitude due to the loss of the DC term, however, the significant drop in clutter energy would produce a greater signal-to-clutter peak, and thus greater probability of detection and more intuitive analysis.

Figure 7 Raw and filtered range profiles of vibrating plate

Figure 8 Acceleration data of metallic plate collected from independent accelerometer sensor

To verify the vibration frequency estimation results of the radar system an accelerometer was also employed to measure the vibration frequency. The accelerometer was attached directly to the vibrating surface of the plate and would correspond to the range vibration seen by the radar sensor. The acceleration data was collected concurrently to radar data collection and then analyzed using a Short-Time Fourier Transform (STFT) to estimate its rate of vibration. The analysis can be seen in Figure 8, where the large peak at 22Hz matches very closely to the radar estimate as well. This correspondence of estimates between two different sensor modalities,

demonstrates that the radar system employed can both estimate the frequency of targets vibrating in range as well as use that estimate to discriminate among different targets.

The system and vibrating plate target was next tested in the desired SAR mode, so that crossrange information target localization can be achieved. In this configuration, the target was buried in the center of the sandbox. The radar array was then scanned from one end of the sandbox to the other passing directly over the target. A STFT result of a single CW-measurement was produced to determine if the vibration signal was being over-damped by the array motion. Figure 9 compares the STFT results of the vibrating target and non-vibrating target to demonstrate, that in fact the periodicity of the target motion can still be captured in SAR mode. The rate of vibration is measured only when the vibrating target comes directly into view of the radar sensor, however, a small frequency modulation component is induced from the relative motion of the SAR with respect to the target.

Figure 9 Spectrogram from SAR data of stationary plate (a.) and vibrating plate (b.)

A full FMCW sweep was also measured of the vibrating target in SAR mode so that ranging and cross-range information could be inferred and the target image could be reconstructed. Exploiting the information that the vibrating target's range information resides in the frequency band proportional to its rate of vibration, and the clutter is mostly at zero-doppler the SAR data was appropriately filtered for the known target vibration frequency. The SAR data was processed over scan position using an FIR filter to preserve the phase information of the frequency data while filtering out all the non-resonance motion in the scene. The filter response can be seen in Figure 10, and as can be seen was centered on the expected rate of vibration of 22Hz with approximately 10Hz bandwidth.

Figure 10 FIR filter response used to extract harmonic signal from radar data

Figure 11 Raw waterfall plot (a.) and filtered waterfall plot (b.) of SAR data collected on vibrating plate

Two B-scans of the unfiltered SAR data and after the FIR filtering is displayed in Figure 11. Here the clutter mitigation effects are very pronounced as the antenna coupling and surface reflection are greatly reduced. There exists some artifacts from the filtering, however, including secondary range peaks potentially due to multiple reflections of the environment as well as target

scintillation effects. These artifacts will introduce some duration in the final image quality; however, the clutter mitigation gain would outweigh typical losses. Performing a full back-projection image reconstruction from the B-scans was done, and the results of which are seen in Figure 12. The reduced clutter in the raw image compared to the filtered image is around 5-10dB. Although, the FIR filtering produces greater levels of specular noise in the final image, the large clutter targets have been greatly mitigate which can help improve target detection and classification tasks greatly.

Figure 12 Experimental setup (a.) diagram (b.) unfiltered image reconstruction (c.) and the filtered image reconstruction (d.) of a vibrating plate

Differentiating Targets from Vibratory Signatures

Beyond mitigating stationary clutter, Doppler extraction of vibrating targets may also serve as a feature that can characterize and identify specific targets from other superfluous clutter based on vibration signatures. Further, experimentation and analysis was conducted to explore and exploit this idea. The vibrating metal plate target was again buried and measured utilizing a SAR scan with the radar sensor while vibrating. To simulate clutter that is typically encountered while performing subsurface radar imaging, two metallic structures were also buried. A copper corner reflector and a secondary metallic plate were both buried during data collection.

Because the vibrating plate contains a different vibratory signature then the stationary clutter, spectrally filtering the range-Doppler targets at specific vibration frequencies of interest would remove the stationary buried targets from the measured scan. The experimental configuration for this approach can be seen in Figures 13a and 13b. The range-profiles were then displayed over the aperture position, to form a B-scan of the sub-surface profile. In the raw B-scan in Figure 13c, all three buried objects are visible due to their high radar reflectivity; however, it is not possible to determine which targets are vibrating or stationary. Spectrally filtering at the known vibration frequency of the metal plate drastically reduces the signal-to-clutter ratio by over *15dB* as is seen in Figure 13d. This gain not only increases the probability of detection, but also produces a more intuitive image to analyze for non-technical users.

