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1.0 TECHNICAL SUMMARY

This report on Inverse-scattering Design of Metasurfaces summarizes the work SRI International
(SRI) has accomplished from 15 July 2017 through 14 July 2018 under DARPA contract
HRO01117C0118.

The primary objective of this program is to develop inverse-scattering methods to design passive
metasurfaces for frequency conversion (FC). In particular, the goal is to extend the k-space
formalism to study inelastic scattering from metasurfaces and explore the possibility of achieving
FC using only linear materials by exploiting, for instance, the coupling between multiple
resonances of metasurfaces and/or spatiotemporal modulation intrinsic in the materials.

Major achievements are:

1. Developed a formalism for studying direct and inverse scattering in dielectric media and
applied k-space engineering approach to study both elastic and inelastic scattering.

2. Identified an approximation—called extended far-field approximation (EFA)—and
demonstrated that it accurately predicts the scattered field even through resonance in
high-index contrast structures.

3. Showed the EFA arrived at the closed form expression for inverse scattering studies both
in elastic and inelastic cases. The ability to use closed-form expressions considerably
speeds up the inverse-scattering studies.

4. Developed COMSOL-based codes to solve Maxwell equations with time-dependent
permittivity and used them to verify the accuracy and validity of EFA.

5. Showed that both EFA and COMSOL codes predicted frequency conversion that was
most effective when the resonance in metastructures was designed to be at the desired
scattered frequency.

a. This result is counterintuitive because the conventional understanding is that the
resonant frequency must be matched to the incident frequency for the maximum
scattering.

b. This result opens up the design space for efficient linear frequency conversion as
it alleviates the phase-matching requirement.

6. Identified passive systems with potential for time-dependent permittivity leading to FC.

2.0 TECHNICAL DISCUSSION

2.1 Background

The forward-scattering approach of electromagnetics specifies the permittivity distribution and
solves Maxwell’s equations to obtain the scattered fields. Alternatively, the inverse-scattering
approach specifies the scattered fields and applies an inverse-scattering algorithm to calculate the
permittivity distribution of the scattering source. The ability to use inverse-scattering methods to
design structures with specific scattered fields would greatly benefit the development of
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metasurfaces—surfaces containing subwavelength structural elements designed to modify the
amplitude and phase of the electromagnetic fields. The current state-of-the art (SOA) approach
for designing metasurfaces relies on an iterative forward-scattering approach to design elements
with the desired amplitude and phase in the scattered fields, resulting in inefficient design and
suboptimal performance. A more promising approach is to employ inverse-scattering methods to
directly calculate the size, shape, and permittivity of a scatterer from the specified amplitude and
phase of the scattered fields.

The current project aims to develop inverse-scattering methods for designing metasurfaces. The
main objective of the program is to develop an inverse-scattering formalism based on the Fourier
(k)-space representation that can be used to design frequency-converting metasurfaces without
using nonlinear materials. To achieve FC, we explored two approaches:

1. Inelastic scattering metasurfaces. Specified k-space diagram with incident and scattered
wave vectors of different amplitudes and applied inverse-scattering methods to determine
the associated permittivity distribution.

2. Metasurfaces with spatiotemporally modulated permittivity. Studied metasurfaces
analogous to acousto-optic modulation in which the frequency shift of the scattered light is
equal to the frequency at which the material is modulated. We explored both actively
modulated metasurfaces and passive metasurfaces with self-induced permittivity
modulation.

2.2 Results

Toward the eventual goal of studying frequency converting inelastic metasurfaces, first we
developed the k-space formalism to study elastic scattering and then extended it to inelastic
scattering.

2.2.1 Elastic scattering from time invariant media: In the time-invariant media, the dielectric
function does not depend explicitly on time. For this case, we derived expressions for the
scattering potential (dielectric function) from the scattered field in k-space as described in
Appendix A. We then developed a MATLAB code that employed k-space formalism to calculate
the dielectric function of the scatterer first using the Born approximation (Eq. A5), and then the
Rytov approximation (Eq. A7). For validation, first we assumed an infinite cylinder of known
radius and dielectric constant, and obtained the scattered fields for a wavelength of 1 pm using
the full-wave frequency-domain solver HFSS. We then used the calculated field as input to our
inverse scattering code to obtain the dielectric function. The results obtained in the first Born
approximation are shown in Figure 1.

Note the dielectric function predicted from inverse scattering (middle and bottom row) agree
with the assumed value of =1.2+0i only for the smallest radius value (R=0.1 um). For larger
radii, the inverse-scattering method yields real and imaginary parts of & much larger than the
assumed values. The Born approximation breaks down for larger cylinders. Similarly, we found
(not shown) the first Born approximation also fails for cylinders with a larger dielectric constant
in air. We also found the next level of approximation, the Rytov approximation, did not improve
accuracy (not shown) in direct and inverse scattering.
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Figure 1: Inverse scattering with the Born approximation for cylinders (e=1.2) with three different radii as noted for
a wavelength of 1 pm. The calculated scattering amplitudes in k-space (top row), the real part of € (middle row), and
the imaginary part of € (bottom row) are shown.

Extended far-field approximation (EFA). Our further analysis of the Green’s function-based
derivation indicated the infinite series can be non-perturbatively summed into a closed form
when the angular dependence of scattered field within the scattering volume is the same as that
in the far field. In the elastic-scattering case,

E (r,k,,K,) =ikrfs (0.4,0)
r
f5(0.4,0) = f5(0'.¢.0)

where Ejs is the scattered electric field, f; is the scattering amplitude, k; and ks denote the incident
and scattered wave vectors, and the primes denote the angular values inside the scatterer. This
approximation—called EFA—enables us to obtain analytical solutions to both scattered field and
the dielectric function as described in detail in Appendix B.

(D

We then numerically verified the accuracy of the approximation by considering both 2D and 3D
structures, spherically symmetric and asymmetric structures, and increasing the dielectric
contrast (between the structure and the background). Interestingly, the accuracy was found be
valid even through Mie resonance for all cases considered as long as the dielectric contrast was
about 8. Since none of the closed-form expression available in the literature is accurate near
resonance in high-contrast structures, we summarized the results and submitted a paper to
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Physical Review Letters for possible publication. The results of the test performed and the
applicability and the limitations of the EFA are discussed in detail in the manuscript, which is
included here as Appendix C.

2.2.2 Inelastic scattering from time-variant media: As we have seen, in time-invariant media
in which the dielectric function is time-independent, the FC does not occur. To arrive the
conditions for the FC, we began with most general Maxwell equations in which the dielectric is
also time-dependent and shows, as described in Appendix D, that the FC is possible only when
susceptibility has intrinsic or extrinsic time dependence. This formalism is then extended to
apply EFA.

