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1. Summary

The goal of this effort was to provide an alternate way to represent complex high-dimensional 

distribution functions with an implicit representation. Such distribution functions are important for 

estimating the probability of rare events. When the distributions are unknown, as is commonly the 

case, the traditional approach is to represent the distribution by a large dataset that corresponds to 

the sampled value of the distribution. This representation is then updated from 

measurements/observations to improve the estimate—essentially to “learn” the distribution from 

samples. 

2. Introduction

An unknown high-dimensional probability distribution (PDF) can be viewed as a map from a high-

dimensional space of features to [0,1]. For simplicity, suppose each feature can be viewed as a real 

number from 0 to 1. The problem with rare events is that the event of interest might occur in a very 

“small” part of the input feature space. Capturing it requires having extremely high resolution in 

the input feature space, and this means that high precision representations are needed for the 

features as well as the output.  If the input feature space is n-dimensional, and we have p-bit 

precision for the input features and output, then the PDF has 2pn possible input combinations, and 

hence a total storage of (p×2pn) bits—which can be extremely large. 

Updating such a large storage array is expensive not only from a time complexity stand-point, but 

also from an energy-consumption standpoint. Memories are organized to maximize the storage per 

unit of area/volume. Reading or writing the entire contents of memory is extremely slow due to 

resource sharing constraints imposed to maximize density. Hence, an efficient representation of 

PDFs is essential to minimize the cost of accessing and manipulating complex density functions. 

One approach is to compress the raw bits, but good compression algorithms do not permit easily 

manipulation of the components of the compressed data. This study takes a non-standard approach 

to this problem, but examining alternative strategies for representing PDFs. 
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3. Methods, Assumptions, and Procedures

3.1 Stochastic Expansions 

We studied the possibility of representing complex PDFs using stochastic expansions [1][2]. In a 

stochastic expansion, we attempt to model a complex PDF by combining a collection of known, 

simple PDFs. To illustrate the one-dimensional case, consider the problem of sampling a one-

dimensional distribution with a cumulative density function CDF(x) where x is in some range 

[0,N]. It is well-known that, given a random variable y that is uniformly distributed over the 

interval [0,1], we can produce a random variable with a distribution that matches the given 

distribution by simply using x = CDF-1(y). The question studied was to determine if this can be 

generalized. It is important to note that “x = CDF-1(y)” can be viewed as an implementation of the 

specified CDF; however, the implementation is not unique. In other words, while “x = CDF-1(y)” 

describes how we can generate a random variable with a distribution that matches the given CDF, 

it is not the only way to do so. For example, the variable (1-y) is also a uniformly distributed 

random variable over the interval [0,1]—but it is a different random variable from y. So, from a 

statistical perspective, it might be better to say “x ～ CDF-1(y)” to refer to the fact that the 

distributions match. 

We examine the possibility of polynomial expansions as a way to generate arbitrary distributions 

from random variables with known distributions. If we can do this accurately, then it would be 

possible to build hardware that, given a high-resolution sample of a known distribution, can 

compute a sampled value of the distribution of interest with multiply-accumulate hardware. In 

other words, a polynomial gn(x) = a0 + a1x + a2x2 + … + anxn can be efficiently evaluated using n 

multiply-add operations by re-parenthesizing the expression.  

One of the typical challenges with a digital representation of information is that the hardware cost 

in terms of area/footprint to store information grows with the precision requirement. This can be 

seen with the PDF above, where increasing the precision by one bit increases the storage 

requirement by at least a factor of 2n. Furthermore, it is not easy to perform some computation 

with low precision, and then determine that a higher precision is necessary without losing 

accuracy. If, instead, we could represent the PDF using coefficients of a polynomial expansion, 
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we will have de-coupled the precision of the input features from the number of bits required to 

store the PDF. The input feature precision determines x, the argument of the polynomial, and this 

in turn impacts the computation cost needed to compute the polynomial. However, we do not need 

to a-priori determine what this precision is, thereby eliminating the problem encountered by the 

traditional approach where we must know this precision up-front. 

To increase the input precision, we need to generate the random variable used to compute the 

unknown distribution with high precision—precision that can be easily adapted at run-time. We 

do this by representing a random variable using an implicit representation rather than an explicit 

representation. In particular, we examine Poisson random variables as a way to efficiently 

implement randomness. 

3.2 Implementing exponentials and randomness 

There are methods for measuring and amplifying physical sources of randomness such as thermal 

noise. However, most of these techniques are quite costly in terms of energy and area. Most 

common hardware random number generators are built using linear feedback shift registers 

(LFSRs), which generate m-sequences using polynomials over the field GF(2) [3]. The hardware 

implementation is extremely cheap, and consists of a combination of shift registers and exclusive-

OR (XOR) gates. The hardware is organized based on the generating polynomial used for the m-

sequence, and each iteration generates a new pseudo-random number value. If there are k shift 

registers, then k bits are generated per clock cycle and the maximum period of the pseudo-random 

number sequence is 2k. If more random bits are desired, either a different LFSR can be created or 

the number of shift register bits can be extended along with the generating polynomial. It is well-

known that for good choices of generating polynomials, the pseudo-random numbers behave as 

uniformly distributed random variables. The largest disadvantage with this approach is the 

incremental cost for randomness. 

