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1. Executive Summary 

This report presents the results of the research performed under Office of Naval Research (ONR) 

grant number N00014-13-1-0061 over the period of April 1st, 2017 to June 30th, 2018. The 

research team working on this project consists of Prof. Moeness Amin (PI, Villanova University), 

Mr. Ali Hamza (PhD student, Villanova University), Dr. Joe Fabrizio (DSTG, Australia), Dr. 

Anastasios Deligiannis (Loughborough University, UK), and Dr. Sangarapillai 

Lambotharan(Loughborough University, UK). 

The overaching research objectives are to develop novel co-prime sampling and array 

design strategies that achieve high-resolution estimation of spectral power distributions and signal 

direction-of-arrivals (DOAs), and their applications in various surveillance, radar imaging 

applications, and array processing. The focus of our studies has been in the following two areas: 

(i) Hybrid Sparse Array Beamforming Design for General Rank Signal Models Generalized co¬ 

prime array design; (ii) Optimum Sparse Subarray Design for Multitask Receivers. 

The research efforts under this project haave resulted in four conference papers and two 

journal papers, one under review and the other completed it first revision. Below is a summary of 

the research accomplishments in each of the above two individual areas. A list of the publications 

generated under the support of this project is provided in Section 2. The contributions in the two 

journal paper are fully discussed and explained in Section 3. The summaries of these papers are as 

follows. 

1.1 Hybrid Sparse Array Beamforming Design for General Rank Signal Models 

The report considers sparse array design for receive beamforming achieving maximum 

signal-to-interference plus noise ratio (MaxSINR) for both single point source and multiple point 

sources, operating in an interference active environment. Unlike existing sparse design methods 

which either deal with structured environment-independent or non-structured environment- 

dependent arrays, our method is a hybrid approach and seeks a full augumentable array that 

optimizes beamformer performance. This approach proves important for limited aperture which 

constrains the number of possible uniform grid points for sensor placements. The problem is 

formulated as quadratically constraint quadratic program (QCQP), with the cost function penalized 

with weighted ^-norm squared of the beamformer weight vector. Simulation results are presented 

to show the effectiveness of the proposed algorithm for array configurability in the case of both 
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single and general rank signal correlation matrices. Performance comparisons between the 

proposed sparse array and uniform arrays as well as arrays without full augmentability constraint 

are provided. 

1.2 Optimum Sparse Subarray Design for Multitask Receivers 

The problem of optimum sparse array configuration to maximize the beamformer output 

signal-to-interference plus noise ratio (MaxSINR) in the presence of multiple sources of interest 

(SOI) has been recently addressed in the literature. In this report, we consider a shared aperture 

system where optimum sparse subarrays are allocated to individual SOIs and collectively span the 

entire full array receiver aperture. Each subarray may have its own antenna type and can comprise 

a different number of antennas. The optimum joint sparse subarray design for shared aperture 

based on maximizing the sum of the subarray beamformer SINRs is considered with and v/ithout 

SINR threshold constraints. We utilize Taylor series approximation and sequential convex 

programming (SCP) techniques to render the initial non-convex optimization a convex problem. 

The simulation results validate the shared aperture design solutions for MaxSINR for both cases 

where the number of sparse subarray antennas is predefined or left to comstitute an optimization 

variable. 
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2. List of Publications 

Journals 

[ 1 ] A. Hamza and M. G. Amin, “Hybrid sparse array beamforming design for general rank signal 
models,” submitted to the IEEE Transactions on Signal Processing, June 2018. 

[2] A. Deligiannis, M. G. Amin, S. Lambotharan, and G. Fabrizio, “Optimum sparse subarray 
design for multitask receivers,” Under Review by IEEE Transactions on Aerospace and 
Electronic Systems. 

Conferences 

[3] A. Deligiannis, M. G. Amin, G. Fabrizio, and S. Lambotharan, “Optimum configurations of 
sparse subarray beamformers,” Proceedings of the IEEE International Conference on 
Acoustics, Speech, and Signal Processing, Calgary, Alberta, Canada, April 2018. 

[4] S. A. Hamza, M. G. Amin and G. Fabrizio, ” Optimum sparse array design for maximizing 
signal-to-noise ratio in presence of local scatterings,” Proceedings of the IEEE International 
Conference on Acoustics, Speech, and Signal Processing, Calgary, Alberta, Canada, April 
2018. 

[5] A. Deligiannis, M. G. Amin, G. Fabrizio, S. Lambotharan, “Sparse subarray design for 
multitask receivers,” Proceedings of the IEEE Radar Conference, Oklahoma City, OK, April 
2018. 

[6] S. A. Hamza, M. G. Amin and G. Fabrizio,” Optimum sparse array beamforming for general 
rank signal models,” Proceedings of the IEEE Radar Conference, Oklahoma City, OK, April 
2018. 
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3. Technical Description 

3.1. Hybrid Sparse Array Beamforming Design for General Rank 

Signal Models 

1. Introduction 

Sparse array design through sensor selection reduces system overhead by lowering the 

hardware costs and processing complexity. It finds applications in sensor signal processing for 

communications, radar, sonar, satellite navigation, radio telescopes, speech enhancement and 

ultrasonic imaging [3, 9, 12,14, 16, 17, 25], One primary goal in these applications is to determine 

sensor locations to achieve optimality for some pre-determined performance criteria. The latter 

include minimizing the mean radius of the confidence ellipsoid associated with the estimation error 

covariance matrix [14] and Cramer Rao bound (CRB) to enhance the estimation accuracy for 

nonlinear measurement models that occur frequently in target parameter estimation, detection and 

tracking [6], The performance of the design criteria depends largely on the operating environment, 

which may change according to the time-varying channel model assumed. This is in contrast to 

sparse arrays whose configurations follow certain formulas and seek to attain high expended 

aperture co-arrays. The driving objective, in this case, is to enable direction of arrival (DOA) 

estimation of more sources than physical sensors. Common examples are structured arrays such as 

nested and coprime arrays [18, 20, 22]. 

Sparse array design involves the selection of a subset of uniform grid points for sensor 

placements. For a given number of sensors, it is often assumed that the number of grid points, 

spaced by half wavelength, is unlimited. However in many applications, there is a constraint on 

the spatial extent of the system aperture. In this case, and depending on the number of sensors 

employed, a structured array may find itself placing the given sensors outside the available 

physical aperture. The problem then becomes of dual constraints, one relates to the number of 

sensors, and the other to the number of grid-points. With limited aperture constraint invoked, few 

sensors can be sufficient to produce a desirable filled structured co-array. Any additional sensors, 

in essence, constitute a surplus which can be utilized to meet an environment-dependent, 

performance criterion, such as maximum signal-to-interference and noise ratio (SINR). In so 

doing, one can reap the benefits of structured and non-structured arrays. This paradigm calls for a 
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new aperture design approach which strives to provide filled co-arrays and at the same time be 

environment-sensitive. This hybrid design approach is the core contribution of this report. 

Signal power estimation and enhancement in an interference active environment is an 

important and ubiquitous task in array signal processing. This problem has a direct bearing on 

improving target detection and localization for radar signal processing, increasing throughput or 

channel capacity for MIMO wireless communication systems, and enhancing resolution capability 

in medical imaging [10, 15, 30]. With sparse array, capon beamforming must not only find the 

optimum weights but also the optimum array configuration. This is an entwined optimization 

problem, and requires finding maximum SINK over all possible sparse array configurations. 

Maximum signal to noise ratio (MaxSNR) and MaxSINR have been shown to yield significantly 

efficient beamforming with its performance depending mainly on the positions of the sensors as 

well as the locations of sources in the field of view (FOV) [26, 28, 31]. 

In this report, we consider a bi-objective optimization problem, namely achieving the filled 

co-array and maximizing the SINR. The proposed technique enjoys three key advantages as 

compared to state-of-the-art sparse aperture design, namely, (a) It does not require any a priori 

knowledge of the correlated noisy environment i.e. jammers directions of arrival and their 

respective power which is implicitly assumed in the previous contributions [32, 33]; (b) It works 

directly on the received data correlation matrix and does not require the interference plus noise 

correlation matrix, which is not possible to estimate in many applications of sensor array 

processing [15, 27]; (c) It extends to spatial spread sources in a straightforward way. 

Figure 1: Block diagram of adaptive switched sensor beamforming 
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The proposed hybrid approach first determines a prefixed sparse array that results in a filled co¬ 

array with minimum number of sensors. This prefixed configuration could be a minimum 

redundancy array (MRA) [18], nested or coprime array configuration that fills the aperture under 

consideration with minimal sensors leaving behind maximum degrees of freedom for SINK 

maximization. This prefixed sensors configuration can be achieved by an optimization problem 

involving the minimum number of sensors spanning a pre-determined aperture. However, for the 

scope of this report, the prefixed configuration is determined by MRA or structured array 

indicating the sensor positions corresponding to the desired aperture. The remaining sensors after 

forming the prefixed array are then utilized to maximize the SINR. The cascade nature of the 

proposed hybrid approach is in lieu of the optimum design approach, which requires joint 

optimization of selecting the optimum filled sparse array that maximizes SINR. Environment 

dependent array design lowers the hardware complexity by reducing the expensive transmission 

chains through sensor switching as shown in the block diagram of the switched sensor 

beamforming in Fig. 1. The proposed hybrid approach, however, has an advantage of offering a 

simplified sensor switching in time-varying environment. This is attributed to the fact that there is 

a large number of fixed location sensors which would remain non-switched, irrespective of the 

sources and interferences in the TOY. 

