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In this project, we put together a holistic solution framework for learning problems where there are adversaries. As a starting point, we
modeled the adversarial machine learning as a Stackelberg game, where the machine learning model builder and the adversary make
sequential moves, and each player aims to maximize its own utility. Our game theoretic approach is to avoid constantly adapting to the
adversary’s actions. Instead, we focus on a learning algorithm’s long term performance, i.e., its equilibrium performance. At an equilibrium,
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consistent performance universally.
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1 Statement of the Problem Studied

Many real world applications, ranging from spam filtering to intrusion detection, are facing malicious
adversaries who actively transform the objects under their control to avoid detection. Unfortunately, traditional
machine learning techniques are insufficient to handle such adversarial problems directly. Adversaries change
the dynamics in standard settings where machine learning techniques are designed to excel. They adopt their
attacks to deceive the machine learning models built using the past data. Therefore, data encountered at
application time and data used at training time do not necessarily resemble each other. As a result, despite
assurance of the contrary at the model training time, the accuracy of the trained machine learning models
start to derail and become unreliable.

In this project, we put together a holistic solution framework for learning problems where there are
adversaries. As a starting point, we modeled the adversarial machine learning as a Stackelberg game, where
the machine learning model builder and the adversary make sequential moves, and each player aims to
maximize its own utility. Our game theoretic approach is to avoid constantly adapting to the adversary’s
actions. Instead, we focus on a learning algorithm’s long term performance, i.e., its equilibrium performance.
At an equilibrium, neither the defender nor the adversary has an incentive to change its action. Based on the
learning algorithm’s equilibrium performance, we are able to address many questions, such as predicting
adversary’s most likely actions, identifying which learning algorithms are least susceptible to attacks, and
developing counter measures against potential adversaries. Finally, we expanded our problem to take into
account multiple adversaries of various unknown types. We developed a nested Stackelberg game framework
to find an optimal mixed strategy that provides consistent performance universally.

Our game theoretic framework is very general and applies to many security applications. The research
funded as a part of this grant has lead us to discover important results and insights. One important insight
from our work is about how to select the right features for increasing the robustness of the machine learning
algorithms [3]]. Guided by a learning algorithm’s equilibrium performance, we must jointly consider different
aspects of a feature, including: 1) its modification cost, i.e., how expensive it is for an attacker to modify this
feature that is used by the machine learning model; 2) its effectiveness, i.e., its power to differentiate different
object classes such as malware vs benign software. Focusing on only one aspect of a feature leads to poor
results. For example, for malware detection, we notice initially useful features such as signatures extracted
from a binary executable could be easily modified, and become useless quickly in the near future. On the
other hand, a hard-to-modify feature such as system calls could be useless if such system calls are also used
by legitimate software. Our game theoretic framework can assist practitioners to jointly evaluate the features
and select the right ones for their machine learning models.

Another important insight from our work is to consider different types of adversaries with different
capabilities and goals. For example, focusing on unsophisticated attackers that can only use the existing tools
is not enough. At the same time, assuming all the attackers are sophisticated state-funded attackers is not
necessary and may even make it harder to catch the crude attackers. To address these challenges, we show
how classifiers, each tailored for a specific type of attackers, can be optimally combined into a defensive
system against different types of adversaries [7].

Besides the general game theoretic framework itself, the insights we gained from the framework can be
used to directly construct robust machine learning techniques. For example, by leveraging the game theory
inspired ideas, we have developed a robust support vector machine (SVM) technique that has overall good
performance against various potential malicious attacks [8]]. In our other work, we showed how to develop
more robust relevance vector machines [[10]],and robust Bayesian hierarchical mixtures of experts [[6].



2 Summary of the Most Important Results

Below, we provide overview of our major results. In section we discuss our generic Stackelberg
framework and how it can be used for feature selection. In section [2.2] we discuss our adversarial support
machine model. In section [2.3] we discuss our robust relevance vector machine learning framework. In
section[2.4] we discuss our robust Bayesian hierarchical mixtures of experts model learning. In section
we provide an overview of our award winning generic learning framework that is resistant against multiple
types of adversaries. Finally, in section[2.7] we conclude by summarizing the major accomplishments of the
team members during the project period.

2.1 Stackelberg Games and Feature Selection [3]]

Our first work is guided by a game theoretic framework initially developed for understanding and reasoning
about several adversarial classification applications. In our model, the adversarial classification scenario
is formulated as a two class problem, where class one () is the “good” class and class two () is the
“bad” class. Assume ¢ attributes are measured from an object coming from either classes. We denote the
vector of attributes by x = (x1, 2, ...,2,)". Furthermore, we assume that the attributes of an object x
follow different distributions for different classes. Let f;(x) be the probability density function of class m;,
1 = g or b. The overall population is formed by combining the two classes. Let p; denote the proportion
of class 7; in the overall population. Note p, + p, = 1. The distribution of the attributes x for the overall
population can be considered as a mixture of the two distributions, with the density function written as
J(x) = pgfe(x) + o fo(x).