To reduce the cost of randomness, we designed a new memory architecture where the core of the 

memory array holds the random bits of state. The rationale is that a memory is the densest logic 

structure that can be reliably built, so it is the cheapest source of bits. Also, since dense memory 
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is so important for a wide range of applications, there is enormous investment by industry in 

improving the density, reliability, performance, and power consumption of memory. For example, 

many novel material systems are being considered for integrated two-terminal devices for non-

volatile memory applications. While standard static random access memories (SRAMs) are 

roughly 120-150F2 per bit (where F is the feature size), new memory technologies that can be 

integrated with a standard CMOS process a projecting densities of 4-6F2 per bit—the same range 

as main stream dynamic random access memory (DRAM). Hence, these technological 

improvements would immediately be usable if we use memory bits for randomness. 

The overall architecture for storing PDFs is illustrated in Figure 1. The core of the architecture 

consists of a dense array of memory bits, that are accessed and updated in a non-traditional fashion 

that requires modifying the memory control circuitry. Each bit of memory is stochastically 

updated, and its 0/1 state follows a Poisson distribution. To illustrate the concept, consider a 

variable that is initially 1. At some time interval t, we toss a biased coin with bias λ. If the coin is 

heads, we reset the bit to 0; otherwise it remains 1. If we had k such bits, then the distribution of 

the sum of those bits would be the binomial distribution. Taking the limiting case of the distribution 

results in a Poisson distribution. 

To implement this idea, we must have a cheap mechanism to update the bits of a memory. 

Initializing the memory is straightforward, since all the bits are set to 1. To do so, we assert all the 

Figure 1. Overall architecture for storing PDFs. 
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word lines in parallel, and then simply drive the bit lines so that all the bits are set to a 1. This is 

significantly less expensive than writing each line of the memory, since the bit-line cost is incurred 

once. The savings depends on the relative cost of switching word lines versus bit-lines, which is a 

function of the aspect ratio of the memory. For memories where the bit-line and word-lines are 

optimized to have roughly the same load, this operation costs less than ½ the energy in the memory 

core itself. However, the addressing costs are much lower since this operation requires one global 

address request rather than using the address decoder once per row. 

Instead of the coin-tossing operation we described earlier being performed per bit, we instead toss 

a large number of coins in parallel. If we assume the memory has M bits organized as 𝛼𝛼√𝑀𝑀 bits 

per row and 1 𝛼𝛼� √𝑀𝑀 total rows, then we toss 𝛼𝛼√𝑀𝑀 coins in parallel and update all of those bits

with a single memory write operation. Note that we have to modify the write circuitry to skip the 

write operation when the coin is tails. For the bits whose states do not change, we keep the bit-

lines pre-charged; this automatically preserves the old state since read stability of a memory bit-

cell requires that the cell state be undisturbed when the bit-lines are in the (1,1) state. Hence, we 

still need a source of random numbers, but the state of the random number generator is now slightly 

decoupled from the random state being used to sample the PDF. 

A second approach that we also studied was the possibility of using the pseudo random number 

generator as a way to select a random address of the memory for an update. For example, consider 

a case where the coin bias λ is small. For situations like this, we might need many bits of 

randomness. This is because the way one would implement such a bias would be to take a 

uniformly distributed random number in the [0,1] range and compare it with λ. The resolution of 

the comparison has to match the resolution of  λ—and so does the resolution of the [0,1] random 

number that is generated. If the memory has 1 𝛼𝛼� √𝑀𝑀 rows and 𝜆𝜆 𝛼𝛼� √𝑀𝑀 < 1, then we can instead

pick a row at random (using one LFSR), and then toss coins at a scaled value of λ with a second, 

lower resolution LFSR. 

Both these approaches allow us to create a Poisson distribution that is quite accurate. However, 

what is more important, we can control the accuracy of the distribution after the fact by changing 
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the number of bits that are averaged. Also, the bits in the memory can be allocated in a manner 

that depends on the accuracy/resolution needed for each feature. 

The third interesting observation is that there is a temporal component to this operation. The state 

change operation is performed with some bias λ at some time interval t. While the bias has some 

finite resolution because it depends on the number of pseudo-random bits generated as described 

above, the time component is continuous and hence, can be adjusted at any desired resolution. 

Both of these components determine the state of each random bit at a given point in time, providing 

an externally tunable resolution for at least the temporal dimension. 

The motivation for this approach originated when studying the design of neuromorphic hardware 

architectures for modeling synaptic dynamics. Synapse dynamics are often modeled as decaying 

exponentials, and these are in fact quite expensive to implement in standard digital hardware. 

