SiGeSn Heterostructure Photonics Technology for Ultrafast Communications in the 2 micron Infrared Region

Richard Soref
UNIVERSITY OF MASSACHUSETTS

08/07/2017
Final Report

DISTRIBUTION A: Distribution approved for public release.

Air Force Research Laboratory
AF Office Of Scientific Research (AFOSR)/ RTB1
Arlington, Virginia 22203
Air Force Materiel Command
DISTRIBUTION A: Distribution approved for public release.
REPORT DOCUMENTATION PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Executive Services, Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.

<table>
<thead>
<tr>
<th>REPORT DATE (DD-MM-YYYY)</th>
<th>REPORT TYPE</th>
<th>DATES COVERED (From - To)</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-06-2018</td>
<td>Final Performance</td>
<td>01 Jul 2014 to 30 Jun 2017</td>
</tr>
</tbody>
</table>

4. TITLE AND SUBTITLE
SiGeSn Heterostructure Photonics Technology for Ultrafast Communications in the 2 micron Infrared Region

5a. CONTRACT NUMBER

5b. GRANT NUMBER
FA9550-14-1-0196

5c. PROGRAM ELEMENT NUMBER
61102F

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
UNIVERSITY OF MASSACHUSETTS
100 MORRISSEY BLVD RM 80
BOSTON, MA 02125-3300 US

8. PERFORMING ORGANIZATION报告 NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AF Office of Scientific Research
875 N. Randolph St. Room 3112
Arlington, VA 22203

10. SPONSOR/MONITOR'S ACRONYM(S)
AFRL/AFOSR RTB1

11. SPONSOR/MONITOR'S REPORT NUMBER(S)
AFRL-AFOSR-VA-TR-2018-0309

12. DISTRIBUTION/AVAILABILITY STATEMENT
A DISTRIBUTION UNLIMITED: PB Public Release

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The accomplishments that have been made since the last report submission are described in great detail in a series of peer-reviewed papers that have been published in prestigious international journals.

15. SUBJECT TERMS
Silicon-Germanium-Tin, SiGeSn, photonic heterostructures

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES

19a. NAME OF RESPONSIBLE PERSON
POMRENKE, GERNOT

19b. TELEPHONE NUMBER (Include area code)
703-696-8426

DISTRIBUTION A: Distribution approved for public release.
FINAL REPORT--REVISED
AFOSR Grant FA9550-14-1-0196

SiGeSn Heterostructure Photonics Technology for Ultrafast
Communications in the 2 micron Infrared Region

1 July 2014 through 30 June 2017

Richard Soref and Greg Sun, Principal Investigators

Submitted to the Air Force Office of Scientific Research
(Dr. Gernot Pomrenke, Program Manager)

University of Massachusetts at Boston
Department of Engineering
100 Morrissey Boulevard,
Boston, MA 02125

DISTRIBUTION A: Distribution approved for public release.
1. The Research Topic

The work on this grant focuses on “group IV photonics” in the SiGeSn materials system. This group IV photonics—which is integrated upon a silicon wafer— is an expanded version of silicon photonics. The new group IV heterostructures investigated in this grant offer, in many cases, a direct bandgap that enables the invention of efficient, active-photonic devices that support promising dual-use applications in optical communications, computing, sensing, and night vision, albeit at wavelengths longer than 1.55 microns. Here, the 2-micron wavelength is propitious for communications over novel fiber links that use the emerging low-loss hollow-core photonic-crystal optical fibers.

2. The General Goal

The general objective of the research is to invent silicon-based foundry-compatible GeSn/SiGeSn laser diodes, LEDs, infrared amplifiers, photodetectors, electro-optical modulators-and-switches, and nonlinear optical components—all of which shall enable ultrafast mid-infrared communications.

3. The PIs and Their Approach

The Principal Investigators on this project, Professor R. A. Soref and Professor G. Sun, performed basic physics-and-photonics research on topics that are closely related to the title thrust of this AFOSR program. For the most part, their work comprised new science insights and theoretical modeling-and-simulation with an eye towards Technology Transitions. In some cases, the PIs consulted on experimental materials science work and on experimental photonics work that was performed outside of the University of Massachusetts: for example, collaboration with the University of Arkansas on some of the first GeSn lasers in the world.