We assume that the adversary can control the distribution of the “bad” class 7, (e.g., malware class). In
other words, the adversary can modify the distribution by applying a transformation T to the attributes of an
object x that belongs to 7, (e.g., by applying binary obfuscation techniques). Hence f;(x) is transformed
into fgr (x). Each such transformation comes with a cost; the transformed object is less likely to benefit the
adversary, although more likely to pass the classifier. When a “bad” object from 7, is mis-classified as a
“good” object into 7, it generates profit for the adversary. A transformed object from fl;r (x) generates less
profit than the original one. In our prior work, we assume that the values of p, and p, are not affected by
transformation, meaning that the adversary transforms the distribution of 7y, but in a short time period cannot
significantly increase or decrease the proportion of “bad” objects. However, for Bayesian classifier p;, and p,
are just parameters that define the classification regions. They can be transformed by the adversary and be
adjusted in Bayesian classifier to optimize the classification rule by the learner. Here we examine the case
where a rational adversary and a rational learner play the following game: 1) Given the initial distribution
and density f(x), the adversary chooses a transformation T from the set of all feasible transformations S,
the strategy space; 2) After observing the transformation T, learner creates a classification rule h.

Consider the case where learner wants to minimize its mis-classification cost. Given transformation T
and the associated f; (x), the learner responds with a classification rule h(x). Let L(h,4) be the region
where the objects are classified as 7; based on h(x) for i = g or b. Let the expected cost of mis-classification
be C(T, h), which is always positive. Define the payoff function of the learner as uy4 (T, h) = —C(T,h). In
order to maximize its payoff u,, the learner needs to minimize the mis-classification cost C(T', h).

Note that adversary only profits from the “bad” objects that are classified as “good”. Also note that
transformation may change the adversary’s profit of an object that successfully passes detection. Define
g(T, x) as the profit function for a “bad” object x being classified as a “good” one, after transformation T
being applied. Define the adversary’s payoff function of a transformation T given a classification rule h as
the following:

(T, h) = / o AT
9



Within the vast literature of game theory, the extensive game provides a suitable framework for us to
model the sequential structure of adversary and learner’s actions. Specifically, the two-player Stackelberg
game suits our need. In a Stackelberg game, one of the two players (Leader) chooses an action ay, first and
the second player (Follower), after observing the action of the leader, chooses an action a4. The game ends
with payoffs to each player based on their utility functions and actions. In our model, we assume all players
act rationally throughout the game. For the Stackelberg game, this implies that the follower responds with the
action a4 that maximizes its utility u, given the action ay, of the leader. The assumption of acting rationally at
every stage of the game eliminates the Nash equilibria with non-credible threats and creates an equilibrium
called the subgame perfect equilibrium. In this project, we showed that such a model could be used to choose
a set of features that balance between modification-cost and classification-effectiveness by examining the
equilibrium performance of the above game theoretic model.

2.2 Adversarial Support Vector Machine Learning [8]

In our continued work, we developed an adversarial learning framework in which we model the adversary’s
attack strategies and developed robust learning models to mitigate the attacks. We consider two attack models:
a free-range attack model that permits arbitrary data corruption and a restrained attack model that anticipates
more realistic attacks that a rational adversary would deploy under penalties. We developed optimal SVM
learning strategies against the two attack models. We demonstrated that it is possible to develop a much
more resilient SVM learning model under loose assumptions about the data corruption models (e.g., loose
assumption on attacker transformation T').

Problem Definition:

Let {(zi,y:) € (X,Y)}, denote a sample set, where x; is the i'" sample and y; € {—1, 1} is its label,
X C R%is a d-dimensional feature space, n is the total number of samples. We consider an adversarial
learning problem where the adversary modifies malicious data to avoid detection and hence achieves
his planned goals. The adversary has the freedom to move only the malicious data (y; = 1) in any
direction by adding a non-zero displacement vector §; to x;|y,—1.

2.2.1 Adversarial Attack Models

We construct two attack models—free-range and restrained, each of which makes a simple and realistic
assumption about how much is known to the adversary. The models differ in their implications for 1) the
adversary’s knowledge of the innocuous data, and 2) the loss of utility as a result of changing the malicious
data. The free-range attack model assumes the adversary has the freedom to move data anywhere in the
feature space. The restrained attack model is a more conservative attack model. The model is built based on
the intuition that the adversary would be reluctant to let a data point move far away from its original position
in the feature space. The reason is that greater displacement often entails loss of malicious utility.

max
‘ J
and z"}"" be the largest and the smallest values that the 4" feature of a data point x;—x;j—can take. For all

Free-Range Attack The only knowledge the adversary needs is the valid range of each feature. Let «

practical purposes, we assume both 2";** and x’?m are bounded. For example, for a Gaussian distribution,
they can be set to the 0.01 and 0.99 quantiles. The resulting range would cover most of the data points and
discard a few extreme values. An attack is then bounded in the following form:

Cpat™ — mij) < 655 < Cp(al7™ — i), Vi € [1,d),
where C'y € [0, 1] controls the aggressiveness of attacks. C'y = 0 means no attacks, while C'y = 1 corresponds
to the most aggressive attacks involving the widest range of permitted data movement.



