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Abstract

This project investigates several problems in radar waveforms, waveform scheduling, and
their implementation and it is funded by the Asian Office of Aerospace Research & Develop-
ment (AOARD)/AFRL during two year period. Scheduling of sequences of radar waveforms,
as in cognitive radar, has been shown, at least in simulations, to provide significantly im-
proved performance over conventional rigid transmission of waveforms. The research and
development were carried out in three research fronts:

• Radar waveform scheduling, in particular, the development of feasible statistical signal
processing techniques for sidelobe suppression and improved radar detection under
Golay complementary waveforms.

• Sensor trajectory optimisation in optimal sensor control. The development is demon-
strated in the application of tracking a moving target using two passive mobile sensors.

• Game theoretic formation of target tracking. This concept is demonstrated in an
example of optimizing trajectories of two moving platforms with similar capabilities of
motion and sensing.

The research in this project has yielded 5 refereed journal papers and 4 international
refereed conference papers. In addition, two journal papers are in preparation.
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1 Introduction

This project investigates several problems in radar waveforms, waveform scheduling, and their
implementation and it is funded by the Asian Office of Aerospace Research & Development
(AOARD)/AFRL during two year period.

1.1 Summary

The problem areas here are vast and there are many avenues to pursue, including, specifically,
issues around computational and other hardware resources. We realise that covering all of these
areas is not feasible within the scope of this proposal, and, accordingly this proposal will focus
on:

• Optimal deployment of Golay waveform libraries, using coding of the sequence;

• Control of PRFs and CPIs with these limited libraries to achieve optimal performance
using information metrics;

• A control-theoretic perspective on the radar resource allocation problem.

The key underlying concept in construction of the illumination schema regards the library
element as not just a single pulse, but a sequence of pulses. Individual pulses considered will
come from well-understood collections of waveforms such as Golays or chirps. Rather than
building individual waveforms, what will be new is the focus on assembling these into collections
that provide superior performance in a tracking context. We will develop these sequences of
waveforms by taking a control theoretic perspective towards the design over multiple pulse
repetition intervals (PRIs). The collections of waveforms will be kept as libraries for future
optimization of tracking tasks.

1.2 Overview of the Project Work

During the project period, the research group in Melbourne led by the Principal Investigator
Prof Bill Moran has made significant research effort to this project. This include the following
achievements.

1. Published 7 refereed journal and 4 conference papers from the work related to the project;

2. Two technical reports [1, 2] for this project under the Grant No. FA2386-15-1-4066 were
submitted to Asian Office of Aerospace Research & Development (AOARD). Prof Bill
Moran has multiple visits to AFRL Dayton to present the project work.

3. Project manager Dr Seng Hong from AOARD visited the group (workshop) at RMIT
University in Melbourne (2016);

4. Project technical manager Dr Braham Himed from AFRL has visited the group twice
(2016 and 2017) to join the group research work briefing and discussion;

Next, we briefly summarise our AOARD project work carried out during May 2015—May 2017,
which has been reported in [1, 2]. An update for recent work is given in the next section.

2
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1.2.1 UAV Trajectory Scheduling [1]

(Investigators: Sofia Suvorova, Branko Ristic and Bill Moran with advice from Braham Himed)

The problem is to tracking a non-responsive target by a UAV using a Markov Decision
Process (MDP) model. As part of this work package, a new tracker was developed to handle
both clutter (modelled as a Poisson process) and either monostatic or bistatic measurements.
Scheduling of the UAV platform is done to optimize the mutual information between the es-
timated target state (as provided by the tracker) and the measurement. We find a stationary
(that is, time-independent) policy to optimize the trajectory of the platform according to this
information measure. It is assumed that both target and the UAV platform have similar dy-
namical properties. Both the monostatic and bistatic (with a stationary source) measurements
are considered. In both cases, it was found that the optimal trajectory for the platform involved
the UAV platform(s) to close in on the target. This is not surprising, mutual information in
the measurement is maximized by proximity of the platform to the target. As a result further
simulations were done with a “guard range” to constrain the platform not to approach closer
than a fixed distance from the target.

We are preparing a paper to be submitted to Fusion 2017.

1.2.2 Game Theoretic Formulation of Target Tracking [1]

(Investigators: Yangbo Yang, Xuezhi Wang, Tim Brown, and Bill Moran, with advice from
Braham Himed)

In this case, both target and sensor have some sensing capability and the ability to manoeu-
vre to reduce the effectiveness of measurements by the each other. An extended Kalman Filter
(EKF) tracker was implemented but the measure of effectiveness was complicated. Each of the
platform and the target has a combined measure that is a convex combination of the each’s mu-
tual information between its estimated state of the other and its measurement, and the negative
of this quantity (as estimated) for the other. Thus, depending on the relative weight attached
to the two parts, each will attempt to maximize the mutual information in its measurement of
the other, and minimize its estimate of the mutual information that the other has about it. The
platform is assumed to have an active sensor, such as a radar, with SNR decreasing as the 4th
power of distance, and the target a passive sensor, measuring just direction and amplitude of
the platform’s emissions. Scheduling is on an epoch-by-epoch basis; that is, no long term effects
are taken into account, Results of simulations are presented for a range of emphases between the
curious (high weighting of our measurement mutual information and low weighting of opponent
mutual information) and the paranoid (low weighting of measurement mutual information and
low weighting of opponent mutual information) possibilities for the parameters. This has led to
some interesting dynamics that are the subject of continuing further study by the group.

A paper is under preparation. We have not yet decided the venue.

1.2.3 Passive Sensor Trajectory Optimisation [1]

(Investigators: Xuezhi Wang and Bill Moran)

In this work, tracking a moving target using two bearings-only sensors is considered. The
underlying problem is to schedule the trajectories of the two sensors to minimise the track error.
The measure of effectiveness used in scheduling is the determinant of the Fisher Information
matrix of the measurement. Scheduling is done on a greedy basis, that is, the optimal is chosen
at each time.