Figure 13 Subsurface clutter mitigation tests with (a.) test configurations, (b.) experimental data collection system (c.) raw B-scan and (d.) vibrating plate signature

Two advantages of target vibration estimation have been identified, the first being clutter mitigation and second target classification. If there are any targets present in a scanned radar data that are known to be vibrating at a certain frequency, this methodology can be utilized to greatly enhance the probability of detection and classification. If targets that are normally stationary, such as EXH devices, could be made to vibrate the methodology demonstrated here could also be used for detection and classification.

Explosive Hazard Characterization and Identification from Acoustic Resonance Response

With the basic methodologies for measuring and discriminating vibrating targets established, the next step was to characterize the vibratory spectral response of various targets to an external acoustic excitation. To measure this, the Aura NSW2 loud-speaker was buried approximately three inches in the sandbox and the target under test was placed directly above it. The geophone sensor was then set on the surface of the target to measure its vibration amplitude. The acoustic source was swept from 15Hz-150Hz for each of the surrogate EXH targets examined for this research program. The normalized spectral response of each surrogate target was calculated and then plotted in Figure 14. The response up to 50Hz is mainly dominated by the resonance of the acoustic source, however, the targets of higher mass do not vibrate as strongly. Beyond 50Hz, the response of the targets then begins to dominate. The responses of both the 155mm artillery shell and the M19 landmine die out past 75 Hz, yet the M20 landmine and VS 2.2 landmine begin vibrating more strongly until they approach their resonant frequencies.

Figure 14 Subsurface mine characterization experiments

The difference in resonance frequencies among different targets can be exploited to perform classification and detection. Since one target will vibrate much stronger at resonance compared to another target, the resonant target will also have a much stronger vibratory signature in the radar measurement. To illustrate this idea, both the 155mm artillery shell and the M20 landmine

were excited at various acoustic frequencies and measured with the radar sensor simultaneously. Figure 15 demonstrates that 155mm artillery shell's range profile response is clearly visible up to 75Hz, however, past this begins to disappear beyond this as supported by Figure 14. The M20 landmine's range profile response is still very strong at 130Hz, its resonant response.

Figure 15 Range profiles of stationary (a.) and vibrating (b.) 155mm artillery shell

Figure 16 Range profiles of stationary (a.) and vibrating (b.) M20 landmine

To test the discriminatory capability of the resonant response, the M20 target was measured under a SAR scan surrounded by other clutter objects, as shown in Figure 17. The acoustic source was excited at the resonant frequency of the M20 during data collection, and the

subsequent radar sensor data was also filtered for this vibration frequency. The raw B-scan and spectrally filtered B-scan were computed and are plotted in Figure 18. Here again, in the raw B-scan all of the superfluous clutter components are visible at various magnitudes, and obfuscate the location of the M20-landmine. However, after filtering for the vibration signature of resonant target, the M20 is the by far the strongest visible component remaining in the B-scan. A small multi-path component resides below the main lobe of the target, however, the clutter objects again have been greatly mitigated.

Figure 17 M20 landmine resonance detection test

Figure 18 M20 landmine resonance detection test B-Scans with (a.) raw data and (b.) resonant filtered data

The resonant response for the M20 is strong enough to mitigate clutter, but it is also desirable to use resonant responses to discriminate among multiple EXH targets. A similar experiment was designed, where two surrogate targets the M20 landmine and the 155mm artillery shell were simultaneously measured again. As seen in Figure 19, two acoustic sources were placed directly below each target to simulate a uniform excitation from a remote source that would be utilized in a field scenario. Both targets were excited at the resonant frequency of the M20 landmine, to determine if the radar could discriminate between the targets. The subsequent B-scans before and after resonant filtering can be seen in Figure 20. As in the previous testing the clutter signatures are reduced dramatically, but now the non-resonant target is also filtered from the data.