4. The Scientific Collaborations

Collaborations were provided at no cost to the Air Force. The talented scientists who worked with the PIs were mainly University Professors and AFRL scientists, including Joshua Hendrickson and Justin Cleary at AFRL, Fisher Yu at the University of Massachusetts, and...
Arkansas, Jacob Khurgin at Johns Hopkins, Haibo Liang at McMaster, Mo Soltani at Raytheon, Volker Sorger at George Washington, Jose Capmany at Valencia, Goran Mashanovich, Milos Nedeljkovic and Graham Reed at Southampton, Francesco De Leonardis and Vittorio Passaro at Polytecnico di Bari, Dan Buca at Forschungs Zentrum Julich, and Henry Cheng and Din-Ping Tsai at National Taiwan University.

5. Publications and Conference Presentations

Over this three year period, as a result of the synergistic interactions-and-investigations just described, the PIs authored, or co-authored 121 innovative path-finding, peer-reviewed publications in prestigious journals and presentations at top-level conferences, mostly invited papers. The complete specifics of all these journal articles and conference papers are given in the several pages at the end of this Report. It is probably fair to say that this AFOSR-sponsored work has had impact upon the science community judging from the many references that scientists in the community have made to the aforementioned publications—as specified in this link: https://scholar.google.com/citations?user=IoPkLrYAAAAJ&hl=en. In particular, the 2-μm thrust set forth by Dr. Soref in his Nature Photonics article is being adopted by the community.

6. Honors and Activities during the Grant

On April 14, 2016, Professor Soref was elected Fellow of the National Academy of Inventors. The January 2016 group-IV Review Article by Drs. Soref, Buca and Yu was printed by the Optical Society in their Optics and Photonics News magazine, and 18,000 copies were mailed to members. An Editor of APL Photonics invited Prof. Soref to write a lengthy Tutorial on integrated photonic switching, which has thus far received 2100 downloads. Professor Soref served on the Program Committee of the 2017 IEEE Summer Topicals and the 2016 Optical Interconnects Conference at Photonics West, and he was a session organizer at PIERS Shanghai 2016. Dr. Soref was Guest Editor of the 2014 Special Issue on Nanoplasmonics for SPIE Nanophotonics.

Professor Sun, on this grant, has made important contributions to fundamental plasmonic science and Si-based photonics in collaboration with scientists in United States and Taiwan. He has also published large number of papers, one of which appeared on Nature Photonics, and delivered many talks at conferences, some of which
are invited. He helped organize three high profile conferences, namely MRS symposium, 9th International Conference on Nanophotonics, and 8th International Conference on Surface Plasmon Photonics. He served as guest editor for Optics Express and ACS Photonics.

7. Summary of the Accomplishments

The accomplishments are published in theory papers and in experimental papers. Those numerous results can be grouped into six categories (1) new materials-science results in the SiGeSn system and new SiGeSn/GeSn heterolayered devices (including quantum wells), mainly in the form of infrared detectors and optically pumped lasers, (2) new microwave photonic chips in the silicon-on-insulator platform, chips that feature programmable reconfigurable filters and meshes, (3) an extensive series of new results in the field of nonlinear optics with work that includes Brillouin lasing in Ge, third-order SiGeSn susceptibilities, electric-field-induced second-order effects, supercontinuum generation and third-harmonics in Ge-on-Si, all-optical switching in SiC, GeSn Raman shifting, and biphoton generation in AlGaN, (4) the field of plasmonic-photonics, and here some fundamental and important contributions were made on the topics of metasurfaces, Spasers-and-Speds, split-ring resonators and 2 x 2 EO switching in a 3-waveguide coupler with charge accumulation under an ITO-embedded plasmonic central waveguide, (4) advances in phase-change-material photonics both in free space and waveguided structures, (5) new free-carrier physics in the Ge an AlGaN systems, (6) advances in waveguided standing-wave resonator spatial routing switches using electro-optical 1D PhC structures in the Si-based group IV photonics platforms.