3
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1.3 Radar Waveform Scheduling for Multiple Nonzero Doppler Target De-
tection [2]

(Investigators: Jiahua Zhu, Xuezhi Wang, Sofia Suvorova and Bill Moran)

Golay complementary waveforms, which constitute a pair A and B of time separated wave-
forms, appear to be ideal candidates in radar to generate high range resolution pulses for target
detection. However, when A and B are transmitted in an alternating sequence, range-dependent
sidelobes, artefacts of the processing, appear in the non-zero Doppler bins. This problem was
addressed by several authors including Moran and Suvorova in earlier work, by careful reorder-
ing of the waveforms. These Doppler resilient Golay complementary waveforms yield a region of
Doppler bins around the zero Doppler bin in which range sidelobes are very significantly reduced
[3, 4]. More recently Dang et. al. in [5, 6] have used a Binomial design algorithm to filter the
return in conjunction with the previously developed sequencing technique to produce further
improvements in the reduction and clearing of range sidelobes near the zero Doppler bin. We
have also reported last year that Suvorova et. al. in [7] a proposed algorithm that can achieve
an enhanced SNR near the Doppler of a tracked non-zero Doppler target by transmitting Golay
complementary waveforms using Reed-Muller sequences to provide the sequence order of the
pairs.

In 2016, we continued to work on this topic, and specifically in extending the work of Suvorova
et al. A signal processing procedure is proposed, which extends Suvorova’s work [7] to include
multiple targets with non-zero Doppler and add a nonlinear minimum operation processor to
combine the outputs from both this algorithm and the Binomial design algorithm in the range-
Doppler maps. Significant sidelope suppression has been observed.

1.4 Sensor Trajectory Optimisation [2]

(Investigators: Xuezhi Wang, Sofia Suvorova and Bill Moran)

Recall that in the technical report to AOARD on May 2016, our research in this project
involves two scenarios:

1. UAV trajectory scheduling: tracking a target using a sensor on a moving UAV platform
which obtains both range and azimuth measurements of the target;

2. Passive sensor trajectory scheduling: tracking a target using two cooperative bearings-
only sensors with each on a moving UAV platform.

A greedy (one-step ahead) search algorithm is applied to compute the best sensor trajectory
based on the stationary optimisation policies, which implies 1) for UAV trajectory schedul-
ing, the velocity of the UAV platform depends only on target velocity; 2) for Passive sensor
trajectory scheduling, the sensor platforms moves at a constant speed, while its directions
are target state dependent. Both of these efforts have been reported in the technical report to
AOARD in June 2016.

In this progress report, we describe the extension of the work on the second scenario, where
we consider how to determine the right cost function for this two bearings-only sensor trajectory
optimisation for tracking a moving target.

1.5 Game Theoretic Formulation of Target Tracking [2]

(Investigators: Yanbo Yang, Xuezhi Wang, Tim Brown and Bill Moran)

Commencing in early 2016, this work studies the dynamical behavior of a target-sensor sys-
tem under a (fair) game theoretic formulation. While both target and sensor platform (UAV)
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have identical maneuvering capabilities, their sensing capabilities are slightly different. Fur-
thermore, the nature of “catch” and “escape” activities between the target-sensor pair leads to
different optimisation policies which are adopted by greedy scheduling of their motions based
on a combined cost. Mutual information based cost functions were implemented describing the
sensor’s knowledge of the target and its belief of the target’s knowledge of the sensor, as well as
corresponding combinations for with the roles of the sensor and target interchanged. Weighting
parameters, λs,k and λx,k are used to combine these information metrics for each of the sensor
and target respectivel. Our earlier work in [8] for characterising the uncertainties of sensor ob-
servation while tracking has assisted in the development of this work. In our simulations, several
stationary motion patterns due to the variation of these parameters have been observed.

We are investigating and analysing the relations of between these stationary “catch” and
“escape” patterns and the values of associated “belief” parameters. A journal paper for the
project under this topic is in preparation.

2 Recent Work

Below we provide an update on the recent work (May 2017 – Dec 2017) related to the AOARD
project under Grant No. FA2386-15-1-4066.

2.1 Radar waveform scheduling for the detection of multiple moving targets

(Investigators: Jiahua Zhu, Xuezhi Wang, Sofia Suvorova and Bill Moran)

This is an ongoing research under the topic of radar waveform scheduling for multiple moving
target detection problem. Golay complementary waveforms can, in theory, yield radar returns of
high range resolution with essentially zero sidelobes. In practice, with conventional deployment,
while high signal-to-noise ratios can be achieved for static target detection, considerable range
sidelobes are generated by target returns of nonzero Doppler causing unreliable detection.

Several signal processing techniques were proposed to improve radar detection performance
in the detection scenarios involving multiple moving targets under the Golay complementary
waveforms [9]. In this report period (May 2017 - December 2017), the work along this topic
involves

1. Pointwise Addition versus Pointwise Minimisation Processor;

2. Detection probability analysis and target detection in sea clutter [10];

3. Sidelobe suppression in multi-static radar networks [11].

2.1.1 Alternative Signal Processing of Complementary Waveform Returns for Range
Sidelobe Suppression

Reducing sidelobes for processing nonzero Doppler target returns under Golay complementary
waveforms is important. While the pointwise minimum processor in our early work shows
enhanced performance in the suppression of range sidelobes compared with existing approaches,
it has a reduced detection probability for a target with location uncertainties. In this paper,
we present an alternative processing method which combines the radar returns in two separated
pairs of Golay complementary waveforms through a pointwise addition processor. Our simulation
result shows that this alternative method has a similar performance to that of the pointwise
minimum processor but results in an improved target detection probability.

5
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Figure 1: Illustration of the signal processing procedure: Pointwise processor = minimum oper-
ator → PMP; Pointwise processor = addition operator → PAP.

