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1.0 TECHNICAL SUMMARY
This report on Inverse-scattering Design of Metasurfaces summarizes the work SRI International 
(SRI) has accomplished from 15 July 2017 through 14 July 2018 under DARPA contract 
HR001117C0118.  
The primary objective of this program is to develop inverse-scattering methods to design passive
metasurfaces for frequency conversion (FC). In particular, the goal is to extend the k-space 
formalism to study inelastic scattering from metasurfaces and explore the possibility of achieving 
FC using only linear materials by exploiting, for instance, the coupling between multiple 
resonances of metasurfaces and/or spatiotemporal modulation intrinsic in the materials. 
Major achievements are: 

1. Developed a formalism for studying direct and inverse scattering in dielectric media and 
applied k-space engineering approach to study both elastic and inelastic scattering.  

2. Identified an approximation called extended far-field approximation (EFA) and 
demonstrated that it accurately predicts the scattered field even through resonance in 
high-index contrast structures.  

3. Showed the EFA arrived at the closed form expression for inverse scattering studies both 
in elastic and inelastic cases. The ability to use closed-form expressions considerably 
speeds up the inverse-scattering studies. 

4. Developed COMSOL-based codes to solve Maxwell equations with time-dependent 
permittivity and used them to verify the accuracy and validity of EFA. 

5. Showed that both EFA and COMSOL codes predicted frequency conversion that was 
most effective when the resonance in metastructures was designed to be at the desired 
scattered frequency.  

a. This result is counterintuitive because the conventional understanding is that the 
resonant frequency must be matched to the incident frequency for the maximum 
scattering. 

b. This result opens up the design space for efficient linear frequency conversion as 
it alleviates the phase-matching requirement. 6. Identified passive systems with potential for time-dependent permittivity leading to FC.

2.0 TECHNICAL DISCUSSION 
2.1 Background 
The forward-scattering approach of electromagnetics specifies the permittivity distribution and 

to obtain the scattered fields. Alternatively, the inverse-scattering 
approach specifies the scattered fields and applies an inverse-scattering algorithm to calculate the 
permittivity distribution of the scattering source. The ability to use inverse-scattering methods to 
design structures with specific scattered fields would greatly benefit the development of 
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metasurfaces surfaces containing subwavelength structural elements designed to modify the 
amplitude and phase of the electromagnetic fields. The current state-of-the art (SOA) approach 
for designing metasurfaces relies on an iterative forward-scattering approach to design elements 
with the desired amplitude and phase in the scattered fields, resulting in inefficient design and 
suboptimal performance. A more promising approach is to employ inverse-scattering methods to 
directly calculate the size, shape, and permittivity of a scatterer from the specified amplitude and 
phase of the scattered fields.  
The current project aims to develop inverse-scattering methods for designing metasurfaces. The 
main objective of the program is to develop an inverse-scattering formalism based on the Fourier 
(k)-space representation that can be used to design frequency-converting metasurfaces without 
using nonlinear materials. To achieve FC, we explored two approaches: 

1. Inelastic scattering metasurfaces. Specified k-space diagram with incident and scattered 
wave vectors of different amplitudes and applied inverse-scattering methods to determine 
the associated permittivity distribution. 

2. Metasurfaces with spatiotemporally modulated permittivity. Studied metasurfaces 
analogous to acousto-optic modulation in which the frequency shift of the scattered light is 
equal to the frequency at which the material is modulated. We explored both actively 
modulated metasurfaces and passive metasurfaces with self-induced permittivity 
modulation.  

2.2 Results 
Toward the eventual goal of studying frequency converting inelastic metasurfaces, first we 
developed the k-space formalism to study elastic scattering and then extended it to inelastic 
scattering. 
2.2.1 Elastic scattering from time invariant media: In the time-invariant media, the dielectric 
function does not depend explicitly on time. For this case, we derived expressions for the 
scattering potential (dielectric function) from the scattered field in k-space as described in 
Appendix A. We then developed a MATLAB code that employed k-space formalism to calculate 
the dielectric function of the scatterer first using the Born approximation (Eq. A5), and then the 
Rytov approximation (Eq. A7). For validation, first we assumed an infinite cylinder of known 
radius and dielectric constant, and obtained the scattered fields for a wavelength of 1 m using 
the full-wave frequency-domain solver HFSS. We then used the calculated field as input to our 
inverse scattering code to obtain the dielectric function. The results obtained in the first Born 
approximation are shown in Figure 1. 
Note the dielectric function predicted from inverse scattering (middle and bottom row) agree 
with the assumed value of r=1.2+0i only for the smallest radius value (R=0. m). For larger 
radii, the inverse-scattering method yields real and imaginary parts of r much larger than the 
assumed values. The Born approximation breaks down for larger cylinders. Similarly, we found 
(not shown) the first Born approximation also fails for cylinders with a larger dielectric constant 
in air. We also found the next level of approximation, the Rytov approximation, did not improve 
accuracy (not shown) in direct and inverse scattering. 
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Extended far-field approximation (EFA): -based 
derivation indicated the infinite series can be non-perturbatively summed into a closed form 
when the angular dependence of scattered field within the scattering volume is the same as that 
in the far field. In the elastic-scattering case, 