Restrained Attack Let z; be a malicious data point the adversary aims to alter. Let z!, a d-dimensional
vector, be a potential target to which the adversary would like to push z;. The adversary chooses z! according
to his estimate of the innocuous data distribution. Ideally, the adversary would optimize z! for each ; to
minimize the cost of changing it and maximize the goal it can achieve. More realistically, the adversary
can set z} to be the estimated centroid of innocuous data. In most cases, the adversary cannot change x;
to x! as desired since z; may lose too much of its malicious utility. Therefore, for each attribute j in the
d-dimensional feature space, we assume the adversary adds d;; to x;; where

10ij] < |af; — 2], Vj € d.

The restrained-attack model is given as follows:

0< (xf] — x45)0i5 < Ck (1 —Cs

zt — wij
7’ 4 ol (xfg — x5)?

|| + |2l

where C5 € [0, 1] is a constant modeling the loss of malicious utility as a result of the movement d;;, and
C¢ € [0, 1] is a discount factor directly used to model the severeness of attacks.

2.2.2 Adversarial SVM Learning

We build an adversarial support vector machine model (AD-SVM) against each of the two attack models. We
assume the adversary cannot modify the innocuous data. Note that this assumption can be relaxed to model
cases where the innocuous data may also be altered.

AD-SVM against Free-range Attack Model Given the hinge loss model as follows:

max|1l — (w- (x; + ;) +0b ify, =1
sy < MO8 £ iy
1+ (w-zi +b)]+ ify; =—1
s.t.
(SZ' j Cf(xmax — xz)

0; = Cf(xmm — ;)

where d; is the displacement vector for x;, < and > denote component-wise inequality, following the standard
SVM risk formulation and further reducing the bilinear problem to its asymmetric dual problem over u; € R,
v; € R? where d is the dimension of the feature space, we have the following SVM risk minimization
problem:
arg min %HwHQ—FCzifi
w,b,&3,ti,u5,0
s.t. & >0
&>1—yi (w-ai+b)+t
ti=3;Cy (%‘j(x?“‘”” — wij) — wig (2" = xz‘j))
U — V; = %(1 + yi)w
Ug i 0
v; = 0



AD-SVM against Restrained Attack Model With the restrained attack model, we modify the hinge loss
model and solve the problem following the same steps:

max|1— (w- (zi +6:) +b)]+ ifyi=1

hw,b,mi = i
( ) { |1+ (w-x; + )]+ ify, = —1

s.t.

(2t — w5) 0.8 = Cg (1 - Co i) o (2l — )2

i zi[Fla]

(2t — )08, =0

(2

where ¢§; denotes the modification to z;, < is component-wise inequality, and o denotes component-wise
operations. We solve the following SVM risk minimization problem:

arg min %HwHQ—i-CZZ-&

w,b,&; i ,u4,0;

s.t. §& >0
§i>1l—yi-(w-z+b)+t
ti > >, it
(—ui +vi) o (zf — z;) = 3(1 4+ yi)w
U; i 0
(%3 i 0

where

|zt — x4
eij = C& (1 — 05137” (:L‘ij — :Cij)2.

|| + |2

2.2.3 Overview of the Experimental Result

In our experiments, we investigate the robustness of the AD-SVM models as we increase the severeness of
the attacks. Attacks on the test data used in the experiments are simulated using the following model:

5ij = fattack(xi_j - $ij)

where z; is an innocuous data point randomly chosen from the test set, and fu¢qck > 0 sets a limit for the
adversary to move the test data toward the target innocuous data points. By controlling the value of futtqck»
we can dictate the severity of attacks in the simulation. The actual attacks on the test data are intentionally
designed not to match the attack models in AD-SVM so that the results are not biased. For each parameter
C¢, Cs and Cg in the attack models considered in AD-SVM, we tried different values as fu44c1 increases.
This allows us to test the robustness of our AD-SVM model in all cases where there are no attacks and attacks
that are much more severe than the model has anticipated. We compare our AD-SVM model to the standard
SVM and one-class SVM models. Table[T]and Table 2] show the results on the spam base data set. AD-SVM,
with both the free-range and the restrained attack models, achieved solid improvement on this data set. Cs
alone is used in the restrained learning model. Except for the most pessimistic cases, AD-SVM suffers no
performance loss when there are no attacks. On the other hand, it achieved much more superior classification
accuracy than SVM and one-class SVM when there are attacks.