8. Highlights of the Grant Results

We proposed waveguided nanobeam resonators embedded in the arms of a Mach Zehnder interferometer (MZI) and our analysis indicates that this structure is an advance in the art of integrated 2 x 2 electro optical switching. Figure 1 shows a top view of the device in the Ge-on-Si:N platform, operative at wavelengths from 1.9 to 5.4 microns. The orange and green shadings indicate P and N doping of the lateral Ge PIN diode within the rib-waveguided 1D photonic crystal regions. We predicted low
Figure 1. Chip-integrated 2 x 2 EO switch using identical 1D PhC tapered resonators in each MZI arm.

low crosstalk and low insertion loss. Simulations indicate EO switching at 500 attojoules-per-bit which puts these results into relevance and overlap with AFOSR’s initiatives on attojoules photonics. We wrote a series of papers on the 2 x 2s showing their application to SOI, GOS and GON platforms and revealing their impact upon N x N matrix switching, electro-optical logic, and wavelength-division multiplexing.

We made a fundamental contribution to the free-carrier physics of crystalline germanium. This work is a sophisticated extension of Dr. Soref’s 1987 paper on free-carrier response in silicon, work that has received 2300 citations in the literature. Figure 2 shows a portion of our theory results for Ge when a concentration ΔNe of electrons is injected into this semiconductor. The two graphs here show the carrier-induced increase in real index Δn as well as the simultaneous induced change in infrared absorption coefficient Δα.
Figure 2. Predicted change in (a) real index of Ge vs wavelength, (b) extinction of Ge vs photon energy, using the electron concentration as a free parameter.

We consulted with the University of Arkansas on many of their GeSn experimental devices, and Figure 3 shows representative results for their infrared photodetectors. After those results were published, further increases in D^* were made, making the diodes competitive with III-V devices. We also worked on developing optically pumped GeSn lasers and

Figure 3. Measured detectivity of infrared photodiodes made by Fisher Yu’s group.
Figure 4. Measured characteristics of 2500-nm GeSn laser on Si that is operating at 110K

some highlights are indicated here in Figure 4 which shows the experiments made on our edge-emitting devices. After this work was published in APL, additional improvements were made.

Using energy-band theory and nonlinear optical physics, we calculated the third-order nonlinear susceptibility \(\chi^{(3)} \) of SiGeSn alloys. Figure 5 presents results of the \(\chi^{(3)} \) magnitude for representative alloys as a function of a wide infrared wavelength range. These published results are—to the best of our knowledge—the first report in the literature for these ternary semiconductors.
Figure 5. Predicted dispersion function and Chi-3 of selected SiGeSn alloys as a function of wavelength over 2 to 12 microns.

Using on-chip monolithic GeSn light sources and detectors, we envision that an Integrated microwave photonic (IMWP) chip could be constructed in the future for operation at 2 microns. As a near-term IMWP solution, the SOI platform is a good alternative, and we have studied this chip with the goal of defining and analyzing a reconfigurable network for processing microwave-modulated optical signals. We proposed the 2D hexagonal, programmable network illustrated in Figure 6 which shows a “mesh” comprised of broadband 2 x 2 Mach Zehnder devices operating in the cross or bar or splitting modes. This means that each arm in any hex-shape is an MZI.
Figure 6. Plan view of waveguided optical “hexagonal-lattice mesh” that can be configured for a “ring” resonator as well as a ring-assisted interferometer.

Rather than a rectangular connection of MZIs, the six-sided approach is the most efficient topology, and in Figure 6, a variety of filters can be configured easily.

