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1 Introduction

When a cell receives a signal from its environment through a membrane recep-
tor, a cascade of internal reactions is triggered which leads ultimately to its
response, usually a change in its metabolism, its ability to divide, or in the
expression level of a gene. Many diseases including some forms of cancer are
related to some defects in these signalling pathways. Such biological systems
usually feature thousands of proteins interacting in a highly concurrent way
and their complexity makes modelling necessary to the development of better
biocuration techniques.

1.1 The kappa modelling language

The kappa language was designed to model interactions between proteins with
rewriting rules over site-graphs. We illustrate this with the example of phos-
phorylation reactions.

Many proteins can be turned on and off by attaching or removing phosphate
groups to some of their residues. The action of attaching a phosphate group to
a protein is called phosphorylation and an enzyme catalyzing a phosphorylation
reaction is called a kinase. A kinase may need to be phosphorylated itself in
order to be effective and so signalling pathways often feature phosphorylation
cascades. In kappa, proteins are modelled by agents. An agent features some
sites through which it can bind other agents. Moreover, some sites can hold an
internal state, usually u when unphosphorylated and p when phosphorylated.
The number and the nature of the sites featured by an agent depend on its type,
each type of agent being described in the signature of the kappa model. In most
of the examples of this report, signatures have to be inferred directly from the
rules.

Let’s model a kinase by an agent of type K with one binding site d. It
acts on a substrate which is an agent of type S with a binding site d and two
phosphorylation sites x and y which can hold the states u or p. Below are the
textual and graphical representations of a kinase with a free binding site and a
substrate which is phosphorylated at site y but not at site x.

K(d) :
d

K S(d, xu, yp) :
d

x

y

S

The interaction between the kinase and the substrate is captured by the rules
displayed Figure 1. The first rule is bidirectional and states that a kinase and a
substrate can bind (b) and unbind (u) to each other through their sites d. The
second rule states that if a kinase is bound to a substrate with an unphospho-
rylated site x, the latter can get phosphorylated. The third does the same for
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d

K
d

S b,u←→
d

K
d

S K(d), S(d)↔ K(d1), S(d1)

d

K
d

x

S
px
−→

d

K
d

x

S K(d1), S(d1, xu)→ K(d1), S(d1, xp)

d

K
d

y

S py
−→

d

K
d

y

S
K(d1), S(d1, yu)→ K(d1), S(d1, yp)

Figure 1: A simple kappa model for double-phosphorylation

y. In the textual notation, a shared exponent denotes the existence of a bond
between two sites. Sites without exponents are considered to be free.

An important remark is that a rule can feature underspecified agents. When
it does, it can be triggered whatever the binding or internal states of the missing
sites are. This characteristic of kappa makes it different from most modelling
techniques traditionally used by biologists like differential equations systems or
Petri nets. Indeed, the latter require that one variable is introduced for each
fully specified species, which leads quickly to a combinatorial explosion.1

In kappa, a reaction mixture is modelled by a large site-graph. When a
pattern matching the left hand side of a rule r is recognized in it, it can be
updated locally according to r. The agents preserved by r are those of the
longest prefix featuring agents of the same type and mentioning the same sites
in both sides of r. The sites they mention are updated according to their state
in the right hand side of r and the others are left unchanged. Agent featured
in the left hand side of r and not in its right hand side are removed and agents
featured in the the right hand side of r and not in its left hand side are created.
For instance, the rule:

K(d), S(xp)→ K(d),K(d)

deletes an instance of S and creates an instance of K. For a rigorous definition
of kappa’s semantics, see [3].

After having specified an initial mixture and a reaction rate for each rule,
it is possible to run stochastic simulations of a model with the kappa simulator
[2]. An example of source file for a small kappa model is provided Figure 2.

1 For instance, if a protein has 10 distinct phosphorylation sites, it yields at least 1024
different species. The situation in real world signalling networks where many proteins can
bind each other and form large complexes is even worst.
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1.2 From rules to pathways

The aim of causal analysis is to understand better how pathways emerge from
a multitude of potential low level protein-protein interactions. A great number
of these interactions is known thanks to the progresses of experimental methods
but the way they result in complex signalling behaviors remains to be under-
stood. One difficulty in figuring this out comes from the density of the reaction
network involved along with its apparent lack of structure. In particular, there
are many crosstalks between signalling processes that seem completly unrelated.
As a consequence, small signalling models that focus on a limited number of
interactions in order to stay tractable for human reasoning usually bring a lim-
ited insight. Thus, the development of automated analysis techniques for large
models of protein-protein interaction networks appears to be an important step
towards a better understanding of signalling pathways.

In this report, we introduce a formal notion of story as an attempt to precise
the fuzzy concept of pathway. Figure 3 features an example of a story gener-
ated from the model of Figure 2. It describes how a set of rule applications can
be chained together to make an observable event happen along with the nec-
essary temporal precedence relation between them. Here, the observable event
is the formation of a SoS-Grb2-Shc complex, as mentioned in the last line of
Figure 2. For clarity, the agents that are targeted by each rule application are
not mentioned and only rule names are displayed.

1.3 Summary

In section 2, we introduce a generic framework for studying event systems and we
define the notion of a story. An important class of such event systems for which
efficient algorithms can be written is studied in section 3 and kappa models are
described within this formalism in section 4. Then, we describe some techniques
to produce stories from models, using simulation traces in section 5 and then
statically in section 6.

2 A generic framework for event systems

2.1 Event systems

Let Q a set of states, intuitively the set of all the possible states of the world.
A subset of Q is called a context. Moreover, an event e is defined by:

• A label denoted label(e)

• A set of states pre(e) ⊆ Q called precondition

• A map eff(e) : pre(e)→ Q called effect

3



# Agent signatures
%agent: EGF(r)
%agent: EGFR(CR,C,N,L,Y1016~u~p,Y1092~u~p,Y1172~u~p)
%agent: SoS(PR,S~u~p)
%agent: Shc(Y~u~p,PTB~u~p)
%agent: Grb2(SH3c,SH3n,SH2~u~p)

# Constants
%var: ’Avogadro’ 6.0221413E+23
%var: ’V’ 4.2E-14
%var: ’k_on’ 2.5E08 / (’Avogadro’ * ’V’) # molecule^-1 s^-1
%var: ’k_off’ 2.5 # s^-1
%var: ’k_cat’ 1 # s^-1

# Initial mixture
%init: 5000 EGF(r), EGFR(CR,C,N,L,Y1016~u,Y1092~u,Y1172~u)
%init: 10000 SoS(PR,S~u) Shc(Y~u,PTB~u)
%init: 5000 Grb2(SH3c,SH3n,SH2~u)

# Rules
’EGFR.EGFR’ EGF(r!2), EGFR(L!2,CR,N,C), EGF(r!3), EGFR(L!3,CR,N,C) <->

EGF(r!2), EGFR(L!2,CR!1,N,C), EGF(r!3), EGFR(L!3,CR!1,N,C)
@ ’k_on’/2, ’k_off’/2

’EGF.EGFR’ EGF(r), EGFR(L,CR) <-> EGF(r!1), EGFR(L!1,CR) @ ’k_on’, ’k_off’
’Shc.Grb2’ Shc(Y~p), Grb2(SH2) -> Shc(Y~p!1), Grb2(SH2!1) @ 5*’k_on’
’Shc/Grb2’ Shc(Y~p!1), Grb2(SH2!1) -> Shc(Y~p), Grb2(SH2) @ ’k_off’
’EGFR.Grb2’ EGFR(Y1092~p), Grb2(SH2) <->

EGFR(Y1092~p!1), Grb2(SH2!1) @ ’k_on’, ’k_off’
’EGFR.Shc’ EGFR(Y1172~p), Shc(PTB) -> EGFR(Y1172~p!1), Shc(PTB!1) @ ’k_on’
’EGFR/Shc’ EGFR(Y1172~p!1), Shc(PTB!1) -> EGFR(Y1172~p), Shc(PTB) @ ’k_off’
’Grb2.SoS’ Grb2(SH3n), SoS(PR,S~u) -> Grb2(SH3n!1), SoS(PR!1,S~u) @ ’k_on’
’Grb2/SoS’ Grb2(SH3n!1), SoS(PR!1) -> Grb2(SH3n), SoS(PR) @ ’k_off’
’EGFR.int’ EGFR(CR!1,N,C), EGFR(CR!1,N,C) ->

EGFR(CR!1,N!2,C), EGFR(CR!1,N,C!2) @ ’k_on’
’EGFR/int’ EGFR(CR!1,N!2,C), EGFR(CR!1,N,C!2) ->

EGFR(CR!1,N,C), EGFR(CR!1,N,C) @ ’k_off’
’pY1092@EGFR’ EGFR(N!1), EGFR(C!1,Y1092~u) ->

EGFR(N!1), EGFR(C!1,Y1092~p) @ ’k_cat’
’pY1172@EGFR’ EGFR(N!1), EGFR(C!1,Y1172~u) ->