The proposed approach is also not particularly restrictive. To further clarify, it is noted that 

sparse arrays having N available sensors can typically span a filled array aperture of the order of 

(9(A/(Y — l)/2); conversely, given an aperture spanning N possible sensor locations, only 

0(N1/2) sensors are sufficient to synthesize a fully augmentable array design. This emphasizes 

the fact that as the possible aperture size increases, then relatively few sensors are required to meet 

the full augmentability condition, possibly leaving many degrees of freedom to optimize for SINR 

enhancement. It should be noted that fully augmentable arrays not only provide the benefits of 

high resolution and improved identifiability of large number of sources, but also they ensure the 

availability of full array data covariance matrix essential to carry optimized SINR configuration 

[2], [1], Moreover, the proposed approach lends itself to more desirable beampattem 

characteristics by maintaining minimum spacing between sensor elements. 

We consider the problem of MaxSINR sparse arrays with limited aperture for both single 

and higher rank signal correlation matrices. The case of single rank correlation matrix arises when 

there is one desired source signal in the FOV, whereas the case of higher rank signal model occurs 
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for multiple point sources. We show the importance of sparse array configurability in both of the 

above cases by comparing the hybrid designed sparse array with the optimum sparse array 

configuration without the augmentability constraint and the commonly used compact ULA and 

rectangular arrays. 

The problem is posed as optimally selecting P sensors out of N possible equally spaced 

grid points. Maximizing SINK amounts to maximizing the principal eigenvalue of the product of 

the inverse of data correlation matrix and the desired source correlation matrix [27], Since it is an 

NP hard optimization problem, we pose this problem as QCQP with weighted ^-norm squared to 

promote sparsity. The re-weighted ^-norm convex relaxation has been exploited before for sensor 

selection problem for beampattem synthesis [7, 8], whereas, it is shown that the le-weighted 

norm squared relaxation is effective for reducing the required sensors and minimizing the transmit 

power for multicast beamforming [17], We adopt a modified weighting matrix based iterative 

approach to control the sparsity of the optimum weight vector so that P sensor fully augmentable 

hybrid array is finally selected. This modified regularization weighting matrix based approach 

incorporates the prefixed structured array assumption in our design and works by minimizing the 

objective function around the presumed prefixed array. 

The rest of the report is organized as follows: In the next section, we state the problem 

formulation for maximizing the output SINK under general rank signal correlation matrix. Section 

3 deals with the optimum sparse array design by semidefinite relaxation and proposed modified 

re-weighting based iterative algorithm of finding P sensor fully augmentable hybrid sparse array 

design. In section 4, with the aid of number of design examples, we demonstrate the usefulness of 

fully augmentable arrays achieving MaxSINR and highlight the effectiveness of the proposed 

methodology for sparse array design. Concluding remarks follow at the end. 

2. Problem Formulation 

Consider K desired sources and L independent interfering source signals impinging on 

a linear array with N uniformly placed sensors. The baseband signal received at the array at time 

instant t is then given by; 

x(t) = SLi (afc(t))s(0fc) + £f=1 (MOMfy) + n(t), (1) 
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where, s(0fe) and v(0i) 6 CN are the corresponding steering vectors respective to directions of 

arrival, 9k or 9h and are defined as follows; 

s(0k) = [l ej(2n/*')dcos(ek') ...ej(2n/x')d(N~Vcos(-ek)]T. (2) 

The inter-element spacing is denoted by d, (ak(t), fii(t)) 6 C denote the complex amplitudes 

of the incoming baseband signals [29]. The additive Gaussian noise n(t) e <ZN has a variance of 

cr^ at the receiver output. The received signal vector x(t) is combined linearly by the /V-sensor 

beamformer that strives to maximize the output SINK. The output signal y(t) of the optimum 

beamformer for maximum SINK is given by [27], 

y(t) = w0Hx(t), (3) 
where w0 is the solution of the optimization problem given below; 

minimize wHRs'W, 
w 

s. t. whRsw = 1. 
(4) 

For statistically independent signals, the desired source correlation matrix is given by, Rs = 

YJk=i aks(Qk)sH(9k) > where, ak = E{ak(t)ak (t)}. Likewise, we have the interference and 

noise correlation matrix Rs' = 2[=1 O;2v(0;)vH(0;)) + a2lNtrN , with a2 = £■{/?;(t)/?,H(t)} 

being the power of the Ith interfering source. The problem in (4) can be written equivalently by 

replacing Rs/ with the received data covariance matrix, R^ = Rs + Rs' as follows [27], 

minimize wHRxxw, 
W 

s. t. wwRsw = 1. 
(5) 

There exists a closed form solution of the above optimization problem and is given by w0 = 

P{RS' ^s) = 7:,{RXX_1RS}. The operator T{.} computes the principal eigenvector of the input 

matrix. Substituting w0 into (3) yields the corresponding optimum output SINK; 

SINR0 = 
Wp RSW0 

woRs,w0 
— ^Tnaxl^c' Rs}- (6) 

Eq. (6) shows that the optimum output SINR (SINR 0) is given by the maximum eigenvalue 
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(Amax) associated with the product of the inverse of interference plus noise correlation matrix and 

the desired source correlation matrix. Therefore, the performance of the optimum beamformer for 

maximizing the output SINK, is directly related to the desired and interference plus noise 

correlation matrix. It is to be noted that the rank of the desired source signal correlation matrix 

equals K, i.e. the cardinality of the desired sources. 

3. Optimum sparse array design 

The problem of locating the maximum principal eigenvalue among all :he correlation 

matrices associated with P sensor selection is a combinatorial optimization problem. The 

constraint optimization (5) can be re-formulated for optimum sparse array design by incorporating 

an additional constraint on the cardinality of the weight vector; 

minimize wHRxxw, 
wecN 

s. t. w//Rsw = 1, (7) 

||w||0 = P. 

Here, ||.||0 determines the cardinality of the weight vector w. We assume that we have an 

estimate of all the filled co-array correlation lags corresponding to the correlation matrix of the 

full aperture array. The problem expressed in Eq. (7) can be relaxed to induce the sparsity in the 

beamforming weight vector w without placing a hard constraint on the specific cardinality of w, 

as follows; 

minimize w^R^w + ^(llwlli), 
weCN 

s. t. wHRsw = 1. 

Here, |). | |x is the sparsity inducing ^-norm and fi is a parameter to control the desired sparsity 

in the solution. Even though the relaxed problem expressed in Eq. (8) is not exactly similar to that 

of Eq. (7), yet it is well known that ^-norm regularization has been an effective tool for recovering 

sparse solutions in many diverse formulations. The problem in (8) can be penalized instead by 

the weighted ^-norm function which is a well known sparsity promoting formulation [5], 

minimize w^R^w + ^(IKb* ° IwDUi), 

s.t. wwRsw = 1. (9) 
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where, ' ° ' denotes the element wise product, 1.1 is the modulus operator and b1 G is the 

regularization weighting vector at the ith iteration. The weighted Z-L-norm function in (9) is 

replaced by the Z^norm squared function which does not alter the regularization property of the 

weighted Zj-norm function [17], 

minimize w^R^w + ^(||(bi ° |w|)||2), 

S. t. WHRSW = 1. (1C) 

The semidefinite formulation (SDP) of the above problem can then be realized by re-expressing 
the quadratic form, vv^R^w =Tr(w,/Rxxw) =Tr(Rxxwww) = Tr(RxxW). where Tr(.) is the 

trace of the matrix. Similarly, the regularization term ||(b( ° |w|)||i = (|w|Tbl)((bt)r|w|) = 

=Tr(B!|W|). Here, W = wwH and Bl = b^b1)7 is the regularization weighting 
matrix at the ith iteration. Utilizing these quadratic expressions in (10) yields the following 
problem [4, 11, 17], 

minimize Tr(RxxW) + uTr(BiW), 
WECN*N,WEEN*N V XX , r- j, 

s.t. Tr(RsW)>l, (11) 

W>|W|, 
W > 0, Rank(W) = 1. 

Here, > is the element wise comparison and > denotes the inequality in the matrix sense. The 

rank constraint in Eq. (11) is non convex and therefore need to be removed. The rank relaxed 

approximation works well for the underlying problem. In case, the solution matrix is not rank 1, 

we can resort to randomization to harness rank 1 approximate solutions [23]. Alternatively, one 

could minimize the nuclear norm of W, as a surrogate for Z^norm in the case of matrices, to 

induce sparsity in the eigenvalues of W and promote rank one solutions [19, 24]. The resulting 

rank relaxed semidefinite program (SDR) is given by; 

minimize TUR^W) + uTr(Bl'W), 
WE(CN*N,WEEN*N v XX ; A* V J’ 

s.t. Tr(RsW)>l, (12) 

W > |W|, 
W >0. 

