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EXECUTIVE SUMMARY

Maritime collisions involving multiple ships are considered rare, but in 2017 several United States Navy
vessels were involved in fatal at-sea collisions that resulted in the death of seventeen American Service
members. The experimentation introduced in this report is a direct response to these incidents. To prevent
collisions in the future we propose a shipboard Collision-At-Sea avoidance system, based on video image
processing, that will ensure the safe stationing and navigation of maritime vessels. Our system leverages a
convolutional neural network trained on synthetic maritime imagery in order to detect nearby vessels
within a scene, perform heading analysis of detected vessels, and provide an alert in the presence of an
inbound vessel. Additionally, we present the Navigational Hazards - Synthetic (NAVHAZ-Synthetic)
dataset. This dataset, is comprised of one million annotated images of ten vessel classes observed from
virtual vessel-mounted cameras, as well as a human “Topside Lookout” perspective. NAVHAZ-Synthetic
includes imagery displaying varying sea-states, lighting conditions, and optical degradations such as fog,
sea-spray, and salt-accumulation. In this report we present our results on the use of synthetic imagery in a
computer vision based collision-at-sea warning system with promising performance.
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1. INTRODUCTION

Availability of well-annotated data is a critical component in the successful application of modern
machine learning techniques to a problem domain. In this report our team leverages openly available tools
to generate synthetic data that can be used to train models in problem domains with sparse data.
Additionally, we focus on the problem of maritime-traffic analysis as an experimentation vehicle.

This report is broken down into five sections. Section 2 provides a brief background on the work and
utility of using synthetically generated imagery in machine learning applications. Section 3 introduces the
synthetic dataset we created for this study, and Section 4 details the use of our synthetic data applied to the
problem of martime collision-avoidance. Section 5, summarizes the results of the study and proposes
future work solutions.

2. PREVIOUS WORK

Synthetic imagery has been used before across a wide variety of problem spaces as a way to get past the
limitations of having small real-world annotated datasets. As an example, the Virtual KITTI [1] and
Synthia [2] datasets have demonstrated that for vehicular-focused imagery systems, incorporation of
synthetic data outperforms using only real-world data [1–7]. It has also been shown that using only
synthetic data yields results on par with using a limited set of real-world training data [3, 4, 6].
Additionally, in a study conducted by G Rose [2] it is demonstrated that the combination of synthetic data
with real-world data outperforms using either set exclusively. A study conducted by de Souza [7] further
emphasizes this claim, stating that, at least for their datasets, increasing the amount of the real-world data
to match that of the synthetic outperforms other models. The best results came from training on a mix of
real-world and synthetic data, and then fine-tuning with examples from the target dataset [2, 6].
Fine-tuning using the target data helps the model account for the realities of the given domain, such as
image noise, that might not be fully accounted for in the synthetic data [8].

3. NAVIGATIONAL HAZARDS - SYNTHETIC
(NAVHAZ-SYNTHETIC) DATASET

In this section we introduce the Navigational Hazards - Synthetic (NAVHAZ-Synthetic) dataset, and
describe our methodology for creating it. This dataset is comprised of one-million labeled images of ten
generic vessel classes, observed from ten shipboard points. In order to capture the high level of scene
variance in maritime imagery, NAVHAZ-Synthetic contains images with diverse sea-states, weather
conditions, lighting conditions, sensor noise, and optical degradations including sea-spray, and
salt-accumulation. Each image contains a single target vessel and is labeled with the class and heading.∣∣∣Classes

∣∣∣∗∣∣∣Vessel Headings
∣∣∣∗∣∣∣Sun Positions

∣∣∣∗∣∣∣Sky Conditions
∣∣∣∗∣∣∣Sea State

∣∣∣∗∣∣∣Observers
∣∣∣ = 1x106 images
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3.1 UNITY GAMING ENGINE

Based on work in using video games a basis for training machine learning models [6], our team selected
the Unity game engine as our modeling environment. Unity provides several advantages over proprietary
modeling solutions: it is free, it is has a strong online support community, and it supports a wide variety of
model formats and platforms. Running on an Intel i7 notebook, we used the Unity engine to generate the
NAVHAZ-Synthetic dataset at a rate of 100,000 images/hour.