EGFR(N!1), EGFR(C!1,Y1172~p) @ ’k_cat’
’uY1092@EGFR’ EGFR(Y1092~p) -> EGFR(Y1092~u) @ ’k_cat’
’uY1172@EGFR’ EGFR(Y1172~p) -> EGFR(Y1172~u) @ ’k_cat’
’pY@Shc’ EGFR(Y1172~p!1), Shc(PTB!1,Y~u) ->

EGFR(Y1172~p!1), Shc(PTB!1,Y~p) @ ’k_cat’
’uY@Shc’ Shc(Y~p) -> Shc(Y~u) @ ’k_cat’

# The pattern we’re interested in
%obs: ’SoS.Grb2.Shc’ Grb2(SH2!1,SH3n!2),SoS(PR!2),Shc(Y~p!1)

Figure 2: A kappa model of SoS recruitment
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Intro EGFR

EGFR.int

Intro EGF

EGFR.EGFR

EGF.EGFREGF.EGFR

Intro EGF

Intro SoS

SoS.Grb2.Shc

Intro Shc

Intro Grb2

Shc.Grb2Grb2.SoS

Intro EGFR

pY@Shc

pY1172@EGFR

EGFR.Shc

Figure 3: A possible scenario for SoS recruitment
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The precondition of an event is the set of states from which it can be triggered
and its effect maps each of these states to a new one.

An event system is a triple (Q,E,C) with E a set of events over Q and
C ⊆ P(Q) a set of contexts such that for all event e ∈ E, pre(e) ∈ C and
∀c ∈ C, eff(e)(c) ∈ C. All the concepts introduced in section 2 are defined
relatively to an event system.

2.2 Traces

A trace is defined as a finite sequence of events. Its precondition is defined by
induction on its size by the following equations:

pre(ε) = Q

pre(e, t) = {q ∈ pre(e) : eff(e)(q) ∈ pre(t)}

with e an event and t a trace. A trace t is said to be valid in the context c if
c ⊆ pre(t), in which case we write c ` t. The effect and the postcondition of a
trace in context c are defined by:

effc(e1, . . . , en) = eff(en) ◦ . . . ◦ eff(e1)
∣∣
c

postc(e) = (effc(t)) (c)

They can be defined in a context-independent way too:

eff(t) = effpre(t)(t) post(t) =
⋃

c∈pre(t)

postc t = postpre(t)(t)

2.3 Concurrent events and equivalent traces

The order in which some events happen might not always matter. Let’s take
the example of a kappa agent which can be phosphorylated on its both sites in
parallel by two different enzymes. Let’s write p1 the event of phosphorylating
site 1 and p2 the event of phosphorylating site 2. Then, we may want the traces
(p1, p2) and (p2, p1) to be considered equivalent. Indeed, the definition of a trace
forces us to decide on an order between p1 and p2 but this order is nor relevant
neither necessary. Worst, in the real world, p1 and p2 could have happened in
the same time. This draws our motivation to formalize a concept of concurrent
events.

2.3.1 Concurrent events

Two events e1 and e2 are said to be concurrent in context c if the three following
assertions are equivalent:

c ` e1, e2 c ` e2, e1 c ` e1 ∧ c ` e2

6



and the following is true when they hold:

effc(e1, e2) = effc(e2, e1)

In this case, we write e1 �c e2. Moreover, e1 and e2 are said to be concurrent if
they are in any context c ∈ C, which we write e1 � e2.

Remark : This definition allows events which can’t come close to each other
in any context to be considered concurrent, that is events e1 and e2 such that:

(@c, c ` e1, e2) ∧ (@c, c ` e2, e1) ∧ (@c, c ` e1 ∧ c ` e2)

This can be counter-intuitive and that’s why we define notions of non-trivial
concurrency. Two events e1 and e2 are said to be non-trivially concurrent in
context c if e1 �c e2, c ` e1 and c ` e2. They are non-trivially concurrent if they
are concurrent in any context, this being non-trivially in at least one of them.
This last notion admits a nice algebraic characterization for a class of systems
kappa models belongs to, as we see in section 3.3.

2.3.2 Equivalent traces

As said before, we want to consider two traces differing only by the permutation
of concurrent events to be equivalent. Let c a context. We define the relation
'c as the smallest equivalence relation on the set of valid traces in context c
such that:

e1 �postc(t) e2 =⇒ t · e1, e2 · t′ 'c t · e2, e1 · t′

where · stands for the concatenation operator on traces. This relation is called
the Mazurkieviescz equivalence in context c.

We define ∼ as a stronger equivalence relation on traces that is context-
independent. It is the smallest relation on traces such that:

e1 � e2 =⇒ t · e1, e2 · t′ ∼ t · e2, e1 · t′

Two equivalent traces for ∼ are said to be strongly similar . Here, two elements
can be permuted only if they are concurrent in any context and not only in the
current one. Note that we have:

t ∼ t′ =⇒ t 'pre(t) t
′

but the converse is not true.2 However, we prove in section 3.4 that for an
important subset of kappa models called regular models, the relations ∼ and
'c are identical in any context c.

2 With Q = {0, 1}, let’s consider t = (c, x, y) and t′ = (c, y, x) such that pre(t) = Q,
post(t) = {0} and x �{0} y but not x �{1} y.
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2.4 Configurations

Let T the set of all traces on E. An element of the quotient (T / ∼) is called
a configuration and its traces are said to be its trajectories. For the reasons we
explained in section 2.3, it seems more relevant to define our concept of a kappa
story on configurations rather than on traces.

2.4.1 Representing configurations

Let t = e1, . . . , en a trace and Et = {ei}i the set of its events, each one of them
being distinguished so that |Et| = n. The precedence relation �t is defined as
the smallest order relation over Et such that:

(i < j ∧ ¬ ei � ej) =⇒ ei �t ej

Besides, a permutation σ of {1, . . . , n} is said to preserve it when:

eσ(i) �t eσ(j) =⇒ σ(i) ≤ σ(j)

Then, writing σ(t) := eσ(1), . . . , eσ(n) the reordering of t by σ, the following
theorem holds:

Theorem 1. Let t and t′ two traces. Then t ∼ t′ if and only if t′ = σ(t) for σ
a permutation preserving the precedence relation on t.

Proof. It is easy to check that two traces differing only in the permutation of
two concurrent events have the same precedence relation. By induction and
using this fact, we can prove the first direction.

Conversely, let t a trace, �t its precedence relation and σ a reordering pre-
serving it. We will prove that σ(t) ∼ t by induction on the size of t. For this, we
show that eσ(1) is concurrent with all the events of t from e1 to eσ(1)−1. Indeed,
let’s suppose ¬

(
ei � eσ(1)

)
for 1 ≤ i < σ(1). Then :

ei �t eσ(1) (by definition of the precedence relation)
∴ eσ(σ−1(i)) �t eσ(1) (because σ(σ−1(i)) = i)
∴ σ−1(i) ≤ 1 (because σ preserves �t)

Therefore, σ−1(i) ≤ 1 and then i = σ(1), which is a contradiction. As a
consequence, it is possible to set eσ(1) in first position in t by making it commute
with all the events from e1 to eσ(1)−1. The trace obtained – call it t′ – is strongly
similar to t. We conclude by applying the induction hypothesis on t and t′

without their first element.
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As a consequence of this theorem, a configuration is represented by a tuple
consisting in a set of events along with an order relation on them. Then, the
canonical projection C : T → (T / ∼) maps t to (Et,�t) as we have indeed:

t ∼ t′ ⇐⇒ (Et,�t) = (Et′ ,�t′)

2.4.2 Some operations on configurations

All trajectories of a configuration (E ,�) can be recovered by ordering the events
of E in a way that preserves �. Moreover, as the operators eff, post and pre are
preserved by strong similarity, that is:

pre(t) = pre(t′) effc(t) = effc(t′) postc(t) = postc(t′)

for any context c and (t, t′) two strongly similar traces, they can also be defined
on a configuration from any of its trajectory. As a consequence, a context being
given, we can talk about valid configurations too. Finally, we say that (E ,�) is
a sub-configuration of (E ′,�′) when E ⊆ E ′ and (�) ⊆ (�′).3

2.5 Stories

Let Ω a subset of interest of E called set of observable events and c a context.
Then, a story reaching Ω from c is defined as a configuration containing an event
of Ω which is valid in c. We write S(Ω, c) the set of all such stories.

For instance, in kappa, we would take c = {I}, where I is the initial mixture
and Ω would contain all the possible instanciations of the obs rule. Moreover,
we would have S(Ω, c) 6= ∅ if and only if obs is reachable from I. In this case, a
story can be considered as a proof of reachability. However, although tempting,
this way of considering stories as proofs is misleading as it takes us away from
the spirit of biological pathways stories are aimed to formalize.

2.5.1 Stories : proofs or explanations ?

Indeed, when biologists study pathways, the reachability of the observable is
usually taken for granted and what really matters is the question of how this
process is implemented. For instance, when designing drugs, it may be of par-
ticular interest to identify a step which is common to all the scenarios leading
to the realization of a biological process.