In general, QCQP is NP hard and cannot be solved in polynomial time. The semidefinite 

relaxation of Eq. (12) is convex as all the correlation matrices involved are guaranteed to be 

positive semidefinite. 
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3.1 Fair gain beamforming 

The optimization in Eq. (12) strives to incorporate the signal from all the directions of 

interest while optimally removing the interfering signals. To achieve this objective the optimum 

sparse array may show leaning towards a certain source of interest, consequently, not offering fair 

gain towards all sources. In an effort to promote equal gain towards all sources, we put a separate 

constraint on the power towards all desired sources as follows; 

minimize Tr(RxxW) + 
wecN*N,WEKN*N ^ XX ; /-v 

s.t. Tr(RfeW) > 1, Vk E (1,2,3... K) 
W > |W|, 
W >0. 

Here, Rk = s(0k)sH (6k) is the rank 1 covariance matrix associated with the source at DOA 

(0k). The feasible region of the above mentioned formulation is outside of the intersection of K 

ellipsoids associated with the inequality power constraints. This makes the solution of the 

underlying non relaxed QCQP challenging. However, the above SDR can be solved to an arbitrary 

small accuracy <f, by employing interior point methods involving the worst case complexity of 

0{max(K,NyN^\og(l/Q} [23], 

ALGORITHM 1 Proposed algorithm to achieve desired cardinality of optimal weight vector 

w0. 

INPUT Data correlation matrix Rxx, N, P, look direction DOA’s 9k, selection 

vector z. 

OUTPUT P sensor beamforming weight vector w0, 

Initialization: 

Calculate the regularization weighting matrix B = zzr. In case of optimum array design without 

the augmentability constraint, initialize the selection vector z to be all ones vector. 

Initialize jj., £. 
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While (Sparsity is not invoked in |W| ) 

{ 

Run the SDR ofEq. (12). 

Update the regularization weighting matrix B according to Eq. (15). 

Binary search for desired cardinality P 

^ Plowen ti Pupper (Initializing lower and upper limits of sparsity parameter range) 

While (Cardinality of w0 ^ P) 

p = [(l + u)/2] 

Run the SDR of Eq. (12) with the last regularization weighting matrix B from the previous while 

loop. 

IF (Cardinality of w0) < P 

u = /J. 

Else 

l = y. 

After achieving the desired cardinality, run SDP for reduced size correlation matrix corresponding 

to nonzero values of W and y = 0, yielding, w0 = iP{W}. 

3.2 Modified re-weighting for fully augmentable hybrid array 

For the case without the full augmentability constraint the regularization weighting matrix 

B is initialized unweighted i.e. by all ones matrix and the m, nth element of B is iteratively 
updated as follows, 

B i+l _ 
m,n 

1 

I Wrn.n I £ 
(14) 

The parameter s avoids the unwanted case of division by zero, though its choice is fairly 

independent to the performance of the iterative algorithm but at times very small values of e can 

result in the algorithm getting trapped in the local minima [5], For the hybrid array design, we 

initialize the weighting matrix instead as an outer product of selection vector z. The selection 

vector z is an A dimensional vector containing binary entries of zero and one, where, zeros 

correspond to the pre-selected sensors and ones correspond to the remaining sensors to be selected. 
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Hence, the cardinality of z is equal to the difference of the total number of available sensors and 

the number of pre-selected sensors. This modified re-weighting approach ensures that the sensors 

corresponding to the pre-selected configuration is not penalized as part of the regularization, hence, 

B = zzT, thrives solutions that incorporate the pre-selected array topology. The modified 

penalizing weight update for the hybrid array design can be expressed as; 

Bi+1 = (zzr)(|W‘| + f). (15) 

The symbol denotes element wise division. The pseudo-code for controlling the sparsity of the 

optimal weight vector w0 is summarized in the TABLE (Algorithm 3.1). 

3.3 Symmetric arrays 

The solution of the SDR formulation is penchant for symmetric arrays in the case of 

symmetric initialization vector z. The plausible explanation is as follows. We first show that the 

beamforming weights which maximizes the output SINK for symmetric sparse array topologies 

are conjugate symmetric w.r.t. the array center. 

Proposition 1 The conjugate symmetry of the optimal weight vector holds for centro- 

symmetric sparse array configurations in case of the general rank desired source model. 

Proof. (Refer to the Appendix for the proof.) 

We observe that the regularized cost function does not invoke sparsity until after the first 

few initial iterations. Consequently, the initial solutions of the semidefinite program has symmetric 

coefficients as the SDR seeks near optimal solutions which are analytically shown to be conjugate 

symmetric. Moreover, the iterative sparsity enhancing formulation introduces sparsity by 

penalizing the beamforming weight vector according to Eq. (15), where, it only accounts the 

magnitude of the beamforming weights. Therefore, at each iteration the regularization weighting 

matrix B happens to penalize the solution weight vector in a symmetric fashion around the array 

center. Thus, the iterative SDR sparse solution favors symmetric configurations by discarding 

corresponding symmetric sensors simultaneously. Though, the symmetric configuration can be 

desirable for certain applications and can have desirable performance, yet, it reduces the available 

degrees of freedom. Therefore, to circumvent this problem, we couple the modified re-weighting 
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approach with greedy sensor selection type methodology that works by discarding only one sensor 

at a time if more than one sensors are eliminated simultaneously by the algorithm. The sensor 

which has the inferior objective function performance is discouraged in the design by utilizing the 

methodology explained in 3.2 with a subtle modification. In the case of the hybrid array design, 

we prefixed sensors in our design a priori by setting regularization weights to be zero 

corresponding to the pre-selected sensors. In contrary over here, we set the corresponding 

regularization weight to be relatively high for the specific sensor that needs to be discouraged, 

thereby resolving issues arising from the symmetric regularization weighting matrix. 

10l-T-T-,-T-T-r-T-T-T- 

_ 5 
CO 
H- 
Od 0 z 
C/5 

3 -5 
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40 50 60 70 80 90 100 110 120 130 140 
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Figure 2: Output SINK for different array topologies 
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(C) 

mU2B Q QOQOOOOOQ©Q©Q 

(d) 

Figure 3: Array configurations obtained for the point source at the array broadside (a) Optimum 

(enumeration) (b) Optimum (algorithm) (c) Symmetric design consideration according to Section 

3.3 (d) Worst performing array configuration 

4 Simulations 

In this section, we show the effectiveness of the proposed technique for the sparse array 

design for MaxSINR. We initially test this proposed approach for array configurability by 

considering arbitrary arrays without the augmentability constraint. In the later examples, we 

demonstrate the effectiveness of fully augmentable hybrid sparse array design through linear and 

2D arrays. We focus on the EM modality, and as such we use antennas for sensors. 

Not Selected Sensor Selected Sensor 

Prefixed Sensor ( J Not Selected Sensor Selected Sensor 

o o » e ooeo*o0oo»o0 
(c) 

Figure 4: (a) Optimum 10 element antenna array multiple sources (algorithm) (b) Fair gain 10 

antenna array (c) Hybrid design 10 antenna array for multiple desired sources 
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(a) 

(3 Pro fixed Sensor (3 Not Selected Sensor Q Selected Sensor 

Q0®®®0®»®#®000®0®00®0® 

(b) 
Q pfe fixed Sensor (^) Not Selected Sensor Selected Sensor 

#A'2# •000®®®«®#®00#00®00#0® 

(C) 

Figure 6: (a) Optimum 14 antenna sparse array (convex relaxation) (b) 14 antenna hybrid array 

(8 prefixed, 6 selected) (c) 14 antenna hybrid array (8 prefixed, 6 selected) 

4.1 Single point source 

We select P = 8 antennas from N — 16 possible equally spaced locations with inter¬ 

element spacing of A/2. Figure 2 shows the output SINK for different array configurations for the 

case of single desired point source with its DOA varying from 40° to 140°. The interfering 

16 



signals are located at 20° and +10° degree apart from the desired source angle. To explain this 

scenario, suppose that the desired source is at 60°, we consider the respective directions of arrival 

of the three interfering signals at 40°, 50° and 70°. The SNR of the desired signal is 0 dB, and 

the interference to noise ratio (INR) of interfering signals is set to 20 dB each. From the Fig. 2, it 

is evident that the proposed algorithm performs close to the performance of the optimum array 

found by exhaustive search (12870 possible configurations), which has very high computational 

cost attributed to expensive singular value decomposition (SVD) for each enumeration. On 

average, the proposed algorithm takes six to seven iterations to converge to the optimum antenna 

locations; hence, offering considerable savings in the computational cost. It is of interest to 

compare the optimum sparse array performance with that of compact ULA. It can be seen from 

Fig. 2, that the optimum sparse array offers considerable SINR advantage over the compact ULA 

for all source angles of arrival. The ULA performance degrades severely when the source of 

interest is more towards the array end-fire location. In this case, the ULA fails to resolve and cancel 

the strong interferers, while maintaining unit gain towards the source of interest. For the case of 

the desired source at the array broadside, the maximum output SINR of the optimum array found 

through enumeration is 9.03 dB. The optimum array design obtained through the proposed 

algorithm yields an output SINR of 8.6 dB, which is 0.4 dB less than the corresponding SINR of 

the optimum array found through exhaustive search. The broadside source arrays are shown in the 

