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Introduction 

       Firction stir welding (FSW) ia a solid-state process where temperatures are below melting, and is significant 

for various applications because of unique weld characteristics [1-3]. FSW entails joining of a workpiece by 

means of a stirring tool of given geometry, which has specified translational and rotational speeds (see Fig.1) (see 

references [4-18]). The present study concerns inverse thermal analyses of FSW processes using a methodology 

formulated in terms of numerical-analytical basis functions, equivalent source distributions and temperaturess 

field constraints [19]. References [20-32] describe the general problem of inverse thermal analysis. This report 

describes inverse thermal analyses of AZ31-Mg-Alloy and Ti-6Al-4V FSWs, which can predict temperature 

histories within a workpiece for the range of process  parameters considered [19, 33-40].  

       The subject areas presented are organized as follows. First, the procedure for inverse thermal analysis of 

FSWs using generalized numerical-analytical basis functions and equivalent source distributions is discussed. 

Second, case study inverse thermal analyses of AZ31-Mg-Alloy and Ti-6Al-4V FSWs are presented. Third, 

discussion is given concerning aspects of the inverse thermal analysis methodology. Finally, a conclusion is given. 

Fig. 1 Schematic representation of friction stir welding and processing. 

_________
Manuscript approved July 31, 2018.
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Inverse Thermal Analysis Procedure 

         Following the procedure introduced in [40], the region consisting of stirring tool and stirred material (see 

Fig. 2) is segmented into a finite set of slices that are perpendicular to the z axis. Next, a circle is constructing 

within each slice , such that the circumference of each circle is defined by the interface between stirred and 

unstirred material (see Fig. 2). The lines joining centers of these circles and locations of discrete sources, having 

different strengths, are parallel to V. Accordingly, the x and y coordinates of each source depends on the width of 

the stirred-material cross section at its z coordinate. This procedure for assigning the locations of discrete sources, 

of given strengths and diiffusivity vectors , permits modeling of asymmetric heat deposition associated with 

shape differences of FSW advancing and retreating sides. 

     

                                                                                                

Fig. 2 Schematic representation of FSW cross section consisting of stirring tool and stirred material, where 
equivalent source distribution consists of point sources located at centers of circles whose diameters are the SZ 
width as a function of z.  
 

     Next, a parametric representation of  temperature fields for heat deposition during welding of plate structures 

is adopted, which is terms of an effectively complete set of basis functions. A numerical-analytical basis function 

whose formulation should be relatively optimal for parametric representation of FSWs is given by                                                                            
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and                                                                      ,                                                                  (Eq 2) 
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and where  is the value of the discrete source function at location . Equation (1) is the solution to the heat 

conduction equation for a point source located at position (xk, yk, zk) within a region having non-conducting 

boundaries in z. Specifically, Eq.(1) is constructed using combinations of two general forms of the solution to the 

heat conduction equation. These general forms are the heat-kernel solution of the time-independent steaty-state 

heat conduction equation for an unbounded region, and the Fourier series solution of the time-dependent heat 

conduction equation for a region having non-conduction boundaries. Derivation of these solutions are given in 

Reference [41]. Equation (5) is the source term of the heat conduction equation associated with a spatial 

distribution of point sources, which results in the solution given by Eq, (1). The quantities , V, l and g are the 

thermal diffusivity, welding speed and workpiece thickness and weight coefficent for modeling equivalent 

effective-diffusion (associated with equivalent source distributions [40]), respectively. The constraint conditions 

defined by Eq.(2), representing input quantities to the model, are imposed on the temperature field by 

minimization of the objective function defined by 

                                                                                                                                    (Eq 6)                                    

where  is the target temperature for position  = . The quantities  (n=1,…,N) are weight 

coefficients specifying relative levels of influence associated with constraint conditions . The output quantity 
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of the parametric model defined by Eqs.(1)-(6) is the three-diemsional temperature field  spanning the 

entire volume of the workpiece. Specifically, the quantitiies  are adjusted such that temperature-field values 

calculated according to Eq.(1) are within a small error tolerances of target temperatures at specified positions (see 

Tables 1). For the present study, conditions on the objective function defined by Eq.(6) were wn = 1 and V𝑍\ < 1 

oC, for all n. The parameter , defined by Eq.(3), implies a diffusivity vector for the equivalent 

effective-diffusion, and provides convenient adjustment of the temperature field within upstream regions of FSWs 

that satisfy boundary conditions defined by the SZ, as well as downstream conditions that are determined only by 

the diffusivity (not  and ). This follows from the mathematical property of heat diffusion within plate 

structures (see reference [40] for discussion).  