Golay Complementary Waveforms A Golay complementary waveform consists of two uni-
modular (±1) sequences x(l) and y(l) of length L (x(l) and y(l) are called a Golay complementary
pair, and details on their generation can be found in [24]). The time extent of each chip in the
pair is Tc and the total time duration of each pair is LT c. The autocorrelation of a Golay
complementary pair satisfies Cx(k) + Cy(k) = 2Lδ(k), k = −(L− 1), ..., (L− 1), where Cx(k)
and Cy(k) are the autocorrelation output of x(l) and y(l) at lag k respectively, and δ(k) is the

Kronecker delta function. A baseband pulse Ω(t) with unit energy, i.e.
∫ Tc/2
−Tc/2 |Ω(t)|2dt = 1, is

modulated on each chip interval by each of the Golay complementary pair, so that the trans-
mitted sequences are expressed as x(t) =

∑L−1
l=0 x(l)Ω(t− lTc), y(t) =

∑L−1
l=0 y(l)Ω(t− lTc). A

(P,Q) pulse train is used to determine which of x(t) and y(t) is transmitted in each pulse. Here
P = {p(n)}N−1

n=0 is a binary sequence, so that the transmitted signal is as

zP (t) =
∑N−1

n=0
p(n)x(t− nT ) + (1− p(n))y(t− nT ) (1)

where T is the pulse repetition interval (PRI). The (n+ 1)th pulse in zP (t) is x(t) if p(n) = 1 and
is y(t) if p(n) = 0. The alternating sequence P = {0, 1, 0, 1, ...} is the standard transmission order
for Golay complementary waveforms. The sequence Q = {q(n)}N−1

n=0 of positive real numbers is
applied to the received signal to weight the returns. The pulse train for the matched filtering is

zQ(t) =
∑N−1

n=0
q(n)[p(n)x(t− nT ) + (1− p(n))y(t− nT )] (2)

The standard weighting sequence Q is an all 1 sequence.

According to [13], the ambiguity function of this filtered pulse train is

χPQ(t, FD) =

∫ +∞

−∞
zP (s) exp(j2πFDs)z

∗
Q(t− s)ds (3)

where the superscript “*” denotes complex conjugation.

As mentioned earler, Golay complementary waveforms, transmitted in standard order and
matched filtered with the standard weighting sequence, produce enormous range sidelobes in
nonzero Doppler bins, essentially increasing the false alarm rate for target detection, or corre-
spondingly reducing detection rate. This problem is addressed by the PMP algorithm described
below.

Pointwise Minimisation Procedure The PMP algorithm proposed previously [4] for range
sidelobe suppression under Golay complementary waveforms is summarized in Fig. 9, where
χWD(t, FD) and χBD(t, FD) are Delay-Doppler maps for the WD and BD algorithms, respectively,
χ(t, FD) being the final output from the pointwise processor. Specifically, in our early work [23],
the “Pointwise Processor” in Fig. 9 represents the pointwise minimization processor (PMP). We
denote the final output of PMP by χPMP(t, FD). For the BD algorithm [5], P is the standard
transmission order, and Q = α × {CnN−1}

N−1
n=0 , where α = N/

∑N−1
n=0 C

n
N−1, CnN−1 represents

the number of subsets of size n from a given set of size N − 1. For the WD algorithm [4],
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while Q is the standard weighting sequence, P is calculated using the method in [14] to select
the optimal transmission order to minimize range sidelobes near the average Doppler f̄d of the
targets weighted by the associated target amplitudes

f̄d =


∑H
h=1 fdh
H if all Ah are the same,∑H

h=1 (1−Ah)fdh∑H
h=1 (1−Ah)

otherwise.
(4)

where H is the number of targets in the Delay-Doppler map, Ah and fdh are the normalized
amplitude and Doppler of the hth target respectively. Target Doppler can often be estimated in
a separate process, e.g., the detection of a Doppler radar, or the prior Doppler predicted by a
tracker using past detections ([15] Chs. 2.3.4).

A PMP is then employed to combine the outputs of the WD and BD algorithms:

χPMP(t, FD) = min {χWD(t, FD), χBD(t, FD)} . (5)

The final result retains the large range sidelobe blanking area (the area where range sidelobes
are less than −90dB) of the BD algorithm as well as the Doppler resolution given by the WD
algorithm, at least theoretically. However, a drawback of PMP is that the radar cross section of
the target, or the “effective detectable area” of target reflected by the Delay-Doppler resolution
may be reduced in the final output when the underlying target has location uncertainties. The
PAP is motivated by this consideration and is described next.

The Pointwise Addition Procedure To solve the drawback induced by the PMP, we pro-
pose a pointwise addition processor (PAP) to replace the PMP. Denoted by χPAP(t, FD), the
final output of PAP is expressed as

χPAP(t, FD) = norm {χWD(t, FD) + χBD(t, FD)} (6)

where “norm” is the normalization operation.

The operation of PAP and PMP are based on the same theory, that is under the assumption
that the target is stable during the whole radar illumination period (the location and magnitude
of the target are stationary in two Delay-Doppler maps), but the range sidelobes yielded are
different. The use of PAP mitigates the reduction of the target detection probability caused by
the nonlinear PMP, while maintaining a comparable range sidelobe blanking area and Delay-
Doppler resolution similar to the PMP in theory.

In order to compare the performances of PAP and PMP, we use the peak to peak-sidelobe
ratio (PPSR) in [15] as a measure. It is defined by

PPSR(FD) =
|χ(0, 0)|2

max
t∈Sd

|χ(t, FD)|2
(7)

where Sd contains the delays where the range sidelobes are located. The PPSR measures the
performance of range sidelobe suppression at a desired Doppler value, and in fact calculates the
ratio of the energy of the peak in the ambiguity function (the target) to that of the largest range
sidelobe at Doppler FD. It can be expected that the PMP will produce a higher PPSR than
PAP.

In the presence of a Swerling II target, the detection situation in the Delay-Doppler map,
taking into account target location uncertainties, is illustrated in Fig. 2 [13]. Intuitively, while
PMP can achieve a higher PPSR, it potentially results in a smaller effective radar cross section.
On the other hand, the ambiguity function of PAP has a larger effective radar cross section
at the cost of sacrificing Delay-Doppler resolution and PPSR. In other words, PAP actually
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performs worse than PMP from the viewpoint of range sidelobe suppression and Delay-Doppler
resolution for a Swerling II target, but obtains a larger effective radar cross section for the target
(yielding higher target detection probability). Nevertheless, in the simulation result shown in
Fig. 6, the reduced PPSR of PAP remains reasonably high in enabling identification of a target
from sidelobes.

Figure 2: Comparison of radar cross sections for a target of Swerling II model under PMP and
PAP algorithms.

Simulation and Discussions The performance of PAP is confirmed by simulation with the
following parameters: radar carrier frequency fc = 1GHz, bandwidth B = 50MHz, sampling
rate fs = 2B, PRI T = 50µs, pulse number N = 25 = 32. Golay complementary waveforms
have, for each element of the pair, L = 64 chips of values ±1 in chip interval Tc = 0.1µs. Each
chip has fs × Tc = 10 sampling points.