Fig. 7 (where green-filled circle indicates antenna present whereas gray-filled circle indicates 

antenna absent). The sparse array recovered through proposed algorithm is clearly a symmetric 

configuration (Fig. 4). Figure 5 shows the sparse array found after addressing the symmetry bias 

by the approach explained in Section 3.3. The SINR for this non-symmetric configuration is 8.93 

dB and is suboptimal merely by 0.1 dB. It is worth noticing that the worst performing sparse array 

configuration utilizes maximum array aperture (Fig. 6), yet it has an output SINR as low as -13 

dB. This emphasizes the fact that if an arbitrary sparse array structure is employed, :t could degrade 

the performance catastrophically irrespective of the occupied aperture and could perform far worst 

than the compact ULA, which offers modest output SINR of 5 dB for the scenario under 

consideration. 
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Figure 7: Optimum 24 element antenna sparse array (convex relaxation) 

4.2 Multiple point sources 

For the multiple point sources scenario, consider three desired signals impinging from 

DOAs 40°, 65° and 90c with SNR of 0 dB each. Four strong interferers with INR of 30 dB 

each, are operational at DOAs 50°, 60°, 120° and 150°. We select 10 antennas out of 18 

available slots. The optimum array recovered through convex relaxation is shown in Fig. 8. This 

configuration results with an output SINR of 11.85 dB against SINR of 12.1 dB for the optimum 

configuration found through enumeration. For the fair gain beamforming, we apply the 

optimization of Eq. (13) and the array configuration for MaxSINR for the fair gain beamforming 

is shown in Fig 9. The output SINR for the fair beamforming case is 11.6 dB which is slightly 

less than the optimum array without the fair gain consideration (11.85 dB). Flowever, the 

advantage of fair beamforming is well apparent from the beampattems in both cases as shown in 

Fig (12), where the gain towards the source at 65° is around 4.24 dB higher than the case of 

optimum array without the fair gain consideration. The maximum gain deviation for the fair gain 

case is 3.5 dB vs. 8 dB variation without the fair gain consideration. The SINR of compact ULA 

is compromised more than 3 dB as compared to the optimum sparse array (Fig. 8) obtained 

through the proposed methodology. This improved performance is due to the optimum sparse array 

smartly engaging its degrees of freedom to eradicate the interfering signals while maintaining 

maximum gain towards all sources of interest. 
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Figure 8: 24 element hybrid antenna array via convex relaxation (19 prefixed, 5 selected) 

4.3 Fully augmentable linear arrays 

Consider selecting 14 antennas out of 24 possible available locations with antenna 

spacing of 2/2. A desired source is impinging from DOA of 30° and SNR of 0 dB, whereas 

strong narrowband jammers are operating at 20°, 40° and 120° with INR of 20 dB each. 

Optimum array configuration (Fig. 13) achieved through convex relaxation has an output SINR of 

11.04 dB as compared to SINR of 11.32 dB of an optimum array recovered through enumeration 

(1.96 * 106 possible configurations). It should be noted that the array recovered without filled co¬ 

array constraint is not essentially fully augmentable as is the case in the optimum array (Fig. 13) 

which clearly has missing co-array lags. 

In quest of fully augmentable array design we prefix 8 antennas (red elements in Fig. 14) 

in a minimum redundancy array (MRA) configuration over 24 uniform grid points. This provides 

24 consecutive autocorrelation lags. We are, therefore, left with six antennas to te placed in the 

remaining 16 possible locations (8008 possible configurations). We enumerated tie performance 

of all possible hybrid arrays associated with underlying MRA configuration and found the output 

SINR ranges from 8.06 dB to 11.3 dB. Figure 14 shows the configuration recovered through the 

proposed approach which has an output SINR of 10.96 dB. The proposed approach thus recovers 

the hybrid sparse array with performance close to the best possible, moreover it approximately 

yielcs 3 dB advantage over worst fully augmentable hybrid array. As MRAs are not unique we 

started with a different 8 element MRA structured array (red elements in Fig. 15), to further 

reinforce the effectiveness of fully augmentable sparse arrays. The dynamic performance range 

associated with MRA of Fig. 15, is from 7.54 dB to 11.3 dB. The performance in this case is 

very similar to the aforementioned MRA configuration with the output SINR of 10.7 dB 

19 



for the hybrid array recovered through proposed methodology (Fig. 15). The maximum possible 

SINK offered by both hybrid arrays is 11.3 dB which is extremely close to SINK performance of 

11.32 dB offered by the optimum array without augmentability constraint. Furthermore, the 

compact UFA has an output SINK, of 7.54 dB which is again considerably less than the hybrid 

sparse arrays. We also test the fully augmentable array design for the case of multiple point source 

scenario described previously (Section 4.2). The hybrid array recovered through proposed 

methodology is shown in the Fig. 10 (red elements showing the 7 element MRA). The output 

SINK is 11.566 dB and is sufficiently close to the performance achieved through enumeration. 

4.4 Fully augmentable 2 D arrays 

Consider a 7 * 7 planar array with grid pacing of A/2 where we place 24 antennas at 49 

possible positions. A desired source is impinging from elevation angle 0 — 50° and azimuth 

angle of 0 = 90°. Here, elevation angle is with respect to the plane carrying the array rather than 

reference from the zenith. Four strong interferes are impinging from (0 = 20°, 0 = 30°). (0 = 

40° , 0 = 80°), (0 = 40° , 0 = 105°) and (0 = 35° , 0 = 20°). The INR corresponding to 

each interference is 20 dB and SNR is set to 0 dB. There are of the order of 1014 possi ble 2A 

antenna configurations, hence the problem is prohibitive even by exhaustive search. Therefore, we 

resort to the upper bound of performance limits to compare our results. Here, we utilize the fact 

that the best possible performance occurs when the interferes are completely canceled in the array 

output and the output SINR in that case would equal the array gain offered by the 24 element array 

Not Selected Sensor £ Pre-Fixed Sensor £ Selected Sensor 

Figure 9: 24 element worst performing hybrid antenna array (19 prefixed, 5 selected) 

which amounts to 13.8 dB. Figure 7 shows the optimum antenna locations recovered by our 
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algorithm. The output SINK for this configuration is 13.68 dB which is sufficiency close to the 

ideal performance. It should be noted that again the array recovered in the Fig. 7 is not fully 

augmentable as it is missing quiet a few correlation lags. 

u(cos0cos<|)) 

Figure 10: Beampattem for the antenna array in Fig. 8 

We now introduce the condition of full augmentability by placing 19 antennas in nested 

lattice configuration [21] to form a filled co-array (red elements in Fig. 18). Tie rest of five 

available antennas can be placed in the remaining 30 possible locations hence resulting in 

approximately 1.5 * 105 possibilities. Figure 18 shows the hybrid sparse geometry recovered by 

convex relaxation and offers SINK, of 13.25 dB which is around 0.4 dB less than the optimum 

array. The performance range of the hybrid arrays associated with the structured nested lattice 

array ranges from 11.4 dB to 13.38 dB (found through exhaustive search). In this regard our 

proposed algorithm finds the hybrid sparse array with the performance degradation of little more 

than 0.1 dB. The worst performing hybrid array (Fig. 19) has an output SINR of 11.4 dB and is 

around 2 dB lower than the best performing hybrid sparse array. 

It is of interest to compare the performance of aforementioned sparse arrays with a compact 

2D array. For this purpose, we chose a 6 * 4 rectangular array. The compact rectangular array 

performs very poorly in the underlying scenario and has an output SINR of 7.8 dB which is more 

than 5 dB down from the hybrid sparse array recovered through the semidefinite relaxation. This 

performance degradation is very clear from the beampattern of both arrays shown in Fig. 20 and 

21 (normalized beampattem in dB). In the case of the hybrid sparse array recovered through SDR 
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(Fig. 18), the target has the maximum gain towards the direction of interest and it maintains 

minimum gain simultaneously towards all unwanted DOAs (Fig. 20). In contrast, it is clear from 

Fig. 21 that the beampattem of compact rectangular array could not manage maximum gain 

towards the direction of interest while effectively rejecting the interfering signals. The hybrid array 

also appears to be more robust as it has higher dynamic performance range threshold (11.4- dB), 

as it has been shown in previous examples that the performance of arbitrary arrays is more 

susceptible to deteriorate catastrophically even far worst than that of the compact uniform or 

rectangular arrays. 

5 Conclusion 

This report considered fully augmentable sparse array configurations for maximizing the 

beamformer output SINK for general rank desired signal correlation matrices. It proposed a hybrid 

sparse array design that simultaneously considers co-array and environment-dependent objectives. 