9. Potential Technology Transitions

Within the 121 published results, we can specify at least seven projects that could transition into commercial products after more development—as follows: (1) The laser papers with Fisher Yu’s group are a foundation for the future electrically pumped GeSn laser that has potential for manufacture, (2) the near-infrared imager chip paper with Henry Cheng’s group has potential for a manufactured GeSn infrared camera chip, although this would require considerable financial investment, (3) the reconfigurable processor papers with Jose Capmany’s group could become a new silicon-photonic microwave chip with advanced features, (4) the series of papers on phase-change materials has three transition potentials—spatial-light-modulator products, fiber-optic switching products and waveguided switch-matrix chips that could be used in a data center, (5) the paper with Professor C. S. Tan’s group on Ge-on-Nitride has potential for a new kind of mid-infrared wafer that would supplement the Ge-on-Si wafers currently envisioned for longwave application, (6) the prototype GeSn light emitting diodes and infrared detectors could lead to commercial emitter/sensor products made in a modified silicon-photonic foundry, (7) the papers with AFRL on the 2 x 2 electro-optical nanobeam switch could transition to a new kind of commercial, resonant switching device in both the SOI and GOS integrated-photonic foundry platforms.

10. Complete Listing of Accomplishments

T. Pham, H. Tran, W. Du, J. Margetis, Y. Zhou, P. Grant, G. Sun, R. Soref, J. Tolle, B. Li, M. Mortazavi and S. Q. Yu, “Investigation of Si-based Ge 0.89 Sn 0.11 Photoconductors with 3.0 μm photoresponse,” *CLEO: Science and Innovations*, STu1N. 6, 2017

S.H. Al-Kabi, S Ghetmiri, J Margetis, T Pham, Y Zhou, W Dou, W Du, A. Mosleh, J. Liu, G. Sun, R. Soref, J. Tolle, B. Li, M. Mortazavi, H. Naseem and S. Q. Yu,

“Optically pumped Si-based edge-emitting GeSn laser,” *CLEO: Science and Innovations*, SW4C. 1, 2017

R. Soref, “Resonant and slow-light 2 x 2 switches enabled by nanobeams and grating-coupled waveguides,” (Invited) presented at the *Progress in Electromagnetics Research Symposium*, session IP5 (PIERS), St. Petersburg, Russia, 22 May 2017. (See also IEEE Xplore for PIERS extended papers).

Y He, X Wang, B Liu, X Jiang, C Qiu, Y Su, R Soref, “Silicon Polarization Splitter and Rotator using a Subwavelength Grating based Directional Coupler.” Optical Fiber Communication Conference, Th1G.6, 2017

W Du, S Ghetmiria, S Al-Kabia, A Mosleh, T Phama, Y Zhoua, H Trana, G Sun, R. Soref, J Margetis; J Tolle; B Li; M Mortazavi; H Naseem; S-Q Yu “Silicon-based Ge0.89Sn0.11 photodetector and light emitter towards mid-infrared applications,” Proceedings of SPIE Vol 10108, 1010813-1, 2017

C Chang, H Li, CT Ku, SG Yang, HH Cheng, J Hendrickson, RA Soref, ...? “Ge 0.975 Sn 0.025 320× 256 imager chip for 1.6–1.9 μm infrared vision,” Applied Optics 55 (36), 10170-10173, 2016, 2017

DISTRIBUTION A: Distribution approved for public release.

M. Soltani, R. Soref, T. Palacios, D. Englund, “AlGaN/AlN integrated photonics platform for the ultraviolet and visible spectral range ,” Optics Express 24 (22), 25415-25423, 2016

D. Pérez, I Gasulla, J Capmany, RA Soref “Reconfigurable lattice mesh designs for programmable photonic processors and universal couplers,” Transparent Optical Networks (ICTON), 2016 18th International Conference on, 1-4, 2016

Y Zhou, W Du, W Dou, T Pham, A Mosleh, SA Ghetmiri, S Al-Kabi, J Margetis, J Tolle, G Sun, R Soref, B Li, M Mortazavi, H Naseem, and S-Q Yu “Systematic study of Si-based Ge0.9Sn0.1 light-emitting diodes towards mid-infrared application,” Lasers and Electro-Optics (CLEO), 1-2, 2016

R. Soref, J.R. Hendrickson and J. Sweet, “Simulation of germanium nanobeam electro-optical 2× 2 switches and 1× 1 modulators for the 2 to 5 µm infrared region,” *Optics Express* 24 (9), 9369-9382, 2016

DISTRIBUTION A: Distribution approved for public release.

