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A. 250 Summary for FA9550-14-1-0378

In this effort we focused on electro-optic modulators, as they perform a key function in data communication.
Furthermore, modulators also show potential in photonic analogue computing; for instance they could be used as
analogue optical tuning element in photonic neuromorphic computing providing non-linearity of the perceptions
output. In this program, we delivered a holistic performance-tradeoff analysis of modulators to date. We showed
how critical physical parameters such as the active material, the optical mode overlap, the optical mode
confinement, and the material broadening determine the modulator performance. We find that the strong binding
energy in 2D materials enables efficient absorption in charge-driven modulators, while TCOs are unique candidates
for phase-shifters. In short, we develop a set of guiding principles for attojoule-per-bit efficient transfer functions.
We also find that the small mode overlap of 2D materials outperforms Silicon due to strong index modulation.
However, we experimentally demonstrate the optimizing the optical mode for 2D materials by squeezing the mode
area using slot-plasmon waveguides, delivers record-efficient modulators requiring just 100’s of aJ/bit. We further
show that the plasmonic metal is also critical to form the electrical capacitor right over the active device region and
to deliver small contact resistances — a challenge that photonic modulators needs a tradeoff design. Further, we
reveal the impact of a cavity feedback on EOM and EAMs, and show how the tradeoff between loss and feedback
can be harnessed. We experimentally demonstrate a hybrid plasmon Graphene-based modulator just requiring 0.5V
to switch on a silicon platform.

B. Scholarly Work Summaries

Indium-Tin-Oxide for High-performance Electro-optic Modulation

Advances in opto-electronics are often led by discovery and development of materials featuring unique properties.
Recently, the material class of transparent conductive oxides (TCO) has attracted attention for active photonic
devices on-chip. In particular, indium tin oxide (ITO) is found to have refractive index changes on the order of
unity. This property makes it possible to achieve electrooptic modulation of sub-wavelength device scales, when
thin ITO films are interfaced with optical light confinement techniques such as found in plasmonics; optical modes
are compressed to nanometer scale to create strong light-matter interactions. Here we review efforts towards
utilizing this novel material for high performance and ultra-compact modulation. While high performance metrics
are achieved experimentally, there are open questions pertaining to the permittivity modulation mechanism of ITO.
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Finally, we review a variety of optical and electrical properties of ITO for different processing conditions, and show
that ITO-based plasmonic electro-optic modulators have the potential to outperform diffraction limited devices.

A Sub-A-Size Modulator Beyond the Efficiency-Loss Limit

Electrooptic modulators (EOMs) are key devices in performing the conversion between the electrical and optical
domains in data communication links. With respect to a road map for photonic computing, future EOMs are required
to be highly scalable, should feature strong modulation performance, and must not consume much power during
operation. In light of these requirements, here, we investigate indium—tin—oxide (ITO) as an electrooptic switching
material. The results show that ITO is capable of changing its extinction coefficient by a factor of 136. Utilizing
these findings, we analyze an ultracompact (i.e., sub- long % 1310 nm) electroabsorption modulator based on a
plasmonic MOSmode design. In our analysis, we investigate the performance, i.e., the extinction ratio and insertion
loss of the device as a function of various geometric parameters of the device. The optimized device is 0.78 long and
features an extinction ratio and on-chip insertion loss of about 6 dB=m and 0.7 dB, respectively. Furthermore, we
suggest a metric to benchmark electroabsorption modulators and show that silicon plasmonics has potential for high-
end switching nodes in future integrated photonic circuits.

Ultra-compact Graphene-based Electro-optic Modulators on a Silicon-on-Insulator Platform

Electro-optic modulators (EOM) convert electronic signals into high bit-rate photonic data. Its on-chip design plays
an important role for the integration of electronic and photonic components for various types of applications,
including photonic computing and telecommunication. Graphene is an emerging material allowing the design of
ultra-compact EOMs due to its extraordinary electro-optic properties, addressing the trade-offs between a high
bandwidth and modulation strength. Two Graphene-based EOM designs are presented for (a) an absorption and (b) a
phase-shifter device. The high performance Graphene-based absorption modulator is analyzed numerically
demonstrating an extinction ratio and insertion loss of 7.77 dB/um and 0.75 dB, respectively. This sub-wavelength
compact (0.78\ long) absorption modulator is capable of a broadband operation over 500 nm bandwidth. The
second design, a Mach-Zehnder modulator formed by push-pull Graphene-based phase shifter, exhibits an insertion
loss of ~2.7 dB/um with a 5.6 um arm shifter length operating at telecom wavelength (1.55um). These EOMs
performance results have the potential to become essential building blocks for optical interconnects in future
integrated optoelectronic systems.