This design potentially offers comparable SINK performances as compared to sparse arrays that 

are freely designed without the augmentability constraint. The proposed array design approach 

uses a subset of the available sensors to obtain a fully augmentable array while employing the 

remaining sensors for achieving the highest SINK. We applied the modified re-weighting QCQP 

which proved effective in recovering superior SINK performance for hybrid sparse arrays in 

polynomial run times. The proposed approach was extended for fair gain beamforming towards 

multiple sources. We solved the optimization problem by both the proposed algorithm and 

enumeration and showed strong agreement between the two methods. 
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Appendix: [Proof of the Conjugate symmetric property of optimal weight vector] 

Proof. The correlation matrix R for centro-symmetric arrays have a conjugate 

per symmetric structure such that [13]: 

TR'T = R (16) 

Here {'} is the conjugate operator and T is the transformation matrix which flips the 

entries of a vector upside down by left multiplication; 

0 ... 0 0 1 ■ 

T= 0 ... 0 1 0 

.1 ... 0 0 . 

The optimal weight vector which maximizes the SINR is given by; 

w0 = :p{Rs'-1Rs} 

where, 

{Rs/_1Rs}w0 = AmaxWo 

Using the relation in (16), Eq. (18) can be re-expressed as follows, 

{(TR's;T)_1(TRsT)}w0 = Amaxw0 

{T“1(R,s0_1T"1(TR,sT)}Wo =Arria,Wo 

Multiplying both sides by T and applying the conjugate operator, 

{Rs'_lRs}Two = AmaxTwo (20) 

Eq. (20) shows that Twq is also the principal eigenvector associated with matrix RSU1RS. Since 

the principal eigenvector of the positive definite hermitian matrix is unique up to the scalar 

complex multiplier, this directly implies that; 

w0 = Two 

(17) 

(18) 

(19) 
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3.2. Optimum Sparse Subarray Design for Multitask Receivers 

1 Introduction 

Shared aperture antenna describes a system of two or more sparse subarrays, each 

performing a separate task, deployed on a common aperture [29], The subarray tasks are dependent 

on the system operation which could jointly support several required services. A 3D shared 

aperture antenna that supports different operating frequencies was proposed in [29]. The 

compound system consists of two stacked arrays, transmitting through the same aperture, the upper 

level operating in the L-band and being electrically isolated from the lower one that operates in 

the X-band. The coexistence of radar, electronic warfare and communications functions on the 

same aperture was investigated in [32], where subarrays with different operating frequencies and 

polarization are utilized to perform separate tasks. The design of a shared dual-band 

transmitting/receiving platform, where separated sparse subarrays of S-band and X-band elements 

are designed for simultaneous transmitting and receiving operation was investigatec in [20], Three 

different radar applications of a shared aperture antenna using interleaved sparse subarrays on a 

common platform were considered in [21], namely, multi-frequency shared aperture antenna, 

shared aperture antenna implementing polarisation agility and interleaved transmiting/receiving 

shared aperture antenna. The synthesis of linear multi-beam arrays on a shared aperture through 

hierarchical almost difference set (ADS)-based interleaving was studied in [26]. 

In this report, each sparse subarray of the shared aperture performs separate beamforming 

and strives to maximize the signal-to-interference and noise ratio (SINK) for its designated source 

or for a specific direction. Maximizing SINR at the receiver increases the probability of target 

detection in radar and reduces bit error rates in communications. In this respect, the different tasks 

assigned to the shared aperture antenna could belong to the same functionality, i.e., either radar or 

communication or across different functions as part of platform coexistence, :.e. joint radar 

communication system [15]. In either case, the system may mandate unshared antermas among the 

subarrays to reduce signal processing complexity and limit radar cross-sections. Moreover, the 

different tasks may demand antennas with diverse properties, polarization or bandwidth [20], The 

beamformer output is not only affected by the antenna output multiplicative coeff cients but also 

by the antenna array configuration [2, 31, 35], Hence, optimal beamforming should utilize both 

the beampattem array coefficients as well as the array configuration [22, 23], 
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Optimal beamforming techniques efficiently mitigate the interference and noise at the 

output of the system while enhancing the response towards the sources of interest (SOI) [3, 6, 9, 

10, 39], casting it as a powerful tool for many active and passive sensing applications, such as 

radar, sonar, wireless communications, radio telescope, ultrasound and seismology [5, 8, 13, 18, 

25], Sparse transmit array design for radiating shaped beamformers was investigated :n [2^] 

exploiting compressive sensing. Adaptive interference nulling techniques based on the appropriate 

selection of the array elements were proposed in [16, 28], utilizing genetic algorithms and SINK 

maximization, respectively. As demonstrated in [12, 37], sparse array configuration has a 

substantial impact on both the beamformer output signal-to-noise ratio (SNR) and SINR. Optimum 

adaptive sparse arrays for maximizing SNR (MaxSNR) and SINR (MaxSINR) are superior to 

structured sparse arrays such as coprime, nested and uniform arrays [37]. This is attributed to the 

fact that adaptive beamforming and sparse array design take into consideration the operating 

environment, by incorporating the source, interference and noise spatial and temporal 

characteristics in the optimization [7]. Most of the existing work on maxSINR beamforming 

focuses on a single mission array where the entire array aperture, regardless of whether it is full or 

sparse, is tasked to deal with one or more sources in the field of view (FOV) [38], In such case, 

the main objective is to maximize the SINR at the output of the receiver by optimally configuring 

the array and deciding on the beamformer coefficients. This technique, is deemed to result in 

unequal SINR or SNR for the sources considered and does not guarantee an acceptable minimum 

SNR or SINR performance for any of the sources. Using a separate beamformer, along with its 

antennas and coefficients, for each source is a generalization of the above technique. 

In this report, we investigate scenarios that fall into the aforementioned framework of 

multi-mission or multitask sensing of a shared aperture with separate, but complementing, sparse 

subarrays. That is, the combined subarrays make up the system aperture. The multiple sources 

considered are in the far field and may represent targets reflecting a transmitted waveform or active 

emitters, thus covering many scenarios including radar, wireless communications, electronic 

warfare and radio telescope. We propose a method for optimum design of antenna aperture 

comprising multiple sparse subarrays, each processes the signal from one source. The goal is to 

select the antenna positions and coefficients to jointly maximize the SINR for all sources. The 

optimum subarrays are obtained by performing a joint SINR optimization for matched MVDFL 

beamforming. We examine both cases in which specific cardinality of antennas per subarray is set 
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a priori and when the number of antennas in each subarray is left as an optimization variable. By 

considering the cardinality as an optimization variable, we provide more design flexibility and 

additional degrees of freedom to the system, resulting in higher SINR performance, especially 

when dealing with high spatially correlated sources. The choice of SINR as a performance metric 

is motivated by the fact higher SINR enhances target detection in radar, and minimizes bit error 

rates in communications, leading to a better quality of service [11, 19, 30, 34], We also propose a 

joint optimum sparse subarray design technique with the objective of maximizing the SINR of 

some sources, while attaining a predefined SINR threshold for the remaining sources. We utilize 

Taylor series approximation and sequential convex programming techniques to render the initially 

non-convex SINR optimization problems as convex. The rest of the report is organized as follows: 

The mathematical model of the system is formulated in section II. The sparse subarray design for 

both cases of given number of antennas per subarray and when the cardinality of antennas is a 

design variable is examined in section III. The SINR constrained optimum sparse subarray design 

is presented in section IV. Simulation results and remarks on the results are given in section V, 

and the final conclusions are drawn in section VI. 

2 System Model 

Figure 

Source 1 

Interference 1 

Y 
Source 2 

Subarray 2 

Model of two separated sparse subarrays addressing two sources, one interference 
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We consider a uniform linear array (ULA), consisting of N isotropic antennas with 

positions given by ynd, n = 1, where d denotes the inter-element spacing. Suppose there 

are P sources impinging on the array from directions defined by {(pSii,0sP}. The main goal 

of this work is to jointly design P sparse, non-overlapping subarrays that collectively span the 

entire length of the ULA. Depending on the assigned mission, each subarray is tasked either with 

communicating with a source or detecting the presence of a target along a specified direction. The 

number of antennas in subarray i is given by Kh i - 1, ...,P with coordinates specified by yind. 

n= 1,..., Ki. Assume there are m interfering signals impinging on the array from angles 

..., For the communications applications, all P - 1 emitters other than the one tasked 

to a given subarray are considered interferences for that subarray. Depending on signal carrier and 

bandwidth, these interferences can be full-band or partial-band interferences. For a radar function, 

interference will only be present if target backscatterings are in the same range Doppler cell. An 

illustrative example of a setup with two sparse non-overlapping subarrays and an interfering source 

is presented in Fig.l. The receive steering vectors for subarray i towards direction 0 can be 

written as: 

a;(0) = [elkoyudcoscfi' 'gjkoytKidcos'fiy' i=1> )P (1) 

where k0 is the wavenumber and is given by k0 = 2n/A. with A denoting the wavelength. The 

received signals for subarray i at time instant t can be written as: 

Xj(t) = si(t)aj(0si) + CiCj(t) + 11,(0 (2) 

where C* = ...,aj(0S;i_1),ai(0s>i+1), ...,a;(0Sjp),a;(0u), ...,aj(0;m)] denotes the 

interference array manifold matrix with full column rank regarding subarray i, i = 1,...,P. The 

source i signal is represented by s^t) G C, i = 1,..., P, with corresponding power a^s. The 

interfering signals for subarray i are given by the vector Cj(t) = 

[s1(t),...,si-1(t'),si+1(t),...>Sp(t'),c1(t),...,cm(t')] E Cm+P_1, with covariance matrix and 

ii;(t) e CKi denotes the received Gaussian noise vector at subarray i. We presume that the noise 

vectors for all subarrays have common power given by <7%. 

