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Abstract 

Airborne search and rescue missions are of incredible importance to save the lives of missing 
persons. Such missions must be planned carefully in order to optimize the chances of 
survival. However, planning must be conducted within a small time frame so as net to waste 
time. The target of the search is often likely to move, which significantly complicates the 
problem. The reason for the increased complexity is that the search reward at time k does 
not only depend on the observation made at time k, but on all observations made up until 
time k. In other words, the rewards over time are inseparable and, hence, state-of-the-art 
shortest path planning algorithms become inapplicable. A pilot who is faced with such a 
complex task in a stressful situation is prone to planning a suboptima] search trajectory. 
Coordinating a team of cooperating aerial platforms is especially difficult. Automation of 
search trajectory optimization is therefore the aim of this dissertation. Three novel problems 
are considered in this thesis: single platform search under kinematical constraints, single 
platform search under kinematical and resource constraints and strategy optimization for 
a team of heterogeneous cooperating platforms with shared resources. A mixed integer 
linear problem (MILP) formulation is proposed as well as a decomposition method for 
solving each problem. Computational experiments and simulations show that each proposed 
model and algorithm is applicable and efficient for solving its considered problem. The first 
problem variation is solved much faster using the proposed generalization of a oranch & 
bound algorithm compared to solving the MILP formulation using a commercial solver. To 
solve the second problem variation, a Benders’ decomposition algorithm is developed for 
more efficient optimization of the proposed MILP formulation. This algorithm significantly 
reduces the computation times for solving the problem with scarce resources. The proposed 
linear upper bound for solving the third problem variation improves a previous linear upper 
bound by a very large margin. Furthermore, the proposed branch & price algorithm reduces 
computation times significantly. Finally, a first step towards a decision support tocl is made 
by applying the proposed methods to a terrorist threat scenario of a search for a radiological 
dispersion device. The input parameters for search effectiveness here are obtained in field 
experiments. 
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Chapter 1 

Introduction 

The research presented in this thesis was initiated by Airbus Defense & Space in Manching, 

Germany. To be more precise, by its department for unmanned aerial vehicles (UAVs) and 

systems (UASs). There exists a demand for solutions such as the ones developed in this 

research, as many customers that purchase unmanned aerial vehicles and systems for search 

missions are interested in supporting software for search strategy optimization as well. The 

necessary requirements for the optimization methods have been determined in cooperation 

with in-house experienced pilots and UAV pilots. 

The remainder of this introduction begins with the motivation for the topic in section 1.1, 

followed by the scope in section 1.2. The main contributions of this thesis are summarized 

in section 1.3, and finally, section 1.4 provides an outline of this thesis. 

1.1 Motivation 

Recent events have shown the enormous importance of search-and-rescue missions. The 

number of lives that were lost at sea after refugee ships sunk in the Mediterranean and 

Aegean seas exceeded 2500 in the first months of 2015 [ 1 ]. Operational decisions for a search 

mission using a fleet of aircraft are made by an assigned coordinator of a Maritime Rescue 

Coordination Center (MRCC). This coordinator allocates the search effort by assigning 

surveying assets to distinct subareas. This task is already supported by systems based on 

algorithmic search approaches, e.g., the search and rescue optimal planning system [2] is 
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currently used by the United States Coast Guard. Nevertheless, individual pilots are expected 

to plan their optimal trajectory by hand, which is tremendously complex; it is proven to be 

an A^P-complete optimization problem by [3] for a single platform searching for a single 

stationary target. Planning for moving target search is considerably more complex in general, 

and moreover, the kinematical constraints of the aircraft must also be taken into account. 

Pilots must be ready for take off within the prescribed time to preparedness, which is a 

maximum of 30 minutes by international agreement. Planning a search trajectory is even 

more complex when multiple vehicles are assigned for a cooperative search. Not to mention 

the additional complexity when factors such as constraints on resources (e.g. time exposed 

to risk) must be taken into account. Executing such a complex task in a stressful situation 

is susceptible to resulting in a sub-optimal search trajectory and rescue may come too late. 

The aim of this thesis is therefore to automate this task with an outlook towards autonomous 

search missions by unmanned aerial vehicles (platforms). A major benefit of exploiting 

unmanned vehicles is that the current 30-minute time to preparedness for the crew can be 

reduced, compared to the deployment of manned vehicles. The recent rise in technological 

development of unmanned aerial systems makes it very probable that these will be exploited 

in the future. The methods presented in this thesis are applicable for aerial sensor platforms 

in general, i.e. platforms that are either fixed-winged or rotary-winged, either manned or 

unmanned and either autonomous or non-autonomous. An aerial sensor platform is referred 

to by platform for short in the remainder of this thesis. 

1.2 Scope 

This thesis focuses on the problem of search for moving targets by fixed-wing and rotary¬ 

wing platforms. Methods for solving three variants of this problem are proposed: 

• Search by a single platform under kinematical constraints. 

• Search by a single platform under kinematical and resource constraints. 

• Cooperative search by a team of heterogeneous platforms with shared resources. 
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Here, resource constraints is an abstract notion which can be specified to obstacle-, threat-, 

or collision avoidance and communication-, time-, or fuel constraints. These problems are 

considered in discrete time for computational purposes, whereas moving target search in 

continuous time has been addressed in literature [4-7] as well. Planning a search strategy 

can be conducted either implicitly or explicitly [8]. In implicit planning methods, the plan 

specifies how the platform interacts with the environment and how it responds to sensor 

observations. A plan in this context is a prescription of how to react. In explicit planning 

methods, a search-path is computed based on predictions of the environmental state and 

predictions of the sensor observations. This thesis focuses on explicit planning, because 

it allows for anticipation of estimated target movements. Anticipation leads to a higher 

probability of detection compared to merely reacting to an observation. The objective is to 

maximize the probability of detecting the target. Other types of objective functions can be 

considered, for example minimal expected time to detection or minimizing the latest time 

to detection. However, maximizing the probability of detection corresponds to the actual 

real-life objective in most search missions and is by far the most used objective in literature 

as well. 

Many related problems have been studied in literature. In order to make a clear distinc¬ 

tion, related important problems which are not included in the scope of the research in this 

thesis are the following. Problems concerning terrain covering or static target search are not 

considered. Neither are targets considered that may react in any way to the searcher, such as 

evasion or cooperation. Such problems are known as two-sided search problems. The focus 

in this thesis is on one-sided search problems. Other related but excluded problems concern 

imaging, recognition, classification, tracking, surveillance, target state prediction, target 

motion modeling, sensor effectiveness, information merging, sensor fusion and shortest path 

to moving target problems. Nevertheless, solutions to these problems are critical to ensure 

the effectiveness of a search strategy in real-life search missions. 

The proposed methods are applicable to real-life search missions by a single platform or 

by a team of platforms. Therefore, the constraints of the individual platform given through 

flight physics need to be taken into account for each optimized trajectory. Physically feasible 

trajectories can be optimized for any type of aerial sensor platform. This is a unique aspect 
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of this work, as most approaches in literature consider a higher level of planning in which 

the platforms are assigned to search a subarea during a period of time. With such high 

level search plans, the actual flight trajectory within the subarea must still be decided on by 

the pilot. The proposed methods in this thesis are therefore much better suited for a more 

automated conduction of search missions. Finally, even though the search for a single target 

is considered throughout this thesis, the proposed methods are applicable to multiple targets 

by means of a simple and straightforward extension. 

1.3 Contributions 

The main contributions of this work are listed and elaborated upon in the following. Each of 

the contributions successfully addresses one of the research gaps as identified in section 3.2. 

• Discrete uniform model for platform kinematics with timeline synchronization. 

The first main contribution consists of a unified model for fixed-wing and rotary-wing 

platforms, taking kinematical constraints into account. A complicating aspect in moving 

target search is that the timelines of the target and platforms must be synchronized. When the 

distances between waypoints are varying while the time steps remain constant, the platform 

would have to constantly accelerate and decelerate to stay in sync. The constant arc lengths 

as proposed are therefore much better suited for time dependent aerial vehicle trajec:ory 

planning. Additional details are incorporated in the proposed model, e.g. relocation arcs 

on which search effort is traded off for quick relocation and feasible transitions between 

trajectories planned in consecutive planning stages. Furthermore, a set of linear constraints 

is proposed for physically feasible waypoint selection, resulting in a physically feasible 

search trajectory for the platform. This contribution has been published in the Journal of 

Optimization Theory and Applications [9] and is a continuation of ideas from the author’s 

master thesis [10]. 
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• A mixed integer linear programming formulation for Markovian target search 

trajectory optimization on heterogeneous grids with resource constraints. 

The second main contribution consists of a novel model formulation for Markovian target 

search trajectory optimization, which generalizes and improves the author’s previous work 

in [9, 10] and has been published in the journal Computers and Operations Research [11], 

This is an initial approach that takes both kinematical and resource constraints intc account, 

and furthermore, allows for modeling of the target and platform on heterogeneous grids. The 

use of heterogeneous grids is important when aiming for a constant speed and for a detailed 

map of the estimation of the position of the target. Finally, this is a first formulation of 

the considered problem that allows for being decomposed using decomposition techniques. 

Decomposition techniques are useful to solve complex problems by decomposing the 

problem into a set of smaller problems which are easier to solve. 

• Generalization of a state-of-the-art branch & bound algorithm for Markovian 

target search trajectory optimization incorporating kinematical constraints and het¬ 

erogeneous grids. 

The third main contribution consists of a generalization of a state-of-the-art branch & bound 

algorithm for moving target search trajectory optimization. The proposed alternation results 

in an algorithm that yields an optimal search trajectory which is physically feasible for the 

considered platform. Furthermore, the generalization allows for modeling of the target and 

platform movement over heterogeneous grids. To the best of the author’s knowledge, all 

developed 7\-step-lookahead methods in literature model both to move over one shared grid. 

The concept of heterogeneous grids has two advantages over one shared homogeneous grid; 

a target specific grid can be constructed as fine as necessary to keep a detailed probability 

map of the target position, whereas a hexagonal grid for the platform allows for modeling 

a more natural flight trajectory. All the proposed methods in the following contributions 

account for kinematical constraints. 
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• A Benders’ decomposition algorithm for Markovian target search trajectory op¬ 

timization with resource constraints. 

The fourth main contribution consists of a first Benders’ decomposition algorithm for search 

trajectory optimization, allowing to disconnect the target and platform networks and iter¬ 

atively solve two much smaller problems until the desired optimality tolerance has been 

reached. First, the proposed mixed integer linear program is extended to account for resource 

constraints, which is then decomposed using a Benders’ decomposition approach. This 

results in the first method for moving target search that takes both kinematical and resource 

constraints into account. In general, this is the first method utilizing a Benders’ decom¬ 

position approach for solving a static or moving target search problem. An intermediate 

version of this method is published in the proceedings of the biannual Student Conference 

on Operations Research [12], The proposed Benders’ decomposition algorithm significandy 

reduces the computation times for solving the problem with scarce resources. 

• A branch & price algorithm for cooperative search by a team of heterogeneous 

platforms with shared resources. 

The fifth main contribution consists of an initial method for solving a cooperative search 

trajectory problem for a team of heterogeneous platforms with shared resources. In addition, 

this is the first branch & price algorithm for solving a moving target search optimization 

in general. In literature, branch & price algorithms have shown to be especially powerful 

when the underlying sub-systems have a special combinatorial structure, such as a trajectory. 

The method consists of a novel non-convex mixed integer programming formulation which 

is relaxed linearly. This proposed relaxation yields an upper bound to the problem that is 

significantly tighter compared to the previous tightest linear upper bound in literature [13], 

Due to the increased complexity to the problem when considering multiple platforms tne 

non-convex formulation is computationally intractable. Therefore, the proposed branch & 

price algorithm solves the relaxed problem to optimality yielding a tight upper bound to tne 

original problem. In addition, a novel branching mechanism is proposed that yields better 

results compared to the usual branching mechanism used in literature in branch & bound 
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approaches for moving target search. 

• Field experiments for detection of a radiological dispersion device 

The final main contribution consists of a description of how the input parameters such as 

the search effectiveness can be determined, such that the proposed branch & price method 

can be used to provide decision support in real-life search missions. Field experiments 

are conducted in order to determine the maximum ranges of radiological sensors for the 

detection of hazardous material that can be used in a terrorist attack. The results of com¬ 

putational experiments in a realistic scenario show the applicability of a decision support 

tool with the proposed method. In addition to the theoretical search instances solved in the 

previous chapter, the results of these more realistic instances of search for a suspect carrying 

a radiological dispersion device show that the proposed method for cooperative search 

trajectory optimization for a team of heterogeneous platforms yields a significantly higher 

probability of detection when compared to existing methods. Furthermore, the computation 

times of the proposed method are shorter in almost all cases, such that the team of olatforms 

can start the search sooner, which in turn leads to earlier detection and, hence, earlier threat 

relief. 

1.4 Outline 

The remainder of this thesis is structured as follows. First, in chapter 2, a formal description 

of the three considered problem variations is given. The overview of the related literature 

and derived research gaps are described in chapter 3. Then, the method for solving the first 

problem variation of search by a single platform under kinematical constraints is described 

in chapter 4, followed by the method for solving the second problem variation of search by 

a single platform under kinematical and resource constraints, described in chapter 5. The 

method for solving the third problem variation of cooperative search by a team of heteroge¬ 

neous platforms with shared resources is described in chapter 6. Field experiments towards 

decision support in search for radiological material and the corresponding computational 

results are described in chapter 7. Finally, the conclusions are listed in chapter 8. 
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Chapter 2 

The problem of moving target search 

The three considered variations of the problem of moving target search are formally for¬ 

mulated in this chapter, starting with the first problem of search by a single platform under 

kinematical constraints in section 2.1. The next problem concerns search by a single plat¬ 

form under kinematical and resource constraints and is formulated in section 2.2. Finally, the 

problem concerning cooperative search by a team of heterogeneous platforms wi:h shared 

resources is described in section 2.3. 

2.1 Search by a single platform under kinematical con¬ 

straints 

This section describes the search trajectory problem for a single platform under kinematical 

constraints as introduced in [14]. The problem formulation consists of the following aspects: 

the probability map for the target position, the target model, the sensor model, the platform 

model and, finally, the search objective. These aspects are further described in the following, 

similarly to the author’s previous works in [9, 11], 

The search area is modeled by discretization into a finite set of cells C and the duration of 

the search mission is discretized as well into a sequence /C. The time allocated to a planning 

stage is defined by a sequence KL = , K) of K time steps. The target to search for is 

assumed to occupy one unknown cell C/t e C at time step k £ 1C. For the duration of the 
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search mission, a probability map pck is maintained, where the probability of containment 

pck,c represents the probability of the target occupying cell c at time k. Although the exact 

initial position of the target is unknown, it is characterized by a known initial probability 

distribution pci. The target track is modeled by a stochastic process (Ci,Ck)- which 

is assumed to be Markovian [15], The probability map evolves due to the target motion 

according to 

pck+ltC = ^2d(c',c)pckiC’, (2.1) 
e'ec 

where the transition function d(c', c) e [0,1] represents the probability that the target moves 

from cell c' to cell c and must be estimated for each cell c' 6 C. An example of an evolution 

of the probability map when no observations are made is shown in Figure 2-1. 

A plane above the search area, at the height that is considered optimal for search by the 

considered platform, is also discretized into a finite set of cells. Each of the cell centers 

is represented by a node. The resulting set of nodes is denoted by V. A search trajectory 

is a sequence of waypoints, in which a waypoint is defined by a time-node combination 

(k, v) with k £ JC and u € V. The object to control in this problem is an aerial platform. Its 

motion model, adopted from [16], is given by 

dk-\-i dk T dt • 'ipis 

xk-\.\ — xk dt • sk cos^) (2.2) 

Vk+i = yk + dt ■ sksm(ipk), 

where dt is a time increment, parameter sk is the speed of the platform, parameter 6k is its 

heading angle and 'ipk is its turn rate at time k, which are obviously restricted by the laws of 

physics. Variables xk and yk represent the coordinates of the platform on the plane above 

the search area at time k, i.e., waypoint (u, k) = [xk,yk]. Throughout this thesis, a trajectory 

is represented by the binary vector 2 = (zkiV)kG/c,v€V< such that 

fl if (k, v) is a waypoint on the trajectory, 
(2.3) 

0 otherwise. 
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Figure 2-1: Example of an evolution of the probability map. The platform remains s:ationary 
in the bottom left comer of the search area causing no observations to be made. The 
probability map evolves according to formula (2.1) due to the probabilistic nature of the 
motion model of the target. It moves north and east with equal probability. 

A trajectory is constrained by the motion model in (2.2). The set of trajectories on V that do 

not violate the motion model in (2.2) is denoted by Z. 

It is furthermore assumed that the considered aerial sensor platform has a stabilized 

sensor equipped to make observations. However, it is possible to overlook the target. The 

probability of not overlooking the target is referred to by glimpse probability [3], The 

glimpse probability can be positive and variant for multiple cells at once, as visualized in 

Figure 2-2. 

When observations are made, the probability map evolves according to the motion model 
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Figure 2-2: Variant glimpse probability over the target grid from one point of observation. 

as in Equation (2.1) and, in addition, evolves according to the obtained glimpse probabilities 

for each cell as in Equation (5.29). Therefore, Equation (2.1) is extended to account for 

observation results as follows: 

PCk+l,c = d(C'’ C) PCfc>c' t1 _ P9k,v,c') 
e'ec 

(2.4) 

where the normalization coefficient B is given by 

(2.5) 

After the first observation, the sum of the probabilities of containment over the cells do not 

sum up to unity. Therefore, the probability on containment pck is not a real probability for 

/c > 1. It is merely an indication of the probability of containment compared to the other 

cells. Nevertheless, pc^ is not normalized because the difference in the expected probability 

of containment at time 1 and at time K yields the useful expected probability of detection. 

An example of an evolution of the probability map when observations are made is shown in 
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Figure 2-3. 

Figure 2-3: Example of an evolution of the probability map, when observations are made. 
The platform follows a flight trajectory and makes an observation in each time per od. The 
probability map evolves according to formula (2.4) due to the probabilistic nature of the 
motion model of the target and the observations made by the platform. The targe t moves 
north and east with equal probability. 

The objective is to determine a search trajectory 2 6 Z maximizing the expected 

probability of detection over time period /C, i.e., 

K 

fc=i cec 
(2.6) 
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where pdkiC is the probability of detecting the target at time k in cell c and is calculated by 

Pdk,c P^k,cP9k,v,c^k,v• (^- "7) 

The probability of containment pck,c is calculated through Equation (2.4). Furthermore, 

the probability of containment pck,c is calculated by Equation (2.4), but with B = 1. The 

normalization from Equation (2.5) is omitted, so that the probability map is not normalized. 

Consequently, the probability of containment does not represent an actual probability 

anymore, since it does not sum to unity over the grid cells. It does, however, sum to the prob¬ 

ability that the target has not been found up until time k, despite the search effort. Therefore, 

the objective function in Equation (2.6) yields the expected probability of detection over 1C. 

2.2 Search by a single platform under kinematical and re¬ 

source constraints 

This section describes the search trajectory problem for a single platform under kinematical 

and resource constraints. It is an extension of the first problem that is described in the 

previous section 2.1. In addition to the kinematical constraints, this problem takes resource 

constraints into consideration as well. An abstract notion of resources is used in this thesis. 

In practice, resource constraints can be interpreted as e.g. communication, fuel, and linear 

risk constraints such as the total time exposed to risk. Furthermore, the same type of 

formulation can be applied to collision or obstacle avoidance. 

Formally, the required resource at node v at time k is denoted by prk,v G K+ and the 

limit on resource consumption by T G R+. The total resource consumption on the trajectory 

is not allowed to exceed the limit T. Apart from these additional resource constraints, this 

problem is equivalent to the former. 
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2.3 Cooperative search by a team of heterogeneous plat¬ 

forms with shared resources 

A formal formulation of the problem of cooperative search by a team of heterogeneous 

platforms with shared resources is given in this, final section of the chapter. It differs from 

the previous problem in two ways. The first being the cooperative search by a team of 

heterogeneous platforms, and the second being the general target motion as the Markov 

assumption is dropped. 

The search area is still modeled by discretization into a finite set of cells C and the 

duration of the search mission is discretized as well into a sequence /C. The target lo search 

for is assumed to travel over an unknown track ip = (Ci, C2, S ^ with probability 

pt^, in which 'k is the set of possible tracks for the target to take. Search for the target is 

conducted by a set U of heterogeneous platforms. For each platform u m effectiveness 

of search is given by parameter WUtk,v,c- Furthermore, let pg^ e [0,1] be the conditional 

probability that the target is detected by at least one of the platforms, given that the target 

takes track ip. The glimpse probability is given by the typical [13, 17-19] formula 

(2.8) 

where indicator zUjktV e {0,1} takes the value 1 when platform u visits node v at time k and 

indicator e {0,1} takes the value 1 when the target occupies cell c at time k given its 

track being ip. 

The aim is to optimize a search strategy that consists of one search trajectory for each 

platform u eU. A search trajectory is represented by the binary vector zu = {zuji V)keK..ve_v 

and must be in the set of physically feasible search trajectories Zu for platform u. The 

objective is to find a search strategy that maximizes the cumulative glimpse probabilities 

over the sum-product of all possible target tracks and the probability that track is taken, i.e. 

Maximize ^ pt^pg^. 
ipev 

(2.9) 
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This objective maximizes the joint probability of detection. Finally, the set of search 

trajectories of the platforms is referred to by search strategy. Analogous to the previous 

problem the search strategy can be constrained by a shared resource limit. Resource 

consumption for one platform u at time k at node v is represented by parameter pru k v. The 

cumulative resource consumption may not exceed a given limit T. 
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Chapter 3 

Literature research 

An extensive research of the related literature is described in this chapter. A number of 

surveys precede this overview. A survey of the search theory literature up until 1991 is 

presented in [20]. A related survey in [21] offers a review of literature on search-path 

planning and sensor scheduling. Its main focus is on dynamic programming methods for 

stochastic optimal control. Besides planning for search, tracking of multiple ground targets 

and exploration is taken into consideration as well. The survey in [22] focuses on search-path 

planning methods for rotary-wing platforms. Another related survey, with a focus on mobile 

robotics, can be found in [23]. This survey contains all methods within the scope from 

section 1.2 up until April 2017. 

The overview of related literature is presented in section 3.1, followed by the identifica¬ 

tion and description of the research gaps in section 3.2. 

3.1 Literature overview 

Related literature comes from two different directions of research: operations research and 

applied fields such as aviation technology and robotics. The first direction focuses mainly on 

a high level of search strategy optimization, in which the strategy consists of an allocation 

of search effort. It aims to manage one or a team of searchers in a top-down fashion. The 

search area is typically divided into subareas, in which search effort is allocated over time. 

A subarea is to be searched during a given number of time periods. The search effort is 
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typically expressed in number of searchers of a certain type. The sequence of subareas 

allocated to a platform is path-constrained, i.e. consequent subareas must be adjacent. 

These subareas are often larger than the field of view of a sensor platform, so the actual 

search trajectory within the subarea is not yet planned. Research from applied fields such as 

aviation technology and robotics focus mainly on optimizing search trajectory. Here, ±e 

resulting search trajectory must be physically feasible for the platform. The parameters are 

speed, turning radius, climb/dive angle, and acceleration, which are obviously restricted by 

the laws of physics. 

In this overview, the methods from literature for search effort allocation are first described 

in subsection 3.1.1. The methods from literature for search trajectory optimization are 

described in subsection 3.1.2. Finally, all discussed methods are tabularly summarized in 

subsection 3.1.3. 

3.1.1 Search effort allocation 

The first approaches under review are those optimizing search effort allocation. Within this 

category, the methods are divided into exact methods for a single searcher, heuristics for a 

single searcher, and methods (both exact and approximate) for multiple searchers. 

Exact methods for a single searcher 

Eagle [24] was the first to consider the problem as a partially observable Markov decision 

process, assuming Markovian target motion. As was standard for problems exploiting a 

Markov assumption, the solution technique here is dynamic programming. Possible search 

paths are defined by a finite set of vectors. Eagle noted that some vectors are dominated 

and can be removed from consideration. He proposed a potentially large linear program to 

check for dominance, supplemented by two alternative heuristic reduction schemes. Stewart 

[25] introduced the path-constrained search effort allocation problem in 1979. He chose a 

depth-first branch & bound approach, because most approaches to linear binary problems 

were of this type. In this algorithm, lower bounds on the probability of non-detection are 

obtained by relaxing the searcher’s path constraints. The resulting substitute problems 
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are being solved using a modification of Brown’s algorithm [26]. However, Brown’s 

algorithm does not guarantee optimality for discrete search effort, so obtained bounds are 

only approximate. This may result in mistakenly pruning an optimal branch. Experimental 

analysis with this method is presented by Stewart [27], Eagle and Yee [17] continued the 

work by replacing the approximate bound with a true lower bound, which is obtained by 

relaxing the integrality constraints of the searcher’s position. The relaxed problem is then 

solved using the Frank-Wolfe method [28], 

Martins [18] reconsidered the Eagle-Yee procedure and proposed a new bound. Contrary 

to Stewart’s and Eagle-Yee’s approaches, no constraints are relaxed. Instead, the maximum 

expected probability of detection provides an upper bound for the maximum probability 

of detection. This objective function is linear in the decision variables, so maximizing the 

expected probability of detection is equivalent to finding the longest path through a directed 

acyclic network. The longest path algorithm is adapted from Cormen et al. [29], which has 

linear complexity. This bound is more easily evaluated than the Eagle-Yee bound, but is less 

tight. Despite more branching, run times are still roughly a factor of four smaller on all test 

problems. 

In 1995, Washburn summarized the computational experiences of the branch & bound 

procedures mentioned above in [30], He proposed and evaluated a type of hybrid approach 

where a backup bound is calculated if and only if the primary bound comes w thin 5 of 

fathoming the segment, where 5 > 0. This arises from the idea that putting in seme more 

effort of computing a tighter bound may prevent branching. In all examined test cases, a pure 

procedure is at least as good as any hybrid. A hybrid method is generally slightly slower, 

but Washburn suggests that the gain in robustness might be worth the sacrifice. Washburn’s 

preferred hybrid procedure is Martins’ bound backed up by the Eagle-Yee bound. 

Washburn [19] published another paper on computational results on several bounds 

in the branch & bound procedure, a few years later in 1998. He proposed a new bound, 

which combines the relaxation of the integrality constraint on the searcher’s position and a 

linear overestimation of the glimpse probability function. The need for solving a longest 

path problem is removed, but the bound is less tight on account of the additional relaxation. 

His iterative forward-and-backward algorithm [31 ] yields optimal results for this relaxed 
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problem. 

Lau et al. [32] introduced an improvement of Martins’ bound, called the discounted 

mean (DMEAN) bound. In the calculation of Martins’ bound, the reward at time k is 

calculated while ignoring all observations made at time steps other than k. It is known 

that the true probability of detection at time step k depends on the cumulative probability 

of non-detection at all previous time steps. By additionally accounting for the probability 

of detection at time step k — 1, the bound is tightened. They showed with the help of 

computational analyses that this bound leads to faster solution times than any of the existing 

bounds, because it is significantly tighter with almost no additional computation costs. The 

approach was furthermore extended to find solutions for the search effort allocation problem 

with non-uniform travel times. 

All bounds mentioned so far are dynamic in the sense that they are optimized before 

each branching. Sato [33], on the other hand, introduced static (SB) versions of Martins’ 

MEAN bound and Lau’s DMEAN bound. These bounds are weaker, but have the advantage 

that the longest path is calculated only once prior to any branching, instead of before 

each branching attempt. Especially the latter directional static bound leads to shorter run 

times. He furthermore proposed a network reduction method. Relocation arcs are generated, 

leading towards nodes-of-first-contact where the searcher has the earliest possibility of 

detection. This procedure may reduce the amount of branching attempts significantly. 

Morin et al. [34] extended the path-constrained search effort allocation problem by 

adding an inter-region visibility criterion. In this new formulation, a searcher is able to make 

one observation in any of the cells adjacent to its position. They proposed a novel MILP, 

instances of which are solved using a commercial solver. 

Hohzaki and Lida [35] considered an extension to the search effort allocation problem, 

where the decision of whether or not to look has to be made for each time period additionally. 

A look does not only yield a reward by increasing the probability of detection, but it also 

comes with a cost. In their approach to obtain an upper bound, the path-constraints as well 

as the integrality constraints on the searcher’s position are relaxed. Additionally, they relax 

the integrality constraints on the look decisions. The relaxed problem is then solved using 

Washburn’s forward and backward algorithm [31] and incorporated in a branch & bound 
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procedure. 

Sato and Royset [36] extended Sato’s original approach [33] by constraining the re¬ 

sources of the platform. They considered multiple constraints on consumption of resources 

such as time, fuel, and risk. In this problem, the glimpse probability is assumed to be history 

dependent. They propose a branch & bound method, with a Lagrangean directional static 

bound on the optimal probability of detection. 

Heuristics for a single searcher 

Besides exact methods, many researchers consider at least one heuristic method due to the 

intractability of the overall problem for large instances. Using a receding horizon approach 

was first proposed by Eagle [37] where he applied it to the dynamic programming method. 

Martins [18] introduced a heuristic method besides his exact approach. For each tme period 

k, the search-path is extended by maximizing the expected probability of detection (ED) 

in times k,..., K. The probability map, given that no detection has occurred, is updated 

after each extension. He uses this heuristic to effectively find a good initial solution for 

his branch & bound procedure. Washburn [19] also proposed a heuristic to find a nearly 

optimal solution, rather than exactly optimal. Instead of branching when the lower bound 

q is smaller than the best (lowest) non-detection probability q* found so far, branching is 

carried out when q + d < q*. The last saved path will be within d of optimality. Increasing d 

from 0.01 to 0.02 already resulted in an order of magnitude decrease in runtime. Washburn 

considered this heuristic as perhaps being the best hope for solving search problems of a 

practical size. Thomas and Eagle [38] considered approximating bounds by procedures that 

are more easy to calculate. For their stationary target approximation all target states are 

assumed to be recurrent and for their no-learning approximation the transition matrix must 

have identical rows. 

Sato [33] proposed a static bound heuristic (SBH) similar to Martins’ ED heuristic, but 

adjusted with his own static bound. As a result, it performs only one longest path calculation. 

However, SBH is not available for huge problems because the time-expanded network 

becomes too large for computations. 

Hong et al. [39] introduced the depth-/ approximation, which is similar to Sato’s SBH. 
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A time-expanded network is constructed and named depth-/ network, because the cost of an 

arc is computed from the probability of non-detection over the previous l time steps. The 

second step of the algorithm is to solve the shortest path on this acyclic network, which 

requires linear time. Sato’s SBH would be a depth-2 approximation in this setting. The 

computation costs increase exponentially with l. 

Lanillos et al. [40] applied cross entropy optimization, in which samples are generated 

using multinomial sampling. They evaluated search effort allocation by several metrics: 

mean time to detection and time-discounted probability of detection. The resulting probabil¬ 

ity of detection of the search paths when optimizing those metrics is compared, where the 

latter dominates on almost all test instances. 

Morin et al. [41] presented a constraint programming model. The proposed value 

selection heuristic simplifies the probability system by ignoring past non-detection events. 

At each time step, the accessible vertex is chosen that maximizes the total probability of 

detection in the remaining time, not conditioned on non-detection in previous time steps. 

The authors pointed out that the main advantage of this approach is expressiveness, because 

the model stays close to the natural problem formulation. Morin et al. [42] furthermore 

proposed a heuristic ant colony optimization method to solve their MILP with an inter-region 

visibility criterion. Simulations showed promising results for relatively large instances. 

Stewart [43] considered the realistic case that a target may leave behind some evidence 

of its former presence. He proposed to optimize search by actively searching for a detectable 

trail left behind by a target. A moving-horizon rule and a heuristic simplification thereof 

were introduced. 