This example is in opposition with the principle of proof-irrelevance most
logicians work with which stipulates that all the proofs of a fact should be
considered equivalent. Clearly, we don’t want to formalize pathways in this
spirit. The question then is the following : if all elements of S(Ω, c) should not

3 That is, E ⊆ E ′ and ∀x, y ∈ E, x � y =⇒ x �′ y.
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be considered equivalent, should they be considered in contrast all different and
equally relevant ? It seems the answer here is still no. Indeed, let’s consider the
following examples :

1. Some stories may contain some events which make no contribution in
producing the observable. We might want to eliminate these.

2. In kappa, two stories might feature the phosphorylation of the same agent
by two different but isomorphic enzymes. Should they be considered dif-
ferent ?

This motivates us to introduce some compression techniques along with some
equivalence relations on S(Ω, c).

2.5.2 Sub-stories and weak compression

S(Ω, c) can be equipped with a relation CΩ,c such that s CΩ,c s
′ if and only if

s is a sub-configuration of s′. In this case, we say that s is a sub-story of s′.
When there is no ambiguity about which observables and context are referred
to, we sometimes just write sC s′ but C should not be confused with the sub-
configuration relation as there is the implicit requirement that its operands are
in S(Ω, c). Finally, a story is said to be minimal if it has no strict sub-story.

In order to remove from a story some events that are not essential in pro-
ducing the observable, a natural idea is to consider instead one of its minimal
sub-stories.4 Such a technique is implemented in KaSim and is called weak-
compression. Details about this algorithm are given in section 5.2. However, a
stronger notion of compression is sometimes needed, as we illustrate now with
an example.

2.5.3 The example of double phosphorylation

Let’s consider the kappa model introduced in Figure 1 with the initial mixture
K(d),K(d), S(xu, yu) and let’s take for an observable rule the rule obs which
tests the pattern S(xp, yp) and does nothing. Then, here is an example of a
story s0 where the first enzyme binds the substrate, phosphorylates its two sites
and then unbinds:

obsu1

py1

px1

b1

4 Note that such a story is not unique in general.
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It is useful to see a story as a graph whose nodes are events and whose edges
correspond to the precedence relation over them. For clarity, all the edges are
not represented here: only a transitive reduction of the graph is displayed.5
Moreover, as explained in section 4, a kappa event consists in a rule along with
an instanciation map giving the identifiers of the agents it targets. Here, an
event is labelled ri where r is the name of the rule applied, and i ∈ {1, 2}
gives the identifier of the enzyme involved. There is no need to specify which
substrate is targeted as there is only one in the mixture. Finally s0 illustrates
the fact that px1 and py1 are concurrent. Here are two other stories about the
same phenomenon:

s1 : obsu1py1b1u1px1b1

s2 : obsu2py2b2u1px1b1

In s1, the first enzyme unbinds and rebinds the substrate after it has phos-
phorylated its first site and before it phosphorylates its second. Remark that
if a story is seen as a graph whose edges correspond to the precedence relation
and s and s′ are two valid stories, we have sCs′ if and only if the graph of s can
be embedded in the graph of s′.6 Here, it can be noticed that s0 C s1. Indeed,
we can get s0 from s1 by compressing the (u1, b1) pattern in it.

In s2, after the first enzyme has phosphorylated the site x of the substrate,
it unbinds and the second enzyme binds to phosphorylate y. Contrary to s1,
s2 is minimal and cannot be compressed further. However, one may argue that
whether kinase 1 or 2 is used to phosphorylate the substrate does not really
matter. If we abstract away this information, stories s1 and s2 turn out to be
the same and can be represented as follows, where nodes are not labelled by
events anymore but by rules:

obsupybupxb

This graph can be considered as an abstract story. Similarly, s0 can be ab-
stracted into:

obsu

py

px

b

5 A transitive reduction of a directed graph is a graph with as few edges as possible that
has the same reachability relation as the given graph.

6 An embedding of a graph G = (V, E) in another graph G′ = (V ′, E′) is a injective graph-
morphism ϕ : G→ G′, that is a map from V to V ′ such that x and ϕ(x) have the same label
for all x and ∀x, y, (x, y) ∈ E =⇒ (ϕ(x), ϕ(y)) ∈ E′.
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As the latter is embedded in the former, we say that s0 is a strongly compressed
form of both s1 and s2. In section 2.5.4, we formalize this notion of an abstract
story and introduce strong compression, as implemented in KaSim.

2.5.4 Abstract stories and compression

An abstraction over S(Ω, c) consists in:

• An abstract domain A. In the last example, it would be the set of all
directed graphs whose nodes are labelled by rules, which is roughly the
choice made by the current version of the kappa simulator.

• An abstraction map α : S(Ω, c) → A. In the last example, α abstracts
away the distinction between the two kinases present in the mixture.

An abstraction (A,α) yields an equivalence relation ∼α over stories defined by:

s ∼α s′ ⇐⇒ α(s) = α(s′)

In the last example, s1 and s2 would be equivalent in this sense. Moreover, a
common pattern is to take A as a set of labelled directed graphs. Then, it is
possible to introduce a notion of compression modulo α as a relation →α over
stories defined by:

s→α s
′ ⇐⇒ α(s′) is embedded into α(s)

In this context, a story is said to be minimal if it can’t be compressed into a
shorter one. In the last example, we would have s1 →α s0 and s2 →α s0, s0
being minimal.

The notion of strong compression as implemented in the kappa simulator
corresponds to compression modulo α where α abstracts away the identity of
the agents targeted by an event. More precisely, α maps a story to a graph
with one node for each of its events whose edges correspond to the precedence
relation on them. However, the node associated to an event e is not labelled
with e itself, in which case we would get weak compression, but by the rule it
is an instanciation of.

Note that many other relevant notions of compression can be defined with
this formalism. For instance, any equivalence relation being given over the set
E of possible events, we could label each node of an abstract story with the
equivalence class of the event it corresponds to. In particular, we could define a
notion of filtered compression where, compared to strong compression, only the
identity of the agents of some type would be abstracted away.

Finally, it is possible to abstract away the precedence order over the events of
a story and to use another relation to define the edges of its abstract counterpart.
This will be very useful in Section 6 when generating stories statically.
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3 Grid-based systems

In this section, we study an important class of event systems we call grid-based.
Most concepts defined previously admit a nice algebraic characterization in this
setting and efficient algorithms can be provided that do not necessarily exist in
general. An event system (Q,E,C) is said to be grid-based if:

• A state is given by the values of some state variables. That is, there exists
a set of variables X and for each variable x ∈ X a set Vx of values it can
take such that Q =

∏
x∈X Vx.

• All contexts of C along with the sets pre(e) and eff(e) for e ∈ E can be
encoded as partial valuations of X .

Before we provide a rigorous definition, we have to discuss this concept of a
partial valuation.

3.1 Partial valuations

A partial valuation of X is a set of traits over X , a trait being an element of:⋃
x∈X
{x} × Vx

A partial valuation ϕ can be interpreted both as a set of equality tests, a trait
(x, v) standing for the constraint x = v, or as a set of assignments, (x, v)
standing for x := v. In the first case, it denotes the subset of Q:

[ϕ ] = {q ∈ Q : ∀(x, v) ∈ val, qx = v}

Finally, we provide the following operators for manipulating partial valuations:

• If ϕ is a partial valuation, we write ϕ its support, that is the set {x : (x, v) ∈ ϕ}
of the variables constrained in ϕ.

• A partial valuation is said to be contradictory if it contains two contra-
dictory constraints, that is both (x, v) and (x, v′) for v 6= v′.

• If ϕ1 ⊇ ϕ2, we say that ϕ1 implies ϕ2. Beware that :

ϕ1 ⊇ ϕ2 ⇐⇒ [ϕ1] ⊆ [ϕ2]

• ϕ1 ∪ ϕ2 is the concatenation of ϕ1 and ϕ2. Beware that :

[ϕ1 ∪ ϕ2] = [ϕ1] ∩ [ϕ2]

• ϕ1 and ϕ2 are said to be compatible if their concatenation is not contra-
dictory. Then, we write ϕ1 ↑ ϕ2.

13



• They are said to be incompatible otherwise, in which case we write ϕ1 ↓ ϕ2.

• If ψ is a set of variables, then ϕ \ ψ is defined as {(x, v) ∈ ϕ : x 6∈ ψ}. In
particular, ϕ1 \ ϕ2 is the set of constraints in ϕ1 which involve variables
that are unconstrained in ϕ2.

• Finally, we define the update of ϕ1 by ϕ2 as:

ϕ1 ! ϕ2 = ϕ2 ∪ (ϕ1 \ ϕ2)

We write pval(X ) the set of all non-contradictory partial valuations of X .
We’re now able to define grid-based systems rigorously.