The received signal at subarray i is filtered by the receive weight, or coefficient, vector of 

subarray i denoted as w, e CKi. Thus, the output SINK for source i is written as 
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(3) 
sinr = 

wf Rn,iWi 

where Rn i = CiRft jCf + defines the interference plus noise covariance matrix for 

subarray i. The MVDR beamformer that maximizes the SINR, by securing the desired source 

signal while suppressing the undesired interference and noise, is written as [7]: 

_ Rn^C^s.i) 

a(0s,i)HRn,^a(^>s,i) 
(4) 

By substituting (4) into (3), we obtain the output SINR of the matched MVDR beamformer 

at subarray i as: 

SINR, = ffjG, = (5) 

where 

Gi = a(0S;i)HRnja(0s,i) (6) 

denotes the ith subarray gain of the MVDR beamformer towards the direction of source i (<fiSii). 

It is evident from (1) that the subarray configuration affects the receive steering vectors and hence, 

from (5), the output SINR for every subarray. To show analytically the full extent of the effect of 

the subarray selection on the output SINR, we utilize the matrix inversion lemma and restate the 

interference plus noise covariance matrix R“j as: 

R;,i = - Ci(Rm,i + cfc^-'cf] (7) 

where R^ j = cr^R^j. By defining SNR; = ofs/(Jn as the input signal-to-noise ratio (SNR) at 

subarray i and substituting (7) into (5), the output SINR at subarray A can be written as in (8). It 

is evident from (8) that the output SINR of the MVDR beamformer at subarray i is influenced by 

the subarray configuration through the source steering vectors a(0s.;) and the interference array 

manifold matrix Cj. 

SINR; = SNRilXi - a(0Si)HCi(R m,i + Cf Ci)_1Cf a(0St)] (8) 
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3 Sparse Subarray Design through SINR Optimization 

3.1 Given Cardinality of Antennas per Subarray 

The optimum sparse subarray design can be defined as dividing the full ULA into P 

separate subarrays that collectively cover the entire ULA and selecting the optimal grid location 

for each subarray with the respective weights determined by MYDR beamforming. The optimum 

configuration of the subarrays is obtained by jointly maximizing the SINRs at the output of the 

different subarrays. In this section, we assume that the number of antennas that constitute each 

subarray is given, i.e. the values of Kh Vi are prefixed and determined a priori. This number can 

be decided based on the achievable array gain. Hence, the main objective is to simultaneously 

select the optimum subarray configurations in order to maximize the SINR for each source. 

Towards that objective, we define P selection vectors Zj £ {0,1}W, i = 1,, P, where entry "1" 

stands for a selected location and "0" for a discarded location for antenna placement regarding 

subarray i. Since we assume knowledge of all the antenna locations, we may define the full array 

receive steering vector towards direction 0 as: 

a(0) = [effcoyidcos0 ^ e;'koyjvdcos0jT ^ 

Therefore, the respective receive steering vectors for subarray i towards angle 0 can be given 

by 3j(0) = Zf O 3(0) and dispose of the zero entries in order to have a vector of length Ki. In 

order to simultaneously design the optimal sparse, separate subarrays, we consider the following 

joint output SINR maximization problem: 

max 2f=1 SINRj (10) 
Zi,...,Zp 

s.t. ljvZj = /Q,Vi 

Hf=i zi — 1/v 

Z£ 6 {0,l}w,Vi 

The first constraint in (10) dictates the number of antennas in each subarray. The second and the 

third constraints ensure that the disjoint subarrays collectively span the entire ULA and that the 

elements of the selection vectors are strictly 0 or 1, respectively. From (5), the SINR 
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maximization problem (10) can be restated as a subarray gain optimization problem. In particular, 

we can define the gain for the full ULA case by substituting (7) into (6) and replacing the subarray 

steering vectors with the full array steering vectors as shown in (11), where Ca i = [Cj,ai(0S i)] 

and Cj is defined in (12). The extended interference covariance matrix can be written as: 

e, = + efCjr^faOM] = on 

-®mxl 

Olxm 

0 

The equality in (11) can be proved by utilizing the block matrix determinant formula, as shown 

below: 

Cj Cj + R^j Cj a(0S j) 

" a(0s,j)"Cj a(0s,j)Ha(0s,j)w 

= |CfCj + Rm,j|Gj. (13) 

Hence, the SINK maximization (10) can be reformulated as the maximization of the logarithm of 

the subarray gain for each subarray as [36], 

max £f=1 log|C"j2)(Zj)Cajj + Rj| - log|CfB(Zj)Cj + Rm;j| 
Zi,...,Zp 

s.t. lTNzi = Ki,Vi (14) 

Hf=i zt = In 

Zj G {0,l}w,Vt 

where D(Zj) denotes the diagonal matrix populated with the vector Zj along the diagonal. There 

are two reasons that render the optimization (14) non-convex: the non-concave objective function, 

that is defined as the difference of concave functions, and the non-convex binary constraint 

enforced by the antenna selection vectors Zj G {0,1}". However, since the objective 
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function is the difference of concave functions, the respective global optimizer locates at the 

extreme points of the polyhedron and thus we may replace the binary constraint with the box 

constraint 0 < z( < 1 [17, 33], To circumvent the non-concavity of the objective function, we 

utilize first order Taylor series that can iteratively approximate the negative logarithms of the 

objectivefunction, which cause the non-concavity. The (/c + l)th Taylor approximations of those 

terms based on the previous solution are shown in (15), where Vgi(zp^) represents the 

gradient of the logarithmic function log|Cf©(zJCj + Rmi| evaluated at the point z^ and is 

written as in (16), where aj ;- denotes the jth column vector of the matrix Cf. This sequential 

convex programming (SCP) technique recasts the initially non-convex problem to a series of 

convex subproblems, each 

loglCfDOOCi + Rm.il = log|CfB(2f)C, + Rm.il + Vg^zf'Kz, - zf0) i T, (15) 

VgiCz®) = [^(tfDCip^C, + RmJ-'SyJ' = 1.N]T (16) 

of which can be optimally solved via convex optimization [4], By substituting (15) into (14), we 

obtain the following approximated convex optimization problem that provides the antenna 

selection in the (k + l)th iteration based on the solution z-fc\ Vt from the previous iteration: 

max If=1 log|CjiD(zi)Ca,j + Ril - ^ 
Zl,...,Zp 

s.t. l^Zi = /fi,Vi (17) 

Sf=i zi = l(v 

0 < Zj < l,Vi 

It should be highlighted that SCP is a local heuristic and thus the final solution is dependent on 

the initial subarray selection vectors z\°\ Vi. Hence, we consider several initialization ooints 

z[° , Vi for optimization (17) and select the solution that provides the maximum objective 

function value. We use the Matlab embedded CVX software [14] to solve problem (17). 
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3.2 Cardinality as an Optimization Variable 

In this subsection, we consider the cardinality of the antennas in each subarray as an 

optimization variable of the SINK maximization problem (17). Adding the numbers of sensors per 

subarray as an optimization variable maintains the convexity of the SCP optimization problem 

(17) and the reformulated problem can be written as: 

max Sf=1 log|C^iD(Zj)Cai + R*| - 7) 

Ki'J.Kp 

s.t. lTNzi = Ki,Vi (18) 

Sf=i zi = 1/v 

0 < Zj < l,Vi 

In this case, the optimization does not only decide the location of the sparse subarrays sensors but 

also their number, i.e. Kt, i = 1, based on the mission information and requirements. It 

should be highlighted that this method should be applied in cases where there is no minimum 

requirement regarding the performance of the system for each source, since the solution will 

allocate more antennas to a source with higher channel gain. 

4 Optimum Subarray Design through SINK Constrained Optimization 

The common aperture dual or multitask receiver platforms must provide a sufficient gain 

to the incoming signal regardless of whether it represents communication or radar data. This gain 

improves successful decoding of symbols for the former case and enhances probability of target 

detection for the latter case. Hence, in this section our primary objective is to design an algorithm 

that maximizes the SINK for some sources subject to attaining a specific set of SINRs for the 

remaining sources. By setting the cardinality of the antennas as an optimization variable, the 

proposed scheme not only derives the optimum sparse subarray configurations but also the optimal 

number of antennas (Kh Vi) for each subarray. 

Without loss of generality, we consider that there is a predefined SINK crTerion y{, l = 

for the first L out of a total of P sources of interest. With a total of N antennas placed 

on a uniform linear grid, we may define the optimum sparse subarray design with SINR constraints 
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as selecting the optimum sparse subarrays that constitute a ULA. Each subarray considers one 

source of interest and jointly maximizes the SINK; performance towards P — L sources where 

i = L + 1,..., P, while attaining the SINK threshold y;*, l = for the rest of the sources. 