As described in [4], the ambiguity functions of χBD(t, FD) and χWD(t, FD) are computed and
divided into the following two parts

χBD(t, FD) =
1

2

L−1∑
k=−L+1

[Cx(k) + Cy(k)]

N−1∑
n=0

qBD(n)ξnk

− 1

2

L−1∑
k=−L+1

[Cx(k)− Cy(k)]

N−1∑
n=0

(−1)pBD(n)qBD(n)ξnk

, GBD(t, FD) + SBD(t, FD) (8)

χWD(t, FD) =
1

2

L−1∑
k=−L+1

[Cx(k) + Cy(k)]
N−1∑
n=0

qWD(n)ξnk

− 1

2

L−1∑
k=−L+1

[Cx(k)− Cy(k)]
N−1∑
n=0

(−1)pWD(n)qWD(n)ξnk

, GWD(t, FD) + SWD(t, FD) (9)

where ξnk = exp(j2πFDnT )CΩ(t− kTc − nT ).

Fig. 5 shows the ambiguity functions of the BD algorithm, WD algorithm, the PMP output
and the PAP output, and slices across them at the zero-delay. Note that the first terms in (17)
and (18) are contributed by the target return — corresponding to the peak of the ambiguity
function, highlighted in the red rectangles in Fig. 5. The second terms represent the sidelobes
induced by signal processing. The last row of Fig. 5 illustrates the output of PAP. It indicates
that PAP has similar performance to PMP in terms of the scale of range sidelobe blanking area,
as well as mainlobe width.

The PPSR plots for PAP and PMP are compared in Fig. 6. It is obvious that the PPSR
curve of PMP is always higher than that of PAP within the Doppler interval [0, π]rad. Thus PAP
generates larger range sidelobes than PMP, as shown in the Delay-Doppler maps. Nevertheless,
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Figure 3: Plots of ambiguity functions χBD(t, FD), χWD(t, FD), χPMP(t, FD) and χPAP(t, FD)
(column (a) from top to bottom) and the slices of them across the zero-delay (column (b) from
top to bottom). (colorbar unit is dB)
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the mean PPSR of the PAP output is greater than 95dB, which is high enough for differentiating
the target returns from the range sidelobes.
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Figure 4: The comparison of the PPSR.

In summary, the analytical and simulation results confirm that the PAP performs no worse
than the existing PMP but with an enhanced target detection probability, though a decrease of
the PPSR values and Delay-Doppler resolution is observed through the ambiguity function. A
journal paper in this work is currently in preparation.

2.1.2 Detection of Moving Targets in Sea Clutter Using Complementary Wave-
forms

Work of Pezeshki, Calderbank and others [3, 4] has shown that choice of transmission order
of Golay complementary waveforms in radar pulse trains can significantly improve Doppler
resilience in detecting nonzero Doppler targets. For multiple targets a Weighted average Doppler
(WD) algorithm [16] based on our earlier work has been shown to provide improvements. In
this work, we demonstrate that the Weighted Sidelobe Minimization procedure, developed in
our recent work (see [9] for more detail) that combines the outputs of WD and the existing
Binominal Design algorithms for ordering transmitted complementary waveform sequences using
a point-wise minimization process (PMP), is also effective for the elimination of false target
returns arising from sea clutter. A detailed analysis based on a Swerling II target model in
terms of target detection probability is presented to validate the use of PMP. Our validation is
strengthened by numerical simulations for both fixed and randomized scenarios.

The signal processing procedure The Weighted Sidelobe Minimization (WSM) procedure
for Golay complementary waveforms [16] in our work is illustrated in Figure 9, where the radar
returns are contaminated by sea clutter and noise, χWD(t, FD) and χBD(t, FD) are the Delay-
Doppler maps for the Weighted average Doppler (WD) and BD algorithms respectively, operat-
ing in different transmission periods, and χ(t, FD) is the final output Delay-Doppler map.

Technical summary Practical radar returns may contain the following uncertainties that
influence target detection probability:

(1) Target return fluctuations caused by target micro-motion, modelled by the Swerling II
target model, may vary the Delay-Doppler resolution of the target after the PMP and cause
missed detections when fluctuations are significant;

(2) Sea clutter with potentially larger magnitude than the detection threshold may induce
false alarm detection.

10
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(a) (b) (c)

Figure 5: The relationship between the PDFs of three fluctuations in Swerling II target model
and their boundaries.

In this work, we analyse the target detection probability under the signal procedure illus-
trated in Fig. 9 via an example of target detection in the presence of sea clutter, where a Swerling
II target model is used for modeling the fluctuation of the underlying target return. Sea clutter
is modeled as a uniform point process over the surveillance window in our following simulations
with the occurrence density satisfying a Poisson distribution,

P (X|λ) =
λX

X!
e−λ (10)

where the parameter X and λ represent the actual and average number of false target-like sea
clutter peaks appearing in the Delay-Doppler map.

Target Detection Probability The fluctuations of a Swerling II target comprise three inde-
pendent fluctuations — the magnitude fluctuation (or RCS fluctuation), the delay fluctuation
and the Doppler fluctuation, respectively. In the far field detection scene, they can be approxi-
mated by independent and identically distributed (IID) Guassian distributions [17] — N (Â, σ2

A),

N (τ̂ , σ2
T) and N (f̂d, σ

2
D), where Â, τ̂ and f̂d are the estimated (mean) values of the target mag-

nitude, delay and Doppler, as can be obtained from a tracker; σ2
A, σ2

T and σ2
D are their variances.

The worst acceptable case to maintain target detectability is that the magnitude of a target
(though it is reduced) is still higher than the magnitude of a maximum sidelobe As (this is
the detection threshold and assumed known in our simulation) after the PMP. For illustration
purposes, we cut an elliptical cross section of the AF at height As around the peak associated
with the target. This has delay and Doppler semi-axis τs and fds representing feasible boundaries
of delay and Doppler fluctuations. The relationship between the PDFs of these three fluctuations
and their boundaries are illustrated in Figure 5.