3.2 Definition of a grid-based system

An event system (Q,E,C) is said to be grid-based if there exists a set of variables
X and for each x ∈ Vx a set of values Vx such that:

Q =
∏
x∈X

Vx C = {[c] : c ∈ pval(X )}

Moreover, for each event e ∈ E, there has to exist θ, µ ∈ pval(X ) such that:

• pre (e) = [ θ ]

• post[c](e) = [ c ! µ ] for any partial valuation c

In the case there is no ambiguity, θ and µ are written respectively pre(e) and
eff(e), overloading the previous notation. Then, we write:

post(e) = pre(e) ! eff(e)

Moreover, contexts are identified with partial valuations. Finally, the following
convention has to be followed so the forthcoming theorems are true:

Convention 1. For any event e, pre (e) ∩ eff (e) = ∅.

This means that if an event has the test x = v in its precondition, the assignment
x := v can’t belong to eff(e). It is quite natural as such an assignment, if present,
would be useless.

3.3 An algebraic characterization of concurrency

Using the formalism of partial valuations, we can state and prove an algebraic
characterization of concurrency.
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Theorem 2. Let e1 and e2 two events in a grid-based system. Then, e1 and e2
are non-trivially concurrent if and only if the following conditions hold:

a. pre (e1) ∩ eff (e2) = ∅ b. pre (e2) ∩ eff (e1) = ∅
c. pre (e1) ↑ pre (e2) d. eff (e1) ↑ eff (e2)

Proof. Let’s suppose the conditions a. to d. hold and take a context c.

• Let’s prove that:

(c ` e1 ∧ c ` e2) =⇒ (c ` e1, e2 ∧ c ` e2, e1 ∧ effc(e1) = effc(e2))

Suppose that c ` e1 and c ` e2. In particular, we have c ` e2 and then
c ⊇ pre(e2). Combining this with b. it yields c ! eff(e1) ⊇ pre(e2) which
implies c ` e1, e2. We can show c ` e2, e1 the same way using a. Finally,
the fact that effc(e1) = effc(e2) is a direct consequence of d.

• Then, let’s prove that:

(c ` e1, e2) =⇒ (c ` e1 ∧ c ` e2)

Suppose c ` e1, e2. Then, c ` e1 holds obviously. Moreover, as c ! eff(e1) ⊇
pre(e2), using b, we get c ⊇ pre(e2) and so c ` e2.

• Symmetrically, we can show that (c ` e2, e1) =⇒ (c ` e1 ∧ c ` e2).

Therefore, e1 and e2 are concurrent. They are non-trivially concurrent in the
context pre(e1) ∪ pre(e2), which is coherent thanks to c.

Conversely, let’s suppose that e1 and e2 are non-trivially concurrent. Then:

• Property c. is true thanks to the non-triviality hypothesis.

• Property d. is true because in a context c where c ` e1 and c ` e2, whose
existence is guaranteed by the previous point, effc(e1) = effc(e2).

• Property a. is true. Indeed, Let’s suppose pre (e1) ∩ eff (e2) 6= ∅. Then,
there are two possible cases:

– (x, v) ∈ pre (e1) and (x, v) ∈ eff (e2). In this case, let’s take a context c
such that c ` e2, e1. Such a context exists thanks to the non-triviality
hypothesis. Then, let’s consider c′ = c \ {x} ∪ {(x, v′)} where v′ = v̂

if (x, v̂) ∈ pre(e2) or any value different from v otherwise. Then,
c′ ` e2, e1 but c′ 6` e1, which is a contradiction.7

7 Here, we use the facts that (x, v) 6∈ pre(e2) by convention 1 and that each variable can
take at least two different values, so we can choose v′ 6= v.
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– (x, v) ∈ pre (e1) and (x, v′) ∈ eff (e2). This contradicts the non-
triviality hypothesis which assures the existence of a context c such
that c ` e2, e1.

This terminates the proof.

Proposition 1. Two events e1 and e2 are trivially concurrent if and only if the
following properties hold:

pre(e1) ↓ pre(e2) post(e1) ↓ pre(e2) post(e2) ↓ pre(e1)

Proof. The most difficult thing to prove here is that:

∃c, c ` e1, e2 ⇐⇒ post(e1) ↑ pre(e2)

Suppose that post(e1) ↑ pre(e2). Then:

(eff(e1) ∪ pre(e1) \ eff(e1)) ↑ pre(e2)
∴ (pre(e1) \ eff(e1)) ↑ pre(e2)
∴ pre(e1) ↑ (pre(e2) \ eff(e1))

and the context:
c = pre(e1) ∪ (pre(e2) \ eff(e1))

is coherent. In this context, c ` e1, e2. The converse is easy.

3.4 Regular systems

A system is said to be regular if eff(e) ⊆ pre(e) for any event e. That is, every
variable which is modified by an event has to be tested first. As we will see,
kappa programs are not regular in general but it can be argued that models
which are biologically relevant are.8 For instance, KaSim emits a warning when
encountering a rule like A(x) → A(xp) although it’s perfectly valid kappa. A
remarkable property of regular systems is the following:

Theorem 3. In a regular system, the strong similarity relation ∼ is identical
to the Mazurkieviescz equivalence relation 'c in any context c.

Proof. All comes down to the fact that for all context c, if e1 and e2 are non-
trivially concurrent in context c, then they are non-trivially concurrent. Indeed,
let c such a context.

• pre (e1) ↑ pre (e2) as c ` e1 and c ` e2

8 One reason for this is that the kinetics of a chemical reaction modifying a residue should
depend on its previous state. This is especially true in the particular case where the residue
is already in the state the rule would set it to.
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• eff (e1) ↑ eff (e2) as effc(e1, e2) = effc(e2, e1)

• pre (e1) ∩ eff (e2) = ∅. Indeed, if this is wrong, two cases are possible:

– (x, v) ∈ pre (e1) and (x, v) ∈ eff (e2). As we are working in a regular
system, x ∈ pre(e2). Moreover, (x, v) 6∈ pre(e2) by convention 1.
Therefore, (x, v′) ∈ pre (e2) for v 6= v′, which contradicts the fact
that c ` e1 ∧ c ` e2.

– (x, v) ∈ pre (e1) and (x, v′) ∈ eff (e2) for v 6= v′. This contradicts the
fact that c ` e2, e1.

• pre (e1) ∩ eff (e2) = ∅ can be shown symmetrically.

By Theorem 2, this terminates the proof.

4 The case of kappa

In this section, we consider a kappa model and show how it is possible to build
a grid-based event system (Q,E,C) from it.

4.1 States

Before we define events, we have to decide upon a set of states of the world Q.
It is natural to think about Q as the set of all mixtures whose agents respect
their type signature and are given unique identifiers. However, in order to fit
the formalism of grid-based systems, such mixtures have to be encoded in a
series of state variables.

We introduce a set I of agent identifiers. For practical reasons, we want to
be able to extract the type of an agent from its identifier through a map:

τ : I → T

where T stands for the set of agent types. Therefore, a natural choice for I is
T × N but other encodings are possible. We call port a tuple 〈u, x〉 where u is
an agent identifier and x the name of a site which is present in the signature of
τ(u). Finally, the state of the agents of a mixture is described by the following
set of variables:

• For each agent identifier u, a variable u∃ is introduced which is true if u is
in the mixture, false if it was once but was deleted, and null otherwise.
It is important to distinguish between false and null so that an event
can’t give an identifier that had been used in the past to a newly created
agent.

17



• For each port x, a variable xι is introduced, which describes its internal
state. For instance, it might be p for phosphorylated or u for unphospho-
rylated. It is null when the agent x belongs to is not in the mixture.

• For each port x, a variable xλ is introduced which describes its linking
state. The latter can take three types of values: free if x is not bound,
bound(y) where y is a port, or null if the agent x belongs to is not in the
mixture.

For J ⊆ I, we write XJ the set of all these variables for the agent identifiers
of J . Then, we define Q as the set of valuations over XI . Despite the fact that
I and so XI are typically infinite, any valuation describing a kappa mixture has
only a finite number of non-null values.

Note that this definition of Q is restrictive as it implies that the precondition
of any event can only be based on the state of the current mixture. We could
have chosen to encode in Q some informations about past events. For instance,
in such a theory, it would have been possible to define events in such a way that
any valid story dos not feature a given pattern. On the other hand, we wouldn’t
have had a grid-based system anymore and writing algorithms for it would have
been much harder.

4.2 Rules and events

It is easier to define the notion of an event and to understand its relation with
the notion of a kappa rule for models without side effects. Intuitively, a kappa
rule is said to have a side effect when it can modify agents it does not mention
explicitly. There are two ways of introducing side effects in kappa:

1. By removing a semi-link. Indeed, it is possible to write rules like:

r1 : A(x−)→ A(x)

Such a rule tests the existence of a link between the site x of an agent of
type A and any other agent and then removes it. Therefore, it affects the
agent A is bound to although not mentioned explicitly.