Briefly, for inelastic scattering, the permittivity €(or equivalently susceptibility y) will have
extrinsic time dependence and the Maxwell equation is:

1 0°
(vz —c——jm ) ———[z(t)E(r ] @)
The Fourier transform of the above equation reduces to:
k> ¢
(V*+K)E(r,0)=—4x yo j dQ y(Q)E(r,0—-Q) 3)
7 —o0
where k=wo/c. The corresponding Green’s function equation is:
(V2 +K)G(r,r's0)=—475(r—1') (4)
and the solution to Eq. 3 in terms of G is, as before in far field approximation is:
elkll‘ r'| ®
E(r,a))———k jd3 ‘ de;((r Q)E(r,0-Q)
(5)
~——k2 e jd3 P JdQZ(r’,Q)E(r’,w—Q)
The total field is the sum of incident field at o; and scattered field. Thus,
Er,0")=E (r,0")o(0"—0,)+ E;(r,0" (6)

Substituting Eq. 6 in Eq. 5, we get:

ikr o
E (r,0) =—$k287jd3r'e'”‘"" IdQ;((r’,Q)Ei(r’,a)—Q)é(a)—Q—a)i)

——k2 ¢ j dr'e™ [ dQ (1, QB (Y, 0-Q)

. (7)
1, e 3y ik , ik
:_Ek TJdre T, o—-o,)e™

——kze jd e [ do’ (r, QB 0-Q)
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If we assume Q << ®,—that is the shift in the frequency is much smaller than the interrogating
frequency—then the EFA can be applied as before. Using Eq. 1 we get<

ikr
E (r,0) =—$k2 %jd%'e""”’ 2(r,o-o.)

__kze J'd —zer'dQZ(’, Q) fS(9'¢ a))
(3)

1 2 eik" 39 _—igr '
-—k —Jdre x(r,o-o,)
47[ r

= Ey(r,0) =

) ik , e
kjd3 o _J;dQ;((r,Q)T

This expression is similar to the elastic-scattering case. The Eq. (8) can be inverted to obtain
v (1,Q2) in terms of Es(r,®) as in the case of elastic-scattering studies.

First, we used EFA to calculate the scattering cross section, both elastic and inelastic, for
infinitely long cylinders subjected to time harmonic (i.e., single frequency) modulations (Figure
2). The required equations for cylinders are given in Appendix E. For these calculations, the
incident frequency is 30 THz, &=8, and the modulation amplitude is 5=0.1. We calculated the
cross sections, normalized to the cross-sectional area of the cylinder, for modulation frequencies
of 5 THz (left), 10 THz (middle), and 20 THz (right). The top panel shows the cross section for
elastic scattering, i.e., scattering at 30 THz. In this case, the cross section is a maximum for a
particle radius of 0.64 um. The bottom panels show the cross section for the sum and difference
frequencies. Interestingly, we found the particle size needed to maximize inelastic scattering
differed from the value needed to maximize elastic scattering, and in addition, was different for
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Figure 2. Calculated scattering cross section for infinitely long cylinders subjected to time-harmonic modulations
of 5 THz (left), 10 THz (middle), and 20 THz (right), as a function of radius. The top plot shows the results for
elastic scattering at 30 THz, while the bottom plot shows the cross section for the inelastic scattered fields.
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the sum and difference frequencies. In fact, when the results were plotted as a function of kja,
where £; is the relevant wavenumber, all resonances occurred at the same value, implying the
particle size for maximum scattering is inversely proportional to the value of %;, or equivalently,
directly proportional to the wavelength as

shown in Figure 3. 1.8

One of the important conclusions from 1.6

these calculations is that the scattering is E 1.4

largest when the meta-element has s I

resonance at the scattered frequency. In 2 1

traditional Mie-scattering-based g 0.8

metasurface design for elastic scattering, g 06

the resonant frequency is chosen to be E 0.4

the incident frequency. The calculations = 0.2

indicate that for inelastic scattering and 0

maximum conversion, the elements have 5 10 15 20 25 30
to be resonant at the output frequency. Output wavelength (jm)

This observation has strong implications.
Linear frequency conversion approaches,
as discussed in the following section, can
be designed for efficient conversion by eliminating the need for complicated phase matching.
Since the conclusion is valid independent of how the photons are generated inside the scatterer,
this is applicable for absorbing and re-emitting (at lower frequency) structures as well. In
addition to FC metasurfaces, we see this principle can be used in designing up-/down- converting
particle sizes for enhanced brightness of selective colors in a display.

Figure 3: The variation of resonant radius with the wavelength
of scattered waves.

We also developed full-wave time-domain COMSOL codes to calculate the inelastic scattering
by infinitely long cylinders subjected to time-harmonic modulations. These simulations confirm
the results obtained with EFA described above, though convergence issues made it difficult to
make quantitative comparisons.

3.0 Linear FC options

Starting from the time-dependent linear wave equation, we identified the conditions for FC. We
showed that FC is possible as long as the permittivity is also time-dependent at the time of
illumination. This occurs when the permittivity is

a. Time-dependent even for a short time during illumination,
b. Modulated in time by mechanisms intrinsic to the material, for example by phonons,
c. Modulated externally, for example by voltage.

Since we are interested in passive and linear FC systems, option ¢ was not considered further.
We explored possible systems in categories a and b above. Based on the above calculations and a
literature survey on metasurfaces for FC, we identified a few systems and requirements for
passive linear conversion.

Dipoles and Raman Solids: Let us consider two dipoles in close proximity. When one of the
dipoles is excited by incident radiation, the oscillating charges produce an oscillating electric
field at the other dipole. The charges in the second dipole will start oscillating, which in turn will
produce an oscillating electric field. In this mechanism, known as Forster resonance energy
transfer (FRET), the energy from the incident radiation is transferred non-radiatively through the




Final Report SRI Project P24564 12 July 2018

Coulomb interaction (or by virtual photons). When the
incident frequency is matched to the resonant frequency 10
of the dipole, the scattering is most efficient. However, 10°
even if the resonant frequencies of the dipoles are
different, the frequency of the scattered wave will be
identical to that of the incident wave, because the o* 4t
frequency of the second dipole is initiated and sustained
by that of the incident radiation (and first dipole). As
such, there will be no FC. Similarly, two meta-atoms or
meta-molecules, which behave like dipoles at their
lowest-order resonances, can transfer energy non-
radiatively, but the frequency of the scattered radiation 10" ¢
will not change. 10"

FT Intensity

On the other hand, FC may occur if the dipoles oscillate L R RN S B T 7

independently of the incident radiation. Examples include Frequency (THz)

Raman scattering by vibrating molecules and Brillouin Figure 4: Output frequencies are shifted

scattering by acoustic phonons in passive systems. For from the incident frequencies by the

passive FC to use materials or system in which multiples of fundamental longitudinal
L Co . . optical (LO) phonon frequency of

permittivity has intrinsic or inherent time dependence, one 15.6 THz in doped Si.

such possibility is to exploit Raman scattering. The lattice

oscillations—particularly the longitudinal optical phonons—have stronger interactions with

photon field by way of electrons in the system. For example, FC has been demonstrated in doped

Si (and GaAs) for frequency close to the direct gap of Si, as shown in Figure 4 [Hase et al., New

J. of Phys., 15, 055018 (2013)].

Fluorescent materials: The presence of concentrated electric fields at the dipole site change the
local environment (i.e., the bonding arrangement in the excited state or local polarization). One
example is fluorescent materials in which the emission and absorption spectrum are shifted in
frequency even at low intensities. Notice that in both dipole and fluorescent cases, the local
permittivity evolves in time independently from the incident field, which is a requirement for FC.
In fluorescent materials, the incident radiation induces a step-function-like change in the
permittivity with time.