3.2 CLASSES

NAVHAZ-Synthetic is comprised of ten commercial vessel classes: Liquid natural gas (LNG) Tanker,
Oil Tanker, Container Ship 1 (Ballast Condition), Container Ship 1 (Full Load), Container Ship 2 (Ballast
Condition), Container Ship 2 (Full Load), Cargo Ship 1, Cargo Ship 2, Cargo Ship 3, and Barge. While we
did not perform any class recognition in our experimentation, each image in NAVHAZ-Synthetic is labeled
with its respective vessel class.

3.3 LIGHT SOURCE

Lighting conditions were varied over four hemispherical paths, and five positions along each path, as
depicted in Figure 1. We selected light-source positions that represent four daytime intervals: dawn,
morning, noon, afternoon, and dusk. Additionally, we programmatically vary sky coloration to simulate
light scattering in dawn and dusk conditions.

Figure 1. Scene lighting positions.

3.4 VESSEL HEADINGS

Each vessel class was rendered at twenty different headings as depicted in Figure 2:

(0◦,±5◦,±15◦,±30◦,±45◦,±60◦,±90◦,±120◦,±135◦,±160◦, 180◦)

Each image is labeled with the heading of the target vessel. In our experimentation we grouped the vessel
headings into specific zones. These groupings are further explained in Section 4.
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Figure 2. Target vessel heading angles.

3.5 WEATHER CONDITIONS AND SEA STATE

Environmental conditions at sea are highly variant. Leveraging the power of synthetic imagery, we 
attempted to capture this variance by training on a different combination of weather and sea conditions. 
NAVHAZ-Synthetic features five weather conditions: clear skies, dynamic clouds, dense dynamic clouds, 
overcast sky, and dense fog layer. Additionally, we selected five sea states (shown in Figure 3) that correlate 
to conditions described by the World Meteorological Organization Sea State codes [9]. Combined, these 
weather and sea state variations yield twenty-five environmental conditions across the training data.

3.5.1 Observers

In order to generate sufficient observational diversity, we virtualized ten observers in the modeling
environment. It is common to have a human topside lookout in maritime evolutions, thus we included such
an observer in our Unity environment. A topside lookout was modeled with a field-of-view that resembles
the perspective a human observer with binoculars. The remaining nine observers represent a ship-mounted
camera system augmented with degradations and effects inherent in real-world maritime conditions. The
camera observers were modeled using common parameters from commercially available maritime cameras
and placed at various points on ownship as depicted in Figure 4. We visualize the synthetic camera feeds in
Figure 6 and show the effects and degradations associated with each observer in Table 1.
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Figure 3. Sea states.

Figure 4. Observer Positions
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Table 1. Observer Parameters

Observer Name
Field

of
View

Focal
Length

Chromatic
Aberration

Lens
Flare

Lens
Bloom

Lens
Grit Sensor Grain

Topside Lookout 31.0 54.7 - - - - -
Forward Camera 1 33.2 58.7 X - - - X
Forward Camera 2 33.2 58.7 X - X X X
Forward Camera 3 33.2 58.7 X X X XX XX

Mast Camera 1 22.0 58.7 X - - - X
Mast Camera 2 22.0 58.7 X X X X X
Mast Camera 3 22.0 58.7 X X X XX XX
Aft Camera 1 53.1 35 X - - - X
Aft Camera 2 53.1 35 X X X X X
Aft Camera 3 53.1 35 X X X XX XX

4. EXPERIMENTATION

This section details our experimentation. We create a very large synthetic dataset (1-million images) and 
use it to train a deep neural network for a classification task: determining the heading of a commercial 
vessel. We evaluate our ability to train a large capacity model (VGG-19) [10] as well as the performance 
of the trained model on a small dataset of real imagery.

4.1 DATASETS

This section gives an overview of the image datasets used in our experimentation.

4.1.1 Training and validation data

In addition to using ImageNet weights [10, 11] for transfer learning, our training data consists of an
800,000 image class-balanced subset of NAVHAZ-Synthetic. We also curated a small subset (250 images)
of commercial ships from the ImageNet dataset to use for domain adaptation. We used a 20% validation
holdout in both training sets. We did not perform any training data augmentation in this experiment.

4.1.2 Test data

Our test data consists of a second small ImageNet subset (200 images) of commercial ships, balanced
over four classes. Because it is difficult to infer the exact heading of the vessels in the ImageNet data, we
apply weak labels, (general heading of the target vessel) to the test images. Our labeling schema is further
described in 4.3.