2. By removing an agent which is not fully specified. Consider the rule:

r2 : A()→

Applied to the mixture A(x1), B(x1), it results into the mixture B(x),
where B has been modified although it is not mentioned explicitly in r2.

Many algorithms written for kappa including the simulation algorithm and
the algorithm introduced in section 6 to generate stories statically have problems
dealing with side effects. Hopefully, every kappa model admits a finite equivalent
form without any of these.
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4.2.1 Removing side effects

Let’s consider the following example where p has a side effect:

init : → S(du),K(x, y)
bx : S(d),K(x) → S(d1),K(x1)
by : S(d),K(y) → S(d1),K(y1)
p : S(d −u ) → S(dp)

By noticing that the site d of S can only be bound to the sites x or y of a K
agent, it is possible to replace p by the following two rules:

p1 : S(d1
u),K(x1) → S(dp),K(x)

p2 : S(d1
u),K(y1) → S(dp),K(y)

This leads to an equivalent model freed of any side effect. More generally, in
order to remove the side effects of a model, we use its contact map to refine
all the rules featuring semi-links or underspecified deleted agents. The contact
map of a model is a graph whose nodes are port types (a port type is a tuple
〈A, x〉 where A is an agent type and x a site name), an edge connecting two
port types if and only if a bond appears between them in the right hand side
of a rule. The way to deal with rate constants when refining rules is detailed in
[4].

If m is the maximum arity of the contact map, a rule whose left hand side
features k semi-links can be refined into at most mkBk rules without any semi-
links where Bk is the kth Bell number, that is the number of ways of partitioning
a set of k elements. A reasonable bound for this is:

mkBk ≤ (mk)k

Similarly, a rule deleting an agent with k unspecified site can be refined into
less than (m+ 1)kBk rules. However, this bounds are rarely reached in practice
and removing the side effects of a model is tractable in most cases.

4.2.2 Instanciating rules into events

From now on, we consider only kappa models without side effects. Then, a rule
r is given by:

• A set of local agent identifiers ag(r) ⊆ I

• Two partial valuations pre(r) and eff(r) of Xag(r)
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K(d1), S(d1, xu) → K(d1), S(d1, xp)

d

K
d

x

S

↓

d

K
d

x

S

ag(px) = {k, s}

Precondition
k ∃ = true

s ∃ = true

〈k, d〉λ = bound〈s, d〉

〈s, d〉λ = bound〈k, d〉

〈s, x〉λ = free

〈s, x〉ι = u

Effect
〈s, x〉ι := p

Figure 4: Example of encoding of the rule px of Figure 1.

An example of rule encoding is given Figure 4. An event is defined as a tuple
〈r, ϕ〉 where r is a rule and ϕ : ag r → I an instanciation map. Note that ϕ has
to be injective and to preserve the type of agents:

∀a ∈ ag(r), τ(ϕ(a)) = τ(a)

If v is a partial valuation of ag(r), we write ϕ(v) the partial valuation of I we
get after renaming each agent identifier in it with ϕ. Then, it is possible to
define the effect and the precondition of an event as:

pre(〈r, ϕ〉) = ϕ(pre(r)) eff(〈r, ϕ〉) = ϕ(eff(r))

Finally, we discuss a feature of kappa that makes it possible to encode mecha-
nisms through kinetic rate constants and that is especially tricky to handle in
a satisfactory way for most static analysis techniques.

4.2.3 Differential reaction rates

The kappa language allows the user to specify two reaction rates for a single
rule in order to handle in a different way the unimolecular and the bimolecular
case. For instance, if S is a substrate and K a kinase, it is possible to model a
phosphorylation rule as:

K( ), S(xu)→ K( ), S(xp) @ 0 (γ)
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As the bimolecular reaction rate is set to zero, K and S have to be in the same
complex so the reaction can take place.9 This kind of rule can be handled in
three different ways:

1. We can ignore the differential reaction rate and handle it as if the bimolec-
ular reaction was possible. However, it will likely make causal analysis ir-
relevant as the steps of binding and unbinding between the kinase and the
substrate will be seen as unnecessary and not appear in the compressed
stories.

2. Events instanciating the rule r test the existence of one particular path
between K and S.

3. Events instanciating the rule r test the existence of any path between K
and S.

Let’s try to understand the differences between 2. and 3. on an example. Suppose
we have to describe as an event e a simulation transition where r is applied to
the mixture K(d1), S(d1, xu). Then, we have two possible preconditions for e:

e2 e3

Precondition
〈s, x〉ι = u and 〈s, x〉ι = u and
〈k, d〉 is bound to 〈k, d〉 there exists a path from k to s

Let’s suppose we choose e2 over e3. It has the advantage that its precondition
can be encoded as a partial valuation of X and so our system stays grid-based
with no added theoretical complexity. That being said, this solution is far from
being perfect. Indeed:

• Suppose we want to trigger our event on the different mixture:

K(d1), C(k1, s2), S(d2, xu)

where C could be a scaffold. Here, e2 cannot be triggered anymore but e3
still can. As a consequence, a story featuring e3 may be more compressible
than a story featuring e2.

• Suppose we have to translate into an event the simulation transition which
triggers rule r on a mixture with an enzyme, a kinase and a scaffold, each
one of them being bound to the others. Here, there exist two different
paths from the enzyme to the substrate: one which is direct and the
other which goes through the scaffold. Which one should we encode in
the event ? In general, there is no canonical choice. We could pick one
randomly or use some heuristics but this raises some elegance issues.

9 That is, there has to exist a path a links connecting K and S.
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Finally, e3 is not expressible in the setting of a grid-based system and it
could lead to strong algorithmic overheads. Therefore, we will ignore differential
reaction rates in the general theory and handle it case by case when it appears
to be important in a particular algorithm.

4.3 Some conventions

We have seen how a kappa model can be translated into a grid-based system.
If the latter is regular, we say the same of the model it comes from. For con-
venience, we take the initial conditions of a model into account by introducing
an init rule which creates the initial mixture from scratch. Then, a trace or a
configuration is said to be valid if it is in the context {ε} with ε the empty mix-
ture where all variables are set to null. As a consequence, traces usually begin
with an event instanciating init. Finally, a trait (x, v) is said to be non-null if
and only if v 6= null.

Now, we’re ready to study two very different strategies to generate stories,
that is dynamically in section 5 and then statically in section 6. The algorithms
we introduce are designed to work on regular models but they can be applied to
non-regular ones at the price of losing some guarantees on their output. Thus,
all properties requiring the regularity hypothesis will be mentioned as such.

5 Generating stories dynamically

In this section, we give a brief overview of the techniques currently in use in the
kappa simulator to generate stories from simulation traces.

For each instance of the observable in the simulator output, we could turn
the trace leading to it into a story by computing its precedence relation using
Theorem 2 and then use some compression algorithms. However, simulation
traces are typically very long, most of their events being likely to have absolutely
nothing to do with the observable, and compression is expensive. Therefore,
the simulation trace is filtered in such a way only the contributive lineage of the
observable remains before it is compressed and turned into a story. Note that the
compression algorithms are implemented at the level of traces for convenience
and efficiency but they are guaranteed to preserve the ∼ relation in the sense
that:

t ∼ t′ =⇒ compress(t) ∼ compress(t′)

for regular kappa models. In sections 5.1 and 5.2, we define the concept of
contributive lineage rigorously and show how the problem of weak-compression
can be reduced to minsat.
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5.1 Contributive lineage

Let t = e0, . . . , en a valid trace. For i < j, we say that ei directly contributes to
ej if ej tests a variable which is lastly modified by ei, that is:(

eff(ei) ∩ pre(ej)
)
\
⋃

i<k<j

eff(ek) 6= ∅

In this case, we write ei →t ej . The reflexive and transitive closure of →t

is written →+
t . If e →+

t e′, we say that e contributes to e′. The contributive
lineage of an event e in t is defined as the set

{
ei : ei →+

t e
}
. Then, the following

proposition holds:

Proposition 2. If t is a valid trace, the subtrace of t whose events are those of
the contributive lineage of one of its events is still valid.

For regular models, the →t relation is preserved by the ∼ equivalence on
traces and it can be defined on the events of a configuration. Then, it is inter-
esting in its own right as it can be interpreted as a weak notion of causality.
The following property gives some additional legitimacy to this point of view:

Proposition 3. Let (Q,E,C) a grid-based system. Then, there exists E′ ⊇ E

such that (Q,E′, C) is a grid-based system and the following three properties are
equivalent for e1 and e2 two events:

1. There exists a trace t over E′ such that e1 →t e2

2. There exists a context c ∈ C and a trace t over E′ such that:

c ` e1 · t · e2 ∧ c ` t ∧ c 6` t · e2

3. eff (e1) ∩ pre (e2) 6= ∅

If these hold, we say that e1 is a possible cause of e2.

5.2 The weak compression algorithm

Let t = e0, . . . , en a valid trace, e0 being an instance of the init rule and en
an instance of the observable. We want to find a minimal subtrace of t which
contains en and is still valid. This problem is reducible to the minsat problem
of finding a valuation satisfying a boolean formula with a minimal number of
positive variables.