2.3 Sparse Bayesian Adversarial Learning Using Relevance Vector Machine Ensembles [10]

In this part of the project, we explore a new proactive defense strategy in which at training time we search for
the most effective direction for the adversary to move data in the feature space to influence the classifier. Once



Table 1: Accuracy of AD-SVM, SVM, and one-class SVM on the spambase dataset as attacks intensify. The
free-range attack is used in the learning model. C'y increases as attacks become more aggressive.

fattack =0 fattack =0.3 fattack =0.5 fattack = 0.7 fattack =1.0
Cy=0.1 0.882 0.852 0.817 0.757 0.593
Cy=03 0.880 0.864 0.833 0.772 0.588
AD-SVM | Cr=0.5 0.870 0.860 0.836 0.804 0.591
Cy=0.7 0.859 0.847 0.841 0.814 0.592
Cy=09 0.824 0.829 0.815 0.802 0.598
SVM 0.881 0.809 0.742 0.680 0.586
One-Class SVM 0.695 0.686 0.667 0.653 0.572

Table 2: Accuracy of AD-SVM and SVM on spambase dataset as attacks intensify. The restrained attack
model is used in the learning model. Cs decreases as attacks become more aggressive.

fattack =0 fattack =0.3 fattack =0.5 fattack =0.7 fattack =10

Cs=09 0.874 0.821 0.766 0.720 0.579

AD-SVM | C5=0.7 0.888 0.860 0.821 0.776 0.581
Ce = 1) Cs=0.5 0.874 0.860 0.849 0.804 0.586
¢ Cs=03 0.867 0.855 0.845 0.809 0.590
Cs=0.1 0.836 0.840 0.839 0.815 0.597

SVM 0.884 0.812 0.761 0.686 0.591
One-class SVM 0.695 0.687 0.676 0.653 0.574

we find such a direction, we can improve the classifier by countering these potential moves. The learning
model we choose to implement this strategy is the relevance vector machine. Similar to the support vector
machine method, the relevance vector machine (RVM) is a sparse linearly parameterized model. It is built
on a Bayesian framework of the sparse model. Unlike the support vector machine in which a penalty term
is introduced to avoid over-fitting the model parameters, the relevance vector machine model introduces
a prior over the weights in the form of a set of hyperparameters, one associated independently with each
weight. Very large values of the hyperparameters (corresponding to zero-weights) imply irrelevant inputs.
Training data points associated with the remaining non-zero weights are referred to as relevance vectors. The
relevance vector machine typically use much fewer kernel functions compared to the SVM.

We developed a sparse relevance vector machine ensemble for adversarial learning. The basic idea of
this approach is to learn an individual kernel parameter 7; for each dimension d; in the input space. The
parameters are iteratively estimated from the data along with the weights and the hyperparameters associated
with the weights. The kernel parameters are updated in each iteration so that the likelihood of the positive
(malicious) data points are minimized. This essentially models adversarial attack as if the adversary were
granted access to the internal states of the learning algorithm. Instead of using fixed kernel parameters, we
search for kernel parameters that simulate worst-case attacks while the learning algorithm is updating the
weights and the weight priors of a relevance vector machine. We learn M such models and combine them to
form the final hypothesis.

2.3.1 Kernel Parameter Fitting

The RVM training process iteratively updates the weight vector w and the hyperparameter vector o. Imagine
in each iteration the adversary has an opportunity to modify the training data, particularly the positive



(malicious) training data, so that it could cross the decision boundary inferred in the current iteration. What
would be the best strategy for the adversary to modify the data? If the adversary has the freedom to move
each data point in his own favor, he would follow the directions that increase the likelihood of misclassifying
a positive instance the greatest.

Kernel Parameter Vector Consider the RBF kernel
K (i, ;) = exp(—n - ||z — z;]?)

where 17 = (11, ..., 7q) is a vector of d parameters, and 7y, is its k" parameter preceding the squared distance
(@i, — x5 %)? in the k*" input dimension. Normally, there is only one kernel parameter and its value is typically
determined through cross-validations. We use individual kernel parameters so that we can model adversarial
data modification in each dimension. For example, when the adversary modifies the k" dimension such that
Tk = Tk, the same effect can be achieved by having 7, ~ 0. Therefore, by adjusting the kernel parameter
of the k*" dimension of the input, we could model adversarial attacks in both the input space and the feature
space. We can then update the weight parameter and the corresponding hyperparameters to counter the
attacks.

Attacks Minimizing the Log-Likelihood Assuming the adversary is only interested in disguising positive
data|'} during RVM training we search for a kernel parameter vector 7 that renders the most effective attacks
on positive training instances. With a given w and «, we update for all positive instances 7 in the direction
that decrease £ —the log-likelihood of the posterior distribution p(y|w, ) given as follows:

N

plylw) = ] g(h(zs;w))¥ [ — g(h(zs;w))]' ¥ (1)

i=1

where g(t) is the sigmoid function g(¢) = 1/(1 + e~*) applied to ¢. Taking the logarithm of both sides of
Equation (), we have:

N

log(p(tlw)) = [yilog(o:) + (1 — y;)(1 — log(0:))] 2)

=1

where o; = g(h(z;; w)) is the output of the sigmoid function. Let £ = log(p(t|w)) = L4 + L_, where