External Triggers: There are several publications that describe FC. The methods employ
external triggers to change the permittivity (a) between interacting meta-elements shown in

Fig. 5a [Lee et al, https://www.researchgate.net/publication/317344130], (b) of elements on the
surface surrounding high Q cavity shown in Fig. 5b [Notomi and Mitsugi, Phys. Rev. A73,
051803 (2006)], or (c) by an impulse as the wave-front progresses through the material as shown
in Fig. 5c [Xaio and Agrawal, https://doi.org/10.1364/F10.2010.FWQS5]. At low intensities, FC
has been demonstrated in a design that employs hyperbolic metamaterial to enhance the
interaction between the fluorescent material (R6G and Alq3) with overlapping absorption and
emission spectrum (Fig. 5d). [Newman et al.,
https://doi.org/10.1364/CLEO_QELS.2015.FM3C.1].

We will consider the following options for designing passive metasurfaces for FC:

Fluorescent materials: Design a non-absorbing meta-element whose resonant frequency is close
to the incident frequency. Choose a fluorescent material such as R6G whose absorption spectrum
includes the designed resonant frequency and places it in close proximity to the resonator. When
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Figure 5: Some of the predicted or demonstrated designs for linear frequency conversion. (a) The intermediate
region between two C-rings is photo-excited. (b) Meta-atoms around the defect in photonic crystals are photo
activated. (c) There is an impulse change to refractive index. (d) The difference between emission and
absorption frequencies of R6G is exploited for frequency conversion. All except (d) require external activation.

the radiation is incident on resonator, it will transfer energy non-radiatively to R6G, which in
turn will emit at frequencies different from the incident frequency. Since the emission will be
isotropic, the resonator-R6G pair will be placed in an array specifically chosen to radiate in one
direction in the far field.

(a) Cavity: Include elements near the cavity that are replaced or coated with fluorescent
material. This is a slightly modified version of design (a) above. The permittivity change
induced by the incident field may be large enough to shift the emission frequency.

(b) Raman: Choose an incident frequency ®o and material with a sizable longitudinal optical
(LO) phonon frequency. Identify the frequency, oro, near which the LO Raman modes
are active. Design a meta-element made of that material to resonate at that mo+ ®Lo or mo-
oro frequency. Because of photon-phonon coupling, the frequency of some portion of the
emitted light will be shifted. The energy transfer is most efficient when the element’s
resonant frequency matches the scattered frequency. Since the emission will be in all
directions, the resonator will be placed in an array specifically chosen to radiate in one
direction in the far field.

(c) Three-level systems: Consider a material or design 3 > < E
with a three-level system as shown in Figure 6. g 2
The incident photon with energy E3 is absorbed, s phonon
resulting in an electron from L1 being promoted to Eis

ElZ
L3. The electron decays quickly to L2 by M -"\MN"'

nonradiative process and eventually recombines

with holes in L1, emitting a down-converted 1

photon with energy Ei». If the element made of ShaE

this material is designed to have E23 to be one LO Figure 6: Three-level system converts
photon energy and to have resonant frequency at incident photon with energy E13 to output

Ei12/f, a most efficient, passive, and linear photons with energy E1..
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frequency conversion can be expected. Note the design is not limited to materials with
three-level systems

4.0 Conclusions

In summary, we have studied both elastic and inelastic scattering by solving Maxwell equations
with a new approximation—extended far-field approximation—and obtained closed-form
expression for scattered field and permittivity profile of the scatterer. The EFA has been tested
and produced accurate results for permittivity contrast of 8. The ability to use closed-form
expressions considerably speeds up the inverse-scattering studies. Our calculations indicate that
FC is possible as long as the permittivity is also time dependent at the time of illumination. The
time dependence can be intrinsic as in Raman solids and fluorescent materials, or extrinsic as in
voltage or acoustic-controlled solids, or it can be designed to have absorption and multiple
energy levels with energy transfer assisted by radiative or nonradiative process. Importantly, we
conclude that meta-elements need to be designed to have resonance at the scattered frequency for
more efficient frequency conversion. We have identified a few likely designs for passive and
linear frequency conversion.
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APPENDIX A:
INFINITE BORN SERIES
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The scalar wave equation for time-invariant media is:

, 10 1 o
\4 ey w(r,1) =C—2¥([5(”)—1]W(raf))- (A1)
Taking the Fourier transform of Eq. (A1), we obtain:
(Vz +k° )w(r o) =—4rx M w(r,m)
’ 47 ’ (A2)
= 47V (r)y(r,0)
where k=w/c. Noting that the Green’s function G(r,7’) is the solution of:
(V' +K )G(r—r') =—4r 5(r 1)), (A3)
the general solution for the total field is:
p(r,0)=y,(r,0)+ [d'r Glr—r)V (', o), (A4)

where i is the incident field. In the inverse scattering approach, V(r) is calculated from the
known incident field and the scattered field specified in the far field. However, the integral in
Eq. A4 is over the region within the scattering element where the scattering potential is non-zero
and the field is unknown. Hence V() can only be obtained approximately. In the most common
approximation—called first Born approximation— the total field yAr,®) inside the scattering
element is replaced by i(r,®). In the far field approximation, r>>r’ and

1/2
|r— r'| = [r2 +772r r']

r
xr——-r
r
=y — 5 -r
k
and the Green’s function is simplified as
eik|r—r'|
G(lr—r') =
|r=r|
ik
_ e —ikgr
r

In the Born approximation, the y inside the integral in Eq. 4 is replaced by the incident wave,

ik;r

e we have:

ik
ez r

p(r,0) =y, (r,0) + — [dr V(e T (A5)

r
But, from full calculations, the y can be written as a sum of incident wave and scattered wave in

the form:
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ikr
w(r, o) =y (r,0)+ 67 f(k, —K,o)
Sk, =K, 0) = [dr V(e S (A6)
=[d*r v (e

Taking the Fourier transform of both sides with respect to q we obtain:
V(r)=[d’q f(q.0)" (A7)

The scattering amplitude f{q,®) is obtained for various incident and scattered wave vectors from
either measurements or full-wave solutions to Maxwell’s equations.

The Born approximation appears to work well away from resonance, i.e., for small scatterers and
low-permittivity contrast. The other common approximation—Rytov approximation—works
better for sizes larger than resonant sizes and higher contrast. In this approximation, a complex
phase shift is added to the incident; when it is substituted in the wave equation one obtains:

ikr

w,(r,o)n yr.o) =e—Jd3r' V(re ™ (A8)
v, (r,m) r

We see that Eq. A8 is similar to Eq. A6, except the expression in the left-hand side of the

equation is slightly more complicated, but can be evaluated.

A-3
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APPENDIX B:
EXTENDED FAR-FIELD APPROXIMATION (EFA): ELASTIC SCATTERING
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Since both Born and Rytov approximations are invalid near resonance, we return to Eq. (A4) to
carry out the infinite series in a form suitable for inverse scattering studies. We recast Eq. (A4)
by considering that total field is a sum of incident (7) and scattered (s) fields. We get,

ws(t,0) = [dr Gl —r'V (1) (v, 0) +y (v, 0)] (B1)
In the far-field approximation, the Green’s function takes the form,
iklr—r'|
G( r-r')) =|e T
o (B2)
_ ikr —ikgr
r
Substituting Eq. (B2) in Eq. (B1), we get:
ikr ikr
wo(rm)="1 [arre™ v (rpes™ + & [drre™ v (ropy(r,0) (B3)
r r

In the extended far-field approximation (EFA), we assume the angular distribution of the field
inside the scatterer is the same as that in the far field. In other words,

o
w, (r,0)= - 15(0.¢,0) (B4
fS (05 ¢9a)) = fs (9'7¢’a a))

Substituting Eq. (B4) in B3, we get,

ik
el r

kr'

10,4, 0)
r

ikr
wo(r,o)= Id3r'e'ik"r'V(r')eik’"r' +67Id3r'e'ik”'V(r')

r
ikr eikr

eikr'

£i(0,9,0)[&r' eV (1)

(B5)

r r r

ikr'

e e

ikr
—[dr e Y )y (ro)[dre TV ()

r!