T.N. Pham, W. Du, B.R. Conley, J. Margetis, G. Sun, R.A. Soref, J. Tolle, B. Li, “Si-based Ge0.99Sn0.01 photodetector with peak responsivity of 2.85 A/W and long-wave cutoff at 2.4 μm,” Electronics Letters 51 (11), 854-856 (2015)

T. Pham, B. Conley, J. Margetis, H. Tran, S.A. Ghetmiri, A. Mosleh, W. Du, “Enhanced Responsivity up to 2.85 A/W of Si-based Ge0.9Sn0.1 Photoconductors by Integration of Interdigitated Electrodes,” CLEO: Science and Innovations, STh1I. 7 (2015)

C. Qui, W. Gao, R. Soref, J. Robinson and Q. Xu, “Demonstration of

R. Soref, Guest Editor, SPIE Journal of Nanophotonics, Special Section on Nanoplasmonics (December 2014). Guest Editorial JNP vol. 9(1) 093701 (14 July 2015).

T. Pham, B.R. Conley, L. Huang, W. Du, S.A. Ghetmiri, A. Mosleh, A. Nazzal, R.A. Soref, G. Sun, “Enhanced responsivity by integration of interdigitated electrodes on Ge$_{0.93}$ Sn$_{0.07}$ infrared photodetectors,” IEEE Photonics Conference (IPC), San Diego, CA, 358-359 (2014).

Y. Zhou, W. Du, S.A. Ghetmiri, A. Mosleh, A. Nazzal, R.A. Soref, G. Sun, S. Q. Yu, “Room-temperature electroluminescence from Ge/Ge$_{0.92}$Sn$_{0.08}$/Ge double heterostructure LED on Si,” IEEE Photonics Conference (IPC), San Diego, CA, 506-507 (2014).

A. Mosleh, M. Benamara, SA Ghetmiri, BR Conley, MA Alher, W Du, G Sun, “

R. Soref, “Mid-infrared Group IV Photonics and Plasmonics,” Invited lecture at the *Plat4M Workshop on Silicon Photonics*, University of Gent, Belgium (4 July 2014)

J. B. Khurgin and G. Sun, “Impact of surface collisions on enhancement and quenching of the luminescence near the metal nanoparticles, “*Optics Express* 23, 30739-30748 (2015)

G. Sun, “Is plasmonic enhancement limited if metal becomes lossless?” invited talk, Progress in Electromagnetics Research Symposium (Shanghai, China, August, 2016)

J. B. Khurgin, G. Sun, W.-Y. Tsai, and D. P. Tsai, “Ultimate limit of nanoplasmonic field enhancement,” SPIE Optics + Photonics (San Diego, August, 2016)

J. B. Khurgin and G. Sun, “Limits of plasmonic enhancement: what if the metal becomes ‘lossless’?” Proceeding of the Conference on Lasers and Electro-optics (CLEO), (San Jose, June, 2016)

J. B. Khurgin, G. Sun, W. T. Chen, W.-Y. Tsai, and D. P. Tsai “Ultrafast thermal nonlinearity,” Proceeding of the Conference on Lasers and Electrooptics (CLEO), (San Jose, June, 2016)

C. Chang, H. Li, S. H. Huang, H. H. Cheng, and G. Sun, “Ge/Ge0.975Sn0.025/Ge p-i-n photodetector operated with back-side illumination,” invited talk, The 9th International Conference on Nanophotonics (Taipei, Taiwan, March, 2016)

G. Sun, “Practicality of enhancement and spasing with metal nanoparticles,” invited talk, the 45th Winter Colloquium on the Physics of Quantum Electronics (Snowbird, Utah, January, 2015)

G. Sun, “Plasmonic enhancement of optical absorption, electroluminescence, florescence, and Raman scattering by metal nanoparticles: limits and comparison,” Symposium Keynote in About Nanoparticles, Metallic Nanostructures and Their Optical Properties XII, SPIE Optics + Photonics (San Diego, August, 2014)