           The procedure for inverse thermal analysis defined by Eqs.(1)-(6) entails adjustment of parameters , 

 ,  and . The parametric model combines numerical integration with optimization of linear combinations 

of numerical-analytical basis functions, which include fundamental solutions to the heat conduction equation and 

their Fourier-series representation [41]. Equation (1) defines a discrete numerical integration over time, where the 

time step  is specified according to the average energy per length deposited, for transition of the temperature 

field, at steady state, from uptream regions (close to the SZ) to downstream regions where there is no longer a z-

coordinate dependence. It should be noted that the formulation of the inverse analysis methodology defined by 

Eq.(1)-(6) is equipped with a mathematical structure that satisfies all boundary conditions associated with welding 

of plate structures (see [19]).  

Case Study Inverse Thermal Analysis of AZ31-Mg-Alloy FSWs  

         In this section results of inverse thermal analyses of AZ31-Mg-Alloy FSWs are described, which correspond 

to different weld process conditions and associated process-control parameters. AZ31-Mg-Alloy is commercially 

available in sheet form and offers good mechanical properties, but has limited ductility and tends to be brittle at 
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room temperature. It has been shown, however, that it is possible to form AZ31 sheets having improved ductility 

and conformability using FS processing, which modifies microstructure [42-50]. 

      The significance of the inverse-problem approach for thermal analysis of FSWs, as for thermal analysis of  

different types of complex welding processes [19], is that the nature of the energy-source coupling to the 

workpiece, which is a function of tool geometry and process control parameters, is in principle difficult to specify 

relative to analysis based on the direct-problem approach. For this study, motivation for adopting SZ boundaries 

as constraint conditions is that for AZ31-Mg-Alloy FSWs one can associate (approximately) this boundary with 

an isothermal boundary of known temperature. In the case of the AZ31 magnesium alloy, reference [47] provides 

an empirical relationship for the estimated uniform SZ temperature as a function of FSW process parameters, 

which is 

                                                                                                                                        (Eq. 7) 

where  = 0.0442, K = 0.8052 and Tm = 610 oC. The present study uses experimentally estimated SZ boundaries 

as measured in the laboratory for assigning volumetric constraints (see Eq. (2)) on the calculated temperature 

fields. 

         The analyses presented here entail calculation of the steady state temperature field for different shapes of  

the SZ, which are based on experimentally observed estimates of SZ boundaries. The shapes of these boundaries 

are determined experimentally by analysis of transverse FSW cross sections showing microstructure revealing 

estimated SZ boundaries, e.g., see references [46,49,50]. For calculations of the temperature field, which adopt 

SZ boundaries as constraints, the parameter values assumed are the SZ-edge temperature (Tsz  determined by 

Eq.(7)), = 4.858 x 10-5 m2s-1 and = 0.5 s. The diffusivity weight-factor , for representation of advective 

influences (see [40]) is adjusted according to the location of the pseeudo-nonconducting boundary. As discussed 

previously [37-39], reasonable estimates of and isothermal surfaces adopted as field constraints, e.g., SZ-edge 

temperature Tsz, are sufficient for inverse analysis. This follows in that the parameters , k=1,...,Nk, and , 
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as well as and , are in principle not uniquely determined by inverse analysis. Accordingly, different estimated 

values of , and assigned values of phenomenological parameters and , require different values of  in 

order to satisfy specified constraint conditions associated with a given isothermal surface. 

One goal of the present analysis is determination of parameters that can serve as initial estimates for parameter 

adjustment with respect to AZ31-Mg-Alloy FSWs, whose process parameters are within similar regimes. 

Parameter adjustment with respect to other FSWs, which assume the results of this study as initial estimates, 

would adopt  and Tsz as adjustable parameters, as well as the parameters , ,  and lnc. Another goal of 

the present analysis of AZ31-Mg-Alloy FSWs is to provide prototype analyses for demonstrating extension of 

the methodology for application to FSW analysis in general.  

