
STORAGE, REPRESENTATION, AND MANIPULATION OF
DISTRIBUTION FUNCTIONS

YALE UNIVERSITY

AUGUST 2018

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2018-188

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other
than Government procurement does not in any way obligate the U.S. Government. The fact that the
Government formulated or supplied the drawings, specifications, or other data does not license the holder
or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any
patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nations. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2018-188 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

/ S / / S /
UTTAM K. MAJUMDER JOHN D. MATYJAS
Work Unit Manager Technical Advisor, Computing

 & Communications Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information
if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

AUG 2018
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

MAY 2017 – FEB 2018
4. TITLE AND SUBTITLE

STORAGE, REPRESENTATION, AND MANIPULATION OF
DISTRIBUTION FUNCTIONS

5a. CONTRACT NUMBER
FA8750-17-1-0113

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62303E

6. AUTHOR(S)

Rajit Manohar

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
(R28K)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Yale University
Computer Systems Lab
New Haven, CT 06520

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITB
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2018-188
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research
deemed exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec
08 and AFRL/CA policy clarification memorandum dated 16 Jan 09
13. SUPPLEMENTARY NOTES

14. ABSTRACT

Probabilistic reasoning techniques are emerging as one of the most powerful ways to extract information from complex
spatio-temporal data streams generated by modern sensors. Representing features and estimating their probability
requires manipulating high-dimensional functions that have a priori unknown structure. This study examines alternate
approaches to representing such distribution functions using implicit rather than explicit representations

15. SUBJECT TERMS
Static random access memory, Dynamic random access memory, Cumulative distribution function, Probability
distribution function

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
UTTAM K. MAJUMDER

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

15

Table of Contents

1. SUMMARY ... 1
2. INTRODUCTION ... 1
3. METHODS, ASSUMPTIONS, AND PROCEDURES ... 2

3.1 STOCHASTIC EXPANSIONS ... 2
3.2 IMPLEMENTING EXPONENTIALS AND RANDOMNESS .. 3

4. RESULTS AND DISCUSSION ... 7
5. CONCLUSIONS ... 9
6. REFERENCES .. 10
7. LIST OF ACRONYMS ... 10

List of Figures

Figure 1. Overall architecture for storing PDFs.. 4

Figure 2. Using a 0/1 coin toss as an exponential approximation. ... 6

Figure 3. Accuracy of ideal Poisson PDF versus 0/1 approximation, with different number of bits

averaged. ... 7

Figure 4. Accuracy of ideal Gaussian PDF versus 0/1 approximation, with different number of

bits averaged. .. 8

file://Users/rajit/Library/Containers/com.microsoft.Word/Data/Desktop/Report_SAGA.docx#_Toc516493063
file://Users/rajit/Library/Containers/com.microsoft.Word/Data/Desktop/Report_SAGA.docx#_Toc516493064
file://Users/rajit/Library/Containers/com.microsoft.Word/Data/Desktop/Report_SAGA.docx#_Toc516493065
file://Users/rajit/Library/Containers/com.microsoft.Word/Data/Desktop/Report_SAGA.docx#_Toc516493065
file://Users/rajit/Library/Containers/com.microsoft.Word/Data/Desktop/Report_SAGA.docx#_Toc516493066
file://Users/rajit/Library/Containers/com.microsoft.Word/Data/Desktop/Report_SAGA.docx#_Toc516493066

Approved for Public Release; Distribution Unlimited
1

1. Summary

The goal of this effort was to provide an alternate way to represent complex high-dimensional

distribution functions with an implicit representation. Such distribution functions are important for

estimating the probability of rare events. When the distributions are unknown, as is commonly the

case, the traditional approach is to represent the distribution by a large dataset that corresponds to

the sampled value of the distribution. This representation is then updated from

measurements/observations to improve the estimate—essentially to “learn” the distribution from

samples.

2. Introduction

An unknown high-dimensional probability distribution (PDF) can be viewed as a map from a high-

dimensional space of features to [0,1]. For simplicity, suppose each feature can be viewed as a real

number from 0 to 1. The problem with rare events is that the event of interest might occur in a very

“small” part of the input feature space. Capturing it requires having extremely high resolution in

the input feature space, and this means that high precision representations are needed for the

features as well as the output. If the input feature space is n-dimensional, and we have p-bit

precision for the input features and output, then the PDF has 2pn possible input combinations, and

hence a total storage of (p×2pn) bits—which can be extremely large.

Updating such a large storage array is expensive not only from a time complexity stand-point, but

also from an energy-consumption standpoint. Memories are organized to maximize the storage per

unit of area/volume. Reading or writing the entire contents of memory is extremely slow due to

resource sharing constraints imposed to maximize density. Hence, an efficient representation of

PDFs is essential to minimize the cost of accessing and manipulating complex density functions.