, ,

, , , ,

s ik , kr ,
ikr

s S

S S

eE f
r

f f
    (1) 

where Es is the scattered electric field, fs is the scattering amplitude, ki and kS denote the incident 
and scattered wave vectors, and the primes denote the angular values inside the scatterer. This 
approximation called EFA enables us to obtain analytical solutions to both scattered field and 
the dielectric function as described in detail in Appendix B.  
We then numerically verified the accuracy of the approximation by considering both 2D and 3D 
structures, spherically symmetric and asymmetric structures, and increasing the dielectric 
contrast (between the structure and the background). Interestingly, the accuracy was found be 
valid even through Mie resonance for all cases considered as long as the dielectric contrast was 
about 8. Since none of the closed-form expression available in the literature is accurate near 
resonance in high-contrast structures, we summarized the results and submitted a paper to 

Figure 1: Inverse scattering with the Born approximation for cylinders ( =1.2) with three different radii as noted for 
a wavelength of 1 m. The calculated scattering amplitudes in k-space (top row), the real part of  (middle row), and 
the imaginary part of  (bottom row) are shown.  
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Physical Review Letters for possible publication. The results of the test performed and the 
applicability and the limitations of the EFA are discussed in detail in the manuscript, which is 
included here as Appendix C. 
2.2.2 Inelastic scattering from time-variant media: As we have seen, in time-invariant media 
in which the dielectric function is time-independent, the FC does not occur. To arrive the 
conditions for the FC, we began with most general Maxwell equations in which the dielectric is 
also time-dependent and shows, as described in Appendix D, that the FC is possible only when 
susceptibility has intrinsic or extrinsic time dependence. This formalism is then extended to 
apply EFA.  
Briefly, for inelastic scattering, the permittivity (or equivalently susceptibility ) will have 
extrinsic time dependence and the Maxwell equation is: 

),()(1),(1
2

2

22

2

2
2    (2) 

The Fourier transform of the above equation reduces to: 
2

2 2  (3) 

where k= : 
2 2     (4) 

and the solution to Eq. 3 in terms of G is, as before in far field approximation is: 
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The total field is the sum of incident field at i and scattered field. Thus, 

    (6) 

Substituting Eq. 6 in Eq. 5, we get: 
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If we assume that is the shift in the frequency is much smaller than the interrogating 
frequency then the EFA can be applied as before. Using Eq. 1 we get< 

2 3

2 3

2 3

2 3

1
4
1

4

1
4
11

4

E r

E r

( , ) ' ( , )

' ( , ) ( , , )

' ( , )
( , )

' ( , )

s

s

ikr
iq r

S i

ikr ikr
ik r

S

ikr
iq r

i

S ikr
ik r

ek d r e r
r

e ek d r e d r f
r r

ek d r e r
r

ek d r e d r
r

 (8) 

This expression is similar to the elastic-scattering case. The Eq. (8) can be inverted to obtain 
(r, ) in terms of Es(r, ) as in the case of elastic-scattering studies.

First, we used EFA to calculate the scattering cross section, both elastic and inelastic, for 
infinitely long cylinders subjected to time harmonic (i.e., single frequency) modulations (Figure 
2). The required equations for cylinders are given in Appendix E. For these calculations, the 
incident frequency is 30 THz, r=8, and the modulation amplitude is =0.1. We calculated the 
cross sections, normalized to the cross-sectional area of the cylinder, for modulation frequencies 
of 5 THz (left), 10 THz (middle), and 20 THz (right). The top panel shows the cross section for 
elastic scattering, i.e., scattering at 30 THz. In this case, the cross section is a maximum for a 
particle radius of 0.64 m. The bottom panels show the cross section for the sum and difference 
frequencies. Interestingly, we found the particle size needed to maximize inelastic scattering 
differed from the value needed to maximize elastic scattering, and in addition, was different for 