N N
Ly = Zyilog(ai) and £L_ = Z(l —yi)(1 —log(ay)).
i=1 i=1
The gradient of £ given in (2)) with respect to the 7, is:
/. f: EN: oL OK;;
ony, po j—l OK;j Ony
B ZZ 8£+ oL_ )8Kij
=1 j=1 8KZ] 8Kij 877k

!This is a reasonable assumption since it is typically harder for adversaries to influence negative (legitimate) data.



where Kj; is the kernel function K applied to the ith and j*" input z; and x j. To model attacks on the positive
instances, we negate %, and use the following for a gradient-based local optimization over #:
ij

N
- oL, | oL 0Ky
g= ;]2( 0K;; - aKij) o~ ©)

Working out each term, we have:

oL 1 do;  Oh
8Ki‘ a; 8}1 GKU

L.y . L Do Oh
0Ky YT o, on 0K,
= —(1—w) 0 w,
0K;;
i G zjt)?
Therefore,
N N
G= > —(yi—0i) wj- Kij - (w —z5,)°
i=1 j=1

which will be the basis for updating 7 in each iteration of training a relevance vector machine.

2.3.2 Overview of the Experimental Result

We model the attacks at classification time by moving positive test instances closer to randomly selected
negative instances plus local random noise. Attacks on the test data are designed to challenge all the learning
models at increasingly more difficult levels. The difficulty is controlled using the attack factor f,sqck. More
specifically,

x;; = x;; + fattack - (.Tz_j — ;z;;;) NP @

where € is local random noise. Notice f,110cx = 1 models the worst case attacks where a positive data point
is arbitrarily close to a negative one within the range of the random local noise. We compare four learning
models: AD-RVM, RVM, SVM, and One-class SVM. On an artificial data set, we can clearly see how
the adversarial RVM adjusts its decision boundary to counter adversarial attacks. The adjustment includes
shifting and curving toward the negative data points as shown in Figure

Table 4{ shows the classification error rates of the four learning algorithms on the webspam E] data set. The
results are averaged over 10 random runs. As can be observed, adversarial-RVM is clearly superior to the
other three models.

“http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Figure 1: Adjustment to decision boundary to take into account potential adversarial attacks. Solid lines in
the plots illustrate the decision boundary.

Table 3: Classification errors of AD-RVM, RVM, SVM, and 1-class SVM on the webspam dataset. Best
results are bolded.

fattack
0.1 0.3 0.5 0.7 0.9

AD-RVM 0.2426 0.2926 0.3373 0.4945 0.5866
RVM 0.2355 0.3169 0.4541 0.5560 0.5876
SVM 0.2725 04725 0.5604 0.6061 0.6061

One-class SVM | 0.3155 0.5625 0.5945 0.6009 0.5997

2.4 Adversarial Learning with Bayesian Hierarchical Mixtures of Experts [6]

As adversaries become more sophisticated, their abilities of making versatile attacks grow. As a result,
learning tools used in security applications are facing increasingly unpredictable and rapidly changing attacks.
This calls for more flexible modeling techniques to handle ambiguities in the corrupted input. In this part
of the project, we developed an adversarial learning framework using Bayesian hierarchical mixtures of
experts (HME) as the baseline learning model. Our framework implements an optimal attack strategy that
minimizes the likelihood of malicious data in each round of learning and a divide-and-conquer learning
model that counters this type of adversarial attack. The learning process resembles the two-sided arms race
by interactively manipulating data against the classifier.

The hierarchical mixtures-of-experts is a tree-structured probabilistic learning model. Unlike standard
decision trees such as ID3, HME provides a soft split of data in the input feature space, allowing data to lie in
multiple nested regions. The learning task is therefore divided into a set of overlapping sub-tasks of smaller
sizes that are solved by components of the mixtures. The internal nodes are referred to as gating networks
that score the competence of the experts located at the terminal nodes, for each input. Both internal and
terminal nodes are input-sensitive predictors. When the adversary modifies the input vector of a data point,
the outputs of both gating networks and expert networks are affected. By corrupting the input, the adversary
can either poison the solutions of sub-tasks defined on soft partitions of the input or divert data away from the
most probable path it is generated.

24.1 Robust Learning with Sparse Bayesian Hierarchical Mixtures of Experts

We consider the following adversarial learning problem in which an adversary alters malicious data to
evade detection at test time. Here the traditional assumption that training data and test data follow identical
distributions is violated.



Problem Definition:

Train a robust HME classifier C given {(z;,y;) € (X, V)}., where X CRY, y; € {—1,1} and there
exists an adversary A at test time that transforms a malicious data point x|y—; to a (likely) legitimate
one by adding a displacement vector Az to x|y—.