Figure 19 Multiple target discrimination test

Figure 20 Multiple target discrimination test with (a.) raw B-scan and (b.) resonant detection response

The vibratory sensitivity of the radar system presented in this research has been demonstrated to be accurate enough not only to discriminate vibrating targets from stationary clutter, but also discriminate among multiple vibrating targets of differing acoustic responses. This high gain in signal-to-clutter ratio as well as strong discriminatory capabilities, signify that this technique could be very effective in field scenarios. The proposed methodologies have been tested against stimulant EXH devices and demonstrated that it can be effective against such threats in terms of detection as well as classification. The resonant filtered B-scan could directly be used with a CFAR threshold detector, or potentially more advanced time-frequency transformations could be utilized as well for the more robust classification algorithms. A key technical challenge that remains will be the design of acoustic sources that transfer enough vibration energy into potential targets. A good amount of research work has been performed on this problem for seismic imaging problems, which could be leveraged with the strong results presented here to yield a viable detection system that surpasses current technology.

Simulation and Cyclolstaionary Algorithms

One goal of the MTRI effort is to numerically simulate the vibrations of a target buried in the ground when the ground is acoustically or seismically excited by a localized pressure source. The predicted target vibrations can be used to assess their detectability using a standoff radar system. The hybrid acoustic/structural finite element method simulation performed for the phase I effort is summarized below.

The purpose of the simulation was to characterize the vibration of the ground, as well as the vibration of a buried target, when localized forces are applied to the ground surface. The numerical simulations were performed in the frequency domain using LMS Virtual Lab's vibro-acoustic finite element method solver.

In this framework, we constructed the representative model, shown in Figure 1, which had a ground medium with a $0.20 m^3$ steel cube buried 3 cm beneath the surface. An excitation is provided by a $0.1 m^2$ pressure source located approximately 0.75 m away from the buried target. The source was assigned a pressure level at each frequency which corresponded to the spectral response of a 40 kN impulse in the time-domain. The resulting vibration response was computed at 200 discrete frequencies sampled at 20 Hz increments ranging from 20 Hz to 4 kHz. Given the number of frequency samples and the size of the source, the appropriate pressure applied at each frequency sample was determined to be $20 kN/m^2$. The ground layer is modeled as an acoustic

fluid and energy is transferred through the fluid acoustically to the buried target. The structural response of the target to the acoustic field is then determined through the computational structural dynamics (CSD) solver included in the LMS environment.

Figure 21. A vibro-acoustic model is constructed to characterize the response to a localized pressure source applied to the ground layer.

The finite extent of the simulation domain is bounded on the surface by a zero-pressure boundary condition allowing the surface to move freely in response to the applied pressure source. The remaining 5 bounding surfaces are assigned an absorbing boundary condition implemented through perfectly-matched-layers automatically generated by the LMS software. The perfectly-matched-layers are constructed using complex anisotropic materials designed specifically to absorb any and all acoustic energy thus creating a boundary condition representative of a ground medium of infinite extent.

The LMS software provides a variety of ways to visualize the simulation output. Two images are shown in **Error! Reference source not found.** characterizing the motion of the surface (left),
Pressure

Figure 22. The motion of the scene in response to the pressure excitation is shown on the 22 surface (left), through the magnitude of the ground surface velocity, and the target (right) through the magnitude of the displacement vector.

through the magnitude of the ground surface velocity, and the target (right) through the magnitude of the displacement vector. The surface velocity field shows a clear perturbation above the buried target.

The plots in **Error! Reference source not found.** and 4 compare the *y*-component of the displacement of the target with the surface displacement directly above the target. **Error! Reference source not found.** shows the magnitude and phase of the response as a function of frequency while 4 shows the real component of the displacement as a function of time. The time-domain response is computed through inverse Fourier transform of the frequency response and approximates the response to an impulse excitation occurring at t = 0. In this case, the y-

Figure 23. The magnitude and phase of the y-component of the displacement as a function of frequency is compared for the buried target and a point on the surface directly above the buried target.

component of the response in the model is clearly much stronger on the surface then the buried target. A peak in the target response is observed near 2400 Hz and similarly a peak in the surface response occurs near 2100 Hz. Given the speed of sound in soil, which was modeled to be 500 m/s, this corresponds to wavelengths of approximately 20 cm and 24 cm in the acoustic medium. It is believed that these resonances are created by the "waveguide" formed between the target and the surface given that the sides of the target cube are 20 cm in length. If you look closely at the time domain signals, the peak of the response at the surface and on the target occurs near $t = 1x10^{-3}s$ but are slightly shifted due to the difference in range from the source to the analyzed point on the buried target and the analyzed point on the surface.