We see the first term on the right-hand side (RHS) is simply the Born term and the second term
can be moved to the left-hand side (LHS) to get a closed for expression for the scattered field as:

ikr
: .[d3r'V(r e (ki
T (36)
1- j r'e ™ Y (1)

r"

Notice that Eq. 12 has a similar form to the first Born expression except for a ks-, or angle-
dependent denominator arising from the infinite series sum. In terms of the scattering amplitude,
Eq. (B6) can be written as:
I d’r'v(re "
f(q,0)= o (B7)
I=[d*re™ v S
r
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The Eq. (B7) gives the scattering amplitude as a function of the potential, accurate to all orders.
In the forward scattering problem, V(r) is known and the scattering amplitude f{q,®) can be
determined from Eq. (B7). In the inverse scattering problem, f{q,®) is known and V(r) needs to
be obtained. Taking the Fourier transform (FT) of Eq. (B7) with respect to q, we obtain:

Id *qe"" f(q,0) =V, (r) = V) —, (BS)

re ™

where V3(r) is the potential obtained from the first Born approximation. Rearranging Eq. (B8):

V(r)=VB(r){1— [dire™ rm.)j} (B9)

Substituting this expression for V() in the integral

V(r)= VB(r)[l—jd%'e-”‘s ) ( —[drre ”)J } (B10)
Equation (B10) can be summed in a geometric series to obtain,
v,
V(l") = (r) tkr (Bl 1)
1+ [dre ™™ = v, ()

Equation (B11) gives the potential in terms of the first Born potential V3, which is the FT of the
scattering amplitude f{q) by Eq. (B7), and is accurate to all orders. For the geometric series to
converge, this summation implicitly assumes the integral in the denominator is small and needs
to be verified in all calculations.
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APPENDIX C:
MANUSCRIPT SUBMITTED TO PHYSICAL REVIEW LETTERS




Nonperturbative solution to the scattering problem

Brian Slovick® and Srini Krishnamurthy
Applied Optics Laboratory, SRI International, Menlo Park, California 94025, United States

We obtain a nonperturbative, analytical solution to the Lippman-Schwinger scattering equation
by assuming the field within the scattering object is a spherical wave with a scattering amplitude
equal to that of the far field. This approach is generally applicable to electromagnetic, acoustic,
and quantum mechanical scattering, though here we apply it to classical electromagnetic scattering.
First, we show this approximation is valid for both spherical and non-spherical objects, and that the
calculated scattering cross section is accurate through the fundamental resonance frequency. Then
we apply our general analytical expression to the inverse scattering problem and show that accurate
reconstructions of the object are possible even under resonance conditions. The simplicity, generality,
and accuracy of our method suggest it can be a reliable and efficient tool for understanding a wide

range of scattering problems in physics.

Direct and inverse scattering problems are prevalent
throughout physics [1-6]. In the direct scattering prob-
lem, the properties of the object are used to determine
the scattered fields, a scenario routinely encountered in
particle physics [7, 8], acoustics [9], and electromagnetics
[3, 10]. In the inverse scattering problem [5, 10-12], the
properties of the object are determined from the scat-
tered fields. Inverse scattering is important for appli-
cations such as remote sensing [13-15], medical imaging
[16, 17], and design and optimization of complex mate-
rials [18-22]. A general analytical solution to the direct
and inverse scattering problem would benefit these fields
and applications by providing provide new physical in-
sight and more efficient computation.

The predominant methods for solving the scatter-
ing problem are partial wave analysis [1, 23], the Born
approximation [7, 9, 24, 25], and numerical methods
[1, 12, 26]. All have their advantages and limitations.
Partial wave analysis is exact, but is limited to objects
with rotational symmetry and cannot be used to solve
the inverse scattering problem because the equations are
transcendental [1, 10]. The Born approximation pro-
vides a closed-form expression and is valid for all object
shapes [9, 27], but is limited to weak scattering conditions
[24, 25, 28]. Numerical methods are exact within numer-
ical error, but provide limited physical insight and are
inefficient due to the difficulty of solving integral equa-
tions [1, 12, 26].

In this Letter, we obtain a nonperturbative closed-
form solution to the Lippman-Schwinger (LS) scattering
equation using what we call the extended far-field ap-
proximation (EFA), which generally applies to quantum
mechanics, electromagnetics, and acoustics. The EFA is
based on our empirical observation that the field within
the object has the same scattering amplitude as the far-
field scattering amplitude. Using full-wave simulations,
we show the EFA is valid well into the scattering vol-
ume for spherical and non-spherical shapes, and that the
scattering cross section for spheres obtained with EFA
agrees well with exact calculations obtained by partial
wave analysis, even through the first resonance. In ad-
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dition, assuming convergence of an infinite geometric se-
ries, our closed-form expression can be inverted to ob-
tain the potential in terms of the scattered field. Within
the limits of this approximation, the EFA provides much
improved inverse scattering reconstructions compared to
the Born approximation. The simplicity and accuracy
of our method suggest it can be a reliable and efficient
tool for understanding scattering problems throughout
physics.

Our closed-form expression can be derived from the
inhomogeneous wave equation for a time-harmonic scalar
field U(r,w) [23, 27],

(V2 + U (r,w) = —47F (r,w)U(r,w), (1)

where F(r,w) is the scattering potential and k is the
wavenumber. With the Sommerfeld radiation condition,
the solution to Eq. (1) is given by the sum of the incident
field U;(r,w) and the scattered field, given by [23, 27]

Us(r,w) = /d37’/G(r—r/,w)F(r/,w)[Ui(r/,w)—FUs(r/,w)],
(2)

where the Green’s function
eik\r—r |

G(r—1r',w) (3)

TR
is the solution to (V2 +k?)G(r —1',w) = —476®) (r —1').
In the far-field approximation, |r —r'| & r — % -r’, where
ks is a vector of magnitude k in the direction of the

scattered field, and the Green’s function simplifies to

eikr

G(r —r',w) ~ e ke

(4)

r

ezkr

Noting that Us(r,w) — f(ks, ki), where f(kg,k;) is
the scattering amplitude, for an incident plane wave of
the form U;(r',w) = eXi'* | Eq. (2) reduces to

f(k57kz) = /d3r1F(rI,w)e—i(k5—ki)-r

—i—/dBr’F(r’,w)Us(r',w). (5)



Equation (5) is the LS equation. It is difficult to solve
in general because the scattered field inside the scatter-
ing volume is unknown. In the first Born approximation,
Us(r',w) is set equal to zero, leading to a Fourier trans-
form relationship between the scattering amplitude and
the potential [24, 27]. For improved accuracy, the so-
lution obtained with the first Born approximation (and
subsequent solutions) can be used as the internal field,
leading to the Liouville-Neumann series. However, this
series only converges for small potentials, so it is not ap-
plicable to resonant structures, the focus of this work.

The EFA assumes the internal field is a spherical wave
with the same scattering amplitude as the far-field scat-
tering amplitude, i.e.,

eikr

Us(r',w) = = flkg, k).