Indeed, let’s consider some boolean variables k0, . . . , kn, each ki being inter-
preted as "we keep ei in the trace". For each boolean ki and variable x such that
(x, v) ∈ pre(ei) and v 6= null, we introduce the clause Ci,x,v defined as follows:

ki =⇒
∨
j∈A

(kj ∧
∧
l∈Bj

¬kl)

where:
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• A = {j : i < j ∧ (x, v) ∈ eff(ej)}

• Bj = {l : i < l < j ∧ (x, v′) ∈ eff(el), v′ 6= v} for each j ∈ A

Each valuation of the ki defines a subtrace of t. This trace is valid and contains
en if and only if:

(k0 ∧ kn) ∧
∧
i

∧
(x,v)∈
pre (ei)

Ci,x,v

Therefore, compressing t comes down to finding a valuation of this formula
with a minimal number of positive variables, which is an instance of minsat.
An example is provided Figure 5. Conversely, weak compression is a np-hard
problem.

6 Generating stories statically

We introduce in this section an algorithm to compute stories statically, that
is without running any simulation. Like most static analysis techniques, it ab-
stracts away the kinetics properties of a model and focuses on its mechanisms.10

As a consequence, many stories it produces are very unlikely to appear in a sim-
ulation trace.

This behaviour is interesting in some situations where biocurators care about
sleeping secondary pathways that become more active when a perturbation is
introduced in the model. Producing unlikely stories might help spotting such
perturbations. In other situations where only frequent stories are relevant, it is
still possible to run simulations in order to annotate statically generated stories
with frequency informations.

Besides, abstracting away kinetics gives kappa much smoother semantics
properties that make reasoning over underspecified models easier. For instance,
adding a rule to a model cannot discard a story although it can critically decrease
its frequency by introducing competition effects. More generally, purely mech-
anistic properties are more robust regarding model composition. Therefore,
static analysis techniques are especially relevant in the context of assembling
models from nuggets of knowledge mined from litterature, which is a critical
step towards making rule-based modelling widely used.

Finally, the techniques we introduce in this section can be easily adapted to
the problem of finding stories respecting a user-defined property and they are
best suited for interactive reasoning, as there are many ways a human agent can
assist the computer in its exploration of the search space.

10 Indeed, it is very hard to take the rate constants of a model into account in a nontrivial
way without running a stochastic simulation.
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Let’s consider a model made of a single agent S with two phosphorylation sites x and
y and three rules acting on it. It is possible to represent the four possible states of the
system along with the transition corresponding to each rule on a square diagram:

px : S(xu) → S(xp)

py : S(xu, yu) → S(xu, yp)

uy : S(xp, yp) → S(xp, yu)

〈u, p〉 ............
px
- 〈p, p〉

〈u, u〉

py
6
................

px
- 〈p, u〉

uy

?

................

Suppose the initial state is S(xu, yu) and the observable state is S(xp, yu). A trace
leading to the observable is given by the dotted path (init, py, px, uy, obs). It can
be compressed into the solid path (init, px, obs).

〈s, x〉ι 〈s, y〉ι

? ! ? !

0 init × u × u

1 py u u p

2 px u p

3 uy p p u

4 obs p u

C4,x,p : (x4 ⇒ x2)

C3,x,p : (x3 ⇒ x2)

C2,x,u : (x2 ⇒ x0)

C1,x,u : (x1 ⇒ x0)

C4,y,u : x4 ⇒ (x3 ∨ ¬x1 ∧ x0)

C3,y,p : (x3 ⇒ x1)

C1,y,u : (x1 ⇒ x0)

In the table above, each column corresponds to a variable (s∃ is omitted) and is split
into two parts: on the left are its tested values and on the right are its assigned values.
The character × corresponds to the null value. Next to this table are the clauses
corresponding to the two variables 〈s, x〉ι and 〈s, y〉ι, abbreviated in x and y.

Figure 5: An example of weak compression
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6.1 Problem statement

Most models admit an infinite set of stories. Although an algorithm might
be able to generate a finite representation of such a set, we see no structure
in it that could enable such a representation to exist and we’re not especially
optimistic that there is one.

A natural way to circumvent this is to generate only the set of all minimal
stories for some compression relation. Using weak-compression, the set of mini-
mal stories may still be infinite but it cannot in the case of strong-compression,
as a consequence of Higman’s theorem on well-quasi-orderings. Unfortunately,
the problem of computing the set of all strongly compressed stories of a model
is undecidable. Indeed, it is more difficult than the reachability problem which
consists in deciding whether or not a given rule can belong to a valid trace. This
last problem is undecidable itself as a consequence of the Turing-completeness
of kappa.

In the following presentation of our algorithm, we get rid of termination
problems by limiting the size of the generated stories.

6.2 Overview

Our algorithm doesn’t generate stories directly but rather generates some ab-
stract stories we call local stories. Then, it is easy to get concrete stories from
them through a concretization operator. This abstract domain of local stories is
especially designed to make the search process fast and non-redundant. More-
over, it admits a nice characterization of valid abstract stories, that is abstract
stories s such that α−1({s}) 6= ∅, and this enables us to cut early the search
branches that contain none of them.

Let A the set of all abstract stories and A∗ ⊆ A the set of valid ones. The
search process features a set of disjoint sets S = {Si ⊆ A}i sorted in a priority
queue such that the following invariant holds:

A∗ ⊆
⋃
i

Si ∪ F

where F ⊆ A∗ is the set of the valid abstract stories that have already been
found. It starts with S = {A} and F = ∅ and terminates eventually when S = ∅
in which case F = A∗. At each step of the algorithm, an element of lowest cost
is picked in S and removed from it, call it Si. This element passes through a
dual closure operator p respecting the following properties for all X ⊆ A:

p(X) ⊆ X p(X) ∩A∗ = X ∩A∗ (p ◦ p)(X) = p(X)

Then, three situations can occur:

1. We have p(Si) = {a} with a ∈ A∗ in which case a is added to F .
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2. We can prove p(Si) ∩ A∗ = ∅, in which case nothing is done.

3. Otherwise, S := S ∪ b ( p (Si) ), with b a branching function partitioning
p(Si) into a set of sets of strictly lower cardinal.

In the case A is finite, the algorithm is guaranteed to terminate. Indeed,
let’s assume A is of cardinal n. Then the vector (v1, . . . , vn) defined by:

vi = | {k : |Sk| = i} |

decreases strictly for the lexicographic order at each iteration. The OCaml code
of this search algorithm is given Figure 6. Before we give more details, we need
to introduce rigorously the notion of a local story.

let visit (env, ss) s =
let s = propagate env s in
if is_bottom env s then

(env, ss)
else if is_solution env s then

(add_solution s env, ss)
else

let branches, env = branch env s in
(env, List.fold_right Spq.insert branches ss)

let rec search (env, ss) =
try

let s, ss = Spq.extract_min ss in
search (visit (env, ss) s)

with Leftistheap.Empty -> env

Figure 6: The OCaml code of the search algorithm

6.3 Local stories

6.3.1 Definition

A local story is a tuple (N,A) where:

• N is a set of nodes, each node i being labelled by a rule ri.

• A is a set of arrows, each arrow connecting an assignment of a node to a
test of another one. More formally, an arrow a is defined by:

– Its source src(a) = 〈i, µ〉 with i a node and µ ∈ eff(ri).
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– Its destination dst(a) = 〈j, θ〉 with j a node and θ ∈ pre(rj).

The source node i of a is written srcn(a) and its destination node j is
written dstn(a). Finally, the variable modified by µ is written srcv(a) and
the variable tested by θ is written dstv(a).

Contrary to a story whose nodes are labelled by events, the nodes of a local
story are labelled by rules. However, for each test of each node, we keep track
of the exact assignment that is responsible for its success.

6.3.2 Local stories as abstract stories

It is possible to map a valid trace t = e0, . . . , en into the local story l(t) defined
as follows:

• For each event ei = 〈ri, ϕi〉 in t, we introduce a node i labelled by ri.

• For each i < j and each trait (x, v) ∈ eff(ei) ∩ pre(ej) such that x is not
reassigned by any event between ei and ej , we introduce an arrow a with:

src(a) = 〈i, ϕ−1
i (x, v)〉 dst(a) = 〈j, ϕ−1

j (x, v)〉

where ϕ−1(t) replaces any global agent identifier appearing in t by its local
counterpart using ϕ−1.

In the case of regular models, l is preserved by the strong similarity relation on
traces, that is:

t ∼ t′ =⇒ l(t) = l(t′)

Therefore, it is possible to define an abstraction (A,α) with A the abstract
domain of local stories and, for all story s, α(s) = l(t) with t any one of its tra-
jectories. In the next section, we introduce a necessary and sufficient condition
for an abstract story a to be valid along with a characterization of α−1({a}).