Silicon Plasmon Modulators: Breaking Photonic Limits

Emerging communication applications anticipate a photonic roadmap leading to ultra-compact photonic integrated
circuits. The objective is to design integrated on-chip electro-optic modulators (EOM) that can combine both high
modulation efficiency and low switching energy. While silicon-based EOMs have been demonstrated, they have
large device footprints of the order of millimeters as a result of weak non-linear electro-optical properties. By
deploying a high-Q resonator the modulation strength can be increased, however with the trade-off of bandwidth.
Here we review some of our recent work and future prospects of hybrid plasmonic EOMs. We demonstrate a high-
performance ITO-EOM in a plasmonic silicon-on-insulator (SOI) hybrid design. Remarkably, results show that an
ultra-compact (3A) hybrid EOM deploying enhanced light- matter-interactions (LMI) is capable of delivering an
extinction ratio (ER) of about 1 dB/um. This is possible due to a change of the ITO’s extinction coefficient by a
factor of 136 leading. Furthermore, a metric to benchmark electro- absorption modulators is provided, which shows
that silicon Figure 1. In this paper we focus on a hybrid integration technique low-loss, CMOS compatible Silicon-
on-Insulator (SOI) with (LMI) plasmonics, which allows synergistic design via multi-functional utilization of the
deployed metal. Plasmonics has potential for high-end switching nodes in future integrated hybrid photonic circuits.

Review and perspective on ultrafast wavelength-size electro-optic modulators

As electronic device feature sizes scale-down, the power consumed due to on chip communications as compared to
computations will increase dramatically; likewise, the available bandwidth per computational operation will
continue to decrease. Integrated photonics can offer savings in power and potential increase in bandwidth for on hip
networks. Classical diffraction-limited photonics currently utilized in photonic integrated circuits (PIC) is
characterized by bulky and inefficient devices compared to their electronic counterparts due to weak light-matter
interactions (LMI). Performance critical for the PIC is electro-optic modulators (EOM), whose performances depend
inherently on enhancing LMIs. Current EOMs based on diffraction-limited optical modes often deploy ring
resonators and are consequently bulky, photon-lifetime modulation limited, and power inefficient due to large
electrical capacitances and thermal tuning requirements. In contrast, wavelength-scale EOMs are potentially able to
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surpass fundamental restrictions set by classical (i.e. diffraction-limited) devices via (a) high index modulating
materials, (b) non resonant field and density of-states enhancements such as found in metal optics, and (c)
synergistic on chip integration schemes. This manuscript discusses challenges, opportunities, and early
demonstrations of nanophotonic EOMs attempting to address this LMI challenge, and early benchmarks suggest that
nanophotonic building blocks allow for densely integrated high-performance photonic integrated circuits.

