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Robust acoustics and speech perception of aerial robot under ego noise for scene 
understanding during critical emergency 

 
 This report describes the research work and results of the project entitled: Robust acoustics and speech 
perception of aerial robot under ego noise for scene understanding during critical emergency response 
missions, which took place during 2016.08.08~2017.08.07. Authors gratefully acknowledge the support of this 
research by the Air Force Office of Scientific Research. 
 
1. Research Objectives  

 
In this research, Hanseok Ko as Principal Investigator and his team of graduate students investigated 

acoustic signal based robust scene understanding techniques for aerial robot. Due to the added advantage of 
flying besides having the usual movement dexterity, an aerial robot creates a new set of opportunities to provide 
highly intelligent perceptions to engage and respond to time-critical emergency situations. It is desirable to 
equip aerial robots with the ability to detect evidence of emergency situations such as calling for help by human 
voice via using a microphone array to listen to surrounding zone, perform speech/acoustic event detection, and 
conduct sound source localization for directivity assessment and for possible tracking if the source is either 
stationary or moving. 

Despite of its potential capability in emergency response missions over hazardous sites and observing wide 
areas, auditory processing in aerial robots is technically extremely challenging due to the inherent issues 
delineated as follows. 

 
• High level of wind noise and ego-noise from rotor 
• Constantly changing noise level and target to sensor distance while robot is moving 
• Wide dynamic range of target signal power by changing target to sensor distance in outdoor 

environment 
• High probability of overlapped acoustic events in wide searching area 
• Difficulty of reliable target detection due to ever-present ego-noise  
• Robust acoustic scene classification 

 
To address the above issues and explore mitigating approaches, a 3-phase plan was set up at the onset of 

this project as shown in Figure 1. We explored the audio perception techniques under idle state as goal of 1st 
year. 

 

 
 

Fig. 1 3-phase (3-years) plan for audio perception under aerial robot environments 
 

 



 
In order to achieve the research goal of Phase 1, we investigated the following 3 specific research issues. 
 

(1) How can we select desired signal dominant frequency bin in non-stationary noisy environment for 
robust sound source localization? 

 
(2) For signal enhancement, what beamforming structure would be effective for utilizing the modeling 

ability of deep neural network? 
 

(3) To achieve robustness of acoustic event (scene) classification, a powerful mitigating approach 
would be to provide a large database made available for training. What deep learning based 
approaches can be rendered effective to generate useful training database?    

 
2. Research tasks and results 
 
2.1 (Task 1) Investigate novel sound source localization techniques in highly non-stationary noise 
dominant environments 

 
We investigated the problem of finding desired signal using a microphone array in highly non-

stationary noisy environment. Frequency bins with high noise levels can be inadvertently considered as desired 
sound sources. Reliable estimation performance can be achieved by using meaningful signal-dominant 
frequency bins while avoiding noise-dominant bins. 

 
Issue : How can we select desired signal dominant frequency bin in non-stationary noisy environment for 
robust sound source localization? 

 
 To address this issue, hence, selecting (or weighting high) desired signal frequency bin in non-

stationary noise, a weighting function is investigated using Deep Neural-Network (DNN).  Using DNN 
approach for selecting desired signal frequency turned out to be effective.  In DNN based time-frequency mask 
estimation step, the ideal binary masks for signal are set as  

 

    (1) 

 
where  and  are the desired signal component and noise component in  frame of  input noisy 
signal in STFT domain respectively.  A DNN composed of LSTM and feedforward layers is trained to estimate 
the ideal binary masks,  from a noisy spectrum. The noisy spectrum is generated for the training step 
by summing the signal and noise signal which is recorded in real environments. The specific structure of DNN 
is shown in the table below, 

Table 1. LSTM network configuration for mask estimation 

Layers Units Type Non-
linearity  

L1 256 LSTM Tanh 0.5 
L2 513 FF ReLU 0.5 
L3 513 FF ReLU 0.5 
L4 1026 FF Sigmoid 0.0 

 
The window size and frame shift are set at 1024 and 512 samples, respectively, at a 16 kHz sampling rate. 

 means the ratio of nodes to apply dropout technique in training step. The DNN consists of one Long 
Short-Term Memory (LSTM) layer and three Feed-Forward (FF) layers. 

 

 



 

 
Fig. 2 LSTM based speech mask estimation process (speech as desired signal) 

 
 

Result:  
 
- We developed a novel masking method for sound source localization in the noisy 
environments by:  

① Using the DNN based approaches for modeling the relationship between the noisy 
and clean signals as a nonlinear transformation. 

② Exploiting the sequential information from the previous adjacent frames using feed-
back of LSTM network, which conventional approaches cannot utilize. 

  
 

 After applying DNN based mask to each channel of input signal, Time Difference Of Arrival (TDOA) 
is estimated for each pair of microphones to find location of acoustic source. The TDOAs can be estimated from 
so-called angular spectrum, whose peaks indicate the TDOA of the source. Generalized Cross Correlation-
Phase Transform (GCC-PHAT) is used as an angular spectrum in this system. GCC of the  and  
microphone signals is calculated as eq. (2)  

 
,        (2)                                                        

 
where  denotes a weight function. Although many different weighting functions can be applied, the 
PHAT has been found to perform quite well under realistic acoustical conditions. 
 

                                                              (3) 
 

The Figure 3 shows the outline of GCC-PHAT based source localization system. 
 

 



 

 
Fig. 3 GCC-PHAT based source localization system 

 
The proposed algorithm was evaluated in a 5.0 × 6.0 × 2.5 3m simulated room environment using image 

source method. The reverberation time setting (RT60) was 0.5sec. A pair of microphones with 20cm inter-
spacing was located at the center of the room. The non-stationary harmonic noise, speech (desired signal) and 
background noise sources were generated at 1.5 m from the microphones in the direction of 75°, 90° and 105°, 
respectively. We compared the proposed algorithm performance to the conventional GCC-PHAT, Denda’s 
method [1], local peak weight (LPW) [2], and SNR [3] based methods with correction rate [%] of direction 
estimation for each samples. As mentioned above, the ground truth direction of speech sθ  was 90°. Table 2 
shows the desired sound source direction estimation performance of conventional and proposed methods. It 
shows that the proposed method attained improved performance under the ensuing harmonic and non-stationary 
noise environment. We achieved the most robust performance using LSTM based non-linear and temporal 
modeling, which other algorithm lacks as shown by the table below. 

 
Table 2. Desired sound source direction estimation performance 

 
 
 
 
 
 
 
 
 
 
 

 
2.2 (Task 2) Explore effective multichannel signal enhancement techniques 
 

To date, deep-learning approaches to far-field acoustic signal enhancement, particularly those that 
incorporate a Denoising Auto-Encoder (DAE), have had great success when applied to single-channel audio 
signals. However, the use of DAEs for multiple channels faces a number of challenges. The main reason for this 
is that phase information in the time-frequency domain plays a vital role in delivering the spatial information of 
multi-channel signals. Modelling this phase difference from time-domain or time-frequency domain requires 
large amounts of data to cover the various spatial configurations, while the effective way of utilizing spatial 
information in DAE structure is still under researching.  