Figure 2. Calculated scattering cross section for infinitely long cylinders subjected to time-harmonic modulations 
of 5 THz (left), 10 THz (middle), and 20 THz (right), as a function of radius. The top plot shows the results for 
elastic scattering at 30 THz, while the bottom plot shows the cross section for the inelastic scattered fields. 
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the sum and difference frequencies. In fact, when the results were plotted as a function of kja, 
where kj is the relevant wavenumber, all resonances occurred at the same value, implying the 
particle size for maximum scattering is inversely proportional to the value of kj, or equivalently, 
directly proportional to the wavelength as 
shown in Figure 3. 
One of the important conclusions from 
these calculations is that the scattering is 
largest when the meta-element has 
resonance at the scattered frequency. In 
traditional Mie-scattering-based 
metasurface design for elastic scattering, 
the resonant frequency is chosen to be 
the incident frequency. The calculations 
indicate that for inelastic scattering and 
maximum conversion, the elements have 
to be resonant at the output frequency. 
This observation has strong implications. 
Linear frequency conversion approaches, 
as discussed in the following section, can 
be designed for efficient conversion by eliminating the need for complicated phase matching. 
Since the conclusion is valid independent of how the photons are generated inside the scatterer, 
this is applicable for absorbing and re-emitting (at lower frequency) structures as well. In 
addition to FC metasurfaces, we see this principle can be used in designing up-/down- converting 
particle sizes for enhanced brightness of selective colors in a display. 
We also developed full-wave time-domain COMSOL codes to calculate the inelastic scattering 
by infinitely long cylinders subjected to time-harmonic modulations. These simulations confirm 
the results obtained with EFA described above, though convergence issues made it difficult to 
make quantitative comparisons. 

3.0 Linear FC options 
Starting from the time-dependent linear wave equation, we identified the conditions for FC. We 
showed that FC is possible as long as the permittivity is also time-dependent at the time of 
illumination. This occurs when the permittivity is 

a. Time-dependent even for a short time during illumination, 
b. Modulated in time by mechanisms intrinsic to the material, for example by phonons, 
c. Modulated externally, for example by voltage. 

Since we are interested in passive and linear FC systems, option c was not considered further. 
We explored possible systems in categories a and b above. Based on the above calculations and a 
literature survey on metasurfaces for FC, we identified a few systems and requirements for 
passive linear conversion. 
Dipoles and Raman Solids: Let us consider two dipoles in close proximity. When one of the 
dipoles is excited by incident radiation, the oscillating charges produce an oscillating electric 
field at the other dipole. The charges in the second dipole will start oscillating, which in turn will 
produce an oscillating electric field. In this mechanism, known as Forster resonance energy 
transfer (FRET), the energy from the incident radiation is transferred non-radiatively through the 

Figure 3: The variation of resonant radius with the  wavelength 
of scattered waves. 
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Coulomb interaction (or by virtual photons). When the 
incident frequency is matched to the resonant frequency 
of the dipole, the scattering is most efficient. However, 
even if the resonant frequencies of the dipoles are 
different, the frequency of the scattered wave will be 
identical to that of the incident wave, because the 
frequency of the second dipole is initiated and sustained 
by that of the incident radiation (and first dipole). As 
such, there will be no FC. Similarly, two meta-atoms or 
meta-molecules, which behave like dipoles at their 
lowest-order resonances, can transfer energy non-
radiatively, but the frequency of the scattered radiation 
will not change. 
On the other hand, FC may occur if the dipoles oscillate 
independently of the incident radiation. Examples include 
Raman scattering by vibrating molecules and Brillouin 
scattering by acoustic phonons in passive systems. For 
passive FC to use materials or system in which 
permittivity has intrinsic or inherent time dependence, one 
such possibility is to exploit Raman scattering. The lattice 
oscillations particularly the longitudinal optical phonons have stronger interactions with 
photon field by way of electrons in the system. For example, FC has been demonstrated in doped 
Si (and GaAs) for frequency close to the direct gap of Si, as shown in Figure 4 [Hase et al., New 
J. of Phys., 15, 055018 (2013)].  
Fluorescent materials: The presence of concentrated electric fields at the dipole site change the 
local environment (i.e., the bonding arrangement in the excited state or local polarization). One 
example is fluorescent materials in which the emission and absorption spectrum are shifted in 
frequency even at low intensities. Notice that in both dipole and fluorescent cases, the local 
permittivity evolves in time independently from the incident field, which is a requirement for FC. 
In fluorescent materials, the incident radiation induces a step-function-like change in the 
permittivity with time. 
External Triggers: There are several publications that describe FC. The methods employ 
external triggers to change the permittivity (a) between interacting meta-elements shown in 
Fig. 5a [Lee et al, https://www.researchgate.net/publication/317344130], (b) of elements on the 
surface surrounding high Q cavity shown in Fig. 5b [Notomi and Mitsugi, Phys. Rev. A73, 
051803 (2006)], or (c) by an impulse as the wave-front progresses through the material as shown 
in Fig. 5c [Xaio and Agrawal, https://doi.org/10.1364/FIO.2010.FWQ5]. At low intensities, FC 
has been demonstrated in a design that employs hyperbolic metamaterial to enhance the 
interaction between the fluorescent material (R6G and Alq3) with overlapping absorption and 
emission spectrum (Fig. 5d). [Newman et al., 
https://doi.org/10.1364/CLEO_QELS.2015.FM3C.1]. 
We will consider the following options for designing passive metasurfaces for FC: 
Fluorescent materials: Design a non-absorbing meta-element whose resonant frequency is close 
to the incident frequency. Choose a fluorescent material such as R6G whose absorption spectrum 
includes the designed resonant frequency and places it in close proximity to the resonator. When 