Attacking Expert Networks We use the sparse Bayesian learning method with Gaussian kernels to train
the expert networks. For regression the marginal likelihood of the experts is:

1 _
Ly(a) = —5[log|D| +y" D'y

where D = 02T + ¢p A~ ¢T. The gradient of the likelihood L, (cx) with respect to the k" kernel parameter

Ny 18:
oL, 8@]
877k ;Z 8¢z] ank
where
oL, 1 —1 T y—1\T 1. Tp—1.4-1
9o —5l2A7 ¢ D7) —2D" yy D™ AT ]
ij
= [D7lyy' D™ -~ D7 pA™!
0,
(‘;Z;: —dij (i, — j1)?

For binary classification with logistic sigmoid output, the likelihood of the expert is:

N
Ly(a) = Z (yilog(o7) + (1 — yi) (1 — log(03)))

where o; is the logistic sigmoid output given input . The gradient of L, (cx) with respect to 7, is:

Z Z j - bij - (i — zj)?

ank =1 j=1
With the gradient 0L, /0n, our adversarial learning proceeds as we search for
O(w, a, ) = argmax(L, + arg m1n(L+ +45)) ®)
o,w

where 60 includes the learning model (the expert parameters w, cx) and the attack model (the kernel parameter

n), and {5 = Zz 1y — Z%Zl g7(n)P (y:))? is the square loss and
N M N

é%k:_a DD DSk (L — g yomsdis (@i — wjn)

i=1 m=1 j=1

where 6; = y; — Z?& gr(fz)Pj(yi)-

The learning process is best understood as an arms race between the expert and the adversary: given
expert parameters (w, ), the adversary finds an 7 that minimizes the likelihood of the malicious data points,
referred to as positive (‘+’) data points in the input. Note that in the minimization term in Equation () the
adversary also attempts to minimize the square loss of the output. This may sound counter intuitive since
minimizing training loss is not to the best interest of the adversary. A greedy adversary would attempt to
maximize the loss of all malicious points. However, a simple validation on the training set would disclose the
adversary’s attempts. Therefore, the adversary’s objective is to minimize the likelihood of malicious data and
keep the attacks stealthy by maintaining minimum losses during training.



Attacking Gating Networks We use separate kernel parameters to control the input to the gating functions.
The log-likelihood of the gating function is:

N M
Ly(w) =) > hilloggy) (©)
i=1 m=1
Rewrite Equation (0)) as:
N M M
Lg(v) = Z Z (hy(v?’”m ¢; — log Z exp(vm’” @;))
i=1 m=1 m=1
where h,, is the posterior and defined as:
_ gmPm(y)
T gkpe(y)

and h,, is estimated in the E-step in the Bayesian EM learning algorithm. We use the Gaussian kernel to

compute the basis function:
d

i = exp(— Y me(wir — z58)°)
k=1
where d is the number of dimensions in the input space. The gradient of the likelihood L, with respect to 7

1S:
87771? == DD () = g5 om b (wir — ).
iom

Learning proceeds as iterative re-estimation of: (1) v that maximizes L, given 7, and (2) 1 that minimizes
L; given v until the algorithm convergences.

2.4.2 Overview of Experimental Results

We compare our adversarial HME learning algorithm to the following algorithms: the standard hierarchical
mixtures of experts (HME), relevance vector machine (RVM) and its adversarial learning counterpart (AD-
RVM), support vector machine (SVM) and its one-class learning counterpart (1-class SVM). We use a single
level HME with two expert networks in our experiments. In order for apples-to-apples comparison, we repeat
the experiments reported in [10] on one artificial data set and two real data sets. In these settings, the training
data is clean, while the test datasets are corrupted by adversarial attacks modeled at increasingly intense
levels. The intensity of attacks is controlled by the attack factor fu;qcr as follows:

CL‘+ = 93+ + fattack : (:13_ - :I}+) + € (7)

where ¢ is local random noise, ™ and &~ are a positive data point and a random negative data point in the
test set. As fusack increases from O to 1 the intensity of attacks grows from none to the extreme where a
malicious data point can be arbitrarily close to a legitimate data point, within a range of small random local
noise. We compare six learning models: AD-HME, HME, AD-RVM, RVM, SVM, One-class SVM, and all
results reported are averaged over 10 random runs.

AD-HME (gate) in general outperforms all the other five learning algorithms. Note that gating functions
rank the competence of experts in classifying a data point. On the artificial data set, we can illustrate how
AD-HME (gate) adaptively selects the expert that is most likely to generate the data point as shown in Figure[2]
. Table [4] shows the error rates of the six algorithms as the strength of attacks increases on the webspam
data set. The AD-HME algorithms were superior to others in all cases. Their superiority is also attributed to
the baseline HME algorithm that significantly outperformed SVM and RVM. Nevertheless, the AD-HME
algorithms consistently outperformed the baseline HME algorithm in all cases.



(b) Gate distributions as fottqcr = 0.1

(c) Gate distributions as fattack = 0.5

(d) Gate distributions as fo¢tack = 0.9

Figure 2: Gate distributions on the test dataset as attacks intensify as fy¢zqc = 0.0 = 0.1 — 0.5 — 0.9. The
x-axis is the input to the gating functions and the y-axis is the posterior of each expert (approximating “+”’
and “-” data respectively).