As an alternative to a direct DAE based approach, a conventional beamformer can be introduced prior 
to the implementation of the DAE. The spatial information utilized by the beamformer in the form of the ratio 
of acoustic transfer functions, i.e. Relative Transfer Functions (RTFs), is characterized by the path between the 

Correction rate of direction estimation (%) Noisy input SNR (dB) 
-5 0 5 Avg. 

GCC-PHAT (baseline) 13.3 43.3 60.0 38.9 
Denda’s weight [1] 53.7 76.0 83.2 71.0 

SNR based weight [2] 40.3 69.3 90.3 66.6 
LPW based weight [3] 49.3 66.3 94.3 70.0 

Proposed LSTM based weight 76.3 86.3 97.7 86.8 
At SNR over 10dB, the correction rate of both conventional and proposed 

methods shows over 95%. 

 



 
speaker and each microphone. However, the modelling ability of the DAE is limited when applied to single-
channel beamformer output. 

 
Issue : What bemforming structure would be effective for utilizing the modelling ability of the DAE? 

Therefore, in Task 2, a novel structure of multichannel signal enhancement system which adopts a 
DAE as part of the beamformer is proposed. The proposed structure of the Generalized Sidelobe Canceller 
(GSC) generates enhanced multi-channel signals, instead of merely one channel, to which the following DAE 
can be applied. Because the beamformer exploits spatial information and compensates for differences in the 
transfer functions of each channel, the proposed technique is expected to resolve the difficulty of modelling 
relative transfer functions consisting of complex numbers which are hard to model with a DAE. As a result, the 
modelling capability of the DAE can concentrate on removing artefacts caused by the beamformer. Unlike 
conventional beamformers, which combine these artefacts into one channel, they remain separated for each 
channel in the proposed method. As a result, the DAE can remove the artefacts by referring to other channels. 

We use GSC which can estimate noise statistics adaptively and can be implemented using only the 
direction of target speech. We assume that the beamformer is working on each frame instead of a whole 
utterance so that the proposed algorithm can be applied to not only recognition system, but also the real-time 
communication system. This approach estimates noise statistics by each frame, thus eliminating the need to 
model noise in advance. Since no prior information of noise statistics is provided, limiting noise types to 
predefined ones can also be avoided.  
 

Result:  
 
- We developed a novel structure of beamformer for 

① Exploiting spatial information and generates multi-channel enhanced signals on 
which the following DAE can act.  

② Taking advantage of the multi-channels by modelling the underlying relationship of 
the distortion with adjacent frequency bins in other frequencies and other 
channels. 
 
 
The proposed system is illustrated in Figure 4.  is the received signal and noise at the m-th 

sensor in the short-time Fourier transform domain. 
 

 
Fig. 4  Structure of the proposed GSC and DAE 

 
The BM is designed to project the input signals into the orthogonal complement of the target signal 

RTF. The filter weights of BM can be calculated using the target signal RTF. In our case, the satisfactory 
estimation of target signal RTF is not feasible due to noise being non-stationary. As a result, the RTF is 

 



 
simplified as a pure time delay and calculated from the estimated target signal direction. In the proposed system, 
each individual ANC filter is adapted separately to minimize each input signal by removing the noise 
component estimate. 
 

, (1) 
 
where  is the ANC coefficient corresponding to the m-th channel. The FBF takes  enhanced channel 
signals from  separated ANC filters and compensates the RTF to generate the multi-channel output features: 
 

, ( 2) 
 
where is the mth channel component of the fixed beamformer and this compensate the time delay 
between each channel using estimated target signal direction. Note that the proposed structure has the same 
filter coefficient as a conventional GSC if the output signals are summed into one channel. The distortion 
caused by imperfect noise cancellation is placed on the multi-channel spectrum domain of a two-dimensional 
space with a channel axis and frequency axis for each frame. The DAE is expected to model the underlying 
relationship of the distortion with adjacent frequency bins in other frequencies and other channels. 

To analyze effectiveness of the proposed structure, target signal enhancement is conducted in a manner 
similar to [4], as depicted in Figure 4. Note that the use of mask estimation before the beamformer and more 
sophisticated DAE structures are not considered because these improvements can be used in both the 
conventional and the proposed system. This experiment aims to judge the effectiveness of the proposed 
algorithm in its most typical configuration. The proposed system uses the results of the proposed GSC as the 
multi-channel information and their summation as the beamformed signal. In the baseline system, the output of 
the conventional GSC is used as the beamformed signal, and the noisy input signal itself (GSC-NOISY) [4] and 
the interaural phase difference (GSC-IPD) [5] are used as the multichannel information. To assess the 
advantages of using multi-channel information, these systems are also compared with a single channel DAE 
(GSC-ONLY) which uses only the conventional GSC output without multi-channel information. 

To evaluate performance, six-channel data from CHiME [6] is used. This database provides noisy 
signal recorded using 6 microphones. The signal to distortion ratio (SDR) which is defined as energy ratio 
criteria [6] and the short-time objective intelligibility (STOI) described in [7] are used to measure speech 
enhancement performance. The word error rate in automatic speech recognition (ASR) is scored with an 
acoustic model trained on a clean database. The LibriSpeech database [8] is used in a time delay neural network 
based ASR system [6]. Note that ASR evaluation is performed in mismatched conditions in terms of noise and 
RIRs on the assumption that target signal enhancement is performed without prior knowledge of the 
environment. Evaluation results show that the proposed method consistently outperforms the conventional 
methods. Note that the STOI score is expected to have a monotonic relation with subjective speech 
intelligibility, where a higher value denotes more intelligible speech. 

 
Table. 3. Evaluation results for target signal enhancement and word error rate 

 
Score 

Mult. Info. SDR STOI WER(%) 

Noisy input -0.694 0.674 84.43 
GSC- ONLY 7.915 0.835 30.57 
GSC-NOISY 7.320 0.837 27.13 

GSC-IPD 7.445 0.835 26.74 
Proposed 8.687 0.856 20.83 

 

 

 
 



 
2.3 (Task 3) Develop an acoustic event recognition for aerial robot platform  

One of the fundamental issues in deep learning is availability of large labeled data set. It has been 
consistently shown over the last decade that larger labeled data set with deeper network layers can lead to 
improved results. However, it is not easy to collect large amounts of labeled data, especially in Acoustic Event 
Recognition (AER) for specific target event.  Hence, it is necessary to transfer knowledge for domain specific 
event recognition task from the network independently trained by a relatively large acoustic DB.  

 
Issue : To achieve robustness of acoustic event (scene) classification, a powerful mitigating approach would be 
to provide a large database made available for training. What deep learning based approaches can be rendered 
effective for generating useful training database?    
 

