
 

 

USER GUIDE 
Endangered Butterflies as a Model System for Managing Source-

Sink Dynamics on Department of Defense Lands 
 

A Managers Guide to Spatially Explicit Individual-Based Models: 
Exploring the Benefits and Drawbacks for Wildlife Habitat Management 

SERDP Project RC-2119 
 

 

SEPTEMBER 2017 

  

Elizabeth Crone 
Tufts University 
 
Christine Damiani 
Institute for Wildlife Studies 
 
Gina K. Himes Boor 
Montana State University 

 
 
 
 Distribution Statement A 
  



 

 

Page Intentionally Left Blank 

 



This report was prepared under contract to the Department of Defense Strategic 
Environmental Research and Development Program (SERDP).  The publication of this 
report does not indicate endorsement by the Department of Defense, nor should the 
contents be construed as reflecting the official policy or position of the Department of 
Defense.  Reference herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the Department of Defense. 
 



 

 

Page Intentionally Left Blank 

 





 

 

Page Intentionally Left Blank 

 



2 
 

Abstract 

 Spatially explicit individual-based models (SEIBMs) are potentially powerful tools for guiding 

habitat management decisions in fragmented landscapes.  However, most managers are 

unaware of their potential, or wary of their practical applicability.  An informal survey of 27 

Department of Defense natural resource managers revealed that although only 22% had 

previous experience with SEIBMs, 89% were open to the idea of using them.  The managers 

cited insufficient data, lack of modeling experience, distrust in reliability of predictions, and 

availability of simpler decision-making methods as reasons they might not use an SEIBM.  In this 

paper, we address these concerns, using examples from working SEIBMs used to inform habitat 

management.  Although simpler decision-making methods exist, they may not always be the 

best available science for guiding management of species whose viability is influenced by 

behavior and/or spatial structure.  Limitations in data availability and modeling experience can 

be overcome with pattern-oriented modeling approaches and collaborations with modelers.  

However, the cost of data collection and model development may limit military use of SEIBMs 

to situations where maintaining viability of the species is vital to the military mission and thus 

justifies the expense.  Although sensitivity to parameter uncertainty limits the ability of SEIBMs 

to make absolute numerical predictions, they have proven robust enough for comparative 

predictions.  Furthermore, the dynamic process of building, testing, and updating models 

improves understanding of complex systems with each iteration.  When treated as components 

of long term adaptive management programs rather than as short term predictive tools, 

SEIBMs have yielded meaningful insights that have enhanced the ability of managers to make 

science-based decisions when managing habitat for wildlife. 

Keywords: spatially explicit individual-based models, habitat management, habitat models, 

resource selection functions, demographic matrix models, pattern-oriented modeling 
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1. Introduction 

 Habitat loss and degradation are among the greatest threats to wildlife (Wilcove et al. 1998, 

Brooks et al. 2002, Schipper et al. 2008).  Populations in fragmented landscapes must contend 

with smaller patches of suitable habitat and reduced connectivity to other patches, making 

them vulnerable to stochasticity (Shaffer 1981), invasion by undesirable species (Lurz et al. 

2003), and increased mortality risk to individuals that leave the patch (Lamberson et al. 1992).  

Even intact habitats may be degraded by loss of natural disturbance regimes, making them less 

valuable to wildlife.  Approaches to counter habitat loss and degradation include protection of 

existing habitat, restoration of degraded habitat, and creation of new patches or dispersal 

corridors.  Disturbance regimes may also be managed to maintain or restore disturbance-

dependent habitats. 

 Implementing these strategies requires managers to assess: how much habitat is needed to 

sustain a viable population, which patches have the most potential conservation value, and 

what frequency of disturbance restores habitat while minimizing mortality?  There is often no 

clear answer to these questions, leaving managers with difficult choices among multiple 

alternative actions.  To justify cost and feasibility of decisions, managers need science-based 

methods that predict management outcomes and allow them to weigh alternative strategies. 

 A challenge to predicting species response to habitat management is that decisions often 

can’t be guided directly by empirical studies (Heppell et al. 1994, Cooper et al. 2002).  

Landscape-level manipulations on rare species can be ethically questionable, logistically 

unfeasible, and unable to be replicated sufficiently to assert that results were not observed by 

chance.  Population models that forecast viability (i.e., population viability analyses, or PVAs) 

have been useful for guiding wildlife management in situations where empirical studies are not 

feasible (Morris and Doak 2002).  However, in fragmented landscapes, aspects of viability (e.g. 

connectivity) are driven not only by population dynamics, but spatial arrangement of habitat 

(Andren 1994, Turner et al. 1995) and dispersal behavior (Baguette et al. 2013).   

 Spatially explicit individual-based models (SEIBMs) simulate the behavior of individuals on a 

virtual landscape as a way to understand population-level patterns (Grimm and Railsback 2013).  

They are spatially explicit because simulated individuals move through a two-dimensional space 

representing a real or simplified landscape.  They are individual-based, because simulated 

individuals interact with one another and the landscape, reproduce, and die according to rules 

derived from data or hypotheses on individual vital rates (e.g., survival probability) and 

behavior (e.g., frequency of dispersal).  The collective behavior of these individuals is recorded 

over time to produce population-level metrics such as population trajectories, spatial 

distribution, and extinction probability. SEIBMs are similar to other simulation models used in 
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ecology, such as PVAs, in that they generally use parameters estimated from empirical data to 

predict future outcomes.  SEIBMs differ from PVAs in that their simulations focus on individual-

level dynamics rather than population-level dynamics. 

 SEIBMs are theoretically well suited for addressing questions related to habitat restoration 

and management (Dunning et al. 1995).  They can simultaneously incorporate spatial, 

behavioral, and demographic drivers of viability in fragmented landscapes.  They can describe 

habitat arrangement in a realistic manner, and can therefore address questions specific to real 

landscapes.  They can update habitat characteristics over time, and are therefore capable of 

capturing a landscape’s temporal dynamics associated with habitat management, natural 

succession, and human and wildlife impacts.  Therefore, a well parameterized SEIBM acts like a 

virtual laboratory in which one can conduct multiple landscape-level experiments that would 

otherwise be unfeasible.  Unlike habitat restoration experiments, simulations can be replicated, 

allowing conclusions to be statistically defensible. 

 However, SEIBMs are complex models with potentially heavy data requirements and it is no 

trivial undertaking to construct one.  Furthermore, despite 20 years of development and use, it 

has largely been unreported whether these models have been successful in guiding managers 

towards effective management strategies.  The objective of this paper is to evaluate the 

benefits and impediments of SEIBMS to natural resource managers who conduct habitat 

restoration and management.  To this end, we conducted an informal survey of managers to 

find out what monitoring data they collect and what factors would limit them from using 

SEIBMs.  Guided by managers’ questions and concerns, we use case studies to describe 

advantages SEIBMs may have over simpler approaches, discuss the limitations posed by their 

data requirements, and evaluate their value as decision-making tools. 

 

2. SEIBM construction and data requirements 

2.1 Data requirements 

 SEIBMs are composed of a virtual landscape on which virtual individuals interact with the 

landscape and each other over time, progressing through their life cycles, and potentially 

reproducing to create the next generation of individuals.  The output of an SEIBM is the 

collective behavior of all individuals, measured as population- or community-level outcomes.  

Information necessary to build an SEIBM varies considerably depending on the question to be 

addressed and the data available to parameterize the model, but at their most basic, SEIBMs 

require a map of the landscape, knowledge about individual behaviors and vital rates, and 

information about how those behaviors and vital rates are affected by the landscape. In this 
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section, we discuss each of these components in more detail and describe how they are 

brought together to create an SEIBM, with the caveat that there are few absolutes when it 

comes to construction methods and data requirements for SEIBMs. The aim of this brief 

introduction to SEIBMs is not meant to be comprehensive, but rather to introduce the concepts 

sufficiently so that managers can decide whether an SEIBM might be feasible and useful for the 

questions they are interested in addressing. 

 

2.1.1 Habitat data 

 The first component necessary for building an SEIBM is a map – a virtual representation of 

the landscape relevant to the management question. The map is often a simplified delineation 

of habitats or cover-types through which the species under consideration moves in the real 

world, and is most often tied to a real geographic location. For example, if the focal species is a 

bird known to nest in riparian forests and to forage or preferentially travel through other forest 

types, the SEIBM map could be composed of three habitat types: riparian forest, upland forest, 

and open areas (which would include all non-forested areas).  Such a map could be constructed 

from aerial photographs or satellite imagery (e.g., Landsat or NLCD from USGS) in which 

riparian forests can be distinguished from other forest types and open areas can be 

distinguished from forests.  When habitat types are delineated by hand from aerial photos, it is 

most usually done using GIS, and the map that results is most often made up of a grid of cells or 

pixels, each of which is associated with a location as well as a descriptor or label (e.g., riparian 

forest). With the availability of remotely sensed images and the relative ease of map digitizing, 

GIS layers of information for maps are generally one of the easiest types of data to obtain. 

 Each cell on a map can also be associated with additional environmental descriptors.  For 

example, a cell might have a habitat suitability level or a measure of available resources such as 

forage biomass, number of nest sites available, or number of host plants. Such data could be 

derived from vegetation and habitat surveys that quantify the level of available resources in 

different habitats, from telemetry studies that provide information on how frequently 

individuals use different habitats (e.g., open meadows are used preferentially for foraging, but 

riparian corridors are used secondarily, and upland forests not at all), or from expert knowledge 

on how important various habitats are for the focal species. The environmental descriptors or 

habitat types can be static or can change over time.  Changes can occur independent of the 

focal species (e.g., through successional phases), in response to interactions with focal species 

(e.g., consumption of resources or occupation of nest sites), or in association with landscape 

neighbors (e.g., spread of an invasive species).  Some SEIBM maps partition the landscape into 

only two habitat types (e.g., suitable/unsuitable, Rushton et al. 1997, Letcher et al. 1998); 
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others contain myriad habitat types or landscape features (e.g., Carroll et al. 2006, Watkins et 

al. 2015).  The level of habitat detail will be dictated by the number of landscape features 

affecting the focal species’ behavior or demography in a way that is relevant to the modeling 

goal. If an individual or population does not respond in some unique way to a habitat type or 

feature, then including it in the map is unnecessary from a modeling perspective. 

 

2.1.2 Demographic data 

 The second component of SEIBMs is a set of “rules” that govern an individual’s survival and 

reproduction.  These rules can take the form of per-time-step probabilities of 

surviving/reproducing (e.g., Fahrig 2001), mortality as a function of age (e.g., Conner et al. 

2008), or assigned characteristics at birth (pre-determined lifespan, e.g., McIntire et al. 2007).  

Multiple types of data that are commonly collected on the species of interest can be used to 

parameterize these aspects of a model, including annual survival and reproduction rates, 

average life-span, age-at-first reproduction, age of senescence, litter size, or lifetime 

reproductive capacity.  Such data are generally obtained from mark-recapture studies, radio 

and satellite telemetry, studies that track a sample of individuals through time, or age-specific 

censuses over time.  In models for which differences occur between categories of individuals, or 

ages or life stages are critical to the modeling goal, data on group-specific vital rates (e.g., age-

specific reproductive rates) or behaviors (e.g., gender-specific dispersal rates) will be necessary.  

In addition, individual variation can be incorporated into the model if the variability around a 

mean demographic rate is known (e.g., Brown and Crone 2016a).  For some SEIBMs, 

demographic rates are emergent outputs of the model rather than input parameters.  For 

example, survival and reproduction can be based on body condition, which is in turn based on 

foraging decisions and success (e.g., the amount of forage available and energy consumed, 

Kostova et al. 2004).  In these cases, data on consumption rates or foraging success rates in 

association with body condition or reproductive success can be used to parameterize the 

model.  Such data are generally obtained from observations of individuals (potentially in 

combination with allometric measurements) and/or mark-recapture studies. 

 Some SEIBMs tie population dynamics to the landscape by using habitat-specific vital rates. 

For some species this may simply require knowledge about preferred mating or birthing 

habitat. For example, if reproductive sites (e.g., dens, nests, host plants) only occur within one 

habitat type, the model can restrict reproduction to that habitat type.  For other species, 

individuals that occupy different locations or habitats may have different vital rates, thus 

requiring location-specific estimates. For example, individual red-cockaded woodpeckers at Fort 

Bragg might be subject to one survival rate, while woodpeckers at Eglin Air Force Base would be 
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subject to Eglin-specific survival rates. Alternatively, an average set of survival and reproductive 

rates may be weighted by a habitat suitability score calculated for the occupied cell (Carroll et 

al. 2006, USFWS 2011). For instance, Carroll et al. (2006) calculated a wolf survival metric for 

each cell on their map, based on habitat characteristics (e.g., road density, human population 

density) for the cell that are correlated with wolf survival.  Average wolf survival rates were 

multiplied by the survival metric of the occupied cell, so that wolves occupying cells with higher 

survival metrics had higher survival rates.  Such an approach would be appropriate if habitat 

relationships were known, but site-specific or habitat-specific vital rates were not known. 

