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4. Statement of the Problem Studied: Controlling polymer architecture is an important intrinsic 
material property from an application point of view. This is especially true with the case of cyclic 
aliphatic polyesters that are targeted for specialized applications.1 The increasing interest for 
cyclic polyesters in variety of fields including medical, military, and industrial applications 
demands polymers with enhanced selectivity (chemo-, regio-, and stereoselectivity), molecular 
weight control, molecular weight distribution, and macromolecular topology (star,2 graft,3 and 
hyperbranched4). Significant research has been devoted to the development of precision cyclic 
polyesters via ring-opening polymerization technique, particularly, N-heterocyclic carbenes 
catalyzed cyclic polyesters.5-6 However, specialized applications place more severe demands 
on cyclic polyesters with respect to molecular weight distribution, ring size control and 
macromolecular topology. This underscores need for a method that offers higher degree of 
control over ring size and macromolecular topology of cyclic polyesters. 
 
A primary objective of this project is to develop a highly regulated electrochemically controlled 
reversible release and recovery of N-heterocyclic carbenes to modulate the ring size of cyclic 
polyesters. To achieve reversible release of NHCs, metal dithiolene N-heterocyclic carbene 
([M(NHC)(S2C2R2)2]0 (M = Fe; R = phenyl or anisyl)) adducts were synthesized. Our rationale for 
synthesis of these adducts is that upon subjection to electrochemical reduction, these adducts 
release free NHCs. The reversible release of free NHC release coupled with zwitterionic ring-
opening polymerization would help establish a route to control the ring size of cyclic polyesters. 
As a part of these efforts, we have synthesized several [Fe(NHC)(S2C2R2)2]0 adducts and 
subjected them to bulk electrolysis conditions in presence of suitable organocatalytic 
precursors. A detailed report of these efforts is presented below. 
 
5. Summary of the most important results: To achieve an effective strategy to 
electrochemical modulate the ring size of cyclic polyesters, several criteria need to be met: 1) an 
easy route to access [Fe(NHC)(S2C2R2)2]0 (R = phenyl or anisyl) adducts has to be established 
2) detailed electrochemical and spectroelectrochemical measurements has to be performed on 
these adducts to demonstrate reversible release and recovery of NHCs 3) as a proof of principle 
electrochemically controlled simple organic transformation catalyzed by free NHCs should be 
performed. Once these steps are in place, the use of NHCs for electrochemically controlled 
zwitterionic polymerization can be established. Herein, we report our efforts towards 
electrochemically-controlled reversible released free NHCs to control ring size of cyclic 
polyesters. 
 
Over past several months, effort were directed towards synthesis of [Fe(NHC)(S2C2R2)2]0 (R = 
phenyl or anisyl) adducts and its use in electrochemically controlled organocatalysis reactions. 
Reversible release of triphenylphosphine with five coordinated [Fe(PPh3)(S2C2R2)2]0 adducts 
were successfully demonstrated with electron rich dithiolene adducts bearing phenyldithiolate, 
pdt (S2C2Ph2)2- or anisyldithiolate, adt (S2C2(Anisyl)2)2- ligands.7 Since NHCs and phosphines 
share similar coordination properties, we envisioned that such release would be possible with 
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NHCs. Moreover, it is well documented that free NHCs such as 1,3-bis(2,4,6-
trimethylphenyl)imidazol-2-ylidene (IMes) and 1,3-bis(2,4,6-trimethylphenyl)-4,5-
dihydroimidazol-2-ylidene (SIMes) catalyze zwitterionic ring opening polymerization reactions to 
yield cyclic polyesters.5-6 Hence, we focused our effort towards synthesis of dithiolene-NHC 
adducts [Fe(IMes)(S2C2R2)2]0 and [Fe(SIMes)(S2C2R2)2]0 adducts (R = Ph or anisyl) (1-4) for 
reversible release of NHC as a means to control ring size of cyclic polyesters. 
 
The free carbene precursors IMes[H][Cl]8 and SIMes[H][Cl]9 were prepared using previous 
literature methods. While, iron bis(dithiolene) complexes were generated using the standard 
procedure reported by Schrauzer and his co workers.10 The spectroscopic parameters for the 
prepared complexes were well in accordance with the reported values. Once, the suitable 
precursors were synthesized, efforts were direct towards synthesis of iron bis(dithiolene)-NHC 
adducts as described in Scheme 1. 

All four adducts (1-4) were prepared by reacting free carbene that is generated in situ by 
treating the corresponding imidazolium salts with NaHMDS (sodium bis(trimethylsilyl)amide) 
with the corresponding iron dithiolene dimers (Scheme 1). Compounds 1-4 were confirmed by a 
variety of spectroscopy techniques including, NMR spectroscopy and UV-Vis absorption 
spectroscopy. In 1H NMR, peaks corresponding to mesityl groups for compounds 1-4 were 
observed in between ~2.0 – 2.4 ppm (CDCl3), indicative of presence of mesityl group with 
integrations adding to 6 and 12 hydrogens, respectively. As expected, peaks for pdt and adt (pdt 
= phenyldithiolate, adt = anisyldithiolate) were observed in between 6.8 – 7.3 ppm (CDCl3). In 
13C NMR, Fe-Ccarbene carbon for 1-4 resonates at ~182 ppm (CDCl3), indicative of presence of 
metal-carbene bond. This value was in the range reported for other reported iron-NHC 
complexes (189 ppm in C2D6O).11 To get further insights in to solid-state structure of 1-4, X-ray 
quality single crystals were grown by vial in a vial diffusion method. Solid-state structure of 
complexes 1-4 were probed using single crystal X-ray crystallography. 
 