The frequency and time domain displacement plots are repeated in Figures 5 and Error! **Reference source not found.**, respectively, but this time characterizing the z-component of the displacement. In this case the magnitude of the response between surface and target are on the same order of magnitude but the difference in shape is more pronounced. A clear peak in the surface response is observed near 1400 Hz. In the acoustic ground this corresponds to a wavelength of approximately 36 cm. Given that the depth of the modeled ground region is 38 cm, it appears that this spike may be an artifact of the simulation caused by the finite extent of the ground. A small peak in the target response once again appears between 2000 and 2500 Hz due to the dimensions of the target. The peaks identified in the modeled responses have all been identified as resonances occurring in the acoustic ground. The speed of sound in solid steel is on the order of 6000 m/s. Given a highest modeled frequency of 4000 Hz this produces a

Figure 24 The y-component of the displacement as a function of time is compared for the buried target (left) and a point on the surface directly above the buried target right

wavelength of 1.5 m, thus for this low-bandwidth

Figure 25 The frequency response of the z-compoennt of the displacement is shown for the buried target and the surface

approximation of an impulse no resonances in the target are expected.

Figure 26. A small peak in the z-component of the amplitude response can be seen corresponding to the delay between the location of the excitation and the target.

Perhaps some comments are in order regarding the low amplitude of the simulated fluctuations in the time-domain. In these simulations, the force was spread out across a large bandwidth in the frequency domain to obtain a rough approximation to an impulse (time-domain) excitation. In reality, the amplitude of the displacements is larger for lower frequency excitations. As a demonstration of this we perform a second simulation spreading out the $40 \ kN$ force over only 10 frequency domain for the y- and z- components are shown in **Error! Reference source not found.** These results translate to displacements on the order of cm's for the y-component and mm's for the z-component.

Figure 27. The magnitude of the displacement oscillations is higher at the lower end of the frequency band.

summary, an approach to numerically simulating the vibration of a buried target and surrounding surface in response to a localized pressure excitation of the surface was demonstrated. The resulting examples, showed vibrations with amplitudes that are potentially observable by radar sensors. The works shows that the Akela/MTRI team has a numerical method of exploring the vibrational response of buried targets for system design and analysis.

Vibration Signal Model and Detection Algorithm Approaches

Algorithmic approaches for both detecting and classifying buried target vibration signatures are presented. These algorithms can provide a basis for developing and evaluating a signal-processing framework for the system in Phase II. The model for the return at pulse time t is given as

$$s(x;t) = \rho_t * \sigma(x;t) + n(x;t)$$

where x is the = 1D/2D-spatial location depending on whether stationary or moving, t is the slow/pulse time, ρ_t is the so-called point-spread function (PSF) of the system at time t, and $\sigma(x; t)$ is the reflectivity at location x and time t and n(x; t) is the noise. We utilize an index of t on the correlation ρ_t to account for any natural evolutions of the signal over "slow" time, which must be accounted for. This will be discussed in a little more detail, later in this section.

Now in the case of vibration, the main effect is a displacement in x at time t, which can be represented as

$$\sigma(x;t) = \sigma(x + v(x;t))$$

where v(x;t) is actual displacement at time t. Now the model for the vibration is that there is a vibration-inducing waveform w(t) whose Fourier transform is W(f). We assume that there is a spatial transfer $\Gamma(x;f)$ so that the resultant frequency content from location x is $V(x;f) = \Gamma(x;f)W(f)$, the frequency representation of v(x;t). Utilizing this model allows a natural means to consider what are good waveforms to transmit – specifically, it will be those that allow us to detect unique target vibrational signature in the presence background ground vibrational signatures. This will be discussed in a little more detail later in this section.

Based on this model, and assuming a single tone or a reasonably narrow-to-moderate bandwidth waveform, we have that

$$\sigma(x;t) = \sigma(x)e^{ih(x;t)}$$

where

$$h(x;t) = \frac{v(x;t)}{2\lambda}$$

with λ being the center wavelength. Since the vibrations are typically small relative to a wavelength,

$$\sigma(x;t) \approx \sigma(x) (1 + ih(x;t)) = \sigma(x) + i\sigma(x)h(x;t)$$

and so the model becomes that of

$$s(x;t) = \rho_t * \sigma(x) + i\rho_t * (\sigma(x)h(x;t)) + n(x;t)$$
$$= s_1(x;t) + s_2(x,t) + n(x;t)$$

i.e., we get the original image without vibration plus a piece that is due to the vibration. Now we assume for simplicity that at some local spatial scale, we have a rigid body and everything locally (relative to resolution) is vibrating in the same way.