 

2.1.3 Movement data 

 The third component of SEIBMs is a set of rules governing individual movement behavior 

(e.g., movement initiation, direction, and distance). We will call these rules the movement 

submodel.  Data to parameterize this component of an SEIBM are likely the least familiar to 

managers, but are what distinguish individual-based models from other simulation modeling 

and what give SEIBMs the potential to be highly beneficial tools in guiding management actions 

related to habitat management.  The complexity of the movement submodel, and thus the level 

of data requirements, will depend on the question to be addressed, and the life history and 

spatial dynamics of the species. In general, the movement submodel dictates how individuals 

move through their environment, whether that movement is related to obtaining food, looking 

for mates, finding suitable habitat, or dispersing.  To a certain extent, the movement submodel 

(or the questions to be addressed with the model) can be adjusted to fit the available data.  

 In some cases, very little data are required to build a movement submodel.  For example, 

because Lurz et al. (2003) only had empirical data on maximum dispersal distance, their 

dispersal submodel simply assumed individuals dispersed when patch carrying capacity was 

exceeded, and dispersal was successful if another patch was available within maximum 

dispersal distance; otherwise, the individual died.  Using this relatively simple movement 

submodel, they were able to use their SEIBM to assess the impacts of various forest 

management practices on a red squirrel conservation area. Similarly, Letcher et al. (1998) built 

a movement submodel based solely on the knowledge that dispersing individuals tend to move 

in straight lines; they used their model to determine the population sensitivity to spatial 

distribution of territories.  In these examples, expert knowledge or very basic empirical data 

were used to create a movement submodel that allowed managers to better assess the needs 

of the focal species and the impacts of management actions.  

 In contrast, when data are available, detailed movement submodels can be developed that 

link movement behavior to landscape structure by including habitat-specific movement 
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behaviors, incorporating habitat-boundary crossing behaviors (e.g., Schultz and Crone 2001), or 

both.  For example, Hudgens et al. (2012) modeled butterfly movement by assigning butterflies 

different movement characteristics in each different habitat they encountered, such that the 

likelihood of resting, for example, was higher in areas containing their host plant, and their per-

move step distance was longer in non-host habitats. The full model included habitat-specific 

move/resting probabilities, rest times, move distances, turning angles, and boundary crossing 

probabilities. The data used to parameterize the model were obtained by following individual 

butterflies and recording their movement behavior in different habitats, but could also be 

obtained from fine scale telemetry data.  While the level of data required for such habitat-

specific movement can be quite high, models that incorporate these details can have 

advantages over simpler models.  Hudgens et al. (2012) found that an SEIBM that included 

habitat-specific movement and boundary behaviors was better able to identify potential 

dispersal barriers for an endangered butterfly species in a restored landscape than a simple 

model with dispersal based on inter-patch distance only (i.e., a butterfly was more likely to 

move to another host patch if it was closer than if it was farther away).  Further, they argued 

that this increased predictive accuracy came at only a slightly higher financial cost for data 

collection and model development. 

 In addition to the types of data mentioned above, information that can be used to 

parameterize movement submodels include dispersal information such as speed or mean 

dispersal distance, home range size, habitat preferences, proportion of population that 

migrates or disperses, patch occupancy estimates, and almost any data pertaining to spatial use 

patterns.  These kinds of information can be obtained from mark-recapture studies, telemetry 

data, and in some cases, presence/absence surveys in multiple habitats or locations of interest.  

For example, when movement behavior data are relatively minimal but habitat preferences are 

known, a biased random walk approach can be used where the bias is toward preferred 

habitats (e.g., Richards et al. 2004, McIntire et al. 2007).  Other details that can be considered 

when developing the movement submodel include whether demographic parameters change 

as a result of dispersal (i.e., survival rates are lower for dispersing individuals than stationary 

ones), or if movement behaviors differ between classes of individuals (e.g., sexes, age-classes, 

or categories, Letcher et al. 1998, Conner et al. 2008). 

 

2.2 Simulations 

 To understand how SEIBMs work, it is useful to understand what happens in an SEIBM 

simulation. Once the data for the three primary components (map, demography, and 

movement submodel) are assembled and coded into a model, simulations are run.  To begin a 
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simulation, individuals are placed on the virtual landscape and each are assigned a set of 

characteristics (e.g., age, sex, reproductive status, energy level) depending on the purpose of 

the model.  For example, if the purpose of the model is to assess the effectiveness of culling a 

portion of an invasive population and culling males and females is expected to have different 

effects, the number of individuals placed on the landscape would be the current estimated 

population size and the male to female ratio would be based on empirical data if possible. If the 

ratio is unknown, a 50:50 ratio might be used, then tested to see if the model output is 

sensitive to this model assumption. Characteristics that are not fixed (e.g., reproductive status) 

may be updated with the individuals’ age or time of day as the simulation proceeds.  Within a 

defined time step (e.g., year, season, day), each individual goes through a sequence of events.  

The outcome of each event is probabilistically determined by the individual’s assigned 

characteristics, behavioral rules, and the context of the individual’s location.  If the time step is 

a year, the sequence might be to evaluate survival (i.e., does the individual die or survive, based 

on empirical survival rates), update age (i.e., if the individual has survived, its age is 

incremented by one), disperse/establish territory (e.g., does the individual stay in its current 

location or does it leave the colony based on empirical rates of emigration), and reproduce (i.e., 

does the individual successfully produce offspring or not based on empirical reproductive rates, 

e.g., Schumaker et al. 2014).  If the time step is a day, the sequence might be to rest/move (i.e., 

does the individual stay in the same place or move to a new location, and if it moves where to, 

based on empirical movement distances), forage (e.g., if the individual is in a location where it 

can eat, it will consume a fixed amount of forage based on known foraging rates, otherwise it 

does not eat), attempt to mate (e.g., if an individual of the opposite sex is within a certain 

distance of the individual, they will mate, based on expert opinion), and evaluate survival as a 

function of age (e.g., if the individual’s age exceeds the average lifespan, then the individual will 

die) or meeting minimum energy reserves (e.g., if the individual has managed to acquire 

sufficient forage, it will survive, if not, it will die, based on known minimum food requirements, 

e.g., Watkins et al. 2015).  The simulation continues this process, iterating over all individuals at 

each time step, then moving on to the next time step and repeating the process, until a fixed 

time-period is reached (e.g., 20 years) or until the population reaches some designated 

threshold (e.g., goes extinct). Other processes may be simulated at time scales longer than the 

time-step (e.g., seasons, years). For example, reproduction (e.g., give birth to offspring) might 

only occur in the spring, or movement/foraging behavior might be different in winter than in 

summer, or movement is only simulated during the summer.   

 At the end of each time step or season, or the end of the simulation, individuals are 

“censused” and different types of outputs may be calculated.  For example, population size and 

growth rate can be estimated from counts of individuals on the landscape over time, either at 

the whole landscape level or within individual habitats or populations.  Because multiple 
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replicate simulations may be run, predicted population trajectories can be used to estimate 

probabilities of extinction risk.  Spatial distribution or habitat use may be quantified by the 

proportion of individuals using different patches or habitat types.  Dispersal and connectivity 

can be measured by counting the number of individuals that leave a patch/population/habitat 

type or move between patches or other landscape features.  The metrics output by the model, 

will of course, depend on the purpose of the model. If different management scenarios are to 

be assessed, then the model is run again applying the other scenarios. For example, if the 

impact of a clear-cut is under assessment, the model can be run using the current landscape, 

then again using a landscape in which the proposed clear-cut area is changed from, say a closed 

canopy forest to an open area.  For all model outputs, it is possible for SEIBMs to make absolute 

predictions, however, if the aim of the modeling exercise is to compare outcomes of different 

management strategies, there is more leeway in the accuracy of information used to 

parameterize the model.  In these cases, since relative ranking is more important than absolute 

outcome, one can parameterize SEIBMs with educated guesses (e.g., we assume that all female 

butterflies are mated and therefore can oviposit eggs) or uncertain data (e.g., using published 

vital rates from a surrogate species or from a different population), as long as the data are 

consistently applied to all alternatives and appropriate validation procedures are followed.  

When expert knowledge or uncertain data are used, sensitivity analyses can also be conducted 

to determine how dependent model output is on these uncertain inputs and modeling 

decisions.  Because of their sensitivity to parameter uncertainty, SEIBMs are stronger at 

predicting relative outcomes.   

 

2.3 Case Study 

Here we present a case study designed to provide a more detailed example of how an 

SEIBM is constructed based on available data. As our example, we use a model we developed 

for an endangered butterfly found in Washington and Oregon, including on Joint Base Lewis-

McChord (Himes Boor et al. In review). To facilitate recovery of the species, restoration efforts 

have been underway to restore native prairie habitat, specifically focusing on two of the 

butterfly’s host plants on which adults oviposit eggs and larvae rely for their primary food 

source. The management questions to be addressed by the SEIBM are whether it is best to 

restore host plant patches in one contiguous patch or multiple smaller patches, and how 

multiple patches should be arranged. Below we outline the process we used to develop one of 

the two models we used to address the question of optimal restoration strategy – only 

providing enough detail to illustrate the SEIBM development process. For more detailed 

information about data collection and the models, we refer readers to the published papers 

that include more of these details (Brown and Crone 2016a, b, Himes Boor et al. In review).  
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Our SEIBM landscape described two sites at which restoration was actively underway or 

planned for the future. We obtained a GIS layer of property boundaries from the Center for 

Natural Lands Management, an NGO, and used a high resolution aerial photo of the area 

obtained from the USGS (https://earthexplorer.usgs.gov/).  Using ArcGIS we combined these 

sources and digitized forest, prairie, field, and exurban habitat. We used expert knowledge 

(from field work in the area) to distinguish fields and exurban areas that did not contain 

butterfly resources, from restored prairies that contained nectar plants and a low density of 

host plants. Onto this base map we added potential restored patches of concentrated host 

plants, creating a series of landscapes with different restoration configurations. 

We made decisions about how to structure the model based on our questions and the 

available data. Few data are available on Taylor’s checkerspot demography and movement, so 

most of the data used to parameterize our SEIBM came from a surrogate species, the Baltimore 

checkerspot. The choice of surrogate species was based on similarities between their life cycles, 

general movement characteristics, and general population dynamics (e.g., they both appear to 

go through “boom-bust” phases). From one population of Baltimore checkerspot, we obtained 

estimates of daily adult survival rates, lifetime fecundity, nest size, egg survival, larval 

overwinter survival, and maximum lifespan (Brown and Crone 2016a, b).  For butterfly 

movement, we used data obtained by following individual Baltimore checkerspots and 

recording the time spent resting and moving, step distances, turn angles, and likelihood of 

crossing forest boundaries (Brown et al. 2017). These movement behaviors were recorded 

every 15 seconds, so we used this as the time-step in our SEIBM and converted daily survival 

probabilities into survival per 15-second interval.  

Our model only simulated female butterflies, assuming they all had mated and were 

gravid.  We simulated adult female behavior over 15-second intervals, for 4 flight hours per day 

(based on observations of Baltimore checkerspots). At each time step, a female could move or 

rest (based on the empirical probability of resting, 0.385).  If she rested, the model drew a time 

from a Poisson probability distribution (based on empirical data) to determine how long she 

rested. If she moved, the new location was determined by a turn angle drawn from a wrapped 

Cauchy distribution, and a step-length drawn from a Gamma distribution. The precise distance 

and turn-angle distributions depended on the habitat currently occupied by the butterfly. If, for 

example, the butterfly was in a host patch, the mean and variance of the step length 

distribution were much smaller than if it was in nectar meadow habitat because butterfly flight 

paths tend to be more sinuous, with more frequent stops and higher tendency to turn in 

preferred habitat.  If the female was in a host patch after moving or resting, she could oviposit 

eggs, with the probability of oviposition determined from lifetime fecundity data. Oviposition 

was not allowed in any other habitat type. If the female oviposited, the number of eggs was 

drawn from a Poisson distribution. Individuals also had a chance of dying at each time step, 
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based on empirically estimated daily survival probabilities scaled to the 15-second time-step, 

but maximum possible lifespans were limited to four weeks based on observations of Baltimore 

checkerspots. 

Once all adult butterflies had died in a given year, half of all oviposited eggs were 

removed to account for our female-only model (we assumed a 50:50 male-female ratio).  A 

combined egg and larval survival probability was applied to the eggs, which dictated how many 

of the eggs and subsequent pre-diapause larvae survived to become adults the following year. 

Using this model structure and the empirical data from Baltimore checkerspots, our simulated 

populations would continue to grow indefinitely given our base landscape map containing 1.44 

ha of host patch habitat, about twice the size of the estimated critical minimum patch size. 

However, we would not expect butterfly populations to grow indefinitely, so we limited 

population growth based on limited information on Taylor’s checkerspot population dynamics 

and several modeling assumptions. We only had good population estimates over time (9 yrs) at 

a single Taylor’s checkerspot site. This population, along with anecdotal information from other 

Taylor’s populations and other checkerspots, suggest that they experience boom-bust 

dynamics, in which populations grow rapidly, then crash after reaching high densities. We did 

not know the mechanism behind such dynamics, but wanted to emulate them in our SEIBM, so 

in the model described here, we assumed that the population was limited by some type of 

density dependence and that the crashes were caused by inter-annual environmental variation. 