The “transfer learning” scheme aims at transferring knowledge between the source domain used for 
pre-training and the target domain of interest [10]. In computer vision, transfer learning overcomes deficit of 
target domain training samples by adapting classifiers that are pre-trained for other large-scaled DB [11]. In 
recent VOC fields, CNN based supervised transfer learning methods pre-train lower layers in source domain 
first and then transfer these lower layer parameters for training target domain categories [11]. Transfer learning 
can address the issue of AER DB being significantly smaller compared to that of other audio signal applications. 
Therefore, we proposed to pre-train a classifier with large-scaled source domain DB and transfer the parameters 
for training with target DB. Figure 5 shows the proposed structure for transfer learning. 

 

 
   Fig. 5  Structure of the proposed transfer learning based AER 

 
Additionally, we explored using generative model for DB augmentation. To generate additional 

samples using the training DB, we proposed to use Generative Adversarial Net (GAN). The GAN learns two 
sub-networks: a generator and a discriminator. The discriminator reveals whether a sample is generated or real, 
while the generator produces samples to pass through the discriminator as real data. Although additional data 
generated by GAN may lead to improved classifier training, it is not clear whether every data point generated 
by GAN would have equal impact in classifier performance. As it has been shown by Support Vector Machine 
(SVM), those support vectors that reside near decision boundary are generally crucial in providing key 
information for classification [12]. It is believed that the performance could be improved by selecting the 
generated data by measuring decision value (distance) from decision hyper-plane of SVM for each class. Figure 
6 shows GAN based iteration routine for DB augmentation.  

 

 



 

 
Fig. 6 The iterative routine of the DB generation and selection  

 

Result:  
 
- To overcome the deficit of training DB and thereby improve the performance in acoustic 
scene classification and event recognition, we proposed to 

① Use transfer learning for utilizing information from DB which has relatively large 
amount of volume and various class types. 

② Incorporate a GAN based DB augmentation approach using SVM criterion. 
 

 
In transfer learning based approach, as shown in Figure 5, the network for source domain is composed 

of three hidden fully connected layers which use sigmoid activation function and a single output layer with a 
SoftMax function. For filter training in the target domain, similar to the transfer learning in VOC [10], the 
output layer of the pre-trained network is removed and two hidden fully connected layers and a new single 
output layer are added to enable adaptation. Because the transferred layers have been pre-trained to classify 
various classes within the source domain, the layer outputs may capture the discriminative features of different 
sounds [10]. In target domain training, the outputs of the transferred layer are adapted to target domain labels by 
using them as inputs for training the additional two hidden layers. In summary, the parameters for layers SL#1-
3 are first trained in the source domain then transferred to the target domain and fixed. Only the additional 
adaptation layers (TL#1-2) are trained using the target domain training data.   

After the target domain training step, output layer and activation functions of the last hidden layer 
(TL#2) are removed. This process is motivated by the bottleneck feature studies [17], which follow a similar 
approach in using DNN mid-layers and demonstrate effective performance. Finally, five hidden layers from 
SL#1 to TL#2 are used as a DNN filter and the output values of layer TL#2 without activation function are used 
as the input features for the AEC system. 

 



 
In GAN based approach, as shown in Figure 6-step (a), a GAN for each class was trained using a part of 

the training set, which excludes the validation part for following steps. Using the trained GANs, we generated 
‘fake’ samples and organized the sample feature pools for each class as shown in step (b). Before using the 
generated samples, an SVM hyper-plane for each class (target class vs. the others) was first determined from the 
real data set to establish a baseline performance. We chose the bus class as an example. Note that half of the 
training set was used for training and the other half was used for validating SVM performance. As shown in 
step (c), we checked classification performance of SVM with sum of the training and validation set accuracy. 
Considering the SVM update in the next step, we added a weight (α, which is bigger than 1) to the unseen data, 
i.e. validation accuracy. In step (d), we subsampled ‘fake bus’ features from the generated bus feature pool and 
checked decision values on the SVM hyper-plane trained from Tr-A set. As shown in step (e), we sorted the 
fake samples by the distance order, and chose a preset number of the nearest samples. Additionally, we also 
included small number of samples near the hyper-plane that were classified as non-bus by handicapping their 
decision value. We then merged the near boundary fake samples with the real samples of Tr-A set. Step (f) 
shows the new SVM hyper-plane trained by the merged set. Before training the new SVM, we added random 
vectors, which are scaled to the magnitude of the samples, to reduce the sample bias of the generation using 
GAN. As was done in step (c), the classification performance of new SVM was checked with the sum of the 
training (Tr-A) and validation set (Tr-B) accuracy. If the accuracy score of the new SVM outperforms the 
previous SVM score, the reference SVM hyper-plane was replaced with the new one and the iteration continues 
again with the fake sample subsampling in the step (d). If not, the iteration proceeds to the step (d) without 
replacing the reference hyper-plane. Once the SVM performance is optimized, the associated support vectors of 
fake bus features were used for the augmented training set. The entire process is repeated with the Tr-B as the 
training set for GAN and SVM, and Tr-A as the validation set. The whole processes are repeated for each 
acoustic scene class.  
 Table 4 shows the source domain DB for transfer learning. The target indoor surveillance DB consists of 
15 events (a crying child, breaking glass, water drops, chirping birds, a doorbell, home appliance beeping, 
screaming, a dog barking, music, speech, a cat meowing, a gunshot, a siren, an explosion, and footsteps). For 
checking noise robustness of AER, noise was added to the event DB at 5, 10, 15 dB SNR. In addition, 
compared with other DNN-based feature extraction methods, such as the Deep Belief Network (DBN) feature, 
which is used for music genre classification [18], and DNN bottleneck feature [17], the proposed method 
demonstrated improved accuracy by effectively utilizing the information transferred from the source domain. 
Table 5 shows performance comparison with aforementioned conventional approaches. 
 

Table 4.    Source domain database description 
DB set Contents 

Clear-OL [13] Alert, cough, door slam, drawer, key, keyboard, knocking, laughing, mouse, 
page turn, pen drop, phone, printer, speech, switch, clear throat 

RWCP [14] 

Air-cap, bell, break stick, buzzer, castanet, ceramic collision, clap, clock 
ringing, coin, cymbals, drum, dryer, grinding coffee, kara, maracas, metal 
collision, article dropping, plastic collision, pump, punch stapler, rubbing, 

shaver, spray, string, tambourine, toy, whistle, wood collision 
Urban-Sound 

[15] 
Air-conditioner, dog bark, drilling, engine idling, car horn, jackhammer, 

children playing, siren, street music, shot 

ESC-50 [16] 

Airplane, breathing, brushing teeth, can opening, cat, chainsaw, chirping birds, 
church bells, clapping, clock alarm, clock tick, coughing, cow, crackling fire, 
crickets, crow, door - wood creaks, door knock, drinking – sipping, engine, 
fireworks, footsteps, frog, hand saw, helicopter, hen, insects (flying), pig, 
pouring water, rooster, sea waves, sheep, sneezing, snoring, thunderstorm, 

toilet flush, vacuum cleaner, washing machine, wind 
Total 93 classes / The similar classes from the different DB set had been merged / 16 kHz 

resampled, 16 bit resolution 

 



 
 

Table 5. Average acoustic event classification rate [%] for ETSI background noise using various features 
with SVM classifier 