6.3.3 A characterization of validity

A first necessary condition for an abstract story to be valid is that there is
exactly one incomming arrow towards each non-null test of each node. In this
case, it is said to be complete. Moreover, the arrows have to be well-typed in the
sense that they have to connect compatible variables. For instance, a binding
assignment can’t be connected to a phosphorylation test. More formally, for
each arrow a with src(a) = 〈i, µ〉 and dst(a) = 〈j, θ〉, there has to exist two
instanciation maps ϕ1 and ϕ2 such that ϕ1(µ) = ϕ2(θ). This is true if and only
if τ(µ) = τ(θ) where τ(t) is defined as the type of a trait t by replacing each
agent identifier i by τ(i) in t. Moreover, in the specific case of kappa, we have
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to ensure that for each arrow that explains a test of the form 〈x〉λ = bound〈y〉,
a symmetric arrow explains 〈y〉λ = bound〈x〉 too.

In an abstract story s, agents are local to each node. Therefore, in order to
build traces from s, it is necessary to map each local agent of each node into a
global entity so each rule can be instanciated into an event. Thus, suppose we
have a map:

π : N × IL → IG

with N the set of nodes of s, IL its set of local agent identifiers and IG a set of
global agent identifiers. Then, let’s consider the set of events:

Eπ(s) = {〈ri, π(i, ·)〉 : i ∈ N}

Two necessary conditions on π for Eπ(s) to be the set of events of a trace t such
that (α ◦ C)(t) = s are the following:

1. Two different agents of a same node can’t be mapped into the same global
entity, that is:

∀i, x, y, π(〈i, x〉) = π(〈i, y〉) =⇒ x = y

2. For each arrow a, the local agent featured by the source of a and the one
featured by its destination have to be mapped to the same global entity:

π(〈srcn(a), (ag ◦ srcv)(a)〉) = π(〈dstn(a), (ag ◦ dstv)(a)〉)

where ag(v) maps a variable to the agent it describes for any variable v.

Now, suppose that these two conditions are met. By hypothesis, we have:

π(srcn(a), ·)(srcv(a)) = π(dstn(a), ·)(dstv(a))

for each arrow a and we write both sides varπ(a). We call varπ(a) the global
variable featured by a. Let � a total order on Eπ(s) and t the unique trace
whose events are in Eπ(s) and are ordered by �. Two necessary conditions on
� so that (α ◦ C)(t) = s are the following:

1. For each arrow a, srcn(a) ≺ dstn(a).

2. For each triple of distinct nodes (x, y, z) such that there exists an arrow a

such that:

x = srcn(a) ∧ y = dstn(a) ∧ varπ(a) ∈ π(z, ·)(eff(rz))

we have z ≺ x ∨ z � y.
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When these two conditions hold, we say that � is a valid π-scheduling of s. An
example of an abstract story which admits no valid π-scheduling is provided
Figure 7. This leads us to our main theorem.

Theorem 4. Let s an abstract story with well-typed arrows, N its set of nodes
and IL its set of local agent identifiers. Let ≡ the smallest equivalence relation
on N × IL such that for every arrow a of s:

〈srcn(a), (ag ◦ srcv)(a)〉 ≡ 〈dstn(a), (ag ◦ dstv)(a)〉

Let IG = (N × IL / ≡) and π the canonical projection from N × IL into IG.
Then s is valid if and only if:

1. s is complete

2. π maps different agents of a same node of s into different global entities:

∀n ∈ N, ∀x, y ∈ XIL
, π(〈n, x〉) = π(〈n, y〉) =⇒ x = y

3. s admits a valid π-scheduling �

Moreover, if s is valid, then α−1({s}) contains only one story (modulo renaming
of agents) that is equal to C(t) for t any trace whose events are in Eπ(s) and
are oredered by �.

Note that the last part of the theorem only holds for regular models, in
which case it suggests a straightforward concretization operator.

6.4 Partial abstract stories

In the high-level description of the search algorithm of section 6.2, we manipu-
lated sets of abstract stories. These sets are encoded by partial abstract stories.

6.4.1 Definition

Let s and s′ two abstract stories whose sets of nodes are N and N ′. An injective
map f : N → N ′ is said to be an embedding of s into s′ if it preserves both the
nodes labels and the arrows of s.

A rooted abstract story is a tuple (s, ω) where s is a connex abstract story
and ω one of its nodes, usually the observable. We say that (s, ω) is embedded
into (s′, ω′) if there exists an embedding f of s into s′ such that f(ω) = f(ω′).
Note that as s and s′ are connex, such an embedding is unique if it exists.

A partial abstract story is a triple (s, ω, c) such that (s, ω) is a rooted abstract
story and c is a set of alternatives. An alternative a is given by:

• A destination dst(a) = 〈n, θ〉 where i is a node of s and θ ∈ pre(rn), like
in the definition of the destination of an arrow.
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Let’s consider three rules px, py and obs and an abstract story s featuring a node for
each one of them – among other things that are not shown here:

px : A(xu, yp) → A(xp, yu)

py : A(xp, yu) → A(xu, yp)

obs : A(xp, yp) → A(xp, yp)
obs

px py

x y

x, y x, y

Let’s suppose that the phosphorylation of the site x of the unique agent featured by
obs is due to px and that the phosphorylation of the site y of the same agent is due
to py, which gives us two arrows. These arrows make all the three agents featured by
each node equivalent for ≡, and so they are all mapped into the same global instance
by π, let’s write it a.
On the diagram above, we write x the global variable 〈a, x〉ι and y the global variable
〈a, y〉ι. We write next to each node the set of global variables it modifies and each
arrow a is labelled by varπ(a). We show below that s does not admit a valid scheduling,
which implies that s is not valid.

obs

px py

x

x

There is an arrow from py to obs:

py ≺ obs

The node py modifies a variable that is fea-
tured by an arrow going from px to py:

(py ≺ px) ∨ (py � obs)

Combining these two clauses:

py ≺ px

With a symmetric reasoning, we can show
that:

px ≺ py

which is a contradiction. As a consequence,
s is not valid. obs

px py

y

y

Figure 7: An example of impossible scheduling
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• A set of possible sources src?(a), a possible source being a tuple 〈n̂, µ〉
where n̂ is either:

– an existing node of s labelled by a rule r
– the special value new (r) with r a rule

and µ ∈ eff(r).

Intuitively, an alternative describes a set of possible arrows with the same des-
tination but different sources. These possible sources can feature nodes that do
not exist yet in s but whose associated rule is known.

An alternative a is said to be empty if src?(a) = ∅ and it is said to be resolved
if src?(a) is a singleton. Finally, if p = (s, ω, c) is a partial abstract story, we
write p = s its underlying abstract story and alt(p) = c its set of alternatives.

6.4.2 The extension relation

We say that a rooted abstract story (s′, ω′) extends a partial abstract story
(s, ω, c) when the following conditions hold:

• There exists an embedding f from (s, ω) into (s′, ω′).

• For each a ∈ c with dst(a) = 〈m, θ〉, there exists 〈n̂, µ〉 ∈ src?(a) such that
there is an arrow in s′ whose destination is 〈f(m), θ〉 and whose source is:

– 〈n, µ〉 for n a node of s′ labelled with r which is not in f(N) if
n̂ = new (r), with N the set of nodes of s

– 〈f(n̂), µ〉 otherwise

This can be used to represent sets of rooted abstract stories with partial
abstract stories. Indeed, for sp a partial abstract story, we define [sp] as the set
of complete rooted abstract stories with well-typed arrows extending sp.

6.5 The search algorithm

Now that we have introduced the notion of a partial abstract story, we can
complete our description of the search algorithm introduced in section 6.2. All
abstract stories are implicitly rooted in their unique observable node and we
use partial abstract stories to represent sets of them. In particular, the set S of
section 6.2 is now regarded as a set of partial abstract stories.

6.5.1 Manipulating partial abstract stories

The following invariant is preserved during the search process:
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Invariant 1. For all s ∈ S, each non-null test of each node of s is the destina-
tion of an arrow or of an alternative (exclusively).

As we see later, it guarantees that only complete abstract stories are generated.
Moreover, no valid abstract story is forgotten as guaranteed by the invariant:

Invariant 2.
A∗ ⊆

⋃
s∈S

[s] ∪ F

Suppose that we have a partial abstract story s with a resolved alternative,
that is an alternative a such that src?(a) is a singleton. Then, it is natural
to remove this alternative and add the unique arrow it suggests in s. This
is indeed a part of what the propagation operator actually does. In the case
where src?(a) = {〈new(r), µ〉}, adding such an arrow requires adding a new node
n labelled by r. Then, a new alternative has to be added to s for each non-null
test of r in order to preserve Invariant 1. Moreover, this whole operation should
leave [s] ∩ A∗ invariant so that Invariant 2 is preserved. For this to hold, these
alternatives have to be kind of exhaustive but that’s not sufficient. Indeed, if
〈new(r), µ′〉 ∈ src?(a′) for another alternative a′, then 〈n, µ′〉 has to be added to
src?(a′) too.