Figure 4: Output frequencies are shifted 
from the incident frequencies by the 
multiples of fundamental longitudinal 
optical (LO) phonon frequency of 
15.6 THz in doped Si. 
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the radiation is incident on resonator, it will transfer energy non-radiatively to R6G, which in 
turn will emit at frequencies different from the incident frequency. Since the emission will be 
isotropic, the resonator-R6G pair will be placed in an array specifically chosen to radiate in one 
direction in the far field.  

(a) Cavity: Include elements near the cavity that are replaced or coated with fluorescent 
material. This is a slightly modified version of design (a) above. The permittivity change 
induced by the incident field may be large enough to shift the emission frequency.  

(b) Raman: Choose an incident frequency 0 and material with a sizable longitudinal optical 
(LO) phonon frequency. Identify the frequency, LO, near which the LO Raman modes 
are active. Design a meta-element made of that material to resonate at that 0+ LO or 0-

LO frequency. Because of photon-phonon coupling, the frequency of some portion of the 
emitted light will be shifted. 
resonant frequency matches the scattered frequency. Since the emission will be in all 
directions, the resonator will be placed in an array specifically chosen to radiate in one 
direction in the far field. 

(c) Three-level systems: Consider a material or design 
with a three-level system as shown in Figure 6. 
The incident photon with energy E13 is absorbed, 
resulting in an electron from L1 being promoted to 
L3. The electron decays quickly to L2 by 
nonradiative process and eventually recombines 
with holes in L1, emitting a down-converted 
photon with energy E12. If the element made of 
this material is designed to have E23 to be one LO 
photon energy and to have resonant frequency at 
E12/ , a most efficient, passive, and linear 

Figure 5: Some of the predicted or demonstrated designs for linear frequency conversion. (a) The intermediate 
region between two C-rings is photo-excited. (b) Meta-atoms around the defect in photonic crystals are photo 
activated. (c) There is an impulse change to refractive index. (d) The difference between emission and 
absorption frequencies of R6G is exploited for frequency conversion. All except (d) require external activation. 

Figure 6: Three-level system converts 
incident photon with energy E13 to output 
photons with energy E12. 
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frequency conversion can be expected. Note the design is not limited to materials with 
three-level systems 

4.0 Conclusions 
In summary, we have studied both elastic and inelastic scattering by solving Maxwell equations 
with a new approximation extended far-field approximation and obtained closed-form 
expression for scattered field and permittivity profile of the scatterer. The EFA has been tested 
and produced accurate results for permittivity contrast of 8. The ability to use closed-form 
expressions considerably speeds up the inverse-scattering studies. Our calculations indicate that 
FC is possible as long as the permittivity is also time dependent at the time of illumination. The 
time dependence can be intrinsic as in Raman solids and fluorescent materials, or extrinsic as in 
voltage or acoustic-controlled solids, or it can be designed to have absorption and multiple 
energy levels with energy transfer assisted by radiative or nonradiative process. Importantly, we 
conclude that meta-elements need to be designed to have resonance at the scattered frequency for 
more efficient frequency conversion. We have identified a few likely designs for passive and 
linear frequency conversion.  
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The scalar wave equation for time-invariant media is: 
2 2

2
2 2

1 1 12 2(r, ) [ ( ) ] (r, )t r t
c t c t

.	 (A1)	
Taking the Fourier transform of Eq. (A1), we obtain: 