 Living room 
noise Office noise Clean 

DB 
Avera

ge SNR [dB] 5 10 15 5 10 15 

MFCC 79.
7 

85.
5 

94.
5 

81.
1 

87.
6 

95.
1 96.1 88.5 

DBN feature [18] 86.
4 

89.
9 

93.
9 

89.
9 

93.
3 

95.
7 96.4 92.2 

DNN-bottleneck feature [17] 86.
3 

90.
9 

95.
5 

90.
7 

92.
5 

95.
9 96.5 92.6 

Proposed transfer learning 
approach 

92.
5 

96.
3 

96.
3 

93.
7 

96.
5 

96.
5 98.9 95.8 

 
 
 Table 6 shows performance comparison between original DB set and GAN based augmented DB set. 
We used IEEE Detection and Classification of Acoustic Scenes and Events (DCASE) 2017 task 1 DB [21] for 
Acoustic Scene Classification (ASC). It contains 15 different acoustic scene classes such as, Bus, Café, Car, 
City center, Forest path, Grocery store, Home, Lakeside beach, Library, Metro station, Office, Residential area, 
Train, Tram, and Park. We used Discrete Fourier Transform (DFT) based feature and Mel-Filtered Bank (MFB) 
as feature input, and Fully Connected Neural Network (FCNN) and SVM for classifier. Based on the 
experimental results of AER and ASC, we achieved improved performance in noisy surveillance environment 
utilizing information of universal background DB and generative method. Additionally, as shown in Figure 7, 
we achieved the best performance in DCASE 2017 grand challenge Task using the GAN based approach. 
 

Table 6. Comparing the performance of the conventional and the proposed method 
 (average accuracy on 4-fold validation of DCASE 2017 development set) 

Avg. 
acc. 
[%] 

with original 
development set with augmented set 

DFT- 
FCN

N 

MFB- 
FCN

N 

DFT-
SVM 

MFB-
SVM 

DFT-
FCNN 

MFB- 
FCN

N 

DFT-
SVM 

MFB-
SVM 

75.4 75.1 78.2 79.3 83.2 83.7 81.6 85.6 
 

 
Fig. 7 IEEE DCASE challenge 2017 task 1 results, 

(http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-acoustic-scene-classification-results) 

 

http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-acoustic-scene-classification-results
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4. Conclusions and future work 
 

We explored three key-techniques for robust acoustics and speech perception of aerial robot for scene 
understanding during critical emergency response missions. For noise robust sound source localization, we 
proposed a noise robust desired sound direction estimation method using LSTM based weighting function. The 
direction estimation experiments confirmed that the proposed method shows improved robustness under indoor 
surveillance noise environment characterized by presence of harmonic or non-stationary noise sources. Our 
future work will investigate effective methods for applying RNN method to phase-spectrogram as Non-negative 
Matrix Factorization (NMF) was applied to phase-spectrogram previously in [19]. 

In terms of our signal enhancement performance under noisy environment, the GSC exploits spatial 
information and generates multi-channel enhanced signals on which the following DAE can act. As a result, the 
DAE can take advantage of the multi-channels by modeling the underlying relationship of the distortion with 
adjacent frequency bins in other frequencies and other channels. The evaluation results demonstrate that 
utilizing the results of the proposed GSC structure as an input to the DAE is effective in improving noise 
reduction and speech recognition performance. 

To improve acoustic event recognition performance and overcome the deficit of acoustic event resource, 
we proposed a novel DNN based transfer learning approach. By utilizing the information transferred from the 
universal source domain, the proposed approach was characterized by improved AEC accuracy in indoor 
surveillance experiments. Once DNN filter training has been completed in the source domain, this DNN filter 
can be utilized in other domains, repeatedly. Therefore, future work will investigate an effective transfer 
learning scheme for various acoustic applications and determine how performance changes depending on the 
configuration of the data. 

The acoustic perception during the hovering and moving of the aerial robot, which will be conducted in 
the future steps, will be more challenging task, due to the severe noisy environment. Furthermore, we assumed 
that an only single sound event occurs within a restricted event class in this phase, but in a real environment 
hundreds of multiple sounds occur simultaneously. To address the issue above, the next research phase is to 

 



 
investigate acoustic event recognition using the Google Audio-Set [20]. The Google Audio-Set is acoustic DB 
based on real life video uploaded in YouTube. It is the latest and largest video-based sound event recognition 
DB released in March 2017 with 5.8K hour long consisting of 527 sound classes in total. Based on the acoustic 
database, we will address the DB deficit issue of this year and investigate the simultaneous occurrence of the 
hundreds of sounds mentioned above. In the IEEE DCASE 2017 challenge task 4 [21], there was a competition 
using the Audio-Set DB. It was the competition to recognize 17 types of warning and vehicle sounds for a self-
driving smart car environment similar to aerial robot environments. The participating teams using the 
convolutional recurrent neural network showed the best performance in the competition. As a future plan, we 
plan to explore the domain transformation (adaptation) for the aerial robot environment using the GAN-based 
various approaches and the audio feature augmentation using other generative methods such as, Variational 
Auto Encoder (VAE). 

 
Fig. 8 The example structure of GAN based domain transformer 

 

 
Fig. 9 Possible structure examples of generative approaches [22] 
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Robust acoustics and speech perception of aerial robot under ego noise 

for scene understanding during critical emergency 

Hanseok Ko (Korea University) 

 This report describes the research work and results of the project entitled: Robust acoustics and 

speech perception of aerial robot under ego noise for scene understanding during critical 

emergency response missions, which took place during 2016.08.08~2017.08.07. Authors 

gratefully acknowledge the support of this research by the Air Force Office of Scientific 

Research. 

1. Research Objectives

In this research, Hanseok Ko as Principal Investigator and his team of graduate students 

investigated acoustic signal based robust scene understanding techniques for aerial robot. Due to 

the added advantage of flying besides having the usual movement dexterity, an aerial robot 

creates a new set of opportunities to provide highly intelligent perceptions to engage and respond 

to time-critical emergency situations. It is desirable to equip aerial robots with the ability to 

detect evidence of emergency situations such as calling for help by human voice via using a 

microphone array to listen to surrounding zone, perform speech/acoustic event detection, and 

conduct sound source localization for directivity assessment and for possible tracking if the 

source is either stationary or moving. 

Despite of its potential capability in emergency response missions over hazardous sites and 

observing wide areas, auditory processing in aerial robots is technically extremely challenging 

due to the inherent issues delineated as follows. 

 High level of wind noise and ego-noise from rotor

 Constantly changing noise level and target to sensor distance while robot is moving

 Wide dynamic range of target signal power by changing target to sensor distance in

outdoor environment

 High probability of overlapped acoustic events in wide searching area

 Difficulty of reliable target detection due to ever-present ego-noise

 Robust acoustic scene classification

To address the above issues and explore mitigating approaches, a 3-phase plan was set up at 

the onset of this project as shown in Figure 1. We explored the audio perception techniques 

under idle state as goal of 1st year. 
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Fig. 1 3-phase (3-years) plan for audio perception under aerial robot environments 

 

In order to achieve the research goal of Phase 1, we investigated the following 3 specific 

research issues. 