One approach is to compress the raw bits, but good compression algorithms do not permit easily

manipulation of the components of the compressed data. This study takes a non-standard approach

to this problem, but examining alternative strategies for representing PDFs.

Approved for Public Release; Distribution Unlimited
2

3. Methods, Assumptions, and Procedures

3.1 Stochastic Expansions

We studied the possibility of representing complex PDFs using stochastic expansions [1][2]. In a

stochastic expansion, we attempt to model a complex PDF by combining a collection of known,

simple PDFs. To illustrate the one-dimensional case, consider the problem of sampling a one-

dimensional distribution with a cumulative density function CDF(x) where x is in some range

[0,N]. It is well-known that, given a random variable y that is uniformly distributed over the

interval [0,1], we can produce a random variable with a distribution that matches the given

distribution by simply using x = CDF-1(y). The question studied was to determine if this can be

generalized. It is important to note that “x = CDF-1(y)” can be viewed as an implementation of the

specified CDF; however, the implementation is not unique. In other words, while “x = CDF-1(y)”

describes how we can generate a random variable with a distribution that matches the given CDF,

it is not the only way to do so. For example, the variable (1-y) is also a uniformly distributed

random variable over the interval [0,1]—but it is a different random variable from y. So, from a

statistical perspective, it might be better to say “x ～ CDF-1(y)” to refer to the fact that the

distributions match.

We examine the possibility of polynomial expansions as a way to generate arbitrary distributions

from random variables with known distributions. If we can do this accurately, then it would be

possible to build hardware that, given a high-resolution sample of a known distribution, can

compute a sampled value of the distribution of interest with multiply-accumulate hardware. In

other words, a polynomial gn(x) = a0 + a1x + a2x2 + … + anxn can be efficiently evaluated using n

multiply-add operations by re-parenthesizing the expression.

One of the typical challenges with a digital representation of information is that the hardware cost

in terms of area/footprint to store information grows with the precision requirement. This can be

seen with the PDF above, where increasing the precision by one bit increases the storage

requirement by at least a factor of 2n. Furthermore, it is not easy to perform some computation

with low precision, and then determine that a higher precision is necessary without losing

accuracy. If, instead, we could represent the PDF using coefficients of a polynomial expansion,

Approved for Public Release; Distribution Unlimited
3

we will have de-coupled the precision of the input features from the number of bits required to

store the PDF. The input feature precision determines x, the argument of the polynomial, and this

in turn impacts the computation cost needed to compute the polynomial. However, we do not need

to a-priori determine what this precision is, thereby eliminating the problem encountered by the

traditional approach where we must know this precision up-front.

To increase the input precision, we need to generate the random variable used to compute the

unknown distribution with high precision—precision that can be easily adapted at run-time. We

do this by representing a random variable using an implicit representation rather than an explicit

representation. In particular, we examine Poisson random variables as a way to efficiently

implement randomness.

3.2 Implementing exponentials and randomness

There are methods for measuring and amplifying physical sources of randomness such as thermal

noise. However, most of these techniques are quite costly in terms of energy and area. Most

common hardware random number generators are built using linear feedback shift registers

(LFSRs), which generate m-sequences using polynomials over the field GF(2) [3]. The hardware

implementation is extremely cheap, and consists of a combination of shift registers and exclusive-

OR (XOR) gates. The hardware is organized based on the generating polynomial used for the m-

sequence, and each iteration generates a new pseudo-random number value. If there are k shift

registers, then k bits are generated per clock cycle and the maximum period of the pseudo-random

number sequence is 2k. If more random bits are desired, either a different LFSR can be created or

the number of shift register bits can be extended along with the generating polynomial. It is well-

known that for good choices of generating polynomials, the pseudo-random numbers behave as

uniformly distributed random variables. The largest disadvantage with this approach is the

incremental cost for randomness.

To reduce the cost of randomness, we designed a new memory architecture where the core of the

memory array holds the random bits of state. The rationale is that a memory is the densest logic

structure that can be reliably built, so it is the cheapest source of bits. Also, since dense memory

Approved for Public Release; Distribution Unlimited
4

is so important for a wide range of applications, there is enormous investment by industry in

improving the density, reliability, performance, and power consumption of memory. For example,

many novel material systems are being considered for integrated two-terminal devices for non-

volatile memory applications. While standard static random access memories (SRAMs) are

roughly 120-150F2 per bit (where F is the feature size), new memory technologies that can be

integrated with a standard CMOS process a projecting densities of 4-6F2 per bit—the same range

as main stream dynamic random access memory (DRAM). Hence, these technological

improvements would immediately be usable if we use memory bits for randomness.