Hong et al. [44] expanded their depth-/ network [39] so that it accounts for a multiple- 

search-speed option, whereby a trade-off between speed and glimpse probability is made. 

The set of reachable cells within one time period is extended. This causes the number of 

arcs in each layer of the time-expanded network to increase significantly with the searcher’s 

speed. They again used a longest path computation on the depth-/ network. 
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Approaches for multiple searchers 

Dell et al. [45] concentrated on solving the path-constrained search effort allocation problem 

with multiple searchers. They revisited Martins’ procedure, which was found to exceed 

acceptable time for computation when applied to the multi-searcher problem. Several 

heuristics are presented, of which two exhibit reasonable run times and quality solutions. 

These heuristics are both centralized methods for cooperation. The first one extends Martins’ 

ED heuristic for multiple searchers. It obtains solutions within 2% of the best known solution 

for each of the one- and two-searcher test problems considered. The second heuristic is a 

genetic algorithm, which was efficient on the three searcher problems, but no guarantee on 

the solution quality can be given. 

To optimize the search effort allocation problem with multiple searchers, Sato [33] 

introduced a time-expanded configuration network. A configuration represents the combined 

locations of all searchers. He then applied his SB method to this network, which is iractable 

only for very small instances due to the large number of arcs. Therefore two heuristics were 

introduced as alternatives. The first is to apply the SBH on the time-expanded configuration 

network. Sato pointed out that this heuristic is not applicable to large problems because the 

time-expanded configuration network cannot be generated due to computational limits. The 

second heuristic is a cross entropy optimization method, which performs well on instances 

with as many as 30 searchers. 

A method called the search and rescue optimal planning system is actually be ng used 

by the United States Coast Guard and is described by Kratzke et al. [2]. The tecnnology 

behind it stands out compared to all other approaches with respect to the planning method. 

Here, a search-path is a pattern of equally spaced parallel paths within a rectangle. Instead 

of allocating a platform to a cell, the size, shape, and position of a rectangular subarea 

are optimized. The algorithm plans heuristically by placing a standard shaped rectangle 

on a cell with the highest probability, performs an accordion search [2] to find the proper 

size and location, and then fine-tunes it while minimizing overlap. A generalizaticn of the 

multi-searcher problem was presented by Roy set and Sato [46], They introduced a novel 

MINLP for the problem with multiple targets, searcher deconfliction and target and location 
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dependent search effectiveness. The objective is to minimize the largest non-detection 

probability. The authors suggested using a cutting plane method, which results in a practical 

exact algorithm and is applicable for both conditionally deterministic and Markovian target 

models. This approach performs strongly compared to a branch & bound method, which 

fails on all test instances examined. A main advantage is the scalability as the number of 

searchers grows. 

A MILP approach in which the planning of search jobs, rescue jobs, and recharging at 

stations is optimized for a team of UAVs, is proposed in [47]. 

3.1.2 Search trajectory optimization 

The following approaches all aim for optimized search trajectories taking the flignt kine- 

matical properties of the aerial platform into account. The overview starts by describing :he 

four publications considering trajectory planning for a single aerial platform, followed by 

approaches for a team of aerial platforms. 

Approaches for a single aerial platform 

The first approach explicitly considering flight kinematics was presented by Bourganl: et 

al. [14]. The authors used a discrete-time non-linear velocity model, which takes a limiied 

turn rate and a limited speed as input. Simulations show the effectiveness of a myopic 

and of a piecewise-constant control implementation. Furukawa et al. [16] propose a new 

method for a continuous representation of the probability map: the element-based method. 

For planning, they used a similar myopic approach to [14], however uniquely using :he 

Kullback-Leibler divergence as the objective function. Collins et al. [48] were the first and, 

to the authors’ knowledge, only ones to propose a planning method that plans for both a 

search trajectory and sensor schedule within the scope of moving target search. A unique 

dual probability map representation is used, combining the particle filter and grid-based 

representations. They furthermore considered a dynamic graph whose nodes are placed 

at high-reward locations and are dynamically updated at each time step. For a combined 

search trajectory and sensor schedule planning, they suggested two implementations. The 
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first of these is by evaluating search trajectories based on the cumulative probability of 

containment within the field of regard. The second is by evaluating search trajectcries based 

on optimization of the sensor schedule on the path. 

Approaches for a team of aerial platforms 

The following approaches consider a cooperative search team, where historical and planned 

observations are exchanged and adapted to achieve a non-redundant search strategy. 

Bourgault et al. [49] extended their work from [14] and suggested a coordinatec approach 

for multiple heterogeneous searchers, which are considered to behave in a completely 

decentralized manner. They found that a myopic form of coordinated search strategy 

provides very sensible control solutions at low computational costs. Hu et al. [50] proposed 

a gradient based control law, where the optimal next-time sampling position is chosen to 

maximize the information gathered at time k. This is a myopic heuristic with a simple 

best response type of cooperation. Another contribution is their distributed probability map 

updating model, assuming that each platform only communicates with its neighbors within 

communication range. In this model, the glimpse probability varies as a function of sensor 

altitude. Xiao et al. [51] applied a hybrid method. Its main idea is that a virtual force type 

method helps the receding horizon method to improve searching efficiency and reduce the 

computational costs. This method avoids the problem of distinguishing between paths in 

low uncertainty areas arising in receding horizon methods. 

An optimal team reward can be achieved either in a centralized manner, or in a de¬ 

centralized manner using negotiation. Wong et al. [52] propose a centralized method for 

cooperation, where the cumulative team reward is maximized. To overcome the problem of 

distinguishing between paths in low uncertainty areas, they introduced a switching objective 

function to direct the searcher towards uncertainty areas. In this case, the objective is to 

minimize the distance to the nearest uncertainty area. Aiming for a team-optimal reward, 

while avoiding centralized computation, Bourgault et al. [53] propose a decentralized nego¬ 

tiation scheme. They use a block-iterative non-linear algorithm. This consists of iteratively 

fixing all paths, except for the ?'th path which is then optimized with respect to the fixed 

paths. At termination, the search plan satisfies Nash’s equilibrium. A first methcd aiming 
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for optima] cooperation in a decentralized setting was presented by Delle Fave et al. [54]. 

They suggested using a max-sum algorithm to optimize the joint probability of detection, 

which operates over a factor graph. This approach scales linearly with the numbers cf 

searchers. Cole [55] presented an entire cooperative unmanned aerial system architecture 

for information theoretic searching and tracking. In a search for an unknown number of 

targets, which is Poisson distributed, the expected number of detected targets is maximized. 

The objective of minimizing Shannon’s entropy is applied in simulations in [56] A 

method based on enumeration of all possible strategies is used and compared against, 

amongst other strategies, the Zamboni strategy of fully covering the search area in rectangular 

search strips. A combined strategy for autonomous take off, search, and landing for a team of 

UAVs is presented in [57]. Here, a simple myopic algorithm is used for waypoint planning. 

When a UAV arrives at a crossroad, the next waypoint is set to the end of a road which :s 

currently not searched by other UAVs and has the highest probability of containment. 

3.1.3 Summary of the related literature 

All discussed approaches are summarized in tables 3.1 and 3.2. In these tables, the most 

important properties of the approaches with respect to assumptions and solutions are pre¬ 

sented in the columns. Each property is abbreviated to fit in a table cell. All properties are 

elucidated first, starting with the motion model of the target. When a certain property has 

not been specified in the associated article, the property is denoted by the entry (-). 

The first property concerns the motion model of the target. In each model, targets are 

assumed to be independent. The generic (G) target model consists of a set of possible target 

tracks, where each possible track has a given probability of the target taking that track. The 

number of possible tracks grows exponentially in time and space. Monte Carlo sampling 

methods can be used to generate a finite set of possible tracks and their corresponding 

probabilities. The Markovian (M) target model is more restricted. It assumes that the 

process has the Markov property [15], so that the position of the target at time k + 1 only 

depends on its current position at time k and is independent of those at any previous point in 

time. The random (R) target model is a special case of the Markovian target model. Here, 
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Eagle [24] 1984 M I/l/St Si - PND - - O POMDP DP K - FD 

Stewart [25] 1979 G I/l/St Si - PD - - A MINLP BB K - FD 

Eagle and Yee [17] 1990 M I/l/St Si - PD - - O MINFP BB K - FD 

Martins [18] 1993 M I/l/St Si - PD - - O MINFP BB K - FD 

Washburn [19] 1998 M I/l/St Si - PND - - O MINLP BB K - FD 

Lau et al. [32] 2008 M I/l/St Si - PD - - O MINLP BB K - FD 

Sato [33] 2008 M I/l/St Si - PD - - A MINLP BB K - FD 

Morin et al. [34] 2009 M I/l/Gi Si - PD - Or O MILP CS K - FD 

Hohzaki and Lida [35] 1997 G I/l/St Si - PD LR Lo O MINLP BB K - FD 

Sato and Royset [36] 2010 M I/l/St Si - PD LR Alt O MINLP BB K RA FD 

Heuristics for a single searcher 

Eagle [37] 1984 M I/l/St Si - PND - - A POMDP DP K - FD 

Martins [18] 1993 M I/l/St Si - PD - - A MINLP LP Myopic - FD 

Washburn [19] 1998 M I/l/St Si - PND - - A MINLP BB K - FD 

Thomas and Eagle [38] 1995 M I/l/St Si - PD - - A MINLP BB K - FD 

Sato [33] 2008 M I/l/St Si - PD - - A MINLP LP Myopic - FD 

Hong et al. [39] 2009 M I/l/St Si - PND - - A - LP K - FD 

Lanillos et a/. [40] 2012 M I/l/St Si - DTR - - A OC CE K - FD 

Morin eta/. [41] 2012 M I/l/Gi Si - PD - Or A CP CS K - FD 

Morin et al. [42] 2010 M I/l/Gi Si - PD - Or A - AGO K - FD 

Stewart [43] 1985 G I/l/St Si - PD - A POMDP BB K - FD 

Hong et al. [44] 2009 M I/l/St Si - PD - Sp A - LP K RE FD 

Approaches for multiple searchers 

Dell etal. [45] 1996 G I/l/St He Ce PD - - A MINLP Enum Myopic - FD 

Dell et a/. [45] 1996 G I/l/St He Ce PD - - O MINLP BB K - FD 

Sato [33] 2008 M I/l/St He Ce PD - Alt A MINLP BB K - FD 

Sato [33] 2008 M I/l/St He Ce PD - Alt A MINLP CE K - FD 

Sato [33] 2008 M I/l/St He Ce PD - Alt O MINLP LP K - FD 

Kratzke et a/. [2] 2010 G I/N/St He Ce PD - - A - - K - FD 

Royset and Sato [46] 2010 G I/l/St He Ce PND CA - O MINLP OA K - FD 

Royset and Sato [46] 2010 G I/l/St Ho Ce PND CA - O MILP CS K - FD 

Royset and Sato [46] 2010 M I/l/St Ho Ce PND CA - O MILP CS K - FD 

Lee and Morrison [47] 2015 D I/l/St Ho Ce PD LR AT O MILP CS K - FD 

Table 3.1: Overview of search strategy planning approaches for search effort allocation. 
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Search trajectory planning 

Approaches for a single platform 

Bourgault el al. [14] 2006 M I/N/St Si - MTD - - A OC Enum Myopic - IC 

Furukawa el al. [16] 2007 M I/N/St Si - KLD - - A OC - Myopic - IC 

Collins el al. [48] 2007 M I/N/Gi Si - PD - Or A OC - K RA FD 

Approaches for a team of platforms 

Bourgault el al. [49] 2003 M I/N/St He Co MTD - - A OC - Myopic - IC 

Hu et al. [50] 2012 R I/N/St He Co PD - Alt O OC GM Myopic - IC 

Xiao et al. [51] 2012 R I/N/St He Co PD CA - A OC VF Myopic OF IC 

Wong et al. [52] 2005 M I/N/St He Ce PPD - - A OC - Myopic OF IC 

Bourgault et al. [53] 2004 M I/N/St He Ne PD - - A OC - Myopic - IC 

Faveefa/. [54] 2010 M I/N/St He Ne PD - - A OC - Myopic - ID 

Cole [55] 2009 M I/N/St He Co EN - - A OC - Myopic - IC 

Peng et al. [56] 2015 R - He Co SE - - O OC Enum K - FD 

Meng et al. [57] 2016 DC I/l/St He Co PD - - O - - Myopic - FD 

Table 3.2: Overview of search strategy planning approaches for search trajectory planning. 

the target moves to one of the cells that are adjacent to its current cell with equal probabiLty. 

Such a target is also said to be diffusing. In the conditionally deterministic (CD) target 

model, a track merely depends on a stochastic variable such as the initial position or veloc.ty. 

If this variable were known, the position of the target would also be known at any time 

in the future. Thus, the track of the target is deterministic, conditional on this stochasdc 

variable. In case no assumption on the target motion can be made, the model of decaying 

certainty (DC) can be used, in which the probability of containment of a cell increases over 

time after it has been observed. A deterministic (D) model can be used when the target track 

is assumed to be known. 

Each conducting searcher is equipped with a sensor. Sensors for detection are e.g. 

electro-optics/infra-red sensors. Several aspects of such sensors are important. These 

are sensor range, agility, and performance, and are therefore considered in detail within 

literature. These properties are presented in a model of the form range/performance/agikty. 

The range of a sensor is either assumed to be restricted to the cell (1) which is currendy 
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observed by its carrying platform, or restricted to a predefined range (N). We distinguish 

between perfect (P) and imperfect (I) sensors with respect to their performance. A perfect 

sensor detects a target within its field of view with probability one, whereas an imperfect 

sensor can miss the target. For sensor agility, we distinguish between stabilized (St) and 

gimballed (Gi) sensors. 

The team composition can be made up of a single (Si) searching platform or a team 

of multiple platforms searching cooperatively. These platforms may differ in general 

characteristics concerning speed, turn radii, and sensor quality, in which case the team is 

heterogeneous (He) and it is homogeneous (Ho) when the team is uniform. 

Cooperation within a team can be achieved in several ways. Using a centralized (Ce) 

control, an optimal search strategy is found by solving one overall optimization problem 

for the entire team. Computation is unfortunately often only tractable for very small 

instances. A decentralized approach is often more tractable and is also less prone to 

loss of communication. Cooperation means that observations and planned trajectories are 

exchanged and adapted to aim for optimal team search results. Two types of cocperation 

exist, where the difference lies in the balance between optimality of team results and 

computational costs. The cheapest type of cooperation from a computational point of view 

is coordination (Co). The predicted observations on the optimized search trajectories are 

exchanged between the platforms. The historical and predicted measurements are fused into 

the (shared or individual) probability map and the platform specific problems are optimized 

accordingly in sequence. Additional negotiation (Ne) between platforms improves the 

objective value, but increases computational costs and communication effort in general. 

The quality of a search strategy must be defined in terms of an objective. Several types of 

objectives have been subject to studies. Which type to use depends on the goal of the search 

mission, and therefore they are incomparable in terms of effectiveness. The objective value 

is typically called the search reward within the context of target search. Maximizing the 

probability of detection (PD) is effective when a fixed time frame for the search mission is 

prescribed. The decision maker wishes to maximize the probability of detection cumulative 

over all time periods as in Equation (2.6). Minimizing the probability of non-detection 

(PND) (or overlook probability) is the inverse of maximizing the probability of detection. 
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Maximizing the time-discounted reward (TDR) discounts the reward of probability of 

detection in each time step. Alternatively, the mean time to detection (MTD) can be 

considered, or the expected number of detections (EN) in the case of a large number of 

targets. The information entropy (or Shannon’s entropy) (SE) [58] is a measure of uncertainty 

in which higher values indicate higher uncertainty of the whereabouts of the target. The 

Kullback-Leibler divergence (KLD) [59] is another measure based on information, described 

as the relative entropy between the start and the end of the search mission. 

Additional constraints with respect to the search strategy can exist. The trajectory of 

strategy can be subject to limited resources (LR), such that the search objective must be 

optimized while not exceeding the allowed resource consumption. Examples of resources 

accounted for in literature are: fuel, observations, and risk exposure. Some approaches 

explicitly account for collision avoidance (CA). 

Additional outputs to the waypoints or allocations can be e.g. altitude (Alt) of the 

platform at a time step, whether or not to make an observation (Lo), the speed of the platform 

(Sp), its assignment to alternative tasks (AT) such as refueling or rescue, or the orientation 

of the sensor (Or). 

A speed trade-off can be modeled in case the speed of the platform can be increased for 

quicker relocation at the cost of decreased glimpse probability. A few approaches propose 

methods to balance search reward and relocation speed. Three types of search-relocation 

trade-off methods can be distinguished. A switch between objective functions or a switching 

objective function (OF) can be used, switching between minimizing the distance to the 

nearest uncertainty area and maximizing the search reward. The decision between these 

objectives is based on an adaptive switching parameter, which may be platform specific. 

Another type of method is to extend the range (RE) of reachable cells or waypoints within 

a single time period to directly adjacent cells (direct neighbors). By increasing the speed, 

the neighborhood is expanded. This enlarges the number of possible actions at each time 

period, and thereby the number of possible search trajectories significantly. Relocation 

arcs (RA) can be used when the platform state space is modeled as a (time-expanded) 

network. It is then possible to determine a set of nodes-of-first-contact. These are the nodes 

at which the searcher can detect the target the earliest. The arcs leading from the searcher’s 
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current position towards these nodes are called relocation arcs and take multiple time periods 

to traverse. To enable solution approaches, the platform state space is either an infinite 

continuous (IC) state space or a finite discrete (FD) state space in the form of a grid. Based 

upon the platform state space, the search problem is formulated in literature as either a 

partially observable Markov decision process (POMDP), a mixed integer linear program 

(MILP), a mixed integer non-linear program (MINLP), a constraint program (CP), or an 

optimal control (OC). 

There are different types of algorithms to solve a search strategy planning problem 

formulation. The following exact algorithm types and metaheuristics have been applied in 

the reviewed literature. The exact algorithm types are dynamic programming (DP), branch 

& bound (BB), outer approximation (OA), and constraint programming (CP). Metaheuristics 

applied to the search effort allocation problem are genetic algorithms (GA), ant colony 

optimization (ACO), and cross entropy (CE). A virtual force field algorithm (VF) is a typical 

robot guiding algorithm. Other algorithm types are the gradient method (GM) and the 

longest path on a directed acyclic graph (LP) [55], A few approaches do not propose a new 

algorithm, but deploy a commercial solver (CS) to solve the problem formulation The least 

efficient algorithm type is to enumerate (Enum) over all feasible search strategies. 

Finally, optimal (O) or approximate (A) solution qualities are proposed for a certain 

planning horizon. Planning for the full duration (K) of a predefined number of time periods 

K leads to (approximation of) globally optimal search strategies, when computation is 

tractable. A myopic (Myopic) approach chooses the platform state that is optimal for the 

next time period, possibly with a cost-to-go approximation [60], 

3.2 Research gaps 

The need of additional new methods to solve the three problems from chapter 2 is argued in 

the following. An overview of the properties of the methods as discussed in the previous 

section is summarized in Table 3.3. Four important properties are listed in this ;able. The 

first property is anticipation. A method allows for anticipation to the expected mcvement of 

the target when it yields an optimal solution over K time steps. Other methods are myopic 
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methods and merely react to the current state of the system. Another important property 

is accountability for the, flight kinematics of the searching platforms. Furthermore, it may 

occur in certain situations that the platforms are subject to limited resources. In that case, 

the optimization algorithm must find an optimal solution subject to that constraint. Finally, a 

method with the multi platform property optimizes a search strategy consisting of one search 

trajectory for each platform. A row in this table suggests that methods exist in literature 

with a combination of the checked properties. The rows representing the research gaps show 

the combination of properties for methods that are necessary for solving the three problems 

from chapter 2. 

Table 3.3: Research Gaps 

Anticipation Flight Limited Multi 

Kinematics Resources Platform 

Existing 

Existing 

Existing 

Existing 

/ 

/ 

/ / 

/ / 

Research gap 1 

Research gap 2 

Research gap 3 

/ / 

/ / / 

/ / / / 

For the first problem of search by a single platform under kinematical constraints, 

any of the approaches for a single platform for search trajectory planning [14, 16, 48] is 

essentially applicable. However, only myopic algorithms have been proposed and myopic 

algorithms often lead to suboptimal search strategies. Research gap 1 from Table 3.3 shows 

the necessary properties for solving this problem. Therefore, the first aim of this dissertation 

is to propose an exact A'-step-lookahead method for search by a single platform under 

kinematical constraints. 

In the second problem of search by a single platform under kinematical- and resource 

constraints, resource constraints must be taken into account as well. The literature overview 

in tables 3.1 and 3.2 shows that a number of methods account for resource constraints 

when considering the search effort allocation problem for one searcher [35, 36], and for 
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multiple searchers [47] as well. However, the problem of optimizing a search trajectory 

under kinematical and resource constraints has, to the best of the author’s knowledge, not 

been solved yet in literature. This research gap has number 2 in Table 3.3. Therefore, the 

second aim of this dissertation is to propose an exact /T-step-lookahead method for search 

by a single platform under kinematical and resource constraints. 

The final problem of cooperative search by a team of heterogeneous platforms with 

shared resources is significantly harder to solve from a computational point of view. A few 

search strategy optimization approaches for multiple aerial platforms under kinematical 

constraints have been proposed in literature. Due to the difficulty, mainly myooic algo¬ 

rithms have been proposed. Furthermore, numerous methods have been proposed for the 

search effort allocation problem with multiple searchers, both exact algorithms as well as 

heuristics. One of these approaches [47] takes resource constraints into account, bat makes 

the simplifying assumption that the target movement is deterministic, which results in a 

trivial search problem. Research gap 3 from Table 3.3 shows the necessary properties for 

solving this problem. The third aim of this dissertation is therefore to propose an exact 

/T-step-lookahcad method for cooperative search by a team of heterogeneous platforms with 

shared resources and kinematical constraints. 
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Chapter 4 

A method for search by a single platform 

under kinematical constraints 

A prerequisite when optimizing search by an aerial platform is that the trajectory is pnysically 

feasible. This search trajectory optimization problem, as formally described in section 2.1, 

is solved in this chapter. A trajectory is considered to be physically feasible when the 

platform can actually reach a next waypoint in time. Therefore, properties such as its speed, 

altitude, maximum thrust, weight, aspect ratio, parasite drag coefficient, and its maximum 

lift must be considered. A constant search speed is a large advantage when compared with 

accelerating and decelerating during a search mission. In this chapter, a unified model for 

both fixed-wing and rotary-wing platforms is presented, as well as an MILP formulation for 

solving the problem under consideration. A generalization of an existing branch & bound 

algorithm is used to reduce computation times. In literature, branch & bound has been 

the most promising exact approach for solving unconstrained path optimization problems 

for moving target search [17-19, 25, 32, 33]. Here, a path is considered to be a sequence 

of cells to which the searcher is assigned for a period of time. The movement of the 

searcher within a cell are not prescribed. A trajectory, on the other hand, is a more detailed 

search plan. It consists of a sequence of waypoints and can be used for autonomous search. 

Therefore, the kinematical properties of the platform must be taken into account. The nature 

of both problems are, however, much alike. It appears therefore promising to generalize the 

branch & bound procedure for solving the problem under consideration in this chapter. The 
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proposed generalization allows to account for the kinematical properties of the platform. 

The contributions of this chapter are threefold. By means of the proposed unified model 

for both fixed-wing and rotary-wing platforms it is possible to plan physically feasible 

trajectories for both types of platforms. An MILP is formulated to solve the moving target 

search problem under kinematical constraints and an existing branch & bound algorithm 

is generalized for efficiency. The applicability of this method is shown in computational 

experiments. The first two sections of this chapter have been published in [9, 11], 

The remainder of this chapter is structured as follows. First, a uniform discrete model 

for flight kinematics is presented in section 4.1. The MILP formulation for solving the 

considered problem is described in section 4.2, followed by the branch & bound procedure 

for solving the MILP more efficiently in section 4.3. Finally, the computational experiments 

are described in section 4.4. 

4.1 Uniform discrete model for flight kinematics 

A search trajectory is described by a sequence of waypoints. A waypoint on a search 

trajectory prescribes a node v and a time k at which the platform is supposed to be at ncde v. 

In order to select a sequence of waypoints to obtain an optimal search trajectory, a predefined 

and finite set of waypoints must be provided. The possible set of waypoints is a part of the 

platform network, which preferably yields trajectories with natural flight kinematics. 

In this chapter, a method to discretize the model is described in subsection 4.1.1 and how 

to create such a platform network is presented in subsection 4.1.2. Finally, a description of 

how to select the possible waypoints in such a way that the sequence describes a physically 

feasible trajectory is given in subsection 4.1.3. 

4.1.1 Hexagonal grid sizing 

The nodes of the platform network are proposed to be placed on the cell centers o: a 

hexagonal grid. The considerations behind using a hexagonal grid to model the movements 

of the platform are twofold. The main advantage over e.g. a square grid is that the travel 

distances between neighboring nodes in turning flight and straight flight are closer together. 
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Usually in the case of time-dependent routing, the vehicle is at a node at a certain time step. 

Now if the distances between neighboring nodes are longer, the platform would need to 

accelerate and decelerate more in order to be in sync with the timeline of the target. The 

hexagonal grid therefore allows a more natural movement of the platform. The second 

advantage is that the number of nodes is finite on a finite search area. In summary, the 

hexagonal grid allows for a finite and discrete state space of the platform, which moreover 

has computational advantages over an infinite and continuous platform state space as in 

(2.2). Figure 4-1 depicts the possible continuous movements within the center cell, when 

coming from left below. Figure 4-1 depicts possible segments of continuous trajectories 

on a hexagonal grid. In the last figure, it is visible that it is not mandatory to fly over the 

cell centers, which will be used as waypoints for the trajectory. Figures 4-3 and 4-4 show a 

segment of a hexagonal grid including the options for consecutive waypoints. 

Figure 4-1: Possible continuous movements Figure 4-2: Possible segments of continuous 
within a hexagonal cell, when coming from trajectories on a hexagonal grid, 
left below. 

When constructing the hexagonal grid, the size of the hexagons must be determined 

based on the turning radius r of the platform. The size of a hexagon is described by its 

inradius l. The inradius l of the hexagon as a function of the turning radius r is given by: 

(4.1) 

49 



Figure 4-3: Seven options for a rotary-wing 
platform for consecutive waypoints on a 
hexagonal grid. 

Figure 4-4: Three options for a fixed-wing 
platform for consecutive waypoints cn a 
hexagonal grid. 

This formula can be derived using basic geometry. The next question is how to derive 

the turning radius suitable for a search mission, which is answered in the following. First of 

all, the turning radius in meters is given as a function of the speed of the platform V and its 

turn rate tp = [dip/dt) in radians per second [61]: 

V 
(4.2) 

where the turn rate ip is given as a function of the gravitational acceleration g in m/s2, the 

load factor n and the speed of the platform V in m/s, as follows: 

ip = gVn2 — 1 
V 

(4.3) 

The load factor n is defined by the lift divided by the weight of the platform and equals the 

value 1 during straight flight and is larger than 1 during a turn. More details on the load 

factor and the derivation of the turn rate can be found in [62] on p. 467 — 470. As a result, 

the turning radius can be given directly as a function of the gravitational acceleration g, tne 
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Figure 4-5: Turn rate and generic sustained turn rate envelope similar to [62], 

load factor n and the speed of the platform V, as follows: 

F2 

From these formulas, it becomes clear that the turning radius results from a combination 

of the turn rate and speed. However, not all such combinations are possible. Only a range of 

combinations allows for maintenance of total energy. Possible combinations are shown in 

a sustained turn rate envelope. A sustained turn is a turn in which the platform maintains 

its speed and altitude. Figure 4-5 shows a generic sustained turn rate envelope. Actual 

envelopes must be derived specifically for a type of platform as described in [61, 62]. 

Figure 4-5 depicts a large amount of information. It shows the turn rate as a function 

of velocity for a fixed load factor using dashed lines by Equation (4.3). Furthermore it 

shows the relation between the velocity and the turn rate for a given turning radius using 

Equation (4.4) using dotted lines. By means of this figure, one can read the associating 

turning radius for a given combination of velocity and load factor. For example, with a speed 

of 70 m/s and a load factor of 1.2, the associating turning radius is approximately 750 m. 

More details can be found in [61] on p. 137. Finally, from this envelope, an optimal speed 

for searching needs to be determined, e.g. 180 knots (= 92.6 m/s) for the Airbus C295. In 

general, it can be determined by choosing a pareto optimal speed that maximizes the range 

while keeping the search effectiveness high [63] p. 6-21. Especially with visual search the 

search effectiveness decreases with the speed of the platform. The speed for maximum 
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range can be optimized using Brequets range equations [61, 62] and depends in general on 

aerodynamic and propulsion characteristics as well as on the weight of the aircraft. Optimal 

speed for range maximization are typically higher than when maximizing flight time. The 

finally chosen search speed can be used as a constant value for V. The speed and altitude of 

the platform are assumed to be constant during a search mission. 

4.1.2 Platform network 

In the following, a restricted network is constructed on the hexagonal grid on which the 

trajectory will be optimized. The complexity of the problem, however, grows exponentially 

in, among other things, the number of nodes on the network. Therefore, a fixed number of 

nodes are placed which are most likely to be contained in the optimal search trajectory, i.e., 

a set of connected nodes yielding the highest potential probability of detection. Selecting 

this subset is recognized to be equivalent to the maximum weight connected subgraph 

problem [64], A greedy heuristic can be used for approximating this subgraph. The heuristic 

procedure basically selects feasible nodes in a greedy manner, until the desired number 

of nodes on the restricted network is reached. An example is shown in Figure 4-7. The 

resulting restricted network G = (V, A, R) is used for search trajectory planning and is 

defined by its nodes V, adjacency matrix A, and reachability matrix R. These elements are 

described next. 

Figure 4-6: The heterogeneous grids; a hexagonal grid for the platform and a square grid for 
the target. The platform is able to observe multiple target grid cells at once. 
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Figure 4-7: Examples of restricted networks. These figures show snapshots of a simulated 
search mission. Each snapshot is taken at the beginning of a planning stage. The neiwork is 
placed only at those parts of the search area where the probability of containment at some 
point within the next K time steps is the highest. The depicted trajectory is already executed. 
The search maps have been updated according to the target’s motion model, as well to the 
observations made along the search trajectory. 
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The binary adjacency matrix A holds information on the adjacency of the nodes. An 

entry avy is 1 if node v is adjacent to node v' and 0 otherwise, where a pair of nodes is 

defined to be adjacent if and only if they are direct neighbors. 

At the start of a search mission, the platform is usually at a position that is not represented 

by a node on the restricted network. Therefore, relocation arcs are added between the current 

position of the platform and each of the nodes. These arcs are represented by the binary 

reachability matrix R. An entry rVtk is 1 if node v is reachable in k time steps and 0 otherwise. 

If k' is the minimal time needed to reach node v, then rv^ = 1 for all k > k' and 0 otherwise. 

The use of these relocation arcs has three major benefits. First, it significantly reduces one 

of the dimensions of the model and thereby its complexity. Second, a drifting uncertainty 

area can be intercepted by a linear flight approach, due to the ability of anticipation of the 

target’s predicted movements. The advantage of this aspect, when compared with a myopic 

one-step-lookahead method, is emphasized in a simulation shown in Figure 4-8. Third, tnis 

overcomes a typical problem faced by approaches with a static lookahead horizon of /\sUliC; 

if all feasible trajectories of length K^atic yield zero reward, no decision on the preceding 

flight trajectory can be made. By using these relocation arcs, there is at least one feasible 

search trajectory yielding positive reward. 