To achieve this arrangement, we consider the following constrained-SINR maximization problem: 

max £f=i+1 SINR, (19) 
KiJ.Kp 

s.t. SINR; > Yi, l = 1.L 

l^Zj = /fi, Vi 

Hr=i zt = lyv 

Zi e (OAf, Vi 

The non-concave objective function and SINR constraints and also the non-convex binary 

selection constraints Zj G {0,1}N render the optimization (19) non-convex. Similarly to section 

III, we relax the selection vector constraints to box constraints and we exploit first order Taylor 

series approximation SCP to iteratively approximate the objective function and the SINR 

constraints. We derive the following approximated convex optimization problem: 

max Sf=L+i I°g|Ca,i®(Zi)Ca,i + R;l - 
Kii’.Kp 

s.t. log|C^iD(Z()Cai + R;! — Ti> Yi,l = 

irNzi = Ki,Vi (20) 

£f=i zt = 1/v 

0 < Zj < 1, Vi 

The optimization (20) is a local heuristic problem and its solution depends on the initialization 

vectors z-°\ Hence, we initialize the SCP algorithm (20) with several starting points z-C> and 

save the solution that gives the maximum objective function value. 
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5 Simulation Results 

In this section, simulation results are presented to validate the effectiveness of the proposed 

joint aperture optimum subarray design algorithms. 

5.1 Example 1 

We consider a ULA consisting of IV = 16 antennas with an inter-element spacing of d — 

A2. The receiving platform aims to maximize the SINR of two separate sources utilizing two sparse 

subarrays of fixed number of antennas, ^ = K2 = 8. The first source signal arrives at the array 

from a direction (j)s l that is changing from 0° to 180° with a step of 3°, and with an SNR set 

at OdB, whereas the second source is fixed at 2 = 45°, with an SNR of 3dB. An interfering 

source is also active, impinging on the ULA from (pi^ = 112° with an INR set at 20dB. For each 

arrival angle of source 1, we obtain the corresponding optimum sparse subarrays regarding both 

sources according to SINR maximization (17), and using 12 random initialization points z[°\ In 

order to validate the efficiency of the first order Taylor series approximation SCP, we obtain the 

true optimum sparse subarrays through enumeration and compare the output SINRs of both 

methods in Fig.2. It is evident that the optimum performance of the proposed method closely 

approximates the global optimum solution obtained from enumeration. Moreover, there is an 

evident SINR drop for both subarrays when the two sources are closely separated, since each 

source, in essence, plays the role of an interfering signal for the reception of the other source. 

Subarray 1 experiences one more SINR drop when source 1 is closely located to the interfering 

source, whereas this drop is not present for subarray 2, since source 2 is fixed at 0s 2 = 45°. In 

order to demonstrate the impact of the subarray configuration on the output SFTR, we fix the 

incoming angle of source 1 at cf)s l = 143° and enumerate all possible 12870 subarray selections. 

We present the corresponding output SINR in descending values for both sources in Fig.3. The 

cardinalities of all possible selections for subarrays 1 and 2 are obtained from -—- and 
Kx\ (JV-Xi)! 

N' 
(.N_K y, respectively, which are equal, since N = + K2. It is clear that the different subarray 

designs significantly alters the output SINR, up to 5dB difference. As mentioned ir. section III, the 

number of initialization points z® affects the performance of the optimization (17). Table 1 

presents the output SINR for subarrays 1 and 2 for different number of initialization vectors z[0). 

It is evident that there is a minor increase in performance with increased number cf initialization 
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points. It also shows that even by using few initialization points, we achieve a performance that 

closely approximates the global optimum, which is SIN= 9.0306 and SINR2 = 12,0302. 

Simulations also showed that there is insignificant change in SINK when using more than 12 

initialization points. 1 

Figure 2: Output SINR for subarrays 1 and 2 derived from enumeration and (17). 

Figure 3: Output SINR for all different sparse subarrays for (j>_(s,l)=143Ao and (f>_(s,2)=45A0. 

1 Regarding the computational complexity of the proposed algorithm, it is noted that the complexity of an N x N matrix inversion 
is of the order 0(iV3) and the solution of a convex problem is of polynomial time complexity. In the proposed algorithm, we 
perform miter x niter iterations, where miter is the number of initialization points of the respective optimization and niter is the 
number of iterations needed to achieve the required Taylor approximation accuracy. During each iteration, P matrix inversions 
and P convex optimizations are performed, where P is the number of desired sources considered. 
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Table 1: Maximum SINR for (17) with varying number of initialization points (dB). 

Number of z|0) SINR! SINR2 

2 8.9851 11.9685 

4 8.9851 11.9728 

6 8.9928 11.9728 

8 9.0024 12.0134 

10 9.0118 12.0188 

12 9.0216 12.0242 

14 9.0216 12.0242 

16 9.0216 12.0242 

5.2 Example 2 

In the next simulation, we extend the ULA to N = 36 antennas and add a third source of 

interest at (ps 3 = 68° with SNR fixed for all sources at OdB. The interfering source is assumed to 

be the same as in the first example. We assume two cases of highly and weakly spatially correlated 

sources. Case I represents highly spatially correlated sources, where the incident angles of sources 

1 and 2 are set at (ps l = 47° and </>Sj2 = 45°, respectively. In case II of low spatial correlation, 

the angles-of-arrival are set at (ps l = 143° and (ps 2 = 45°, respectively. The spatial correlation 

matrices of the steering vectors corresponding to sources 1 and 2 for the high and the low 

correlation cases are: 

R-high ~ 

1 + Oj 
0.1318 - 0.6837; 

0.1318 + 0.6837/ 
1 + 0; 

R low ~ 
1 + 0; 
0.0060 - 0.0118; 

0.0060 + 0.0118/ 
1 + 0; 
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In order to shed light on the mechanism of joint subarray design, we derive the optimum subarrays 

for the two cases of given antennas cardinality and when the cardinality is a design parameter 

which are associated with (17) and (18), respectively. We also obtain the optimal subarrays by 

maximizing the output SINK for each of the sources when considered separately through the 

following optimization: 

max SINR0i (21) 
Z 

s. t. IjyZ = K 

0 < z < 1 

for i = Optimization (21) is non-convex and can be recasted as a convex one by using 

SCP. Since there is no explicit constraint on shared antennas across subarrays, some antennas 

could be allocated to more than one subarray and hence this design cannot be used for simultaneous 

multitask function. The subarray configurations derived from (17), (18) and (21) are depicted in 

Figs. 4 and 5 for the highly and the weakly correlated cases, respectively. In particular, the blue 

dots represent the respective active sensors for the corresponding subarray. Two important 

observations are in order: Firstly, for the case of highly spatially correlated sources, the optimum 

subarrays for sources 1 and 2 obtained from the separate design (21) are fully overlapped (Fig.4 

(g),(h)), since they consist of exactly the same antennas, whereas for the weakly correlated case 

they share only 4 out of 12 antennas (Fig.5 (d),(e)). Flence, the competition for the optimum 

antennas located at the two far edges of the ULA in the joint aperture subarray design is more 

intense for higher spatial correlation of the sources of interest. As depicted in Fig.4, subarrays 1 

and 2 from (17) and (18) contest over the optimal antennas located at the two far edges of the ULA* 

whereas most of the antennas in the center of the ULA are allocated to subarray 3. The second 

observation is that the optimum subarray configurations from both (17) and (18) is exactly the 

same for the weakly correlated sources, as seen in Fig.5. However, for the case of highly correlated 

sources, optimization (18) allocates more antennas to the less correlated source 3 (K-^ = 10, K2 = 

11, K3 = 15), since it results in higher total SINR for the system, as shown in Table 2. This table 

presents the maximum output SINR values and the total SINR for all three sources for 

optimizations (17), (18) and (21). It is also evident from Table 2 that for the case of highly 

correlated sources, the proposed methods provide a substantially lower SINR as compared to 
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separate subarray optimization. On the other hand, for less correlated sources the joint 

optimizations (17) and (18) provide almost identical performance to the separate design technique 

(21). The beampattems for the optimum subarrays obtained from (17) for the highly and weakly 

correlated cases are plotted in Figs.6 and 7, respectively. 

• ••••• •• •••• 
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 

Array (a) 

• ••••• • ••••• 
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 

Array (b) 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 
Array (c) 

• ••• •••••• 
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 

Array (d) 

• • • 
2.4.6 

2 4 6 

2 4 6 

2 4 6 

• • • • 
2 4 6 

• • • • • • 
10 12~ 14 16 18 20 22 24 26 28 30 32 34 36 

Array (e) 

10 12 14 16 18 20 22 24 26 28 30 32 34 36 
Array (f) 

10 12 14 16 18 20 22 24 26 28 30 32 34 36 
Array (g) 

10 12 14 16 18 20 22 24 26 28 30 32 34 36 
Array (h) 

• • •• •••• 
10 12 14 16 18 20 22 24 26 28 30 32 34 36 

Array (i) 

Figure 4: Arrays for case I: (a) Subarray 1 for given cardinality of antennas (17), l b) Subarray 2 

from (17), (c) Subarray 3 from (17), (d) Subarray 1 when the cardinality is a design parameter 

(18), (e) Subarray 2 from (18), (f) Subarray 3 from (18), (g) Subarray 1 from separate design 

(21), (h) Subarray 2 from (21), (i) Subarray 3 from (21). 