(6)

This allows the second term on the right hand side of Eq.
(5) to be factorized, resulting in the following closed-form
expression for the scattering amplitude:

f dBT/F(r/, w)e_i(ks_ki)'r

K, k) =
it ) 1— [d3r'F(r,w)

— . (7
6—1k5-r GT_
Equation (7) gives the scattering amplitude as a function
of the potential. In principle, it is valid for arbitrary po-
tentials. For small scattering potentials, the denominator
is one and Eq. (7) reduces to the well-known expression
obtained with the first-Born approximation. In forward
scattering problems, F(r/,w) is known and Eq. (7) can
be used to calculate the scattering amplitude. Alterna-
tively, in inverse scattering problems, f(ks,k;) is known
and F(r’,w) can be determined. Defining the momentum
transfer as q = ks — k; and taking the Fourier transform
of Eq. (7) with respect to q, we obtain

eikr

T

Flr,w) = Fy(r,w) {1_ / B P w)e— ik €57 |g)

where

Fi(r,w) = / P fle k) (9)

1
(2m)?
is the potential obtained using the first Born approxima-
tion. By iteratively substituting F(r,w) in Eq. (8) and
applying the infinite geometric series sum, we obtain
_ FB (I‘, UJ)

- il g etk T
1+ [d3r' Fp(r',w)e=tker £

F(r,w) (10)

The closed-form expressions in Eq. (7) and (10) form
the basis for direct and inverse scattering studies, respec-
tively. Their accuracy depends on the validity of the EFA
and the requirement that the absolute value of the inte-
gral in the denominator of Eq. (10) is less than 1 for
series convergence.
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FIG. 1. Calculated scattering amplitude at different distances
from the center of dielectric cylinders with e = 2 (top), e =6
(middle), and € = 10 (bottom) and diameters of 2ak € =1
(left), 2 (middle), and 3 (right).

While the formalism developed thus far is valid for
quantum mechanical, electromagnetic, and acoustic scat-
tering problems, to demonstrate the validity of our ap-
proach, we consider electromagnetic scattering, in which
case F(r,w) = k%[e(r,w) — 1]/4m, where €(r,w) is the
relative permittivity of the scatterer. Using full-wave
simulations, we calculated the scattering amplitude for
infinite cylinders of radius a and frequency-independent
homogeneous permittivity €,.. To compare these results
to our scalar-wave formalism, we consider light polarized
along the axis of the cylinder. The calculated scattering
amplitude at different distances from the center of cylin-
ders with €, = 2 (top), €, = 6 (middle), and ¢, = 10
(bottom) and diameters of 2ak,/e,=1 (left), 2 (middle),
and 3 (right) are shown in Fig. 1. Consistent with the
EFA, we find that the scattering amplitude inside the
cylinders is very close to the far-field values essentially
for all cases except very close to the origin (r < 0.5a).
To confirm the validity of EFA is not limited to scat-
terers with circular symmetry, we carried out a similar
study for infinite square rods of side length 2w. The cal-
culated scattering amplitude at different distances from
the rods are shown in Fig. 2. We find that the EFA is
equally valid for this case for distances of r < 0.5w.

Having confirmed the validity and limitations of the
EFA, we used Eq. (7) to calculate the scattering am-
plitude and cross section of scalar waves for a sphere
with €. = 10 and compared the results to the exact solu-
tion obtained by partial wave analysis, i.e., decomposing
the wave function into spherical harmonics and imposing
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FIG. 2. Calculated scattering amplitude at different distances
from the center of infinitely long square rods with ¢ = 6 and
side lengths of 2wk € =1 (left), 2 (middle), and 3 (right).

continuity of the field and its derivative. The EFA leads
to the following closed-form expression for the scattering
amplitude:

(€, — 1)k? sin qa — ga cos qa
¢ 1+ L(e, —1)(eihe —i2ka — 1)
(11)
Figure 3 shows the scattering cross section as a function
of wavenumber (divided by the diameter 2a) obtained by

f(q7k):_

integrating Eq. (11) over angle as 2w fo% dg-|f(q, k)?
(green). Also shown is the exact cross section calculated
using partial wave analysis (blue). The values calcu-
lated using the first Born approximation are shown in
red. For small wavenumbers, or long wavelengths, cor-
responding to Rayleigh scattering, all three calculations
are in agreement. As the wavenumber increases, the Born
method remains valid for 2ka/m < 0.4, while the EFA re-
mains valid for 2ka/7m < 1.6. In addition, the EFA accu-
rately predicts both the location of the fundamental reso-
nance around 2ka/m = 1, corresponding to the isotropic
monopole resonance, and its magnitude. On the other
hand, the Born approximation fails near resonance, pre-
dicting an increasing cross section for all wavenumbers.
The second resonance is not predicted with EFA, con-
sistent with the results shown in Fig. 1. Also shown is
the cross section obtained with EFA calculated using the
optical theorem as 223 f(0, k) (cyan). We find excellent
agreement with the cross section obtained by angle in-
tegration, confirming that the EFA satisfies the optical
theorem for this case. The accuracy of the EFA for ho-
mogeneous spheres can be understood from the field plots
of Fig. 1. In regions where the EFA is invalid, near the
center of the scatterer, the fields are close to zero, so their
contribution to the scattered field, according to Eq. (2),
is small. On the other hand, the results obtained with
EFA may be less accurate for inhomogeneous potentials
that increase near the origin.

The analytical expression in Eq. (10) can be used
for inverse scattering studies. For validation we consider
spheres, which allows us to use partial wave analysis to
obtain the scattering amplitude for all values of ¢q. This
expression is then used in Egs. (9) and (10) to obtain the
permittivity reconstruction. The accuracy of this recon-
struction is limited by the maximum spatial frequency of
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the scattered field, i.e., the limit of the integral in Eq.
(9). Ideally, the shortest possible wavelength is used.
However, for spheres the EFA appears to be valid only
for 2ka/m < 1.6 (Fig. 3). Therefore, the integral in Eq.
(9) is performed for ¢ < 1.67/a. We also confirmed that
the absolute value of the integral in the denominator of
Eq. (10) is less than 1, a requirement for series conver-
gence. Figures 4 through 6 compare the EFA-calculated
real (left) and imaginary (right) parts of the permittivity
distribution with the actual values and those obtained
with the first Born approximation.



Re(e,) Im(e,)
T
ES
> . . i
- 0 0.2 - 0 0.2
X (um) X (um)

y (um)
Yy (um)

-0.2 0 0.2 -0.2 0 0.2
X (um) X (um)
-0.1 .
5 o E
> >
0.1 .
0.2 0.2
“0.2 0 0.2 “0.2 0 0.2
x (um) X (um)

FIG. 5. Real (left panel) and imaginary (right panel) part of
e used in direct scattering (top panel) and reconstructions
obtained by inverse scattering using first Born (middle panel)
and EFA (bottom panel) methods for e =4.

Re(sr)

Im(e,)

y (um)
y (um)

0.2 .

-0.2 0 0.2
X (um)

y (um)
y (um)

0.2
<02 0 0.2
X (um)
B B
= =
> >
. 2
0.2 0 0.2 0
-0.2 0 0.2 <02

0 0.2
X (um) X (um)
FIG. 6. Real (left panel) and imaginary (right panel) part of
e used in direct scattering (top panel) and reconstructions
obtained by inverse scattering using first Born (middle panel)
and EFA (bottom panel) methods for e = 8.