We set a mean carrying capacity within the host patch based primarily on expert opinion (and 

other modeling factors; see Himes Boor et al. In review) and varied it annually by imposing 

environmental stochasticity. The environmental stochasticity had a mean of zero and a 

standard deviation set through model experimentation to yield a population size coefficient of 

variation (CV) in simulated populations that matched the CV of the single Taylor’s checkerspot 

population for which we had population size data. Under this model structure, if the number of 

surviving larvae exceeded the carrying capacity plus environmental stochasticity for that year, 

then the surviving larvae would be reduced to the carrying capacity. All remaining larvae, 

whether reduced to carrying capacity or not, turned into adult butterflies, and the next 

simulation year began. 

We ran each simulation for 30 years or until the population went extinct, whichever 

came first. We compared 21 restoration scenarios, keeping the total restored area the same, 

but altering the number of patches and the distance between patches. We ran 100 simulations 

for each restoration scenario map. During each simulation, we recorded the annual adult 

population over all years of the simulation, and from those model outputs from all 100 

simulations, we calculated 1) mean population size, 2) the population size coefficient of 

variation (CV), and 3) the extinction risk, calculated as the proportion of the 100 simulations in 

which the population went extinct. We compared these three metrics among all 21 restoration 
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scenarios to determine the best restoration strategy as indicated by the lowest extinction risk 

and population size CV, and the highest mean population size.  

3. Applicability of SEIBMs for DOD natural resource managers 

3.1 Survey of natural resource managers 

3.1.1 Methods 

 To assess the practical applicability of SEIBMs for guiding habitat management, we 

conducted an informal survey of Department of Defense (DoD) natural resource managers to 

gain a better understanding of their management needs, their perceptions of SEIBMs, and their 

capability for building SEIBMs using current monitoring data.  We invited 115 natural resource 

managers at 90 DoD installations to participate in a survey on the utility of SEIBMs for managing 

habitat for wildlife.  Those who accepted the invitation were asked to read a short paragraph 

about SEIBMs and complete a three part, multiple-choice questionnaire (Appendix A).  In the 

first part, managers were asked what types of habitat management were conducted on their 

installations and whether the questions commonly addressed by SEIBMs would be important 

for managing their species.  In the second part, managers were asked to provide information on 

the types of monitoring data collected for at least one species whose habitat is being restored 

or managed on the installation.  They were asked whether they collect the types of data 

required to build an SEIBM, namely habitat, survival, fecundity, movement, and population size 

data.  In the third part, managers were asked about whether they felt SEIBMs would enhance 

their ability to manage species on their installation, and what factors would limit them from 

using SEIBMs.  In addition to the multiple-choice questions, managers were given the 

opportunity to provide written comments (see Appendices A and B). 

 

3.1.2. Results and discussion 

 We identified 27 managers at 26 installations (Table 1) who were responsible for restoring 

and managing habitat for threatened, endangered, or rare species (TERS) and willing to 

participate in the survey.  Most habitat management conducted on participating installations 

involved restoring existing degraded habitat using prescribed burns, herbicides, and mechanical 

treatments (Figure 1a).  Fewer installations attempted to create new habitat or acquire land to 

preserve habitat.  Only a few attempted to create dispersal corridors.  About a third of the 

installations reintroduced animals into habitat that had been created or restored. 
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 When asked about management questions that need to be addressed, most managers 

indicated a need to know which habitat patches should be restored or managed to have the 

greatest impact on viability, and whether restoring all available habitat will improve viability 

(Figure 1b). Over half the managers also wanted to know where to locate new areas of habitat 

to ensure connectivity, whether restoration or creation of habitat would mitigate for the loss of 

suitable habitat, and whether viability is affected by the timing and frequency of disturbances 

used to manage habitat.  Although only 7% of managers create corridors on their installations, 

44% wanted to know if adding corridors would improve population viability.  About a third of 

the managers wanted to know where animals should be reintroduced.  Only 37% of managers 

indicated they were in a position where they needed to choose between alternative restoration 

strategies to meet management objectives.  In addition, three managers who are trying to 

deter wildlife from entering airfields or firing ranges, asked if SEIBMs could predict whether 

restoring or creating habitat would draw animals away from areas of military use.  One 

manager also wanted to know whether animals would use new habitat after it had been 

created. 

 Managers provided information on 25 monitoring data sets for animal wildlife species 

whose habitats were being restored or managed on 23 installations (Fort Bragg and 

Vandenberg AFB each provided information for two species, Table 1).  Of these data sets, 12 

were birds, six were insects, five were reptiles, and two were mammals.  Nearly all installations 

(96%) collected data on population size, and 88% had habitat data in a GIS database (Figure 2a).  

Over half also collected demographic and movement data, and 48% had behavioral information 

on individual movement paths.  Of the 12 bird data sets, seven were red-cockaded woodpecker 

(Picoides borealis), a species whose recovery efforts have been guided by SEIBMs since the late 

1990s (USFWS 2003).  Therefore, installations managing red-cockaded woodpeckers likely 

already collect the types of data necessary to parameterize an SEIBM.  Likewise, since our 

research group is building SEIBMs for Fender’s blue butterfly (Icaricia icarioides fenderi) and St. 

Francis’ satyr (Neonympha mitchellii francisci), data sets for these species are also adequate for 

building SEIBMs.  If we omit the red-cockaded woodpecker, Fender’s blue butterfly, and St. 

Francis’ satyr data sets to better reflect the typical amount of data a DoD manager is likely to 

possess, a slightly smaller proportion of the remaining 16 data sets on 15 installations possess 

the types of data to parameterize an SEIBM (Figure 2a), and the amount of population size data 

shifts downward, with the percentage of data sets with greater than 10 years of data 

decreasing from 52% to 25% (Figure 2b).  However, most installations (81%) still had GIS 

databases of environmental variables that could be used to construct habitat maps (Figure 2a), 

and most data sets (69%) had more than 5 years of population size data.  Approximately half of 

the installations collected multiple years of data on survival and reproductive success, and 44% 
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possessed radio telemetry or satellite tag data that could be used to estimate movement 

parameters. 

 Only six (22%) of the 27 managers surveyed had previous experience with SEIBMs and only 

one (Eglin AFB) was currently using an SEIBM to manage species on the installation (Figure 3).  

Nevertheless, 89% were open to the idea of using an SEIBM, with 33% responding that they 

definitely thought using an SEIBM would enhance their ability to manage habitat and 56% 

undecided. (Figure 3).  The main factors that managers felt would prevent them from using 

SEIBMs (Figure 4) were lack of modeling experience (74%), lack of data (52%), and lack of 

resources to collect necessary data (52%).  30% of managers had doubts about the reliability of 

predictions, and 26% felt that the simpler decision-making methods they currently use were 

adequate.  In these cases, methods were generally habitat-based and decisions depended more 

on practicality or needs of the military that were not related to viability of the species being 

managed.  Only 7% of managers felt the types of questions that SEIBMs address were not 

relevant to management on DoD installations.  A table of managers’ written comments is 

provided in Appendix B. 

 After reviewing the questionnaires, we believe SEIBMs have potential for general 

application on military installations.  Most questions typically addressed by SEIBMs are the 

same questions that the surveyed DoD managers take into consideration when making habitat 

management decisions; in particular, what is the impact of restoring habitat on population 

viability, and which patches have the greatest impact on viability?  In addition, SEIBMs are 

capable of addressing two other questions brought up by military managers: whether animals 

will actually use habitat that has been newly created, and whether habitat can be created or 

restored in such a way to draw animals away from an area of military use.  In fact, SEIBMs have 

previously been applied to similar questions.  Kanagaraj et al. (2013) used an SEIBM to predict 

whether tigers will find and use corridors connecting habitat patches in India and Nepal, based 

on landscape context and individual movement behavior.  In Japan, an SEIBM has been used to 

design a strategy of establishing “alternate feeding areas” to alleviate damage to wheat crops 

by white-fronted geese (Amano et al. 2007).  Therefore, the types of questions that SEIBMs 

address have applicability to management of TERS habitat on military installations.   

 In general, the DoD managers surveyed were open to using SEIBMs, but their main concerns 

were that that simpler methods like habitat-based models are sufficient for their needs, that 

SEIBM data requirements are too high, that managers lack appropriate modeling experience, 

and that SEIBM predictions can’t be trusted.  Based on their answers, we conducted a literature 

review to address these concerns, using examples from working SEIBMs that are used to inform 

habitat management.  
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3.2 Literature review 

3.2.1 Advantages of SEIBMs over other models 

 Simpler analytical models have been used to identify and rank habitat (Carroll et al. 2001, 

Johnson et al. 2004, Chetkiewicz and Boyce 2009), estimate minimum viable patch size 

(Rushton et al. 1999, Crone and Schultz 2003), and quantify connectivity (Schultz 1998, Flather 

and Bevers 2002).  However, when populations respond to environmental change through 

individual behavior and vital rates, when species have complex life histories, when landscapes 

are fragmented or heterogeneous, or when specific questions need to be addressed for real 

landscapes, SEIBMs have advantages over their analytical counterparts for guiding decisions on 

habitat management. 

 When populations respond to environmental change through changes in individual behavior 

and vital rates, variation in individual response can influence population-level patterns of 

distribution and persistence (Revilla and Wiegand 2008, Baguette et al. 2013, Brown and Crone 

2016a, Kautz et al. 2016).  Therefore, analytical models that treat all individuals the same may 

be limited in their ability to predict population responses to habitat alteration.  In contrast, 

SEIBMs can explicitly represent individual variation in vital rates (Wiegand et al. 2004, McRae et 

al. 2008), foraging behavior (DeAngelis et al. 1998, Bennett et al. 2009, Watkins et al. 2015) 

territory establishment (Elderd and Nott 2008, Heinrichs et al. 2010, Marucco and McIntire 

2010) and movement (Revilla et al. 2004, Graf et al. 2007, Kanagaraj et al. 2013), and translate 

these individual-level mechanisms into population-level indices like connectivity, distribution, 

patch occupancy, and persistence (Revilla et al. 2004, McIntire et al. 2007, Nabe-Nielsen et al. 

2010).  

 For species with complex dynamics, individual-based models have the flexibility to 

incorporate unique biological details like cooperative breeding (Letcher et al. 1998, Cooper et 

al. 2002), pack social structure (Pitt et al. 2003, Conner et al. 2008, Marucco and McIntire 

2010), context-dependent dispersal (Stephens et al. 2002, Pietrek et al. In review), communal 

hibernation (Stephens et al. 2002), or group attack behavior (Kautz et al. 2016) that may be 

critical for predicting species response to environmental change or habitat management.  When 

dynamics are driven by individual-level mechanisms, population-level patterns that emerge 

from the collective fates of simulated individuals have more closely represented population 

dynamics than predictions from analytical models (Carroll et al. 2003, Graf et al. 2007, Zeigler 

and Walters 2014).  Furthermore, individual-based models can more easily incorporate 

behavior, which is critical for modeling species whose population dynamics are influenced by 

social structure (Zeigler and Walters 2014).  For instance, for socially-structured species like red 
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cockaded woodpeckers and wolves, subordinate individuals do not reproduce until the 

dominant individuals are dead or until the subordinates can establish their own territory.  

SEIBMs can model this behavior by setting fecundity of subordinate individuals to zero until the 

death of the dominant individual or until the subordinate finds a territory.  For instance, in 

Letcher et al.’s (1998) red-cockaded woodpecker SEIBM, 19% of simulated male fledglings 

dispersed in their first year to become floaters and the rest remained in their natal territory to 

help raise their siblings.  Both helpers and floaters had fecundities of zero.  When a vacant 

territory became available, all floaters and helpers within a 3 km radius competed for the 

territory, and the winner was determined by a set of rules that arose from knowledge of the 

species’ natural history.  For instance, the closest male won and if there was a tie, helpers won 

over floaters.  If both competitors were the same type, the oldest male won.  Upon winning a 

territory, the helper or floater acquired the potential to become a breeder with a non-zero 

fecundity.  It has been argued that because dynamics predicted by behavior-based models are 

the product of behavioral decisions that optimize fitness, rather than pre-determined 

demographic and dispersal rates, such models are more realistic than analytical models for 

describing how animals react to environmental change (Stephens et al. 2002, Goss-Custard et 

al. 2006). 

 Another advantage of SEIBMs is they explicitly describe the spatial arrangement of habitat 

in heterogeneous landscapes.  This is an advantage over traditional population models that 

assume homogeneous environments, because viability in fragmented populations depends not 

only on demography, but on the ability of individuals to disperse between habitat patches 

(Turner et al. 1995, Nabe-Nielsen et al. 2010).  Thus, SEIBMs are more appropriate for situations 

where changes in the amount and configuration of habitat have a greater impact on viability 

than stochastic changes in demographic rates, as Elderd and Nott (2008) found for the Cape 

Sable seaside sparrow.  Because SEIBMs describe shape, size, and arrangement of habitat 

patches, they have been able to address habitat management questions that analytical models 

can’t (Dunning et al. 1995, Letcher et al. 1998, Rushton et al. 1999, McIntire et al. 2007).  