Roadmap on Atto-Joule per Bit Modulators

Electro-optic modulation performs the conversion between the electrical and optical domain with applications in
data communication for optical interconnects, but also for novel optical compute algorithms such as providing non-
linearity at the output stage of optical perceptrons in neuromorphic analogue optical computing. While resembling
an optical transistor, the weak light-matter-interaction makes modulators 105 times larger compared to their
electronic counterparts. Since the clock frequency for photonics on-chip has a power-overhead sweet-slot around
10’s of GHz, ultrafast modulation may only be required in long-distance communication, but not for short on-chip
links. Hence the search is open for power-efficient on-chip modulators beyond the solutions offered by foundries to
date. Here we show a roadmap towards atto-Joule per bit efficient modulators on-chip as well as some experimental
demonstrations of novel plasmon modulators with sub-1fJ/bit efficiencies. Our parametric study of placing different
actively modulated materials into plasmonic vs. photonic optical modes shows that 2D materials overcompensate
their miniscule modal overlap by their unity-high index change. Furthermore, we reveal that the metal used in
plasmonic-based modulators not only serves as an electrical contact, but also enables low electrical series resistances
leading to near-ideal capacitors. We then discuss the first experimental demonstration of a photon-plasmon-hybrid
Graphene-based electroabsorption modulator on silicon. The device shows a sub-1V steep switching enabled by
near-ideal electrostatics delivering a high 0.05dB/V-pm performance requiring only 110 aJ/bit. Improving on this
design, we discuss a plasmonic slot-based Graphene modulator design, where the polarization of the plasmonic
mode matches with Graphene’s in-plane dimension. Here a push-pull dual-gating scheme enables 2dB/V-pm
efficient modulation allowing the device to be just 770 nm short for 3dB small signal modulation. Lastly, comparing
the switching energy of transistors to modulators shows that modulators based on emerging material-based,
plasmonic-Silicon hybrid integration perform on-par relative to their electronic counter parts. This in turn allows for
a device-enabled two orders-ofmagnitude improvement of electrical-optical co-integrated network-on-chips over
electronic-only architectures. The latter opens technological opportunities in cognitive computing, dynamic data-
driven applications system, and optical analogue compute engines to include neuromorphic photonic computing.

A deterministic guide for material and mode dependence of on-chip electro-optic modulator performance
Electro-optic modulation is a key function in optical data communication and possible future optical computing
engines. The performance of modulators intricately depends on the interaction between the actively modulated
material and the propagating waveguide mode. While high-performing modulators were demonstrated before, the
approaches were taken as ad-hoc. Here we show the first systematic investigation to incorporate a holistic analysis
for high-performance and ultra-compact electro-optic modulators on-chip. We show that intricate interplay between
active modulation material and optical mode plays a key role in the device operation. Based on physical tradeoffs
such as index modulation, loss, optical confinement factors and slow-light effects, we find that bias-material-mode
regions exist where high phase modulation and high loss (absorption) modulation is found. This work paves the way
for a holistic design rule of electro-optic modulators for on-chip integration

2D material-based mode confinement engineering in electro-optic modulators

The ability to modulate light using 2-dimensional (2D) materials is fundamentally challenged by their small optical
cross-section leading to miniscule modal confinements in diffraction-limited photonics despite intrinsically high
electro-optic absorption modulation (EAM) potential given by their strong exciton binding energies. However the
inherent polarization anisotropy in 2D-materials and device tradeoffs lead to additional requirements with respect to
electric field directions and modal confinement. A detailed relationship between modal confinement factor and
obtainable modulation strength including definitions on bounding limits are outstanding. Here we show that the
modal confinement factor is a key parameter determining both the modulation strength and the modulator extinction
ratio-to-insertion loss metric. We show that the modal confinement and hence the modulation strength of a single-
layer modulated 2D material in a plasmonically confined mode is able to improve by more than 10x compared to
diffraction-limited modes. Combined with the strong-index modulation of graphene the modulation strength can be
more than 2-orders of magnitude higher compared to Silicon-based EAMs. Furthermore modal confinement was
found to be synergistic with performance optimization via enhanced light-matter-interactions. These results show
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that there is room for scaling 2D material EAMs with respect to modal engineering towards realizing synergistic
designs leading to high-performance modulators.

Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance
Electro-optic modulation is a key function in optical data communication and possible future optical compute
engines. The performance of modulators intricately depends on the interaction between the actively modulated
material and the propagating waveguide mode. While a variety of high-performance modulators have been
demonstrated, no comprehensive picture of what factors are most responsible for high performance has emerged so
far. Here we report the first systematic and comprehensive analytical and computational investigation for high-
performance compact on-chip electro-optic modulators by considering emerging active materials, model
considerations and cavity feedback at the nanoscale. We discover that the delicate interplay between the material
characteristics and the optical mode properties plays a key role in defining the modulator performance. Based on
physical tradeoffs between index modulation, loss, optical confinement factors and slow- light effects, we find that
there exist combinations of bias, material and optical mode that yield efficient phase or amplitude modulation with
acceptable insertion loss. Furthermore, we show how material properties in the epsilon near zero regime enable
reduction of length by as much as by 15 times. Lastly, we introduce and apply a cavity-based electro-optic
modulator figure of merit, AAAa, relating obtainable resonance tuning via phase shifting relative to the incurred
losses due to the fundamental Kramers-Kronig relations suggesting optimized device operating regions with
optimized modulation-to-loss tradeoffs. This work paves the way for a holistic design rule of electro- optic
modulators for high-density on-chip integration.