4.1.3 A physically feasible trajectory on the network 

The problem considered in this chapter is now restricted to finding a physically feasible 

trajectory on network G, that maximizes the probability of detection of the target. In this 

section, a physically feasible trajectory on network G is defined for rotary-wing and fixed- 

wing platforms. Let V(r;fe) = {v' G V : aVky = 1} be the set of nodes adjacent to node Vk 

and let TZ(k) = {u 6 V : rv^ = 1} be the set of nodes reachable within k time steps. A 

trajectory can be specified by a sequence of nodes [65], In this sequence, consecutive nodes 

must be adjacent and reachable in time, formally: 

Definition 1 (Trajectory). A trajectory is a sequence of nodes {vk)keic> in which 

a) consecutive nodes in the sequence are adjacent nodes in the network, i.e. node Vk+\ is in 

set V(yk), for all k £ 1C, and 
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Figure 4-8: The JT-step-lookahead aspect of the proposed method (left) allows for anticipa¬ 
tion of the target’s movement and finds a direct (shorter) approach towards the eastbound 
target. On the other side, a myopic method used in (right) acts greedy, resulting in a subopti- 
mal trajectory. As a result, the platform in (left) has a higher probability of detecting the 
target in K time steps. This aspect intensifies as the approach distance increases. 

b) each node Vk is reachable within k time steps, i.e. Vk G 7Z(k). 

For a rotary-wing platform, a trajectory is inherently physical feasible. For a fixed-wing 

platform, however, an additional constraint is required for its trajectory to be physically 

feasible, because a fixed-wing platform can not hover, make sharp turns, or fly backwards. 

This is assured by prohibiting the next node from being adjacent to the previous node. 

Formally: 

Definition 2 (Physically Feasible Trajectory). A trajectory (vk)keic is inherently physically 

feasible for rotary-wing platforms. A trajectory {vfjker: is physically feasible for fixed-wing 

platforms if and only if node is in set V(u/c) \ V(vk-i), for all k £ 1C. 

Figures 4-9 and 4-10 show a visualization of the sets V(vk) and V(vk) \ V(ufc_i) from 

these definitions. 
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Figure 4-9: Physical feasibility for rotary¬ 
wing platforms. For rotary-wing platforms, 
the next node Vk+i must be adjacent to the 
current node vk, i.e., vk+i e V(vk) for the 
trajectory to be physically feasible. 

Figure 4-10: Physical feasibility for fixed- 
wing platforms. For fixed-wing platforms, 
the next node vk+\ must be adjacent to the 
current node vk but not to the previous node 
ufe_i, i.e., vk+1 G V(vk) \ V(ufc_i) for the 
trajectory to be physically feasible. 

4.2 Mixed integer linear programming formulation 

An optimal physically feasible trajectory on the restricted network can be found by means 

of a mixed integer linear programming formulation (MILP). The proposed MILP contains 

three types of decision variables. The decision variable € {0,1} is 1 if (k, v) represents 

a waypoint on the trajectory such that the platform is at node v at time k and 0 otherwise. 

The binary vector 2 = {z* G {0,1} : /c G t; € V} represents a trajectory on the reduced 

network. These main decision variables cause the combinatorial character of the prcblem. 

Additionally, two types of auxiliary decision variables are used for an accurate calculation 

of the objective function. Auxiliary decision variable pd* G [0,1] represents the probability 

of detection in cell c at time k and auxiliary decision variable G [0,1] represents the 

probability of containment in cell c at time k. In the remainder of this section, decision 

variables are written in italics, whereas variables for input parameters are written in normal 

font. The input parameters in this problem are the glimpse probability pgfc v c, the target 
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motion probability dc/ c, the reachability of a node rv^, the known initial probability of 

containment pcj, and the node adjacency aV)V>. Finally, the input parameter ip is introduced 

with the value 

{1 if the platform is rotary-winged, 

0 if the platform isyked-winged. 

A mixed integer linear program that yields a physically feasible trajectory on the re¬ 

stricted network that maximized the probability of detection can be formulated as follows: 

K 

Maximize ^2Ylpdk’c (4-5) 
fc=i cec 

subject to 

pdk,c - pgMiCpcfc,c < 1 - zk,v V/c e /C, Vu e V, Vc e C (4.6) 

pdk,c - X! P8k,v,czk,v <0 Vk e JCyceC (4.7) 
vev 

PCk,c ^ ^ ^c',cP^k—l,c' “I” cpdk-i,c' = 0 VTc € {2,..., K},\/c e C (4.8) 
e'ec dec 

pc\,c = pcljC Vc G C (4.9) 

5^4 <1 VkeK, (4.10) 
vev 

K 

^X^4(l-r,,it) = 0 (4.11) 
vSV k=\ 

<U Vfc G {1,..., 76 — 1} (4.12) 
vev 

(1 - avy) 4+1 + ^ < 1 Vfc G it:-1},VwGV (4.13) 
^'ev 

5] a^'4+1 + 4_1 < 1 + ^ V/c G {2,..., K - 1}, W G (4.14) 
v'ev 

z° + 2_1 = 2 ^VQ ' ^ 

zk,v € {0, 1} 

pdk,c,pck,c e [o, i] 
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Here, the objective (4.5) is to maximize the expected probability of detection. The probabil ty 

of detection pdk,c at time k and cell c must be calculated according to the formula (2.7). This 

is ensured by means of both constraints (4.6) and (4.7). The first constraint ensures accurate 

calculation of pdk^c depending on the visited node. The constraint (4.6) for the node that is 

visited at time k, say node v', is the most restrictive in its set. Because the value of pdk,c must 

be smaller or equal to each of the constraints in (4.6) it takes the value pgA. v, j>Ck,c. However, 

in the case that none of the nodes is visited at a time k, all constraints in (4.6) are too lax. 

Constraint (4.7) ensures that in this case pdktC is zero for that time k. Furthermore, tne 

probability of containment in a cell at time k depends on all observations made up until time 

k as well as on the motion model of the target. Constraint (4.8) ensures that the probabil ty 

of containment is updated according to formula (2.4) with B = 1. Finally, the decision 

variables pci)C must be set to the initial known probability of containment, as ensured by 

constraint (4.9). The constraints so far ensure the accurate calculation of the probabilities 

for a given trajectory. The following constraints ensure that the binary vector z represents a 

physically feasible trajectory. First, a trajectory can contain at most one waypoint per time 

step, which is ensured by constraint (4.10) and it can only contain reachable waypoints, as 

ensured by constraint (4.11). In case the first waypoint is not immediately at time k — 1, 

then the platform is relocating. However, as soon as the search starts at arrival at the first 

waypoint at time k', the trajectory must contain waypoints at each time k > k' in order to 

obtain a physically feasible trajectory, as ensured by constraint (4.12). The next constraint 

(4.13) ensures that the next node is adjacent to the current node according to definition (1). 

Constraint (4.14) ensures that the next node is not adjacent to the previous node according to 

definition (2) for fixed-wing platforms. This constraint is relaxed for rotary-wing platforms 

using the value 1 for input parameter Finally, in case the platform is not relocating but 

keeps searching, the constraint (4.15) ensures physical feasibility on the transition between 

consecutive trajectories. Here, two artificial waypoints (0, u0) and ( — 1, v_i) are added at ihe 

start of the trajectory and match these to the last two waypoints of the previous trajectory by 

means of constraint (4.15). The artificial waypoint (0, v0) must be subject to the trajectory 

constraints (4.10), (4.12), and (4.13) and both artificial waypoints must be subject to the 

kinematical constraints (4.14) as well. These constraints are therefore additionally added 
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and ensure the physical feasibility of a trajectory that is planned in iterations. 

The total number of decision variables, including the auxiliary decision variables, is of 

order 0(K\V\\C\). The number of possible physically feasible trajectories on the network G 

is of order 0(\V\3K~1) for fixed-wing platforms and C>( | V17X_1) for rotary-wing platforms. 

4.3 Branch & bound algorithm 

In order to solve the problem more efficiently compared to solving the MILP (4.5)-(4.17) 

using a commercial branch & bound solver, an existing branch & bound algorithm is 

generalized in this section. The main idea of the branch & bound algorithm is described 

here. More details can be found in [17-19, 25, 32, 33], The generalization with respect to 

flight kinematics occurs in the decomposition into subproblems, which is initially described 

in subsection 4.3.1. The generalization with respect to heterogeneous grids occurs in solving 

an upper bound to the original problem, which is described in subsection 4.3.2. 

4.3.1 Decomposition into subproblems 

The branch & bound procedure starts with initiation of the lower bound LB. The LB 

represents the actual probability of detection for the so far best trajectory found throughout 

the procedure. In order to avoid confusion between nodes on the platform network G and 

nodes on the branch & bound tree, the latter is referred to by bb-node in this chap:er. Each 

layer on the tree corresponds to a time step /c € /C and each bb-node on layer k' is associated 

with a unique partial trajectory with length k' < K. A priority queue Q of bb-nodes is 

initiated with a root-node representing an empty partial trajectory with length zero. Then, 

the bb-nodes in the priority queue are processed sequentially in order of priority, until 

the priority queue Q is empty. Priority is determined by the highest actual probability of 

detection of the partial path associated with its bb-node. Processing a bb-node first starts 

with solving a relaxation of the problem PUB that is significantly easier to solve. Due to 

the fact that this problem is solved at every node in the branch & bound tree, it _s shown 

in literature [19, 30] that lower computation time results in better performance than the 

tightness of the bound. Two upper bounds are described in the next subsection. If the upper 
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bound is smaller than the lower bound, no better solutions are possible further down the 

tree and the node can be pruned. Otherwise, there is a possibility that an improved solution 

exists further down in the tree. If the bb-node n is on the Anh layer, i.e. n.k = K, it is a leaf 

node and the corresponding partial trajectory n.z has length K. Hence, it is a full trajectory 

for which the actual probability of detection f{n.z) can be determined in closed form. If 

f(n.z) is larger than the best solution for far LB, then it is the new best trajectory z* and 

the LB is updated to the corresponding actual probability of detection f(n.z). If on the 

other hand the bb-node is not a leaf node, i.e. n.k < K, child bb-nodes are created through 

branching. Similar to the branching strategy in literature, branching is performed on the 

next possible waypoints. Because in [17-19, 25, 32, 33] the kinematical constraints of a 

fixed-wing platform are not taken into account, all adjacent waypoints are next possible 

waypoints. The proposed generalization is to create a child bb-node n! by extending the 

partial trajectory with node r; G V if and only if node v is adjacent to current node nx and 

not adjacent to the node n.parent.v in which parent corresponds to the parent bb-node of 

bb-node n. Each created child bb-node is then added to the priority queue Q. At termination 

of the branch & bound procedure, the optimal search trajectory is z*. This algorithm is 

presented in pseudo code in Algorithm 1. 

Computational experiments using this algorithm are presented in section 4.4. Further¬ 

more, the output of this algorithm while solving one specific instance of the search problem 

is presented in Appendix A. 

4.3.2 Upper bounds 

Two existing upper bounds are described and generalized for application to heterogenec js 

grids, the MEAN bound [18] and the SEAT bound [36], These bounds have been improved in 

[32] and [36] respectively by tightening the bound with very small increases in computational 

costs. The generalization is applied to the MEAN and SEAT bound because of their 

simplicity. However, the generalizations made in this chapter can be applied analogously to 

the improved bounds for even shorter computation times. The MEAN bound was proposed 

for a moving target search problem in which both the platform and the target were modeled 
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Algorithm 1 Branch & bound for moving target search 

1: Initiate lower bound LB <r- 0 

2: Initiate priority queue Q root bb-node 

3: while Q ^ 0 do 

4: n -f- pull bb-node with highest priority from queue Q 

5: UB -tr- solve problem PuB for upper bound 

6: HUB < LB then 

7: Prune bp-node n 

8: else 

9: if n.A; = A'then 

10: if f{n.z) > LB then 

11: z* •<— n.z 

12: LB -4— f(n.z) 

13: end if 

14: else 

15. for each U £ V . (Ivji.v — 1 and ^v\n.parent.v = 1 do 

16: n1 •<— new node with n'.v = v and n'.k = n.k + 1 

IV: Q<r-QUn' 

18: end for 

19: end if 

20: end if 

21: end while 

to move over one shared grid. In the problem considered in this chapter, however, the 

platform observes multiple cells at the same time with variant glimpse probabilities as 

shown in Figure 2-2. The MEAN bound is generalized to account for such heterogeneity. 

This bound yields an upper bound of the actual expected probability of detection on the 

trajectory by summing over the probabilities of detection at each time step, neglecting 

observations made at other time steps. I.e., the probability map is updated according to 

formula (2.1) instead of to formula (2.4). The neglecting probability of detection NPDktV 

at time k at node v is calculated according to the formula 

NPDkv = £ PCk,cP9k,v,ci (4.18) 
cec 
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in which pcktC is determined by formula (2.1). Then, a directed acyclic graph (DAG) (.A/, £) 

is created as described in [18, 32, 36], A node on the DAG is referred to by dag-nods. 

Each dag-node corresponds to a waypoint (A;, v) and has the value NPDkiV assigned. The 

upper bound can now be solved by solving a longest path problem on the DAG [29], whicn 

runs in 0(\J\f\ + |£|) time. The STAT bound is essentially the same as the MEAN bound, 

with the sole difference that the STAT bound is calculated once for each bb-node on the 

branch & bound tree prior to any branching. Whereas the MEAN bound is calculated in 

each bb-node, the STAT bound remains unchanged (static) throughout the branch & bound 

procedure. The advantage of the MEAN bound is that it is tighter, because the observations 

made on the partial trajectory are taken into account when calculating NPDk v. However, 

recalculating NPDk)v, constructing the DAG, and solving a longest path problem in each 

bb-node increases computation time. This is exactly the advantage of the STAT bound, as 

calculating NPDktV, constructing the DAG, and solving a longest path problem neec to 

be executed only once. The disadvantage though, is that the upper bound is significantly 

less tight compared to the MEAN bound. Finally, computation of the upper bound in a leaf 

bb-node is done by computing the actual probability of detection of the partial trajectory, 

because the partial trajectory associated with a leaf bb-node is already a full trajectory. 

Hence, the actual probability of detection is the UB as well as the LB in that bb-node. 

4.4 Computational experiments 

By the means of an extensive computational test environment, the proposed model and 

corresponding branch & bound algorithm are tested for both effectiveness and efficiency ii 

terms of computation time. The branch & bound algorithm with two existing upper bounds 

is benchmarked against solving the MILP formulation using IBM Cplex. 

All tests were performed on an Intel(R) CoreTM i7-4810MQ CPU processor with 2.83 

GHz and a usable memory of 15.6 GB. The test instances were generated by means of the 

author’s instance generator developed in Matlab. The MILP is solved using IBM Cplex witn 

default parameter settings and the branch & bound procedure as well as the algorithm fcr 

solving the longest path problem on the directed acyclic graph are implemented in Java. 
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The remainder of this section is structured as follows. First, the test-bed is described in 

subsection 4.4.1, followed by the simulation results in subsection 4.4.2. 

4.4.1 Testbed 

The testbed consists of a set of representative test instances as well as the algorithms for 

solving the instances. First, the search environment and the target properties are described, 

followed by the properties of the platform conducting the search. The algorithms are listed 

last. 

The search area in all tests was modeled as a 30 x 30 square grid. Four target types have 

been taken under consideration; each target regardless of type is assumed to move to the 

north, east, south, or west with equal probability in each time step. The distinction between 

types comes from the probability that the target stays in its current cell. We consider targets 

that are assumed to stay in their current cell with 0.0, 0.2,0.4, and 0.6 probability. As a 

result, the probabilities to move to the north, east, south, or west are 0.25, 0.20,0.15, and 

0.10 for the four types respectively. 

For all targets regardless of type, the start position Co was bivariate normally distributed 

(Co ~ A/^/x, £)), with /x = [15,15] and S = [5,0; 0, 5]. The glimpse probability pgk,v,c 

given platform position at node v at time k was calculated using the following formula: 

{1 — e~Wk’v’cZk’v if the target is in cell c at time k, 
(4.19) 

0 otherwise. 

with WkiV>c > 0 being a measure of search effectiveness for cell c. The search effectiveness 

decreases with the Euclidean distance | |u — c| | between cell c and the platform at node v as 

follows: 

WktV,c = Q(\\v-c\\)-\ (4.20) 

where Q is a sensor quality indicator. 

Search is conducted by a single platform with turn radius l = 1 and each instance is 

solved three times, once using each of the sensor qualities Q = 0.5,1.0,1.5. The number of 
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nodes placed on the search area to create the network G is |V| = 45 nodes. Instances are 

generated for each of the durations K = 4,6,8,10,12,14. As a result, 72 test instances are 

generated. These instances are each solved using the proposed algorithms: 

• MILP: Solving the MILP formulation (4.5)-(4.17) using IBM Cplex. 

• BB STAT: The branch & bound algorithm in Algorithm 1 with the STAT bound. 

• BB MEAN: The branch & bound algorithm in Algorithm 1 with the MEAN bound. 

All algorithms find an optimal solution in terms of expected probability of detection. There¬ 

fore, the algorithms are compared based on computation time. The number of nodes 

processed in the branch & bound trees is the second performance measure for the branch & 

bound procedures. The results and an analysis thereof are presented in the next subsection. 

4.4.2 Results and analysis 

The results show that the proposed generalization of the branch & bound algorithm for 

moving target search trajectory optimization is indeed effective and efficient in solving the 

problem under consideration. The computational results are summarized in Table 4.1 fcr 

the target with 0.0 stay probability, in Table 4.2 for the target with 0.2 stay probability, in 

Table 4.3 for the target with 0.4 stay probability, and in Table 4.4 for the target with 0.5 

stay probability. In these tables, the leftmost column contains the input parameters: stay 

probability, search duration K, and sensor quality Q. The computation time in milliseconds 

of the MILP algorithm is shown in the first column on the right, followed by the number of 

processed nodes and the computation times of the BB STAT and BB MEAN algorithms, 

respectively. In the rightmost column, the achieved maximal probability of detection 

is shown, which is equal for each algorithm. Since the possibility of multiple optimal 

trajectories exists, the resulting trajectories did differ in several instances. In the case that the 

computation time of the MILP algorithm exceeded 1.25 x 106 milliseconds, the computation 

was aborted and the entry was listed as a result. The BB STAT and BB MEAN never 

reached this computation time, because the system ran out of memory long before. In the 

case of an out of memory exception, the resultwas listed as well. 
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Table 4.1: Computational results for search for a target with 0.0 stay probability by a single 
platform under kinematical constraints. 

Input 

Stay prob. K 

0.0 4 

0.0 4 

0.0 4 

0.0 6 

0.0 6 

0.0 6 

0.0 8 

0.0 8 

0.0 8 

0.0 10 

0.0 10 

0.0 10 

0.0 12 

0.0 12 

0.0 12 

0.0 14 

0.0 14 

0.0 14 

Q 

MILP 

Time(ms) 

BB 

#Nodes 

STAT 

Time(ms) 

BB 

#Nodes 

MEAN 

Time(ms) 

0.5 

1.0 

1.5 

0.5 

1.0 

1.5 

0.5 

1.0 

1.5 

0.5 

1.0 

1.5 

0.5 

1.0 

1.5 

0.5 

1.0 

1.5 

2527 

6334 

9918 

61367 

164981 

191419 

708902 

1188396 

1217087 

1739 

1836 

1836 

10060 

10126 

10126 

46928 

46952 

46952 

196316 

196318 

196318 

77 

70 

80 

525 

530 

490 

3041 

3213 

3294 

15764 

15418 

15640 

510 

699 

732 

2875 

3558 

3803 

10186 

11960 

11194 

10186 

32485 

25558 

90453 

77574 

47224 

234486 

155395 

76859 

103 

101 

111 

245 

271 

291 

961 

1052 

1026 

3599 

3654 

3063 

10990 

9570 

6446 

35024 

23319 

11582 

PD 

0.4217 

0.5621 

0.6241 

0.4783 

0.5946 

0.6402 

0.5079 

0.6054 

0.6439 

0.5215 

0.6084 

0.6445 

0.5278 

0.6093 

0.6446 

0.5309 

0.6096 

0.6447 

When comparing the results of the BB STAT and BB MEAN algorithms, one sees that 

for the smallest instances with the random target the BB STAT algorithm converges quicker, 

even though more nodes are processed. For all other instances, the BB MEAN algorithm 

needs less computation time and requires less nodes to be processed as well. On .nstances 

with a longer search duration, i.e. K > 12 the BB STAT algorithm threw out of memory 

exceptions, whereas this happened fewer times for the BB MEAN algorithm and only when 

the target was of the conditionally deterministic type. When comparing the computation 

times of the MILP and BB MEAN algorithms, one can clearly see the advantage of BB 

MEAN. The computation times are much shorter for each of the instances and for a number 

of instances the BB MEAN algorithm converged in time whereas the MILP algorithm did 

not. An interesting observation, however, is that the MILP algorithm performs be:ter when 
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Table 4.2: Computational results for search for a target with 0.2 stay probability by a single 

platform under kinematical constraints. 

Input 

Stay prob. K 

0.2 4 

0.2 4 

0.2 4 

0.2 6 

0.2 6 

0.2 6 

0.2 8 

0.2 8 

0.2 8 

0.2 10 

0.2 10 

0.2 10 

0.2 12 

0.2 12 

0.2 12 

0.2 14 

0.2 14 

0.2 14 

MILP BB STAT BB MEAN 

Q 

0.5 

1.0 

1.5 

0.5 

1.0 

1.5 

0.5 

1.0 

1.5 

0.5 

1.0 

1.5 

0.5 

1.0 

1.5 

0.5 

1.0 

1.5 

Time(ms) 

5067 

10392 

23778 

74590 

218456 

248507 

#Nodes Time(ms) #Nodes Time(ms) 

1962 

2107 

2107 

11926 

12089 

12089 

59764 

59845 

59845 

263843 

263853 

263853 

105 

68 

66 

805 

755 

648 

4876 

4975 

4959 

27017 

25747 

26305 

683 

793 

898 

3099 

3898 

4396 

12218 

16292 

15662 

44024 

54805 

43797 

147210 

150418 

99669 

461450 

364716 

188569 

60 

53 

58 

308 

394 

488 

1440 

1875 

1918 

6570 

8349 

6570 

26892 

27079 

17773 

96741 

77060 

39799 

PD 

0.4443 

0.6134 

0.6886 

0.52^5 

0.66^5 

0.7161 

0.5669 

0.6817 

0.7222 

0.5898 

0.6882 

0.7242 

0.602 

0.6907 

0.7247 

0.6085 

0.6915 

0.7248 

the target is of the conditionally deterministic type, whereas the BB STAT and BB MEAN 

algorithm perform better when the target is of the diffusing type. An intuitive explanation 

of this is the following. It is known that both bounds base their reward on the expected 

probability of detection at node v at time k while ignoring the complicating observations 

made up until time k. In the case of a target randomly moving in four possible directions, 

the maximum probability of redundant observations in two consecutive time steps is only 

one-fourth. In the case of a deterministic moving target, on the other hand, the maximum 

probability of redundant observations in two consecutive time steps is one. Therefore, in the 

latter case more redundancy is likely to occur and hence the bound is weaker for this type of 

target. Furthermore, computational results in [32] and [36] show that the bounds perform 

less well on targets with a higher probability of staying in a cell. The same conclusion 
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Table 4.3: Computational results for search for a target with 0.4 stay probability by a single 
platform under kinematical constraints. 

Input 

Stay prob. K 

0.4 4 

0.4 4 

0.4 4 

0.4 6 

0.4 6 

0.4 6 

0.4 8 

0.4 8 

0.4 8 

0.4 10 

0.4 10 

0.4 10 

0.4 12 

0.4 12 

0.4 12 

0.4 14 

0.4 14 

0.4 14 

MILP BB STAT BB MEAN 

Q Time(ms) #Nodes Time(ms) #Nodes Time(ms) 

0.5 

1.0 

1.5 

0.5 

1.0 

1.5 

0.5 

1.0 

1.5 

0.5 

1.0 

1.5 

0.5 

1.0 

1.5 

0.5 

1.0 

1.5 

4510 1970 

11135 2107 

21002 2107 

124000 11970 

256021 12089 

282480 12089 

59809 

59845 

59845 

263853 

263853 

263853 

117 

73 

65 

738 

688 

733 

5440 

5184 

5102 

27026 

26581 

26218 

698 

803 

901 

3219 

4033 

4528 

13140 

18146 

17768 

52095 

63673 

56099 

179000 

187063 

132335 

70 

51 

58 

385 

538 

547 

1653 

2139 

2135 

7924 

9631 

8307 

33097 

34670 

23911 

PD 

0.4572 

0.6293 

0.7048 

0.5445 

0.6B58 

0.7358 

0.5924 

0.7059 

0.7436 

0.6193 

0.7142 

0.7459 

0.6343 

0.7174 

0.7466 

can be drawn from the results in Tables 4.1-4.4. With increasing stay probability, the BB 

MEAN algorithm processes a higher number of nodes and requires a longer runtime before 

an optimal solution is found on all instances. When the stay probability exceeded 0.4, BB 

MEAN algorithm ran out of memory for K = 14, whereas this was no issue on the instances 

with a lower stay probability. Interestingly, the MILP algorithm needed increasing runtimes 

with increasing stay probabilities as well. Apparently, the general upper bound used by 

IBM Cplex is weaker on instances with increasing stay probabilities as well. Increasing 

stay probabilities did not only increase the runtimes, but also resulted in a higher expected 

probability of detection. 

Finally, there appears to be no correlation between the sensor quality Q and the compu¬ 

tation times of any of the algorithms. On the other hand, of course, a clear correlation exists 
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Table 4.4: Computational results for search for a target with 0.6 stay probability by a single 
platform under kinematical constraints. 

Input 

Stay prob. K 

0.6 4 

0.6 4 

0.6 4 

0.6 6 

0.6 6 

0.6 6 

0.6 8 

0.6 8 

0.6 8 

0.6 10 

0.6 10 

0.6 10 

0.6 12 

0.6 12 

0.6 12 

0.6 14 

0.6 14 

0.6 14 

MILP BB STAT BB MEAN 

Q 

0.5 

1.0 

1.5 

0.5 

1.0 

1.5 

0.5 

1.0 

1.5 

0.5 

1.0 

1.5 

0.5 

1.0 

1.5 

0.5 

1.0 

1.5 

Time(ms) 

2947 

8844 

14894 

84666 

202714 

298017 

#Nodes Time(ms) #Nodes Time(ms) 

1976 

2107 

2107 

12002 

12089 

12089 

59834 

59845 

59845 

263853 

263853 

263853 

99 

69 

67 

798 

823 

791 

5278 

5043 

4985 

26533 

25488 

25736 

698 

813 

898 

3326 

4093 

4594 

14472 

20120 

21114 

58858 

70941 

65904 

223045 

248601 

183715 

63 

51 

58 

333 

376 

430 

1773 

2347 

2526 

8702 

10584 

9486 

42979 

50194 

32525 

PD 

0.4706 

0.6458 

0.7214 

0.5657 

0.7085 

0.7567 

0.6197 

0.7325 

0.7664 

0.6515 

0.7426 

0.7693 

0.6703 

0.7469 

0.7702 

between the sensor quality Q and the probability of detection; a sensor of higher quality 

results in a higher probability of detection. 
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Chapter 5 

A method for search by a single platform 

under kinematical- and resource 

constraints 

In certain situations, the trajectory of the platform is subject to constraints on certain 

resources, as described formally in section 2.2. This chapter describes a proposed solution 

to this problem. The branch & bound procedure from the previous chapter is very efficient, 

however, when considering resource constraints, the upper bounds can not be calculated 

by solving a longest path problem on a directed acyclic graph. A non-polynomial time 

procedure is necessary to solve in each bb-node and the branch & bound procedure becomes 

intractable. Therefore, a novel method for solving this problem is proposed using Benders’ 

decomposition [66]. The application of Benders’ decomposition has shown to be very 

promising for various other vehicle routing problems, e.g. multidepot salesmen problems 

[67] and the traveling salesman problem with time windows [68], Algorithms of this 

type have also been developed for combined vehicle routing problems with adocation 

[69, 70], assignment [71,72], and scheduling [73]. Aircraft specific routing combined with 

crew scheduling is solved using Benders’ decomposition in [74]. Furthermore, within the 

context of vehicle routing, several hybrid methods have been proposed where Benders’ 

decomposition is exploited in combination with Lagrangean relaxation [75], constraint 

programming [76], and a genetic algorithm [77]. 
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Figure 5-1: The Benders’ decomposition approach for moving target search strategy opti¬ 
mization. 

The main idea of the proposed method to find an optimal search trajectory is to disconnect 

the networks of the platform and the target. Figure 4-6 shows the connectivity of these 

networks due to the glimpse probabilities. When disconnecting the networks using the 

Benders’ decomposition approach, two much smaller problems are obtained which are 

solved in iterations. The master problem is solved to obtain incumbent physically feasible 

search trajectories, and the subproblem is solved to obtain dual values which are used to 

generate a cut. The cut is added to the master problem, which is solved in order to obtain 

an incumbent physically feasible search trajectory. This process runs in iterations until 

convergence at which point an optimal solution has been found. This idea is depicted in 

Figure 5-1. 

The contribution of this chapter consists of a Benders’ decomposition algorithm to so' ve 

a problem of Markovian target search trajectory optimization under limited resources. First, 

the proposed novel mixed integer linear program (MILP) is described, which accounts for a 

heterogeneous state space for the target and platform, as well as for the resource constraints. 

Furthermore, a novel Benders’ decomposition algorithm is proposed that solves an extens.ve 

formulation of the MILP more efficiently compared to solving the MILP in its compact 
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form using IBM Cplex. To the best of the author’s knowledge, this is the first Benders’ 

decomposition approach to solving a target search problem in general, for either static or 

moving targets, and with finite or infinite resources. We published an intermediate version of 

this approach in [12]. 

The remainder of this chapter is organized as follows. First, a compact MILP formu¬ 

lation is proposed in section 5.1, followed by its Benders’ decomposition in section 5.2. 

An algorithm to solve the extensive formulation is presented in section 5.3. Finally, the 

computational experiments show the applicability and effectiveness of the proposed method 

in section 5.4. 

5.1 Mixed integer linear programming formulation 

The problem for moving target search trajectory optimization under kinematical and resource 

constraints can be formulated as the following MILP. It is largely equal to the MILP in 

(4.5)-(4.17) for moving target search trajectory optimization under kinematical constraints, 

with the additional resource constraints additionally included. The decision variables remain 

the same; the decision variable ZkiV G {0,1} takes the value 1 if the platform visits rode v at 

time k and 0 otherwise. The auxiliary decision variable pdk}C > 0 represents the probability 

of detection in cell c at time k. The auxiliary decision variable pcktC > 0 represents the 

probability of containment in cell c at time k. All decision variables are written in italics 

and input parameters are written in normal font. 

K 

Maximize 'ypdkfi 
fc=l c€C 

(5.1) 

subject to 

pdk,c - pg^joc^c < 1 - Wk eicyv EVyceC (5.2) 

(5.3) 
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pci,c = pCi)C Vc e C 

z e z 

Prk,vzk,v < T 

(5.5) 

(5.6) 

(5.7) 
keK vev 

zkyV e {o, 1} Vk e JC,Vv ev 

pdk,c, pck,c >o \/k e icyc e c 

(5.8) 

(5.9) 

The objective function (5.1) maximizes the expected probability of detection. The sets of 

constraints in (5.2) and (5.3) ensure calculation of pdk,c according to the formula (2.7). The 

set of constraints in (5.4) ensure calculation of pck,c according to the formula (2.4) and 

the set of constraints in (5.5) ensure that the initial values of pciiC is set according to the 

known initial probability of containment pcitC. Let Z be the set of binary vectors for the 

Zk,v variables that yield physically feasible trajectories. The set of constraints (5.6) ensures 

the binary vector z to be a physically feasible trajectory. This abstract notation is used here 

instead of the extensive formulation in (4.10)-(4.15) in section 4.2. Finally, the cons;raint 

(5.7) ensures that the used resources on the trajectory described by z does not exceed the 

limit T. The total number of decision variables, including the auxiliary decision variables 

pdk,c and is of order C7(A'|V||C|). The number of possible feasible trajectories on 

network G is of order 0(\V\2>K~l) for fixed-wing platforms and of order 0{\V\7K~-) for 

rotary-wing platforms. 