 

(1) How can we select desired signal dominant frequency bin in non-stationary noisy 

environment for robust sound source localization? 

 

(2) For signal enhancement, what beamforming structure would be effective for 

utilizing the modeling ability of deep neural network? 

 

(3) To achieve robustness of acoustic event (scene) classification, a powerful mitigating 

approach would be to provide a large database made available for training. What 

deep learning based approaches can be rendered effective to generate useful 

training database?    

 

2. Research tasks and results 

 

2.1 (Task 1) Investigate novel sound source localization techniques in highly non-

stationary noise dominant environments 

 

We investigated the problem of finding desired signal using a microphone array in 

highly non-stationary noisy environment. Frequency bins with high noise levels can be 

inadvertently considered as desired sound sources. Reliable estimation performance can be 

achieved by using meaningful signal-dominant frequency bins while avoiding noise-dominant 

bins. 

 

Issue : How can we select desired signal dominant frequency bin in non-stationary noisy 

environment for robust sound source localization? 

 

 To address this issue, hence, selecting (or weighting high) desired signal frequency bin 

in non-stationary noise, a weighting function is investigated using Deep Neural-Network (DNN).  
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Using DNN approach for selecting desired signal frequency turned out to be effective.  In DNN 

based time-frequency mask estimation step, the ideal binary masks for signal are set as  

 

𝑀�̂�(𝑙, 𝜔) = {
1,     

‖𝑋(𝑙,𝜔)‖

‖𝑁(𝑙,𝜔)‖
> 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0,                    𝑒𝑙𝑠𝑒               
    (1) 

 

where 𝑋(𝑙, 𝜔) and 𝑁(𝑙, 𝜔) are the desired signal component and noise component in 𝑙th frame of  

input noisy signal in STFT domain respectively.  A DNN composed of LSTM and feedforward 

layers is trained to estimate the ideal binary masks, 𝑀�̂�(𝑙, 𝜔) from a noisy spectrum. The noisy 

spectrum is generated for the training step by summing the signal and noise signal which is 

recorded in real environments. The specific structure of DNN is shown in the table below, 

Table 1. LSTM network configuration for mask estimation 

Layers Units Type 
Non-

linearity 
pdropout 

L1 256 LSTM Tanh 0.5 

L2 513 FF ReLU 0.5 

L3 513 FF ReLU 0.5 

L4 1026 FF Sigmoid 0.0 

 

The window size and frame shift are set at 1024 and 512 samples, respectively, at a 16 kHz 

sampling rate. pdropout means the ratio of nodes to apply dropout technique in training step. The 

DNN consists of one Long Short-Term Memory (LSTM) layer and three Feed-Forward (FF) 

layers. 

 

 
Fig. 2 LSTM based speech mask estimation process (speech as desired signal) 

Result:  

 

- We developed a novel masking method for sound source localization in the noisy 

environments by:  

① Using the DNN based approaches for modeling the relationship between the noisy 

and clean signals as a nonlinear transformation. 

② Exploiting the sequential information from the previous adjacent frames using 

feed-back of LSTM network, which conventional approaches cannot utilize. 
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 After applying DNN based mask to each channel of input signal, Time Difference Of 

Arrival (TDOA) is estimated for each pair of microphones to find location of acoustic source. 

The TDOAs can be estimated from so-called angular spectrum, whose peaks indicate the TDOA 

of the source. Generalized Cross Correlation-Phase Transform (GCC-PHAT) is used as an 

angular spectrum in this system. GCC of the mth and nth microphone signals is calculated as eq. 

(2)  

 

Rmn(𝑙, 𝜔) =
1

2𝜋
∫ 𝛹𝑚𝑛(𝑙, 𝜔)𝑋𝑚(𝑙, 𝜔)𝑋𝑛

∗(𝑙, 𝜔)𝑒𝑗𝜔𝜏𝑑𝜔
∞

−∞
,        (2)                                                        

 

where 𝛹𝑚𝑛(𝑙, 𝜔) denotes a weight function. Although many different weighting functions can be 

applied, the PHAT has been found to perform quite well under realistic acoustical conditions. 

 

𝛹𝑚𝑛(𝑙, 𝜔) =
1

|𝑋𝑚(𝑙,𝜔)𝑋𝑛
∗ (𝑙,𝜔)|

                                                              (3) 

 

The Figure 3 shows the outline of GCC-PHAT based source localization system. 

 

 
Fig. 3 GCC-PHAT based source localization system 

 

The proposed algorithm was evaluated in a 5.0 × 6.0 × 2.5 3m simulated room 

environment using image source method. The reverberation time setting (RT60) was 0.5sec. A 

pair of microphones with 20cm inter-spacing was located at the center of the room. The non-

stationary harmonic noise, speech (desired signal) and background noise sources were generated 

at 1.5 m from the microphones in the direction of 75°, 90° and 105°, respectively. We compared 

the proposed algorithm performance to the conventional GCC-PHAT, Denda’s method [1], local 

peak weight (LPW) [2], and SNR [3] based methods with correction rate [%] of direction 

estimation for each samples. As mentioned above, the ground truth direction of speech 
s  was 

90°. Table 2 shows the desired sound source direction estimation performance of conventional 

and proposed methods. It shows that the proposed method attained improved performance under 

the ensuing harmonic and non-stationary noise environment. We achieved the most robust 

performance using LSTM based non-linear and temporal modeling, which other algorithm lacks 

as shown by the table below. 
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Table 2. Desired sound source direction estimation performance 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 (Task 2) Explore effective multichannel signal enhancement techniques 

 

To date, deep-learning approaches to far-field acoustic signal enhancement, particularly 

those that incorporate a Denoising Auto-Encoder (DAE), have had great success when applied to 

single-channel audio signals. However, the use of DAEs for multiple channels faces a number of 

challenges. The main reason for this is that phase information in the time-frequency domain 

plays a vital role in delivering the spatial information of multi-channel signals. Modelling this 

phase difference from time-domain or time-frequency domain requires large amounts of data to 

cover the various spatial configurations, while the effective way of utilizing spatial information 

in DAE structure is still under researching.  

As an alternative to a direct DAE based approach, a conventional beamformer can be 

introduced prior to the implementation of the DAE. The spatial information utilized by the 

beamformer in the form of the ratio of acoustic transfer functions, i.e. Relative Transfer 

Functions (RTFs), is characterized by the path between the speaker and each microphone. 

However, the modelling ability of the DAE is limited when applied to single-channel 

beamformer output. 

 

Issue : What bemforming structure would be effective for utilizing the modelling ability of the 

DAE? 