        Figures 3 through 8 show estimated transverse cross sections of SZ boundaries for AZ31-Mg-Alloy FSWs 

obtained from experiment [50] and different two-dimensional slices of three-dimensional temperature fields (oC) 

calculated using cross section information given in Table 1. Values of the workpiece thickness l and welding 

speed V for each FSW considered for analysis are given in these figures. The upstream boundary constraints on 

the temperature field, Tc = Tsz for (yc,zc) defined in Eq. (2),  are given in Table 1 for the SZ boundaries. These 

constraints are obtained using the estimated transverse weld cross sections of SZ boundaries shown in figures 

below for the corresponding FSWs, i.e., Welds 1 and 2 . The FSW process parameters resulting in these cross 

sections are given in these figures. 

           Given in Tables 2 and 3 are values of the discrete source function that have been calculated according to 

the constraint conditions given in Table 1. Also indicated in Tables 2 and 3 are the assigned values of parameters 

,  and l. With respect to inverse thermal analysis, the constraint conditions given in Table 1 represent target 

values of temperature for objective function minimization, which were obtained by a distributed sampling of 

estimated SZ cross sections as measured in the laboratory (see Figs. 3 and 6). The relative location of each discrete 

source is specified following the procedure for constructing equivalent source distributions, consistent with FSW 
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processes, that is described above. Figures 4, 5, 7 and 8 show different planer slices of steady state temperature 

fields that have been calculated according to the constraint conditions given in Table 1 for estimated SZ-edge 

boundaries. Referring to the planar slices of the calculated temperature fields shown in these figures, it should be 

noted that all constraint and boundary conditions are satisfied, namely the condition = Tsz at the SZ edge, 

and  at workpiece surface boundaries, where  is normal to the surface. As shown in these figures, the 

calculated temperature fields have good agreement with experimentally measured cross sections for SZ-edge 

boundaries. This agreement does not represent model verification in the same sense as models based on first 

principles, but rather demonstrates parameter optimization with respect to a given upstream isothermal boundary 

and workpiece boundary conditions.  

                     Table 1 Estimated SZ-edge boundaries on transverse cross sections of Welds 1 and 2.  
      WELDS 1 AND 2 
(zc mm, half width mm) 
      (0.08, 4.48) 
        (0.4, 3.4) 
       (0.8, 2.64) 
        (1.2, 2.0) 
       (1.6, 1.56) 
       (2.0, 1.24) 

Table 2 Volumetric source function  calculated according to SZ-boundary constraint conditions given in 
Table 1, where g = 0.00605, l = 2.0 mm,  = (2.0/60) mm, xk = yk = 0.0 for k = 1 to 5 (Weld 1). 

 

 

 

 

 
Table 3 Volumetric source function  calculated according to SZ-boundary constraint conditions given in 
Table 1, where g = 0.00605, l = 2.0 mm,   = (2.0/60) mm, xk = yk = 0.0 for k = 1 to 5 (Weld 2). 
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Fig. 3 Experimentally estimated transverse weld cross section of SZ boundary for AZ31-Mg-Alloy FSW [50] 
(Weld 1). 
 

                                                                        

Fig. 4  Two-dimensional slices, at half workpiece top surface and longitudinal cross section at symmetry plane, 
of three-dimensional temperature field (oC) and isothermal boundary at SZ edge calculated using cross section 
information given in Table 1, where time = x/V and V = 5 mm/min (Weld 1).  
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Fig. 5  Temperature history (oC) of transverse cross section of weld calculated using SZ cross-section constraints 
given in Table 1, where = /V,  = (3.0/60) mm and V = 5 mm/min (Weld 1). Temperature scale and time 
origin t = 0 are shown in Fig. 4. 
 