2
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where k= /c G(r,r
2 2 ,	 (A3)	

the general solution for the total field is: ,	 (A4)	
where i is the incident field. In the inverse scattering approach, V(r) is calculated from the 
known incident field and the scattered field specified in the far field. However, the integral in 
Eq. A4 is over the region within the scattering element where the scattering potential is non-zero 
and the field is unknown. Hence V(r) can only be obtained approximately. In the most common 
approximation called first Born approximation  the total field (r, ) inside the scattering 
element is replaced by i(r,
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In the Born approximation, the inside the integral in Eq. 4 is replaced by the incident wave, 
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But, from full calculations, the can be written as a sum of incident wave and scattered wave in 
the form: 
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	 									(A6)	
Taking the Fourier transform of both sides with respect to q we obtain: 	 (A7)	
The scattering amplitude f(q, ) is obtained for various incident and scattered wave vectors from 
either measurements or full-

The Born approximation appears to work well away from resonance, i.e., for small scatterers and 
low-permittivity contrast. The other common approximation Rytov approximation works 
better for sizes larger than resonant sizes and higher contrast. In this approximation, a complex 
phase shift is added to the incident; when it is substituted in the wave equation one obtains: (A8)
We see that Eq. A8 is similar to Eq. A6, except the expression in the left-hand side of the 
equation is slightly more complicated, but can be evaluated.  



Final Report SRI Project P24564 12 July 2018 

B-1 

APPENDIX B: 
EXTENDED FAR-FIELD APPROXIMATION (EFA): ELASTIC SCATTERING 
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Since both Born and Rytov approximations are invalid near resonance, we return to Eq. (A4) to 
carry out the infinite series in a form suitable for inverse scattering studies. We recast Eq. (A4) 
by considering that total field is a sum of incident (i) and scattered (s) fields. We get,  	 (B1)	
In the far-

rk

|'|

si
ikr

rrik 	 (B2)	
Substituting Eq. (B2) in Eq. (B1), we get:  
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In the extended far-field approximation (EFA), we assume the angular distribution of the field 
inside the scatterer is the same as that in the far field. In other words, 
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Substituting Eq. (B4) in B3, we get, 
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	 (B5)	
We see the first term on the right-hand side (RHS) is simply the Born term and the second term 
can be moved to the left-hand side (LHS) to get a closed for expression for the scattered field as: 
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Notice that Eq. 12 has a similar form to the first Born expression except for a ks-, or angle-
dependent denominator arising from the infinite series sum. In terms of the scattering amplitude, 
Eq. (B6) can be written as: 
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The Eq. (B7) gives the scattering amplitude as a function of the potential, accurate to all orders. 
In the forward scattering problem, V(r) is known and the scattering amplitude f(q, ) can be 
determined from Eq. (B7). In the inverse scattering problem, f(q, ) is known and V(r) needs to 
be obtained. Taking the Fourier transform (FT) of Eq. (B7) with respect to q, we obtain: 
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where VB(r) is the potential obtained from the first Born approximation. Rearranging Eq. (B8):  
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Substituting this expression for V(r ) in the integral, 
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Equation (B10) can be summed in a geometric series to obtain, 
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Equation (B11) gives the potential in terms of the first Born potential VB, which is the FT of the 
scattering amplitude f(q) by Eq. (B7), and is accurate to all orders. For the geometric series to 
converge, this summation implicitly assumes the integral in the denominator is small and needs 
to be verified in all calculations.  
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APPENDIX C: 
MANUSCRIPT SUBMITTED TO PHYSICAL REVIEW LETTERS
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INVERSE SCATTERING FROM TIME-VARIANT MEDIA 
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Frequency conversion conditions: 
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The displacement field D is related to the linear susceptibility and polarization P by: 
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Substituting Eq. D2 in Eq. D1 and using 0 0=c2, we get the well-known form of the time-
dependent wave equation for the electric field in an inhomogeneous and isotropic medium: 

2
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2
2 	 (D3)	

The polarization P(r,t) of the medium is the source of scattering. In a linear medium, the 
relationship between the polarization and the electric field is: 

0 ,	 (D4)	
where is the linear susceptibility of the medium, whose Fourier transform is given by: .	 (D5)	
Equation Eq. D4 states the polarization at time t depends on the electric field at all past times, 
which is a consequence of the fact that the medium does not respond instantaneously to the field. 