To assign the formal reduction and oxidation potential of the synthesized adducts cyclic 
voltammetry (CV) experiments and differential pulse voltammetry (DPV) has been carried out 
for compounds 1-4 in THF solvent with [N(nBu)4]PF6 as the supporting electrolyte at 25 oC. All 
peaks were internally referenced to decamethylferrocenene (Fc*+/Fc*). Compounds 1-4 
displayed two reduction peaks and one oxidation peak. The oxidation wave for compound at 
0.50 corresponds to the 1+

, the first redox wave at -0.68 V corresponds to the one electron 
reduced 11- species, and the second irreversible reduction wave is assigned to 12- (Figure 1). 
The irreversibility of the second reduction peak is indicative of cleavage of iron-Ccarbene bond.12 

Electrochemical potential displayed by other 1-4 are displayed in Table 1. 
 
 
 

	
Scheme 1: Synthesis of iron bis(dithiolene) NHC adducts. 
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Table 1. Redox potentials of Fe-bis(dithiolene) NHC adducts determined by CV at -20 oC. 
 

Adduct E1/2 (V) 
(1+/0) 

E1/2 (V) 
(0/1-) 

E1/2 (V)  
(1-/2-) 

1 0.50 -0.68 -1.9 
2 0.53 -0.74 -1.9 
3 0.35 -0.77 -2.0 
4 0.44 -0.78 -1.95 

 
To understand the electronic excitations of the iron-bis(dithiolene) N-heterocyclic adducts, 
compounds 1-4 were subjected to UV-Vis spectroscopy in THF. All four compounds (1-4) 
displayed distinctive absorption around 681 nm, 672 nm, 704 nm and 697 nm, respectively, 
attributed to intervalence ligand to ligand charge-transfer (Figure 1). It is important to note that 
the corresponding charge-transfer band is absent in dimer [FeS2C2R2)2]0. 

 

 
Figure 2. UV-Vis absorption spectroscopy of the 1-4 in THF. 
 
From CV measurements of 1, it was observed that second electron reduction is irreversible, 
indicative of iron-carbene bond dissociation and concurrent formation of free NHC and dianion 
dimer [FeS2C2R2)2]2- in the solution. This phenomenon was further confirmed by 
spectroelectrochemical analysis. This experiment was carried out in a special electrochemical 
quartz cell fitted with Pt mesh working electrode, Pt counter electrode and silver wire quasi-
reference electrode. Bulk reduction of 1 at -2.0 V (vs. AgCl) and concomitant UV measurement 
was carried out and UV-Vis absorption measurement was recorded for every 30 sec. The 
intervalence interligand-charge transfer absorption peak slowly reduced up on reduction and 
after several seconds the complex was completely reduced which is inferred by the complete 
suppression of the charge transfer peak (Figure 2). 
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Figure 3. Spectroelectrochemistry of 1 in THF solvent at 25oC with [N(n-Bu)4][PF6] as the 
supporting electrolyte. 
 
Cyclic voltammetry and spectroelectrochemical measurements strongly suggest that the release 
of free NHC upon bulk reduction of compound 1. As proof of principle we choose free NHC 
catalyzed conjugate umpolung reactivity of unsaturated aldehyde as recently disclosed by 
Glorius and his co-workers.13 For this, IMes catalyzed γ-butyrolactone synthesis starting from 
cinnamaldehyde was chosen as the substrate.13 Bulk electrolysis of 1 was conducted in a two 
compartment cell separated by glass frit at 25 oC in 20 ml of 0.1M [N(n-Bu)4]PF6 as the 
supporting electrolyte in THF. Platinum mesh working electrode, Pt mesh counter electrode and 
Ag/Ag+ non-aqueous reference electrode were used as the required electrodes. Compound 1 
was taken in the working electrode compartment and bulk electrolysis was carried out holding at 
–2.25 V. After complete reduction (10/12-), the reduced electrolysis solution was pipetted in to a 
20 ml vial containing trans-cinnamaldehyde and left for stirring at room temperature. After 24 h a 
drop of solution drawn from the reaction mixture was spotted against the starting reagents on 
the TLC plate. γ-butyrolactone was isolated in 33% yield as presented in Scheme 2. Our current 
efforts are directed towards using this methodology to generate cyclic polyesters. Once this is 
successful, in situ generation, followed by electrochemical reversible release will be performed 
to control ring size of cyclic polyesters. 
 

 
Scheme 2. Electrochemically generated carbene catalyzed synthesis of γ-butyrolactone. 
 