Connectivity (Revilla et al. 2004, Carroll and Miquelle 2006, Revilla and Wiegand 2008, USFWS 

2011, Kanagaraj et al. 2013, Watkins et al. 2015), allee effects (Lande 1987, Stephens et al. 

2002), and source-sink dynamics (Pulliam et al. 1992, Heinrichs et al. 2010, Schumaker et al. 

2014) are all properties that emerge from the synergy of demography, behavior, and landscape 

structure, so these questions are best answered with models that can simultaneously evaluate 

all three factors. 

 Finally, because of their ability to incorporate specific biological and landscape details, 

SEIBMs are well equipped to address specific questions in real landscapes (Rushton et al. 1999, 

Richards et al. 2004, Kanagaraj et al. 2013, Schumaker et al. 2014) and model realistic patterns 

of habitat degradation (Elderd and Nott 2008).  For example, although simple analytical models 
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indicated that most habitat patches available for restoration were too small or too isolated to 

support subpopulations of Fender’s Blue Butterfly on their own, only an SEIBM was able to 

evaluate the conservation value of specific patches in the context of the actual landscape, and 

determine whether restoring the whole network of small and isolated patches could result in a 

connected and viable population (McIntire et al. 2007).  

 

3.2.1a Advantages over habitat-based models 

 Below, we detail the advantages of SEIBMs over two specific types of models commonly 

used to guide habitat management decisions: habitat-based models and demographic matrix 

models (Table 2).  Known by many names (e.g., resource selection function, habitat suitability 

index, associative model, ecological niche model) habitat-based models are typically general 

linear models that use the relationship between habitat variables and species occurrence to 

predict species redistribution following habitat restoration.  When linked to GIS data, they can 

explicitly describe the amount and spatial arrangement of suitable habitat on real landscapes.  

To extrapolate habitat suitability to predictions of species distribution, habitat-based 

approaches assume that habitat quality is a good surrogate for abundance or viability, which is 

not necessarily true.  Simple relationships between habitat variables and species occurrence 

may work well to predict distributions of specialists that are closely associated to key 

environmental features (Meyer et al. 1998, Shirk et al. 2014).  However, they are less reliable in 

situations where species are not strongly associated with key habitat features (Mitchell 1998, 

Tirpak et al. 2009, Rittenhouse et al. 2010), where the presence of a mobile species may 

indicate migrants rather than a viable population (Rushton et al. 1999, Marucco and McIntire 

2010), or where individuals occur in sink habitats (Aldridge and Boyce 2007, Heinrichs et al. 

2010).   

 Even if habitat-based models perfectly predict distribution of suitable habitat, they tend to 

overestimate the species’ potential distribution, because they don’t account for factors limiting 

individuals’ ability to utilize all available habitat (Turner et al. 1995, Carroll et al. 2003, Johnson 

et al. 2004).  By incorporating dispersal, demography, and behavior, SEIBMs increase the 

precision of predictions, because they narrow down where animals may potentially occur to 

where they are likely to persist given life history and dispersal abilities.  For example, because 

habitat-based models do not include demography, they have been limited in assessing whether 

locations that appear to be suitable habitat actually support viable populations.  39% of the 

landscape predicted by a resource selection function to be suitable habitat for Ord’s kangaroo 

rat was determined by an SEIBM to be sink habitat (Heinrichs et al. 2010).  Because habitat-

based models do not include behavior, they have failed to account for the effects of 
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territoriality and social structure in limiting population size.  An SEIBM predicted more realistic 

wolf densities in protected areas than a resource selection function, because the habitat-based 

model did not account for pack territoriality placing limits on density in high quality habitats 

(Carroll et al. 2003).  Because habitat-based models do not include dispersal, they have 

difficulty assessing whether all potential habitat is accessible for colonization.  SEIBMs have 

been able to narrow down distributions of habitat that individuals can actually access (Carroll et 

al. 2003, McRae et al. 2008).  When Rushton et al. (1999) used a resource selection function to 

estimate minimum viable patch size for red squirrels, it was unable to distinguish conservation 

value among woodlands larger than 10 ha.  An SEIBM likewise predicted that populations 

persisted in a range of woodland from 9-403 ha.  However, given the set of demographic and 

dispersal parameters that best fit the population data, the SEIBM was able to narrow down the 

most likely minimum patch size to support a viable population to 46.2 – 56 ha. 

 Habitat-based models are typically derived from short term data and represent static 

relationships between animals and their environment.  They are therefore limited in their 

ability to predict how those relationships change following habitat restoration (Pereira and 

Itami 1991, Rushton et al. 1997, Chetkiewicz and Boyce 2009).  Because they are simulations, 

SEIBMs have the flexibility to use updated GIS data or landscape simulator submodels to 

advance the age of habitat in each cell (Liu 1993, McKelvey et al. 1993, Carroll et al. 2003, 

McRae et al. 2008), thus allowing the distribution of suitable and unsuitable habitat to change 

over time.  For instance, the McRae et al. (2008) SEIBM integrated a forest dynamics simulator 

that projected a time series of forest composition maps.  Their model was capable of simulating 

both the conversion of coniferous stands to early seral stages by forest harvest and conversion 

to older seral stages by succession, allowing them to explore future effects of climate change 

and forest management on distributions of songbirds.  Thus, although SEIBMs require 

behavioral and demographic parameters that habitat-based models don’t, their assumptions 

and predictions are more realistic. 

 

3.2.1b Advantages over non-spatial demographic models 

 For conservation planning, demographic models usually take the form of an age- or stage-

based projection matrix (Morris and Doak 2002).  Models that only require demographic data 

are good at predicting relative population densities or growth rates at equilibrium (Stephens et 

al. 2002), or gaining insights about which life stages or vital rates contribute most to population 

growth (McKelvey et al. 1993, Heppell et al. 1994, Richards 2003).  However, demographic 

models have been limited in their ability to accurately predict population dynamics when 

movement behavior is an integral component.  Demographic matrices do not specify the spatial 
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arrangement of habitat, and may overestimate population growth because they do not account 

for difficulties in finding suitable habitat or mates in fragmented landscapes (Lande 1987, 

Heppell et al. 1994, Stephens et al. 2002, Richards et al. 2004).  SEIBMs, which incorporate 

spatial structure, have been found to be more appropriate for describing these dynamics 

(McKelvey et al. 1993, Letcher et al. 1998, Richards et al. 2004). 

 Dispersal has been incorporated into some stage-based matrices by using transition 

probabilities to describe movement of individuals between territories or habitat patches 

(McKelvey et al. 1993, Heppell et al. 1994, Stephens et al. 2002).  However, transition 

probabilities have not produced realistic patterns of dispersal when the outcome depends on 

behavior and habitat arrangement.  When movement is determined solely by probability, 

modeled individuals tend to disperse randomly to vacant territories regardless of location, 

instead of the more realistic pattern of dispersing to sites closer to the natal territory (McKelvey 

et al. 1993, Stephens et al. 2002, USFWS 2003, although see Hunter and Caswell 2005).  This in 

turn causes the model to misrepresent predicted levels of reproductive success and dispersal 

mortality.  Stephens et al. (2002) further found that in a system of communal hibernation 

where larger marmot groups retain more heat and therefore experience lower winter 

mortalities, the use of transition probabilities caused simulated individuals to make dispersal 

decisions that didn’t make sense from a fitness perspective (i.e., dispersing when vacant 

territories were sparse and remaining at the natal territory would increase survival for the 

individual and its siblings).  In contrast, an SEIBM in which the decision to disperse was based 

on behaviors maximizing fitness outperformed demographic models in accurately predicting 

not only equilibrium densities, but also variation in population size, dispersal rates, winter 

mortality, and distributions of group sizes on the landscape. 

 SEIBMs also outperform demographic models in their ability to predict dynamics of socially 

structured populations.  Because demographic matrices assume a fixed proportion of the 

population will breed, they can’t capture how social populations in which subordinates quickly 

fill breeding vacancies can maintain a stable number of breeders, even when the population 

declines.  Thus, they may overestimate extinction risk for small populations. Models that ignore 

social structure and assume all adults reproduce may also overestimate population growth of 

social species for which dominant breeders suppress fecundity of subordinates.  For example, 

red-cockaded woodpeckers are “cooperative breeders” whose breeding groups include 

subordinate “helpers” that remain on the natal territory to help raise siblings and only breed if 

they can inherit the natal territory or disperse to an available adjacent territory (Walters et al. 

1988).  Social structure imposes reproductive constraints on helpers that can’t acquire their 

own territories, especially in fragmented landscapes where subordinates are unable to disperse 

to vacant territories (Zeigler and Walters 2014).  Stage-based matrices can incorporate social 

structure to some extent by modeling breeders and subordinates as separate classes with 
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different fecundities (Heppell et al. 1994).  These models have been shown to make reasonable 

predictions of population growth.  However, for socially structured populations in fragmented 

habitats, an SEIBM that can incorporate both social and spatial structure is a better predictor of 

population size than simpler demographic or individual-based models.  In the case of the red 

cockaded woodpecker, an SEIBM was determined to be more useful than a demographic 

matrix, because it could explicitly model distance to vacant territories and incorporate the 

social structure and movement behavior critical to describing dynamics of this species (Zeigler 

and Walters 2014).  SEIBMs yielded the results that red-cockaded woodpeckers were 

surprisingly resilient to demographic (Letcher et al. 1998) and environmental (Walters et al. 

2002) stochasticity due to the dynamic of cooperative breeding, but only if territories are 

aggregated enough so that a breeder that dies can be replaced quickly by a helper in the same 

or nearby territory.  These insights led to Recovery Plan guidelines (USFWS 2003) that new 

habitat (recruitment clusters) should be placed within 3.2 km of existing clusters to increase 

population size.  Largely as a result of these general management guidelines, red-cockaded 

woodpecker populations have met or exceeded recovery milestones (Ten Brink 2012, Helmuth 

2014, Lammertink 2014). 

 

3.2.2 Limitations of SEIBMs 

3.2.2a Data limitations 

 Although an SEIBM’s ability to describe complex dynamics is one of its greatest benefits, 

this complexity comes at the cost of a significant number of parameters.  To assess how SEIBMs 

are parameterized and used in practice, we reviewed a set of SEIBMs used to guide habitat 

restoration or management for wildlife.  This set of studies was compiled by searching Google 

Scholar for papers published between 2000-2015, using the terms “spatially explicit individual 

based model” and “spatially explicit population model”.  In addition, we included 3 SEIBMs 

known to us.  Of approximately 26 SEIBMs we reviewed that were used to guide wildlife habitat 

management, the five that documented their parameter sets contained an average of 30 

parameters (Table 3).  Because of the large numbers of parameters, SEIBMs are vulnerable to 

error propagation (Conroy et al. 1995).  For example, Liu et al. (1995) cautioned that their 

SEIBM’s prediction, that the U.S. Forest Service could meet its goal of 115 Bachman’s sparrow 

breeding pairs under current management, might be overly optimistic if juvenile survivorship 

was overestimated by just 10%.  Also, Richards et al. (2004) found SEIBM predictions of 

crocodile population size, nest number, and young of year survival to be highly sensitive to 

variation in parameter estimates, suggesting that at least for this species, these parameters 

should be estimated within 1% accuracy. 
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 Since fluctuations in population size can result in chance extinctions, models that don’t 

account for stochasticity may underestimate extinction risk, especially for small populations 

(Morris and Doak 2002).  Thus, managers wishing to build SEIBMs not only have to collect 

enough data to estimate parameters accurately and distinguish habitat-specific differences, but 

also collect data over a number of years to quantify their temporal variability.  Multiple years of 

data are also desirable to validate models.  Because extensive amounts of demographic and 

behavioral data can be difficult to obtain, it has been questioned whether it is feasible for 

managers to collect the data necessary to parameterize SEIBMs (Wennergren et al. 1995, 

Beissinger and Westphal 1998).  Indeed, 52% of the DoD managers said lack of data would 

prevent them from building an SEIBM.   

 It should be noted that the absence of some of the empirical data needed to build an SEIBM 

does not necessarily preclude development of the model.  For species that have been well 

studied, demographic data can sometimes be obtained from published studies (McKelvey et al. 

1993, Stephens et al. 2002, Carroll et al. 2003, McRae et al. 2008).  For example, Carroll et al. 

(2003) used survival and fecundity data from wolf packs in Alaska (Ballard et al. 1987), 

Minnesota (Fuller 1989), and Montana and British Columbia (Pletscher et al. 1997) to 

parameterize an SEIBM to predict wolf distribution and viability in Colorado.  For species that 

are less well-studied, data from species or subspecies whose life histories or phylogenies are 

similar enough to the target species to be considered “surrogates” have been used (Cooper et 

al. 2002, Buenau and Gerber 2004, Hudgens et al. 2012).  For example, Cooper et al. (2002) 

collected brown treecreeper field data for most of the demographic parameters needed for an 

SEIBM, but were missing data on dispersal speed and mortality.  For these parameters, they 

used data from the red-cockaded woodpecker, which was deemed a reasonable surrogate 

because both bird species are cooperative breeders, cavity nesters, and insectivores.   

