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1. Background and Introduction 

The predator–prey paradigm originally emerged from the field of ecology and was 

analyzed through a series of differential equations describing population dynamics 

among at least two species (often predator and prey).1 Over time, this evolved into 

a framework for investigating environmental and spatial contributions toward 

behavioral dynamics. From 1925 to 1966 modifications to the predator–prey model 

resulted in the emergence of functional predator behavior dependent on prey death 

rate and prey population density.2–4 These modifications introduced the first 

inferred spatial component to the predator–prey paradigm. In 1985, the predator–

prey model was extended to the problem of individual pursuit (i.e., focusing on 

individual interactions rather than population dynamics). This shift was aimed at 

exploring cooperative behavioral dynamics in multiagent systems.5 Since then, the 

predator–prey pursuit problem has begun to see use as a benchmark for testing 

multiagent algorithms, due to the inherent competitive and cooperative elements 

intrinsic to its design.6 

The typical predator–prey pursuit environment consists of multiple predators and a 

single prey moving around in a 2-D confined arena either discretely (one space at 

a time in either up, down, left, or right directions) or continuously (smooth 

continuous movement in any direction) for a fixed duration.6–14 The goals of the 

predators are in direct competition with those of the prey. The predators’ shared 

goal is to come in contact with (continuous movement) or settle adjacent to (discrete 

movement) the prey, while the prey’s goal is to avoid contact or adjacency with all 

predators (provided the prey moves). This creates an interesting dichotomy of 

competition between species (predator and prey), while promoting cooperation, 

coordination, and collaboration within the predator species. Although competition 

weighed against cooperation within the predator group has been explored,12 the 

majority of studies utilize the predator–prey pursuit environment to investigate 

team dynamics with respect to a shared goal. 

The original predator–prey pursuit environment (Fig. 1) required four predator 

agents to surround the single prey agent from four directions in a discretized grid 

world.5,13,15,16 The predator agents were guided by an algorithm and their 

movements were limited to one grid square per time step to an adjacent available 

square (not occupied by another agent or a boundary) in only the vertical or 

horizontal directions (no diagonal movements). The prey agent was restricted to the 

same criteria and guided by random movement. The goal of their simulation 

experiments was to show the impact that varying degrees of agent cooperation and 

control had on the efficiency of prey capture. This first rendition of the predator–
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prey pursuit problem introduced an environment to test the effectiveness of an 

algorithm to cooperate in a well-constrained domain. 

 

Fig. 1 Typical predator–prey pursuit environment utilized a discretized grid world 

bounded on all sides. The goal was to have four predator agents (green blocks) surround the 

prey agent (red block) on four sides (top, bottom, left, and right). Agents could only move one 

square at a time and neither could move diagonally nor catch the prey from an adjacent 

diagonal location. 

Cooperative algorithms inherently enable predators to collaborate.9,17–21 However, 

under certain conditions, predators using a greedy strategy may have greater 

success,22 though cooperative algorithms often win out when a sophisticated prey 

is faced,16 and in some environments prey benefit most from a mix of greedy and 

altruistic strategies.12 These algorithmic explorations of multiagent cooperation 

show how the predator–prey pursuit environment provides an ideal testbed for 

understanding collaborative agent behavior. 

Since the origination of the predator–prey pursuit environment, many studies have 

leveraged manipulations to the pursuit environment to investigate human and 

artificial intelligence behavior in multiagent systems. The next section explores 

many of these predator–prey environmental manipulations along with the 

experimenters’ goals to provide a foundation for simulating tactical edge scenarios. 