2D Materials in Electro-optic Modulation: energy efficiency, electrostatics, mode overlap, material transfer
and integration

Here we discuss the physics of electro-optic modulators deploying 2D materials. We include a scaling laws analysis
showing how energy-efficiency and speed change for three underlying cavity systems as a function of critical device
length scaling. A key result is that the energy-per-bit of the modulator is proportional to the volume of the device,
thus making the case for submicron-scale modulators possible deploying a plasmonic optical mode. We then show
how Graphene’s Pauli-blocking modulation mechanism is sensitive to the device operation temperature, whereby a
reduction of the temperature enables a 10x reduction in modulator energy efficiency. Furthermore, we show how the
high index tunability of Graphene is able to compensate for the small optical overlap factor of 2D-based material
modulators, which is unlike classical Silicon-based dispersion devices. Lastly we demonstrate a novel method
towards a 2D material printer suitable for cross- contamination free and on-demand printing. The latter paves the

way to integrate 2D materials seamlessly into taped-out photonic chips.

Temperature Dependence of a Sub-wavelength Compact Graphene Plasmon- Slot Modulator

We investigate a plasmonic electro-optic modulator with an extinction ratio exceeding 1 dB/(m by engineering the
optical mode to be in-plane with the graphene layer, and show how lowering the operating temperature enables
steeper switching.

A-Size ITO and Graphene-Based Electro-Optic 2 Modulators on SOI

One of the key devices that convert electronic signals into high bit-rate photonic data is the electro-optic modulator
(EOM). Its on-chip design plays an important role for the integration of electronic and photonic devices for various
types of applications including photonic computing and telecommunication. Recently, indium tin oxide (ITO) and
graphene have attracted significant attention primarily due to their extraordinary electro-optic properties for the
design of ultra-compact EOMs to handle bandwidth and modulation strength trade-off. Here we show design details
of a high-performance ITO-EOM in a plasmonic silicon- on-insulator hybrid structure. Results show that ITO is
capable of changing its extinction coefficient by a factor of 136 leading to A- short devices with an extinction ratio
of about 1dB/um. Further numerical device optimizations demonstrate the feasibility for an extinction ratio and on-
chip insertion loss of about 6 dB/um and 0.25 dB, respectively, for a sub-wavelength compact (0.78 ) EOM design
using ITO. Utilizing graphene as an active switching material in a similar ultra-compact plasmonic hybrid EOM
design yields enhanced light-matter interaction, in which extinction-ratio is 9 times larger than the insertion-loss for
a 0.78 A short device. Both ITO and graphene EOMs are capable of broadband operations (>500 nm) since no
resonator is deployed.

Volker J. Sorger, GWU 4
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Simulation of two-dimensional design of trench-coupler based Silicon Mach-Zehnder thermo-optic switch
Optical switches are key components for routing of light transmission paths in data links. Existing waveguide-based
Mach-Zehnder interferometer (MZI) switches occupy a significant amount of real estate on-chip. Here we propose a
compact Silicon MZI thermo-optic 2x2 photonic switch, consisting of two frustrated total internal reflection (TIR)
trench couplers and TIR mirror-based 90° waveguide bends, forming a rectangular MZI configuration. The switch
allows for reconfigurable design footprints due to selected control of the optical signal being transmitted and
reflected at the 90° crosses and bends. Our simulation results show that the switch exhibits a chip size of 42 um x 42
um, the extinction ratio of ~14 dB, the rise and fall time of 20 ps and 16 ps, and the low switching voltage and
power of 0.35 V and 26 mW, respectively. This device configuration can readily scale its pattern at the two-
dimensional directions, making them attractive for Silicon photonic integrated circuits.
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Cavity Impact on Modulators

Linear vs. Cavity Modulators: Case Footprint saving

Cavity-Modulator FOM = d0/0x Scaling Performance
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