Conclusion 
In sum, we have isolated several [Fe(NHC)(S2C2R2)2]0 adducts in good yields by treating free 
carbene with corresponding dithiolene dimers. The adducts were fully characterized by NMR, X-
ray crystallography, electronic and spectroelectro chemistry. Upon bulk reduction of compound 
1, free carbene is released and the electro generated free carbene was used for synthesis of γ-
butyrolactone. Further expanding this concept to cyclic polyester synthesis would allow to 
precisely control the ring size of cyclic polyesters. The time lag behind every successive 
reduction and oxidation cyclic would determine the exact ring size of the polymer.  
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Syntheses of Iron(bis-dithiolene) NHC adducts: A 10 mL scintillation vial with stir bar was 
charged with IMes.HCl (100 mg, 0.29 mmol), NaN(SiMe3)2 (58 mg mg, 0.31 mmol) and 4 mL of 
dry THF. The resulting mixture was stirred at 25 oC for 45 mins, which resulted a yellow solution 
with white suspension. The heterogeneous mixture was filtered in to a clean 20 mL scintillation 
vial containing [Fe(Ardt)2]2 (0.145 mmol) in 2 mL THF. An immediate color change was noticed 
from blue-green solution to black solution. The resulting mixture was stirred at rt for 12 h. The 
black colored solution was filtered through pad of celite and dried. To dried black residue was 
dissolved in minimum amount of dichloromethane solvent and precipitate out the compound 
using hexane 15 mL. the resulting black precipitate further washed with ether and dried under 
vacuum for 24 h. 

Compound 1: 110 mg, 90% yield; 1H-NMR (300 MHz, CDCl3): d 7.31-7.28 (m, 8H), 7.22-7.18 
(m, 12H), 6.96 (s, 4H), 6.84 (s, 2H), 2.36 (s, 6H), 2.00 (s, 12H). 13C-NMR (75 MHz, CDCl3): d 
182.18, 143.19, 139.13, 136.82, 135.80, 129.65, 129.31, 127.69, 127.00, 126.77, 21.41, 18.60. 

Compound 2: 103 mg, 84% yield; 1H-NMR (300 MHz, CDCl3): d 7.28-7.26 (m, 8H), 7.23-7.18 
(m, 12H), 6.95 (s, 4H), 3.72 (s, 4H), 2.34 (s, 6H), 2.26 (s, 12H). 13C-NMR (75 MHz, CDCl3): d 
181.3, 143.06, 138.20, 137.26, 136.39, 129.62, 127.65, 127.02, 51.97, 21.35, 18.75. 

Compound 3: 129 mg, 92% yield; 1H-NMR (300 MHz, CDCl3): d 7.27-7.24 (m, 8H), 6.94 (s, 
4H), 6.82 (s, 2H), 6.76-6.73 (m, 8H), 3.82 (s, 12 H), 2.36 (s, 6H), 2.00 (s, 12H); 13C-NMR (75 
MHz, CDCl3): d 181.05, 158.68, 138.94, 136.80, 136.51, 135.87, 130.73, 129.17, 126.63, 
113.09, 55.33, 21.49, 18.62.  

Compound 4: 122 mg, 87% yield; 1H-NMR (300 MHz, CDCl3): d 7.21-7.28 (m, 8H), 6.90 (s, 
4H), 6.73-6.70 (m, 8H), 3.79 (s, 12H), 3.64 (s, 4 H), 2.33 (s, 6H), 2.22 (s, 12H). 13C-NMR (75 
MHz, CDCl3): d 180.32, 158.70, 138.03, 137.29, 136.48, 136.39, 130.72, 129.53, 113.06, 55.33, 
51.94, 21.42, 18.77. 

Organocatalysis of in situ electrochemical generated carbene: Synthesis of g-
Butyrolactone 
10 ml of the electrolye solution TBAPF6 (0.1M in degassed THF) was transferred to the both 
compartment of the electrochemical cell. (0.02 mmol) of the catalyst 3aa was dissolvend on 
working electrode compartment. Working electrode (Pt mesh) and reference electrode (Ag/Ag+ 
in MeCN) were immersed to one side compartment and Pt mesh counter electrode is immersed 
on the other compartment. Electrolysis was conducted at -2.25 V potential. After completing the 
electrolysis, the solution inside the working electrode compartment was transferred in to a 20 ml 
vial containing trans-cinnamaldehyde (0.4 mmol, 53 mg) and the solution was stirred for 24 h. 
After evaporating the THF solvent, 3 x 10 ml (90:10 Ether:DCM) mixture was used to extract the 
product from residue. The extract was dried and followed by silica gel column purification using 
hexane: EtOAc (10%) elution solvent offered the g-butyrolactone in 33% yield (18 mg), 89:11 dr. 
1H-NMR (300 MHz, CDCl3): 7.21-7.28 (m, 8H), 6.90 (s, 4H), 6.73-6.70 (m, 8H), 3.79 (s, 12H), 
3.64 (s, 4 H), 2.33 (s, 6H), 2.22 (s, 12H). 13C-NMR (75 MHz, CDCl3): 180.32, 158.70, 138.03, 
137.29, 136.48, 136.39, 130.72, 129.53, 113.06, 55.33, 51.94, 21.42, 18.77. 
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