Now the main claim is that the spatial pattern of the vibration is different between when there is only ground vs. when there is ground with a target. Thus we are doing a hypothesis testing problem based on the data along the lines of

$$H_o: h(x; t) = h_{grd}(x; t)$$
 all x

VS.

$$H_1: h(x; t) = \begin{cases} h_{grd}(x; t) & x \in \mathcal{X}_{\overline{targ}} \\ h_{grd}(x; t) + h_{targ}(x; t) & x \in \mathcal{X}_{targ} \end{cases}$$

Now there are two approaches to this – one is a total model-based approach for the vibrations, which says that we know what vibrational models hold for the ground and the target, and you fundamentally utilize those in terms in detection.

We consider two cases, one in which we first collect a data set without any vibration, and then a second in which we only collect data with vibration. The key concept for the first case is that this scenario allows us to see the first term of the signal model, and utilize that to carry out a careful analysis on what is the additional vibrational signature component, and do detection for target-induced anomaly.

Case 1: Collection of reference (non-vibrating) signal.

Here we present a high-level approach for utilizing this powerful additional information, and significant details would be needed to see how sensitive/valid this proposed approach could be in practice. The main advantage of this approach is that it can rigorously take into account inhomogeneous properties of the ground and isolate those from the vibration movements of the ground. The basic steps of this algorithm are:

Step 1: Estimate $s_1(x; t)$ as $\hat{s}_1(x; t)$

Step 2: Subtract of to get

$$s(x;t) - \hat{s}_1(x;t) \approx s_2(x;t) + n(x;t)$$

Step 3: Apply filtering operation to generate estimate of estimate of h(x; t) – specifically, note that

$$\mathcal{F}s_2(x;t) = i\mathcal{F}\rho_t\mathcal{F}(\sigma \cdot h_t) = i\mathcal{F}\rho_t \cdot (\mathcal{F}\sigma * \mathcal{F}h_t)$$

and so can do some soft-filtering/division of

$$\frac{\mathcal{F}s_2(x;t)}{i\mathcal{F}\rho_t} = \mathcal{F}\sigma * \mathcal{F}h_t$$

and then do a deconvolution with $\mathcal{F}\sigma$ to obtain $\mathcal{F}h_t$. Note that we can utilize a finer-resolution version of σ for this since we can use the whole time-history. These estimated $\hat{h}_t(x)$ can then be processed to assess spatially utilizing CFAR type of analysis and cyclic spectral density hypothesis testing to determine whether there is a target vs. clutter type of vibration occurring.

Case 2: Do not have reference (non-vibrating) image.

In this case we are assuming a sort of regularity or some sort of homogeneity in terms of the vibrational patterns on the surface – this may not be strictly true as we have shown in the analysis section, that the resultant signature does depend on the underlying reflectivity of the ground.

Step 1: In this case, carry out a cyclic-spectral density estimation, that is space-localized in x, i.e., generating

$$\tilde{\mathcal{S}}_{S}(x) = \{\mathcal{S}_{S}(x; \alpha; w); (\alpha, w) \in A_{F}\}$$

Step 2: Generate mean/covariance statistics (stationary in x) in the CFAR region centered at x, i.e., generate mean and covariance of $\{\tilde{S}_{S}(x'); x' \in N_{CFAR}(x)\}$ – this will correspond to null hypothesis means and covariance assuming no target. Denote mean and covariance as $\mu_{o}(x)$ and $\Sigma_{o}(x)$ for the vector $\tilde{S}_{S}(x)$

Step 3: Generate optional alternative mean and/or covariance statistics in the CFAR region based on adding hypothetical class of vibrational types of signatures – based on target and vibrational spectrum – this will correspond to the target hypothesis mean and covariance of $\mu_1(x)$ and $\Sigma_1(x)$ for the vector $\tilde{S}_s(x)$

