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The U.S.A is moving toward energy independence; a
distant memory are the long lines for gasoline of the
1970s and fading is the promise of competitive biofuels
from Escherichia coli (Liu and Khosla, 2010; Steen et al.,
2010). The reason is cheap methane. Global amounts of
shale gas total 7300 trillion cubic feet (U.S. Energy Infor-
mation Administration, 2013) and its major constituent is
methane. This remarkable availability of methane is now
driving synthetic biology, and an exciting prediction is
that methane will be harnessed for biotechnological
applications using not the traditional workhorse E. coli or
aerobic methanotrophs, but instead, using archaeal
strains, specifically methanogens, in anaerobic fermenta-
tions based on biosynthetic pathways such as that
recently shown to convert methane to the biotechnologi-
cal building block acetate (Soo et al., 2016).
As opposed to chemical plants which employ Fischer–

Tropsch processes to convert methane into liquid fuels
and require complex technology that demands large-
scale investment up to ~$20 billion, biological conversion
of methane is a more economically and environmentally
sustainable, as it requires a smaller footprint and is less
technologically complex (Haynes and Gonzalez, 2014).
Hence, harnessing methane has been recognized as
one of the most important near-term goals for biochemi-
cal engineering (Lee and Kim, 2015). Notably, from the
recent realization that anaerobic processes confer higher

energy and carbon yield efficiencies with lower CO2

emissions than aerobic ones for converting methane into
products (Haynes and Gonzalez, 2014), there is interest
in using anaerobes rather than the traditional, better-stu-
died aerobic methanotrophs (Lawton and Rosenzweig,
2016).
The first process used to capture methane anaerobi-

cally for biotechnology applications (Soo et al., 2016) is
based on the natural process of anaerobic methane oxi-
dation (AOM), which efficiently captures up to 300 Tg of
methane per year to limit global methane emissions
(Knittel and Boetius, 2009). AOM occurs in natural con-
sortia consisting of anaerobic methanotrophic archaeal
populations and syntrophic bacteria. Methane is acti-
vated by reversing methanogenesis and was hypothe-
sized to be catalysed by methyl-coenzyme M reductase
(Mcr) based on the prevalence of mcr genes in ANME
populations (Hallam et al., 2004) and the trace AOM
seen in the anaerobic methanogens Methanothermobac-
ter marburgensis (Scheller et al., 2010) and Methanosar-
cina acetivorans (Moran et al., 2005, 2007). This
hypothesis had been difficult to prove as these natural
consortia are enigmatic due to their long lag phase
(~60 years) (Dale et al., 2008) and doubling time
(~7 months) (Nauhaus et al., 2007). Critically, no one
has been able to culture these organisms independently
(Scheller et al., 2010).
Of course the way to circumvent the problem of not

being able to culture anaerobic methanotrophic archaeal
populations is to utilize the metagenome of these organ-
isms from a microbial mat in the Black Sea (Meyerdierks
et al., 2010; Shima et al., 2012). From this metagenome,
Soo et al. (2016) cloned the genes encoding the Mcr
(3.9 kb) and expressed this 280 kDa heterohexameric
(abc)2 protein complex in the methanogenic host M. ace-
tivorans. This host was chosen as it has the largest
archaeal genome (Galagan et al., 2002), is genetically
tractable (Kohler and Metcalf, 2012) and encodes a
native Mcr for producing methane during methanogene-
sis; hence, it was reasoned that this host may be able to
provide the methylthio-F430 cofactor (or suitable substi-
tute) to produce active Mcr from the anaerobic methan-
otrophic archaeal population. The M. acetivorans host
also contains all the enzymes required to convert
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captured methane to acetate, by running methanogenesis
in reverse (after methanogenic Mcr is replaced with the
methanotrophic Mcr from the Black Sea). In effect, the
first anaerobic organism that grows on methane as a pure
culture was created. Remarkably, the engineered strain
grows as a biofilm on solid ferric chloride which was
reduced by the electrons generated by growth on
methane (Soo et al., 2016). Carbonate in the medium
and methane in the headspace were converted into the
two carbons of acetate as shown by 13C labelling of both
substrates (Soo et al., 2016). These results in effect put
an end to the decade’s old debate about whether
methane can be fixed by running methanogenesis in
reverse (Knittel and Boetius, 2009). They also will now
enable Mcr to be studied biochemically as it is produced
for the first time in active form.
Critically, by capturing methane anaerobically in a

pure strain, a new field of biochemical engineering has
been created, that of the anaerobic conversion of
methane for biotechnological applications. Although not
an end in itself, the acetate produced from methane by
reversing methanogenesis (Soo et al., 2016) is a build-
ing block for many products. For example, via additional
metabolic engineering and production of active methan-
otrophic Mcr, we have now converted methane into the
pure stereoisomer L-lactate which may be used in cos-
metics, foods and pharmaceuticals. In addition, by com-
bining the engineered archaeal strain that captures
methane with suitable consortia, we have found that we
can directly convert methane into electricity in fuel cells.
This allows electricity to be generated at remote fracking
sites and foregoes the expenditure of billions of dollars
that are required for methane transport as well as may
help limit methane emissions (methane is a potent
greenhouse gas). Therefore, the future is bright for har-
nessing biologically the world’s deposits of methane; i.e.
one can envision anaerobic cell factories in which myriad
products are produced from methane as well as a
methane-driven, electricity generating industry.
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