The overall architecture for storing PDFs is illustrated in Figure 1. The core of the architecture

consists of a dense array of memory bits, that are accessed and updated in a non-traditional fashion

that requires modifying the memory control circuitry. Each bit of memory is stochastically

updated, and its 0/1 state follows a Poisson distribution. To illustrate the concept, consider a

variable that is initially 1. At some time interval t, we toss a biased coin with bias λ. If the coin is

heads, we reset the bit to 0; otherwise it remains 1. If we had k such bits, then the distribution of

the sum of those bits would be the binomial distribution. Taking the limiting case of the distribution

results in a Poisson distribution.

To implement this idea, we must have a cheap mechanism to update the bits of a memory.

Initializing the memory is straightforward, since all the bits are set to 1. To do so, we assert all the

Figure 1. Overall architecture for storing PDFs.

Approved for Public Release; Distribution Unlimited
5

word lines in parallel, and then simply drive the bit lines so that all the bits are set to a 1. This is

significantly less expensive than writing each line of the memory, since the bit-line cost is incurred

once. The savings depends on the relative cost of switching word lines versus bit-lines, which is a

function of the aspect ratio of the memory. For memories where the bit-line and word-lines are

optimized to have roughly the same load, this operation costs less than ½ the energy in the memory

core itself. However, the addressing costs are much lower since this operation requires one global

address request rather than using the address decoder once per row.

Instead of the coin-tossing operation we described earlier being performed per bit, we instead toss

a large number of coins in parallel. If we assume the memory has M bits organized as 𝛼𝛼√𝑀𝑀 bits

per row and 1 𝛼𝛼� √𝑀𝑀 total rows, then we toss 𝛼𝛼√𝑀𝑀 coins in parallel and update all of those bits

with a single memory write operation. Note that we have to modify the write circuitry to skip the

write operation when the coin is tails. For the bits whose states do not change, we keep the bit-

lines pre-charged; this automatically preserves the old state since read stability of a memory bit-

cell requires that the cell state be undisturbed when the bit-lines are in the (1,1) state. Hence, we

still need a source of random numbers, but the state of the random number generator is now slightly

decoupled from the random state being used to sample the PDF.

A second approach that we also studied was the possibility of using the pseudo random number

generator as a way to select a random address of the memory for an update. For example, consider

a case where the coin bias λ is small. For situations like this, we might need many bits of

randomness. This is because the way one would implement such a bias would be to take a

uniformly distributed random number in the [0,1] range and compare it with λ. The resolution of

the comparison has to match the resolution of λ—and so does the resolution of the [0,1] random

number that is generated. If the memory has 1 𝛼𝛼� √𝑀𝑀 rows and 𝜆𝜆 𝛼𝛼� √𝑀𝑀 < 1, then we can instead

pick a row at random (using one LFSR), and then toss coins at a scaled value of λ with a second,

lower resolution LFSR.

Both these approaches allow us to create a Poisson distribution that is quite accurate. However,

what is more important, we can control the accuracy of the distribution after the fact by changing

Approved for Public Release; Distribution Unlimited
6

the number of bits that are averaged. Also, the bits in the memory can be allocated in a manner

that depends on the accuracy/resolution needed for each feature.

The third interesting observation is that there is a temporal component to this operation. The state

change operation is performed with some bias λ at some time interval t. While the bias has some

finite resolution because it depends on the number of pseudo-random bits generated as described

above, the time component is continuous and hence, can be adjusted at any desired resolution.

Both of these components determine the state of each random bit at a given point in time, providing

an externally tunable resolution for at least the temporal dimension.

The motivation for this approach originated when studying the design of neuromorphic hardware

architectures for modeling synaptic dynamics. Synapse dynamics are often modeled as decaying

exponentials, and these are in fact quite expensive to implement in standard digital hardware.

Hence, instead of computing an exponential function, we used a collection of independent coins

whose normalized sum was an approximation of the synaptic output. In some sense, the

exponential synapse is in fact the continuous approximation of an aggregate 0/1 coin toss; so the

coin-tossing approximation in some ways is more physically accurate than the exponential synapse

model!

Figure 2 shows the result of this approximation. The “Analog” output (computed using double-

precision floating-point arithmetic) is shown alongside the “Stochastic” output, which corresponds

to the 0/1 coin-tossing approximation to the exponential. What is interesting is that even after a

Figure 2. Using a 0/1 coin toss as an exponential approximation.

Approved for Public Release; Distribution Unlimited
7

complex non-linear differential equation transform that corresponds to the neuron dynamics, the

important feature of the neuron output (the average firing rate) is preserved by this approximation.