The integrals of the shadow areas in Figure 5 represent the probabilities that the fluctuations
are within the boundaries, and we denote these three probabilities by Pa, Pb and Pc (0 <
Pa, Pb, Pc < 1), respectively. Using the properties of the Gaussian distribution [17], we calculate
Pa, Pb and Pc:

Pa =

∫ +∞

a

1√
2π

exp

(
−1

2
A2

)
dA, (11)

Pb =

∫ b2

b1

1√
2π

exp

(
−1

2
τ2

)
dτ (12)

Pc =

∫ c2

c1

1√
2π

exp

(
−1

2
f2

d

)
dfd (13)

where a = (As − Â)/σA, b1 = −τs/σT, b2 = τs/σT, c1 = −fds/σD, c2 = fds/σD.

Since the three fluctuations are IID Guassian distribution, the target detection probability
PD after PMP is

PD = Pa × Pb × Pc. (14)

11
DISTRIBUTION A. Approved for public release: distribution unlimited.



 

 

X: 2.608 Y: 1.23e−05
Index: −23.74
RGB: 0.688, 0, 0

Doppler(rad)

D
el

ay
(s

ec
)

X: −0.001593 Y: 1.66e−05
Index: 0
RGB: 0.5, 0, 0

X: −0.001593 Y: 1.8e−05
Index: −20
RGB: 0.688, 0, 0

−3 −2 −1 0 1 2 3

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

x 10
−5

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Maximum range sidelobe

Strong target

Weak target

(a)

Doppler(rad)

D
el

ay
(s

ec
)

 

 

−0.2 −0.1 0 0.1 0.2 0.3

1.79

1.795

1.8

1.805

1.81

x 10
−5

−90

−80

−70

−60

−50

−40

−30

−20

−10

0
Resolution cell
Thresholded cross section
Target peak fluctuation area
Weak target peak

f
ds

σ
T

σ
D

τ
s

(b)

Figure 6: (a) Illustration output result of χ(t, FD); (b) a magnified version around the weak tar-
get. (the unit of colorbar is dB, illustration parameters are given in Simulation result discussion,
except bandwidth B = 50MHz for better visual effect)

For a given PD, the corresponding σA, σT and σD become tolerable fluctuation standard de-
viations and σT and σD shape a target peak fluctuation area in the Delay-Doppler map (it
achieves maximum size when Pa = Pb = Pc). Therefore, the fluctuation boundary conditions of
a Swerling II target under a given detection probability are computable.

Example: Figure 6(a) is a sample result for χ(t, FD) with a 0dB strong target and a −20dB
weak target present (without sea clutter and noise), in which the maximum range sidelobe value
is measured as −23.74dB from the figure. To detect the weak target with as little influence from
sidelobes as possible, the detection threshold is chosen to be at least −23dB here. In this case,
the cross section of the weak target at the threshold corresponding to τs and fds gives semi-
axes of 0.03µs and 0.088rad (or 4.5m and 42.02m/s as feasible boundaries of range and velocity
fluctuations) as shown in Figure 6(b). If we require PD = 0.9, then Pa = Pb = Pc = 0.9655, and
σA, σT, σD are 0.2747, 0.0142µs and 0.0416rad, respectively. The allowable fluctuation area for
the underlying target peak is shown as the red ellipse in Figure 6(b). On the other hand, the
semi-axes of the target resolution cell in delay and Doppler are measured as 0.1µs and 0.1988rad,
respectively. The tolerable magnitude of fluctuation relative to the original magnitude of the
target is about 27.47%, and the tolerable delay and Doppler fluctuation of target peak to the
resolution cell of target are about 14.20% and 20.93%, respectively. This the example highlights
the conditions for detecting a Swerling II target under the WSM procedure. The determination
of actual sidelobes in practice requires further study.

Simulation result discussion Simulations for the detection of 5 targets with various radar
return strengths in the presence of sea clutter is performed with both fixed and randomised
target locations where all targets are simulated using a Swerling II target model. Radar carrier
frequency is assumed to be fc = 1GHz, bandwidth B = 5MHz, sampling rate is fs = 2B, PRI
is T = 50 µs, number of pulses N = 25 = 32. For the Golay complementary waveforms, the
number of chips is L = 64 with values ±1 and the chip interval is Tc = 0.1µs. The resolution
cell in the Delay-Doppler map is 0.1µs × 0.001πrad. Identical carrier frequency, bandwidth,
sampling rate, pulse length and PRI are set for the LFM waveform for comparison with the
complementary waveforms.

Simulation results shown in Figure 7 indicate that the WSM procedure outperforms the other
four results for detection performance in the presence of sea clutter. As the number of targets in
the Delay-Doppler map increases, the detection performance of all approaches deteriorate. This
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Figure 7: Statistical simulation results of correct detection times using BD algorithm, Accu-
mulated BD algorithm, LFM waveform, Accumulated LFM waveform and WSM procedure
with/without the influence of sea clutter.

is because range sidelobes increase as more targets enter the scene. In addition, the results for the
(Accumulated) LFM waveform appear to have more correct detections than the (Accumulated)
BD algorithm, and can achieve almost identical detection performances as the WSM procedure
in the absence of sea clutter.
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Figure 8: (a) Approaches comparison: target detection probabilities as a function of SNR with
PFA = 10−5 as a parameter; (b) Target detection probabilities of WSM procedure in different
false alarm rates.

Fig. 8 illustrates the target detection probabilities of the WSM procedure, the LFM waveform
and the BD algorithm under several different SNR values and false alarm rates. It shows that
the WSM procedure has similar target detection probability to the other two approaches when
SNR is low. This is because the targets are almost submerged in noise and undetectable; while
it is better than others under high SNR, as discussed earlier. On the other hand, since the false
alarm rate is raised by increasing the occurrence density of sea clutter (which actually decreases
the signal-to-clutter ratio) in this simulation, it is reasonable to expect a fall in target detection
probabilities from using the WSM procedure when enhancing the false alarm rates, and this
phenomenon will occur similarly in the other approaches.

Note that this work is published and more details can be found in [10].
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Figure 9: The schematic figure of the radar detection scenario.

2.1.3 Sidelobe suppression in multi-static radar networks

Background One of the key issues of distributed multistatic radar is to transmit distinguish-
able waveforms and obtain high signal-to-noise ratio (SNR) at the receivers. Deployed waveforms
like the linear frequency modulated (LFM) waveform [19], orthogonal frequency division mul-
tiplexing (OFDM) waveforms [20], or a combination usage of them, though able to obtain an
impulse-like output through matched filtering, need well separated carrier frequencies for indi-
vidual antennas to reduce cross-antenna interference in the matched filtering, necessitating a
large bandwidth for the centralized signal processing.