                                                                                        

Fig. 6 Experimentally estimated transverse weld cross section of SZ boundary for AZ31-Mg-Alloy FSW [50] 
(Weld 2). 
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Fig. 7  Two-dimensional slices, at half workpiece top surface and longitudinal cross section at symmetry plane, 
of three-dimensional temperature field (oC) and isothermal boundary at SZ edge calculated using cross section 
information given in Table 1, where time = x/V and V = 20 mm/min (Weld 2).  
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Fig. 8  Temperature history (oC) of transverse cross section of weld calculated using SZ cross-section constraints 
given in Table 1, where = /V,  = (2.0/60) mm and V = 20 mm/min (Weld 2). Temperature scale and time 
origin t = 0 are shown in Fig. 7.                                                 
 

Case Study Inverse Thermal Analysis of Ti-6Al-4V FSWs 

         In this section results of inverse thermal analyses of Ti-6Al-4V FSWs are described, which correspond to 

different weld process conditions and associated process-control parameters. For this study, motivation for 

adopting phase transformation boundaries as constraint conditions is that in practice, for welds of Ti and its 

alloys, one can associate (approximately) this boundary with the observed edge of the HAZ, and accordingly, 

specify an isothermal boundary of known temperature. The present study uses experimentally estimated HAZ-

edge boundaries as measured in the laboratory for assigning volumetric constraints (see Eq.(2)) on the calculated 

temperature fields.        

     The analyses presented here entail calculation of the steady state temperature field for different shapes of SZ 

boundaries within the neighborhood of the stirring tool boundary, and experimentally observed estimates of the 

HAZ edge. The shapes of these boundaries are determined experimentally by analysis of transverse weld cross 

sections showing microstructure revealing estimated SZ and HAZ-edge boundaries (see reference [51]). For 

calculations of the temperature field, adopting HAZ-edge boundaries as constraints, parameter values assumed 

are = 8.6 x 10-6 m2s-1, THAZ = 995 oC, Tmax=Cm x TM, where TM = 1604.85 oC and = 0.5 s. 

           Figures 9 through 23 show estimated transverse cross sections of SZ and HAZ-edge boundaries for Ti-

6Al-4V FSWs obtained from experiment (see references [40, 51]) and different two-dimensional slices of three-

dimensional temperature fields (oC) calculated using cross section information given in Tables 2, 3 and 4. Values 

of the workpiece thickness l and welding speed V for each FSW considered for analysis are given in these figures. 

The upstream boundary constraints on the temperature field, Tc = THAZ for (yc,zc) defined in Eq. (2),  are given in 

Tables 4, 5 and 6  for the HAZ-edge boundaries.  
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        Given in Tables 7-9 are values of the discrete source function that have been calculated according to the 

constraint conditions and weld specifications given in Tables 4-6. Specifically, given Tables 4-6 provide target 

values for objective function minimization, which were obtained by a distributed sampling of estimated HAZ 

cross sections as measured in the laboratory. The relative location of each discrete source is specified following 

the procedure for constructing equivalent source distributions, consistent with FSW processes, that is described 

above.  

        Shown in figures below are different planer slices of the steady state temperature field that have been 

calculated according to the constraint conditions given in Tables 4-6 for the estimated HAZ-edge boundary. 

Referring to the planar slices of the calculated temperature fields shown in these figures, it should be noted that 

all constraint and boundary conditions are satisfied, namely the condition = THAZ = 995oC at the HAZ edge, 

and  at surface boundaries, where  is normal to the surface. As shown in these figures, the calculated 

temperature fields have good agreement with experimentally measured cross sections for HAZ-edge boundaries.  

 

               Table 4 Estimated SZ-edge and HAZ-edge boundaries on transverse cross section of Weld 3.  
                                                                                       SZ 

ADVANCING 
SIDE 

RETREATING 
SIDE 

(yc mm, zc mm) (yc mm, zc mm) 
(5.75, 0.25) (5.625, 0.25) 
(5.25, 0.75) (5.125, 0.75) 
(4.5, 1.375) (4.25, 1.375) 
(2.625, 2.0) (2.625, 2.0) 
(2.0, 2.625) (2.0, 2.625) 
(2.0, 3.0) (2.0, 3.0) 

 
                                                                                                      HAZ          

ADVANCING 
SIDE 

RETREATING 
SIDE 

(yc mm, zc mm) (yc mm, zc mm) 
(6.818, 0.1364) (6.682, 0.1364) 
(6.682, 0.6818) (6.682, 0.6818) 
(5.000, 2.0000) (4.375, 2.0000) 
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                   Table 5 Estimated SZ-edge and HAZ-edge boundaries on transverse cross section of Weld 4.  
                                                                                                          SZ 