4.2 ARCHITECTURE SPECIFICATION

For this experiment, we used the VGG-19 convolutional neural network described in Simonyan and
Zisserman[10]. The input layer was modified to accommodate the NAVHAZ-Synthetic dimensions of
384x384 pixels. Following the VGG-19 stack of convolutional layers, the top of our model consists of
three fully-connected layers: two with 4096 channels, followed by a 4-channel fully connected layer that
corresponds to our four output classes. The model is finalized with a softmax output layer.
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4.3 EXPERIMENT DESIGN

The problem of detection was bypassed in this experiment, however, maritime detection is a non-trivial
problem. To alleviate detection-performance requirements for integration of our work, we train on images
without tightly cropped bounding boxes, and targets generally centered in the frame.

Although NAVHAZ-Synthetic provides exact headings of target vessels, we weakened the labels to
facilitate shaping this experiment as a classification problem, versus a more challenging regression
problem. Weakening the labels also alleviates the challenge of labeling the ImageNet data with precise
vessel headings. The data was grouped into four classes: Zone 0 (imminent collision), Zone 1 (collision
danger), Zone 2 (safe maneuvering), and Zone 3 (no danger). These zones are visualized in Figure 2.

We trained VGG-19 in three discrete steps. First, we initialized all but the fully-connected layers of the 
model with ImageNet weights. We initialized the fully-connected layers with small random values chosen 
from a zero-mean Gaussian [12]. To establish a basis for performance comparison, we then attempted to 
fine-tune the model on our small ImageNet training subset of commercial ships.

In the second part of our experiment, we re-ininitialized the model with ImageNet weights and
fine-tuned the network on our NAVHAZ-Synthetic training set. We used early stopping to achieve
maximum validation accuracy without overfitting. We then tested our model on the ImageNet test set.

In the third part of our experimentation we performed domain adaptation by fine-tuning the model again
on the ImageNet training set. We then retested our model on the ImageNet test set.

4.4 EXPERIMENTAL RESULTS

When training on just 250 real images we expected to see VGG-19 overfit, yielding a poorly-generalized
model. However, dropout in the fully-connected layers is, by design, set to a rate of 50% to prevent such
overfitting. We were unable to achieve convergence with such a small training set. As such, this
base-performance comparison is omitted from our analysis.

When trained on fully-synthetic data we achieved a high validation accuracy (3% error), but poor test
accuracy (70% error). We can see from the resulting confusion matrix (Figure 5a) that our model performs
only slightly better than a random guess when presented with real test data.

After performing domain adaptation, we see a significant increase in accuracy on the test set, reducing
the classification error from 70% to only 36.5% after a single epoch of fine-tuning on real training data.
The confusion matrix for the domain adaptation results (Figure 5b) suggests that performance may improve
even more when accounting for inter-class noise, noting that vessels classified with a Zone 0 heading are
visually similar to those with a Zone 1 heading.
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(a) Synthetic-only training applied to real data (b) Domain adaptation results

Figure 5. Normalized confusion matrices

5. CONCLUSION AND FUTURE WORK

We presented NAVHAZ-Synthetic: a very large dataset of ten commercial vessel classes under varying
lighting and environmental conditions. By applying this dataset, we demonstrated that synthetic data can
be used to a train complex neural network architecture to convergence. We also show that domain
adaptation can be accomplished with use of real imagery, yielding a well generalized model with very little
target data. This is particularly significant for maritime and other Department of Defense (DoD) problems
where data is often sparse and weakly labeled.

In leveraging synthetic imagery and constraining our problem to a simplified computer vision task, such
as determining the general heading of an observed ship, we have demonstrated that current work in
computer vision and machine learning can be adapted and applied to maritime problems like
collision-avoidance. Alleviating the need for fielding a complex and expensive shipboard system, our
proposed method is capable of running on a commercially available computing platform using video feeds
from existing camera systems.

Statistical analysis of synthetic imagery versus real target data could help us understand how to further 
improve our results, although work in this domain seems to indicate that improving the “realism” of 
synthetic data yields a diminishing return [13]. Moreover, we have only implemented a very basic 
approach to domain adaptation, and will explore more sophisticated methods in order to understand and 
maximize the efficacy of synthetic imagery in training machine learning models.

Please contact the authors if you are interested in acquiring the NAVHAZ-Synthetic dataset, or our
VGG-19 model weights.

7



(a) Forward camera 1 (b) Forward camera 2 (c) Forward camera 3

(d) Mast camera 1 (e) Mast camera 2 (f) Mast camera 3

(g) Aft camera 1 (h) Aft camera 2 (i) Aft camera 3

Figure 6. Scene Observers
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