 Because SEIBM predictions can be sensitive to variability in parameter estimates, 

researchers must be cautious when substituting data from surrogate species or even a different 

population of conspecifics (Carroll et al. 2003, Schiegg et al. 2005, Rushton et al. 2006).  For 

example, Rushton et al. (2006) demonstrated that an SEIBM overpredicted abundance of the 

endangered Mt. Graham red squirrel (Tamiasciurus hudsonicus grahamensis) when surrogate 

data from the non-endangered core population of red squirrels (T. hudsonicus) were used.  A 

frequently used solution is to use the information available from field data, literature, and/or 

surrogates to estimate reasonable starting ranges of values for each unknown parameter.  

Within each range, parameter values are adjusted or “tuned” and model simulations are run, 

predicting the population growth trends that result from different combinations of parameter 

values (Carroll et al. 2003, Richards et al. 2004, Kramer-Schadt et al. 2005). Likelihood analysis is 

used to determine the set of estimated parameter values that are most likely to predict 5-10 

years of observed population growth.  This type of approach is referred to as “pattern-oriented 
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modeling”, and may even be used to estimate a best fit parameter set when data are 

completely lacking for multiple parameters (Stephens et al. 2002, Kramer-Schadt et al. 2007).   

 To give an idea of the amount of data used to build working SEIBMs, we summarized data 

collected for nine of the wildlife habitat management SEIBMs we reviewed (Table 4).  The 

criteria for selection of this subset were that the SEIBMs were applied to decision-making for an 

actual habitat restoration project, and that they provide documentation or references for data 

used to parameterize the model.   

 Of the nine SEIBMs reviewed, all had enough data on variables such as vegetation, stand 

age, canopy cover, topography, soils, or hydrology to produce GIS maps of the study area that 

explicitly describe spatial distribution of habitat (Table 5).  Seven indicated that population 

count data were available either to validate models or estimate unknown parameters with 

pattern-oriented modeling, and five of these data sets contained at least 10 years of data (Table 

5).  Six SEIBMs were parameterized with empirical survival data from the species of interest, 

mostly obtained from capture-recapture studies or monitoring of marked or radio-tagged 

individuals (Table 6).  All of these survival data sets were age- or stage-specific, and two were 

habitat-specific.  The amount of survival data varied widely, with sample sizes ranging from 16 

to over 5000 individuals, and number of years of data ranging from 1 to 24 years.  Of the three 

remaining SEIBMs, two (Bachman’s sparrow, St. Francis’ satyr) estimated survival using pattern-

oriented modeling or surrogate data (see Table 6).  For the third SEIBM (wood stork), mortality 

was imposed not by a predetermined rate but by whether an individual’s energy reserves fell 

below a minimum threshold.  Thus, this model did not require survival data per se.  All SEIBMs 

were parameterized with empirical fecundity data from the target species, mostly gathered by 

observing nests or monitoring reproductive activities of marked individuals (Table 7).  Only two 

fecundity data sets were age- or stage-specific and only two were habitat-specific.  Studies 

ranged from 1 to 24 years, and sample sizes ranged from 24 nests to over 16,000 individuals. 

 Seven of the nine SEIBMs based their movement submodel on at least some field-collected 

data (Table 8).  Four movement data sets (Cape Sable seaside sparrow, gray wolf, northern 

spotted owl, red-cockaded woodpecker) were obtained by tracking radio-marked individuals or 

recording locations of marked individuals.  These types of studies ranged from less than one 

year with 31 individuals to 11 years and over 1000 individuals, and provided information on 

dispersal distances and probability of dispersal.  Only one of these four studies (northern 

spotted owl) collected data on dispersal direction.  Movement data for the two butterfly 

SEIBMs were collected by recording movement paths of individuals released in different 

habitats.  These single-year studies had sample sizes of 42-606 individuals, and yielded fine 

scale data on habitat-specific move lengths and turn angles.  For the St. Francis’ satyr model, 

probabilities of crossing habitat boundaries were parameterized with habitat-specific data from 
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the St. Francis’ satyr and a surrogate species, the Appalachian brown butterfly.  Resting times 

and habitat-specific move lengths and turn angles were estimated solely from individual flight 

paths of the surrogate species.  Only two SEIBMs included field-collected estimates of dispersal 

mortality. 

 To explore whether managers possess sufficient data to build SEIBMs, we compared the 

data in Tables 4-7 against monitoring data collected for 16 species whose habitats are being 

restored or managed on 15 Department of Defense installations (Table 9).  Data sets for red-

cockaded woodpecker, St. Francis’ satyr, and Fender’s blue butterfly were omitted, because 

SEIBMs for these species were among the nine case studies listed in Table 4, and therefore the 

available data might be atypical of what the average manager would possess.  Of the 16 

remaining monitoring data sets, 81% had GIS databases of environmental variables that could 

be used to construct habitat maps.  Most data sets (69%) had more than five years of 

population size data, and 25% had more than 10 years.  Seven installations (44%) had 

conducted multi-year studies of survival on marked individuals, with three of those estimating 

habitat-specific survival.  Nine data sets (59%) contained multiple years of information on 

reproductive success, with three containing habitat-specific data.  Seven installations (44%) 

possessed radio telemetry or satellite tagging data that could be used to estimate some 

movement parameters.   

 Besides the installations that manage for red-cockaded woodpecker, St. Francis’ satyr, and 

Fender’s blue butterfly, four installations (Camp Shelby, U.S. Air Force Academy, Camp Grayling, 

and Fort Riley) currently seem to have sufficient data to consider building SEIBMs for the 

gopher tortoise, Preble’s meadow jumping mouse, massasauga, and greater prairie chicken.  

However, other installations, although their data sets are incomplete, likely also have sufficient 

data.  Most of the installations had sufficient habitat data to build maps.  Although half the data 

sets lacked data to empirically estimate survival and fecundity, most had enough population 

size data to estimate these parameters using pattern-oriented modeling.  The greatest data 

limitation would be the paucity of information on movement behavior.  Although most of the 

working SEIBMs were parameterized with some empirical movement data, less than half the 

managers surveyed collected this type of data, probably due to differences in monitoring goals.  

Some analyses have suggested that uncertainty in dispersal parameters, especially dispersal 

mortality, may translate to large errors in SEIBM predictions (Wennergren et al. 1995, 

Ruckelshaus et al. 1997; but see Mooij and DeAngelis 1999, South 1999). Thus, managers 

wishing to build SEIBMs might focus more resources towards obtaining accurate estimates of 

dispersal capability and mortality.   
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3.2.2b Model complexity and cost 

 A second concern of managers was the complexity of coding the simulations.  Building an 

SEIBM requires many decisions on factors such as spatial scale and resolution, species-habitat 

relationships, and behavioral rules.  Due to the large number of decisions and processes 

involved, it can be easy to make mistakes in formulating the model (Macdonald and Rushton 

2003).  These structural errors can result in erroneous predictions, even when all parameters 

are estimated correctly (Conroy et al. 1995).  74% of managers surveyed said lack of modeling 

experience would prevent them from using an SEIBM. 

 However, limited modeling experience can be overcome by reaching out to researchers 

who specialize in ecological modeling.  Such researchers have the ability to develop, code, and 

update SEIBMs, and are often interested in applying their skills to real life problems.  Some 

researchers are consultants who contract their services (e.g., www.langrailsback.com, 

https://www.fws.gov/rcwrecovery/rcw_model.html).  Others are academics who may have 

access to funding and graduate students who are looking for applied projects on which to 

develop their skills.  The most successful collaborations require close coordination between 

manager and modeler, so the modeler has the appropriate biological information and 

understanding of the system, and the manager understands interpretation of model outputs. 

 It is difficult to present a general cost estimate for data collection and model development 

for SEIBMs, because expense varies widely depending on complexity of the question to be 

addressed (and therefore the complexity of the model), level of expertise of the contractors, 

level of difficulty in collecting the necessary data for the species of interest, and amount of data 

already available from other sources.  Cost will also depend on how sensitive the model 

predictions are to accurate parameter estimates, which in turn depends on the life history of 

the species of interest.  With this caveat, we present some examples to give an idea of how 

much it can cost to develop an SEIBM. 

 The Fender’s Blue Butterfly (FBB) SEIBM that is being developed by our research group 

addresses different habitat restoration questions for two different populations: the ideal 

frequency of controlled burns at Baskett Slough National Wildlife Refuge, and the source-sink 

dynamics resulting from creating new habitat adjacent to the FBB population at The Nature 

Conservancy’s Willow Creek Reserve.  Demographic, movement, and population count data for 

the Willow Creek population are available from prior surveys or ongoing monitoring.  However, 

for Baskett Slough, these data need to be collected at multiple sites that reflect different burn 

frequencies.  The estimated cost for five years of data collection and development of this SEIBM 

is approximately $920,000. 



28 
 

 Our group is also developing an SEIBM to analyze how methods of wetland habitat 

restoration (hardwood removal vs inundation) and placement of restoration sites (close or far 

from extant colonies) influence population growth of the Saint Francis’ satyr butterfly (SFS) on 

the Fort Bragg Army Base.  Adult survival, population size, and movement data were collected 

at each restoration site, and cage experiments were conducted to estimate juvenile survival.  

The approximate cost for five years of data collection and development of this SEIBM is 

$532,000. 

 Both of these SEIBMs were developed with teams of academic experts that included 

university professors, postdoctoral researchers, and graduate students.  It is possible that 

military installations could achieve data collection and model development at lower cost if their 

research needs could be framed in terms of a graduate student’s dissertation project.  It is also 

less expensive to build an SEIBM if much of the data can be collected through the installation’s 

ongoing monitoring for the species of interest, and the installation only needs to pay for model 

development.  For instance, the developers of the red-cockaded woodpecker SEIBM charge 

$6,500-$13,000 to use their model to analyze existing demographic and dispersal data to 

predict population trajectories, probability of territory abandonment, and probability of 

recruitment cluster occupation (https://www.fws.gov/rcwrecovery/rcw_model.html). 

 

3.2.2c Reliability of SEIBM predictions 

 30% of the managers surveyed indicated that their reluctance to use SEIBMs stemmed from 

distrust in reliability of model predictions.  Potential sources of error in SEIBMs are input error 

and structural error.  SEIBMs include many parameters that are likely to be estimated with little 

or no data.  For example, managers may not have access to data collected outside their 

installation.  And as has been previously discussed, there may be problems with using data from 

surrogate species or other populations.  Because of the large number parameters in an SEIBM, 

errors in parameter estimation may be compounded into significant errors in prediction 

(Ruckelshaus et al. 1997).   

 On the other hand, despite their complexity, SEIBMs are simplified versions of ecological 

systems that are even more complex.  Therefore, even if parameters are estimated accurately, 

predictions can still be unreliable if the assumptions that go into structuring the model are 

incorrect, or if a critical dynamic is missing.  For example, Rushton et al. (1999) under-predicted 

red squirrel distribution because their SEIBM didn’t include the dynamic that squirrels can exist 

in woodlands too small to support viable populations by incorporating multiple patches into 

their home ranges, as long as patches are within dispersal distance.   
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 Information on the reliability of SEIBM predictions has been largely unreported in the 

literature, because it is difficult to evaluate their success.  First, predicted outcomes may take 

decades to be realized.  For example, the Comprehensive Everglades Restoration Plan, whose 

development was informed by SEIBM results (DeAngelis et al. 1998) is expected to take over 30 

years to complete.  Furthermore, it is difficult to conclude statistically whether predictions from 

a stochastic model are “true” (Conroy et al. 1995, Rushton et al. 1997, Beissinger and Westphal 

1998, McCarthy et al. 2001).  However, “validation”, the process of comparing primary model 

predictions (e.g., population growth, population size) to data independent of those used to 

construct the model, can help assure that the SEIBM recreates dynamics well enough to make 

credible conservation decisions.  Testing the validity of secondary predictions such as transition 

probabilities, population structure, or dispersal behavior further verifies that model 

assumptions are correct.  Another test of the model’s reliability that should especially be 

undertaken when using data that are not site- and species- specific, is to perform “sensitivity 

analyses” that test whether changing the value of parameter estimates by 10-25% drastically 

changes model predictions (Liu 1993, Cooper et al. 2002).  Predictions that are robust to 

uncertainty in parameter estimates can lend more confidence to models that are 

parameterized with less than ideal data sets. 

 Of the eight published habitat restoration SEIBMs we reviewed, six reported that they 

validated primary predictions using between 4-23 years of population count data.  One 

reported that they validated secondary predictions, and five reported that they performed 

sensitivity analysis (Table 10).  The spotted owl SEIBM (USFWS 2011, Schumaker et al. 2014) 

was calibrated with population size and dispersal distance data, but we found no 

documentation that it was validated with independent data. 