ADVANCING 
SIDE 

RETREATING 
SIDE 

(yc mm, zc mm) (yc mm, zc mm) 
(6.25, 0.25) (6.5, 0.25) 
(5.25, 0.75) (5.875, 0.75) 
(3.75, 1.375) (4.375, 1.375) 
(2.625, 2.0) (3.125, 2.0) 
(2.0, 2.625) (2.25, 2.625) 
(1.375, 3.0) (1.75, 3.0) 

                      
                                                                                                       HAZ 

ADVANCING 
SIDE 

RETREATING 
SIDE 

(yc mm, zc mm) (yc mm, zc mm) 
(7.363, 0.1364) (7.363, 0.1364) 
(6.682, 0.6818) (6.954, 0.6818) 
(6.136, 1.3636) (6.000, 1.3636) 
(4.910, 2.0454) (4.636, 2.0454) 
(3.545, 2.7272) (3.136, 2.7272) 
(2.182, 3.0000) (2.454, 3.0000) 

 

                  Table 6 Estimated SZ-edge and HAZ-edge boundaries on transverse cross section of Weld 5.  
                                                                                                         SZ 

ADVANCING 
SIDE 

RETREATING 
SIDE 

(yc mm, zc mm) (yc mm, zc mm) 
(5.875, 0.25) (6.125, 0.25) 
(5.25, 0.75) (4.875, 0.75) 
(3.25, 1.375) (3.375, 1.375) 
(2.375, 2.0) (2.5, 2.0) 
(2.0, 2.625) (2.0, 2.625) 
(1.625, 3.0) (1.75, 3.0) 

                                            
                                                                                                       HAZ 

ADVANCING 
SIDE 

RETREATING 
SIDE 

(yc mm, zc mm) (yc mm, zc mm) 
(7.363, 0.1364) (6.954, 0.1364) 
(6.818, 0.6818) (6.545, 0.6818) 
(5.454, 1.3636) (5.863, 1.3636) 
(4.091, 2.0454) (4.500, 2.0454) 
(2.727, 2.7272) (3.136, 2.7272) 
(2.182, 3.0000) (2.318, 3.0000) 
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Table 7 Source function  calculated according to HAZ-boundary constraint conditions given in Table 4, 
where g = 0.17,  = (3.0/60) mm, xk = yk = 0.0 for k = 1 to 4 (Weld 3). 
 

 

 

 

 
Table 8 Source function  calculated according to HAZ-boundary constraint conditions given in Table 5, 
where g = 0.14,  = (3.0/60) mm, xk = yk = 0.0 for k = 1 to 3 (Weld 4). 

 

 

 

Table 9 Source function  calculated according to HAZ-boundary constraint conditions given in Table 6, 
where  = (3.0/60) mm, xk = yk = 0.0 for k = 1 to 5 (Weld 5). 

 

 

 

                       

 

                                                                                                       

Fig. 9 Experimentally estimated transverse weld cross sections of SZ and HAZ-edge boundaries for Ti-6Al-4V 
FSW as measured in laboratory [51] (Weld 3). 
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Fig. 10  Two-dimensional slices, at half workpiece top surface and longitudinal cross section at symmetry plane, 
of three-dimensional temperature field (oC) and isothermal boundary at HAZ edge calculated using cross section 
information given in Table 4, where time = x/V and V = 45 mm/min (Weld 3).  
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Fig. 11 Temperature history (oC) of transverse cross section of weld calculated using HAZ cross-section 
constraints given in Table 4, where = /V,  = (3.0/60) mm and V = 45 mm/min (Weld 3). Temperature 
scale shown in Fig. 10.   
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Fig. 12  Two-dimensional slices, at half workpiece top surface and longitudinal cross section at symmetry plane, 
of three-dimensional temperature field (oC) and isothermal boundary at SZ edge calculated using cross section 
information given in Table 4, where time = x/V and V = 45 mm/min (Weld 3).  
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Fig. 13 Temperature history (oC) of transverse cross section of weld calculated using SZ cross-section constraints 
given in Table 4, where = /V,  = (3.0/60) mm and V = 45 mm/min (Weld 2). Temperature scale shown 
in Fig. 12.   
 