2. Modifications to the Predator–Prey Pursuit Environment 

Many multiagent research efforts utilize the original discretized predator–prey 

pursuit environment shown in Fig. 1, implementing a toroidal grid world and 

requiring the single prey to be blocked on all sides by four predators.7,13,14 These 

studies tend to focus less on the structure of the environment and more on how 

specific sets of predator strategies impact cooperation and teamwork in 

homogenous and heterogeneous groups of predators. While this foundational work 

is important, the remainder of this section will discuss modifications to the 

predator–prey pursuit environment and their implications. 
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2.1 Changes in Task Constraints 

One of the simplest modifications of the original predator–prey pursuit task is to 

change the constraints of the task in order to address specific questions or increase 

task realism. The most straightforward example of this is pursuit environments that 

are made more complex through the use of continuous spaces. While in grid worlds 

the prey are typically considered caught when surrounded on four sides by 

predators (Fig. 1), continuous environments require a predator to come within some 

small distance of,23 or to “tag” (touch or overlap in center of mass)6,24 their prey. 

While discrete environments are typically easier to analyze and reason over, it is 

worth recognizing that most real-world tasks take place in a continuous domain. 

Thus, the application of theoretical and empirical revelations that emerge from 

continuous (or other more realistic) predator–prey pursuit environments will aid 

our understanding of real life pursuit problems.  

As an intermediate step, some authors have extended (while maintaining) the 

discrete environment with diagonal movements,25 or more complex cell-shapes 

(such as hexagons,10,25 or irregular convex cells26). The timing of predator and prey 

movement has also been manipulated, with the standard parametrization allowing 

agents to move synchronously per time step,25 alternating agents’ movements 

through a sequence of time steps (e.g., turn-taking as described in Denzinger27), or 

allowing more realistic unrestricted, asynchronous movement16 such that predators 

and prey can react to each other at flexible time intervals. 

Manipulations to environment bounding have illuminated a dependence between 

structure and predator pursuit strategies. Unbounded nontoroidal environments 

have been used, including unbounded planes where pursuers move along an 

unbounded curvature,28 as well as bounded environments (e.g., where traffic in a 

police chase is restricted to a closed grid of streets29 or where encountering the edge 

of the environment results in death17). These manipulations have clear implications 

for pursuit and evasion strategies, since a nontoroidal unbounded environment will 

allow fast enough prey to continue indefinitely in a given direction and bounded 

environments contain corners in which prey can be trapped. 

2.2 Changes in the Number of Agents 

The most frequent predator–prey pursuit environment modifications have been to 

vary the number of agents. In one study, the number of pursuers (predators) was 

varied between one and two in a discrete environment with block obstacles to 

investigate how different agent learning parameters (Q-learning: learning rate, 

discount factor, and decay rate), implemented into both the predator and prey (in 

one condition), alter evader (prey) capture time.11 In other work, the number of 
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competitive (egoistic) and collaborative (altruistic) predator agents was varied 

along with the total number of predators (up to 20) to understand how different 

sizes of homo- and heterogeneous egoistic and altruistic groups of predators catch 

a single prey.12 Together, this work demonstrates how simply changing the number 

of predators and including various types of obstacles can illuminate aspects of 

collaborative behavior while simultaneously testing the effectiveness of different 

algorithmic approaches. 

2.3 Modifications of the External Environment  

Obstacles in the pursuit environment can take on various attributes that force agents 

to adapt and develop more sophisticated behaviors to achieve the task goal. 

Typically, these obstacles are static and must be circumnavigated as was described 

previously,6,21,23,30 but they may take on attributes that disrupt or eliminate an agent 

(predator or prey).17 In one research effort, three pursuers (predators) needed to 

collaborate in a 2-D environment with complex maze-like obstacles (branching 

obstacles) to capture an intruder (prey) before it escaped.30 The goal of this 

particular study was to identify an optimal strategy that emphasized group reward 

over individual reward, essentially discovering optimal collaboration within their 

environment. Dynamic obstacles have also been used to investigate a predator–

prey-like task where a police chase was modulated with varying degrees of street 

traffic.29 In general, these studies found that successful agent behavior was 

dependent on the attributes of the obstacles. 