 Critics have suggested that SEIBMs cannot predict population size with any degree of 

accuracy, because they cannot fully capture the complexity of systems that are poorly 

understood, and their results are sensitive to parameter uncertainty (Dunning et al. 1995, Liu et 

al. 1995, Beissinger and Westphal 1998, Conroy 2000).  In some cases, it is true that validated 

SEIBMs failed to accurately predict population size (Stephens et al. 2002, Schiegg et al. 2005), 

and distribution (Rushton et al. 1997).  On the other hand, SEIBMs have also proved capable of 

accurately recreating patterns of distribution (Liu 1993, Rushton et al. 1997, Carroll et al. 2003) 

and population trends (McIntire et al. 2007, Elderd and Nott 2008), in some cases predicting 

population size (Schiegg et al. 2005, Zeigler and Walters 2014) or density (Stephens et al. 2002) 

within 5% of observed values. 

 Fewer studies have validated secondary predictions that emerge from the SEIBM’s 

foundation of rules and assumptions.  However, SEIBMs have been shown to accurately predict 

a number of secondary outputs, including dispersal behavior, winter mortality, age distribution 
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of breeders, group size distribution, and rates of turnover for dominant individuals (Stephens et 

al. 2002, Schiegg et al. 2005).  Because these secondary outputs are products of multiple 

parameters and processes, their accurate prediction verify that the model’s underlying 

structure and levels of stochasticity are realistic (Beissinger and Westphal 1998).  Such 

validation provides added assurance that even when SEIBMs are imperfect at forecasting 

specific outcomes, their predictions are robust enough to be used for ranking relative outcomes 

of alternative management plans (Richards et al. 2004, Schiegg et al. 2005, Carroll et al. 2006, 

USFWS 2011, White et al. 2016).  

 In some cases (Macdonald and Rushton 2003, Carroll et al. 2006), sensitivity analyses have 

demonstrated that SEIBMs are robust enough to make credible conservation decisions despite 

parameter uncertainty.  However, other sensitivity analyses (Liu et al. 1995, Richards et al. 

2004, Rushton et al. 2006, Bennett et al. 2009) have shown that SEIBM predictions are highly 

sensitive to the values input for one or more parameters.  Although these latter results seem to 

be failures, they are useful for identifying field work that should be undertaken to estimate 

more sensitive parameters with greater accuracy.  Likewise, validation failure can help improve 

model performance by identifying the SEIBM’s structural errors (Schiegg et al. 2005).  Thus, the 

SEIBM’s value lies not only in its ability to assess relative effectiveness of alternate 

management options, but in the process of organizing known information to build the model, 

testing it to identify which assumptions are correct or incorrect, conducting further research to 

fill knowledge gaps, refining the model with new information, and testing again.  When treated 

as components of long term adaptive management programs rather than short term predictive 

tools, SEIBMs have improved understanding of complex systems and been instrumental in 

guiding decision-making.   

 An example of an SEIBM that has been used iteratively in a long-term process to 

develop a conservation plan is the model developed for red squirrels in the UK.  Rushton et al. 

(1997) built an SEIBM to test the hypothesis that decline of the native red squirrel in Norfolk 

could be attributed to competition with the American gray squirrel.  Starting with values from 

the literature, they used pattern-oriented modeling to estimate demographic and movement 

parameters that best predicted historical population trends.  The SEIBM was reasonably 

capable of replicating historical change in squirrel distributions, but some mismatches indicated 

areas where the model could be improved.  For instance, the authors suggested that saturation 

dispersal would be more realistic if patch carrying capacity were based on food availability 

rather than the number of core ranges that would fit within the patch.  Also, carrying capacity, 

survival, and fecundity should be linked to temporal variability in food availability.  Data 

available at the time did not allow them to distinguish between conifer species that differ in 

quality as food sources, so their model assumed all conifer woodland was of equal quality, and 

applied average vital rates from the literature to all patches. 
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 Lurz et al. (2003) expanded the SEIBM to include a dynamic seed crop submodel that 

predicted annual seed crop quality for each forest sub-compartment based on tree age and 

composition, and linked vital rates to seed crop quality.  This SEIBM predicted that current 

timber operations on Kidland Forest would result in significant loss of cone-bearing trees before 

restocked trees could mature, leading to possible extirpation of the red squirrel population.  

These results led the Forestry Commission to retain 180 ha of forest, after the SEIBM verified 

this plan would likely allow red squirrels to persist through the next forest rotation.  Although it 

is too soon to conclusively state whether the revised management was successful, Parrott et al. 

(2009) reported that monitoring data from Kidland Forest detected no adverse effects of 

harvest operations on red squirrel population size. 

 White et al. (2016) further revised the SEIBM to inform future management of Kidland and 

Uswayford forests.  They refined the method for calculating carrying capacity for each forest 

compartment, basing it on area, forest composition, and published estimates of squirrel 

abundance for each tree species in good and bad years.  Thus, the model could simulate change 

in carrying capacity over time as trees were harvested and restocked.  Population predictions 

from this SEIBM were well supported by monitoring data from Kidland Forest.  The model 

predicted that under the Forestry Commission’s proposed future harvest and restocking 

schedule (scenario A), carrying capacity in both forests would be poor in 10 years and squirrel 

populations would decline.  The Kidland population would recover as trees matured, but the 

Uswayford population had a 65-85% chance of extirpation.  The model further predicted that 

extinction risk could be reduced by adjusting the harvest schedule so carrying capacity wasn’t 

simultaneously low in both forests, and improving connectivity between forests.  These results 

led the Forestry Commission to develop three new plans: scenario B, which delayed the 

Uswayford harvest so it didn’t occur at the same time as the Kidland harvest; scenario C, which 

delayed the Uswayford harvest, reduced harvest in Kidland, and restocked with a mix of trees 

that support higher squirrel densities; and scenario D, which was the same as C but restocked 

with Sitka spruce – a less costly species that supports fewer squirrels.  White et al. (2016) 

compared squirrel viability under these three options, with and without a corridor linking the 

forests, and concluded that scenarios C and D provided the most viable habitat for squirrels, 

with a corridor improving viability under all scenarios.  Scenario C supported the highest total 

abundance of squirrels.  However, the more economical scenario D, while supporting a slightly 

lower total abundance than C, had the lowest extinction risk for Uswayford.  This case study 

serves both as an example of the iterative process over which a SEIBM is developed and 

improved, and how SEIBMs can inform management decisions by providing repeatable, 

science-based predictions on the relative outcomes of alternate strategies. 
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4. Conclusion 

The predictive abilities of SEIBMs are not perfect.  A few have proved capable of making 

extremely accurate predictions but for the most part, the systems modeled have either been 

too complex for SEIBMs to fully capture their dynamics, or too variable for predictions to be 

robust.  Yet, even if SEIBMs cannot predict the exact outcomes of management (i.e., will the 

population reach a certain size if plan A is implemented), they can improve understanding of 

what could happen if model assumptions were true, and compare relative outcomes among 

management options (i.e., is the population more likely to reach a certain size if plan A is 

implemented vs. no restoration).  SEIBMs are uniquely suited for describing complex life 

histories in which dynamics may be driven by individual variation or context-dependent 

behavior, and persistence depends on a synergy between demography, behavior, dispersal 

ability, and landscape structure.  Under these conditions, SEIBMs have outperformed simpler 

methods for addressing habitat management questions.  Thus, they have been well suited for 

modeling small populations that are disproportionately affected by variation in individual 

behavior or demography, social species whose population dynamics are driven by behavior, and 

fragmented populations whose size is limited by dispersal or carrying capacity rather than vital 

rates.  SEIBMs have proven robust enough for comparative studies, making them a scientifically 

defensible method for ranking proposed management alternatives when decisions can’t be 

informed empirically.  For example, after peer reviewers rejected the 2008 Northern Spotted 

Owl recovery plan for being based on stakeholder interests rather than science, the U.S. Fish 

and Wildlife Service (USFWS 2011) incorporated an SEIBM into the revised plan, citing it as the 

best available science for evaluating the effect of potential threats to owl viability.   

Lack of modeling experience or resources for data collection are not insurmountable 

obstacles to using SEIBMs to guide habitat management, if managers collaborate with 

researchers specializing in ecological modeling.  Still, the cost of data collection and model 

development may limit military use of SEIBMs to situations where maintaining viability of the 

species is vital to the military mission and thus justifies the expense.  This was the case for the 

red-cockaded woodpecker, whose status as an endangered species threatened to restrict 

military training on bases with longleaf pine forests, unless habitat could be managed to 

increase woodpecker populations to meet USFWS recovery goals. 

 Despite their heavy data requirements, pattern-oriented modeling allows SEIBMs to be 

constructed even with incomplete data sets.  Early predictions should be interpreted with 

caution.  However, if primary and secondary predictions are validated with independent data, 

and sensitivity analyses are conducted to ensure that parameter uncertainty does not affect 

relative predictions, SEIBMs are capable of ranking management plans even with relatively 

sparse data.  Thus, we encourage managers who are interested in using SEIBMs to reach out to 
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a modeler, even if data are sparse and little is known about the system.  What information is 

known about the system can be integrated into a modeling framework, and the process of 

validation and sensitivity analysis will indicate the most critical knowledge gaps and how 

accurately data need to be collected.  With each iteration of data collection, updating, and 

validating the model, new insights will be learned and model predictions will become more 

refined.  Answers to complex problems do not come quickly and in many situations, simpler 

approaches will suffice to address the management question of interest.  However, when 

viewed as part of a long term, ongoing process, SEIBMs have proven they can be reliable and 

useful tools for increasing understanding of complex population dynamics and enhancing the 

ability of managers to effectively restore and manage habitat.  
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Table 1.  List of the 26 installations that participated in the survey, and the species for which 
managers provided information on monitoring data 

 

Installation State Branch Species  

Camp Bowie TX ARMY Black-capped vireo 
Camp Grayling MI ARMY Massauga 
Camp Lejeune NC USMC Red-cockaded woodpecker 
Camp McCain MS ARMY Northern long-eared bat 
Camp Shelby MS ARMY Gopher tortoise 
Camp Swift TX ARMY Comanche harvester ant 
Eglin Air Force Base FL USAF Red-cockaded woodpecker 
Fort Bragg NC ARMY Saint Francis’ Satyr, Red-cockaded 

woodpecker 
Fort Custer MI ARMY Eastern box turtle 
Fort Gordon GA ARMY Red-cockaded woodpecker 
Fort Jackson SC ARMY Red-cockaded woodpecker 
Fort Pickett VA ARMY Michaux’s sumac 
Fort Polk LA ARMY Red-cockaded woodpecker 
Fort Riley KS ARMY Greater prairie chicken 
Fort Stewart GA ARMY Red-cockaded woodpecker 
Joint Base Lewis-McChord WA ARMY Taylor’s checkerspot butterfly 
Naval Facilities Engineering Command, 
Hawaii (Joint Base Pearl Harbor-Hickam) 

HI NAVY Hawaiian stilt 

Kansas Army National Guard KS ARMY  
McConnell Air Force Base KS USAF  
Naval Air Station Patuxent River MD NAVY Northern diamondback terrapin 
Naval Base Guam GU NAVY Green sea turtle 
Naval Support Activity Monterey CA NAVY Smith’s blue butterfly 
Pueblo Chemical Depot CO ARMY Mountain plover 
USACE Willamette Valley Project (Fern Ridge 
Reservoir) 

OR ARMY Fender’s blue butterfly 

US Air Force Academy CO USAF Preble’s meadow jumping mouse 
Vandenberg Air Force Base CA USAF El Segundo blue butterfly, 

Western snowy plover 
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Table 2.  A comparison of habitat-based models, demographic models, and spatially explicit individual-based models for predicting 
effects of habitat management on wildlife.  This table compares the types of predictions made, data required, modeling capabi lities, 
and situations most appropriate for each model. 
 