In this work, an alternative waveform scheme built on mutually orthogonal complementary
sets is proposed for a distributed multistatic radar. Signal separation between antennas is estab-
lished through the complementary sets, which reduce the bandwidth requirement as an identical
carrier frequency is used in a centralized signal processing environment. We give a theoretical
analysis of the influence of carrier frequencies and phases on range sidelobe suppression using
complementary sets, validated by our simulations of multiple targets illumination. This varies
from Searle et al. [21, 22], in that we avoid nonlinear processing of the complementary sets.
Such processing can sometimes cause loss of target information [18].

Radar System based on Mutually Orthogonal Complementary Sets The ∆′ matrix
is used to compose the transmitted waveforms for a distributed multistatic radar system with
antennas 1, 2, ...,m, ...,M that can both transmit and receive signals. Consider a static point
target illuminated by the radar system as shown in Fig. 9, where τ1 to τM are the round-trip
delay values of the target to each antenna. Antenna m transmits the sequence amp in the pth
(p = 1, 2, ...,M) pulse repetition interval (PRI) and receives echoes from all antennas; that is,
the radar returns delayed versions of [a1p, · · · , aMp]. The complementary sets on each antenna
are modulated by a baseband pulse Ω(t), yielding the following time domain waveforms:

amp(t) =
∑L−1

l=0
amp(l)Ω(t− lTc), (15)

where
∫ Tc/2
−Tc/2 |Ω(t)|2dt = 1. Ideally, Ω(t) is a rectangle pulse, and this is used in our simulations

for simplicity, but in a real system the rectangle pulse would typically be replaced by another
pulse shape, such as a raised cosine or Gaussian pulse to reduce the bandwidth requirement.

amp(t) is modulated by the carrier frequency fcm and a phase φm of antenna m to be the
transmission waveforms amp(t)e

j2πfcm (t+φm). The signal received by antenna m in the pth PRI
is

ymp(t) =
∑M

i=1
aip

(
t− τi + τm

2

)
e
j2πfci

(
t− τi+τm

2
+φi

)
, (16)
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and the output of antenna m for the pth PRI after demodulation with e−j2πfcm (t+φm) and match
filtering with amp(t) is

zmp(t) =

L−1∑
k=−L+1

ymp(t)e
−j2πfcm (t+φm)(

ymp(t)e
−j2πfcm (t+φm)

)∗
, (17)

where the superscript “*” denotes complex conjugation. Summing the results over all M PRIs,
we obtain a final output of antenna m:

zm(t) =

L−1∑
k=−L+1


M∑
p=1

ymp(t)e
−j2πfcm (t+φm)

(
ymp(t)e

−j2πfcm (t+φm)
)∗
. (18)

Influence of Carrier Frequencies and Phases As mentioned before, fcm often varies across
antennas for traditional waveforms like LFM waveform in order to guarantee orthogonality. This
requires wide system bandwidth on demodulation. Additionally the different carrier dependent
phases φm may also complicate the post-processing of radar returns (e.g. may decrease the
output of coherent integration). However, the transmission of complementary sets with identical
carrier frequency for all antennas, i.e. fcm = fc results in (18) becoming

zm(t) =
M∑
i=1

L−1∑
k=−L+1


M∑
p=1

Camp,aip

(
k − τi + τm

2

)
CΩ(t− kTc)e

−j2πfc
(
τm+τi

2
+φm−φi

)

, (19)

where CΩ denotes the autocorrelation of the baseband pulse and

M∑
p=1

Camp,aip

(
k − τi + τm

2

)
=

{
MLδ(k − τm) i = m,

0 i 6= m.
(20)

As a consequence, the complementary sets achieve an impulse output with a single carrier and
reduced receiver bandwidth requirements. In addition, at least in theory, the phase item φm−φi
does not influence the level of range sidelobes.

Based on previous discussions, the following remarks can be made:

a. Theoretically, complementary sets are free of cross-antenna interference as well as range
sidelobes (induced by the cross terms of cross-correlation) when an identical carrier frequency is
used for all antennas and the results are not influenced by the phase differences between antenna
carriers. In this case, the radar has an equivalent pulse width of 2Tc.

b. Compared to conventional LFM or OFDM waveforms, this alternative scheme reduces
the bandwidth requirement of the centralized radar signal processing system at the cost of
increased radar illumination time (needs more accumulation of pulses) for the same pulse width
and sampling rate.

c. Remark a. will not hold for complementary sets if carrier frequency variation across
antennas is large.

Our simulation shows that under identical carrier frequency across antennas, phase differ-
ences and/or small frequency drift or jitter cause little effect to the output SNR for all antennas,
while increased range sidelobes arise if antennas are working at significantly different carrier fre-
quencies. The interested readers may referred to [11] for more detail.
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2.2 Experimental Analysis of a Game-Theoretic Formulation of Target Track-
ing

(Investigators: Y.Yang, B. Moran, X. Wang, T. Brown, S. Williams and Q. Pan)

2.2.1 Summary

In this work, optimal trajectories for two platforms with similar dynamics are calculated using
a game theoretic formulation. Each platform makes noisy observations of the kinematic state
of the other. The objective of each is to maximise observable information about the other
while minimising the information the other is able to acquire about it. That is to say, each
platform maximises the mutual information between the expected future measurement of the
opposing platform and the current likelihood of the state whilst minimising the estimated mutual
information between potential measurements of itself by the other and its actual state. The
multi-objective optimisation problem for each platform is converted to a single optimisation
using Pareto parameters to weigh the relative importance of the two information measures.
The relationship between the two Pareto parameters, and different initial track initialisations is
investigated. Remarkably this complex coupled system of two platforms exhibits, for suitably
chosen values of the Pareto parameters, interesting cyclical behaviors that are worthy of further
exploration.

2.2.2 Update

Most of the work has been reported in our previous reports [1, 2]. During the current report
period, we have concentrated to work on two folds. First, effort was made toward to a journal
paper by an extended analysis and discussion on the simulation results reported previously. The
manuscript has been submitted to IEEE transactions on Signal Processing and is under review.
Second, Bill Moran et. al. have done preliminary work in information geometry with respect to
a multi-agent measurement system to highlight the importance of sensor trajectory planning,
in particular, the sensor system involving multiple UAVs with limited observabilities. A while
paper titled “Trajectory planning with Radar” was reported to AFRL [33].