The neuron dynamics in question correspond to a quadratic integrate and fire neuron, so this

includes non-linear feedback (as can be seen in the peaking effect of the neuron output). The 0/1

approximation is visible in the synaptic output in the form of a “staircase” curve, rather than a

smooth exponential decay.

4. Results and Discussion

We studied the accuracy of representing two common distributions—Poisson and Gaussian—

using this approach. Figure 3 shows the result of approximating a standard Poisson distribution.

The distribution being approximated is shown as a continuous line, with the discrete points

corresponding to sampled values of the distribution. As should be evident, the mean of the samples

is very close to the actual PDF. By increasing the number of bits used for the approximation, the

variance can be significantly reduced. The cost of using more bits is simply more energy to read

the bits—a larger number of the memory bits are allocated for one distribution function.

Figure 3. Accuracy of ideal Poisson PDF versus 0/1 approximation, with different number of bits averaged.

Approved for Public Release; Distribution Unlimited
8

Poisson distributions are “native” to this type of 0/1 stochastic memory architecture. To examine

the impact of the coin-tossing scheme on different types of PDFs, we also examined the accuracy

of a Gaussian approximation using the same approach. While the core of the memory architecture

remains unchanged, the way the bits are interpreted changes. We use the stochastic expansion idea

to generate a Gaussian random variable from a Poisson one. As before, we can change the accuracy

of the representation by using a larger number of bits. The result of this are shown in Figure 4. The

results are roughly similar to those for the Poisson distribution, which validates the basic idea of

using 0/1 stochastic memory as a source of randomness, and then post-processing the result to

generate a different distribution function.

For this study, we used two different 28nm process technologies to evaluate the performance,

power, area, and efficacy of the approach. The total area required for modeling a PDF is dominated

by the SRAM bit-cell size, which is roughly 0.15µm2. Hence, the area of this design is extremely

compact (more than an order of magnitude smaller than a pseudo-random number generator bit).

There is some additional overhead compared to a standard memory architecture. The sources of

overhead are:

Figure 4. Accuracy of ideal Gaussian PDF versus 0/1 approximation, with different number of bits
averaged.

Approved for Public Release; Distribution Unlimited
9

• The pseudo-random number generators used for row and column addressing. These scale

as √𝑀𝑀, where M is the size of the memory compared to a traditional approach where this

overhead would scale as M.

• The additional circuitry needed for initializing the memory, and for not driving the bitlines.

The area overhead of this compared to a standard memory, with 8Kb of random bits, is roughly

12%.

We designed the memory architecture to support a throughput of 1 GHz. While the design is able

to operate at this throughput, it means that the resolution of fine-grained timing updates would be

limited by 10-9. However, each request can be provided at an arbitrary time point, so while the gap

between two updates has to be at least 10-9, the gap can be arbitrary and does not have to be

discretized to this resolution.

An evaluation of a random number is estimated from circuit simulations to be 83 fJ/bit, and

updating the state of the memory is approximately 102 fJ/bit. Compared to a low power embedded

CPU, our estimate is that this reflects a throughput increase of a factor of 40, with an energy

consumption that is 15,000 times lower.

5. Conclusions

One of the limitations is that studying the precise way such an approximation can be applied to

higher dimensional distribution functions is not well-understood in the mathematics community.

There are cases where this is straightforward, for example, when the distribution function can be

factored. However, the goal of this study was to examine cases when the function was in fact

unknown. From our investigation, we determined that higher dimensional stochastic expansions

are an area with limited mathematical/statistical results. Hence there is no systematic method or

accepted method to construct such expansions for high dimensional inputs.

Evaluating the impact of this approximation on Bayesian inference algorithms would be also

valuable. The approximation from this approach is stochastic, and hence it should not negatively

Approved for Public Release; Distribution Unlimited
10

impact the overall accuracy of inference algorithms (there should not be a systematic bias, for

example).

6. References

[1] Michael A Magdalinos. Stochastic expansions and asymptotic approximations. Econometric
Theory, 8(03):343–367, 1992.

[2] Xiaoliang Wan and George Em Karniadakis. Multi-element generalized polynomial chaos
for arbitrary probability measures. SIAM Journal on Scientific Computing, 28(3):901–928, 2006.

[3] Neal Zierler. Linear recurring sequences. SIAM Journal, 7(1):31—48, 1959.

7. List of Acronyms

Acronym Expanded Form
CDF Cumulative distribution function
DRAM Dynamic random access memory
LFSR Linear feedback shift register
PDF Probability distribution function

Probability density function
RTN Random telegraph noise
SRAM Static random access memory
XOR Exclusive OR Boolean operation