C-5

For ¢, = 2 (Fig. 4), the scattering is weak and the
real part predicted using the first Born approximation
agrees reasonably well with the actual values. However,
the imaginary part is non-zero near the center. The EFA
is considerably more accurate with respect to both the
real and imaginary parts of €.. The EFA reconstruction
is slightly unresolved due to the limited spatial frequency
used in the inversion.

For e, = 4 (Fig. 5), the scattering is stronger and, ex-
pectedly, the prediction obtained with the Born approx-
imation is poor, both the real and imaginary parts. The
EFA continues to correctly predict purely real permit-
tivity. The calculated values agree reasonably well with
the actual values, though with less resolution compared
to the previous case. Increasing the resolution would re-
quire a larger ¢ limit, but this would cause the series to
diverge, leading to worse agreement. Despite this limita-
tion, the EFA is reasonably accurate for this case.

For e = 8 (Fig. 6), the scattering is even stronger and
again the Born approximation fails to predict the correct
permittivity. Although the EFA predicts the real part
and shape reasonable well, it predicts unacceptably large
imaginary part. This is because the scattering potential,
proportional to €. — 1, is large for this case, which lim-
its the maximum value of ¢ that can be used before the
denominator term in Eq. (10) approaches 1, in which
case the series sum diverges. Thus, for this strong scat-
tering regime, inverse scattering with EFA only provides
qualitative predictions.

In summary, we obtained a nonperturbative closed-
form solution to the Lippmann-Schwinger scattering
equation by assuming the scattered field within the scat-
tering volume is a spherical wave with a scattering am-
plitude equal to the far-field scattering amplitude. We
found this approximation to be largely valid for both
spherical and non-spherical scatterers, and that the cal-
culated scattering cross sections agree reasonably well
with exact results for spheres, even through the funda-
mental resonance. The closed-form expression also en-
ables reconstruction of the scatterer profile in inverse
scattering studies. We applied this approach to recon-
struct the permittivity profile of spheres and showed that
the EFA approximation yields considerable improvement
over the Born approximation. The simplicity, generality,
and accuracy of our method suggest it can be a reliable
and efficient tool for understanding a wide range of scat-
tering problems in physics.
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APPENDIX D:
INVERSE SCATTERING FROM TIME-VARIANT MEDIA
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Frequency conversion conditions:
We start from Maxwell’s equations in the absence of free charges:

V x E(r, ) =—%

= Vx(VxE(r,1)) =_w
o°D(r,1)
o’
°D(r,1)
ot’

(D1)
= V[V -E(r,t)]- V’E(r,t)=— 1,

= VZE(r,t)= u,

The displacement field D is related to the linear susceptibility y and polarization P by:
D(rat)= 80 (1 + Z)E(rat)

(D2)
= g,E(r,t)+P(r,?)

Substituting Eq. D2 in Eq. D1 and using u&=c?, we get the well-known form of the time-
dependent wave equation for the electric field in an inhomogeneous and isotropic medium:

1 8 o*P(r,1)
Vie— = |E(r,t) = y, ——22 D3
( CZ 6t2J ( ) IuO atz ( )

The polarization P(r,?) of the medium is the source of scattering. In a linear medium, the
relationship between the polarization and the electric field is:

P(r,t)=¢, Tdt’ x(t,tHE(r,t"), (D4)

where y is the linear susceptibility of the medium, whose Fourier transform is given by:

2(@)= [dt z(1)e™ . (DS)

—0o0

Equation Eq. D4 states the polarization at time # depends on the electric field at all past times,
which is a consequence of the fact that the medium does not respond instantaneously to the field.

Case 1: Time-invariant medium with frequency independent y and €

In this case, the medium is time invariant, and y has a constant value such that:
X)) =x(t—1")=x,0(-1). (D6)

Then from Eq. DS, (@) =y0. The polarization from Eq. (4) is:
P(r,0) = ¢, J'dt’;(oﬁ(t —YE(r,1") = £,y E(r,1). (D7)

Substituting Eq. D7 in Eq. D3, we get the wave equation for a time invariant, isotropic,
homogeneous medium with no dispersion:
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(W —%a—zJE(r,z) 0 (D8)
c” ot

Case 2: Time-invariant medium with frequency dependent y and € (temporal dispersion)

Since the medium is time invariant,
2(,1) = x(t=1t") (DY)
We further express E(r,¢) in terms of its Fourier transform as:

E(r,7) = j doE(r,0)e ™" (D10)
Then polarization from Eq. D4 is:

P(rﬁ ZL) = 80 J.da)E(r, a)) Jdt'z(t _t')e—l'a)t'
= 80 J.da)E(r’a))e_ia” J.d,z.Z(z_)eia)r (Dll)
= 80 jda)E(r, a))Z(a)) e—i(ot

Substituting Eq. (D11) and (D10) in Eq. (D3) we obtain:

Tda)e-"”f (V2 + &2 JE(r,0) + & y(@)E(r,0)]= 0 (D12)

where k=w/c. Since the Fourier transform of an integrable function f{w) is zero if and only if
flw)=0, the integrand in Eq. D12 must be zero for each frequency component and we obtain:

(V2 +#*)E(r,0) = ~ 47k’ 22 g )
4n (D13)

=—4rk’ E(r,0)

[e(w)-1]
4r
Equation (D13) is the well-known inhomogeneous Helmholtz equation for dispersive media. It

forms the basis of inverse scattering theory for time-invariant media. Importantly, because

Eq. (D13) must be satisfied for each frequency component E(r,®) independently, there is no
coupling between different frequency components. Therefore, a time-invariant medium cannot
scatter light to frequencies different from the incident frequency.

Case 3: Time-variant medium

This case corresponds to materials whose dielectric function is temporally modulated externally
or by internal processes independent on the incident field. In this case, the value of y at a time #
is instantaneous and does not depend on the value of the electric field at previous times #°. This

can be expressed as:

x@t,t)=y(@)o(-t"). (D14)

As aresult, the polarization from Eq. D4 is given by the product of y and E at time ¢:

D-3
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P(r,t)=¢, J' dt'y(t")o(t —tHE(r,t") =g, y()E(r,1) . (D15)
Then the wave equation (Eq. 3) can be written as:
, 167 1 0°
Vo7 B == —=[OE®r.0] (D16)
As before (Eq. D10), substituting the Fourier transform of E(r,¢), the LHS of Eq. D16 becomes:
(W —ij—]E(r f) = jda) (V2 + &% )E(r,m) e (D17)

Similarly, substituting the Fourier transform of E(r,?) in Eq. 16 along with the FT of g,

2(0) = [do z(@)e™ (D18)

We get,

Lzs—[l(z)E( t)]— c—%[?dm z(@)e™" deE(r Q)e ™

o0

1 6% %

= o Jda)';((a)') IdQE(r,Q)e‘““”QV
(D19)
1 82 OOd d E iot
=257 I w;((a))j oE(r,0 —o")e”
= J' dwe™" ac)—z jda)';((a)')E(r,a) -")
Substituting Eq. D17 and D19 into Eq. D16 leads to:
J-da)e_i‘”t (V2 +k’ )E(r, o)+k’ Ida)' y(@)E(r,o-0'") |=0 (D19)
As before, the FT in Eq. D19 is zero if and only if the integrand is zero, leaving:
(V2 + 2 )B(r,0) = —&* [do y(@)E(r,0- ') (D20)

The total field E is the sum of incident field Ei and scattered field Es. Since Ei is the solution of
LHS, we re-write Eq. D20 as:

2 ®
(V2+k2)ES(r,a))=—47r i‘— j do' y(o)E(r,0- ") (D21)
ﬂ.—oo

We find that, in contrast to time-invariant media, the source term is given by the convolution of
y with E. As a result, the field at @ depends on the field at all other frequencies o-®°, allowing

D-4
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for the possibility of frequency conversion in linear materials. The Eq. D21 will be solved for
more general solution using Green’s function (GF) approach, which is developed in next section.