Table 4: Classification error rates of HME, AD-HMEs, RVM, AD-RVM, SVM, and one-class SVM on the
webspam dataset. Attacks are generated with f40c = 0.1,0.3,0.5,0.7,0.9. The best results are bolded.

fattack

0.1 \ 0.3 \ 0.5 \ 0.7 \ 0.9
HME 0.1323 + 0.0076/0.1566 + 0.0206|0.2748 & 0.0477/0.4360 = 0.0522/0.5413 £ 0.0118
AD-HME®P) [0.1359 & 0.0157]0.1550 & 0.0253/0.2394 -+ 0.0474/0.4253 = 0.0331/0.5409 =+ 0.0084
AD-HME®) 10.1276 = 0.0089/0.1423 - 0.0330]0.2383 -+ 0.0422(0.4298 == 0.0346/0.5353 = 0.0139
AD-HME(¢2P+99%)0.1302 £ 0.0091]0.1540 = 0.0130/0.2534 £ 0.0441/0.4387 £ 0.0463]0.5401% 0.0115
RVM 0.2355 + 0.0542/0.3169 + 0.0512/0.4541 4 0.0761/0.5560 = 0.0731/0.5876 & 0.0869
AD-RVM  |0.2426 + 0.0276|0.2926 4 0.0565|0.3373 £ 0.0460]0.4945 =+ 0.0149]0.5866 =+ 0.0032
SVM 0.2725 + 0.0383]0.4725 + 0.0773/0.5604 + 0.1232/0.6061 £ 0.1002/0.6061 =+ 0.0874
One-class SVM  |0.3155 + 0.0040/0.5625 + 0.0034]0.5945 £ 0.0041]0.6009 £ 0.0039|0.5997 + 0.0053

2.5 Modeling Adversarial Learning as Nested Stackelberg Games [7]

So far we have only considered adversarial learning problems in which there is only a single type of adversary.
In practice, a learner often has to face multiple types of adversaries that may employ different attack tactics.
In this part of the project, we tackle the challenges of multiple types of adversaries with a nested Stackelberg
game framework. The framework handles both data corruption and unknown types of adversaries. It consists
of a set of single leader single follower (SLSF) Stackelberg games and a single leader multiple followers
(SLMF) Bayesian Stackelberg game. We first solve a SLSF Stackelberg game for each adversary type. This
level of Stackelberg game takes into consideration that training and test data are not necessarily identically
distributed in practice. Given the learner’s learning model, the adversary responds to the learner’s strategy by
optimally transforming data to maximize the learner’s predictive error. The Stackelberg equilibrium solution
consists of optimal learning parameters for the learner and data transformations for the adversary. The optimal
solutions will be used as pure strategies in the Bayesian Stackelberg game. The Bayesian Stackelberg game



consists of one learner and multiple adversaries of various types. When facing adversaries of multiple types,
instead of settling on one learning model by playing a pure strategy, it is more practical for the learner to play
a mixed strategy consisting of a set of learning models with assigned probabilities. The optimal solution to
the Bayesian Stackelberg game introduces randomness to the solution, and hence increases the difficulty of
attacking the underlying learning models via reverse engineering.

2.5.1 Nested Bayesian Stackelberg Games

We first develop strategies to construct component SLSF learning models given adversary types, and then
solve the SLMF Stackelberg game with the component SLSF models to counter adversaries of various types.

A Single Leader Single Follower Stackelberg Game Each component learning model in our framework
is obtained by solving a Stackelberg game between the learner and the adversary. The learner first commits to
its strategy that is observable to the adversary and the adversary plays its optimal strategy to maximize the
learner’s loss while minimizing its own loss. Therefore, the adversarial learning problem of this single leader
single follower (SLSF) game is:

argminargmax Lg(w,z,0;)

w* 0%
s.t. d, € argmin L¢(w, z, )
where L, is the leader’s loss:
n
Lo =Y coi- e yi) + Ael [l ®)
i=1

and L is the follower’s loss where the second term penalizes for the Lo norm of data transformation:

n n
Ly = cpiLp(@iyi) + A D llo(w:) = ofulws, w))] . ©)
i=1 i=1
Ao, Af, cp, and ¢y are the weights of the penalty terms and the costs of data transformation. ¢, and / are the
classification loss functions of the leader and the follower. A Stackelberg equilibrium solution exists if the
adversary’s loss is convex and continuously differentiable.