Figure 5-2 shows a search scenario in which one platform is modeled to search for 

one east moving target in an environment containing two risk areas. Here, the platform is 

resource constrained in the sense that its time exposed to risk is limited by 16.66% of the 

total mission time, i.e. T = K/d. The optimal strategy is obtained by solving the mixed 

integer linear program in (5.1)-(5.9). 
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Figure 5-2: A search scenario with exposure to risk. The gray polygons represent areas in 
which the platform is exposed to risk. The platform is constrained to be exposed to risk at 
most for 16.66% of the total mission time. 
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5.2 Benders’ decomposition 

As the number of time steps or the number of nodes increases, the MILP becomes mors 

difficult to solve. In order to decrease the computation time for solving this problem, the 

compact formulation (5.1)-(5.9) is decomposed into a pair of problems that can be solved 

more easily by applying Benders’ decomposition. The resulting extensive formulation 

consisting of a subproblem is described in subsection 5.2.1, and a Benders’ master problem 

is described in subsection 5.2.2. 

5.2.1 Primal subproblem 

The subproblem can be formulated as follows. First, recall Z to be the set of feasible 

trajectories on the platform network G. When fixing any binary vector z € Z, the trajectory 

constraints (5.6) and the resource constraint (5.7) become obsolete and can be dropped. The 

original problem reduces to the following primal subproblem in the pcfciC and pdktC variables: 

K 

Maximize EE pdk,c (5.10) 
k=i cec 

Subject to 

pdk,c ~ Vgk,v,cPck,c < 1 - Zk,v V/c e /C, Vu e V, Vc G C (5.11) 

pdktC-^2pgkvczkiV <0 VTc £ /C, Vc € C (5.12) 

PCk,c ^ ^ ^c',cPCk—l,c' “I- E«- C?*4_1)C, = 0 VfcG {2,...,A},VceC (5.13) 
e'ec e'ec 

pc\,c= Pc1)C Vc£C (5.14) 

7*4,0pc^c > 0 Vfc £ /C, Vc £ C (5.15) 

The resulting program (5.10)-(5.15) contains no integer decision variables. Such a linear 

program is very easy to solve in general. This is of great importance due to the many times 

this subproblem is solved in an iterative procedure such as Benders’. 
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5.2.2 Dual subproblem 

The dual of the subproblem must be formulated in order to define the cuts that need to be 

added to the master problem, as well as to define the set of extreme points for which it 

makes sense to add cuts. The dual of the primal subproblem (5.10)-(5.15) is derived over 

its Lagrangian. Let tt = (7rfeii;iC >0:£;e/C,veV, ceC),p = (pfeiC > 0 : k e lC,c £ C), 

o' = (ofe,c G R : /c € {2,K},c £ C), and r = (tijC G R : c e C) be the dual variables 

associated with constraints (5.11), (5.12), (5.13), and (5.14) respectively. The Lagrangian 

LpS of the primal subproblem (5.10)-(5.15) then amounts to: 

K 

fc=i cec 
K 

Lps = 

-EEE ^/e,v,c (p^fc,c 1 Zk,v) 
k=l v€V cGC 

-EE Pk,c ( pdk,c ^ ^ P&k,v,cZk,v | 
fc=i cec V veV ) 

EE ( PCh,c ^ ^ dc',cPCk—l,c' “I- ^ ^ dc',cPdk—l,c' I 
k=i cec \ dec dec / 

“ rU (PCl,c - PCl,c) (5-16) 
cec 

For a reformulation hereof, the indicator function 1 is used such that 1 {x} = 1 if a: is true 

and 0 otherwise. The reformulation then leads to: 

Lps 'y ^ (y ^ 'Rk,v,c+Pk,c+i{fc</r} y ^ oc/ dc^ci 11 
fc=i cec \vev e'ec ) 

+ EE PCk,c I y ^ PSk,v,c^k,v,c 1{A:^1}07j,c T l{fc<JV} E dc,+1dCiC- - Ti,-. I 
k=i cec V^ev dec J 

+EEE ^k,v,c (1 ^k,v) + EE Pfc,C ( ^ ^ j 
fe=i cec vev k=i cec \vev J 

+ X]'ri’cPCc (5-17) 
cec 
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From which the dual of the primal subproblem (5.10)-(5.15) is derived, resulting in the 

following dual subproblem: 

K K / 

Minimize S (1 ” ^v) + Y1 ^Kv^k,v 
k=i cec vev k=i cec \vev 

+ J2t^cc (5-18^ 
cEC 

subject to 

^ ^ ^k,v,c d- Pk,c “b l{A;<ir} ^ ^ ^ci dc ci ^ 1 

vEV c'EC 

^ y&k,v,c^k,v,c ~ ^-{k^lj&k^ 

vEV 

+l{fc<^r} 5] ~ Ti,c < 0 

c’EC 

7fk,v,ci Pk,c ^ 0 

&k,a n,c ^ H- 

Vfce/C,VceC (5.19) 

VkelCyceC (5.20) 

Vk e IC,\/v EV,VceC (5.21) 

Vk £ {2,...,K}yC£C (5.22) 

This dual subproblem is an alternative formulation of the primal subproblem (5.10)-(5.15). 

The sets of constraints (5.19)-(5.22) define a polyhedron. The extreme points of this 

polyhedron, as well as the objective function in (5.18), are used to formulate the Benders 

master problem as described in the next subsection. 

5.2.3 Benders’ master problem 

The master problem is solved to obtain an incumbent physically feasible trajectory. There¬ 

fore, the trajectory constraints (5.6) as well as the resource constraints (5.7) are included. 

However, the constraints (5.2)-(5.5) for accurate calculation of the corresponding expected 

probability of detection are obviated here, because the accurate expected probability of detec¬ 

tion is determined by solving the subproblem (5.10)-(5.15). The original model (5.1)-(5 9) 
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is reformulated as the following Benders master problem: 

Maximize y0 (5.23) 

subject to 

LEE ^k,v,c (l Zk,v) + EE Pk,c f ''y ^ V%k,v,cZk,v J 
k=x cec vev fc=i cec \vev J 

+ n,cpcj > t/o V(7T, p, t) e Pa (5.24) 
cec 

z <E Z 

J2 J2 prk,vzk,v < t 

(5.25) 

(5.26) 
fce/c uev 

e {o, 1} Vfc e)C,Vve V (5.27) 

yo € 1R (5.28) 

Here, let A be the polyhedron defined by constraints (5.19)-(5.22), and let Pa denote the 

set of extreme points of A. Each extreme point represents a physically feasible trajectory 

on the network G. Polyhedron A contains no rays because the subproblem is feasible for 

each z E Z. Instead of maximizing the expected probability of detection, the free decision 

variable y0 £ If is introduced to be maximized. The decision variable y0 is restricted by 

a cut for each extreme point in PA in (5.24). The cardinality of becomes very large 

with increasing size of the search area and search duration. The large corresponding set of 

constraints in (5.24) results in the intractability of the problem. However, because not all 

constraints are active in an optimal solution, it suffices to work with a restricted subset of 

constraints. A procedure for efficiently selecting such a restricted subset of constraints is 

known as a Benders’ algorithm and is described in the next section for this specific problem. 
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5.3 Benders’ algorithm 

The Benders’ algorithm is used to find and add meaningful constraints to the RMP in 

iterations. Such a process is also known as row generation. The algorithm starts with 

an empty set = 0. An optimal physically feasible trajectory z* that maximizes the 

free variable yl is found by solving the master problem (5.23)-(5.28). Physically feasible 

trajectory z* is fixed in the subproblem (5.10)-(5.15), which is solved with two resuhs; the 

actual expected probability of detection PD corresponding to physically feasible trajectory 

z* and the values of dual variables (tt, p, r) associated with constraints (5.11), (5.12), and 

(5.14) respectively. Because the primal subproblem is feasible for each z, the values of 

the dual variables (tt, p, r) determine an extreme point of P/\. The dual values are used 

to generate a cut which is added to the master problem in (5.24). The master problem is 

again solved to find an incumbent physically feasible trajectory z*. This iterative procedure 

continues until its optimal value equals the optimal value of the primal subproblem, i.e. until 

j/q = PD. The value of yl represents an upper bound and PD represents a lower bound. 

Therefore, when y^ = PD the procedure converges and hence an optimal solution is found. 

This algorithm is presented in pseudo code in Algorithm 2. 

Algorithm 2 Benders’ decomposition algorithm for moving target search 

1: Initiate Pa = 0 
2: while PD < j/q do 

3: (z*, yg) •<— solve master problem 

4: Fix z* in subproblem 

5: PD, (tt, p, r) <r- solve subproblem 

6: PA Pa u (tt, p, r) 

7: end while 

This algorithm can be implemented in two ways when the master problem is solved using 

a generic branch & bound solver. In the classical implementation, the branch & bound tree 

is set up each time the master problem is solved. In the modern implementation, the branch 

& bound tree is set up only once [78], Each time an integer solution is found in a node on the 

branch & bound tree, a callback function initiates the execution of the subproblem to find 

the dual values (tt, p, r) and a cut is added dynamically to the branch & bound tree. The 
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modern type of implementation reduces the overall computation time significantly, because 

all nodes on the branch & bound tree are processed once at most, whereas in the classical 

implementation parts of the tree are solved redundantly. In order to benchmark the classical 

and modern implementation of the proposed Benders’ decomposition algorithm, both have 

been implemented and used in the computational experiments as described in the following 

section. Furthermore, the output of this algorithm while solving one specific instar ce of the 

search problem is presented in Appendix B. 

5.4 Computational experiments 

In this section, computational experiments are presented to show the applicability of the 

proposed model and the reduced computation times of the modern Benders’ decomposition 

algorithm. Both the classic and modern version of the Benders’ decomposition algorithm 

are benchmarked against solving the compact formulation using IBM Cplex. 

The experiments were performed on an Intel(R) CoreTM i7-4810MQ CPU processor 

with 2.80 GHz and a usable memory of 15.6 GB. The instances were generated using the 

author’s instance generator written in Matlab. The original MILP formulation and both the 

classic and modern version of the Benders’ decomposition algorithm were coded in Java 

and solved using IBM Cplex with default parameters. 

In the following, the test instances of the search problem as proposed in subsection 5.4.1 

are presented first, followed by the results and a concise analysis thereof in subsect.on 5.4.2. 

5.4.1 Testbed 

The testbed exists as a selection of representative test instances as well as the three algorithms 

to solve each of these instances. First, a description is given of the target properties of the 

two target types under consideration, followed by a description of the properties of the 

platform. Finally, a summarizing overview of the algorithms is listed. 

The general properties of the instances are similar to those from the previous chapter 

and are repeated for a complete description: The search area in all tests was modeled as a 

30 x 30 square grid. 
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Analogous to the tests in the previous chapter, four target types have been taken uncer 

consideration; each target regardless of type is assumed to move to the north, east, south, or 

west with equal probability in each time step. The distinction between types comes from the 

probability that the target stays in its current cell. We consider targets that are assumed to 

stay in their current cell with 0.0, 0.2, 0.4, and 0.6 probability. As a result, the probabilities 

to move to the north, east, south, or west are 0.25, 0.20, 0.15, and 0.10 for the four types 

respectively. 

For all targets regardless of type, the start position C0 was bivariate normally distributed 

(Co ~ A/"(/Lt, S)), with /x = [15,15] and 51 = [5, 0; 0, 5]. Analogous to the test instances 

in the previous chapter, the glimpse probability pgk,v,c given platform position at node v at 

time k was calculated using the following formula: 

{1 — e~Wk’v'cZk’v if the target is in cell c at time k, 
(5.29) 

0 otherwise. 

with W4,„iC > 0 being a measure of search effectiveness for cell c. The search effectiveness 

decreases with the Euclidean distance ||u — c|| between cell c and the platform at node v as 

follows: 

Wk,v,c = Q(\\v-c\\)-\ (5.50) 

where Q is a sensor quality indicator. Instead of comparing the results for various sensor 

qualities, the results for various resource limits T are compared in this chapter. In order 

to obtain a clear view on the effect that limited resources have on a search problem, a 

representative subset of the instances from the previous chapter is considered as proposed in 

section 4.4 of the previous chapter. To be precise, all instances are considered for which 

the sensor quality was Q = 10. The instances for which the sensor quality was Q = 0.5 or 

Q = 1.5 were omitted to prevent redundancy in the tests. 

Search is conducted by a single platform with turn radius Z = 1. Each instance is solved 

four times, each time with a varying resource limit T. The number of nodes placed on rhe 

search area to create the network G is |V| = 45 nodes. Instances are generated for each 

of the search durations fT = 4,6, 8,10,12. As a result, 80 test instances are generated and 
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solved using the following three algorithms: 

• MILP: Solving the compact formulation (5.1)-(5.9) using IBM Cplex. 

• Benders’ Classic: Solving the extensive formulation using the proposed Benders’ 

algorithm in the classic implementation. 

• Benders’ Modern: Solving the extensive formulation using the proposed Benders’ 

algorithm in the modern implementation. 

All three algorithms find optimal solutions to the problem. Therefore, the main performance 

measure is computation time. The number of cuts necessary to reach convergence in the 

Benders’ algorithms are compared as well. Finally, the maximal expected probability of 

detection is denoted for each instance once, because each algorithm finds a trajectory with 

the optimal (maximal) expected probability of detection. The results are presented in the 

next subsection. 

5.4.2 Results and analysis 

The computational results are summarized in Table 5.1 for the target with 0.0 stay probability, 

in Table 5.2 for the target with 0.2 stay probability, in Table 5.3 for the target with 0.4 stay 

probability, and in Table 5.4 for the target with 0.6 stay probability. The results suggest that 

the proposed Benders’ decomposition algorithm yields reduced computation times on most 

of the test instances. In these tables, the input parameters for the stay probability, search 

duration K, and resource limit T are listed in the leftmost columns. On the right hand 

side, the first column shows the computation time in milliseconds of the MILP algorithm, 

followed by the number of added cuts and computation time of the Benders’ Classic 

algorithm and those of the Benders’ Modern algorithm. Finally, the resulting expected 

probability of detection in shown. In some cases, the computation time of the Benders’ 

Classic algorithm exceeded 0.65 x 107 ms, in which case the execution was aborted and the 

symbol" was denoted as result in Tables 5.1 - 5.4. 

First, the computation times of the Benders’ Modern algorithm are compared with 

the Benders’ Classic algorithm. It is obvious that the modern implementation is a huge 
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Table 5.1: Computational results for search for a target with 0.0 stay probability by a single 

platform under kinematical- and resource constraints. 

Input 

Stay prob. K 

0.0 4 

0.0 4 

0.0 4 

0.0 4 

0.0 6 

0.0 6 

0.0 6 

0.0 6 

0.0 8 

0.0 8 

0.0 8 

0.0 8 

0.0 10 

0.0 10 

0.0 10 

0.0 10 

0.0 12 

0.0 12 

0.0 12 

0.0 12 

MILP Benders’ Classic 

T 

0.75 

0.80 

0.85 

0.90 

1.05 

1.10 

1.15 

1.30 

1.30 

1.35 

1.40 

1.55 

1.55 

1.60 

1.65 

1.75 

1.70 

1.75 

1.80 

1.85 

Time(ms) # Cuts Time(ms) 

1661 5 842 

2454 47 9869 

7288 191 98836 

5894 432 337852 

4077 5 1829 

17271 61 64928 

30695 315 752372 

65453 

11344 0 1719 

51417 98 511269 

126650 485 5098603 

829045 

90481 56 807349 

303200 

916971 

3917211 

88941 9 68129 

364062 

5195084 

6220395 

Benders’ Modern 

# Cuts Time(ms) 

8 270 

53 1167 

194 3102 

439 6825 

8 671 

67 3654 

321 14493 

3316 138142 

2 980 

106 13072 

493 47977 

9495 956172 

63 16080 

526 120086 

2363 453850 

21354 4487834 

13 17856 

246 144223 

1849 589425 

8852 2804249 

PD 

0.4775 

0.4890 

0.5080 

0.52^9 

0.5378 

0.5469 

0.5579 

0.5850 

0.56^6 

0.5733 

0.5802 

0.5976 

0.5818 

0.5879 

0.5936 

0.6015 

0.5849 

0.5900 

0.5946 

0.5988 

improvement compared to the classic implementation, even though slightly more cuts were 

necessary for convergence of the upper and lower bound. The Benders’ Classic algoritr.m 

became intractable with increasing K and T, whereas the Benders’ Modern algorithm 

converged within the given time on all instances. For all algorithms, it is evident that 

the computation times increased with an increasing resource limit T. A straightforward 

explanation is the increased number of feasible trajectories, increasing the cardinality of 

the problem. When comparing the proposed Benders’ Modern algorithm with the MILP 

algorithm, the strength of the Benders’ Modern algorithm is clear. On most instances the 

computation time of the proposed algorithm is much shorter. However, for less restricted 

82 



Table 5.2: Computational results for search for a target with 0.2 stay probability by a single 
platform under kinematical- and resource constraints. 

Input 

Stay prob. K 

0.2 4 

0.2 4 

0.2 4 

0.2 4 

0.2 6 

0.2 6 

0.2 6 

0.2 6 

0.2 8 

0.2 8 

0.2 8 

0.2 8 

0.2 10 

0.2 10 

0.2 10 

0.2 10 

0.2 12 

0.2 12 

0.2 12 

0.2 12 

MILP Benders’ Classic 

T 

0.80 

0.85 

0.90 

0.95 

1.15 

1.20 

1.25 

1.30 

1.45 

1.50 

1.55 

1.60 

1.75 

1.80 

1.85 

1.90 

1.95 

2.00 

2.05 

2.10 

Time(ms) # Cuts Time(ms) 

2070 7 

8163 69 

10119 205 

10135 530 

17580 21 

55304 115 

87969 399 

106815 999 

37018 12 

145067 126 

324794 

642882 

206984 56 

1388995 65 

1596988 

4608400 

135830 0 

530450 64 

2255540 

1216 

28212 

143351 

552901 

13985 

179593 

1318123 

5507074 

21748 

789058 

965857 

1520575 

20717 

5018647 

Benders’ Modern 

# Cuts Time(ms) 

9 519 

76 3366 

211 8328 

541 22259 

27 3526 

120 16260 

411 51030 

1048 135266 

16 6278 

135 39921 

576 165040 

1706 524948 

61 42089 

447 309359 

1892 1209457 

5990 3771354 

2 11965 

103 140433 

904 933109 

4235 4434052 

PD 

0.5096 

0.5342 

0.5527 

0.5703 

0.5965 

0.6085 

0.6190 

0.6294 

0.6337 

0.6437 

0.6508 

0.6576 

0.6592 

0.6652 

0.6699 

0.6745 

0.6608 

0.6715 

0.6742 

0.6790 

problems with a larger resource limit T the MILP algorithm solves faster. 

An interesting observation is that the Benders’ Classic and the Benders’ Modern 

algorithms do not obviously perform better on the instances with a target with a low stay 

probability compared to their performance on instances with a target with a high stay 

probability, whereas the branch & bound procedures in the previous chapter actually do 

perform better on the instances with such a target. The reason is that the Benders’ Classic 

and the Benders’ Modern algorithms do not use a relaxation of the problem that depends on 

ignoring observations made in the calculation of an upper bound on the expected probability 

of detection, in contrast to the STAT and MEAN bounds used in the branch & bound 
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Table 5.3: Computational results for search for a target with 0.4 stay probability by a single 

platform under kinematical- and resource constraints. 

Input 

Stay prob. K 

0.4 4 

0.4 4 

0.4 4 

0.4 4 

0.4 6 

0.4 6 

0.4 6 

0.4 6 

0.4 8 

0.4 8 

0.4 8 

0.4 8 

0.4 10 

0.4 10 

0.4 10 

0.4 10 

0.4 12 

0.4 12 

0.4 12 

0.4 12 

MILP Benders’ Classic Benders’ Modern 

T 

0.85 

0.90 

0.95 

1.00 

1.20 

1.25 

1.30 

1.35 

1.55 

1.60 

1.65 

1.70 

1.85 

1.90 

1.95 

2.00 

2.15 

2.20 

2.25 

2.30 

Time(ms) # Cuts Time(ms) 

3419 

7789 

10600 

9082 

17973 

47626 

70332 

98751 

50086 

144215 

389128 

786664 

92277 

224963 

1142410 

4943160 

387696 

1185154 

5902910 

31 6506 

119 61169 

312 259776 

630 769217 

15 10238 

95 149593 

322 940948 

883 4378370 

34 103284 

157 1166013 

11 65791 

128 4428205 

18 438647 

# Cuts 

36 

129 

318 

635 

20 

102 

329 

891 

40 

166 

682 

1769 

16 

135 

745 

2461 

23 

305 

1639 

6109 

Time(ms) 

1647 

5597 

12949 

25793 

2745 

14940 

47288 

123429 

12819 

51151 

217630 

553280 

16914 

90470 

498350 

1666534 

54757 

360446 

1733159 

6401503 

PD 

0.5370 

0.5560 

0.5733 

0.5909 

0.6137 

0.6263 

0.6371 

0.6488 

0.6624 

0.6683 

0.6768 

0.6830 

0.68 n 

0.6894 

0.6932 

0.6978 

0.6959 

0.7009 

0.7042 

0.7074 

procedure. 

Another observation drawn from the results is that the expected probability of detection 

increases with an increasing resource limit T. It is at this point possible as well to compare 

these results with the expected probability of detection in the case with unlimited resource in 

Tables 4.1-4.4 in the previous chapter. Furthermore, analogous to the results in the previous 

chapter, the expected probability of detection increases with increasing stay probability. In 

other words, targets that are assumed to regularly move to a different cell are less likely to 

be detected. 

Furthermore, the proposed Benders’ Modern algorithm found optimal solutions for 
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Table 5.4: Computational results for search for a target with 0.6 stay probability by a single 
platform under kinematical- and resource constraints. 

Input 

Stay prob. K 

0.6 4 

0.6 4 

0.6 4 

0.6 4 

0.6 6 

0.6 6 

0.6 6 

0.6 6 

0.6 8 

0.6 8 

0.6 8 

0.6 8 

0.6 10 

0.6 10 

0.6 10 

0.6 10 

0.6 12 

0.6 12 

0.6 12 

0.6 12 

MILP Benders’ Classic 

T 

0.90 

0.95 

1.00 

1.10 

1.25 

1.30 

1.35 

1.40 

1.60 

1.65 

1.70 

1.75 

1.95 

2.00 

2.05 

2.10 

2.30 

2.35 

2.40 

2.45 

Time(ms) # Cuts Time(ms) 

8488 57 

7597 171 

8082 450 

8180 680 

12828 14 

35971 74 

52582 248 

77289 718 

35903 1 

64149 39 

155721 170 

406504 170 

64450 0 

133393 24 

274560 168 

883413 

211033 0 

281487 35 

1197773 

20218 

108802 

440602 

881013 

8951 

86843 

628642 

3036011 

2940 

126670 

1375552 

1330145 

4631 

208234 

6123228 

19856 

1298356 

Benders’ Modern 

# Cuts Time(ms) 

63 3276 

179 9341 

456 21234 

1031 47071 

17 2831 

80 11514 

253 39847 

733 111013 

3 1332 

44 15471 

176 62245 

668 242731 

2 2255 

29 21086 

174 127461 

817 527331 

2 14728 

41 66233 

349 469974 

1624 2266222 

PD 

0.5502 

0.5769 

0.5958 

0.6283 

0.6319 

0.6453 

0.6563 

0.6672 

0.6784 

0.6371 

0.6959 

0.7016 

0.7062 

0.7138 

0.7192 

0.7227 

0.7237 

0.7287 

0.7327 

0.7349 

each of the instances, as long as T is small enough, as opposed to the algorithms in in the 

previous chapter. 

A final remark can be made regarding the correlation between the stay probabil ty of the 

target and the expected probability of detection: When comparing the expected probability 

of detection {PD) in the right most column of each of the Tables 5.1 - 5.4, it is clear that the 

expected probability of detection increases with increasing stay probability of the target. 
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Chapter 6 

A method for cooperative search by a 

team of heterogeneous platforms with 

shared resources 

When a team of platforms is employable for search, a search strategy needs to be optimized 

consisting of one cooperative trajectory for each platform. The problem of planning a search 

strategy for a team of heterogeneous platforms with shared resources that maximizes the 

expected probability of detection is formally described in section 2.3. This chapter describes 

a novel branch & price algorithm for solving this problem. The branch & price algorithm is 

an established process for solving large scale mixed integer programs [79-81]. It is shown 

to be especially powerful when the underlying sub-systems have a special combinatorial 

structure, e.g. a shortest path in a network flow problem [82, 83], a pairing in a crew 

scheduling problem [84] or a pattern in a cutting stock problem [85]. Typical for problems 

effectively solved by a branch & price algorithm is that the set of subsystems have a common 

reward function or shared resources [86], When relaxing the so-called linking constraints 

the problem decomposes into a number of subproblems, one for each subsystem, which are 

more tractable to solve. The underlying structure of the huge mixed integer problem studied 

in the work at hand is basically a longest path problem on a directed acyclic graph [29], and 

the common reward is expressed in expected probability of detection. Therefore, solving 

the Dantzig-Wolfe reformulation of this problem by a branch & price algorithm appears 
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promising. Furthermore, the results of branch & price algorithms applied to a wide range of 

problems are shown to be highly promising in literature. Due to its success, this solution 

process is still an important subject of research, and improvements are under continued 

development [87], so that future improvements of the algorithms proposed in this chanter 

are possible and likely to result in an even larger reduction of computation times. 

The structure of the multiple platform search problem is depicted in Figure 6-1. The 

hexagonal grid of the platforms are each connected to the square grid of the target, due to the 

glimpse probability. The main idea of the solution method in this chapter is to disconnect the 

grids using a Dantzig-Wolfe decomposition approach. This idea is unique in the literature 

on search strategy optimization. Applying Dantzig-Wolfe decomposition for search strategy 

Figure 6-1: Heterogeneous grids for multiple platforms with variant turn radii. 

optimization results in a decomposition of a single difficult problem into one master problem 

and several subproblems, one for each platform. The remaining problems are much easier 

and can be solved in iterations to find an optimal search strategy. The subproblems can even 

be solved in parallel. This idea is visualized diagrammatically in Figure 6-2. 
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Figure 6-2: The Dantzig-Wolfe decomposition approach for moving target search strategy 
optimization. 

The main contributions of this chapter are as follows. A linear upper bound to the 

non-linear original problem is proposed, which is much tighter compared to an existing 

linear upper bound [13]. Simulations show that the resulting optimality gap is reduced 

significantly in all test instances. Furthermore, to the best of the author’s knowledge, 

this method is the first branch & price approach for solving a target search optimization 

problem in the literature on both static and moving target search. It results in faster runtimes 

compared to solving the compact formulation using a commercial solver. Furthermore, an 

alternative formulation of the Dantzig-Wolfe decomposition is proposed in order to obtain 

more meaningful dual variables. Finally, an alternative branching strategy is proposed 

which results in the processing of a much lower number of nodes compared to the obvious 

branching strategy as used in e.g. [33]. 

The remainder of this chapter is structured as follows. First, a mixed integer non-linear 

programming formulation of the problem as introduced in section 2.3 is presented in section 

6.1 along with its novel and tighter linear upper bound. The Dantzig-Wolfe reformulation 

of the linear problem and the column generation approach to solve the relaxed problem is 
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presented in section 6.2. Next, the branch & price algorithm to solve the integer problem 

is described in section 6.3. Finally, the computational experiments in section 6.4 show the 

superiority and applicability of the proposed method. 

6.1 Mixed integer non-linear programming formulation 

and linear upper bound 

In this section, the compact programming formulation is presented, which yields an optimal 

search strategy for the team of platforms. The formulation is a mixed integer non-linear 

program (MINLP), presented first in subsection 6.1.1. A novel and tighter linear upper 

bound is then proposed in subsection 6.1.2 in order to obtain a mixed integer linear program 

(MILP), which is finally subject to the Dantzig-Wolfe decomposition in the next section. 

6.1.1 Mixed integer non-linear programming formulation 

The problem of finding an optimal search strategy for a team of heterogeneous platforms 

with shared resources, as stated in the problem formulation, can be formulated as the mixed 

integer non-linear programming formulation presented in this subsection. For the purpose 

of clarity throughout this chapter, let 

(6.1) 

u&A k£lC v(zV ceC 

such that consequently the formula for the glimpse probability as introduced in Equation 

(2.8) 

can be formulated more concisely as 

pg-4, = 1 - e ^. (6.2) 

The problem of multi-platform search for targets with a generic motion model can be 
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formulated similarly to that in [13, 45] as the following mixed integer non-linear program: 

(6.3) 

Subject to 

pg^=\- e ^ VV> e 'I' (6.4) 

zu G Zu Vu G if (6.5) 

(6.6) 
u€U k€JC vGV 

Zu,k,v^{0,l} Vu G G/C,Vr; G V 

pg^ >0 G ^ 

(6.7) 

(6.8) 

Here, the objective (6.3) is to maximize the expected probability of detection as defined in 

Equation (2.9). The calculation of the glimpse probability pg^ > 0 according to formula 

(6.2) for each target track ip E is ensured by the set of constraints in (6.4). The set 

of constraints in (6.5) ensure that the binary vector zu representing a search trajectory of 

platform u is indeed physically feasible. Finally, the set of constraints in (6.6) ensures that 

the cumulative resource consumption does not exceed the given limit T. 

6.1.2 Linear upper bound 

In general, mixed integer non-linear problems are very difficult to solve. In real-life search 

missions it is necessary to have an optimal search strategy ready as soon as the first platform 

is ready for takeoff. Therefore, alternative linear objective functions have been suggested in 

[13] for use, instead of the non-linear objective function. In this section, an improvement on 

this in terms of the optimality gap is proposed. 

Let 

and w^j, = min (6.9) 

denote the upper and lower bounds of respectively. 
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Figure 6-3: Linear overestimators of the original non-linear glimpse probability function. 

Using the fact that 1 — e~z < z, constraint (6.4) is replaced by the following linear 

overestimator to obtain the linear objective function that was proposed in [18] and used in 

[13] for real-world field experiments: 

Pdip — ^ V ^ ^ y 'J y ^ (6.10) 
u&J k&K weV c&C 

Next, two additional linear overestimators are proposed to tighten the upper bound of the 

glimpse probability pg^. Both overestimators are tangent lines of Equation (6.2). The first 

is the tangent line at the point 1 — e w^) and has the following equation: 

Pdip < e~w^ - w^) + (l - e~w^ , (6.11) 

And the last linear overestimator is the tangent line of Equation (6.2) at the point (|, 1 —e~t), 

hence 

P9ip < e~i (w^jZ - 0 + (l - e-t) . (6.12) 

Notice that it is possible to tighten the upper bound of the glimpse probability even 

further by adding tangent lines on additional points along the exponential objective function. 
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However, because the three linear constraints are added for each possible target track 'tp, the 

number of constraints quickly grows to a point that computation may become intractable. 

By means of computational experiments it was found that the combination of the constraints 

in (6.10), (6.11), and (6.12) yields a proper trade-off between tightness of the bound and 

computational burden. These overestimators are shown graphically in Figure 6-3. By 

replacing the non-linear set of constraints (6.4) in the original problem (6.3)-(6.8) with the 

three proposed overestimators (6.10), (6.11), and (6.12), the following mixed integer linear 

problem is obtained: 

Subject to 

Maximize ^pt^pgip 
ipE'S/ 

(6.13) 

P9ip < 

P9^ < e~w* (w^z - w") + (l ~ e~w^ 

pg^ < (uy,)Z - |) + (f - e“f) 

^U 

EEE P^u,k,v^u,k,v E T 
u&A kEK vEV 

Zu,k,v ^ 

pg^ > o 

G ^ (6.14) 

G ^ (6.15) 

G ^ (6.16) 

VueU (6.17) 

(6.18) 

Vueuyk e icyv ev (6.19) 

VV' G ^ (6.20) 

Here, the objective (6.13) remains to find a binary vector that represents a physically feasible 

trajectory (ensured by the set of constraints in (6.17)) that maximizes the expected probability 

of detection. An upper bound on the glimpse probability pg^ for each possible target track 

^> > 0 is ensured by the sets of linear overestimators in (6.14)-(6.16). Figure 6-4 shows a 

search scenario in which two platforms are modeled to search for one east moving target. 