Step 4: Generate quadratic detection statistic based on Steps 2 and 3, which will be given as

$$\Lambda(x) = \left(\tilde{\delta}_{S}(x) - \mu_{o}(x)\right)^{\top} [\Sigma_{o}(x)]^{-1} \left(\tilde{\delta}_{S}(x) - \mu_{o}(x)\right) + \log\left(\det(\Sigma_{o}(x)) - \left(\tilde{\delta}_{S}(x) - \mu_{1}(x)\right)\right)^{\top} [\Sigma_{1}(x)]^{-1} \left(\tilde{\delta}_{S}(x) - \mu_{1}(x)\right) - \log\left(\det(\Sigma_{1}(x))\right)$$

This is aligned with results in [4] and [5] which verifies that under appropriate conditions the cyclic spectral density has approximately Gaussian distribution with the appropriate mean and covariance formulas. In particular, it only need be approximately cyclostationary as specified in the latter reference. Also, it can be the case that the space of the cyclic frequencies which are in A_F , the interrogation set can be estimated relatively accurately based on latest results in references 3 and 4.

Dynamic Mode Decomposition

Koopman mode decomposition[6], [7], (KMD) is a recently-developed spectral decomposition method for the analysis of nonlinear systems, in which observable data is decomposed into modes with specific complex frequencies (corresponding to oscillation frequencies and/or growth and decay rates). KMD has been successfully applied to a wide range of dynamical systems, including fluid dynamics [8], neuroscience [9], and epidemiology [10], where the calculated Koopman modes' structure and time-dependent behavior can provide insight into the important characteristics of the nonlinear system.

The KMD of an observable g that is a function of time t and initial state space position z_0 is

$$g(t, z_0) = \sum_{j=1}^{\infty} e^{\lambda_j t} v_j(z_0) + e^{\overline{\lambda_j} t} \overline{v_j}(z_0)$$

where the λ_j are the complex Koopman eigenvalues, the v_j are the Koopman modes, and the overbar indicates complex conjugation. The complex eigenvalues consist of a real component, which determines the growth or decay of the given mode, and an imaginary component, which determines the oscillatory frequency of the mode.

Figure 28. (a) shows the spectrum of above ground vibrating plate, (b) the below ground vibrating plate.

In the present system, KMD was considered an appropriate tool to detect the Doppler signal of the acoustically excited buried target. A particular advantage of KMD over Doppler analysis is the separation of Koopman modes both in frequency and in growth/decay. This offers the potential to distinguish between different signal sources at the same (or close by) frequencies, such as hardware noise and the return of an acoustically excited target that overlap in frequency. A pure Doppler spectrum would see only the sum of two such signals and thus mask their true nature, whereas the additional degree of freedom in the Koopman spectrum could allow separating the two signals by their growth/decay behavior (e.g. a transient hardware noise signal would have a large growth/decay rate, while the mode due to a acoustically excited buried target at a slowly change range would have a small growth/decay rate).

Figure 29 (a) shows the eigenvalues of the vibrating plate on the surface, (b) shows the eigenvalues of the buried plate.

Shown here are results of KMD of two measured datasets. The measured system consisted of a metal plate supported by springs in a frame. A mechanical excitation of approximately 20 Hz was applied to the plate to induce vibration. Fig. 11 shows, for both cases, the 2D Koopman spectra and 1D spectral norm (i.e. the norm along the range direction at each frequency). For the above ground case (Fig. 28(a)) the vibration of the plate at the excitation frequency is clearly visible at +/-20 Hz, as well as the harmonic at +/-40 Hz. In the buried case (Fig. 28(b)), the vibration due at the excitation frequency is still clearly visible, and the +/-40 Hz signal is significantly larger than the above ground case, believed to be due to the mixing products resulting from the reflection of the vibratory wave from the sand/air interface.

Fig. 29 shows the complex Koopman eigenvalues for the same two cases (for clarity, only the positive frequency part of the spectrum is shown. The negative frequency part is identical). These demonstrate the additional information content of the complex eigenvalues (consisting of growth/decay and oscillatory components) as compared to the purely oscillatory information obtained from Doppler/Fourier analysis. Each circle represents an eigenvalue, where the horizontal axis shows the real component of the eigenvalue and the vertical axis shows the imaginary component of the eigenvalue. The size and color of each circle shows the norm of the mode corresponding to that eigenvalue. In the above ground case (Fig. 29(a)), the largest norm modes (i.e. those with the most energy) are seen to be at the excitation frequency of 20 Hz and the 40 Hz harmonic, as well as near the 0 frequency DC value. The other eigenvalues are seen to primarily have negative growth rates and their associated modes have much smaller norms, therefore they can be identified as mostly due transient system effects or due to external sources.