Therefore, in Task 2, a novel structure of multichannel signal enhancement system 

which adopts a DAE as part of the beamformer is proposed. The proposed structure of the 

Generalized Sidelobe Canceller (GSC) generates enhanced multi-channel signals, instead of 

merely one channel, to which the following DAE can be applied. Because the beamformer 

exploits spatial information and compensates for differences in the transfer functions of each 

channel, the proposed technique is expected to resolve the difficulty of modelling relative 

transfer functions consisting of complex numbers which are hard to model with a DAE. As a 

result, the modelling capability of the DAE can concentrate on removing artefacts caused by the 

beamformer. Unlike conventional beamformers, which combine these artefacts into one channel, 

they remain separated for each channel in the proposed method. As a result, the DAE can remove 

the artefacts by referring to other channels. 

Correction rate of direction estimation (%) 
Noisy input SNR (dB) 

-5 0 5 Avg. 

GCC-PHAT (baseline) 13.3 43.3 60.0 38.9 

Denda’s weight [1] 53.7 76.0 83.2 71.0 

SNR based weight [2] 40.3 69.3 90.3 66.6 

LPW based weight [3] 49.3 66.3 94.3 70.0 

Proposed LSTM based weight 76.3 86.3 97.7 86.8 

At SNR over 10dB, the correction rate of both conventional and proposed 

methods shows over 95%. 
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We use GSC which can estimate noise statistics adaptively and can be implemented 

using only the direction of target speech. We assume that the beamformer is working on each 

frame instead of a whole utterance so that the proposed algorithm can be applied to not only 

recognition system, but also the real-time communication system. This approach estimates noise 

statistics by each frame, thus eliminating the need to model noise in advance. Since no prior 

information of noise statistics is provided, limiting noise types to predefined ones can also be 

avoided.  

 

Result:  

 

- We developed a novel structure of beamformer for 

① Exploiting spatial information and generates multi-channel enhanced signals on 

which the following DAE can act.  

② Taking advantage of the multi-channels by modelling the underlying relationship 

of the distortion with adjacent frequency bins in other frequencies and other 

channels. 
 

 

The proposed system is illustrated in Figure 4. 𝑧𝑚(𝑙, 𝑘) is the received signal and noise 

at the m-th sensor in the short-time Fourier transform domain. 

 

 
Fig. 4  Structure of the proposed GSC and DAE 

 

The BM is designed to project the input signals into the orthogonal complement of the 

target signal RTF. The filter weights of BM can be calculated using the target signal RTF. In our 

case, the satisfactory estimation of target signal RTF is not feasible due to noise being non-

stationary. As a result, the RTF is simplified as a pure time delay and calculated from the 

estimated target signal direction. In the proposed system, each individual ANC filter is adapted 

separately to minimize each input signal by removing the noise component estimate. 

 

�̂�𝑚(𝑙, 𝑘) = 𝑎𝑟𝑔𝑚𝑖𝑛𝐪𝑚
𝐸{‖𝑧𝑚(𝑙, 𝑘) − 𝐪𝑚

H (𝑙, 𝑘)𝐮(𝑙, 𝑘)‖2}, (1) 
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where 𝐪𝑚 is the ANC coefficient corresponding to the m-th channel. The FBF takes 𝑀 enhanced 

channel signals from 𝑀 separated ANC filters and compensates the RTF to generate the multi-

channel output features: 

 

�̂�𝑚(𝑙, 𝑘) = 𝑤𝐹𝐵𝐹,𝑚
∗ (𝑙, 𝑘)(𝑧𝑚(𝑙, 𝑘) − 𝐪𝑚

H (𝑙, 𝑘)𝐮(𝑙, 𝑘)), ( 2) 

 

where 𝑤𝐹𝐵𝐹,𝑚
∗ (𝑙, 𝑘)is the mth channel component of the fixed beamformer and this compensate 

the time delay between each channel using estimated target signal direction. Note that the 

proposed structure has the same filter coefficient as a conventional GSC if the output signals are 

summed into one channel. The distortion caused by imperfect noise cancellation is placed on the 

multi-channel spectrum domain of a two-dimensional space with a channel axis and frequency 

axis for each frame. The DAE is expected to model the underlying relationship of the distortion 

with adjacent frequency bins in other frequencies and other channels. 

To analyze effectiveness of the proposed structure, target signal enhancement is 

conducted in a manner similar to [4], as depicted in Figure 4. Note that the use of mask 

estimation before the beamformer and more sophisticated DAE structures are not considered 

because these improvements can be used in both the conventional and the proposed system. This 

experiment aims to judge the effectiveness of the proposed algorithm in its most typical 

configuration. The proposed system uses the results of the proposed GSC as the multi-channel 

information and their summation as the beamformed signal. In the baseline system, the output of 

the conventional GSC is used as the beamformed signal, and the noisy input signal itself (GSC-

NOISY) [4] and the interaural phase difference (GSC-IPD) [5] are used as the multichannel 

information. To assess the advantages of using multi-channel information, these systems are also 

compared with a single channel DAE (GSC-ONLY) which uses only the conventional GSC 

output without multi-channel information. 

To evaluate performance, six-channel data from CHiME [6] is used. This database 

provides noisy signal recorded using 6 microphones. The signal to distortion ratio (SDR) which 

is defined as energy ratio criteria [6] and the short-time objective intelligibility (STOI) described 

in [7] are used to measure speech enhancement performance. The word error rate in automatic 

speech recognition (ASR) is scored with an acoustic model trained on a clean database. The 

LibriSpeech database [8] is used in a time delay neural network based ASR system [6]. Note that 

ASR evaluation is performed in mismatched conditions in terms of noise and RIRs on the 

assumption that target signal enhancement is performed without prior knowledge of the 

environment. Evaluation results show that the proposed method consistently outperforms the 

conventional methods. Note that the STOI score is expected to have a monotonic relation with 

subjective speech intelligibility, where a higher value denotes more intelligible speech. 

 

Table. 3. Evaluation results for target signal enhancement and word error rate 

Score 

Mult. Info. 
SDR STOI WER(%) 

Noisy input -0.694 0.674 84.43 

GSC- ONLY 7.915 0.835 30.57 

GSC-NOISY 7.320 0.837 27.13 

GSC-IPD 7.445 0.835 26.74 

Proposed 8.687 0.856 20.83 
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2.3 (Task 3) Develop an acoustic event recognition for aerial robot platform  

One of the fundamental issues in deep learning is availability of large labeled data set. It 

has been consistently shown over the last decade that larger labeled data set with deeper network 

layers can lead to improved results. However, it is not easy to collect large amounts of labeled 

data, especially in Acoustic Event Recognition (AER) for specific target event.  Hence, it is 

necessary to transfer knowledge for domain specific event recognition task from the network 

independently trained by a relatively large acoustic DB.  

 

Issue : To achieve robustness of acoustic event (scene) classification, a powerful mitigating 

approach would be to provide a large database made available for training. What deep learning 

based approaches can be rendered effective for generating useful training database?    

 

The “transfer learning” scheme aims at transferring knowledge between the source 

domain used for pre-training and the target domain of interest [10]. In computer vision, transfer 

learning overcomes deficit of target domain training samples by adapting classifiers that are pre-

trained for other large-scaled DB [11]. In recent VOC fields, CNN based supervised transfer 

learning methods pre-train lower layers in source domain first and then transfer these lower layer 

parameters for training target domain categories [11]. Transfer learning can address the issue of 

AER DB being significantly smaller compared to that of other audio signal applications. 