A Single Leader Multi-followers Stackelberg Game In a single leader multiple followers (SLMF) game,
the leader makes its optimal decision prior to the decisions of multiple followers. The Stackelberg game
played by the leader is:

min  F(z,y*)

x,y*

st. G(z,y*) <0

H(:Ev y*) =0
where F' is the leader’s objective function, constrained by G and H; x is the leader’s decision and y* is in the
set of the optimal solutions of the lower level problem:
argmin  fi(z,y;)

- Yi
Yy s.t. gi(z,y;) <

where m is the number of followers, f; is the i*" follower’s objective function constrained by g; and h;.
For the sake of simplicity, we assume the followers are not competing among themselves. This is usually a

0 Vizl,...,m
0



valid assumption in practice since adversaries rarely affect each other through their actions. In a Bayesian
Stackelberg game, the followers may have many different types and the leader does not know exactly the
types of adversaries it may face when solving its optimization problem. However, the distribution of the
types of adversaries is known or can be inferred from past experience. The followers’ strategies and payoffs
are determined by the followers’ types. The followers play their optimal responses to maximize the payoffs
given the leader’s strategy. The Stackelberg equilibrium includes an optimal mixed strategy of the learner and
corresponding optimal strategies of the followers.

Problem Definition:

Given the payoff matrices R* and R of the leader and the m followers of n different types, find the
leader’s optimal mixed strategy given that all followers know the leader’s strategy when optimizing their
rewards. The leader’s pure strategies consist of a set of generalized linear learning models (¢(x), w)
and the followers’ pure strategies include a set of vectors performing data transformation x — x + Ax.

The defined Stackelberg game can be solved as a Mixed-Integer-Quadratic-Programming (MIQP) problem.
For a game with a single leader and m followers with n possible types where the m followers are independent
of each other and their actions have no impact on each other’s decisions, we reduce the problem to solving m
instances of the single leader single follower game.

2.5.2 Overview of the Experimental Results

In the experiments, we use three types of adversaries. The first type Adversary*' can modify both positive
and negative data, and the second type Adversary*? is only allowed to modify positive data as normally seen
in spam filtering. The third type of adversary Adversary*? can transform data freely in the given domain.
The prior distribution of the three adversary types is randomly set. Let p be the probability that the adversary
modifies negative data. Then for each negative instance ™~ in the test set, with probability p, ™ is modified
as follows:

2T =1 4 fo (@t —a27) +e€

where € is local random noise, and 2™ is a random positive data point in the test set. The intensity of attacks
is controlled by the attack factor f, € (0,1). The greater f, is, the more aggressive the attacks are. Similarly,
for each positive instance 7 we modify x™ as follows:

at =2+ fo (@7 —a2) +e

where 2~ is a random negative data point in the test set. For the third type of attack, 2 and =~ can be freely
transformed in the data domain as follows:

ot = min(xm‘fx,xi + fo 0 (x™mF — :Emm)) 6>0

max(xm'm’xi 4 fa .5 (xma:p _ xmm)) §<0
where § is randomly set and § € (—1, 1), 2™ and ™" is the maximum and minimum values an instance
can take. The learner’s pure strategy set contains three learning models: 1.) Stackelberg equilibrium predictor
Equi*; and 2.) two SVM models SVM*! and SVM*? trained on equilibrium data transformations. Note
that SVM*! and SVM*? are optimal only when the SVM learner knows the adversary’s strategy ahead of
time. Therefore, SVM*s alone are not robust solutions to the adversarial learning problem. When solving
the prediction games, we assume the adversary can modify data in both classes. SVM*! and SVM*? are
trained on the two equilibrium data transformations when Ay is set to 0.01 and 0.02. The two SVM models
are essentially optimal strategies against the adversaries’ equilibrium strategies. The learner will choose
which learning model to play according to the probability distribution determined in the mixed strategy. The
results are displayed as Mixed in the following sections. We also compare our results to the invariant SVM



and the standard SVM methods. In all of our experiments, we modify the test sets to simulate the three types
of adversaries.

We make the learning tasks more complicated by making the attack factor f, € (0, 1) completely random
under uniform distribution for each attacked sample in the test set. We assume the positive data is always
modified by the adversary. In addition, we allow the probability of negative data being attacked to increase
gradually from 0.1 to 0.9. The advantage of our mixed strategy is more obvious on these two datasets as
illustrated in Figure 3| The equilibrium predictors Equi*!? are better than the SVM*!2 predictors on the
spambase data, but significantly worse on the web spam data. Our mixed strategy consistently outperforms

SVM*1:2 on the spambase data, and outperforms Equi*!»? on the web spam data.
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Figure 3: Classification error rates (with error bars) of Equi*', SVM*', Equi*?, SVM*2, Mixed,
invariant SV M, and SV M on the spambase and webspam datasets.

2.6 Technology Transfer and External Outreach Activities

We presented our work [1] at the NATO S&T Symposium on “Analysis Support to Decision Making in Cyber
Defense and Security” (SAS-106) in Talin, Estonia to disseminate our research findings.

In addition, we start collaborating with ARL researchers on the topic and now currently working with
ARL South researchers to transition some of our research to practice.
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— Distinguished Scientist, Association for Computing Machinery (ACM), (2016)



— Senior Member, IEEE (2013)

e Bhavani Thuraisingham:

the SDPS 2012 Transformative Achievement Gold Medal for interdisciplinary research on
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