In order to make node creation easier to handle, we don’t encode alt(s) as a
set of alternatives. Instead, we define for each abstract story x a set A(x) such
that:

∀s, [s] ∩A∗ 6= ∅ =⇒ alt(s) ⊆ A( s )

and we encode instead its complementary set of disqualified possibilities disq(s)
such that alt(a) is obtained from A( s ) by:

• Removing in it all the alternatives a such that dst(a) is the destination of
an arrow in s.

• For all remaining alternative a, removing in src?(a) the elements t such
that (a, t) ∈ disq(s).

It remains to define A. For this, let’s consider an abstract story s. If n is a
node of s and t a trait, the kind of the tuple 〈n, t〉 is defined by:

κs(〈n, t〉) = 〈rn, t〉

with rn the rule labelling n in s. For r a rule and θ ∈ pre(r), we define
src-kinds (〈r, θ〉) as the set of all tuples 〈r′, µ〉 for r′ a rule and µ ∈ eff(r′) such
that τ(µ) = τ(θ). Then, for any valid abstract story s ∈ A∗ and a an arrow of
s, we have:

(κs ◦ src)(a) ∈ (src-kinds ◦κs ◦ dst)(a)
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As a consequence, src-kinds(k) can be regarded as a superset of all the possible
kinds of sources for an arrow whose destination has kind k in a valid abstract
story. Then, for s an abstract story and N its set of nodes, A(s) is defined as
the set of alternatives a with dst(a) = 〈j, θ〉 and:

src?(a) = { 〈new(r), µ〉 : 〈r, µ〉 ∈ (src-kinds ◦ dst)(a) }

∪ { 〈i, µ〉 : i ∈ N, 〈ri, µ〉 ∈ (src-kinds ◦ dst)(a) }

for j ∈ N and θ ∈ pre(rj).

6.5.2 Initialization of the algorithm

The algorithm is initialized with S = {s0} where s0 is a partial abstract story
with one node labelled by obs and no arrow and such that disq(s0) = ∅. We
have indeed:

A∗ ⊆ [s0]

and Invariant 1 is respected by definition of disq.

6.5.3 Consistency checks

The search algorithm has to estimate at each iteration whether or not a partial
story s is inconsistent, that is:

[ s ] ∩A∗ = ∅

Of course, such a test is undecidable in general as the reachability problem can
be reduced to it. Hopefully, a wide range of inconsistent partial stories can be
recognized using Theorem 4. Indeed, if s is a partial abstract story such that
either condition 2 or 3 of Theorem 4 does not hold for s, then it is inconsistent.

In order to check whether or not we are in this case, we first compute the
equivalence relation ≡ for s with a union-find datastructure, whose find oper-
ation corresponds to the π map. Then, it is possible to check in quasi-linear
time that no two agents of a same node are equivalent for ≡. After this, we
check that s admits a valid scheduling for π, which is a problem of satisfiability
modulo the theory of partial orders. More specifically, there is one variable for
each node of s and clauses are of the form:

a ≺ b and (x ≺ a) ∨ (x � b)

The number of clauses is cubic in the number of nodes of s in the worst case, but
it is closer to be linear in pratice. Moreover, although the satisfiability test is
exponential in the worst case, it is often linear as the high proportion of clauses
with only one litteral makes constraint propagation very efficient. Finally, when
a size limit on generated stories is given, partial abstract stories whose number
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of nodes exceeds this limit are considered inconsistent. Moreover, we may want
to limit to one the number of nodes labelled by init.

An other test the search algorithm has to perform is whether or not:

[ s ] = {a} , a ∈ A∗

for s a partial abstract story. This one is especially easy as it holds if and
only if s passes the consistency check described above and has an empty set of
alternatives. Indeed, if s has an empty set of alternative, it is complete thanks
to Invariant 1. We conclude using Theorem 4.

6.5.4 The p propagation operator

Let s a partial abstract story, a ∈ alt(s) and t ∈ src?(a). We write choose (a,t)(s)
the partial abstract story built from s by adding the arrow whose source is given
by t and whose destination is given by dst(a) to it, creating a new node if needed.
Moreover, each time an arrow explaining a test of the form 〈x〉λ = bound〈y〉 is
added, the appropriate symmetric arrow explaining 〈y〉λ = bound〈x〉 has to be
added too.

The value of disq does not need to be updated in choose (a,t)(s), which is one
reason this encoding of the set of alternatives is relevant.

The p operator takes a partial abstract story s and does two things to it:

1. For every alternative a of s, if a is empty, we mark s as inconsistent so
it is further eliminated. If a is resolved, that is src?(a) is a singleton {t},
then s is updated into choose (a,t)(s).

2. For each alternative a of s and t ∈ src?(a), if choose (a,t)(s) is provably
inconsistent, then we add (a, t) to disq(s). Here, we don’t use the expensive
consistency check introduced in section 6.5.3 but a constant-time version
of it where scheduling constraints are generated only for the neighborhood
of the new arrow.

These two operations are repeated until they leave s unchanged.

6.5.5 The b branching operator

Let s a partial abstract story, a ∈ alt(s) and t ∈ src?(a) two well-chosen values.
Then, b(s) = {s1, s2} where:

• s1 = choose (a,t)(s)

• s2 is built from s by adding (a, t) to disq(s)

Indeed, {[s1], [s2]} is a partition of [s]. The choice of (a, t) is governed by a
heuristic we discuss in section 6.5.6.

35



6.5.6 Cost of a partial story

On many real world models, the search space becomes so large that this al-
gorithm is unlikely to generate the whole set of valid stories in a reasonable
amount of time. However, when guided in its exploration by a good heuristic
function, it may find the most interesting ones very quickly.

Heuristics play an important role in two parts of the algorithm: when picking
an element of S and when branching. Indeed, each story of S is associated a cost
and an element of lowest cost is picked at each iteration. Moreover, branching
is usually done in a way that minimizes the cost of the first branch s1. Many
strategies are possible to assign costs to partial abstract stories but here are
some basic principles:

• Penalizing node creation is usually a good greedy strategy to generate
minimal stories first.

• Two arrows a and a′ such that varπ(a) = varπ(a′) should share the same
source as often as possible and partial abstract stories that are parcimo-
nious in this sense should be assigned lower costs.

• If the user is confident about the branching strategy and he wants to get
to the first story very quickly, a depth-first search is a good bet.

• Partial abstract stories that are similar to stories that have already been
found can be penalized so that the first stories to be generated are more
representative of the whole set of them.

6.6 Experimental results and prospects

A generic OCaml implementation of this algorithm is available at https://
github.com/jonathan-laurent/kappa-stories. It was tested on the Kasim
test suite provided at https://github.com/Kappa-Dev/KaSim/tree/master/
models/test_suite/cflows and asked to generate a single compressed story for
each test case: each run took less than one second on average. However, in the
current stage of its development, it is not well-suited for generating exhaustive
sets of strongly compressed stories, even for small models and with a bound on
the size of relevant stories.

Indeed, although the number of strongly compressed stories might be rea-
sonably small for most models of interest, generating all of them would require
to cut very early huge parts of the search space containing only uncompressed
stories. No solution to this problem is currently implemented but we expect
some progresses in a near future. Indeed, we are working on defining a notion of
compressible pattern on partial abstract stories such that the following property
holds:
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Proposition 4. If s is a partial abstract story such that choose (a,t)(s) features
a compressible pattern for any choice of (a, t), then α−1([s]) does not contain
any compressed stories.

Finally, the heuristic which is currently implemented is very naive – a depth-
first search strategy penalizing the creation of nodes – but we’re confident that
some minor improvements in it will make our implementation scalable to much
larger models.

7 Conclusion and future work

In this report, we introduced stories as formal counterparts to biological path-
ways and provided some generic techniques to generate them from rule-based
models of protein-protein interaction networks.

When discussing causality, people usually distinguish necessary causes from
sufficient ones. In medicine or in biology, both notions are often too demanding
to be met in practice and a notion of contributive causality is usually preferred,
where an event e1 is said to be a cause of an event e2 if it is an insufficient
but non-redundant part of a condition which is itself unnecessary but sufficient
for the occurence of e2. Minimal stories are defined in this exact spirit, as any
event e1 of a minimal story explaining e2 is a cause of e2 in this sense.

Finally, a lot of work remains to be done on causal analysis, in addition
to what was mentioned in section 6.6. For instance, it would be interesting
to break stories into logical blocks that would be larger than atomic events.
Such blocks may consist in recurrent biological patterns corresponding to spe-
cific computational or assembling primitives. They could be defined a priori
from well-known motifs or generated a posteriori by learning algorithms. More-
over, although stories may be considered useful per se for the intuitive insight
they provide into the structure of a model when displayed as graphs, more sub-
tle analysis techniques may be developped to extract useful informations from
them. In particular, we could use causal analysis to highlight the behavioural
differences between two variations of a same model.
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