Case 1: Time-invariant medium with frequency independent and

In this case, the medium is time invariant, and  has a constant value such that: .	 (D6)	
Then from Eq. D5, . The polarization from Eq. (4) is:  

0000 .	 (D7)	
Substituting Eq. D7 in Eq. D3, we get the wave equation for a time invariant, isotropic, 
homogeneous medium with no dispersion: 
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0),(2

2

2
2 t

tc
rE 	 (D8)	

Case 2: Time-invariant medium with frequency dependent and temporal dispersion)

Since the medium is time invariant, 
                       (D9) 

We further express E(r,t) in terms of its Fourier transform as: 
ti                   (D10)

Then polarization from Eq. D4 is:  

ti

iti

ti

ed

eded

etttddt

)(),(

)(),(

)(),(),(

0

0

'
0

	 				(D11)	
Substituting Eq. (D11) and (D10) in Eq. (D3) we obtain: 

222ti 	 (D12)	
where k= /c. Since the Fourier transform of an integrable function f( ) is zero if and only if 
f( )=0, the integrand in Eq. D12 must be zero for each frequency component and we obtain: 

2 2 2

2

4
4

1
4

4

E r E r

E r

( )( , ) ( , )

( )
( , )

k k

k
	 					(D13)	

Equation (D13) is the well-known inhomogeneous Helmholtz equation for dispersive media. It 
forms the basis of inverse scattering theory for time-invariant media. Importantly, because 
Eq. (D13) must be satisfied for each frequency component E(r, ) independently, there is no 
coupling between different frequency components. Therefore, a time-invariant medium cannot 
scatter light to frequencies different from the incident frequency. 

Case 3: Time-variant medium
This case corresponds to materials whose dielectric function is temporally modulated externally 
or by internal processes independent on the incident field. In this case, the value of  at a time t
is instantaneous and does not depend on the value of the electric field at previous times t
can be expressed as: .	 (D14)	
As a result, the polarization from Eq. D4 is given by the product of  and E at time t:
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00 .	 (D15)	
Then the wave equation (Eq. 3) can be written as: 

),()(1),(1
2

2

22

2

2
2 .	 (D16)	

As before (Eq. D10), substituting the Fourier transform of E(r,t), the LHS of Eq. D16 becomes: 
ti22

2

2

2
2 	 (D17)	

Similarly, substituting the Fourier transform of E(r,t) in Eq. 16 along with the FT of , 
ti 	 (D18)	

We get, 

)',()'('

)',()'('1

),()'('1

),()'('1),()(1

2

2

2

2

2

)'(
2

2

2

'
2

2

22

2

2

rE

rE

rE

rErE

d
c

ed

edd
tc

edd
tc

eded
tc

tt
tc

ti

ti

ti

titi

	 (D19)	

Substituting Eq. D17 and D19 into Eq. D16 leads to: 

222ti 	 (D19)	
As before, the FT in Eq. D19 is zero if and only if the integrand is zero, leaving: 

)',r(E)'('),r(E dkk 222 	 (D20)	
The total field E is the sum of incident field Ei and scattered field Es. Since Ei is the solution of 
LHS, we re-write Eq. D20 as: 

2
2 2 4

4
E r E r( , ) ' ( ') ( , ')S

kk d 	 (D21)	
We find that, in contrast to time-invariant media, the source term is given by the convolution of 

 with E. As a result, the field at  depends on the field at all other frequencies -
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for the possibility of frequency conversion in linear materials. The Eq. D21 will be solved for 
developed in next section. 

2
3

S 	 (D22)	
With the GF defined previously, and employing far field approximation, Eq. D22 becomes: 

2
3

2
3

4

4

r r| '|

s

ik

S

ikr
ik r

    (D23) 

The total field is the sum of incident field at i and scattered field. Thus, 

     (D24) 

Substituting Eq. D24 in Eq. D23, we get: 
2

3

2
3

2
3

2
3

4

4

4

4

E r E r

E r

E r

( , ) ' ' ( , ') ( , ') ( ' )

' ' ( , ') ( , ')

' ( , )

' ' ( , ') ( , ')

s

s

s i

s

ikr
ik r

S i i

ikr
ik r

S

ikr
ik r ik r

i

ikr
ik r

S

k e d r e d r
r

k e d r e d r
r

k e d r e r e
r

k e d r e d r
r

  (D25) 

Applying the extended far-field approximation, 
      (D26) 

and assuming the angular distribution at  and - ' are similar (because of small frequency 
shift) and collecting like terms, we get: 

2
3

2
3

2
3

2
3

4

4

4

1
4

E r

E r

E r

( , ) ' ( , )

( , ) ' ' ( , ')

' ( , )
( , )

' ' ( , ')

s

s

ikr
iq r

S i

ikr
ik r

S

ikr
iq r

i

S ikr
ik r

k e d r e r
r

k ed r e d r
r

k e d r e r
r

k ed r e d r
r

   (D27) 
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We can evaluate Eq. D27 for various output frequencies. First, we evaluate for = i. The  in 
the numerator is now evaluated at zero frequency, which is the unperturbed part of the 
susceptibility given by 0. The ' integral of the cyclic function in the denominator is zero, 
leaving only the DC component which is also 0. Hence Eq. 46 is simply, 