Therefore, we proposed to pre-train a classifier with large-scaled source domain DB and transfer 

the parameters for training with target DB. Figure 5 shows the proposed structure for transfer 

learning. 

 

 
   Fig. 5  Structure of the proposed transfer learning based AER 

 

Additionally, we explored using generative model for DB augmentation. To generate 

additional samples using the training DB, we proposed to use Generative Adversarial Net (GAN). 

The GAN learns two sub-networks: a generator and a discriminator. The discriminator reveals 

whether a sample is generated or real, while the generator produces samples to pass through the 

discriminator as real data. Although additional data generated by GAN may lead to improved 
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classifier training, it is not clear whether every data point generated by GAN would have equal 

impact in classifier performance. As it has been shown by Support Vector Machine (SVM), those 

support vectors that reside near decision boundary are generally crucial in providing key 

information for classification [12]. It is believed that the performance could be improved by 

selecting the generated data by measuring decision value (distance) from decision hyper-plane of 

SVM for each class. Figure 6 shows GAN based iteration routine for DB augmentation.  

 

 
Fig. 6 The iterative routine of the DB generation and selection  

 

 

Result:  

 

- To overcome the deficit of training DB and thereby improve the performance in acoustic 

scene classification and event recognition, we proposed to 

① Use transfer learning for utilizing information from DB which has relatively large 

amount of volume and various class types. 

② Incorporate a GAN based DB augmentation approach using SVM criterion. 
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In transfer learning based approach, as shown in Figure 5, the network for source domain 

is composed of three hidden fully connected layers which use a Sigmoid activation function and 

a single output layer with a SoftMax function. For filter training in the target domain, similar to 

the transfer learning in VOC [10], the output layer of the pre-trained network is removed and two 

hidden fully connected layers and a new single output layer are added to enable adaptation. 

Because the transferred layers have been pre-trained to classify various classes within the source 

domain, the layer outputs may capture the discriminative features of different sounds [10]. In 

target domain training, the outputs of the transferred layer are adapted to target domain labels by 

using them as inputs for training the additional two hidden layers. In summary, the parameters 

for layers SL#1-3 are first trained in the source domain then transferred to the target domain and 

fixed. Only the additional adaptation layers (TL#1-2) are trained using the target domain training 

data.   

After the target domain training step, output layer and activation functions of the last 

hidden layer (TL#2) are removed. This process is motivated by the bottleneck feature studies 

[17], which follow a similar approach in using DNN mid-layers and demonstrate effective 

performance. Finally, five hidden layers from SL#1 to TL#2 are used as a DNN filter and the 

output values of layer TL#2 without activation function are used as the input features for the 

AEC system. 

In GAN based approach, as shown in Figure 6-step (a), a GAN for each class was trained 

using a part of the training set, which excludes the validation part for following steps. Using the 

trained GANs, we generated ‘fake’ samples and organized the sample feature pools for each 

class as shown in step (b). Before using the generated samples, an SVM hyper-plane for each 

class (target class vs. the others) was first determined from the real data set to establish a baseline 

performance. We chose the bus class as an example. Note that half of the training set was used 

for training and the other half was used for validating SVM performance. As shown in step (c), 

we checked classification performance of SVM with sum of the training and validation set 

accuracy. Considering the SVM update in the next step, we added a weight (α, which is bigger 

than 1) to the unseen data, i.e. validation accuracy. In step (d), we subsampled ‘fake bus’ features 

from the generated bus feature pool and checked decision values on the SVM hyper-plane 

trained from Tr-A set. As shown in step (e), we sorted the fake samples by the distance order, 

and chose a preset number of the nearest samples. Additionally, we also included small number 

of samples near the hyper-plane that were classified as non-bus by handicapping their decision 

value. We then merged the near boundary fake samples with the real samples of Tr-A set. Step (f) 

shows the new SVM hyper-plane trained by the merged set. Before training the new SVM, we 

added random vectors, which are scaled to the magnitude of the samples, to reduce the sample 

bias of the generation using GAN. As was done in step (c), the classification performance of new 

SVM was checked with the sum of the training (Tr-A) and validation set (Tr-B) accuracy. If the 

accuracy score of the new SVM outperforms the previous SVM score, the reference SVM hyper-

plane was replaced with the new one and the iteration continues again with the fake sample 

subsampling in the step (d). If not, the iteration proceeds to the step (d) without replacing the 

reference hyper-plane. Once the SVM performance is optimized, the associated support vectors 

of fake bus features were used for the augmented training set. The entire process is repeated with 

the Tr-B as the training set for GAN and SVM, and Tr-A as the validation set. The whole 

processes are repeated for each acoustic scene class.  

 Table 4 shows the source domain DB for transfer learning. The target indoor surveillance 

DB consists of 15 events (a crying child, breaking glass, water drops, chirping birds, a doorbell, 

home appliance beeping, screaming, a dog barking, music, speech, a cat meowing, a gunshot, a 
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siren, an explosion, and footsteps). For checking noise robustness of AER, noise was added to 

the event DB at 5, 10, 15 dB SNR. In addition, compared with other DNN-based feature 

extraction methods, such as the Deep Belief Network (DBN) feature, which is used for music 

genre classification [18], and DNN bottleneck feature [17], the proposed method demonstrated 

improved accuracy by effectively utilizing the information transferred from the source domain. 

Table 5 shows performance comparison with aforementioned conventional approaches. 

 

Table 4.    Source domain database description 

DB set Contents 

Clear-OL [13] 
Alert, cough, door slam, drawer, key, keyboard, knocking, laughing, mouse, 

page turn, pen drop, phone, printer, speech, switch, clear throat 

RWCP [14] 

Air-cap, bell, break stick, buzzer, castanet, ceramic collision, clap, clock 

ringing, coin, cymbals, drum, dryer, grinding coffee, kara, maracas, metal 

collision, article dropping, plastic collision, pump, punch stapler, rubbing, 

shaver, spray, string, tambourine, toy, whistle, wood collision 

Urban-Sound 

[15] 

Air-conditioner, dog bark, drilling, engine idling, car horn, jackhammer, 

children playing, siren, street music, shot 

ESC-50 [16] 

Airplane, breathing, brushing teeth, can opening, cat, chainsaw, chirping birds, 

church bells, clapping, clock alarm, clock tick, coughing, cow, crackling fire, 

crickets, crow, door - wood creaks, door knock, drinking – sipping, engine, 

fireworks, footsteps, frog, hand saw, helicopter, hen, insects (flying), pig, 

pouring water, rooster, sea waves, sheep, sneezing, snoring, thunderstorm, 

toilet flush, vacuum cleaner, washing machine, wind 

Total 93 classes / The similar classes from the different DB set had been merged / 16 kHz 

resampled, 16 bit resolution 

 

 

Table 5. Average acoustic event classification rate [%] for ETSI background noise using various 

features with SVM classifier 

 
Living room 

noise 
Office noise Clean 

DB 

Avera

ge 
SNR [dB] 5 10 15 5 10 15 

MFCC 
79.