2.4 Changes in Agent Capabilities  

Similar to the inclusion of obstacles in the pursuit environment, restricting how far 

agents (predators and prey) can see necessitates changes to agent behavior to 

achieve task success. Some research allows the agents to be omniscient, where all 

entities’ positions are known at every time point,6,28 whereas other studies permit 

agents to see in a straight line until an occlusion is encountered.26,31–33 Some allow 

predators and prey to see only within a given range around themselves13,23,34 or 

apply random limitations to predator vision.35 While some research explores 

predators with limited sensing abilities, these studies allow information to be shared 

among predators,13,29 either through direct communication (e.g., police radio,29) or 

indirectly (e.g., by leaving cues such as pheromone trails in the environment).19 

Other work has explored an imbalance between sensing abilities of the predators 

and prey. For example, a predator may see a prey from a greater distance than the 

prey can detect, reflecting a more realistic scenario where the predator is on the 

hunt for a nonvigilant prey.13 Other work has further modified agent vision or 

sensing abilities by testing something akin to sound, where a predator agent can 
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hide around corners.36 Together, these studies show the importance of agents’ 

sensing capabilities and how manipulations illuminate the dependence between 

pursuit strategies and these capabilities. 

Limitations to agents’ sensing capabilities in simulation experiments naturally 

extends the pursuit problem into the physical domain with robots. A common 

physical limitation of a robotic agent is the field of view.37 The field of view is 

dependent on two main factors, 1) the distance between the visual system and the 

object, and 2) the degrees of visual angle the system can see (the average human 

can see approximately 210° of visual angle). Given that robotic systems need to 

have some visual representation of the environment around them for obstacle 

avoidance and navigation, certain limitations to field of view can cause a 

catastrophic failure (possibly disabling or destroying the robot). Therefore, it is of 

critical importance to understand how manipulations to field of view affect robotic 

systems’ pursuit behavior. 

2.5 Additional Dimensions 

In general, 3-D environments provide an opportunity for more complex behavioral 

strategies, such as those required in aviation, aquatics, and for traversing uneven 

surfaces.24,32 Through investigation of these various 3-D environments, a natural 

emergence of behavioral strategies that depend on the terrain can be discovered. A 

physical example of this phenomenon is found in the attack and evasion strategies 

for spiders and crickets as forest leaf litter change geometries between winter and 

summer.38 

3. Adaptation of the Predator–Prey Pursuit Environment to 
Tactical Edge Scenarios 

The predator–prey pursuit environment has been used by researchers since 19851 

to investigate a host of topics including various aspects of group dynamics,18,39 

pursuit strategies,40,41 escape/evasion strategies,20,34,42 and multiagent systems10–

12,43 to name a few. The last portion of this report discusses a set of proposed 

manipulations to the predator–prey pursuit environment to investigate potential 

simulated tactical scenarios that easily map to a physical domain. 
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3.1 Impact of Spatial Constraints on Strategies and Behavior  

The predator–prey environment size, or the space available for agents (predators 

and prey) to move around in, has been manipulated to understand how 

environmental geometries10,25 and sizes44 influence agent behavior in discrete 

spaces. Building upon this body of work and extending into the continuous 

domain,6 it would be of interest to start with a trivial minimized space, such that 

the predators always catch the prey within a short period of time, and incrementally 

increase the size of the environment to gain a quantitative understanding of how 

environment size impacts prey catch times as a function of increasing environment 

size. We would expect that prey catch time would increase with a power function 

of the dimensions of the environment, with a certain size resulting in a near-zero 

probability of catch. The dimensional expansion can provide a fundamental 

understanding of task difficulty with respect to environment size. In a simulated 

tactical scenario, such an understanding would allow us to better assess the 

probability of acquiring a moving target given the estimated escape space available. 

This could also lead toward valuable insight into the type of agent capabilities 

needed to estimate a high probability of mission success (e.g., small and fast 

reconnaissance agents). 