 HABITAT-BASED MODELS DEMOGRAPHIC MODELS SEIBMS 

P
R

ED
IC

TI
O

N
S 

Distribution of 
available habitat 

X  X 

Species distribution X  X 

Population viability  X X 

Influence of life 
stages or vital rates  

 X X 

Connectivity   X 

D
A

TA
 

GIS habitat data Required  Required 

presence/absence Optional  Optional 

population size Optional Optional Optional 

demographic rates  Required Required 

movement/dispersal  Optional Required 

behavior  Optional Optional 

M
O

D
EL

IN
G

 C
A

P
A

B
IL

IT
IE

S 

Heterogeneous 
landscapes 

Can model spatial structure.  Predicts 
availability of habitat 

Difficult to incorporate spatial structure 
Can model spatial structure. Predicts 
availability and occupancy of habitat 

Habitat change 
 

Static species-habitat relationships limit 
ability to predict response to habitat 
change 

Don’t model landscape or habitat 
Can simulate dynamic landscapes and 
resulting population response to habitat 
change 

Demographic 
variation 

No demographic variation; all individuals 
the same 

Model demographic variation among groups 
Model demographic variation among 
individuals 

Social structure 
Don’t model social structure 

Difficult to model effects of social structure 
on vital rates 

Can model individual variation in vital rates 
due to behavior and social structure 

Dispersal 
Don’t model dispersal 

Dispersal success determined by probability 
only 

Dispersal success determined by behavior and 
landscape configuration  

Population Viability Predictions of habitat suitability don’t 
equate to viability, because models don’t 
include demography or dispersal success 

Suitable for predicting viability when most 
demographic variation is due to stochasticity, 
and dynamics don’t depend on dispersal 

Suitable for predicting viability when variation 
in demographic rates and dispersal success 
depends on behavior or habitat configuration 

GOOD FOR THESE 
SITUATIONS: 

• Fragmented or heterogeneous 
landscapes 

• Static landscapes 

• Habitat specialists 

• All individuals have similar vital rates 

• Homogeneous landscapes 

• Static landscapes 

• Population dynamics not strongly 
influenced by social structure or 
dispersal 

• Fragmented or heterogeneous 
landscapes 

• Dynamic landscapes 

• Population dynamics influenced by social 
structure or dispersal 

• Source-sink dynamics present 
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Table 3. A list of SEIBMs applied to wildlife habitat management that document the number of 
parameters used in the model 
 

Species Reference 
Number of 
parameters 

American crocodile Richards et al. (2004) 36 
Cape Sable seaside sparrow Elderd and Nott (2008) 11 
Jaguar Watkins et al. (2015) 17 
Red-cockaded woodpecker Letcher et al. (1998) 47 
Yellow-headed blackbird Bennett et al. (2009) 39 

 
 
 
 
 

Table 4.  The subset of 9 wildlife habitat management SEIBMs whose data sets were reviewed 

Species Model reference(s) Agency using model Model application 

Bachman’s 
sparrow 

Pulliam et al. (1992); Liu 
et al. (1995) U.S. Forest Service 

Predict how forest management plans targeting red-cockaded 
woodpecker impacts Bachman’s sparrow at Savannah River Site 

Cape Sable 
seaside sparrow 

Elderd and Nott (2008); 
Nott et al. (1998) 

U.S. Geological 
Survey 

Predict impacts of altered hydrological regimes resulting from 
Everglades restoration on viability of Cape Sable seaside sparrow 
population 

Fender’s blue 
butterfly 

McIntire et al. (2007); 
Smokey et al. (In prep) 

West Eugene 
Wetlands Project; 
U.S. Army Corps of 
Engineers Willamette 
Valley Project 

Model has been used to assess whether restoration of available 
habitat patches would likely result in long term persistence of Fender’s 
blue butterfly in Eugene.  Model is currently being updated to test 
alternative prescribed fire strategies for restoring butterfly habitat 
while minimizing mortality of caterpillars. 

Gray wolf Carroll et al. (2006) 
U.S. Fish and Wildlife 
Service 

Prioritize reintroduction, road removal, or habitat protection as 
recovery strategies for the gray wolf 

Northern 
spotted owl 

USFWS(2011); 
Schumaker et al. (2014) 

U.S. Fish and Wildlife 
Service 

Assess connectivity and identify source and sink areas for northern 
spotted owl, in order to evaluate the efficacy of a network of habitat 
reserves to support owl recovery. 

Red-cockaded 
woodpecker 

Letcher et al. (1998); 
Walters et al. (2002) 

U.S. Fish and Wildlife 
Service 

Inform recovery guidelines for placement of recruitment clusters for 
red-cockaded woodpecker 

Red squirrel 
Rushton et al. (1997); 
Lurz et al. (2003) 

U.K. Forestry 
Commission; Forest 
Enterprise 

Predict whether squirrel will be viable under current forest harvest and 
restocking plan.  Compare viability under current plan with alternative 
forest management plans. 

Saint Francis’ 
satyr 

Himes Boor et al. (In 
prep) U.S. Army Fort Bragg 

Inform size and location of restoration sites needed to maximize 
butterfly population growth 

Wood stork Wolff (1994) 
U.S. Geological 
Survey 

To predict the effects of water management practices in the 
Everglades on the redistribution and abundance of storks 
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Table 5.  Availability of habitat and population size data for the species of interest for 9 SEIBMs developed to guide habitat 
management.  NR = not reported.  Because some data were obtained from multiple studies, number of years of population size data 
are approximate.  This table is only intended to give a general idea of the amount of data used to parameterize SEIBMs. 
 

Species Reference(s) 

Habitat 
Yrs pop 

size data 

GIS 

data? Data layers 

Bachman’s sparrow Liu et al. (1995); Dunning et al. (2000) Y age, type, size, and boundaries of forest stands 4 

Cape Sable seaside 
sparrow Elderd and Nott (2008) Y topography, hydrology, vegetation 5 

Fender’s blue butterfly 
C. Schultz, E. Crone, J. Smokey (pers. 
Comm.) Y vegetation/land cover 23 

Gray wolf Carroll et al. (2003, 2006) Y road density, human population, tasseled cap greenness, slope, vegetation NR 

Northern spotted owl Forsman (2011); USFWS (2011) Y 
owl distribution, nest sites, vegetation, tree basal area, tree density, canopy cover, stand height, 
stand age, snags, coarse woody debris 17-24 

Red-cockaded 
woodpecker 

Schiegg et al. (2005); Zeigler and 
Walters (2014) Y cavity tree clusters, vegetation/land cover  12-13 

Red squirrel Rushton et al. (1997); Lurz et al. (2003) Y age, species, and location of forest stands 16 

Saint Francis’ Satyr G. Himes Boor (pers. comm.) Y vegetation/land cover 4-14 

Wood Stork DeAngelis et al. (1998) Y vegetation, surface elevation, soil type, road locations NR 
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Table 6.  Survival data available for the species of interest for 9 SEIBMs developed to guide habitat management.  Available data may 
either have been collected specifically for the SEIBM or obtained from literature.  NR = not reported.  Because some data were 
obtained from multiple studies, years and sample sizes are approximate.  This table is only intended to give a general idea of the 
amount and types of data used to parameterize SEIBMs. 
 

Species Reference(s) 

 

Survival 
data 
avail?  Method 

Stage 
specific 

Habitat 
specific n # yrs 

Bachman’s 
sparrow 

Pulliam et al. (1992); Liu et al. 
(1995) N No data; Pattern-oriented modeling  N/A N/A N/A 0 

Cape Sable 
seaside 
sparrow 

Nott et al. (1998); Elderd and 
Nott (2008);  Y 

Survival rates based on literature for Cape Sable seaside 
sparrow and surrogate species.  Data collection methods 
unknown. Y N 

16-112 
indiv. 1-10 

Fender’s 
blue 
butterfly 

C. Schultz, E. Crone, and J. 
Smokey (pers. comm.) Y 

Estimate larval survival by counting eggs, plants w/ larval 
damage, and adults in plots and analyzing with general 
linear mixed model. Estimate avg. adult life span to be 15 
days Y Y 

934 total 
plots 3 

Gray wolf 

Ballard et al. (1987); Carroll et 
al. (2003, 2006); Fuller 1989; 
Pletscher et al. 1997 Y Radio telemetry Y N 

52-151 
indiv. 7-14 

Northern 
spotted owl 

Forsman (2011); USFWS (2011); 
Schumaker et al. (2014) Y Capture/resight studies of marked individuals Y Y 

5224 total 
indiv. 17-24 

Red-
cockaded 
woodpecker 

Letcher et al. (1998); Schiegg et 
al. (2005); Zeigler and Walters 
(2014) Y Monitor marked individuals Y N 

>5000 
indiv. 15 

Red squirrel Lurz et al. (2003) Y 
Survival rates based on literature for red squirrel.  Data 
collection methods unknown Y N NR NR 

Saint Francis’ 
Satyr 

Aschehoug et al. (2015); Sivakoff 
et al. (2016); G. Himes Boor, W. 
Morris, and N. Haddad (pers. 
comm.) N 

Surrogate data from Appalachian brown butterfly.  Habitat-
specific larval survival from 1 yr mesocosm study (n=480).  
Habitat-specific adult survival from 1 yr mark recapture 
study (n=87) N/A N/A N/A 0 

Wood stork Wolff (1994) N 
Mortality in model is based on energetic threshold and does 
not require survival data N/A N/A N/A 0 
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Table 7. Fecundity data available for the species of interest for 9 SEIBMs developed to guide habitat management.  Available data 
may either have been collected specifically for the SEIBM or obtained from literature.  NR = not reported.  Because some data were 
obtained from multiple studies, years and sample sizes are approximate.  This table is only intended to give a general idea of the 
amount and types of data used to parameterize SEIBMs. 
 

Species Reference(s) 

 

Data 
avail  Method 

Stage 
specific 

Habitat 
specific n # yrs 

Bachman’s 
sparrow 

Haggerty (1988); Pulliam et al. 
(1992); Liu et al. (1995) Y Observe marked nests N N 66 nests 3 

Cape Sable 
seaside 
sparrow 

Lockwood et al. (1997); Elderd 
and Nott (2008);  Y Observe marked nests N N 24 nests 2 

Fender’s 
blue 
butterfly 

C. Schultz, E. Crone, and J. 
Smokey (pers. comm.) Y 

Count eggs in plots. Use general linear mixed models to estimate fecundity 
based on observed growth rates N Y 

934 total 
plots 3 

Gray wolf 

Ballard et al. (1987); Carroll et 
al. (2003, 2006); Fuller 1989; 
Pletscher et al. 1997 Y Count placental scars and observe packs N N 

4-16 
indiv, 1-
28 packs 1-13 

Northern 
spotted owl 

Forsman (2011); USFWS 
(2011); Schumaker et al. 
(2014) Y Monitor marked individuals Y Y 

11450 
indiv. 

17-
24 

Red-
cockaded 
woodpecker 

Letcher et al. (1998); Schiegg 
et al. (2005); Zeigler and 
Walters (2014) Y Monitor marked individuals Y N 

>5000 
indiv. 15 

Red squirrel 
Rushton et al. (1997); Lurz et 
al. (2003) Y 

Litter size and % females breeding based on literature for red squirrel.  Data 
collection methods unknown. N N NR NR 

Saint Francis’ 
Satyr G. Himes Boor (pers. comm.) Y 

Some data from counting eggs from captive butterflies.  Also used pattern-
oriented modeling N N 81 indiv. 1 

Wood stork Kahl (1964); Wolff (1994) Y Observation of nesting pairs threshold and does not require survival data N N 

>16000 
nesting 
pairs 7 
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Table 8. Movement data available for the species of interest for 9 SEIBMs used for habitat management.  NR = not reported.  
Because some data were obtained from multiple studies, years and sample sizes are approximate.  This table is only intended to give 
a general idea of the amount and types of data used to parameterize SEIBMs. 
 

Species Reference(s) 

Movement 

Method 
Habitat 
specific 

Probability 
of 

dispersal 
Dispersal 
distance 

Dispersal 
direction 

Individual 
movement 

paths 
Dispersal 
mortality n # yrs 

Bachman’s 
sparrow Liu et al. (1995) No data; use best estimates  N/A N N N N N N/A 0 

Cape Sable 
seaside 
sparrow Elderd and Nott (2008) Radio telemetry N N Y N N N 31 7 mos. 

Fender’s 
Blue 
Butterfly 

Schultz and Crone 
(2001); Schultz et al. 
(2012); C. Schultz, E. 
Crone, and J. Smokey 
(pers. comm.) 

Follow flight paths of individuals released 
in different habitats Y Y Y Y Y N 98-606 indiv. 