The optimal strategy is obtained by solving the mixed integer linear program in (6.13)-(6.20). 

This holds for Figure 6-5 as well, which shows a similar scenario but with additional shared 

resource constraints in the form of time exposed to risk. 

93 



Figure 6-4: A multiple platform search scenario. Each platform is modeled to move over 
its own hexagonal network. The black platform has a smaller turn radius, therefore the 
corresponding hexagonal network has smaller scale compared to the red hexagonal network. 
Nevertheless, the solution method optimizes the search strategy for both platforms in a 
centralized manner. Platform collision is avoided by flying at different heights with sufficient 
vertical distance. 
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Figure 6-5: A multiple platform search scenario with shared resource constraints. The gray 
polygons represent areas in which the platforms are exposed to risk. The combined time 
exposed to risk of both platforms is constrained to at most 16.66% of the total mission time. 

Instances of this linearization of the original non-linear problem (6.3)-(6.8) can oe solved 

with a commercial branch & bound solver. However, when the number of time steps or 

95 



the number of nodes increases, the cardinality of the problem becomes too large and the 

problem becomes intractable. In order to decrease the runtime on solving such instances, 

the linearization in (6.13)-(6.20) can be decomposed and subsequently solved in iterations. 

The proposed Dantzig-Wolfe decomposition is presented in the next subsection. 

6.2 Dantzig-Wolfe decomposition 

Column generation is proven to be a method for solving huge linear programs more effi¬ 

ciently [88], The first step in applying column generation to the linear program of interest is 

a reformulation of the program in a manner proposed by Dantzig and Wolfe [89]. For the 

problem at hand, the Dantzig-Wolfe reformulation results in deciding between the possible 

physically feasible trajectories, instead of selecting K single waypoints that yield an optimal 

physically feasible trajectory, and is presented in subsection 6.2.1. Such a reformulation, 

however, results in an extremely large amount of decision variables; one for each physically 

feasible trajectory. This can be avoided by iteratively adding one or more physically feasible 

trajectories (or columns in general terms of column generation) that yield maximum positive 

reduced cost. The procedure of adding such columns is described in subsection 6.2.2. 

6.2.1 Dantzig-Wolfe reformulation 

The Dantzig-Wolfe reformulation is obtained by using the fact that an extreme point zUiUJ 

of the polytope defined by that of the convex hull of Zu in constraint (6.17) represents a 

physically feasible trajectory u; e on the network G. Therefore, each physically feasible 

trajectory can be formulated as a convex combination of physically feasible trajectcries as 

follows: 

(6.21) 

(6.22) 

>0 \/u euyu e Q (6.23) 
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Here, the decision variable \u^ represents the selection of physically feasible trajectory 

uj & Q for platform u e U. To obtain the master problem MP, Equations (6.21)-(6.23) 

are substituted for zu in (6.14),(6.15),(6.16), and (6.18). Furthermore, the constraint in 

(6.17) is dropped because the structural information of the trajectory is contained in uj using 

the parameter zu^^VjU. This parameter has a value of 1 assigned if (k, v) is a waypoint on 

the trajectory u> for platform u, and is 0 otherwise. Finally, auxiliary decision variables 

z' = {z'u k v £ : u E U, k & )C,v E V} are introduced. The master problem MP of the 

Dantzig-Wolfe reformulation can be formulated as follows: 

Subject to 

Maximize pt^pg^ 
i/se'S’ 

(6.24) 

PQi)) — 

PQip < e~w^ {w^z> - w%) + (l - e~w^ 

pg^ < (w^r - |) + (i - e~f) 

EEE P^u,k,v ^ ^ Zu,k,v,oj^u,uj — T 

Oj(zQ 

'y ^ Zu,k,v,u}^u,u) — zu,k,v 

^ ^ ^u,uj = 1 

u€U fce/c v&v u&o 

A,, rj > 0 

/ ^ Zu,k,v,u)^u,u) Zu,k,v 

cjGO 

zu,k,v € {0, 1} 

Zu,k,v ^ 
P9xl> > 0 

E ^ 

E ^ 

Mil) E^ 

MuEUyk E icyv E V 

'iu EU 

Vu E U, Vw E Tl 

VuEUyk E K,, Vu G V 

MuEUyk E /C,Vu G V 

VuEUyk E /C,Vu G V 

G 'I' 

(6.25) 

(6.26) 

(6.27) 

(6.28) 

(6.29) 

(6.30) 

(6.31) 

(6.32) 

(6.33) 

(6.34) 

(6.35) 

This master problem is only partly formulated in the standard way. Usually in litera¬ 

ture, the convex combination of trajectories is achieved by replacing the original decision 
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variables zu k v by the term zu,k,v,wK,u at each occurrence. However, when following 

this procedure to obtain a Dantzig-Wolfe reformulation of (6.13)-(6.20), three dual variables 

corresponding to the constraints (6.25), (6.26), and (6.27) would be obtained for each possi¬ 

ble target track. However, this information is rather useless for finding search trajectories 

to enter the basis. To find an optimal search trajectory to enter the basis, information on 

the possible gain of each waypoint for each platform is needed, i.e. information for each 

tuple (u,k,v). To this aim, the vector of auxiliary decision variables z' is introduced. 

Each auxiliary decision variable z'ukv replaces its corresponding original decision variable 

Zu,k,v and is restricted by constraint (6.29) to take at most the value of J2ioen zu,k,v,u^u,^- 

Constraint (6.29) now produces useful dual information for each waypoint, which is needed 

to price out trajectories with maximum reduced cost. Furthermore, the constraints (6.30) 

and (6.31) ensure the non-negative convex combination of trajectories. 

By relaxing the binary variables in (6.33), the necessity of linking the x and A variables 

becomes obsolete. Therefore, the set of constraints (6.32) can be dropped as well. When :he 

number of nodes in V becomes larger, or when the duration of the search mission increases, 

the number of possible physically feasible trajectories and hence the number of columns 

becomes excessively large. Therefore the algorithm is initiated with only a subset of (2 and 

columns are added iteratively. This procedure is well known as column generation [88], 

The linear relaxation of MP with a subset of is the following restricted master problem 

RMP\ 

Maximize pt^pg^ (6.36) 

Subject to 

P9ip < Wtp,z> V-0 6 ^ (5.37) 

(5.38) 

(6.39) 

(6.^0) 
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^ ^ ^ ^u,k,v Vli G L4, V/t G /C, V'U G "V (6.41) 

AUia; = 1 Vu G W (6.42) 

Au,u; > 0 \/u E U,Vuj e fl (6.43) 

Vueuykeicyvev (6.44) 

>0 G ^ (6.45) 

The remaining problem consists of a restricted selection of main decision variables A for 

the trajectories of the platforms and, furthermore, of the auxiliary variables z' to obtain a 

meaningful dual variable for each waypoint for each platform. The process of finding a 

column to enter the basis in RMP is called reduced cost pricing and is described in the 

following subsection. 

6.2.2 Duality and reduced cost pricing 

To avoid an extremely large number of columns in the restricted master problem RMP, 

columns are priced out iteratively. The column with maximum positive reduced cost is the 

column being priced out and will be added to the RMP. Finding a column with maximum 

positive reduced cost is known as a pricing problem , which is described after the derivation 

of the reduced cost of a column. 

First, associate dual variables = {p:^ < 0 : ^ £ 4'} with the constraints in (6.37), 

dual variables = {p^ < 0 : -0 £ 4/} with the constraints in (6.38) and dual variables 

p(3) = {p^3) < 0 : 'ip E 4/} with the constraints in (6.39). The dual variables tti > 0, 

v = {&u,k,v > 0 : u E U, k E JC,v E V} and 7r0 = {n0tU G R : u G (7} are associated with 

the constraints in (6.40), (6.41), and (6.42), respectively. The Langrangian LRMp of RMP 

then amounts to: 
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Lrmp — pt\pP9ii> 
ipev 

^ Wu,k,v,cxip,k,czu,k,v P9^) 
tpev \ueu kzic vev cec j 

- Z] 42) fe”^ fe S 5m WuXv,cx^,k,cz'u^v - ^ + (l - e“<) - pg^ | 

V'ei' \ \uew feeA: i;ev cec / / 

~J2p{? (e_f ( _ i)+ (X “ e~~2)~P9^ I 
\ \u(zU k(z)C uGV cGC / / 

- TTl ZEE P^u,k,v ^ ] zu,k,v,Lj^u,u T J 

\u&A k&K v£V uj(zQ ) 

~~ ^ ^ ^ ^ ^ ^ I zu,k,v — ^ ^ zu,k,v,u^u,uj J 

u&A k€JC vGV \ cjG^ / 

- 51 f Z] _ 1) (6-46) 
uGZY \cjG^ / 

A reformulation leads to: 

Lrmp = 55 P9^ (^4 + P? + P?} + P?) 
ipev 

~ 55 55 55 (55 55 (pj} + pj?e~^ + pi3)e/) - au,M 
uett /cex: iiev cec 

+ EE ^U,U) EE Zu,k,v,u)&u,k,v -EE pru,k,vz U,k,V,L 
ueu uen \keK. vev ketc vev 

(1 

jTTi TTo,!- 

-E421 
w,7,e “V + 

E^’H^ + li-^)) 
ipt'i) 

+ ir\T + ^ ^ 7roiU (6.47) 
u&A 
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Finally, the dual DRMP of RMP amounts to: 

Subject to 

i>e'S/ 

P^'u,k,v^u,k,v,ui'^l 7To,u 

u&Auj&q. \keiCveV ktKvev 

-E421 + (l - e-"S' 

-E/43)(-Ki + M 
+ 7TiT + ^ ^ 7T3jU (6.48) 

u&U 

+ pS? + p^3) = -p4 v-0 g ^ 

(p^ + pi2)e ^ + P?} v) 
V'e^' cec 

(6.49) 

p{i\p(i\p^<0 W-e* 

= Vu eu,vk eicyv eV (6.50) 

(6.51) 

7ro!U e M Vu euyk e JC,\/v eV (6.52) 

cr«,A:^,7ri > o (6.53) 

To select a column to enter the basis, a search trajectory with positive reduced cost must 

be found. By means of the dual objective function (6.48), the reduced cost cU)U; of trajectory 

oj for platform u is defined by 

cu,w = 5^ K* Y {&u,k,v Pi'll,kiv'Kl) 7To,u J • (6.54) 
weo \keic vev J 

For the best results, at each iteration of the column generation procedure, the aim is to find a 

trajectory with the highest positive reduced cost c* w, i.e.: 

^u.uj ^u,k,v,uj [Pu,k,v Pi'll,k,vH\) HQ,U‘ (6.55) uj€il *—' *■—' 
k£K uev 
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A trajectory u with maximum positive reduced cost c* is priced out and added as a column 

to the restricted master problem RPM. When no column with positive reduced cost is 

found, i.e. when 

^ ^ ^ ^ ^u,k,v,uj (&u,k,v P^'u,k,v'^\) 7To,U ^ 0 (6.56) 
k€K. vev 

for each possible trajectory, then the current solution to the RPM is optimal and the column 

generation procedure can be aborted. In addition, the procedure also terminates when equal 

trajectories are added consecutively. 

6.2.3 Efficiently pricing out a trajectory with maximum reduced cost 

The efficient procedure of finding a physically feasible trajectory with maximum recuced 

cost c* w is described next. This problem for platform u can be formulated as follows: 

Maximize EE-v, v ^u,k,v P^u.k.v'^\) (6.57) 
keK. vev 

Subject to 

zu G Zu (6.58) 

Zu,k,v e {0,1} v/c G /C, Vu G V (6.59) 

The proposed procedure for solving (6.57)-(6.59) consists of finding a longest path on a 

directed acyclic graph (DAG), however with a modified reward structure. In this case, a node 

on the DAG for platform u has the reward au^,v — VruXv'ni corresponding to a waypoint 

zu,k,v as in (6.55). This procedure is executed for each platform u & U and consists of three 

main steps: 

1. Construct the DAG (AC, S) for platform u. 

2. Find a longest path on the DAG (this path corresponds to a trajectory co with maximum 

positive reduced cost c*). 

3. Evaluate c* > 0. 
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The DAG under construction in this work is a generic type which is applicable to both 

trajectories with kinematical constraints as in [11] and trajectories without kinematical 

constraints as in [13], Furthermore, this DAG is applicable to both branching s:rategies 

proposed in section 6.3.2. To avoid confusion with nodes in the set V which refers to the set 

of nodes on the network G, the word dag-node is used for a node on the DAG. A cag-node 

n is a special structure with the following elements: a current node v, a previous node uprei), 

a list of predecessors Mprev each of the type dag-node, and a value. The DAG (Af, £) is 

constructed as follows. First, for each reachable node v at time = 1 a dag-node n is created 

with the previous node empty and the current node v, i.e. n.Vprey = null and n.v = v. The 

value of the dag-node is aUtktV — pru>k,v^i- The list of predecessors remains empty for now, 

i.e. n.J\fprev = {}. Each of the created nodes is added to the DAG and forms the first layer 

M of the DAG, which corresponds to time step k = 1. Additional layers are created for 

each time step k E 1C with 1 < k < K and filled with dag-nodes as follows. For each 

node v' in Vk, whether or not a corresponding dag-node can be created to add to the current 

layer is evaluated. Here, Vk typically equals V but is just a subset of V once the branching 

has started (see 6.3.2). First, for each dag-node n on the previous layer A4-x, a check is 

done to identify whether node v' is adjacent to node n.v and, additionally, not adjacent to 

node n.vprev. The last exclusion is of course not necessary for rotary-wing platforms (see 

Section 4.1.3). The dag-node n' is created with n'.Vprey = n.v and n'.v = v1 and added to 

layer A/fc if and only if this layer does not yet contain a dag-node n" with n”.Vprtv = n.v 

and n".v = v'. Moreover, the dag-node n is added to the list of predecessors of dag-node n'. 

Finally, for each dag-node, a directed edge is created from each of its predecessors to itself. 

It is straightforward to see that the resulting graph is indeed a directed acyclic graph such 

that for each dag-node nk on a path (ni,n2, ...,nK) on the DAG it holds that nk £ J\fk. A 

graphical representation of the DAG construction is presented in Figure 6-6. 

Once the DAG is created, a straightforward longest-path algorithm as described in [29] 

is applied to find a longest path on the DAG. This algorithm has very low computational 

costs as it runs in C>(|A^| + |£|) time and hence in linear time. The path (ni, n2, ...,nK) 

corresponds to the physically feasible trajectory tv* with maximum reduced cost c(_,, which 

is represented by the binary vector zu^* with zU)ktVtUJ* = lifnk.v = v and zero otherwise. 
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Figure 6-6: Construction example of a directed acyclic graph for pricing out a physically 
feasible trajectory for a fixed-wing platform with maximum reduced cost. 

Let V = {a,b,c,d,e,Lg,h} and let nodes a, b, and c be the nodes which are reachable at time h — 1. 
Then the directed acyclic graph for pricing out a trajectory with maximum reduced cost is construc:ed 
as shown. Each path on the DAG represents a physically feasible trajectory for a fixed-wing platform. 
Notice that there exists no edge between bd and de, because e is adjacent to b. There exists no edge 
between be and ed either, because d is adjacent to b. Moreover, nodes df, dg, de, and eh all have 
multiple predecessors. 
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Finally, it is evaluated whether c* ^ > 0 by means of Equation (6.56). If the reduced cost 

of trajectory u* is indeed positive, trajectory u* is added to the reduced master problem. 

Otherwise, no physically feasible trajectory with positive reduced cost exists and the column 

generation procedure terminates. This procedure is presented in pseudo code in Algorithm 

3. 

Algorithm 3 Pricing out a trajectory with max reduced cost for platform u 

1: Initiate DAG Af •<— { } 

2: Initiate layer for A: = 1 A/j ■<— {} 

3: for each reachable node v 6 IZi do 

4: Create dag-node n with n.Vprev = null, n.v = v, n.value = — P'i'u,kv'^i, and 

Nprev — { } 

5: A/j 4— A/i U n 

6: end for 

7: for 1 < /c < .A do 

8: Initiate layer A^ •<— {} 

9: for each node v' e Vk do 

10: for each dag-node n € A4-i do 

11 ■ ^ ^v',n.v and Qy1,n.Vprev then 

12: if There exists no dag-node n' e Af with n'.Vprey = n.v and n'.v = v' then 

13: Create dag-node n” G Af with n".vprev = v' and n".v = n.v 

14: Afk i— Afk U n” 
15: end if 

16: n" .Afpred <r- n" .Afpred U U 

17: end if 

18: end for 

19: end for 

20: AT Af U A4 

21: end for 

22: Trajectory with maximum positive reduced cost u* longest path algorithm on the 

DAG and conversion to its corresponding trajectory 

23: if c*iCJ, > 0 then 

24: Add trajectory uj* to the RMP 

25: else 

26: STOP 

27: end if 
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This algorithm for pricing out a trajectory with max reduced cost is part of the column 

generation procedure for optimizing the restricted master problem. In its turn, the column 

generation procedure is part of the branch & price algorithm, which is presented in the next 

section. 

6.3 Branch & price algorithm 

The result of the column generation procedure may contain fractional waypoints. A platform 

is, of course, indivisible and therefore a binary solution is required. To obtain a binary 

solution, the column generation procedure from section 6.2 is incorporated in a branch & 

bound algorithm. The result of combining column generation with branch & bound is known 

as branch & price and is presented in subsection 6.3.1. Two optional branching strategies 

are presented in subsection 6.3.2. 

6.3.1 Solving the integer problem 

Let Q be the queue of nodes on the branch & price tree. To avoid confusion with nodes in 

V, a node in Q is referred to as a bp-node throughout this section. The queue of bp-nodes 

in Q is initiated with a single bp-node n0 referred to as the root bp-node. Other bp-nodes 

will be added to the tree later on. First, the bp-node with highest priority is pulled from 

the queue Q to be processed. At his point, root bp-node n0 is the only bp-node in the 

queue and, hence, the root bp-node is processed first. Processing a bp-node starts with 

checking whether a feasible solution exists in the RMP. Initially, there are no columns yet 

added, i.e. Q = 0, and constraint (6.30) can not be satisfied. Therefore, a feasible solution 

must be generated first by generating one feasible trajectory for each platform. In the root 

bp-node, each trajectory in Zu is feasible when its required resource does not exceed the 

limit T. However, the combination of trajectories of the platforms might exceed the limit 

T. Therefore, feasible trajectories are created by solving the following minimal resource 
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trajectory problem PRU for each platform u: 

Minimize ^2^pruAvzuAv (6.60) 
fce/c uev 

Subject to 

(6.61) 

(6.62) 

This problem yields a physically feasible trajectory with minimal required resource cumu¬ 

lative over the visited waypoints on the trajectory. Minimization problem PRU for fixed 

platform u is solved by polynomial time Algorithm 3 however with dag-node values pru^k)V. 

If the cumulative resource consumption over the trajectories for each platform exceeds 

the limit T, then no feasible solution exists. In this case, the currently processed bp-node 

is pruned because the sub problems on this branch are infeasible as well. Otherwise, the 

feasible trajectories are added to the RMP and the column generation procedure can start in 

order to find an optimal solution to the RMP. The possibly fractional result A represents a 

relaxed strategy consisting of trajectories for each platform. If the solution is an imeger, the 

lower bound is updated in case it is improved and the bp-node can be pruned. On the other 

hand, pruning also takes place when the result A is fractional and the corresponding objective 

value /(A) is less than or equal to the current lower bound. In both cases the bp-node is 

pruned because no better solutions can be found further down the tree. If, however, ;he result 

A is fractional and the corresponding objective value /(A) is higher than the current lower 

bound, this bp-node is branched to create a set of child bp-nodes. These are then added 

to the priority queue Q. Two branching strategies are presented and discussed in the next 

subsection 6.3.2. The process is repeated until the priority queue Q is empty. The optimal 

objective value to the MP is represented by the value of LB and the corresponding strategy 

is an optimal strategy. This algorithm is presented in pseudo code in Algorithm 4. 
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Algorithm 4 Branch & price for moving target search 

1: Initiate lower bound LB •<— 0 

2: Initiate priority queue Q <— root bp-node no 

3: Initiate column set H •<— 0 

4: while Q 7^ 0 do 

5: n <— pull bp-node with highest priority from queue Q 

6: if RMP has no feasible solution then 

7: u> generate feasible strategy 

8: if No feasible strategy exists then 

9: Prune bp-node n 

10: else 

11: i— U Ct? 

12: end if 

13: end if 

14: A •<— optimize RMP by column generation 

15: if Strategy A is integer then 

16: if Objective value /(A) > LB then 

17: Improved lower bound found LB <— /(A) 

18: end if 

19: Prune bp-node n 

20: else 

21: if Objective value /(A) < LB then 

22: Prune bp-node n 

23: else 

24: Q ■<— branch 

25: end if 

26: end if 

27: end while 

Computational experiments using this algorithm are presented in section 6.4. Further¬ 

more, the output of this algorithm while solving one specific instance of the search problem 

is presented in Appendix C. 
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6.3.2 Branching strategies 

Two branching strategies are described in this subsection which can be applied in step (24) 

in Algorithm 4. The first branching strategy is referred to as waypoint-branching and is 

aligned with the branching strategy from the branch & bound algorithm in section 4.3. It 

corresponds to extending the standard branching strategy in literature [18, 19, 32, 36] to a 

branching strategy for the multi-searcher problem. An attempt to use this type of branching 

for multiple searchers was shown to lead to an extremely large search tree [33] (o.56-59) 

such that computations are only tractable for very small instances. The waypoint-branching 

procedure is as follows. Recall from section 4.3 that in the case with one platform, for 3 (for 

a fixed-wing platform) or 7 (for a rotary-wing platform) allowed waypoints for time A; + 1 a 

child bp-node is added to the tree. In multi-platform search, a child bp-node is added to the 

tree for each possible combination of possible waypoints for each of the platforms. With 

two fixed-wing platforms, the number of child bp-nodes is 32 = 9. With three rotary-wing 

platforms, the number of child bp-nodes is already 73 = 343 and the problem becomes 

clearly intractable even on a very small search area. 

Therefore, a novel branching strategy is proposed in the following, called strip-branching. 

A search tree using strip-branching is much smaller and, furthermore, is more balanced. 

A well-balanced tree results in pruning more dominated search trajectories in a bp-node. 

Basically, one path from the root bp-node to a leaf on the search tree represents a tightly 

connected set of trajectories. One can imagine the set of trajectories like a strip over the 

search area, hence the name strip-branching. A bp-node on the branch & price tree restricts, 

for time k, the waypoint to be within a set of waypoints. Selecting from a set of waypoints 

at time k is different from waypoint-branching, in which one waypoint is fixed for time 

k. A more formal description of this branching procedure is as follows. Let n G Q be the 

bp-node to branch on with VUi„ the set of allowed nodes on the platform network at rime n.k 

for platform u. The procedure starts with the selection of adjacent nodes on the platform 

network to VUj„, for each platform u E U. This set is then divided into two subsets ViiU 

and V2,u in a way that the sum over the zUik+i)V variables in (6.44) is closest to 0.5 for each 

subset. The nodes for which zUik+i,v — 0 are equally divided over the subsets. Finally, for 
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each combination of the subsets VijU and for all platforms, a bp-node for time /c + 1 

is created and added to the queue Q. In the case with one platform, each bp-node has two 

child bp-nodes. In the case with two platforms, each bp-node has four child bp-nodes. In 

the case with three platforms, each bp-node has eight child bp-nodes, etc. The branch & 

price tree still grows exponentially fast, however it is significantly slower when compared 

to waypoint-branching. Even though in all experiments the algorithm converged, this is 

not the case in theory. Improvements to this strategy are therefore necessary. Nevertheless, 

the computational results in section 6.4.2 confirm the huge improvement in run times when 

using strip-branching compared to waypoint-branching. 

6.4 Computational experiments 

The proposed method is tested in simulations in this section. The proposed linear relaxation 

is benchmarked against the linear upper bound proposed in [13] and the branch & price 

procedure with both waypoint-branching and strip-branching options is benchmarked against 

solving the compact formulation using IBM Cplex. 

All tests were performed on an Intel(R) CoreTM i7-4810MQ CPU processor with 2.80 

GHz and a usable memory of 15.6 GB. The instance generator is written in Matlab; IBM 

Cplex with default parameter settings is used to solve the MILPs and the master problem in 

the branch & price procedure. The branch & price procedure is programmed in Java. 

The remainder of this section is structured as follows. First, the test-bed is described in 

subsection 6.4.1, followed by the simulation results in subsection 6.4.2. 

6.4.1 Testbed 

The testbed consists of a set of representative test instances, and the set of algorithms 

to compare their performance in solving those instances. First, a description of the used 

target properties is given, followed by a description of the properties of the heterogeneous 

platforms. Finally, a summarizing overview of the algorithms is listed. 

The search area in all tests was modeled as a 30 x 30 square grid. The target under 

consideration was of the diffusing type. In other words, the target moved north, east, south, 
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or west, or stayed in its cell, with equal probability in each time step. Furthermore, the 

start position C0 of the target was bivariate normally distributed (C0 ~ H)), with 

H = [15,15] and £ = [6,0; 0,6]. From the total set of possible target tracks, the number of 

possible target tracks is restricted to 250 and their probabilities are normalized. For each 

platform u eU an effectiveness of search is given by parameter Wukv,c, which depends in 

these experiments on the distance from node v to cell c and the sensor quality as follows: 

Wu,k,v,c = Qu{\\v-c\\y1, (6.63) 

where Qu is the quality indicator of the sensor on platform u. Search for this target is 

conducted by a team of heterogeneous platforms. The differing properties are the speed s, 

radius of a turn l, and sensor quality Q. Table 6.1 lists the properties of the platforms and in 

which combination they are used to form a team. 

Table 6.1: Properties and configurations of the search teams. 

Number of platforms Nu 

2 3 4 

x 

x 

X 

X 

X 

X 

X 

X 

X 

Thru radius l 

1.0 

1.0 

1.5 

2.5 

1.5 

2.0 

2.5 

Sensor quality Q 

0.025 

0.050 

0.050 

0.100 

0.100 

0.150 

0.200 

The size of the set of nodes for each of the platforms is 50 in each instance. One 

instance is generated for each of the durations = 4, 6,8,10,12,14 for each of the team 

configurations with 2, 3, and 4 platforms. This results in a set of 18 instances, for each 

of which the shared resource limit is infinite, i.e. T — oo. A similar set of instances is 

generated for the 2 platform case, with the sole difference being that the shared resource 

limit is finite and each visited waypoint costs an amount of resources equal to the expected 

probability of detection of the target at that waypoint. As a result, a total of 24 test instances 

are generated. 



Finally, each instance is solved using 4 algorithms: 

• MILP: Solving the compact formulation (6.13)-(6.20) using IBM Cplex. 

• BP Waypoints: Solving the extensive formulation using the proposed branch & price 

algorithm with the waypoint-branching strategy. 

• BP Strips: Solving the extensive formulation using the proposed branch & price 

algorithm with the strip-branching strategy. 

• MILP Old: Solving the compact formulation (6.13)-(6.20) without the proposed 

tightening linear overestimators (6.15) and (6.16) using IBM Cplex. 

By means of the test results, the runtimes of the branch & price algorithms are compared with 

solving the MILP using IBM Cplex. These three algorithms solve the problem optimally 

and thus with equal expected probabilities of detection and equal optimality gaps. The 

upper bound for the optimality gap is the optimal value of the objective function and the 

lower bound is determined by calculation of the actual expected probability of detection 

when using the original glimpse probability as in Equation (2.8). This new optimality gap 

is benchmarked against the old optimality gap produced by the MILP Old algorithm. The 

results are presented in the next subsection. 

6.4.2 Results and analysis 

The computational results are very promising, both from a run time point of view as well as 

on reducing the optimality gap. The results are summarized in Table 6.2. For each instance, 

the input parameters K, Nu, and T are listed, followed by the run time of MILP in ms, the 

number of nodes processed by BP Waypoints, the run time of BP Waypoints in ms, the 

number of nodes processed by BP Strips, the run time of BP Waypoints in ms, the old 

optimality gap and the new optimality gap in percentages. In the case that an algorithm has 

not found an optimal solution after 0.5 x 107 ms, the algorithm was aborted and the symbol 

" was noted as a result in Table 6.2. 

A comparison of the algorithms BP Waypoints and BP Strips is done first. Both BP 

algorithms already solve the integer problem in the root bp-node of the branch & price 
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Table 6.2: Computational results for search by multiple heterogeneous platforms with 

shared resources (with run times in ms, number of nodes in units, and the optimally gap in 
percentages). 

K 

4 

6 

8 

10 

12 

14 

4 

6 

8 

10 

12 

14 

4 

6 

8 

10 

12 

14 

4 

6 

8 

10 

12 

14 

Input 

Nu 

2 

2 

2 

2 

2 

2 

3 

3 

3 

3 

3 

3 

4 

4 

4 

4 

4 

4 

2 

2 

2 

2 

2 

2 

MILP 

T Time 

oo 

oo 

oo 

oo 

oo 

oo 

oo 

oo 

oo 

oo 

oo 

oo 

oo 

oo 

oo 

oo 

oo 

oo 

0.35 

0.5 

0.65 

0.7 

0.8 

0.9 

5842 

12497 

14310 

28839 

56462 

104770 

6474 

17315 

26955 

35153 

373412 

101736 

17391 

39398 

52685 

78456 

1846795 

1092396 

11093 

18132 

21623 

158285 

1473179 

1271035 

BP Waypoints 

Nodes Time 

10322 2909070 

1 2565 

1 3051 

1 4569 

1 5137 

1 5723 

1 5240 

1 8433 

1 9642 

1 18523 

1 23342 

1 28014 

1 37265 

BP Strips 

Nodes Time 

17 3114 

1 2571 

1 3116 

1 4508 

1 5079 

9 23016 

33 5394 

57 18080 

1 5063 

1 5802 

1 8567 

1 9666 

17 11206 

33 28567 

1 17895 

1 21847 

1 27283 

1 37046 

305 67329 

85 20448 

33 26949 

2881 2289837 

1917 2734678 

125 4789907 

Opt gap 

Old New 

21.79 16.91 

33.04 6.21 

30.66 0.36 

32.03 1.14 

29.28 3.59 

25.78 7.99 

15.31 14.95 

26.50 15.12 

34.54 4.22 

32.37 0.82 

31.19 0.31 

26.81 2.01 

17.64 16.03 

27.50 14.07 

34.27 3.27 

30.21 0.32 

29.75 1.02 

28.38 3.56 

20.40 18.01 

31.29 8.58 

32.99 0.81 

33.67 0.51 

30.71 0.67 

29.33 2.63 

tree in many instances. In this case, the algorithms are exactly the same, because the 

difference exists only in the branching strategy. A logical consequence is that the run times 

of both algorithms are similar in these cases. However, the strip-branching strategy shows 

a huge advantage when branching is necessary. The BP Strips algorithm only needs to 

process 17 bp-nodes on the first instance, whereas the BP Waypoints algorithm needs to 
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process over ten thousand bp-nodes. The run time is a factor of 1000 longer. As a result, 

the BP Strips algorithm is favorable over the BP Waypoints algorithm in all instances. 