2 ©
Egnw):f;jd%'Lﬁ%ﬁnryjdwq«wmeaﬁw—my (D22)
4r e

With the GF defined previously, and employing far field approximation, Eq. D22 becomes:

1k|r r’| ®

2
E (r,0) :k—jd3r' jda) 2(7,0)E(Y,0—0")
4z |r—

(D23)
~— jda) 2(r,0)E(r',0—-0')
dr r
The total field is the sum of incident field at ®; and scattered field. Thus,
Er,0")=E (r,0")o(0"—0,)+ E;(r,0" (D24)
Substituting Eq. D24 in Eq. D23, we get:
2 o
E (r,0)= k e I do' y(r',o)E(r'\0-0)é(o-0'-a,)
47 r i
e [ do' y(r, o) (10 - 0)
477 r -
* (D25)
k* e 3.y ik r ik’
=— J.dre* x(r ,o—-o )e"
47 r

2 ikr L
+k_e _[d3r’e_ikS"'_[da)';g(r’,a)')ES(r’,a)—a)')

Applying the extended far-field approximation,

ES (9': (P', ®)= ES (‘9: ?, ®) (D26)
and assuming the angular distribution at ® and o-o are similar (because of small frequency
shift}—and collecting like terms, we get:

3.9 —igr

Egnw)= x(ryo-o,)

lkr' o

+Z:—E5(r co)jd3 re T = jdw';g(r’,w')
) (D27)

47r r I
o
1——_[@’3 re kT — Idco';g(r’,co')

dr'e” y(ro-o,)
= Ei(r,0) =
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We can evaluate Eq. D27 for various output frequencies. First, we evaluate for o=w;. The  in
the numerator is now evaluated at zero frequency, which is the unperturbed part of the
susceptibility given by yo. The o' integral of the cyclic function in the denominator is zero,

leaving only the DC component which is also 0. Hence Eq. 46 is simply,
tkr

4 - [drre gy (1)
E (r,0,) =—2Z T - (D28)

k,' 3.0 —iks-r'e ’
I_EJ.d r'e - Xo(1')

Next we evaluate at displaced frequency o=+, when 7y has specific time dependence—

Yot A(e’Q’ lﬂt) The y in the numerator of Eq. D27 is at the frequency +£Q, and hence has a

value of A (perturbation to susceptibility). As before, the o integral in the denominator results in
%o and hence,

2 ikyr o,
l;iﬂ —er Id3r'e"qi" A(r')
E (r,0,£Q) = o
J.d —lk - Zo(r!)

The Egs. D27-D29 can be inverted to obtam ¥ (r,®) in terms of Es(r,0) following the steps
described in Eq. B6 to Eq. B1) of Appendix B.

(D29)

Example:

We can now consider a special case of temporal modulation of the form more explicitly:
x(t)=x, +2Acos(Qt)

. . D30
— XO +A(eth + e—th) ( )
The FT of the modulation is given by:
2(0) = j dte”" A + €)= 1,0(0) + A[S(0'+ Q)+ 5(0'-Q)]. (D32)
The wave equation Eq. D21 becomes:
(V2 +&)Eg(r,0) ==k 2 E(r,0) - A[E(T,0+ Q) + E(r,0-Q)]. (D33)
We find that, as a consequence of the modulation, the field at @ depends on that at w+Q.
Consider the E field,
E(r,0)=E(r,0)0(0o—0)+E (r,0) (D34)

substituting Eq. D34 into Eq. D33 for o=m; we get,
(V2 + 8 )Eg(r,0,) ==K 1,E(r,0,) - CA[Ey(r,0,+ Q) +Ey(r,0,-Q)]  (D35)

Note there is no incident field at displaced frequencies, and further the equation reduces to the
elastic case when A is zero. Similarly, the wave equations for the fields at o+Q and »-Q are:
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(V2 +k2)Eg(r,0,+Q) =k y E(r,0,+ Q) - kIAE, (r,0,)
—KA[Eg(r,0,+2Q)+Ey(r,0,)] , (D46)

(V2 +£2)Eg(r,0,-Q) = =k g Ey(r,0,-Q)— K2AE,(1,0,) D36)
—A[Eg(r,0,-2Q) + Ey(r,0,)]

where k:=(w+Q)/c. It follows there will be an infinite number of coupled equations for the
higher-order harmonics. If we consider only the first-order harmonics and ignore all second-
order terms, we obtain three coupled equations,

(V2 + 8 )Eg(r,0,) ==K 1B (r,0,) - K 7,E (r,0,), (D38)
(V2 + 12 )Eg(r,0,+ Q) ==k} g Eg(r,0,+ Q) - IAE(1,0,), (D39)
(V2 +K2)Eg(r,0,-Q) =k 2 Eg(r,0,-Q) - AR, (T,0,) (D40)

Note that Eq. D38 is identical to the elastic scattering case. Once Es(r, oi) is determined from
Eq. D38, it can be substituted in Eqs. D39 and D40 to solve for Es at the displaced frequencies.
Similar to the current inverse-scattering formalism, each of these equations can be recast as
integral equations using Green’s function. The main difference is that we must solve three
loosely coupled integral equations.

Applying GF approach and extended far-field approximation (EFA) to Eq. D38,

2 ikr 2 ikr

Ei(r,0) =L £ deV' e_ikjr,)(o(r')E[(r',a)l_)+k_e_Id3rre-ik5r’)(0(rr)ES(r,’a)i)
4 r 4r r
K o e o (D4D)
e r ik’ ’ ' y ik , e
“ar Id3r e Zo(”)E[(r,w[)+—ES(r,w[)Id3r e ZO(F)T
4ﬂ p L are )
Es(r,o) =—5 w0 (D42)

kl 3 2 —lk)
1+4ﬂjd — (7

As we can see, Eq. D42 is identical to Eq. D28 obtained earlier. Similarly applying GF approach
and EFA at the same frequencies to Eq. D39 and Eq. D40, leads to,

ik.r
l; E[drre " acr)
ES(r,a)l.iQ)— 7[2 r = (D43)
—L r e * [
47[jd3 e ! X(7')

It should be noted the scattering field in the left-hand side (LHS) and right-hand side (RHS) of
Eq. D39 are at the same frequencies and the EFA is required to be applied at that frequency.
Although this observation appears to be in conflict with the condition applied to arrive at

Eq. D27) - Eq. D29 (requiring EFA application at displaced frequencies), the discard of w+2Q
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terms essentially leads to the assumption the frequency displacement is small. The closed-form
expression with EFA is justified only when the modulating frequency is much smaller than the
incident frequency. This is normally the case for most of the problems.