1-2 yrs, 
depending 
on habitat 

Gray wolf 

Ballard et al. (1987); 
Carroll et al. (2006); 
Fuller 1989 Radio telemetry N Y Y N N Y 81-151 indiv. 7 

Northern 
spotted owl 

USFWS (2011); Forsman 
et al. (2002); 
Schumaker et al. (2014) 

Track radio-marked and banded 
individuals.   N Y Y Y Y Y 

324 radio-
marked, 1151 
banded indiv. 11 

Red-
cockaded 
woodpecker 

Letcher et al. (1998); 
Walters et al. (2002); Record locations of marked individuals N Y Y N N N >1000 records 15 

Red squirrel 
Rushton et al. (1997); 
Lurz et al. (2003) No data N/A N N N N N N/A 0 

Saint 
Francis’ 
satyr 

G. Himes Boor (pers. 
comm.) 

Probability of moving between habitats 
measured by following SFS individuals.  
Also used individual flight paths from 
surrogate species Appalachian brown 
butterfly to quantify habitat-specific 
move lengths and turn angles Y Y N N N N 42 indiv. 1 

Wood stork 
Kahl (1964); Wolff 
(1994) followed individuals in a plane N N Y N N N NR NR 
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Table 9. Monitoring data collected at Department of Defense installations that manage or restore habitat for wildlife 

Installation Species 

GIS 
habitat 
maps 

yrs pop. 
size data 

Survival Fecundity Movement 

yrs 
Habitat 
specific yrs 

Habitat 
specific yrs 

Probability 
of dispersal 

Dispersal 
distance 

Ind. 
move 
paths 

Habitat 
specific 

Camp Bowie Black-capped vireo x 6-10 0  6-10  0     

Camp Grayling Massasauga  x 6-10 6-10 x 6-10  6-10 x x x x 

Camp McCain Northern long-eared bat  1 0  0  0     

Camp Shelby Gopher tortoise x >10 6-10 x 6-10 x 6-10 x x x  

Camp Swift Comanche harvester ant x 6-10 0  0  0     

Fort Custer Eastern box turtle x 2-5 2-5  2-5  2-5 x x x  

Fort Riley Greater prairie chicken x 6-10 2-5  2-5  2-5 x x x x 

Joint Base Lewis-McChord Taylor’s checkerspot butterfly x 6-10 0  0  0     

Joint Base Pearl Harbor-Hickam Hawaiian stilt  0 0  0  1   x  

NAS Patuxent River Northern diamondback terrapin x 2-5 2-5  2-5  0     

Naval Base Guam Green sea turtle x 6-10 0  2-5  1 x  x  

Naval Support Activity Monterey Smith’s blue butterfly  2-5 0  0  0     

Pueblo Chemical Depot Mountain plover x >10 0  0  0     

USAF Academy Preble’s meadow jumping mouse x >10 >10 x >10 x >10 x x x  

Vandenberg AFB El Segundo blue butterfly x 6-10 0  0  0     

Vandenberg AFB Western snowy plover x >10 6-10  6-10  0     
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Table 10. Tests of reliability reported for published habitat restoration SEIBMs 
 

Species Model reference Validation/sensitivity 
analysis reference 

Primary prediction Secondary prediction Sensitivity 
analysis 

Bachman’s sparrow Pulliam et al. (1992); 
Liu (1993); Liu et al. 
(1995); Dunning Jr et al. 
(2000) 

Liu (1993), Liu et al. 
(1995) 

distribution  Yes 

Cape Sable seaside 
sparrow 

Elderd and Nott (2008) Elderd and Nott (2008) population size  
 

Yes 

Fender’s blue 
butterfly 

McIntire et al. (2007) McIntire et al. (2007) population size  
 

No 

Gray wolf Schumaker (1998); 
Carroll et al. (2001); 
Carroll et al. (2003); 
Carroll et al. (2006) 

Carroll et al. (2003); 
Carroll et al. (2006) 

distribution  Yes 

Northern spotted 
owl 

USFWS (2011); 
Schumaker et al. (2014) 

   No 

Red-cockaded 
woodpecker 

Letcher et al. (1998); 
Walters et al. (2011) 

Letcher et al. (1998); 
Schiegg et al. (2005); 
Zeigler and Walters 
(2014) 

population size, number 
of territories gained and 

lost, social structure, 
population growth rate 

natal dispersal 
distance, dispersal 

success, age 
distribution of first 

time breeders 

Yes 

Red squirrel Rushton et al. (1997); 
Rushton et al. (1999); 
Lurz et al. (2003) 

Rushton et al. (1997); 
Rushton et al. (1999) 

distribution  Yes 

Wood stork Wolff (1994); Fleming 
et al. (1994); DeAngelis 
et al. (1998) 

   No 
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Figure 1.  (a) Types of habitat management conducted by the 27 managers surveyed, and (b) 
the types of management questions they need to address 
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Figure 2. Types and amounts of monitoring data collected on DoD-managed species.  Figure (a) 
shows the % of monitoring data sets that include habitat, population size, survival, fecundity, 
movement (any type), and individual movement path data.  Figure (b) shows the % of data sets 
for which 0, 1, 2-5, 6-10, and >10 years of population size data are collected.  Black bars 
indicate the original collection of data sets with red-cockaded woodpeckers included (n=25).  
Red bars indicate the data sets remaining after the red-cockaded woodpecker, Fender’s blue 
butterfly, and St. Francis’ Satyr data sets are removed (n=16). 
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Figure 3.  DoD managers’ experience and perception of SEIBMs.  n=27 manager responses. 
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Figure 4.  Factors that would prevent managers from considering using SEIBMs.  n = 27 manager 
responses. 
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Appendix A. The questionnaire used for the informal survey of DoD managers

Name:  

Installation:  

Mailing Address:

Habitat Management

1) Species whose habitat is being managed:   

2) Type of management (check all that apply)

3) Brief description of habitat management (or you can attach a document that describes 
management if you prefer):

4) Types of management questions that need to be addressed (check all that apply):

Available Data (check all that apply)

              Number years of data:               

Restoration of degraded habitat
Creation of new habitat

Land acquisition/preservation
Creation of dispersal corridors

Prescribed burning 
Removal of undesirable plants (mowing, grazing, logging, herbicides, etc.)
Planting or seeding
Reintroduction of animals into new or restored habitat

Other (describe):

How will protection (or loss) of a specific habitat patch affect population viability?
Will restoring or protecting habitat available achieve goals of species persistence?
Will creation/restoration of habitat mitigate for loss of suitable habitat?
Which areas should be managed to have the greatest impact on population viability?

Where should areas of newly created habitat be located to ensure connectivity?
Where should animals be reintroduced?

Will adding corridors improve population viability?
How does timing and frequency of disturbance affect population viability?
Which of two alternative restoration strategies is more likely to meet management objectives?

Other (describe):

GIS habitat map
Annual estimates of population size

1 year 2-5 years 6-10 years > 10 years



Demographic data

      Number years of data:
      Is data habitat-specific?

              Number years of data:      
      Is data habitat-specific?

              Number years of data:      
      Is data habitat-specific?

Movement data

Number years of data:      
        Is data habitat-specific?

        Number years of data:   
Is data habitat-specific?    

        Number years of data:      
        Is data habitat-specific?

   
       
        Number years of data:      
        Is data habitat-specific?
       
        

SEIBM Perception and Experience
1) Have you used a spatially-explicit, individual-based model before? 
2) Do you feel the ability to build a SEIBM would enhance your ability to manage threatened 

and endangered species on your installation? 
3) Are you currently using a SEIBM to guide decisions regarding the management of your 

species of concern (if yes, skip to question 6)? 
4) What factors would prevent you from considering use of a SEIBM to make management 

decisions? (check all that apply)

Clutch/litter size

Dispersal distance

Dispersal speed

Individual movement paths (move lengths and turn angles)

Yes No

Yes No Maybe

Yes No

Lack the necessary data
Lack the resources to collect the necessary data
Inexperience with modeling
Question reliability of predictions
Types of questions SEIBMs address are not relevant to species being managed on this 
installation
Simpler tools are available that are adequate to help make management decisions 
(describe):

Other (describe):

Survival rates or probabilities
1 year 2-5 years

1 year

yes no

1 year
yes

2-5 years
no

2-5 years
yes no

1 year 2-5 years

yes no

1 year 2-5 years

1 year 2-5 years

1 year 2-5 years
yes no

yes no

6-10 years

6-10 years

6-10 years

6-10 years

6-10 years

6-10 years

6-10 years

Probability of Dispersal

yes no

> 10 years

> 10 years

> 10 years

> 10 years

> 10 years

> 10 years

> 10 years

Rates of reproductive success



5) What additional information would help you decide whether a SEIBM is a practical tool for 
habitat management?

6) Other comments or input for the researchers that develop SEIBMs?

Would you like to be notified about SEIBM tools and workshops when they are disseminated 
by our group? 

Please save your changes and e-mail this form back to damiani@iws.org.  Thank you 
for participating in this survey!

Yes No

mailto:damiani@iws.org
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Appendix B. Written comments provided by managers in response to questions 4-6 in the “SEIBM perception and experience” 
section of the questionnaire. 
 

QUESTIONS MANAGERS’ ANSWERS 

4) Simpler 
tools available 
that are 
adequate to 
help make 
management 
decisions 

Timber stand data 

We provide recruitment clusters in suitable habitat adjacent to existing, active clusters at a rate of 15% of active clusters.  At 
the end of each breeding season, we create a 0.5-mile diameter buffer around the geographic center of each active cluster.  
If there is unoccupied suitable habitat between active clusters, those areas are prioritized to receive recruitment clusters.  
Secondly, we place recruitment clusters on the edges of occupied habitat to grow the population "out".  This method has 
worked well for us.  In 1997, we had 175 active clusters and 158 potential breeding groups (PBGs).  The number of active 
clusters has increased an average of 5.2% per year, while PBGs have increased on average population on average 5.6% per 
year such that in 2016 we have 469 active clusters (a 168% increase since 1997) and 443 PBGs (a180% increase).   

Habitat assessment protocols 

Current surveying for this species is accepted by the USFWS and has provided everything we have needed to date to monitor 
and manage the species. However, if there is a better and/or less expensive way or another way that renders better results 
then I welcome that program. 

4) What 
(other) factors 
would prevent 
you from 
considering 
use of a 
SEIBM to 
make 
management 
decisions?  

Although we have a lot of data, some of it focuses on hatchlings and not adults and vice versa. Not all of it is incorporated 
into our GIS database. 

We are dealing with small areas and very low population numbers. The areas suitable for habitat restoration are limited so 
we usually make our decisions based on location to current occupied sites, topography of the drainage, and hydrology for the 
specific area 

Lack of necessary personnel to update constantly changing habitat conditions and animal movements 

I think SEIBMs would be a great tool for some species management programs that we are trying to establish.  Unfortunately 
we do not have very much data and the data we do have is probably not adequate.  I would be interested in learning more 
about what kind of data is necessary so that maybe we can start to set up survey work so that we are getting the proper data 
for species management programs that might benefit from an SEIBM. 

To an extent, the target sp. functions as an umbrella for native plants, other insects, other animal classes and ecological 
processes. SEIBM is resource-intensive, necessarily single-species, and thus might consume resources that could otherwise 
be used to increase understanding of larger ecological effects of restoration and maintenance actions...   

Military is not always willing to take models into consideration when making decisions.  Particularly when it is ecologically 
based rather than based on military needs. 

There is a perception that the base can't do any habitat restoration without a major influx of birds. I don't think this is true, 
but I don't yet have the data to show yes or no. In the meantime, it's limited my ability to do restoration. 

SEIBMs may not be useful since all riparian habitat on base is important for the conservation of the species 
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Appendix B. (continued) 
 

QUESTIONS MANAGERS’ ANSWERS 

5) What 
additional 
information 
would help 
you to decide 
whether a 
SEIBM is a 
practical tool 
for habitat 
management? 

Perhaps validation on a broad cast of species would improve confidence that models would work for particular managed 
species. Having a similar “model” type species already run would serve as a biologically useful comparison 

Information dissemination with successful projects 

A basic training on what SEIBMs can do would be beneficial 

Do you have SEIBMs already in use and approved by federal agencies? Since our species is federally listed as threatened 
under the ESA, all studies and management decisions based on modeling would have to be cleared through consultation with 
the U.S. Fish and Wildlife Service, and the U.S. Forest Service since the majority of our training and data collection is on their 
property 

The model will have to work at a very small scale. We generally work in 30x30 meter blocks 

Not sure - would need to learn more about SEIBMs. 

Is the model usable for the data that we have been collecting? What data do we need to collect to take advantage of the 
SEIBM? 

Costs of both modeling and collecting the required demographic and spatial information to drive SEIBM 

No further information is necessary and I believe that a SEIBM would be helpful in decision making 

Whether it could help with managing for high risk bird airstirke species, so managing in a way that favors lower risk species 

I would have a better understanding of the usefulness and application of SEIBMs if I could view a practical example 

Examples of projects where SEIBM has been applied and results 

Our annual site assessments and biennial GIS Mapping provides everything needed for anyone evaluating our program to 
date. Discussion of how SEIBM would be an improvement to what we are doing right now. 

Examples of other applications 

None. Seems like a really great tool 

I would have to evaluate the outcome to see if the outcome made “practical” sense 

Published papers or case studies using SEIBMs with species managed on this installation 

Is there a cost estimate to developing one of these with existing data? 
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Appendix B. (continued) 
 

QUESTIONS MANAGERS’ ANSWERS 

6) Other 
comments or 
input for the 
researchers 
that develop 
SEIBMs? 

Great idea! 

Need to ensure enough data is available so robust and accurate outputs can be achieved.  Objectives must be clear up front.  
Clearly defining objectives for model output is critical.  Ability to ground truth is also critical.  Ideally modelers would have 
close coordination with managers during development so those who would use the model understand how to interpret 
output. 

Most questions above are more suitable for the larger recovery team, as we've pretty much saturated potential sites we 
manage, so our local concerns revolve around how aggressively we can manage disturbance-maintained habitat, while 
maintaining population growth.  Secondarily, improving viability and population size estimates. 

We use SEIBM to determine viability of our population, not so much for management purposes. We have a pretty good 
handle on management needs within our borders.  I see user-friendly SEIBMs helping make decisions for landscape scale 
decisions, e.g. assessing the value of protecting habitat corridors between populations.  Data needs of SEIBMs can be a 
challenge. 

For our installation I believe that SEIBM may be a useful tool. 
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