The buried case (Fig. 28(b)) shows more complicated dynamics, as multiple eigenvalues corresponding to large norm modes are seen to exist at the 20 Hz excitation frequency and at the 40 Hz harmonic, and include both growing (positive horizontal axis value) and decaying (negative horizontal axis value) modes. This phenomenon is characteristic of buried vibrating objects and is caused by the damping effect of the soil medium on the plate vibration.

REFERENCES

- C. T. Schröder, W. R. Scott, and G. D. Larson, "Elastic waves interacting with buried land mines: A study using the FDTD method," *IEEE Trans. Geosci. Remote Sens.*, vol. 40, no. 6, pp. 1405–1415, 2002.
- [2] W. R. J. Scott, C. Schroeder, and J. S. Martin, "A hybrid acoustic/electromagnetic technique for locating land mines," *IGARSS '98. Sens. Manag. Environ. 1998 IEEE Int. Geosci. Remote Sensing. Symp. Proceedings. (Cat. No.98CH36174)*, vol. 1, pp. 216–218, 1998.
- [3] V. C. Chen, F. Li, S.-S. Ho, and H. Wechsler, "Analysis of Micro-Doppler Signatures," *IEE Proc. Radar, Sonar Navig.*, vol. 150, no. 4, pp. 271–276, 2003.
- [4] A. V Dandawate and G. B. Giannakis, "Statistical tests for presence of cyclostationarity," *IEEE Trans. Signal Process.*, vol. 42, no. 9, pp. 2355–2369, 1994.
- [5] A. Napolitano, "Cyclic statistic estimators with uncertain cycle frequencies," *IEEE Trans. Inf. Theory*, vol. XX, no. X, pp. 1–1, 2016.
- [6] I. Mezić and A. Banaszuk, "Comparison of systems with complex behavior," *Phys. D Nonlinear Phenom.*, vol. 197, no. 1–2, pp. 101–133, 2004.
- [7] I. Mezić, "Spectral properties of dynamical systems, model reduction and decompositions," *Nonlinear Dyn.*, vol. 41, no. 1–3, pp. 309–325, 2005.
- [8] I. Mezić, "Analysis of Fluid Flows via Spectral Properties of the Koopman Operator," *Annu. Rev. Fluid Mech.*, vol. 45, no. 1, p. 121005161233001, 2012.
- [9] B. W. Brunton, L. A. Johnson, J. G. Ojemann, and J. N. Kutz, "Extracting spatialtemporal coherent patterns in large-scale neural recordings using dynamic mode decomposition," *J. Neurosci. Methods*, vol. 258, pp. 1–15, 2016.
- [10] J. L. Proctor and P. A. Eckhoff, "Discovering dynamic patterns from infectious disease data using dynamic mode decomposition," *Int. Health*, vol. 7, no. 2, pp. 139–145, 2015.