Time-dependent Green’s function approach for inverse scattering:

Next we solve the same problem as above, but with a time-dependent GF approach to get final
expressions for field in terms of time, instead of frequency as derived earlier.

We shall now use the GF approach to solve the t-dependent wave equation [Eq. D16].

2
(V2—L2§—t2JG(r,t,r',t9 =47 8(r—r)d(t—t" (D44)
c
Defining R=|r-r’| and t=(t-t’|, we have

G(R.7) = [G(R,w)e™ do

. (D45)
5(1) = j e dao
Substituting Eq. D44 in Eq. D45, we get
j (V' +K)G(R,0) e do= - 4;rj S(R)e™dw
:>(V2 + kz)G(R,a) )=—4n5(R) (D46)
ikR iklr—r'|
=G(Rw)=5—=°
R |r-r'|

Hence the final solution is:
2
E(r,?) =i2jd3r' j dr'G(r—r',t - z')% [, MHEQ@', )] (D47)
c

Note that Eq. D47 is exact. However note that the integration over r is non zero only where ¥ is
non zero and is often restricted to meta-element volume. Although we can specify E(r,t) at far
field for inverse scattering studies, the value of the field inside the meta-element is unknown.
Hence this equation can be solved only under specific approximations.

The GF in time-domain is

o iklr—r'| .
G(r—-r',r)= J. - e’ dw
=
1 e}

J’eik|r—r'| e dw

_ | S z__|r—r'|
| r—7'| c

We consider three approximations. First, we assume y(t) is slower varying function of t when
compared to E(t). This is justified in cases where the shift in frequency is much smaller than the
incident frequency.

(D48)

=
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I P TN o o [Eae )]

a.z (D49)
==’ y(r',tHE(r")e™
Substituting Eq. D49 and D48 in Eq. D47, we get
? gt
E(r,1) :_a)_zjdar'jdt'l(r',t')E(r')e"'“’";ﬁ pop Tzt
¢ |r—r'] c
el((u/c)|r—r |
=k [d’r x| 7", t—— E(r)e™ " (D50)
[r—r’|
7 ikjr—r’|
=—szd3r'g r'yt—— |E(r',t)
¢ =4

Second, we consider r >> r. This is well justified as the observation location far away from the

scattering medium. Under these approximations, we write

r—r|= [r2 +r72r r']”2

NP (D51)
r

=r— % T
Employing this approximation and noting that the field inside the integral is a sum of incident
and the scattered field, the Eq. D50 reduces to
2 i r
E((T,t) _k— jd%' e-”"";((r',z —f) [E.(r',1)+Eg(r',1)] (D52)
r c

If we retain only the ﬁrst term in the integral, that constitutes as a third approximation—

ik;r' _iot

commonly known as ﬁrst Born approximation [Ei(r')= €™ '™ |—and we get

E(I',t) - = l(l)tJ‘d r Z(r t——) —i(k=k; )r'

=_L ’w’jd ( rt__j —iqr’

Then, % can be determined by multiplying both sides with ¢®" and integrating over q.
47[ —ikr —iwit _iqr 33 3.0 ] r —iq(r'-r) 33
I?re E(r,t) e e dq——Jdr V4 r,t—z Ie d’q

==X (r’ r— 1)
¢ (D54)

472- —ikr —io. iq iwr/c
= x(r,1)= I—zre “E(r,t) e e d g e’

(D53)

4 —1 r —lwtlr
jkz KRy, 1) e €7 d g
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(0]

As a sanity test, we see that if the scattered wave varies as €', then y(t) from Eq. D54 varies as

i(o—w)t

""", as it should. When o and o; are the same, then k=kiand y is independent of t and Eq.
D54 reduces to the first Born expression for time-independent case.
We shall now return to Eq. D52 and calculate it without Born approximation.

2 ir
E (r,t) —k— Id3r'e'ik"';((r',t—z)E[(r',t)
r c

ir 3 ” ,
47r r -[d ( _EJ Es(rst)
k2 eir , 3 i

- - la) d}" r t—— iqr
4 r -[ Z( cj

k2 eikr e r eikr'
+— jd3r'ek';( r',t—; T Es ,0'st)

(D55)

4z r
In the extended far-field approximation (similar to D26 for frequency dependence) given by

ES(H,’¢”t)=ES(09¢9t) (D56)

Substituting Eq. D56 in Eq. D55 and regrouping the terms we get,

S(l‘,t)— -z l(/)[J‘d r Z(r t—_j —lq-]“r
k2 ikr' (D57)
+—E(r, t)jd3r' e_”‘"';((r',t—ﬁj ¢
4 c) r
and collecting the like terms, Eq. D57 simplifies to
2 ikr

k_e_eia)itj‘d:iry Z(r"t_z)e—iq-rv
4 r c

Es(r,t) = (D58)

ikr'
re

1——d rit——
o net)

The Eq. D58 can be inverted to obtain y(r,t) in terms of Es(r,t) following the steps described in
Eq. B6 to B11 in Appendix B.
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APPENDIX E:
INELASTIC SCATTERING IN 2D
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The equations derived in previous appendices are valid also for two dimensions with appropriate
changes to spatial integration and the expression for the Green’s function (GF). In two

dimensions, the inelastically scattered field in the far field approximation using GF is:

PUCTEL)

87k

Performing the integral over frequency, we obtain:
i(kg+7/4)

E (r,0)=k’

[are™ [do' y(o, -0 E o)+ E(r,0)]. (E1)

e

87k, r

Assuming a monochromatic incident wave of the form E.(r',®,) = ™™, Eq. (E2) becomes:

E,(r,0) =k [@’r'e™ Lo, - 0)E(r,0) + 1(0)E,(r',0)]. (E2)

i(kgr+/4)

E (r,0,)=-k——| y(0,—0)|d’r'e" + y(0)|d’r'e ™" E (r\o,) |, (E3)
87k, r [l '[ d ‘[ :|
where q =k, -k, . Defining the scattering amplitude as:
,/Sﬂksr
Sk, k)=E(r,o) S (E4)
and applying the EFA to the scattered field within the object,
i(kyr'+7/4)
E(r',0,) == f(k k), (ES)
87k !
Eq. (E3) can be written as:
i(kyr'+7/4)
S &) =—k!| z(@, -0)[d’r'e™ + 4(0)f (& k) [dre™" Se——x|.  (EO)
87k r'
Solving for the scattering amplitude, we obtain:
—k y(o, o) |dr'e™ "
S(k,k,)= J- o k) (E7)
1+ 2y (0| d*re™ " ——m—
T0f —
The integral in the numerator of Eq. (E7) can be evaluated in cylindrical coordinates as:
a 2z
Idzr ve—iq~r' — Jdrvrv J' dee—iqr'cc)SB
0 0
= '[dr'r'27rJo(qr') (E8)
0
2ra
= Jl(qa)
q

where Ji(x) are Bessel functions. The integral in the denominator of Eq. (E7) cannot be solved
analytically, but it can be reduced to the following form:
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) . ol k) a o k) 27zd st
okt G~ hreos
'[d «/872'/(1’ ! 1/87r r' I ¢ (E9)

j‘ z(k r'+z/4)
0 \] s

Thus, the final expression for the scattering amplitude is:

_kszl(ws _a)i)zﬂjl(qa)
Sk k)= a l(qur'+7r/4) : (E10)

Jo(k;r)

1+ 27k (0 dr'r'ei
A )_[ W 0

27rJ o (k"