3.2 Modifying Predator Capabilities 

While holding all other possible manipulations constant, modifications to agent 

velocity or rate of predator agent movement in a continuous space introduces many 

additional degrees of freedom and provides an opportunity to simulate tactical 

teams with homo- and heterogeneous capabilities. A systematic sweep through a 

range of velocities for a set of predator agents can provide a valuable mapping 

between agent velocity and mission success (i.e., prey catch time). However, it is 

important to note that changes to predator velocity are relative to prey velocity and 

should likely be thought of as a ratio. With that stated, a simultaneous change to all 

predator agents’ velocities (increase or decrease) relative to the prey agent will 

result in an understanding of the relationship between homogeneous alterations to 

a team’s capabilities and mission success. Similarly, heterogeneous manipulations 

to the predator agents’ velocities relative to the prey agent in a continuous predator–

prey pursuit environment can provide an estimate of mission success for the various 

capabilities (velocity sweep across all predators) in this simulated target acquisition 

tactical scenario. 

On the other side of the proverbial coin, holding predator attributes constant and 

applying manipulations to the prey’s velocity introduces additional dimensionality 

to the task domain and may result in the need for more complex collaborative 
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behavior to achieve predator agent mission success. As was suggested for the 

predator agents, a velocity sweep for the prey would dictate task difficulty (easy for 

low velocities and hard for high velocities) and should result in a spectrum of 

competitive to collaborative predator agent behaviors for low to high velocities, 

respectively. It is important to note that modifications to the prey’s velocity would 

need to be relative to the predator agents’ velocities. We would expect that 

manipulations from low to high predator-to-prey velocity ratio would result in the 

shifts from easy to hard for task difficulty and competitive to collaborative predator 

agent team behavior. These simulation experiments might represent the differences 

between having homo- or heterogeneous teams of slow, heavy, powerful assets 

(e.g., tanks), camouflaged insurgent ground assets, or drones in reconnaissance or 

target acquisition scenarios. 

3.3 Modifying Prey Capabilities 

In the prey manipulation domain, introducing multiple prey in various forms could 

change the task goals entirely. The inclusion of a second prey expands the 

dimensionality of the task domain to include homo- and heterogeneous adversarial 

dynamics (two prey agents forming an adversarial team), a potential decoy 

(catching the decoy prey agent does not complete the mission), and variable 

temporal mission objective windows (the predator agents must coordinate to catch 

both prey agents within a preselected duration). The inclusion of additional prey 

agents (number of prey agents >2) can further increase the complexity of the task 

domain, possibly to the point of which the probability of simulated tactical mission 

success goes to zero. Mission failure is important to explore, especially in simulated 

environments, to maximize the probability of mission success in the multidomain 

battlespace. 

Modifications to coordinate locations in the simulated environment, while holding 

all agent attributes (both predator and prey) constant, permits an investigation of 

degraded agent capabilities. Coordinate manipulations can take the form of static 

impassible barriers that represent buildings/walls/obstacles, patches that induce 

injury by temporarily (short duration) or permanently (remaining duration) 

reducing/minimizing/stopping agents’ (predator and/or prey) movements or small 

environmental regions with simulated hidden explosives that completely remove 

an agent from further participation in the mission. Other coordinate manipulations 

are possible (e.g., teleport agents randomly around the environment), but they might 

not have an easily identifiable correspondence to tactical scenarios. Therefore, 

environmental manipulations that easily map to tactical scenarios can provide an 

estimate of the relationship between agent capability degradation and mission 

success. 
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4. Conclusion 

Complexification of the predator–prey pursuit environment to include 

modifications that easily map to simulated tactical scenarios allows for the 

adaptation of computational agents to these domains. This line of predator–prey 

pursuit research can be extended to a physical environment that accommodates the 

testing of robotic platforms working with Soldiers in target acquisition training 

drills, for the eventual implementation on the multidomain battlefield. 
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