Now, when comparing the run times of the BP Strips algorithm with MILP, one sees that 

the run times of the BP Strips algorithm are much shorter in all but one instance with 

T = oo. The run times improved by as much as 6669%. Consider furthermore that the 

subproblem optimization for each platform is currently implemented in sequence. Additional 

improvements can be realized when these subproblems are solved in parallel. When T < oo, 

however, the number of bp-nodes to process becomes larger and consequently the run times 

become longer. Nevertheless, the run times remain in the same order of magnitude compared 

to the run times of MILP, so an improvement of the branching strategy will most likely lead 

to improved run times as well. The resource constrained problem is clearly much harder to 

solve for all algorithms. 

When looking at the optimality gaps in the two rightmost columns of Table 6.2, rhe 

superiority of the proposed tighter upper bound becomes very clear. Whereas the old 

optimality gap is larger than 30% in many of the instances, the new optimality gap is often 

even lower than 1%. The optimality gaps for each instance are shown in Figure 6-7 as 

well. The largest difference between the old and the new optimality gaps is obtained on 

the instance with K = 10, Nu = 2, and T = 0.7. On this instance, the old optimauty 

gap is 33.67% whereas the new optimality gap is as small as 0.51%. An interesting cyclic 

behavior can be recognized in Figure 6-7. This can be explained by means of Figure fc-3. 

Recall that the linear overestimator (6.10) results in the old upper bound, whereas the linear 

overestimator (6.10) combined with the new proposed overestimators (6.11) and (6.12) 

result in the new upper bound. On instances with just a few time steps available for search, 

the value of 2 is relatively small. Therefore, the glimpse probability is more likely to be 

bound from above by the old overestimator (6.10). Resulting in similar values of the old 

and new optimality gap. However, the value of z increases with K due to Equation (6.1). 

Then, without the glimpse probability being bounded by the new proposed overestimators 

(6.11) and (6.12) the glimpse probability is only bounded by the value 1 because it :s a 

probability. The obvious result is a large optimality gap. Now if K increases further, the 

lower bound increases, because the actual value of expected probability of detection is likely 
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to increase for search strategies of longer duration. Consequently, the optimality gap reduces 

again slightly. On the other hand, when the glimpse probability is bounded by the new 

proposed overestimators (6.11) and (6.12), its value lays very close to the actual glimpse 

probability. This results in a very small new optimality gap. 

Figure 6-7: Old and new optimality gaps on the instances of the computational experiments. 

Finally, the average of the optimality gaps as shown on the right in Figure 6-7 shows 

the major reduction of the optimality gaps as well when using the proposed upper bound. 

The average of the old optimality gaps is well over 25%, whereas the average of the old 

optimality gaps is just a little over 5%. 

This major improvement results in a much higher expected probability of detection, 

which is of course the main goal of search strategy optimization. 
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Chapter 7 

Field experiments towards decision 

support in search for radiological 

material 

The focus of the work presented in this dissertation so far has mainly been on solving 

theoretical search problems. However, the solutions to these theoretical problems will be 

incorporated in a tool to provide decision support in real-life search missions . In this 

chapter, a first step towards the development of such a tool is described. It consists of a 

field experiment in order to find the constraints and sensor ranges that provide :he input 

parameters for the algorithms as proposed throughout this dissertation. Subsequently, a 

fictive but realistic scenario is described in which a suspect carrying radiological material 

must be detected in order to prevent a terrorist attack. The proposed algorithm 4 for multiple 

search platforms is used to provide decision support in several scenarios, using realistic 

input parameters for search effectiveness obtained by the described field experiments. The 

search effectiveness significantly influences the expected probability of detection throughout 

the search. 

The remainder of this chapter is organized as follows. First, the field experiments for the 

determination of the gamma-ray sensor ranges are described in section 7.1. Next, in section 

7.2, the obtained ranges are used as input parameters for the algorithms used to optimize the 
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search strategy in computational experiments for realistic search scenarios. 

7.1 Determination of gamma-ray sensor ranges 

During the period from 20-03-2017 until 23-03-2017, the author, in cooperation with the U.S. 

Naval Postgraduate School Center for Network Innovation and Experimentation (CENETIX) 

[90], directed by Prof. Dr. Alexander Bordetsky, conducted field experiments in order to 

determine the constraints of UAVs equipped with gamma-ray sensors for detection and 

identification of hazardous material. The experiment took place at the NPS Field Experiment 

Laboratory. One part of a more extensive field experiment was the determination of gamma- 

ray sensor ranges when equipped by a DJI Matrice 600 Hexacopter. The test bed of this 

field experiment is described first in the following subsection, followed by the results. 

7.1.1 Field experiment testbed 

The aim of this field experiment was to determine the maximal range from the UAV to the 

target in order to detect the source. The field experiments were conducted for two types of 

radiological sources and two gamma-ray sensors. The first source was a Cobalt-60 source. 

This type of radioactive material is frequently used in radiotherapy. It has a half-life of 5.27 

years and produces two gamma-rays with energies of 1.17 MeV and 1.33 MeV per photon. 

The second source, Cesium-137, has a half-life of 30.17 years and produces one gamma-ray 

with an energy of 0.66 MeV per photon. When measuring radiological material, a spectrum 

can be established which can be used for the identification of the type of material by looking 

at the photon peak(s). A spectrum of a Cobalt-60 source shows two peaks at 1173.2 keV and 

1332.5 keV, and a spectrum of a Cesium-137 source shows one peak at 662 keV as shown 

in Figure 7-8. Two sensors were tested. Both sensors are high-efficiency radio-iso:ope 

identification devices and will be referred to by sensor 1 and sensor 2. In each round of 

experiments, the DJI Matrice 600 Hexacopter was equipped with one of the sensors. Sensor 

2 automatically sends detection events with information to the remote advice and assist cell 

(see Figure 7-1), whereas the ranges from sensor 1 needed to be reported manually as shown 

in Figure 7-2. 
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Figure 7-1: The remote advice and assist cell at the NFS Field Experiment Laboratory. 

7.1.2 Field experiment results 

All the data gathered in this experiment is publicly available at the CENETIX Resource 

Portal [91] in the Observer’s Notepad under chapters WAS CR Phl-PhIV. The maximal 

sensor ranges as determined from the field experiments are listed in Table 7.1 and range 

between 3 m and 6 m. Sensor 2 appears to be a more sensitive sensor, able to pick up 

gamma-rays from a larger distance compared to sensor 1. Cobalt-60 has a higher gamma-ray 

dose constant compared to Cesium-137 and can therefore be described as the stronger source. 

This results in a larger possible range of detection for a Cobalt-60 source. Finally, the speed 

of the UAV did not seem to influence the detection rate. The fastest tested speed of 40 km/h 

still yielded positive detection events. 

Table 7.1: Approximate sensor ranges found in field experiments. 

Sensor 1 Sensor 2 

Cobalt-60 

Cesium-137 

4 m 6 m 

3 m 5 m 

The spectra of a selection of measurements from sensor 1 on the Cesium-137 source are 
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Figure 7-2: M. Raap at the remote advice 
and assist cell receiving information from the 
field. 

Figure 7-3: Fleat map overlay generated by 
the sensor 1 software. The color red rep¬ 
resents relatively high radiation, accurately 
suggesting that the source is located ir that 
area in the cabinet. 

shown in Figures 7-4, 7-6, and7-8. The spectrum shown in 7-4 was taken at a distance of 

6m, with a corresponding image taken by the imaging component of sensor 1 as shown in 

Figure 7-5. Here, the UAV is too far away from the source for a detection event. As a result, 

no spike is visible in the spectrum. At a distance of 3 m, a detection event occurred. The 

spectrum of the measurement at that distance is shown in Figure 7-6, showing a spike at 662 

keV suggesting the presence of a Cesium-137 source. A corresponding image is shown in 

Figure 7-7. The strongest signal was received when the UAV was hovering over the source. 

The respective spectrum is shown in Figure 7-8 showing a large spike, with an image shewn 

in Figure 7-9. The GPS track of the UAV when equipped with sensor 1 is shown in Figures 

7-10 and 7-11, along with the locations of both radiological sources. 

7.2 Computational experiments for detection of a radio¬ 

logical dispersion device 

In this section, computational experiments are deduced for a realistic scenario in orde^ to 

show the applicability of the proposed method for optimization of a search strategy for 

multiple heterogeneous platforms. The input parameters of the algorithms used in :hese 
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Figure 7-4: Spectrum by sensor 1 at 6m Figure 7-5: Image by sensor 1 at 6m dis- 
distance to the Cesium-137 source. No tance to the Cesium-137 source, 
detection has taken place due to the large 
distance. 

experiments are either estimations of real-life units such as geographical distances, or 

determined by the field experiments described in the previous section. First, a scenario of a 

radiological dispersion threat in the center of San Francisco is described in the following 

subsection, followed by a model of the search mission and a description of the instances 

used in the computational experiments. The results of these computational experiments are 

presented and analyzed in the final subsection of this chapter. 

7.2.1 Scenario of a radiological dispersion threat in San Francisco 

Imagine the following scenario describing a terrorist threat in the center of San Francisco, 

CA, USA: A person who is associated with a terrorist group is carrying a radiological 

dispersion device (ROD) at Union Square. A radiological dispersion device is "any device, 

including any weapon or equipment, other than a nuclear explosive device, specifically 

designed to employ radioactive material by disseminating it to cause destruction, damage, 

or injury by means of the radiation produced by the decay of such material'' [92]. The 

dispersion effect of an RDD is limited and will not cause many casualties. However, the 

psychological effects, such as fear and overreaction from civilians, are much larger. The 
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Figure 7-6: Spectrum by sensor 1 at 3m Figure 7-7: Image by sensor 1 at 3m d:s- 
distance to the Cesium-137 source. A de- tance to the Cesium-137 source, 
tection event had occurred and the material 
was identified. 

typical aim of detonating such a device is therefore to disrupt rather than destroy [93], The 

greatest security risk comes from, a.o., Cobalt-60 and Cesium-137 [93], In this scenario, a 

positive signal is received at Union Square but, because of the range to detection, the person 

carrying the RDD is not immediately identified and consequently lost. A search mission is 

initiated to search for the target with a team of search platforms, each equipped with eitner 

sensors. 

7.2.2 Modeling of the San Francisco search mission 

To provide decision support, the following model of the search mission is set up. Firs:, 

the search area as depicted in Figure 7-12 is discretized into 50 x 50 equally-sized square 

cells. The target is estimated to be moving south and west with probability 0.3, and with 

probability 0.2 to the north and east on this grid. Another grid with the dimension 10 x 10 is 

additionally generated for search strategy optimization. The latter grid contains fewer cells 

in order to keep the problem tractable. Finally, a well informed estimation for the search 

effectiveness of each sensor-source combination is a necessary input for the optimizaton 

algorithms. These estimated values for search effectiveness can be calculated as fodows. 
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Figure 7-8: Spectrum by sensor 1 while 
hovering over the Cesium-137 source. A 
strong detection event had occurred and the 
material was identified. 

Figure 7-9: Image by sensor 1 while hov 
ering over the Cesium-137 source. 

The search area has the dimension 20.71 km x 20.71 km, which corresponds to 42S.90 km2, 

leading to 4.29km2 on one cell on the search grid. On average, 20% of this area is reachable 

by neither the target nor the search platforms. The remainder of the area consists 60% of 

buildings and the remaining 40% is outdoors. A time period k is modeled to represent 30 

min in real life. Furthermore, each platform moves at 20 km/h when outdoors and 5 km/h 

when indoors. Consequently, a platform u covers 2.5 x 2ru km2 in a time period when 

indoors, and covers 8.0 x 2ru km2 when outdoors. Here, the parameter ru is the sensor range 

in km of the sensor equipped by platform u. Consequently, a fraction of (2.5/2.06)2ru of 

the indoor area and a fraction of (8.0/1.37)2ru of the outdoor area is covered by platform u, 

resulting in an overall coverage fraction of 6.13ru. Substituting the sensor ranges from table 

7.1 results in the search effectiveness parameters as listed in table 7.2. 

Table 7.2: Search effectiveness estimations for each sensor-source combination. 

Sensor 1 Sensor 2 

Cobalt-60 

Cesium-137 

0.03064 0.03677 

0.01838 0.03064 

123 



CENETIX SA Viewer 

Figure 7-10: GPS track of the DJI Matrice 
600 Hexacopter (blue diamond) with sensor 
1 near the Cesium-137 source (orange dia¬ 
mond). 

CENETIX SA Viewer 

Figure 7-11: GPS track of the DJI Matrice 
600 Hexacopter (blue diamond) with sensor 
1 near the Cobalt-60 source (red diamond^ 

Obviously, some strong assumptions on the movements of the radiological source and on 

the detection rates are made for this computational experiment. The aim of these experiments 

is therefore by no means to predict the actual expected probability of detection, but rather 

an example of how the proposed algorithm behaves in a more realistic scenario, compared 

to existing algorithms. The optimal search strategies were calculated for a total of 28 

instances, 14 for both types of radiological material, Cobalt-60 and Cesium-137. For team 

sizes of 3 and 4 platforms a number of 7 instances were generated with mission duration 

K — 12,14,16,18,20, 22, 24. Since one time period is modeled to last 30 minutes, 76 = 12 

represents a search duration of 6 hours in real time. In a team of size four, two platforms 

had sensor 1 equipped and two platforms had sensor 2 equipped. In a team of size three, two 

platforms had sensor 1 equipped and one platform had an sensor 2 equipped. The search 

effectiveness parameters were used as described in Table 7.2. The results for each of these 

instances are presented and evaluated in the next subsection. 

7.2.3 Computational results 

The results of the computational experiments for search for a radiological dispersion device, 

as shown in Table 7.3, show the applicability of the model and algorithms to support decision 

making in complex search scenarios. The left part of the table contains the input parameters 
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Figure 7-12: Maps of San Francisco with heat map overlays, evolving according to the RDD 
motion model. 

mission duration K, team size Nu, and source. The right part of the table contains the 

corresponding computational results. Each instance was solved using IBM-Cplex (MILP) 

and using the proposed branch & price algorithm with the strip-branching strategy (BP 

Strips) from chapter 6. The computation times are shown for both algorithms, as well as 

the number of nodes processed by the branch & price algorithm. The resulting expected 

probability of detection is given, as well as the old and the new optimality gaps as described 

in chapter 6. 

A straightforward observation can be made from Table 7.3: the expected probability of 

detection increases with the duration of the search, as well as with the number of platforms. 
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Table 7.3: Computational results for search for a radiological dispersion device by multiple 
heterogeneous platforms. 

K 

12 

14 

16 

18 

20 

22 

24 

12 

14 

16 

18 

20 

22 

24 

12 

14 

16 

18 

20 

22 

24 

12 

14 

16 

18 

20 

22 

24 

Input MILP 

Nu 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

Source Time (ms) 

Cobald-60 

Cobald-60 

Cobald-60 

Cobald-60 

Cobald-60 

Cobald-60 

Cobald-60 

Cesium-137 

Cesium-137 

Cesium-137 

Cesium-137 

Cesium-137 

Cesium-137 

Cesium-137 

Cobald-60 

Cobald-60 

Cobald-60 

Cobald-60 

Cobald-60 

Cobald-60 

Cobald-60 

Cesium-137 

Cesium-137 

Cesium-137 

Cesium-137 

Cesium-137 

Cesium-137 

Cesium-137 

6344 

5266 

9788 

24428 

11879 

14605 

10070 

4935 

12020 

7419 

9344 

6183 

19370 

8688 

8383 

20098 

9418 

10073 

12437 

10714 

11907 

7721 

6931 

18529 

11526 

11834 

11962 

13437 

BP Strips 

Nodes Time (ms) 

1 

1 

1 

121 

1 

1 

1 

1 

1 

1 

1 

1 

97 

57 

1 

1 

1 

1 

1 

1 

1 

1 

3671 

4775 

4142 

39379 

4874 

6556 

6978 

3890 

3605 

3794 

4260 

5076 

6338 

6261 

85954 

90846 

6245 

6809 

7019 

7715 

7960 

4835 

5724 

6155 

6505 

7174 

7115 

7503 

PD 

0.26 

0.26 

0.35 

0.40 

0.50 

0.61 

0.75 

0.19 

0.30 

0.39 

0.53 

0.62 

0.57 

0.64 

0.37 

0.44 

0.59 

0.58 

0.67 

0.84 

0.86 

0.23 

0.30 

0.48 

0.60 

0.65 

0.67 

0.70 

Opt. gap (%) 

Old Nev7 

13.93 13.93 

14.31 14.31 

20.33 16.03 

24.55 13.34 

33.19 6.36 

35.28 3.45 

36.60 0.00 

10.98 1C.93 

14.70 14.73 

19.14 19.14 

22.70 21.73 

33.38 5.72 

27.25 13.54 

35.27 4.02 

18.62 17.21 

21.99 20.21 

34.41 196 

35.11 5.58 

34.42 3.3^ 

36.16 2 08 

35.95 3 66 

12.88 12.88 

16.19 15.06 

26.19 12.72 

30.70 8.7: 

36.26 3.26 

36.61 1.66 

35.50 0.65 

When comparing the results of search for a Cobalt-60 and a Cesium-137 source, one can 

see that the expected probability of detection for the Cobalt-60 source is higher for an 

equal number of platforms and search duration. This can be explained by the larger ranges 



necessary for detection, as presented in Table 7.1 and consequently the search effectiveness 

for this type of source is higher, as presented in Table 7.2. For most of the instances, the 

branch & price algorithm finds an optimal integer solution in the root node. In all these 

cases, the branch & price algorithm solves the problem faster than IBM Cplex solves the 

MILP formulation. In just a few cases multiple nodes needed processing, resulting in a 

longer run time. In such cases, solving the MILP formulation can produce a timely and 

optimal solution. Consider furthermore that the subproblem optimization for each platform 

is currently implemented in sequence. Additional improvements in terms of computation 

time can be realized when these subproblems are solved in parallel. 

Optimality Gap 
□ New 
□ Old 

25 

S-20 
Q. ro 
O 
> 
= 15 

E 
a. 

Avg O^t. Avg Opt. 

Figure 7-13: Old and new optimality gaps on the instances of the computational experiments. 

Finally, a large reduction of the optimality gap is made. In one case, the instance with 

the Cobalt-60 source, K = 24 and Nu = 3, the optimality gap was reduced from 36.6% to 

less than 0.01%. The optimality gaps resulting from both linear upper bounds are shown 

graphically as well for each instance in Figure 7-13. The average optimality gap of the 

proposed upper bound is significantly smaller compared to the average optimality gap of the 

old upper bound, namely just a little under 10% versus over 25%. 

Altogether, the proposed model and algorithms find optimal search strategies in a very 

short time span, such that the search can start as soon as the platforms are ready for 
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deployment. 
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Chapter 8 

Conclusions 

The search for missing persons or wreckage in non-urban environments such as at sea or in 

the mountains has been necessary in the past, and will be necessary in the future. Disasters 

in aviation and the freight industry, environmental disasters, mistakes or unfortunate series 

of events on extreme adventure trips, and terrorist threats all can potentially be ;he basis 

of a coordinated search mission. Search missions are often conducted by sensor equipped 

ground or aerial vehicles or vessels. For example, the Airbus Military C-295 is a typically 

employed in naval search missions. With the increasing technological improvements of 

unmanned aerial vehicles, it becomes more and more attractive to additionally employ such 

vehicles as well. Due to the complexity of timely search mission planning, it is important 

for the mission leader to utilize decision support in the form of a search strategy ard for the 

pilot to utilize decision support in the form of an optimal flight trajectory. 

Methods for these types of decision support are provided in this dissertation in chapters 

4-7. A structural overview of these chapters is presented as a flowchart in Figure 8-1. The 

blocks on the left represent the new methods presented in chapters 4-6. The method in 

chapter 6 for cooperative search by a team of heterogeneous platforms with shared resources 

is used to find optimal search strategies in search for radiological material in a scenario of 

terrorist threat as described in chapter 7 and represented by the middle block in the lowest 

row in the flowchart. Finally, based upon this work, the ongoing research and development 

of a decision support tool for wide area search is represented by the final block in the 

flowchart. Each element will be summarized in the following. 
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Figure 8-1: Flowchart of the chapters containing the main contributions of this dissertation. 
The white blocks represent its content and the gray block represents the ongoing research 
and development based on the presented work. 

• In chapter 4, a method for search by a single platform under kinematical con¬ 

straints is presented. 

A physically feasible search trajectory is planned depending on the search speed, relocation 

speed, and the minimum turn radius of the sensor platform. Depending on its sensor perfor¬ 

mance as well as the initial probability map of the location of the target and its probabiTstic 

motion, a search trajectory is then optimized by solving the proposed mixed integer linear 

program. This program is efficiently solved by a generalization of an existing branch & 

bound algorithm for moving target search to be applicable to kinematical constraints and 

heterogeneous grids. The results from computational experiments show the applicability of 

the proposed model and the effectiveness of the algorithm. Improvements can be accom¬ 

plished by finding a tighter and more easily computable upper bound on the probability of 

detection, which has been an extensively researched goal since 1979. 
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• In chapter 5, a method for search by a single platform under kinematical and 

resource constraints is presented. 

In certain situations, the search trajectory is subject to limited resources. In this context, 

a resource is a collective concept for e.g. fuel or risk. Solving the problem o' finding a 

physically feasible search trajectory with limited resources that maximizes the prcbability of 

detection can not be solved efficiently by the previous branch & bound algorithm. Therefore, 

a Benders’ decomposition algorithm was proposed to solve the problem efficiently. This 

is, to the best of the author’s knowledge, the first Benders’ decomposition approach for 

target search in general in literature. For the case with scarce resources the proposed method 

solves significantly faster compared to solving the proposed mixed integer programming 

formulation using a commercial solver. A probable improvement to this solution could be to 

find a stabilization technique for this specific Benders’ decomposition algorithm. 

• In chapter 6, a method for cooperative search by a team of heterogeneous plat¬ 

forms with shared resources is presented. 

When multiple platforms are available for search, a search strategy is necessary for effective 

cooperative search. Planning such a search strategy is inherently non-linear and therefore 

even harder to solve. Moreover, the problem grows exponentially in the number of platforms. 

In this chapter, an easier to solve problem was proposed that yields an upper bound on 

the joint probability of detection. The proposed upper bound is tight. Computational 

experiments show an optimality gap of less than 1% on many instances, which is a large 

improvement of an existing upper bound of ca. 30% on the same instances. Furthermore, a 

branch & price procedure is proposed for solving the problem more efficiently. Especially 

in cases with no resource constraints, the run time of the algorithm is up to two orders of 

magnitude shorter compared to solving the problem using the currently best commercial 

branch & bound solver, IBM Cplex. Improvements to the upper bound can be made by fine 

tuning the point of tangency of the overestimators as well as the number of overestimators. 

The most promising improvement to the branch & price procedure can be accomplished by 

finding further improvements of the proposed branching strategy. 
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• In chapter 7, the proposed branch & price method is applied to a more realistic 

scenario. 

The proposed branch & price method is applied to a more realistic scenario in order to 

show how it could provide decision support in a real-life search mission. First, by mean* 

of field experiments in cooperation with the U.S. Naval Postgraduate School Center for 

Network Innovation and Experimentation (CENETIX), the ranges for detection of two 

radiological sensors have been determined. These sensors are used to search for a moving 

suspect carrying a radiological dispersion device in a Active but realistic scenario in the 

center of San Francisco. The branch & price algorithm is then used to optimize the search 

strategy for a team of multiple heterogeneous search platforms, taking the actual measured 

sensor ranges as input parameters. The results of computational experiments regarding thE 

scenario show the efficiency of the proposed algorithm in terms of run time, such that an 

optimal search strategy is present at the start of the search mission. This chapter provides a 

conceptual description of a decision support tool. 

• Ongoing research and development of a decision support tool for wide area search. 

At the time of writing, a Master’s student from the Department of Computer Science at the 

Universitat der Bundeswehr Mlinchen is implementing a part of this decision support tool in 

the CENETIX Resource Portal [90], In September 2017, extensive field experiments for 

wide area search will be conducted in the San Francisco Bay Area supported by this tool. 

The largest challenges toward the deployment of such a tool are mainly the determination of 

an accurate motion model of the target, as well as accurate values for search effectiveness. 

Finally, the methods proposed in this dissertation are focused to be applicable to manned 

and unmanned, rotary-wing and fixed-wing, autonomous and manually controlled aerial 

vehicles. When multiple aerial vehicles are employed for search, they are assumed to fly at 

different altitudes in order to avoid collisions. However, the methods are not restricted to 

deploy aerial vehicles, but are applicable to other types of searchers, e.g. ground vehicles 
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and vessels, as well. As a final note, the overall result of a search mission can be improved 

when sensor scheduling and communication constraints are taken into account. 
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Appendix A 

Output of the branch & bound 

algorithm 

Instance: Stay. Prob = 0.0, K = 4, Q = 0.5, bound 

Queue size: 1; k: -1; UB: 1.7976931348623157E308 

Queue size: 41; k: 0; UB: 0.4981277200522136 LB: 

Queue size: 46; k: 1; UB: 0.4411029406304844 LB: 

Queue size: 48; k: 2; UB: 0.4215668252748087 LB: 

Queue size: 50; k: 3; UB: 0.4215668252748087 LB: 

»> New best trajectory found 

= MEAN (see Table 4.1) 

LB: 0.0; []; Branch 

0.0; [(0,25)]; Branch 

0.0; [(0,25), (1,18)]; Branch 

0.0; [(0,25), (1,18), (2,12)]; Branch 

0.41955721301426113; [(0,25), (1,18), (2,12), (3,13)]; Leaf 

Queue size: 

Queue size: 

Queue size: 

Queue size: 

Queue size: 

Queue size: 

Queue size: 

Queue size: 

Queue size: 

Queue size: 

Queue size: 

Queue size: 

Queue size: 

Queue size: 

Queue size: 

Queue size: 

Queue size: 

Queue size: 

Queue size: 

Queue size: 

Queue size: 

Queue size: 

Queue size: 

Queue size: 

Queue size: 

Queue size: 

Queue size: 

Queue size: 

Queue size: 

49; k: 3; 

48; k: 3; 

47; k: 2; 

46; k: 2; 

45; k: 1; 

47; k: 2; 

49; k: 3; 

48; k: 3; 

47; k: 3; 

46; k: 2; 

45; k: 2; 

44; k: 1; 

46; k: 2; 

45; k: 2; 

44; k: 2; 

43; k: 1; 

45; k: 2; 

44; k: 2; 

43; k: 2; 

42; k: 1; 

44; k: 2; 

43; k: 2; 

42; k: 2; 

41; k: 1; 

43; k: 2; 

42; k: 2; 

41; k: 2; 

40; k: 0; 

45; k: 1; 

UB: 0.4215668252748087 LB: 

UB: 0.4215668252748087 LB: 

UB: 0.418198217198972 LB: 0 

UB: 0.41616155307235836 LB: 

UB: 0.4411029406304844 LB: 

UB: 0.4215668252748087 LB: 

UB: 0.4215668252748087 LB: 

UB: 0.4215668252748087 LB: 

UB: 0.4215668252748087 LB: 

UB: 0.418198217198972 LB: 0 

UB: 0.41616155307235836 LB: 

UB: 0.4403974075842623 LB: 

UB: 0.41375328590348626 LB: 

UB: 0.40492049560563526 LB: 

UB: 0.4040577137299878 LB: 

UB: 0.44039740758426227 LB: 

UB: 0.4137532859034862 LB: 

UB: 0.4049204956056352 LB: 

UB: 0.4040577137299878 LB: 

UB: 0.43577046590686225 LB: 

UB: 0.4010257829301909 LB: 

UB: 0.39514421428876034 LB: 

UB: 0.3925855654025549 LB: 

UB: 0.43577046590686214 LB: 

UB: 0.40102578293019087 LB: 

UB: 0.3951442142887603 LB: 

UB: 0.3925855654025549 LB: 

UB: 0.49824598277517484 LB: 

UB: 0.44095661481704346 LB: 

0.414507535834295; [(0,25), (1 

0.41401819521056693; [(0,25), 

.41955721301426113; [(0,25), ( 

0.41955721301426113; [(0,25), 

0.41955721301426113; [(0,25), 

0.41955721301426113; [(0,25), 

0.41955721301426113; [(0,25), 

0.414507535834295; [(0,25), (1 

0.41401819521056693; [(0,25), 

.41955721301426113; [(0,25), ( 

0.41955721301426113; [(0,25), 

0.41955721301426113; [(0,25), 

0.41955721301426113; [(0,25), 

0.41955721301426113; [(0,25), 

0.41955721301426113; [(0,25), 

0.41955721301426113; [(0,25), 

0.41955721301426113; [(0,25), 

0.41955721301426113; [(0,25), 

0.41955721301426113; [(0,25), 

0.41955721301426113; [(0,25), 

0.41955721301426113; [(0,25), 

0.41955721301426113; [(0,25), 

0.41955721301426113; [(0,25), 

0.41955721301426113; [(0,25), 

0.41955721301426113; [(0,25), 

0.41955721301426113; [(0,25), 

0.41955721301426113; [(0,25), 

0.41955721301426113; [(0,19)] 

0.41955721301426113; [(0,19), 

,18), (2,12), (3,6)]; Leaf 

(1.18) , (2,12), (3,5)]; Leaf 

1.18) , (2,11)]; Prune 

(1.18) , (2,17)]; Prune 

(1.19) ]; Branch 

(1.19) , (2,12)]; Branch 

(1,19), (2,12), (3,11)]; Leaf 

,19), (2,12), (3,5)]; Leaf 

(1,19), (2,12), (3,6)]; Leaf 

1.19) , (2,13)]; Prune 

(1.19) , (2,20)]; Prune 

(1.26) ]; Branch 

(1,26), (2,20)]; Prune 

(1,26), (2,27)]; Prune 

(1.26) , (2,33)]; Prune 

(1.24) ]; Branch 

(1,24), (2,17)]; Prune 

(1,24), (2,23)]; Prune 

(1,24), (2,30)]; Prune 

(1.31) ]; Branch 

(1,31), (2,30)]; Prune 

(1.31) , (2,37)]; Prune 

(1.31) , (2,36)]; Prune 

(1.32) ]; Branch 

(1.32) , (2,33)]; Prune 

(1.32) , (2,37)]; Prune 

(1,32), (2,38)]; Prune 

; Branch 

(1.25) ]; Branch 
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Queue 

Queue 

Queue 

Queue 

Queue 

Queue 

Queue 

Queue 

Queue 

Queue 

size: 

size: 

size: 

size: 

size: 

size: 

size: 

size: 

size: 

size: 

47; k 

49; k 

48; k 

47; k 

46; k 

45; k 

44; k 

46; k 

48; k 

47; k 

2; UB 

3; UB 

3; UB 

3; UB 

2; UB 

2; UB 

1; UB 

2; UB 

3; UB 

3; UB 

0.4201520312262602 

0.4201520312262602 

0.4201520312262602 

0.4201520312262602 

0.4164166269207039 

0.41586538933777006 

0.4414619567380097 

0.4201238385379238 

0.4201238385379238 

0.4201238385379238 

LB: 0.41955721301426113; [(0,19), (1,25), (2,24)]; Branch 

LB: 0.41675161450683773; [(0,19), (1,25), (2,24), (3,17)], 

LB: 0.41286335928458684; [(0,19), (1,25), (2,24), (3,23)], 

LB: 0.4120175882184358; [(0,19), (1,25), (2,24), (3,30)]; 

LB: 0.41955721301426113; [(0,19), (1,25), (2,31)]; Prune 

LB: 0.41955721301426113; [(0,19), (1,25), (2,32)]; Prune 

LB: 0.41955721301426113; [(0,19), (1,18)]; Branch 

LB: 0.41955721301426113; [(0,19), (1,18), (2,24)]; Branch 

LB: 0.4161328491935187; [(0,19), (1,18), (2,24), (3,31)]; 

LB: 0.4121718240459119; [(0,19), (1,18), (2,24), (3,30)]; 

Queue size: 13; 

Queue size: 12; 

Queue size 

Queue size 

Queue size 

Queue size 

Queue size 

Queue size 

Queue size: 11; 

Queue size: 10; 

Queue size: 9; k 

Queue size 

11; 

13; 

12; 

11; 