2
3

0

2
3

0

i

s

ik r
iq ri

S i ikr
ik ri

    (D28) 

Next we evaluate at displaced frequency = i± when has specific time dependence

0
i t i t . The  in the numerator of Eq. D27 is at the frequency ± and hence has a 

value of (perturbation to susceptibility). As before, the ' integral in the denominator results in 
0 and hence,  

2
3

2
3

0
s

ik r
iq r

S i ik r
ik r

   (D29) 

The Eqs. D27-D29 can be inverted to obtain (r, ) in terms of Es(r, ) following the steps 
described in Eq. B6 to Eq. B1) of Appendix B. 

Example:

We can now consider a special case of temporal modulation of the form more explicitly: 

(D30) 

The FT of the modulation is given by: .	 (D32)

The wave equation Eq. D21 becomes: 
2 2 2 2

0S .	 (D33)	
We find that, as a consequence of the modulation, the field at  depends on that at ± . 
Consider the E field,  	 (D34)	
substituting Eq. D34 into Eq. D33 for i we get, 

2 2 2 2
0S i i S i S i 	 (D35)	

Note there is no incident field at displaced frequencies, and further the equation reduces to the 
elastic case when  is zero. Similarly, the wave equations for the fields at +  and - are: 
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2 2 2 2
0

2 2

E r E r E r

E r E r

( , ) ( , ) ( , )

( , ) ( , )
S i S i i i

S i S i

k k k

k ,	 (D46)	
2 2 2 2

0

2 2

E r E r E r

E r E r

( , ) ( , ) ( , )

( , ) ( , )
S i S i i i

S i S i

k k k

k
,	 (D36)	

where k±=( ± )/c. It follows there will be an infinite number of coupled equations for the 
higher-order harmonics. If we consider only the first-order harmonics and ignore all second-
order terms, we obtain three coupled equations, 

2 2 2 2
0 0S i i i S i ,	 (D38)	

2 2 2 2
0( , ) ( , ) ( , )S i S i i ik k k ,	 (D39)	

2 2 2 2
0S i S i i i .	 (D40)	

Note that Eq. D38 is identical to the elastic scattering case. Once ES(r, i) is determined from 
Eq. D38, it can be substituted in Eqs. D39 and D40 to solve for ES at the displaced frequencies. 
Similar to the current inverse-scattering formalism, each of these equations can be recast as 

loosely coupled integral equations. 

Applying GF approach and extended far-field approximation (EFA) to Eq. D38, 
2 2

3 3
0 0

2 2
3 3

0 0

s s

s s

ikr ikr
ik r ik r

S i i S i

ikr ikr
ik r ik r

i i S i

 (D41) 

2
3

0

2
3

0

i

s

ik r
iq ri

S i ikr
ik ri

    (D42) 

As we can see, Eq. D42 is identical to Eq. D28 obtained earlier. Similarly applying GF approach 
and EFA at the same frequencies to Eq. D39 and Eq. D40, leads to,  

2
3

2
3

0
s

ik r
iq r

S i ik r
ik r

   (D43) 

It should be noted the scattering field in the left-hand side (LHS) and right-hand side (RHS) of 
Eq. D39 are at the same frequencies and the EFA is required to be applied at that frequency. 
Although this observation appears to be in conflict with the condition applied to arrive at 
Eq. D27) - Eq. D29 (requiring EFA application at displaced frequencies), the discard of ±2
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terms essentially leads to the assumption the frequency displacement is small. The closed-form 
expression with EFA is justified only when the modulating frequency is much smaller than the 
incident frequency. This is normally the case for most of the problems. 

Time-
Next we solve the same problem as above, but with a time-dependent GF approach to get final 
expressions for field in terms of time, instead of frequency as derived earlier. 
We shall now use the GF approach to solve the t-dependent wave equation [Eq. D16]. 