2.3 Cooperative Sensing with Passive Mobile Sensors for Target Tracking

(Investigators: X. Wang, B. Ristic, B. Himed and B. Moran)

This is an ongoing work in which we look into the problem of tracking a 2D moving target with
two bearing-only mobile sensors. Since the performance of such a tracking system is correlated
with the states of these sensors [31], the sensor trajectory optimisation plays a significant role
in the tracking system. In the latest, two statistical reward functions, namely, the Expected
Rényi Divergence and the Determinant of Fisher Information Matrix which are used for sensor
trajectory optimisation are analysed. While both of them can be implemented in closed-forms,
practically, they can only be evaluated through approximation. Our analysis shows that the
Expected Rényi Divergence is not suitable for this sensor trajectory scheduling problem because
the cross correlation between sensor states is weakened significantly by linearization. In fact, we
observe that the expected Rényi Divergence has similar performance to the trace of the Fisher
information matrix. We demonstrate this failing using methods from information geometry.
Simulation comparison based on the example of a non-cooperative target tracking using two
cooperative bearing-only sensors is presented.

Some early work was reported in [2] and here we will only update those which are yet to be
reported. The main result was presented in Fusion 2017 international conference [27]. Based on
the work described below, we are preparing a journal paper.
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2.3.1 Geometric interpretation on reward function

In [2], we reported that using the Expected Rényi Divergence as a reward function in the sen-
sor trajectory optimisation results in a poor performance than using the Determinant of Fisher
Information Matrix. In this work, we further demonstrate this performance difference using
information geometry. It is well known that the Fisher information matrix can be used as a
metric tensor defining a Riemannian manifold, called statistical manifold [28]. Therefore, the
Riemannian geometry is used to describe statistical problems in terms of various connections of
interest using the one-one correspondence between the statistical parameter model and Rieman-
nian manifold. For example, the Fisher information distance defined in the statistical manifold
can be used to compare parameterised distributions.

For the problem at hand, the family of probability distributions S = {p(β|x)}, parameterised
in the target location space x ∈ R2, forms a 2D statistical manifold where x plays the role
of a coordinate system of S. The Fisher information distance (FID) between p(β|x(t1)) and
p(β|x(t2)) is defined as the integral along the curve x(t)

DF
(
x(t1), x(t2)

) 4
= min

x

∫ t2

t1

√(dx(t)

dt

)T
G
(
x(t)

)(dx(t)

dt

) dt, (21)

which signifies the shortest geodesic in the Riemannian (statistical) manifold. Using local co-
ordinates on the statistical manifold, the geodesic equations are given by the Euler-Lagrange
equations as [28]

d2xl
dt2

+

n∑
i=1

n∑
j=1

Γkij
dxi
dt

dxj
dt

= 0, l = 1, 2. n = 2. (22)

For convenience, we use the subscript i of x to represent its ith component and thus xi, i = 1, 2
are the coordinates of the curve x(t), Γlij , i, j = 1, 2 are the Christoffel symbols of the second
kind and are defined as Riemannian connection coefficients,

Γlij =
1

2

2∑
k=1

glk
(
∂gik
∂xj

+
∂gjk
∂xi

− ∂gij
∂xk

)
, i, j, l = 1, 2. (23)

where [glk] signifies the inverse of G = [glk] and Einstein notation for summation is used.

The geodesic equations in (22) are ordinary differential equations for the coordinates xi, i =
1, 2. A unique solution x(t) can be found for given initial conditions x(0) and ẋ, which is
analogous to an initial position x(0) and the “speed” ν ∈ T xS in the sense of the classical
mechanics, where T x denotes the tangent vector of S at x.

Assume that a geodesic is projected onto the parameter space R2 with a starting point x(0)
and a tangent vector ν. The exponential map of the starting point is then defined as [29]

expν [x(0)]
4
= Ψ

(
1; x(0), ν

)
. (24)

where the notation Ψ
(
t; x(0), ν

)
is used to signify a geodesic with a starting point x(0), a

tangent vector ν and end point x(t).

It can be shown that the length along the geodesic between x(0) and Ψ
(
1; x(0), ν

)
is |ν|

[29, 32]. Thus, for a fixed ν the plot of geodesics along all directions at x visualizes an FID
circle centered at x in S. Intuitively, the projection of such a circle from statistical manifold
to the parameter space characterises the capability of the underlying sensor. So, in addition to
the Determinant of FIM, the FID circle projected in parameter space will be used to assess the
performance of a statistical reward function.
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Figure 10: Illustration of the circles of statistical manifold spanned by FIM for given sensor
locations (a) Sensor 1 is at (1500,400) and Sensor 2 (973, 387). (b) Sensor 1 is at (1500,400)
and Sensor 2 moved to (1219,544) in a circle around the target on the left.
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Figure 11: Illustration of the circles of statistical manifold spanned by the FIM with constant
valued off-diagonal elements for given sensor locations (a) Sensor 1 is at (1500,400) and Sensor
2 (973, 387). (b) Sensor 1 is at (1500,400) and Sensor 2 moved to (1219,544) in a circle around
the target on the left.

To highlight the difference between the two statistical reward functions in question, we design
the scenario where two fixed targets are observed by the two bearing-only sensors. The same
parameterisations are used to compare the changes of Fisher information distance circles before
and after the Sensor 2 moves in a circle around one target in the statistical manifolds spanned by
the Fisher information matrices with and without taking into account the off-diagonal elements,
respectively.