10; 

12; 

11; k 

0.37858438111059334 

0.37888810945995427 

0.46451584374850174 

0.4119482888843435 

0.4014075371768325 

0.38454554555464354 

0.46451584374850163 

0.4119482888843434 

0.4014075371768324 

0.38454554555464354 

0; UB: 0.45918642492075706 

1; UB: 0.4079808388098804 

1; UB 

1; UB 

0; UB 

1; UB 

1; UB 

1; UB 

0; UB 

1; UB 

1; UB 

1; UB 

LB 

LB 

[(0, 29), (1, 35)]; Prune 

[(0,29), (1,22)]; Prune 

[(0,2)]; Branch 

Queue size: 

Queue size: 

Queue size: 9; k: 1; UB 

Queue size: 8; k: 1; UB 

Queue size: 7; k: 0; UB 

Queue size: 9; k: 1; UB 

Queue size: 

Queue size: 7; 

0.42173750336160015; 

0.42173750336160015; 

0.42173750336160015; 

LB: 0.42173750336160015; [(0,2), (1,6)]; Prune 

LB: 0.42173750336160015; [(0,2), (1,7)]; Prune 

LB: 0.42173750336160015; [(0,2), (1,1)]; Prune 

LB: 0.42173750336160015; [(0,0)]; Branch 

LB: 0.42173750336160015; [(0,0), (1,5)]; Prune 

LB: 0.42173750336160015; [(0,0), (1,4)]’; Prune 

LB: 0.42173750336160015; [(0,0), (1,1)]; Prune 

LB: 0.42173750336160015; [(0,39)]; Branch 

LB: 0.42173750336160015; [(0,39), (1,33)]; Prune 

Queue size: 10; k: 1; UB: 0.397859354274288 LB: 0.42173750336160015; [(0,39), (1,38)]; Prune 

Queue size: 9; k: 1; UB: 0.38004476992909275 LB: 0.42173750336160015; [(0,39), (1,34)]; Prune 

k: 0; UB: 0.45918642492075706 LB: 0.42173750336160015; [(0,35)]; Branch 

10; k: 1; UB: 0.40798083880988045 LB: 0.42173750336160015; [(0,35), (1,30)]; Prune 

0.397859354274288 LB: 0.42173750336160015; [(0,35), (1,36)]; Prune 

0.38004476992909286 LB: 0.42173750336160015; [(0,35), (1,29)]; Prune 

0.46054550738230465 LB: 0.42173750336160015; [(0,28)]; Branch 

0.408560892595028 LB: 0.42173750336160015; [(0,28), (1,27)]; Prune 

0.3968252551043142 LB: 0.42173750336160015; [(0,28), (1,21)]; Prune 

0.3790258298862931 LB: 0.42173750336160015; [(0,28), (1,34)]; Prune 

0.46054550738230465 LB: 0.42173750336160015; [(0,22)]; Branch 

0.408560892595028 LB: 0.42173750336160015; [(0,22), (1,23)]; Prune 

0.3968252551043142 LB: 0.42173750336160015; [(0,22), (1,16)]; Prune 

0.3790258298862931 LB: 0.42173750336160015; [(0,22), (1,29)]; Prune 

0.453501278294147 LB: 0.42173750336160015; [(0,15)]; Branch 

0.4015653594238919 LB: 0.42173750336160015; [(0,15), (1,14)]; Prune 

0.3958019077620494 LB: 0.42173750336160015; [(0,15), (1,21)]; Prune 

0.37020904447710506 LB: 0.42173750336160015; [(0,15), (1,8)]; Prune 

0.453501278294147 LB: 0.42173750336160015; [(0,9)]; Branch 

0.40156535942389193 LB: 0.42173750336160015; [(0,9), (1,10)]; Prune 

0.3958019077620494 LB: 0.42173750336160015; [(0,9), (1,16)]; Prune 

0.370209044477105 LB: 0.42173750336160015; [(0,9), (1,3)]; Prune 

0.4526143179679348 LB: 0.42173750336160015; [(0,3)]; Branch 

0.40030901923391027 LB: 0.42173750336160015; [(0,3), (1,10)]; Prune 

LB: 0.42173750336160015; [(0,3), (1,4)]; Prune 

LB: 0.42173750336160015; [(0,3), (1,9)]; Prune 

LB: 0.42173750336160015; [(0,8)]; Branch 

LB: 0.42173750336160015; [(0,8), (1,14)]; Prune 

LB: 0.42173750336160015; [(0,8), (1,7)]; Prune 

LB: 0.42173750336160015; [(0,8), (1,15)]; Prune 

LB: 0.42173750336160015; [(0,40)]; Branch 

LB: 0.42173750336160015; [(0,40), (1,37)]; Prune 

LB: 0.42173750336160015; [(0,40), (1,36)]; Prune 

k: 1; UB 

k: 1; UB 

k: 0; UB 

k: 1; UB 

Queue size: 6; 

Queue size: 8; 

Queue size: 7; k: 1; UB 

Queue size: 6; k: 1; UB 

Queue size: 5; k: 0; UB 

Queue size: 7; k: 1; UB 

Queue size: 6; k: 1; UB 

Queue size: 5; k: 1; UB 

0; UB 

1; UB 

Queue size: 4; k: 

Queue size: 6; k: 

Queue size: 5; k: 1; UB 

Queue size: 4; k: 1; UB 

Queue size: 3; k: 0; UB 

Queue size: 5; k: 

Queue size: 4; k: 

Queue size: 

Queue size: 

1; UB 

1; UB 

k: 1; UB 

k: 0; UB 

Queue size: 4; k: 1; UB 

Queue size: 3; k: 1; UB 

Queue size: 2; k: 1; UB 

Queue size: 1; k: 0; UB 

Queue size: 2; k: 1; UB 

1; 1; UB 

0.39801359047506374 

0.36986553653213994 

0.45261431796793483 

0.4003090192339103 

0.3980135904750637 

0.36986553653213994 

0.4467578731541683 

0.39677139352811197 

0.39444875213511554 Queue size: 

♦nodes processed: 510 

♦nodes pruned: 354 

Optimal search trajectory: [(0,12), (1,18), (2,25), (3,26)], with PD: 0.42173750336160015 

Leaf 

Leaf 

Leaf 

Leaf 

Leaf 
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Appendix B 

Output of the Benders’ decomposition 

algorithm 

Instance: Stay. Prob = 0.4, K = 8, T = 1.55 (see Table 5.3) 

UB: 1000.0 LB: 0.6568849076774645; [(0,9), (1,3), (2,0), (3,1), (4,2), (5,6), (6,7), (7,14)] 

»> Accepting new incumbent with value 0.6568849076774645 

UB: 0.6568849076772949 LB: 0.6568849076774645; [(0,9), (1,3), (2,0), (3,1), (4,2), (5,6), (6,7), (7,14)] 

UB: 248.31873585861527 LB: 0.6555833451711454; [(0,2), (1,6), (2,7), (3,14), (4,20), (5,27), (6,33), (7,40) 

UB: 244.8847112396549 LB: 0.6536467709366761; [(0,3), (1,0), (2,1), (3,2), (4,6), (5,7), (6,14), (7,20)] 

UB: 20.519563135668935 LB: 0.658447000760591; [(0,3), (1,4), (2,1), (3,2), (4,6), (5,7), (6,14), (7,20)] 

»> Accepting new incumbent with value 0.658447000760591 

UB: 0.6584470007591925 LB: 0.658447000760591; [(0,3), (1,4), (2,1), (3,2), (4,6), (5,7), (6,14), (7,20)] 

UB: 210.35488730201297 LB: 0.6588656665761777; [(0,40), (1,33), (2,27), (3,20), (4,14), (5,7), (6,6), (7,2)i 

»> Accepting new incumbent with value 0.6588656665761777 

UB: 0.658865666576693 LB: 0.6588656665761777; [(0,40), (1,33), (2,27), (3,20), (4,14), (5,7), (6,6), (7,2)] 

UB: 0.6588656650362914 LB: 0.6588656665761777; [(0,40), (1,33), (2,27), (3,20), (4,14), (5,7), (6,6), (7,2)1 

UB: 219.54034991584996 LB: 0.6563269993115337; [(0,14), (1,7), (2,6), (3,2), (4,1), (5,4), (6,3), (7,9)] 

UB: 215.47076630590368 LB: 0.656180116430844; [(0,27), (1,20), (2,14), (3,7), (4,6), (5,2), (6,1), (7,0)] 

UB: 223.5063385977126 LB: 0.6560305299870032; [(0,7), (1,6), (2,2), (3,1), (4,4), (5,3), (6,9), (7,8)] 

UB: 240.20800375931407 LB: 0.656495138520342; [(0,0), (1,1), (2,5), (3,6), (4,7), (5,14), (6,20), (7,27)] 

UB: 24.90531259578653 LB: 0.6574946010348435; [(0,3), (1,0), (2,1), (3,5), (4,6), (5,7), (6,14), (7,20)] 

UB: 57.1280766957651 LB: 0.657026123215057; [(0,14), (1,7), (2,6), (3,5), (4,1), (5,0), (6,3), (7,9)] 

UB: 217.28900870337912 LB: 0.6558353220064969; [(0,1), (1,2), (2,6), (3,7), (4,14), (5,20), (6,27), (7,33)] 

UB: 19.30223774501106 LB: 0.6583388440975738; [(0,10), (1,3), (2,0), (3,1), (4,2), (5,6), (6,7), (7,14)] 

UB: 203.08194913043937 LB: 0.6587863132854611; [(0,8), (1,9), (2,3), (3,0), (4,1), (5,5), (6,6), (7,7)] 

UB: 52.562993098284856 LB: 0.6624454244648206; [(0,15), (1,9), (2,3), (3,0), (4,1), (5,2), (6,6), (7,7)] 

»> Accepting new incumbent with value 0.6624454244648206 

UB: 18.96663420673562 LB: 0.6556432713056434; [(0,8), (1,9), (2,3), (3,0), (4,1), (5,2), (6,6), (7,7)] 

UB: 0.6624454244647424 LB: 0.6624454244648209; [(0,15), (1,9), (2,3), (3,0), (4,1), (5,2), (6,6), (7,7)] 

»> Accepting new incumbent with value 0.6624454244648209 

UB 

UB 

UB 

UB 

UB 

UB 

UB 

UB 

UB 

56.655643271306566 

40.23049280057592 

218.35257293477258 

71.08145445079963 

213.68320025499054 

49.88130029619707 

78.43804131819874 

22.43804131819878 

217.10523114901807 

LB: 0.6594325845804899; [(0,8), (1,9), (2,3), (3,0), (4,1), (5,2), (6,6), (7,13)] 

LB: 0.657347426483223; [(0,4), (1,1), (2,2), (3,6), (4,7), (5,14), (6,20), (7,27)] 

LB: 0.6587340491091543; [(0,20), (1,14), (2,7), (3,6), (4,5), (5,1), (6,0), (7,3)] 

LB: 0.6581790030401538; [(0,20), (1,14), (2,7), (3,6), (4,2), (5,1), (6,4), (7,3)] 

LB: 0.6612315777700716; [(0,33), (1,27), (2,20), (3,14), (4,7), (5,6), (6,2), (7,1)] 

LB: 0.6568581560449529; [(0,7), (1,6), (2,5), (3,1), (4,0), (5,3), (6,9), (7,8)] 

LB: 0.6563437561934647; [(0,7), (1,6), (2,2), (3,1), (4,0), (5,3), (6,9), (7,15)] 

LB: 0.6525842036517943; [(0,7), (1,6), (2,2), (3,1), (4,0), (5,3), (6,9), (7,8)] 

LB: 0.6596615524681942; [(0,6), (1,2), (2,1), (3,0), (4,3), (5,9), (6,15), (7,21)] 
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UB: 80.89666532283813 LB: 

UB: 24.896665322825502 LB: 

UB: 35.095389377234554 LB: 

UB: 56.656180116430995 LB: 

UB: 29.17922178349122 LB: 

UB: 75.05793907826947 LB: 

UB: 56.655935125302136 LB: 

UB: 19.05793907826947 LB: 

UB: 20.300173982595705 LB: 

UB: 19.0281234146628 LB: 0 

Nr of benders cuts: 40 

Optimal search trajectory: 

0.6546189357315272; [(0,14), (1,7), (2,6), (3,2), (4,1), (5,0), (6,3), (7,10)] 

0.6531617283187299; [(0,14), (1,7), (2,6), (3,2), (4,1), (5,0), (6,3), (7,9)] 

0.6597283028005759; [(0,27), (1,20), (2,14), (3,7), (4,6), (5,5), (6,1), (7,0)] 

0.6592564241817966; [(0,27), (1,20), (2,14), (3,7), (4,6), (5,2), (6,1), (7,4)] 

0.6551246007142941; [(0,20), (1,14), (2,7), (3,6), (4,2), (5,1), (6,0), (7,3)] 

0.6559351253023317; [(0,0), (1,1), (2,2), (3,6), (4,7), (5,14), (6,20), (7,26)] 

0.6554322906673942; [(0,0), (1,1), (2,2), (3,6), (4,7), (5,14), (6,20), (7,19)] 

0.6519264692732137; [(0,0), (1,1), (2,2), (3,6), (4,7), (5,14), (6,20), (7,27)] 

0.6587739705214973; [(0,14), (1,13), (2,6), (3,2), (4,1), (5,0), (6,3), (7,9)] 

.6595106744013935; [(0,13), (1,6), (2,2), (3,1), (4,0), (5,3), (6,9), (7,8)] 

[(0,15), (1,9), (2,3), (3,0), (4,1), (5,2), (6,6), (7,7)], with PD: 0.66244542446482C9 
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Appendix C 

Output of the branch & price algorithm 

Instance: K •= 14, Nu = 2, T = inf (see Table 6.2) 

Queue size: 1; 

Red. cost traj.: omega_0_0 [(0,39), (1,44), (2,49), (3,50), 

(11,13), (12,8), (13,7)]; c*: 0.0 

Red. cost traj.: omega_l_0 [(0,42), (1,48), (2,49), (3,50), 

(11,12), (12,8), (13,7)]; c*: 0.0 

RMP solved, z: 0.5980374938023966; omega_0_0: 1.0; omega_l_ 

Red. cost traj.: omega_0_l [(0,34), (1,26), (2,19), (3,20), 

(11,35), (12,34), (13,26)]; c*: 0.23440980457097224 

Red. cost traj.: omega_l_l [(0,31), (1,23), (2,22), (3,29), 

(11,38), (12,31), (13,23)]; c*: 0.3565524099779534 

RMP solved, z: 0.9769185224864061; omega_0_l: 1.0; omega_l_ 

Red. cost traj.: omega_0_2 [(0,26), (1,34), (2,35), (3,28), 

(11,19), (12,12), (13,7)]; c*: 0.2293923534978039 

Red. cost traj.: omega_l_2 [(0,31), (1,23), (2,17), (3,18), 

(11,12), (12,18), (13,24)]; c*: 0.36354166363192436 

RMP solved, z: 0.9769185224864062; omega_0_l: 1.0; omega_l_ 

Red. cost traj.: omega_0_3 [(0,34), (1,26), (2,19), (3,20), 

(11,9), (12,8), (13,7)]; c*: 0.22712969639614447 

Red. cost traj.: omega_l_3 [(0,39), (1,38), (2,30), (3,23), 

(11.12) , (12,8), (13,7)]; c*: 0.3605580533468167 

RMP solved, z: 0.9769185224864062; omega_0_l: 1.0; omega_l_ 

Red. cost traj.: omega_0_4 [(0,34), (1,26), (2,19), (3,20), 

(11.13) , (12,8), (13,7)]; c*: 0.22659284049620823 

Red. cost traj.: omega_l_4 [(0,22), (1,23), (2,31), (3,39), 

(11,12), (12,11), (13,16)]; c*: 0.3560204925702279 

RMP solved, z: 0.9769185224864061; omega_0_l: 1.0; omega_l_ 

(4,51), (5, 52), (6,48), (7, 43), (8, 36), (9,28), <10,20), 

(4,51), (5,52), (6,47), (7,41), (8,33), (9,25), -10,18), 

: 1.0; 

(4,28), (5, 35), (6, 34), (7, 26), (8, 19), (9,20), 10,28), 

(4,37), (5,38), (6,31), (7,23), (8,22), (9,29), 10,37), 

: 1.0; 

(4,20), (5, 19), (6,26), (7, 34), (8, 35), (9,28), 10,20), 

(4,25), (5, 32), (6, 31), (7, 30), (8,22), (9, 16), 10, 11), 

: 1.0; 

(4,28), (5, 35), (6, 34), (7, 26), (8, 19), (9,20), 10, 14), 

(4,24), (5, 32), (6, 39), (7, 38), (8, 30), (9,23), 10, 17), 

: 1.0; 

(4,28), (5, 35), (6, 34), (7, 33), (8,25), (9, 18), 10, 19), 

(4,45), (5,44), (6,37), (7,30), (8,23), (9,24), 10,18), 

: 1.0; 

RMP solved, z: 0.9771083957511488; omega_0_l: 0.7306; omega_0_ll: 0.2694; omega_l_l: 

Red. cost traj.: omega_0_16 [(0,26), (1,34), (2,35), (3,28), (4,20), (5,19), (6,26), 

(11,13), (12,8), (13,7)]; c*: 0.1508149596739335 

Red. cost traj.: omega_l_25 [(0,31), (1,23), (2,16), (3,15), (4,21), (5,29), (6,30), 

(11.12) , (12,8), (13,7)]; c*: 0.22820363149432893 

RMP solved, z: 0.9771083957511488; omega_0_l: 0.7306; omega_0_ll: 0.2694; omega_l_l: 

Red. cost traj.: omega_0_17 [(0,39), (1,44), (2,49), (3,50), (4,51), (5,52), (6,48), 

(11.13) , (12,8), (13,7)]; c*: 0.1508149596739335 

Red. cost traj.: omega_l_26 [(0,37), (1,43), (2,49), (3,50), (4,45), (5,39), (6,31), 

(11,12), (12,18), (13,24)]; c*: 0.22820363149432893 

RMP solved, z: 0.9771083957511488; omega_0_l: 0.7306; omega_0_ll: 0.2694; omega_l_l: 

0.9772; omega_l_24: 0.0:28; 

(7, 34), (8, 35), (9,28), (10, 20), 

(7, 31), (8, 32), (9,25), (10, 18), 

0.9772; omega_l_24: 0.0128; 

(7,43), (8,36), (9,28), (10,20), 

(7, 30), (8,22), (9, 16), (10, 11), 

0.9772; omega_l_24: 0.0228; 
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k: -1; UB: 0.9771083957511488; LB: 0.0; Branch 

Queue size: 4; 

Red. cost traj.: omega_0_18 [(0,41), (1,40), (2,45), (3,50), (4,51), (5,52), (6,48), 

(11,13), (12,8), (13,7)]; c*: 0.0 

Red. cost traj.: omega_l_27 [(0,42), (1,48), (2,49), (3,50), (4,51), (5,52), (6,47), 

(11.12) , (12,8), (13,7)]; c*: 0.0 

RMP solved, z: 0.9771068025084846; omega_0_l: 0.6735; omega_0_ll: 0.3265; omega_l_l: 

Red. cost traj.: omega_0_19 [(0,34), (1,40), (2,45), (3,50), (4,51), (5,52), (6,48), 

(11.13) , (12,8), (13,7)]; c*: 0.15095166545226926 

Red. cost traj.: omega_l_28 [(0,31), (1,23), (2,16), (3,15), (4,21), (5,29), (6,30), 

(11,38), (12,30), (13,23)]; c*: 0.22847311364866266 

RMP solved, z: 0.9771068025084846; omega_0_l: 0.6735; omega_0_ll: 0.3265; omega_l_l: 

Red. cost traj.: omega_l_29 [(0,42), (1,48), (2,49), (3,50), (4,51), (5,52), (6,47), 

(11,17), (12,23), (13,30)]; c*: 0.22847311364866266 

RMP solved, z: 0.9771068025084847; omega_0_l: 0.6735; omega_0_ll: 0.3265; omega_l_l: 

Red. cost traj.: omega_l_30 [(0,31), (1,38), (2,44), (3,50), (4,51), (5,52), (6,47), 

(11,12), (12,8), (13,7)]; c*: 0.22847311364866263 

RMP solved, z: 0.9771068025084847; omega_0_l: 0.6735; omega_0_ll: 0.3265; omega_l_l: 

Red. cost traj.: omega_l_31 [(0,42), (1,48), (2,49), (3,50), (4,45), (5,39), (6,31), 

(11,12), (12,8), (13,7)]; c*: 0.22847311364866263 

RMP solved, z: 0.9771068025084847; omega_0_l: 0.6735; omega_0_ll: 0.3265; omega_l_l: 

Red. cost traj.: omega_l_32 [(0,31), (1,38), (2,44), (3,50), (4,51), (5,52), (6,47), 

(11,17), (12,23), (13,30)]; c*: 0.22847311364866263 

RMP solved, z: 0.9771068025084847; omega_0_l: 0.6735; omega_0_ll: 0.3265; omega_l_l: 

Red. cost traj.: omega_l_33 [(0,31), (1,23), (2,17), (3,18), (4,25), (5,32), (6,31), 

(11,12), (12,8), (13,7)]; c*: 0.2284731136486626 

RMP solved, z: 0.9771068025084846; omega_0_l: 0.6735; omega_0_ll: 0.3265; omega_l_l: 

Red. cost traj.: omega_l_34 [(0,31), (1,38), (2,45), (3,50), (4,49), (5,43), (6,37), 

(11,12), (12,8), (13,7)]; c*: 0.22838536509372281 

RMP solved, z: 0.9771068025084846; omega_0_l: 0.6735; omega_0_ll: 0.3265; omega_l_l: 

k: 0; UB: 0.9771068025084846; LB: 0.0; Branch 

Queue size: 7; 

Red. cost traj.: omega_0_20 [(0,51), (1,50), (2,45), (3,40), (4,41), 

(11,13), (12,8), (13,7)]; c*: 0.0 

Red. cost traj.: omega_l_35 [(0,42), (1,48), (2,49), (3,50), (4,51), 

(11.12) , (12,8), (13,7)]; c*: 0.0 

RMP solved, z: 0.9769185224864063; omega_0_l: 1.0; omega_l_l: 1.0; 

Red. cost traj.: omega_0_21 [(0,34), (1,26), (2,19), (3,20), (4,28), 

(11.13) , (12,8), (13,7)]; c*: 0.15236332140223863 

Red. cost traj.: omega_l_36 [(0,31), (1,23), (2,17), (3,18), (4,25), 

(11.12) , (12,8), (13,7)]; c*: 0.23177675836999073 

RMP solved, z: 0.9769185224864061; omega_0_l: 1.0; omega_l_l: 1.0; 

k: 1; UB: 0.9769185224864061; LB: 0.0; >>> New best strategy found 

Queue size: 6; 

Red. cost traj.: omega_0_22 [(0,41), (1,40), (2,45), (3,50), (4,51), 

(11.13) , (12,8), (13,7)]; c*: 0.0 

Red. cost traj.: omega_l_37 [(0,42), (1,48), (2,49), (3,50), (4,51), 

(11.12) , (12,8), (13,7)]; c*: 0.0 

RMP solved, z: 0.9758224483397067; omega_0_ll: 1.0; omega_l_l: 1.0; 

Red. cost traj.: omega_0_23 [(0,34), (1,33), (2,25), (3,18), (4,19), 

(11.13) , (12,8), (13,7)]; c*: 0.14697463705587602 

Red. cost traj.: omega_l_38 [(0,31), (1,23), (2,22), (3,29), (4,37), 

(11.23) , (12,30), (13,38)]; c*: 0.22569111845909334 

RMP solved, z: 0.9758224483397065; omega_0_l1: 1.0; omega_l_l: 1.0; 

Red. cost traj.: omega_0_24 [(0,41), (1,34), (2,26), (3,19), (4,20), 

(11,28), (12,35), (13,34)]; c*: 0.14724124978537376 

Red. cost traj.: omega_l_39 [(0,42), (1,48), (2,49), (3,50), (4,45), 

(11.24) , (12,31), (13,30)]; c*: 0.22391741266028053 

RMP solved, z: 0.9758224483397065; omega_0_ll: 1.0; omega_l_l: 1.0; 

Red. cost traj.: omega_0_25 [(0,34), (1,40), (2,45), (3,50), (4,51), 

(11,19), (12,12), (13,7)]; c*: 0.14641000628808815 

(5,47), (6,48), 

(5,52), (6,47), 

(5,35), (6,34), 

(5,32), (6,31), 

(5,52), (6,48), 

(5,52), (6,47), 

(5.27) , (6,34), 

(5, 38), (6, 39), 

(5.28) , (6,35), 

(5,39), (6,31), 

(5,52), (6,48), 

(7,43), 

(7,41), 

1.0; 

(7,43), 

(7,23) , 

1.0; 

(7,41), 

1.0; 

(7,41), 

1.0; 

(7,30), 

1.0; 

(7,41), 

1.0; 

(7.30) , 

1.0; 

(7.30) , 

1.0; 

(7,43), 

(7,41), 

(7,33), 

(7.30) , 

(7,43), 

(7,41) , 

(7.33) , 

(7,40), 

(7.34) , 

(7, 30) , 

(7,43), 

(8, 36), (9,28), (10,23) 

(8, 33), (9,25), (10, 13) 

(8, 36), (9,28), (10,23) 

(8,24), (9, 32), (10, 39) 

(8, 33), (9,25), (10, 13) 

(8,33), (9,25), (10,13) 

(8,22), (9,16), (13,l'*) 

•(8, 33), (9, 25), (13,IS) 

(8.22) , (9,16), (13, l”) 

(8.23) , (9,24), (13,IS) 

(8, 36), (9,28), (13,20) 

(8,33), (9,25), (10,IS) 

(8,25), (9,18), (10,19) 

(8,22), (9,16), (10,1") 

(8,36), (9,28), (10,2C) 

(8,33), (9,25), (10, 16) 

(8.25) , (9,18), (10,1£) 

(8,33), (9,25), (10,24) 

(8.26) , (9,19), (10,2C) 

(8,22), (9,16), (10,17) 

(8, 36), (9,28), (10,27) 
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Red. costtraj.: omega_l_40 [(0,31), (1,23), (2,22), (3,29), (4,37), (5,38), (6,39), (7,40), (8,33), (9,25), (10,18), 

(11,17), (12,23), (13,30)]; c*: 0.22259591204021714 

RMP solved, z: 0.9758224483397065; omega_0_ll: 1.0; omega_l_l: 1.0; 

Red. costtraj.: omega_0_26 [(0,34), (1,33), (2,25), (3,18), (4,19), (5,27), (6,34), 

(11,13), (12,8), (13,7)]; c*: 0.14544041956104137 

Red. costtraj.: omega_l_41 [(0,42), (1,48), (2,49), (3,50), (4,51), (5,52), (6,47), 

(11,12), (12,8), (13,7)]; c*: 0.22224841225938555 

RMP solved, z: 0.9758224483397065; omega_0_ll: 1.0; omega_l_l: 1.0; 

k: 1; UB: 0.9758224483397065; LB: 0.9769185224864061; Prune 

Queue size: 5; 

Red. cost traj.: oraega_0_27 [(0,41), (1,40), (2,45), (3,50), (4,51), (5,52), (6,48!, 

(11,13), (12,8), (13,7)]; c*: 0.0 

Red. cost traj.: omega_l_42 [(0, 36), (1, 43), (2, 49), (3, 50), (4,51), (5,52), (6, 47;., 

(11.12) , (12,8), (13,7)]; c*: 0.0 

RMP solved, z: 0.9749896144997193; omega_0_l: 0.7453; omega_0_ll: 0.2547; omega_l_24: 

Red. costtraj.: omega_0_28 [(0,34), (1,26), (2,19), (3,20), (4,28), (5,35), (6,34., 

(11,20), (12,27), (13,26)]; c*: 0.1585449899443072 

Red. costtraj.: omega_l_43 [(0,22), (1,23), (2,31), (3,38), (4,45), (5,46), (6,47«, 

(11,23), (12,30), (13,38)]; c*: 0.2565063120771721 

RMP solved, z: 0.9749898339647257; omega_0_l: 0.7141; omega_0_ll: 0.2655; omega_0_28: 

Red. costtraj.: omega_0_29 [(0,34), (1,40), (2,45), (3,50), (4,51), (5,52), (6,48i, 

(11.13) , '(12,8), (13,7)]; c*: 0.15861638819631063 

Red. cost traj.: omega_l_44 [(0,30), (1,38), (2,45), (3,50), (4,49), (5,43), (6,37i, 

(11,12), (12,11), (13,7)]; c*: 0.24824881340765903 

RMP solved, z: 0.974989833964725; omega_0_l: 0.7141; omega_0_ll: 0.2655; omega_0_23: 

Red. cost traj.: omega_l_45 [(0,30), (1,38), (2,45), (3,50), (4,49), (5,43), (6,37), 

(11.12) , (12,11), (13,16)]; c*: 0.24731328276044515 

RMP solved, z: 0.9749898339647255; omega_0_l: 0.7141; omega_0_ll: 0.2655; omega_0_28: 

Red. cost traj.: omega_0_30 [(0,34), (1,40), (2,45), (3,50), (4,51), (5,52), (6,48), 

(11,19), (12,12), (13,7)]; c*: 0.1586163881963107 

Red. costtraj.: omega_l_46 [(0,24), (1,17), (2,16), (3,22), (4,30), (5,31), (6,39), 

(11,23), (12,30), (13,38)]; c*: 0.24658587404429338 

RMP solved, z: 0.9749898339647254; omega_0_l: 0.7141; omega_0_ll: 0.2655; omega_0_28: 

Red. costtraj.: omega_l_47 [(0,30), (1,38), (2,44), (3,50), (4,51), (5,52), (6,47), 

(11,23), (12,30), (13,38)]; c*: 0.24100166183846125 

RMP solved, z: 0.9749898339647253; omega_0_l: 0.7141; omega_0_ll: 0.2655; omega_0_28: 

Red. costtraj.: omega_l_48 [(0,37), (1,43), (2,49), (3,50), (4,45), (5,38), (6,31), 

(11,38), (12,31), (13,23)]; c*: 0.23985170466188666 

RMP solved, z: 0.9749898339647254; omega_0_l: 0.7141; omega_0_ll: 0.2655; omega_0_28: 

Red. cost traj.: omega_0_31 [(0,34), (1,40), (2,45), (3,50), (4,51), (5,52), (6,48), 

(11.13) , (12,8), (13,7)]; c*: 0.15861638819631063 

Red. cost traj.: omega_l_49 [(0,24), (1,23), (2,30), (3,38), (4,39), (5,46), (6,47), 

(11,17), (12,23), (13,31)]; c*: 0.23776248646461542 

RMP solved, z: 0.9749898339647258; oraega_0_l: 0.7141; omega_0_ll: 0.2655; omega_0_28: 

Red. cost traj.: omega_l_50 [(0,30), (1,31), (2,39), (3,45), (4,51), (5,52), (6,47), 

(11,17), (12,23), (13,30)]; c*: 0.23852511265276796 

RMP solved, z: 0.9749898339647256; omega_0_l: 0.7141; omega_0_ll: 0.2655; omega_0_28: 

Red. costtraj.: omega_l_51 [(0,39), (1,32), (2,24), (3,23), (4,30), (5,38), (6,39), 

(11,23), (12,30), (13,38)]; c*: 0.2389450697062649 

RMP solved, z: 0.9749898339647256; omega_0_l: 0.7141; omega_0_ll: 0.2655; omega_0_28: 

Red. cost traj.: omega_l_52 [(0,24), (1,23), (2,30), (3,38), (4,39), (5,46), (6,47), 

(11,23), (12,30), (13,38)]; c*: 0.23859183350139568 

RMP solved, z: 0.9749898339647256; omega_0_l: 0.7141; omega_0_ll: 0.2655; omega_0_28: 

Red. costtraj.: omega_l_53 [(0,37), (1,43), (2,49), (3,50), (4,51), (5,52), (6,47), 

(11,17), (12,23), (13,30)]; c*: 0.23812317469311584 

RMP solved, z: 0.9749898339647256; omega_0_l: 0.7141; omega_0_ll: 0.2655; omega_0_28: 

k: 0; UB: 0.9749898339647256; LB: 0.9769185224864061; Prune 

Queue size: 4; 

Red. cost traj.: omega_0_32 [(0,38), (1,44), (2,49), (3,50), (4,51), (5,52), (6,48), 

(11,13), (12,8), (13,7)]; c*: 0.0 

(7,33) , 

(7,41), 

(7,43), 

(7,41), 

1.0; 

(7,26) , 

(7,41), 

0.0204; 

(7,43), 

(7,30), 

0.0204; 

(7,30), 

0.0204; 

(7,43), 

(7.40) , 

0.0204; 

(7.41) , 

0.0204; 

(7,23) , 

0.0204; 

(7,43), 

(7,41), 

0.0204; 

(7,41), 

0.0204; 

(7.40) , 

0.0204; 

(7.41) , 

0.0204; 

(7,41) , 

0.0204; 

(7,43), 

(8,25), (9,18), 

(8,33), (9,25), 

(8, 36), (9,28), 

(8, 33), (9,25), 

(8,18), (9,12), 

(8, 33), (9,25), 

omega_l_24: 1. 