Hence, instead of computing an exponential function, we used a collection of independent coins 

whose normalized sum was an approximation of the synaptic output. In some sense, the 

exponential synapse is in fact the continuous approximation of an aggregate 0/1 coin toss; so the 

coin-tossing approximation in some ways is more physically accurate than the exponential synapse 

model!  

Figure 2 shows the result of this approximation. The “Analog” output (computed using double-

precision floating-point arithmetic) is shown alongside the “Stochastic” output, which corresponds 

to the 0/1 coin-tossing approximation to the exponential. What is interesting is that even after a 

Figure 2. Using a 0/1 coin toss as an exponential approximation. 
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complex non-linear differential equation transform that corresponds to the neuron dynamics, the 

important feature of the neuron output (the average firing rate) is preserved by this approximation. 

The neuron dynamics in question correspond to a quadratic integrate and fire neuron, so this 

includes non-linear feedback (as can be seen in the peaking effect of the neuron output). The 0/1 

approximation is visible in the synaptic output in the form of a “staircase” curve, rather than a 

smooth exponential decay. 

4. Results and Discussion

We studied the accuracy of representing two common distributions—Poisson and Gaussian—

using this approach. Figure 3 shows the result of approximating a standard Poisson distribution. 

The distribution being approximated is shown as a continuous line, with the discrete points 

corresponding to sampled values of the distribution. As should be evident, the mean of the samples 

is very close to the actual PDF. By increasing the number of bits used for the approximation, the 

variance can be significantly reduced. The cost of using more bits is simply more energy to read 

the bits—a larger number of the memory bits are allocated for one distribution function. 

Figure 3. Accuracy of ideal Poisson PDF versus 0/1 approximation, with different number of bits averaged. 
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Poisson distributions are “native” to this type of 0/1 stochastic memory architecture. To examine 

the impact of the coin-tossing scheme on different types of PDFs, we also examined the accuracy 

of a Gaussian approximation using the same approach. While the core of the memory architecture 

remains unchanged, the way the bits are interpreted changes. We use the stochastic expansion idea 

to generate a Gaussian random variable from a Poisson one. As before, we can change the accuracy 

of the representation by using a larger number of bits. The result of this are shown in Figure 4. The 

results are roughly similar to those for the Poisson distribution, which validates the basic idea of 

using 0/1 stochastic memory as a source of randomness, and then post-processing the result to 

generate a different distribution function. 

For this study, we used two different 28nm process technologies to evaluate the performance, 

power, area, and efficacy of the approach. The total area required for modeling a PDF is dominated 

by the SRAM bit-cell size, which is roughly 0.15µm2.  Hence, the area of this design is extremely 

compact (more than an order of magnitude smaller than a pseudo-random number generator bit). 

There is some additional overhead compared to a standard memory architecture. The sources of 

overhead are: 

Figure 4. Accuracy of ideal Gaussian PDF versus 0/1 approximation, with different number of bits 
averaged. 
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• The pseudo-random number generators used for row and column addressing. These scale

as √𝑀𝑀, where M is the size of the memory compared to a traditional approach where this

overhead would scale as M.

• The additional circuitry needed for initializing the memory, and for not driving the bitlines.

The area overhead of this compared to a standard memory, with 8Kb of random bits, is roughly 

12%. 

We designed the memory architecture to support a throughput of 1 GHz. While the design is able 

to operate at this throughput, it means that the resolution of fine-grained timing updates would be 

limited by 10-9. However, each request can be provided at an arbitrary time point, so while the gap 

between two updates has to be at least 10-9, the gap can be arbitrary and does not have to be 

discretized to this resolution. 

An evaluation of a random number is estimated from circuit simulations to be 83 fJ/bit, and 

updating the state of the memory is approximately 102 fJ/bit. Compared to a low power embedded 

CPU, our estimate is that this reflects a throughput increase of a factor of 40, with an energy 

consumption that is 15,000 times lower. 

5. Conclusions

One of the limitations is that studying the precise way such an approximation can be applied to 

higher dimensional distribution functions is not well-understood in the mathematics community. 

There are cases where this is straightforward, for example, when the distribution function can be 

factored. However, the goal of this study was to examine cases when the function was in fact 

unknown. From our investigation, we determined that higher dimensional stochastic expansions 

are an area with limited mathematical/statistical results. Hence there is no systematic method or 

accepted method to construct such expansions for high dimensional inputs. 

Evaluating the impact of this approximation on Bayesian inference algorithms would be also 

valuable. The approximation from this approach is stochastic, and hence it should not negatively 



Approved for Public Release; Distribution Unlimited 
10 

impact the overall accuracy of inference algorithms (there should not be a systematic bias, for 

example). 
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7. List of Acronyms

Acronym Expanded Form 
CDF Cumulative distribution function 
DRAM Dynamic random access memory 
LFSR Linear feedback shift register 
PDF Probability distribution function 

Probability density function 
RTN Random telegraph noise 
SRAM Static random access memory 
XOR Exclusive OR Boolean operation 