7 

85.

5 

94.

5 

81.

1 

87.

6 

95.

1 
96.1 88.5 

DBN feature [18] 
86.

4 

89.

9 

93.

9 

89.

9 

93.

3 

95.

7 
96.4 92.2 

DNN-bottleneck feature [17] 
86.

3 

90.

9 

95.

5 

90.

7 

92.

5 

95.

9 
96.5 92.6 

Proposed transfer learning 

approach 

92.

5 

96.

3 

96.

3 

93.

7 

96.

5 

96.

5 
98.9 95.8 

 

 

 Table 6 shows performance comparison between original DB set and GAN based 

augmented DB set. We used IEEE Detection and Classification of Acoustic Scenes and Events 
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(DCASE) 2017 task 1 DB [21] for Acoustic Scene Classification (ASC). It contains 15 different 

acoustic scene classes such as, Bus, Café, Car, City center, Forest path, Grocery store, Home, 

Lakeside beach, Library, Metro station, Office, Residential area, Train, Tram, and Park. We used 

Discrete Fourier Transform (DFT) based feature and Mel-Filtered Bank (MFB) as feature input, 

and Fully Connected Neural Network (FCNN) and SVM for classifier. Based on the 

experimental results of AER and ASC, we achieved improved performance in noisy surveillance 

environment utilizing information of universal background DB and generative method. 

Additionally, as shown in Figure 7, we achieved the best performance in DCASE 2017 grand 

challenge Task using the GAN based approach. 

 

Table 6. Comparing the performance of the conventional and the proposed method 

 (average accuracy on 4-fold validation of DCASE 2017 development set) 

Avg. 

acc. 

[%] 

with original 

development set 
with augmented set 

DFT- 

FCN

N 

MFB- 

FCN

N 

DFT-

SVM 

MFB-

SVM 

DFT-

FCNN 

MFB- 

FCN

N 

DFT-

SVM 

MFB-

SVM 

75.4 75.1 78.2 79.3 83.2 83.7 81.6 85.6 

 

 
Fig. 7 IEEE DCASE challenge 2017 task 1 results, 

(http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/task-acoustic-scene-classification-results) 

 

 

3. List of relevant papers published by this project  

 

- [Task 1] Investigate novel sound source localization techniques in highly non-

stationary noise dominant environments  

• Seongkyu Mun, Suwon Shon, Wooli Kim, David K. Han, and Hanseok Ko, 

“Acoustic Signal based Noise Robust Speaker Direction Estimation using Recurrent 

Neural Network”, IEICE transactions on Information & System, 2017 [submitted] 
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- [Task 2] Explore various multichannel signal enhancement techniques  

• Minkyu Shin, Seongkyu Mun, David K. Han and Hanseok Ko, “New Generalized 

Sidelobe Canceller with Denoising Auto-Encoder for Improved Speech 

Enhancement”, IEICE transactions on Fundamentals of Electronics 

Communications and Computer Sciences, vol.100-A, no.12, Dec, 2017  

 

- [Task 3] Develop the acoustic event recognition system for aerial robot platform 

• Seongkyu Mun, Sangwook Park, David K. Han and Hanseok Ko, “Generative 

Adversarial Network based Acoustic Scene Training Set Augmentation and 

Selection using SVM Hyper-Plane”, IEEE DCASE challenge workshop, Nov. 2017 

[Winner of the Grand Challenge Task 1] 

• Seongkyu Mun, Minkyu Shin, Suwon Shon, Wooil Kim, David K. Han and 

Hanseok Ko, “DNN Transfer Learning based Non-linear Feature Extraction for 

Acoustic Event Classification”, IEICE transactions on Information and Systems, 

Vol. 100-D, No. 9, pp. 2249-2252, Sep. 2017  

• Seongkyu Mun, Suwon Shon, Wooli Kim, David K. Han, and Hanseok Ko, “A 

Novel Discriminative Feature Extraction for Acoustic Scene Classification using 

RNN based Source Separation”, IEICE transactions on Information & System, 2017 

[in press] 

  

4. Conclusions and future work 

 

We explored three key-techniques for robust acoustics and speech perception of aerial 

robot for scene understanding during critical emergency response missions. For noise robust 

sound source localization, we proposed a noise robust desired sound direction estimation method 

using LSTM based weighting function. The direction estimation experiments confirmed that the 

proposed method shows improved robustness under indoor surveillance noise environment 

characterized by presence of harmonic or non-stationary noise sources. Our future work will 

investigate effective methods for applying RNN method to phase-spectrogram as Non-negative 

Matrix Factorization (NMF) was applied to phase-spectrogram previously in [19]. 

In terms of our signal enhancement performance under noisy environment, the GSC 

exploits spatial information and generates multi-channel enhanced signals on which the 

following DAE can act. As a result, the DAE can take advantage of the multi-channels by 

modeling the underlying relationship of the distortion with adjacent frequency bins in other 

frequencies and other channels. The evaluation results demonstrate that utilizing the results of 

the proposed GSC structure as an input to the DAE is effective in improving noise reduction and 

speech recognition performance. 

To improve acoustic event recognition performance and overcome the deficit of acoustic 

event resource, we proposed a novel DNN based transfer learning approach. By utilizing the 

information transferred from the universal source domain, the proposed approach was 

characterized by improved AEC accuracy in indoor surveillance experiments. Once DNN filter 

training has been completed in the source domain, this DNN filter can be utilized in other 

domains, repeatedly. Therefore, future work will investigate an effective transfer learning 

scheme for various acoustic applications and determine how performance changes depending on 

the configuration of the data. 

The acoustic perception during the hovering and moving of the aerial robot, which will 

be conducted in the future steps, will be more challenging task, due to the severe noisy 
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environment. Furthermore, we assumed that an only single sound event occurs within a restricted 

event class in this phase, but in a real environment hundreds of multiple sounds occur 

simultaneously. To address the issue above, the next research phase is to investigate acoustic 

event recognition using the Google Audio-Set [20]. The Google Audio-Set is acoustic DB based 

on real life video uploaded in YouTube. It is the latest and largest video-based sound event 

recognition DB released in March 2017 with 5.8K hour long consisting of 527 sound classes in 

total. Based on the acoustic database, we will address the DB deficit issue of this year and 

investigate the simultaneous occurrence of the hundreds of sounds mentioned above. In the IEEE 

DCASE 2017 challenge task 4 [21], there was a competition using the Audio-Set DB. It was the 

competition to recognize 17 types of warning and vehicle sounds for a self-driving smart car 

environment similar to aerial robot environments. The participating teams using the 

convolutional recurrent neural network showed the best performance in the competition. As a 

future plan, we plan to explore the domain transformation (adaptation) for the aerial robot 

environment using the GAN-based various approaches and the audio feature augmentation using 

other generative methods such as, Variational Auto Encoder (VAE). 

 

Fig. 8 The example structure of GAN based domain transformer 

 

 

Fig. 9 Possible structure examples of generative approaches [22] 
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