(8,36), (9,28), 

(8, 23), (9,24), 

omega_l_24: 1.0 

(8,23), (9,24), 

omega_l_24: 1. 

(8,36), (9,28), 

(8,33), (9,25), 

omega_l_24: 1. 

(8, 33), (9,25), 

omega_l_24: 1. 

(8,22), (9,29), 

omega_l_24 : 1. 

(8, 36), (9,28), 

(8,33), (9,25), 

omega_l_24: 1. 

(8,33), (9,25), 

omega_l_24: 1. 

(8, 33), (9,25), 

omega_l_24 : 1. 

(8,33), (9,25), 

omega_l_24: 1. 

(8, 33), (9,25), 

omega_l_24: 1. 

(8,36), (9,28), 

(10.19) , 

(10,18), 

(10.20) , 

(10,18), 

(10,13), 

(10,24), 

C; 

(10,20), 

(10,18), 

(10,18), 

C; 

(10,20), 

(10,24), 

C; 

(10,24), 

C; 

(10,37), 

C; 

(10,20), 

(10,18), 

C ; 

(10,18), 

6 ; 

(10,24), 

t ; 

(10,24), 

tu ; 

(10,18), 

n; 

(10,20), 

141 



Red. cost traj.: omega_l_54 [(0,42), (1,48), (2,49), (3,50), (4,51), 

(11,12), (12,8), (13,7)]; c*: 0.0 

RMP solved, z: 0.9654836230860869; omega_0_2: 1.0; omega_l_l: 1.0; 

Red. cost traj.: omega_0_33 [(0,40), (1,33), (2,25), (3,18), (4,19), 

(11,27), (12,34), (13,33)); c*: 0.21691011821102257 

Red. cost traj.: omega_l_55 [(0,42), (1,48), (2,49), (3,50), (4,45), 

(11,38), (12,31), (13,23)]; c*: 0.30230300248608943 

RMP solved, z: 0.9654836230860869; omega_0_2: 1.0; omega_l_l: 1.0; 

Red. cost traj.: omega_0_34 [(0,27), (1,19), (2,18), (3,25), (4,33), 

(11,34), (12,27), (13,19)]; c*: 0.21369172283368656 

Red. cost traj.: omega_l_56 [(0,42), (1,48), (2,49), (3,50), (4,45), 

(11,24), (12,31), (13,30)]; c*: 0.3023030024860895 

RMP solved, z: 0.9749967485333461; omega_0_34: 1.0; omega_l_l: 1.0; 

Red. cost traj.: omega_0_35 [(0,33), (1,25), (2,18), (3,19), (4,27), 

(11,20), (12,13), (13,12)]; c*: 0.15573289373629637 

Red. cost traj.: omega_l_57 [(0,42), (1,48), (2,49), (3,50), (4,51), 

(11,17), (12,11), (13,7)]; c*: 0.2155179789120364 

RMP solved, z: 0.9749967485333458; omega_0_34: 1.0; omega_l_l: 1.0; 

Red. cost traj.: omega_0_36 [(0,26), (1,34), (2,35), (3,28), (4,20), 

(11,19), (12,26), (13,33)]; c*: 0.15671412664767623 

Red. cost traj.: omega_l_58 [(0,31), (1,38), (2,44), (3,50), (4,51), 

•(11,17), (12,23), (13,31)]; c*:' 0.21437347586823127 

(5,52), (6,47), (7,41), 

(5,27), (6, 34), (7, 33), 

(5, 39), (6, 31), (7,23), 

(5, 34), (6,27), (7, 19), 

(5, 39), (6, 31), (7, 30), 

(5, 35), (6, 41), (7, 40), 

(5,52), (6, 47), (7, 41), 

(5, 19), (6,26), (7,34), 

(5,52), (6,47), (7,41), 

(8, 33), (9,25), (10, 13), 

(8,25), (9,18), (10,19), 

(8,22), (9,29), (10, 3?), 

(8, 18), (9,25), (10, 33), 

(8,22), (9,16), (ID,l7), 

(8, 33), (9,26), (10,2"’), 

(8, 33), (9,25), (10, 18), 

(8, 35), (9,28), (10,20), 

(8, 33), (9,25), (10,IS), 

RMP solved, z: 0.9753075958153836; omega_0_34: 0.5645; omega_0_52: 0.4355; 

Red. cost traj.: omega_0_61 [(0,27), (1,26), (2,33), (3,40), (4,41), (5,35) 

(11,35), (12,27), (13,19)]; c*: 0.1570442087380076 

RMP solved, z: 0.9753075958153836; oraega_0_34: 0.5645; omega_0_52: 0.4355; 

Red. cost traj.: omega_0_62 [(0,39), (1,44), (2,49), (3,50), (4,51), (5,52) 

(11,19), (12,13), (13,14)]; c*: 0.15692998595924446 

RMP solved, z: 0.9753075958153836; omega_0_34: 0.5645; omega_0_52: 0.4355; 

k: 0; UB: 0.9753075958153836; LB: 0.9769185224864061; Prune 

Queue size: 3; 

Red. cost traj.: omega_0_63 [(0,51), (1,50), (2,45), (3,40), (4,41), (5,47) 

(11,13), (12,8), (13,7)]; c*: 0.0 

Red. cost traj.: omega_l_62 [(0,42), (1,43), (2,49), (3,50), (4,51), (5,52) 

(11.12) , (12,8), (13,7)]; c*: 0.0 

RMP solved, z: 0.8674830677852969; omega_0_l: 1.0; omega_l_59: 1.0; 

Red. cost traj.: omega_0_64 [(0,34), (1,26), (2,19), (3,20), (4,28), (5,35) 

(11,35), (12,34), (13,33)]; c*: 0.2391390463013009 

Red. cost traj.: omega_l_63 [(0,44), (1,38), (2,39), (3,32), (4,24), (5,23) 

(11.23) , (12,30), (13,38)]; c*: 0.4806085169476201 

RMP solved, z: 0.9293494738842998; omega_0_l: 1.0; omega_l_63: 1.0; 

Red. cost traj.: omega_0_65 [(0,34), (1,26), (2,19), (3,20), (4,28), (5,35) 

(11.13) , (12,8), (13,7)]; c*: 0.23138219612865596 

Red. cost traj.: omega_l_64 [(0,42), (1,43), (2,44), (3,45), (4,39), (5,32) 

(11,32), (12,24), (13,23)]; c*: 0.46319389091931035 

RMP solved, z: 0.9293494738842998; omega_0_l: 1.0; omega_l_63: 1.0; 

Red. cost traj.: omega_0_66 [(0,34), (1,26), (2,19), (3,20), (4,28), (5,35) 

(11,27), (12,34), (13,33)]; c*: 0.23002533665742825 

Red. cost traj.: omega_l_65 [(0,31), (1,38), (2,37), (3,29), (4,22), (5,23) 

(11,31), (12,23), (13,16)]; c*: 0.37251796938721987 

RMP solved, z: 0.9293494738842999; omega_0_l: 1.0; omega_l_63: 1.0; 

Red. cost traj.: omega_l_66 [(0,31), (1,30), (2,37), (3,44), (4,45), (5,39) 

(11.24) , (12,31), (13,30)]; c*: 0.389553444505835 

RMP solved, z: 0.9441708064549769; omega_0_l: 1.0; omega_l_66: 1.0; 

Red. cost traj.: omega_0_67 [(0,34), (1,26), (2,19), (3,20), (4,28), (5,35) 

(11,13), (12,8), (13,7)]; c*: 0.21742021326611338 

Red. cost traj.: omega_l_67 [(0,44), (1,38), (2,31), (3,23), (4,22), (5,29) 

(11,12), (12,8), (13,7)]; c*: 0.33526279289162786 

omega_l_l: 

, (6,27), 

omega_l_l: 

, (6,48), 

omega_l_l: 

, (6,48), 

, (6,47), 

, (6,34), 

, (6,30), 

, (6,41), 

, (6,24), 

, (6,34), 

, (6,24), 

, (6,31), 

, (6,41), 

, (6,37), 

1.0; 

(7,26), 

1.0; 

(7,43) , 

(7,43), 

(7,41) , 

(7,26), 

(7.38) , 

(7,40), 

(7,23), 

(7,33) , 

(7,25), 

(7,30), 

(7,40), 

(7.38) , 

(8, 33), (9, 40), (1D,4:), 

(8, 36), (9, 35), (10,2"), 

(8, 36), (9,28), (10,2C), 

(8,33), (9,25), (10,16), 

(8, 19), (9,20), (10,26), 

(8,39), (9,32), (10,24), 

(8, 33), (9,26), (10,IS), 

(8, 30), (9, 38), (10, 3S), 

(8,25), (9,18), (10,IS), 

(8, 33), (9, 40), (10,35), 

(8,22), (9,16), (10,17), 

(8, 33), (9,26), (1C,15), 

(8,31), (9,23), (1C,17), 

142 



RMP solved, z: 0.9441708064549766; omega_0_l: 1.0; omega_l_66: 1.0; 

Red. cost traj.: omega_l_68 [(0,31), (1,24), (2,17), (3,16), (4,22), 

(11.16) , (12,23), (13,31)]; c*: 0.3231104372842089 

RMP solved, z: 0.9441708064549766; omega_0_l: 1.0; omega_l_66: 1.0; 

Red. cost traj.: omega_l_69 [(0,44), (1,37), (2,30), (3,31), (4,39), 

(11.17) , (12,11), (13,7)]; c*: 0.31913262499874234 

RMP solved, z: 0.9441708064549766; omega_0_l: 1.0; omega_l_66: 1.0; 

Red. cost traj.: omega_l_70 [(0,31), (1,38), (2,37), (3,29), (4,22), 

(11,23), (12,24), (13,32)]; c*: 0.32274084894508415 

RMP solved, z: 0.9441708064549768; omega_0_l: 1.0; omega_l_66: 1.0; 

Red. cost traj.: omega_l_71 [(0,31), (1,30), (2,22), (3,16), (4,17), 

(11,12), (12,18), (13,24)]; c*: 0.31777002645140884 

RMP solved, z: 0.9441708064549768; omega_0_l: 1.0; omega_l_66: 1.0; 

Red. cost traj.: omega_l_72 [(0,44), (1,38), (2,30), (3,23), (4,24), 

(11,17), (12,24), (13,31)]; c*: 0.3307742551221864 

RMP solved, z: 0.9441708064549766; omega_0_l: 1.0; omega_l_66: 1.0; 

Red. cost traj.: omega_l_73 [(0,31), (1,24), (2,17), (3,16), (4,22), 

(11,30), (12,31), (13,24)]; c*: 0.32793751679528516 

(5,30), (6,31), (7,24), (8,18), (9,12), (10,11), 

(5,45), (6,44), (7,37), (8,30), (9,31), (10,24), 

(5,23), (6,24), (7, 32), (8, 39), (9,38), (10, 30), 

(5,24), (6, 31), (7, 30), (8,22), (9,16), (10, 11), 

(5, 32), (6, 39), (7, 38), (8,30), (9,22), (10, 16), 

(5,30), (6,31), (7,24), (8,17), (9,16), (10,22), 

RMP solved, z: 0.96'03514239521236; omega_0_l: 1.0; omega_l_76: 1.0; 

Red. cost traj.: omega_l_99 [(0,44), (1,45), (2,39), (3,31), (4,23), (5,22), (6,29), (7,37), (8,38), 

(11,16), (12,11), (13,7)]; c*: 0.2915779050579745 

RMP solved, z: 0.9603514239521236; omega_0_l: 1.0; omega_l_76: 1.0; 

Red. cost traj.: omega_l_100 [(0,44), (1,38), (2,39), (3,32), (4,24), (5,23), (6,30), (7,29), (8,21) 

(11,23), (12,30), (13,38)]; c*: 0.2915146389096226 

RMP solved, z: 0.9603514239521236; omega_0_l: 1.0; omega_l_76: 1.0; 

Red. cost traj.: omega_l_101 [(0,31), (1,32), (2,25), (3,18), (4,17), (5,23), (6,30), (7,29), (8,21) 

(11,23), (12,30), (13,38)]; c*: 0.2912445275501204 

RMP solved, z: 0.9603514239521236; omega_0_l: 1.0; omega_l_76: 1.0; 

Red. cost traj.: omega_l_102 [(0,31), (1,38), (2,45), (3,50), (4,49), (5,43), (6,37), (7,30), (8,23) 

(11.12) , (12,8), (13,7)]; c*: 0.29056489251653406 

RMP solved, z: 0.9603514239521236; omega_0_l: 1.0; omega_l_76: 1.0; 

k: 1; UB: 0.9603514239521236; LB: 0.9769185224864061; Prune 

Queue size: 2; 

Red. cost traj.: omega_0_69 [(0,41), (1,40), (2,45), (3,50), (4,51), (5,52), (6,48), (7,43), (8,36), 

(11.13) , (12,8), (13,7)]; c*: 0.0 

Red. cost traj.: omega_l_103 [(0,42), (1,43), (2,49), (3,50), (4,51), (5,52), (6,47), (7,41), (8,33) 

(11,12), (12,8), (13,7)]; c*: 0.0 

RMP solved, z: 0.958351824806755; omega_0_ll: 1.0; omega_l_76: 1.0; 

Red. cost traj.: omega_0_70 [(0,34), (1,40), (2,39), (3,32), (4,25), (5,26), (6,27), (7,28), (8,36), 

(11,34), (12,27), (13,19)]; c*: 0.2170531518985872 

Red. cost traj.: omega_l_104 [(0,44), (1,45), (2,39), (3,31), (4,30), (5,22), (6,16), (7,17), (8,18) 

(11,31), (12,23), (13,16)]; c*: 0.2886105340278401 

RMP solved, z: 0.9583518248067545; omega_0_ll: 1.0; omega_l_76: 1.0; 

Red. cost traj.: omega_0_71 [(0,41), (1,40), (2,33), (3,26), (4,27), (5,35), (6,41), (7,40), (8,33), 

(11,20), (12,13), (13,12)]; c*: 0.2111849977761295 

Red. cost traj.: omega_l_105 [(0,31), (1,38), (2,37), (3,29), (4,22), (5,23), (6,31), (7,39), (8,45) 

(11,30), (12,22), (13,16)]; c*: 0.2881750691425751 

RMP solved, z: 0.9583518248067545; omega_0_ll: 1.0; omega_l_76: 1.0; 

Red. cost traj.: omega_0_72 [(0,34), (1,40), (2,45), (3,50), (4,51), (5,52), (6,48), (7,43), (8,36), 

(11,26), (12,19), (13,20)]; c*: 0.21023095199796332 

Red. cost traj.: omega_l_106 [(0,31), (1,38), (2,45), (3,50), (4,49), (5,43), (6,37), (7,30), (8,23) 

(11,12), (12,8), (13,7)]; c*: 0.28801519694752276 

RMP solved, z: 0.9583518248067545; omega_0_ll: 1.0; omega_l_76: 1.0; 

Red. cost traj.: omega_0_73 [(0,34), (1,40), (2,45), (3,50), (4,51), (5,52), (6,48), (7,43), (8,36), 

(11,19), (12,26), (13,33)]; c*: 0.20734481865378823 

RMP solved, z: 0.9583518248067545; omega_0_ll: 1.0; omega_l_76: 1.0; 

Red. cost traj.: omega_0_74 [(0,34), (1,40), (2,45), (3,50), (4,51), (5,52), (6,48), (7,43), (8,36), 

(11,26), (12,18), (13,12)]; c*: 0.20926341692590988 

(9,31), (10,23), 

(9,15), (10,16) 

(9,15), (10,16) 

(9,24), (10,18) 

(9,28), -(10,20), 

(9,25), (10,18) 

(9,42), =(10,41), 

(9,25), (10,32) 

(9,26), U0,27), 

(9, 44), (10, 37) 

(9,35), <10,34), 

(9,24), (10,18) 

(9,28), -(10,20), 

(9,28), U0,27), 
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RMP solved, z: 0.9583518248067545; omega_0_ll: 1.0; omega_l_76: 1.0; 

Red. costtraj.: omega_0_75 [(0,34), (1,33), (2,25), (3,18), (4,19), (5,27), 

(11,27), (12,35), (13,41)]; c*: 0.21148929369390368 

RMP solved, z: 0.9583518248067545; omega_0_ll: 1.0; omega_l_76: 1.0; 

Red. cost traj.: omega_0_76 [(0,34), (1,35), (2,28), (3,20), (4,19), (5,26), 

(11.26) , (12,18), (13,12)]; c*: 0.20908765737830917 

RMP solved, z: 0.9583518248067545; omega_0_ll: 1.0; omega_l_76: 1.0; 

Red. cost traj.: omega_0_77 [(0,34), (1,33), (2,25), (3,18), (4,19), (5,27), 

(11.27) , (12,34), (13,33)]; c*: 0.20714930565181988 

RMP solved, z: 0.9583518248067545; omega_0_ll: 1.0; omega_l_76: 1.0; 

Red. cost traj.: omega_0_78 [(0,34), (1,40), (2,45), (3,50), (4,51), (5,52), 

(11.26) , (12,18), (13,12)]; c*: 0.2055649561006503 

RMP solved, z: 0.9583518248067545; omega_0_ll: 1.0; omega_l_76: 1.0; 

Red. cost traj.: omega_0_79 [(0,34), (1,35), (2,28), (3,20), (4,19), (5,26), 

(11,20), (12,27), (13,34)]; c*: 0.20488384014018296 

RMP solved, z: 0.9583518248067545; omega_0_ll: 1.0; omega_l_76: 1.0; 

Red. cost traj.: omega_0_80 [(0,34), (1,33), (2,25), (3,18), (4,19), (5,27), 

(11.27) , (12,34), (13,41)]; c*: 0.20006713849371605 

RMP solved, z: 0.9583518248067545; omega_0_ll: 1.0; omega_l_76: 1.0; 

Red. cost traj.: omega_0_81 [(0,41), (1,40), (2,33), (3,26), (4,27), (5,35), 

(11,13), (12,8), (13,7)]; c*: 0.19940788922777392 

RMP solved, z: 0.9583518248067545; omega_0_ll: 1.0; omega_l_76: 1.0; ' 

Red. cost traj.: omega_0_82 [(0,41), (1,35), (2,27), (3,26), (4,33), (5,40), 

(11,26), (12,18), (13,12)]; c*: 0.19919679961479583 

RMP solved, z: 0.9583518248067545; omega_0_ll: 1.0; omega_l_76: 1.0; 

Red. cost traj.: omega_0_83 [(0,34), (1,33), (2,25), (3,18), (4,19), (5,27), 

(11,26), (12,34), (13,41)]; c*: 0.19934999366020104 

RMP solved, z: 0.9583518248067545; omega_0_ll: 1.0; omega_l_76: 1.0; 

Red. cost traj.: omega_0_84 [(0,41), (1,40), (2,33), (3,26), (4,27), (5,35), 

(11,13), (12,8), (13,7)]; c*: 0.19919679961479586 

RMP solved, z: 0.9583518248067545; omega_0_ll: 1.0; omega_l_76: 1.0; 

k: 1; UB: 0.9583518248067545; LB: 0.9769185224864061; Prune 

Queue size: 1; 

Red. cost traj.: omega_0_85 [(0,38), (1,44), (2,49), (3,50), (4,51), (5,52), 

(11,13), (12,8), (13,7)]; c*: 0.0 

Red. cost traj.: omega_l_107 [(0,36), (1,43), (2,49), (3,50), (4,51), (5,52) 

(11.12) , (12,8), (13,7)]; c*: 0.0 

RMP solved, z: 0.9739966679206231; omega_0_34: 1.0; omega_l_24: 1.0; 

Red. cost traj.: omega_0_86 [(0,27), (1,35), (2,41), (3,40), (4,33), (5,26), 

(11.34) , (12,27), (13,19)]; c*: 0.15910964166492356 

Red. cost traj.: omega_l_108 [(0,37), (1,30), (2,31), (3,32), (4,25), (5,18) 

(11,32), (12,24), (13,23)]; c*: 0.2987079112529644 

RMP solved, z: 0.9739966679206234; omega_0_34: 1.0; omega_l_24: 1.0; 

Red. cost traj.: omega_0_87 [(0,33), (1,40), (2,41), (3,35), (4,27), (5,26), 

(11,26), (12,18), (13,12)]; c*: 0.16366668515574934 

Red. cost traj.: omega_l_109 [(0,22), (1,23), (2,31), (3,38), (4,37), (5,29) 

(11.29) , (12,22), (13,16)]; c*: 0.26165614690082284 

RMP solved, z: 0.9739966679206233; omega_0_34: 1.0; omega_l_24: 1.0; 

Red. cost traj.: omega_0_88 [(0,27), (1,26), (2,25), (3,32), (4,39), (5,40), 

(11.35) , (12,34), (13,26)]; c*: 0.15717567742637598 

Red. cost traj.: omega_l_110 [(0,36), (1,43), (2,44), (3,38), (4,30), (5,23) 

(11.30) , (12,31), (13,24)]; c*: 0.27117849089434864 

RMP solved, z: 0.9739966679206234; omega_0_34: 1.0; omega_l_24: 1.0; 

Red. cost traj.: omega_0_89 [(0,25), (1,33), (2,34), (3,27), (4,19), (5,18), 

(11.13) , (12,12), (13,7)]; c*: 0.15537149049873317 

Red. cost traj.: omega_l_lll [(0,36), (1,43), (2,44), (3,38), (4,30), (5,23) 

(11.31) , (12,23), (13,16)]; c*: 0.25873174719643893 

(6,34) , 

(6,33) , 

(6,34) , 

(6,48) , 

(6,34) , 

(6,34), 

(6,41) , 

(6,41) , 

(6,34) , 

(6,41), 

(6,48) , 

(6,47) 

(6,27), 

(6,17) 

(6.33) , 

(6,22) 

(6.34) , 

(6,17) 

(6,25), 

(6,24) 

(7, 33), (8,25), (9, 18), 

(7, 40), (8,41), (9, 35), 

(7, 33), (8,25), (9, 18), 

(7, 43), (8, 36), (9, 35), 

(7, 35), (8, 36), (9,29), 

(7, 33), (8,25), (9, 18), 

(7, 40), (8, 33), (9,26), 

(7, 42), (8, 36), (9,28), 

(7, 40), (8, 39), (9, 32), 

(7, 40), (8, 33), (9,26), 

(7, 43), (8, 36), (9,28), 

(7,41), (8, 33), (9, 25) 

(7, 28), (8, 36), (9, 42), 

(7,23), (8, 30), (9, 38) 

(7, 40), (8, 41), (9, 35), 

(7,23), (8, 31), (9, 38) 

(7, 26), (8, 19), (9,20), 

(7,11), (8,10), (9,15) 

(7, 33), (8, 34), (9,27), 

(7,25), (8, 33), (9, 40) 

(13, 13) , 

(13,2^), 

(13,13), 

(13,2-7), 

(13,2.), 

(13,13), 

(13,13), 

(13, 2-7) , 

(13,25), 

(13,13) , 

(10, 2D), 

(10,L8) 

(10, 4L) , 

(10,39) 

(10,27) , 

(10,37) 

(10,2 3) , 

(10,22) 

(10,23), 

(10,39) 

RMP solved, z: 0.9740490113478565; omega_0_34: 0.8548; omega_0_94: 0.1452; omega_l_24: 1.0; 
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Red. cost traj.: omega_l_212 [(0, 

(11,23), (12,24), (13,32)]; 

RMP solved, z: 0.9740490113478565 

Red. cost traj.: omega_l_213 [(0, 

(11,17), (12,11), (13,7)]; < 

RMP solved, z: 0.9740490113478565 

Red. cost traj.: omega_l_214 [(0, 

(11,31), (12,38), (13,37)]; 

RMP solved, z: 0.9740490113478565 

Red. cost traj.: omega_l_215 [(0, 

(11,17), (12,23), (13,22)]; 

RMP solved, z: 0.9740490113478565 

Red. cost traj.: omega_l_216 [(0, 

(11,17), (12,23), (13,31)]; 

RMP solved, z: 0.9740490113478565 

Red. cost traj.: omega_l_217 [(0, 

(11,17), (12,23), (13,31)]; 

RMP solved, z: 0.9740490113478565 

Red. cost traj.: omega_l_218 [(0, 

(11,23), (12,31), (13,32)]; 

RMP solved, z: 0.9740490113478565 

Red. cost traj.: omega_l_219 [(0, 

(11,31), (12,23), (13,16)]; 

RMP solved, z: 0.9740490113478565 

Red. cost traj.: omega_l_220 [(0, 

(11,29), (12,22), (13,23)]; 

RMP solved, z: 0.9740490113478565 

k: 0; UB: 0.9740490113478565; LB: 

#nodes processed: 9 

#nodes pruned: 7 

Optimal search strategy, with PD: 

[(0, 34), (1,26), (2, 19), (3,20), 

[(0,31), (1,23), (2,22), (3,29), 

16), (1, 15), (2,21), (3,29), (4,30), (5,23), (6, 17), (7,11), 

c*: 0.23784846328474196 

; omega_0_34: 0.8548; omega_0_94: 0.1452; omega_l_24: 1.0; 

16), (1, 15), (2,21), (3,29), (4, 30), (5, 31), (6,39), (7,40), 

0.23784669033022643 

; omega_0_34: 0.8548; omega_0_94: 0.1452; omega_l_24: 1.0; 

39), (1,45), (2,44), (3,37), (4,30), (5,31), (6,32), (7,25), 

c*: 0.23785657565646307 

; omega_0_34: 0.8548; omega_0_94: 0.1452; omega_l_24: 1.0; 

30), (1,22), (2, 16), (3, 17), (4,24), (5, 31), (6, 39), (7,40), 

c*: 0.23784399427530598 

; omega_0_34: 0.8548; omega_0_94: 0.1452; omega_l_24: 1.0; 

30), (1,38), (2,44), (3,50), (4,51), (5,52), (6,47), (7,41), 

c*: 0.23784444860536405 

; omega_0_34: 0.8548; omega_0_94: 0.1452; omega_l_24: 1.0; 

37), (1,43), (2,49), (3,50), (4,51), (5,52), (6,47), (7,41), 

c*: 0.2378467197296325 

; omega_0_34: 0.8548; omega_0_94: 0.1452; omega_l_24: 1.0; 

24), (1,32), (2,39), (3,38), (4,30), (5,23), (6,17), (7,11), 

c*: 0.23784750884694675 

; omega_0_34: 0.8548; omega_0_94: 0.1452; omega_l_24: 1.0; 

30), (1, 37), (2, 44) , (3,45), (4,39), (5, 31), (6,23)', (7,17), 

c*: 0.23785954329547163 

; omega_0_34: 0.8548; omega_0_94: 0.1452; omega_l_24: 1.0; 

16), (1,23), (2,31), (3,38), (4,37), (5,29), (6,22), (7,23), 

c*: 0.23782008974763516 

; omega_0_34: 0.8548; omega_0_94: 0.1452; omega_l_24: 1.0; 

0.9769185224864061; Prune 

(8,10), (9,15) 

(8, 33), (9, 25) 

(8,18), (9,17) 

(8, 33), (9,25) 

(8, 33), (9,25) 

(8, 33), (9, 25) 

(8,10), (9,15) 

(8,18), (9,25) 

(8,31), (9,38) 

0.9769185224864061 

(4,28), (5,35), (6,34), (7,26), (8,19), (9,20), (10,28), (11,35), (12,34), 

(4,37), (5,38), (6,31), (7,23), (8,22), (9,29), (10,37), (11,38), (12,31), 

(10,22), 

r (10,24), 

(10,23), 

(10,18), 

(10,18), 

(10,18), 

(10,22), 

(10,32), 

(10,37), 

'13,26) ] 

■13,23)] 
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Index 

adjacency matrix, 54 

aerial platform, 22 

anticipation, 54 

bank angle, 49 

bb-node, 59 

Benders master problem, 77 

Benders’ decomposition, 69 

Benders’ decomposition algorithm, 78 

bp-node, 106 

branch & bound, 59 

branch & bound tree, 59 

branch & price algorithm, 87, 106 

branch & price tree, 106 

branching strategies, 109 

CENETIX Resource Portal, 119 

change of heading, 49 

column generation, 101 

combinatorial structure, 87 

convex combination, 96 

cooperative search, 26 

cumulative probability of detection, 25 

cut, 77 

dag-node, 62, 102 

Dantzig-Wolfe reformulation, 96 

decision support, 117 

decision variables, 56 

directed acyclic graph, 62 

disconnected networks, 70 

dispersion effect, 121 

dual subproblem, 76 

extreme point, 77 

field experiment, 118 

fixed-wing platform, 49 

flight kinematics, 48 

fractional waypoints, 106 

gamma-ray sensor, 118 

gamma-ray sensor range, 118 

geographical distance, 120 

glimpse probability, 23, 27 

heterogeneous grids, 88 

heterogeneous platforms, 26 

hexacopter, 118 

hexagonal grid, 48 
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kinematical constraints, 21 

linear overestimators, 92 

load factor, 50 

longest path problem, 62 

lookahead horizon, 54 

MEAN bound, 60 

mixed integer linear programming 

formulation, 56 

motion model, 22 

moving target search, 21 

multi-platform search, 90 

network, 48 

node, 48 

non-linear programming formulation, 90 

observation, 23 

optimal search trajectory, 48 

overlook, 23 

partial trajectory, 59 

physically feasible trajectory, 48, 55 

platform, 48 

platform network, 48 

polyhedron, 77 

polytope, 96 

positive reduced cost, 101 

pricing problem, 99 

primal subproblem, 74 

priority queue, 59 

probability map, 22 

probability of containment, 24 

probability of detection, 51 

radio-isotope identification devices, 118 

radiological dispersion device, 120 

radiological material, 118 

radiological sources, 118 

radius, 49 

reachability matrix, 54 

real-life search missions, 117 

reduced cost, 99 

reduced cost pricing, 99 

relaxation, 59 

relocation arcs, 54 

resource constraints, 26 

resource consumption, 26 

resource limit, 27 

restricted master problem, 99 

restricted network, 52 

restricted subset of constraints, 77 

rotary-wing platform, 49 

San Francisco, 120 

search area, 21 

search effectiveness, 27 

search mission, 54 

search trajectory, 25, 48 

security risk, 121 

sequence of waypoints, 48 

shared resources, 26 

spectrum, 118 
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square grid, 48 

STAT bound, 60 

strip-branching, 109 

sustained turn, 50 

sustained turn rate envelope, 50 

tangent lines, 92 

target motion, 22 

target track, 27 

time-dependent routing, 49 

turn radius, 50 

turn rate, 50 

upper bound, 60 

waypoint, 22, 48 

waypoint-branching, 109 
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