                                                                          

Fig. 14 Experimentally estimated transverse weld cross sections of SZ and HAZ-edge boundaries for Ti-6Al-4V 
FSW as measured in laboratory [51] (Weld 4). 
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Fig. 15  Two-dimensional slices, at half workpiece top surface and longitudinal cross section at symmetry plane, 
of three-dimensional temperature field (oC) and isothermal boundary at HAZ edge calculated using cross section 
information given in Table 5, where time = x/V and V = 55 mm/min (Weld 4).  
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Fig. 16 Temperature history (oC) of transverse cross section of weld calculated using HAZ cross-section 
constraints given in Table 5, where = /V,  = (3.0/60) mm and V = 55 mm/min (Weld 4). Temperature 
scale shown in Fig. 15.   
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Fig. 17  Two-dimensional slices, at half workpiece top surface and longitudinal cross section at symmetry plane, 
of three-dimensional temperature field (oC) and isothermal boundary at SZ edge calculated using cross section 
information given in Table 5, where time = x/V and V = 55 mm/min (Weld 4).  
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Fig. 18 Temperature history (oC) of transverse cross section of weld calculated using SZ cross-section constraints 
given in Table 5, where = /V,  = (3.0/60) mm and V = 55 mm/min (Weld 4). Temperature scale shown 
in Fig. 17.   
 
 
 

                 

Fig. 19 Experimentally estimated transverse weld cross sections of SZ and HAZ-edge boundaries for Ti-6Al-4V 
FSW as measured in laboratory [51] (Weld 5). 
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Fig. 20  Two-dimensional slices, at half workpiece top surface and longitudinal cross section at symmetry plane, 
of three-dimensional temperature field (oC) and isothermal boundary at HAZ edge calculated using cross section 
information given in Table 6, where time = x/V and V = 105 mm/min (Weld 5).  
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Fig. 21  Two-dimensional slices, at half workpiece top surface and longitudinal cross section at symmetry plane, 
of three-dimensional temperature field (oC) and isothermal boundary at HAZ edge calculated using cross section 
information given in Table 6, where time = x/V and V = 105 mm/min (Weld 5).  
 

                 

Fig. 22  Two-dimensional slices, at half workpiece top surface and longitudinal cross section at symmetry plane, 
of three-dimensional temperature field (oC) and isothermal boundary at SZ edge calculated using cross section 
information given in Table 6, where time = x/V and V = 105 mm/min (Weld 5).  
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Fig. 23  Two-dimensional slices, at half workpiece top surface and longitudinal cross section at symmetry plane, 
of three-dimensional temperature field (oC) and isothermal boundary at SZ edge calculated using cross section 
information given in Table 6, where time = x/V and V = 105 mm/min (Weld 5).  
 

Discussion and Conclusion 
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      The results of this study can be adopted as initial estimates for inverse thermal analysis of other FSWs, i.e., 

parameter optimization can be made more efficient using initial estimates of parameter values, requiring only fine 

adjustment with respect to constraint conditions (see [40] and references therein). As for inverse thermal analysis 

using numerical-analytical basis functions and equivalent source distributions, which have been applied to other 

types of welding processes [19, 33-36], the parametric temperature histories given here can contribute to a 

parameter space that contains  parameters corresponding to different FSW processes, process conditions and 

different types of metals and their alloys. As discussed previously [40], adopting estimated SZ-edge or HAZ-edge 

boundaries as constraint conditions is formally equivalent to using thermocouple measurements for this purpose, 

i.e, thermocouple measurements can be associated with points on three-dimensional isothermal surfaces. In 

addition, as discussed previously [40], the parametric FSW temperature fields determined in this study may used 

for extrapolation of temperature histories from the regions close to the SZ-edge to those within the SZ, and thus 

provide a means for connecting results of inverse thermal analysis based on parametric modeling, e.g., this study, 

with those of FSW modeling using basic theory.  

       Finally, this study demonstrates extension of a methodology for inverse thermal analysis of welds [19, 33-

36, 40] with respect to its formulation, which is for application to FSWs. The extension is by inclusion of 

numerical-analytical basis functions equipped with an effective-duffusity parameterization. Prototype inverse 

thermal analyses of AZ31-Mg-Alloy and Ti-6Al-4V FSWs are presented that provide proof of concept for inverse 

thermal analysis using these extended basis functions. This proof of concept is with respect to parameter 

optimization for different types of SZ shape and HAZ-edge characteristics and boundary conditions.  
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