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and armor, vehicle components, and water security. This potential impact is attributed to the careful design, characterization, and modeling 
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Scientific Progress



Most of the progress achieved during this reporting period included the successful purchase, delivery, and installation of the 
proposed instrument: the Instron E-3000 ElectroPuls tensile analyzer. The E-3000 came equipped with an environmental 
chamber and high temperature grips, which adds versatility to the suite of analytical instrumentation currently available for 
characterizing thermomechanical properties. This instrument offers a wide temperature range of operation from -100 to 350 °C 
and accurately determines the stress and strain of samples under tension. The unit offers a tremendous dynamic load capacity 
range from 30 to 3000 N and a static load capacity with an upper limit of 2100 N. The load accuracy is within +/- 0.5% of any 
reading. Additionally, frame speeds ranging from 0.05 mm/min to 102 m/min offer testing conditions for a wide range of 
materials. Finally, Instron’s onsite training and online customer support is accessible and convenient, and the user-friendly 
WaveMatrix software ensures hassle-free operation of the instrument.  

As described below, the Instron E-3000 captures the necessary features to support our current research efforts and enable new 
directions. The instrument accurately measures the tensile properties of polymer matrix composites, and the low load capacity 
(30 N) enables the analysis of softer composites, which were previously not suitable for fatigue analysis with the instrumentation 
available. Furthermore, the addition of an environmental chamber provides access to relevant testing conditions for materials 
employed in harsh environments such as excessive heat, high altitudes, and even submersed in saline solutions. Obtaining 
thermomechanical property behavior over the entire temperature range of the application window is now possible and allows for 
more accurate prediction of the performance through multiscale stochastic modeling.

The subsequent sections of the progress report are organized into two parts: compressive tests on soft hydrogels (work led by 
Prof. Lenore Dai) and the analysis of mechanoresponsive polymer matrix composites (work led by Prof. Matthew Green).

Compressive test of double network hydrogels using Instron E3000:


The Instron E3000 was able to perform the compressive tests on synthesized double network hydrogels in their wet state. 
All the samples were soaked in water at room temperature for 48 hours after they were synthesized to reach swelling 
equilibrium prior to the test. The tests were all carried out at the room temperature, and three different compression strain rates, 
0.5 mm/min, 0.05 mm/min, and 0.005 mm/min, were explored in the studying the study the effect of ramp rate. Due to the 
toughness of the hydrogels based on the double network system, each sample was compressed to the inhibition position of the 
instrument to maximize the measureable range of the samples’ stress-strain profile. 
Two main goals were achieved by the above compressive tests via Instron E3000: 1) the overall stress-strain curves of the 
synthesized hydrogels were obtained; and 2) the effect of strain rate on the responding mechanical properties of the 
synthesized hydrogels. Figure 1 shows the enhanced mechanical property of PAAm-PAAc double network hydrogel (black) in 
comparison to pure PAAm (red) and PAAc (blue) single phase hydrogels as control samples. Next, Figure 2 shows the effect of 
strain rate in responding stress PAAm-PAAc double network hydrogels.
As noted above, the ability to control the temperature, environmental conditions (e.g., humidity), and potentially submerge the 
hydrogels are future studies of interest that will be explored using the acquired instrument.

Analysis of carbon nanotube-loaded mechanoresponsive polymer matrix composites:


The following summarizes experiments performed as a part of the work supported by the ARO through award number: 
W911NF-16-1-0271. Polymer matrix composites (PMCs) offer design solutions to produce smart sensing, conductive, or high 
performance (i.e., excellent thermomechanical properties) composites for a number of critical Defense applications, including: 
lightweight armor, machine components, electronic casings, antennae, and conduit. Nanoparticle additives, in particular, carbon 
nanotubes and/or metallic nanoparticles, have been investigated for their ability to improve the conductivity, thermal stability, 
and mechanical strength of traditional composites. However, a detailed understanding of nanoparticle dispersion, matrix-
nanoparticle adhesion, and the composite morphology has not been developed fully; furthermore, the ability to predict 
composite failure mechanisms will improve PMC design and longevity. Thus, the following work seeks to tune the interactions 
between fluorescent quantum dots (QDs), fluorescently labeled carbon nanotubes (CNTs), and novel matrix chemistries to 
probe nanoparticle dispersion, composite morphology, and composite failure mechanisms. In particular, we will summarize our 
efforts to load fluorescently modified CNTs into polymer matrices as well as combinations of the QDs and the CNTs. The 
nanoparticles are selected such that they form a FRET pair, which enables observations of changes in fluorescence when the 
materials are placed under a mechanical stress or strain.

The composites investigated were comprised of a 2000 g/mol jeffamine crosslinker cured with bisphenol-A. These networks 
produce rubbery, elastomeric networks. Previous work in our lab investigated the dynamic mechanical behavior of these 
networks with varying amounts of CNTs added, showing that 0.5 wt% CNTs produced the optimal storage modulus and glass 
transition temperature. Figure 3 shows the stress-strain curve for a network to which 0.5 wt% fluorescently modified CNTs were 
added. The CNTs used were acid modified upon arrival, in other words modified with a carboxylic acid group. As observed, the 
networks exhibit a stress at break of approximately 0.24 MPa and a strain at break of 7000%. Also, the networks show a steady 
increase and constant slope at low strains, indicative of a material with high strength. 

Next, networks containing both the fluorescent QDs and the dye-labeled CNTs were prepared. The equivalents of CNTs 
and QDs were kept constant during the formation. Figure 4 shows the stress-strain curve for the resulting composite, which, as 
expected, shows a slight decrease in the stress at break. The networks exhibited a stress at break of approximately 0.18 MPa 
and a strain at break of 7900%. Thus, the networks stretch to a greater extent, but to a lower stress. Also, the jagged curve 



indicates some potential slipping within the grips during the test, indicating further experiments are needed. 
Now, through the tensile analyses presented herein and through previous dynamic mechanical tests, we can begin to utilize 

the dynamic capabilities of the E-3000 mentioned above. In this way, we can perform long term tests on the composites and 
observe changes in fluorescence associated to mechanical fatigue. In this way, a time-resolved and more accurate model of the 
nanoscale motion in composites under stress or strain can be developed. Additionally, testing conditions that mimic extreme 
environments such as high or low temperatures, arid or humid conditions, low or high pressures, underwater and saline 
conditions, etc., will be explored.

Summary:

Following the successful installation of the instrument, the research groups that contributed to the DURIP proposal (i.e., PI 
Matthew Green, and Co-PIs Aditi Chattopadhyay, Lenore Dai, and Mary Laura Lind) have begun to test the applicability of the 
instrument for samples developed within each lab. Student training and sample testing are well underway and the data shown 
herein provides an overview of recent efforts and exciting new data. User training and interest in the instrument have continued 
to expand, which will have a profound impact on DoD-supported research efforts at ASU.

Figures 1-4 are included in the attachments.

Technology Transfer



 

	

Figure	1	The stress-curve from compressive test using Instron E3000 shows the enhanced mechanical property of 
PAAm-PAAc double network hydrogel (black) in comparison to pure PAAm (red) and PAAc (blue) single phase 
hydrogels as control samples. 	

	
	

	
Figure 2. Effect of strain rate in responding stress PAAm-PAAc double network hydrogels. 
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Figure 3. Strain-stress curve for a jeffamine2000-Bisphenol-A network modified with 0.5 wt% 
CNTs modified with a fluorescent dye. 

	
Figure 4. Stress-strain curve for a jeffamine2000-Bisphenol-A network modified with 1:1 
CNTs:QDs, at 0.5 wt% of CNTs. 