nd)	REPORT OF INVENTIC suant to "Patent Rights" Con	DNS AND SUBCO <i>ntract Clause) (See Ins</i>	NTRACTS tructions on ba	ck)				Form Approvi OMB No. 900 Expires Tan 3	ed 0.0095 1.2008
The public reporting burden for this collection of information i reviewing the collection of information. Send comments regar (9000-0095), Respondents should be aware that notwithstandii	s estimated to average 1 hour per res ding this burden estimate or any othe ig any other provision of law, no perso	sponse, including the time for it aspect of this collection of on shall be subject to any pen-	r reviewing instruct information, includi alty for failing to cor	ions, searching existin ng suggestions for re- nply with a collection	ng data sources, ducing the burde of information if	gathering an n, to the De it does not d	d maintainin partment of isplay a curre	ig the data needed, a generative Secutive S entiv valid OMB contro	nd completing an ervices Directoration I number.
PLEASE DO NOT RETURN YOUR COMPLETED F	ORM TO THE ABOVE ORGA	NIZATION. RETURN (COMPLETED FC	DRM TO THE CO	NTRACTING	OFFICER			
1.a. NAME OF CONTRACTOR/SUBCONTRACTOR	c. CONTRACT NUMBER	2.a. NAME OF GOV	ERNMENT PRIMI	CONTRACTOR	c. CONTRACI	I NUMBER		3. TYPE OF REP	ORT (X one)
AKELA Inc	W911NF-16-P-0043	Same as 1.a.			Sai	me as 1.c		a, INTERIM	X b. FINAL
b. ADDRESS (Include ZIP Code)	d. AWARD DA	ATE b. ADDRESS linclude	ZIP Code)			d. AW	ARD DATE	4. REPORTING PERI	(σανωλλλ) ας
Santa Barbara CA 93111	2016081	5 Same as 1.b.				<u> </u>	IOOMINAA	a. FROM 20160	815
		SECTION I - SUBJEC	T INVENTIONS			_		0/107 01 12	±13
5. "SUBJECT INVENTIONS" REQUIRED TO BE REPOR	TED BY CONTRACTOR/SUBCON	ITRACTOR (If "None," so st	'ate)						
NAME(S) OF INVENTOR(S)	TITLE OF	INVENTION(S)	DISCL	OSURE NUMBER, NT APPLICATION	ELEC PATENT	TION TO FIL APPLICATION d.	E VS (X)	CONFIRMATORY OR ASSIGNMEN TO CONTRACTIN	T FORWARDED
LADE, FINST, WILLIE HILLIN			PA	AL NUMBER UN	(1) UNITED STA	(TES (2) I	OREIGN		
a.		b.		°.	(a) YES (b)	NO (a) YES	S (b) NO	(a) YES	ON (9)
NONE									
F. EMPLOYER OF INVENTORIS) NOT EMPLOYED BY CONTRACT F. EMPLOYER OF INVENTORIS NOT EMPLOYED BY CONTRACT	I TOR/SUBCONTRACTOR		9. ELECT	ED FOREIGN COUNTE	SIES IN WHICH A	PATENT AF	PLICATION	WILL BE FILED	
[1] (a) NAME OF INVENTOR (Last, First, Middle Initial)	(2) (a) NAME OF INVENTOR (Las	st, First, Middle Initial)	(1) TITLE	OF INVENTION		(2) FOI	REIGN COUN	ITRIES OF PATENT A	PLICATION
(b) NAME OF EMPLOYER	(b) NAME OF EMPLOYER								
(c) ADDRESS OF EMPLOYER (Include ZIP Code)	(c) ADDRESS OF EMPLOYER (inc	ciude ZIP Code)							
	SECTION II - SU	UBCONTRACTS (Cont	aining a "Paten	t Rights" clause)		_			
6. SUBCONTRACTS AWARDED BY CONTRACTOR/SI	JBCONTRACTOR (if "None," so stat	te)							
NAME OF SUBCONTRACTOR(S) ADDRESS	IInclude ZIP Code)	UBCONTRACT FAR	'PATENT RIGHTS" d,	DESCRIPTIC	ON OF WORK TO	BE PERFOR	MED	SUBCONTRACT DA	TES (YYYYMMOD
'n.	Å	CI (1) CI (1) CI (1) CI (1) CI	AUSE (2) DATE IBER (YYYYMA	5	NUER SUBCONE	(ACI(S)		(1) AWARD	(2) ESTIMATED COMPLETION
Michigan Technological 1400 Townser University Houghton MI,	d Drive, AK 49931-1295	-2016-0815 N	V	Simulation ar with algorith	nd modeling m developm	g develop tent	ment	~	
		SECTION III - CER	TIFICATION						
7. CERTIFICATION OF REPORT BY CONTRACTOR/SU	BCONTRACTOR (Not required if: (X	(as appropriate)) X SN	AALL BUSINESS	Dr	NONPRC	FIT ORGA	NIZATION		
I certify that the reporting party has procedur Inventions" have been reported.	es for prompt identification a	and timely disclosure o	f "Subject Inve	ntions," that suc	h procedures	have bee	en followe	ed and that all "S	ubject
a. NAME OF AUTHORIZED CONTRACTOR/SUBCONTRACTOR	b. TITLE		c. SIGN/	ITURE	*****			d. DATE SIGNED	
OFFICIAL (Last, First, Middle Initial) Boutte, David, A	Senior Electrical Engin	leer	David	Boutte				20170	315
DD EADAN 000 HH 200E	PR	EVIDIS EDITION IS O	RSOLETE					Cormelouth do	he Drofessional 6 (