From the Fig. 10(a) to Fig.10(b), the FID circle around the target on the left has significant
change in the statistical manifold spanned by the FIM as the Sensor 2 moves in a circle around
that target. However, if the off-diagonal elements of FIM are ignored (or keeping constant), the
trace of the resulting FIM is identical to that of the original. In the statistical manifold spanned
by such a FIM there is no change to the FID circle centered at the target on the left as the
Sensor 2 moves around the left target in circle as shown in Figures 10 (a) and (b). This result
indicates that the Fisher information will not be fully explored if trace rather than determinant
of the FIM is used as a statistical reward function. The Expected Rényi Divergence performs
similar to the Trace of FIM.
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2.3.2 Simulation example

We illustrate the significance of sensor scheduling using an example of tracking a maneuvering
target by two bearing-only sensors. Target motion follows a hidden Markov process which
contains the states of a left turn (−5o), a right turn (5o) and straightline (0o) and it moving at
a constant speed of 10m/s. The initial target state is x0 = [600, 560, 10∗ cos(30o), 10∗ sin(30o)]′.
The scenario can be viewed in Fig. 12. In the first 50 of a total of 100 scans, the target is in left
turn state and it turns into the right turn state in the rest of scans. Initially, the two bearing-
only sensors are moving at a constant speed of 10m/s from the locations S1 = (1900, 560)m
and S2 = (1950, 560)m heading in the directions 0o and 60o, respectively. They acquire bearing
measurement of the target at a sampling rate of T=5s. During each scan, they will be steered to
one of 5 directions with respect to their current headings according to the trajectory optimisation
decision. The 5 directions are −90o,−45o, 0o, 45o and 90o.
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Figure 12: Illustration of the estimated target trajectory and the motion trajectories of the
two bearing-only sensors optimised under DetFIM plotted from a single run, along with target
ground truth trajectory.
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Figure 13: Estimated target trajectories with ground truth trajectory and the motion trajectories
of the two bearing-only sensors optimised under (a) ExpReward; (b) TrFIM, plotted from a single
run.

Therefore, for a N -Step ahead decision process, the number of action hypotheses yielded for
the two cooperative sensors are (52)N . For example, the number of action hypotheses for N = 1
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is 52 = 25 and for N = 3 is (52)3 = 15625.

In practice, the maximum number of hypothesis histories allowed to steer future measurement
at each epoch is constrained by a fixed number “MaxH” to provide a feasible computational
overhead for real-time operation. In our simulation, we set MaxH = 1000 and under this
constraint, it is found that the track error difference between N > 3 and N = 3 is negligible.
Therefore, in the performance comparison versus Monte Carlo runs, we only consider N ≤ 3.

An EKF tracker [30] is implemented to estimate the posterior density of target state from
the target bearing measurements taken by the two sensors. We assume that the target bearing
measurements are corrupted with a Gaussian noise of zero-mean with standard deviation 2o.

Fig. 12, Fig. 13 (a) and Fig. 13 (b) show the typical trajectories of the two bearing-only
sensors in the target tracking experiment under the Determinant of FIM (DetFIM), the Expected
Rényi Divergence (ExpReward) and the Trace of FIM (TrFIM), respectively. By maximising
DetFIM, the two sensors move in a way such that the angle formed by sensor 1, target, sensor
2 is approximately π/2 while approaching the target. So, the measurements taken by the two
sensors along these computed trajectories minimise the error covariance of the underlying tracker
(Fig. 12). On the other hand, the sensor trajectories scheduled by maximising ExpReward (or
TrFIM) show no cooperative movement between the sensors while they are approaching the
target and generate large error covariance (Fig. 13).

The statistical results averaged over 100 Monte Carlo runs for each case are shown in Fig.
14, where the root-mean-squared position error comparison of the tracker under different reward
functions for N = 2 is presented in Fig. 14 (a) and the RMS errors under DetFIM for N = 1, 2, 3
are in Fig. 14 (b). In summary, the simulation results demonstrate that

• the tracker gets smaller error but significant more computational overhead as N increases.
We observed that the computational complexity for N = 1, 2, 3 is roughly at a ratio of
1 : 46 : 3304.

• the sensor scheduling under DetFIM yield a significantly small error, which is consistent
with our analysis.

• the RMS error under ExpReward is quite similar to that under TrFIM. The latter has
completely ignores the correlation between the two sensor states.

0 10 20 30 40 50 60 70 80 90 100

Scan

101

102

103

R
M

S
 E

rr
or

 (
m

)

DetFIM
TrFIM
ExpReward

0 10 20 30 40 50 60 70 80 90 100

Scan

101

102

103

R
M

S
 E

rr
or

 (
m

)

N = 1
N = 2
N = 3

(a) (b)

Figure 14: (a) RMS errors of the estimated target trajectory with sensor trajectories optimised
under different reward methods for a N = 2-step ahead decision process. (b) RMS errors of the
estimated target trajectory with sensor trajectories optimised under DetFIM for N = 1,2,3.
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2.3.3 Summary

Sensor trajectory optimisation plays an important role for tracking a moving target using multi-
ple cooperative passive sensors. The problem is formulated as POMDP and a N -step ahead sen-
sor trajectory scheduling is considered to steer the measurement decision process that maximises
a reward function. Two statistical reward functions, the Expected Rényi Divergence and deter-
minant of Fisher information matrix, both of which are derived in closed-forms, are considered.
We show that the Expected Rényi Divergence function approximated through linearization has
a significantly weak correlation between the two sensor states and thus the trajectory scheduling
performance using it is as poor as using the Trace of FIM. On the other hand, the Determinant
of FIM is an appropriate statistical reward function to be used. This conclusion is confirmed by
the simulation results presented. Although this work is based on tracking a moving target by
two bearing-only sensors scenario, the results can also be applied to other types of sensors which
are required to be used jointly to observe the underlying target state, such as Doppler radars.
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4 Conclusions

In this report, we summarise the research work carried out during 2016-2017 under the AOARD
project with grant no. FA2386-15-1-4066. The major work includes

1. Radar waveform scheduling — address the sidelobe issues induced by Golay comple-
mentary waveforms in the presence of multiple nonzero Doppler targets;

2. Game theoretical formulation for target tracking — study the behaviour of au-
tonomous steering and tracking scenario involving two moving platforms chasing each
other with similar sensing and kinematic motion capacities.

3. Sensor trajectory optimisation — continue investigating the optimality of the expected
reward functions for sensor trajectory optimisation under the scenario of tracking a moving
target using two cooperative bearings-only moving sensors. Explanation of the practical
reward functions in the action of steering sensors from the information geometry viewpoint
is presented.

Whenever possible, we will seek funding support opportunity to continue working in these
research directions, in particular, in the area of autonomous mobile sensor network manage-
ment and trajectory optimisation, cognitive sensing and target tracking in the game theoretic
formulation environment.
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