• •••• ••••••• 
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 

Array (a) 

• • • • • • 
2 4 6 8 10 12 14 

• • • 
2 4 6 8 10 12 14 

2 4 6 8 10 12 14 

• • • • • 
16 18 20 22 24 26 28 30 32 34 36 
Array (b) 

• •• •••••• 
16 18 20 22 24 26 28 30 32 34 36 

Array (c) 

• •••• • •••• 
16 18 20 22 24 26 28 30 32 34 36 

Array (d) 

• • • • 
2 4 6 

2 4 6 

8 

8 

10 12 14 16 18 20 
Array (e) 

• • • 
10 12 14 16 18 20 

Array (f) 

• • • • • • 
22 24 26 28 30 32 34 36 

• • • • • • • 
22 24 26 28 30 32 34 36 

Figure 5: Arrays for case II: (a) Subarray 1 for given cardinality of antennas (17) and when the 
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cardinality is a design parameter (18), (b) Subarray 2 from (17) and (18), (c) Subarray 3 from 

(17) and (18), (d) Subarray 1 from (21), (e) Subarray 2 from (21), (f) Subarray 3 from (21). 

Figure 6: The beampattems for all subarrays for case I from (17). 

Figure 7: The beampattems for all subarrays for case II from (17). 
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Table 2: Maximum SINK for the proposed methods of (17), (18) and separate optimization (21) 

(dB). 

Eq.(17) Eq.(18) Eq.(21) 

SINRi, Case I 9.1294 8.5465 10.1743 

SINR2, Case I 9.1989 9.2434 10.1698 

SINR3, Case I 10.7389 11.7027 10.7529 

Total SINR, Case I 29.0672 29.4926 31.097 

SINR1; Case II 10.7434 10.7434 10.7435 

SINR2, Case II 10.6530 10.6530 10.7537 

SINR3, Case II 10.6844 10.6844 10.7547 

Total SINR, Case II 32.0808 32.0808 32.2519 

5.3 Example 3 

Figure 8: Beampattems towards source 2 for different y). 
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Table 3: Optimal number of antennas for subarays 1, 2 and 3 and maximum SINR1 and SINR? 

(dB) for different target SINR Yz- 

SINR2 target Ki Kz Ks SINR1 sinr3 

Yz = 8.41 14 7 15 11.38 11.73 

y2 = 10.73 12 12 12 10.77 10.75 

Yz = 12.30 10 17 9 9.88 9.45 

• •••• • • • 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Array (a) 

12 3 4 5 

1 2 3 4 5 

6 7 

6 7 

• • • • • 
8 9 10 11 12 13 14 15 16 17 18 19 20 

Array (b) 

• • • • • • 
8 9 10 11 12 13 14 15 16 17 18 19 20 

Array (c) 

1 2 

• • 
3 4 5 6 

• • • • • 
7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Array (d) 

Figure 9: Subarray 1: (a) proposed method (17), (b) Nested array, (c) Coprime array, (d) 

proposed method (20) with yl = 8.4102. 

In this simulation, we consider the same layout as the weak correlation case of the previous 

example. We assume a predefined fixed desired SINR2 for source 2. The primary objective is to 

obtain three separate sparse subarrays that constitute the entire ULA and maximize the SDJR at 

the output of subarrays 1 and 3 while satisfying the desired output SINR for subarray 2. It is noted 

that the algorithm decides on both the optimal locations of the antennas for each subarray and also 

the optimal number of antennas for each subarray (K1, K2, K3 ). The beampattems towards source 

2 for different SINR thresholds y2 are shown in Fig.8. It is evident that higher y2 generates a 

more accurate mainbeam towards source 2 with lower sidelobe levels and more efficient mitigation 

of interference. The optimum cardinality of the antennas in each subarray along with the maximum 

SINRs obtained from (20) for different y2 are listed in Table 3. As expected, the higher the desired 

SINR level towards source 2 is, the more antennas are allocated to subarray 2, which 
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naturally leads to a drop of SINK for the other subarrays. 

Figure 10: Beampattems for subarrays (a), (b) and (c) in Fig.9. 

Table 4: Comparison of the system performance for the proposed methods, the nested arrays 

and the coprime arrays schemes. 

k2 SINR-l S!NR2 

Optimization (17) 8 12 8.9639 13.7877 

Nested 8 12 8.4102 13.3058 

Coprime 8 12 7.9412 13.4557 

Optimization (20), yf = 8.4102 7 13 8.4102 14.1116 
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5.4 Example 4 

In order to further demonstrate the superiority of the proposed adaptive algorithms, we 

compare the performance of the sparse subarrays obtained from (17) to the case when the 

structured nested and coprime arrays are utilized to derive subarray 1 [1, 27]. We consider a ULA 

of N = 20 antennas and two sources of interest. For a fair comparison, we employ = 8 

antennas to design the optimum adaptive sparse subarray 1 from (17) and also 8 antennas to build 

the prefixed nested and coprime subarray 1. The angles-of-arrival of the sources of interest are 

0s,i = 80° and <ps 2 = 68° with their SNR set at OdB. An interfering source is also present at 

0( i = 112° with INR = 20dB . The subarray 1 structures are depicted in Fig.9 and the 

corresponding beampattems in Fig. 10. It can be observed that the proposed joint sparse subarray 

design yields a better shaped beampattem with deeper nulls at the direction of interference and 

lower sidelobes when contrasted with the prefixed nested and coprime arrays beampattem. In order 

to quantify the comparison, Table 4 shows the maximum SINR obtained from the proposed 

adaptive algorithms and the prefixed techniques. We also added the optimum subarray structure 

obtained from (20) with Yi — 8.4102 (subarray (d) in Fig.9) to match the SINR performance of 

the prefixed nested array technique. It is evident that the proposed adaptive algorithms 

substantially outperform the prefixed nested and coprime schemes in terms of output SINR for the 

sources of interest. Furthermore, as shown in Table 4, the proposed adaptive optimization (20) 

matches the performance of the nested arrays structure towards source 1, even though employing 

only 7 antennas. Therefore, the extra antenna can be allocated to subarray 2, maximizing the 

SINR2 performance for source 2 as shown in Table 4. 

Figure 11: Normalized beampattem of subarray 1. 
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Figure 12: Normalized beampattem of subarray 2. 

Figure 13: Normalized beampattem of subarray 3. 
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Figure 14: Sparse subarrays configuration map: circle: subarray 1, triangle: subarray 2, scuare: 

subarray 3. 

Figure 15: Collective contour plot of the three beampattems. 

5.5 Example 5 

The proposed sparse subarray design algorithms can be also applied in the case of planar 

antenna arrays. For illustration, we consider a 10 x 10 uniform rectangular array (URA) with an 
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interelement spacing among any two adjacent antennas along any column or row is dx = dy = 

A.2, respectively. Three sources of interest are considered with angles of arrival 0s l — —35°, 

9s2 = —55°, 0s3 = 45°, where dsi denotes the elevation angle of source i and 0sl = 47°, 

(pS 2 = 130°, 3 = 68°, with 05 j stands for the azimuth angle of source i. There is also one 

interfering source present impinging on the 2D array from 0^ = 74° (elevation), 0(1 = 112° 

(azimuth). We allocate 34 antennas for subarray 3 and 33 antennas for each of the subarrays 1 and 

2, i.e. K3 = 34, K1 = K2 = 33. The respective normalized beampattems for eacn subarray are 

plotted in Figs. 11, 12 and 13. The sparse separated subarrays configuration is shown in Fig.14 

and the collective contour plot of all three beampattems is depicted in Fig. 15. 

6 Conclusion 

We have examined the problem of sparse array design, where the array aperture is divided 

among different subarrays - a concept known as shared aperture. At first, we proposed an algorithm 

that optimally decides the locations of predetermined number of antennas for each subarray using 

SINK as a criterion and conditioned of having unshared antennas among the subarrays. 

Furthermore, we generalized the above problem by including the cardinality of the antennas in 

each subarray as an optimization variable, providing more degrees of freedom to the algorithm to 

further increase the efficiency of the system. Additionally, we proposed an algorithm that 

maximizes the SINK for some sources, while satisfying a certain SINK threshold for the other 

sources. Sequential convex programming and Taylor series approximation techniques were 

employed to render the initially non-convex sparse subarray design as a convex problem. 

Simulation results demonstrated that the proposed method closely approximates the true optimum 

sparse subarray design performance obtained by enumeration. Furthermore, it was shown that the 

proposed algorithm can be applied to high spatially correlated sources and in the case of planar 

antenna arrays. Finally, the superior performance of the resulting subarrays over other prefixed 

sparse array configurations was also demonstrated. 
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