2
2

2 2    (D44) 

Defining R=|r- | and =|t-

det

deRGRG

ti

ti

)(

),(),(
      (D45) 

Substituting Eq. D44 in Eq. D45, we get 
2 2

2 2

4

4
| '|

( , ) ( )

( , ) ( )

( , )
| ' |

i t i t

ikR ik r r

k G R e d R e d

k G R R

e eG R
R r r

    (D46) 

Hence the final solution is: 

)','r(E)','r(
'

)','(''),r(E 2 tt
t

ttrrGdtrd
c

t
2

3
2

1    (D47) 

Note that Eq. D47 is exact. However note that the integration over r' is non zero only where is 
non zero and is often restricted to meta-element volume. Although we can specify E(r,t) at far 
field for inverse scattering studies, the value of the field inside the meta-element is unknown. 
Hence this equation can be solved only under specific approximations. 
The GF in time-domain is  

c
rr

rr

dee
rr

de
rr

errG

irrik

i
rrik

|'|
|'|

|'|

|'|
),'(

|'|

|'|

1

1
    (D48) 

We consider three approximations. First, we assume (t) is slower varying function of t when 
compared to E(t). This is justified in cases where the shift in frequency is much smaller than the 
incident frequency. 
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ti

ti

et

e
t

ttt
t

)'r(E)','r(

))'r(E
'

)'()','r(E)'(
' 22

2

22

    (D49) 

Substituting Eq. D49 and D48 in Eq. D47, we get 
2

3
2

2 3

2 3

1

r r

r r

r rE r E r
r r

E r
r r

E r
r r

'

( / )| '|

| '|

| ' |( , ) ' ' ( ', ') ( ') '
| ' |

' ', ( ')
| ' |

' ', ( ', )
| ' |

i t

i c
i t

ik

t d r dt r t e t t
c c

r ek d r r t e
c
r ek d r r t t
c

 (D50) 

Second, we consider r >> r . This is well justified as the observation location far away from the 
scattering medium. Under these approximations, we write 

r'

r'

r'r'r'r /

k
r

r
r

rr 2122 2

      (D51) 

Employing this approximation and noting that the field inside the integral is a sum of incident 
and the scattered field, the Eq. D50 reduces to 

2
3

ikr
i

S i S
k    (D52) 

If we retain only the first term in the integral, that constitutes as a third approximation
commonly known as first Born approximation [Ei(r')= ] and we get 

2
3

2
3

4

4
q r

E r r

r

i( k k ) '

'

( , ) ' ',

' ',

i

i

ikr
i t i r

ikr
i t i

k e rt e d r t e
r c

k e re d r t e
r c

    (D53) 

Then, can be determined by multiplying both sides with  and integrating over q.
3 3 3

2

3
2

3
2

4

4

4

q r q r

q r

q r

E r r

r

r E r

E r

( ' )

/

( )

( , ) ' ',

,

, ( , )

( , )

i

i i

i i

i tikr i i r

i t i r cikr i

i k k r i t i

rre t e e d q d r t e d q
k c

rt
c

t re t e e d q e
k

re t e e d q
k

   (D54) 
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As a sanity test, we see that if the scattered wave varies as ti , then (t) from Eq. D54 varies as 
, as it should. When  and i are the same, then k=ki and  is independent of t and Eq. 

D54 reduces to the first Born expression for time-independent case. 
We shall now return to Eq. D52 and calculate it without Born approximation. 

2
3

2
3

2
3

2
3

4

4

4

4

q r

E r E r

E r

r

E

'

( , ) ' ', ( ', )

' ', ( ', )

' ',

' ', ( , , )

i

ikr
i

S i

ikr
i

S

ikr
i t i

ikr ikr
i

S

k e rt d r e r t t
r c

k e rd r e r t t
r c

k e re d r t e
r c

k e r ed r e r t t
r c r

k

k

k

    (D55) 

In the extended far-field approximation (similar to D26 for frequency dependence) given by 

     (D56) 

Substituting Eq. D56 in Eq. D55 and regrouping the terms we get, 

2
3

2
3

4

4

q rE r r

E

'( , ) ' ',

( , ) ' ',

i

ikr
i t i

S

ikr
i

S

k e rt e d r t e
r c

k r er t d r e r t
c r

k

    (D57) 

and collecting the like terms, Eq. D57 simplifies to 
2

3

2
3

q r'i

ikr
i t i

S ikr
ik

    (D58) 

The Eq. D58 can be inverted to obtain (r,t) in terms of Es(r,t) following the steps described in 
Eq. B6 to B11 in Appendix B. 
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APPENDIX E: 
INELASTIC SCATTERING IN 2D  
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The equations derived in previous appendices are valid also for two dimensions with appropriate 
In two 

dimensions, the inelastically scattered field in the far field approximation using GF is: 
( /4)

'2 2( , ) ' ' ( ')[ ( ', ') ( ', ')]
8

k r
s

s

i k r
i

s s s s i s
s

.  (E1) 

Performing the integral over frequency, we obtain: 
( /4)

'2 2 k r
s

s

i k r
i

s s s s i i i s s
s

.  (E2) 

Assuming a monochromatic incident wave of the form , Eq. (E2) becomes: 
( /4)

'2 2 ' 2
s

s

i k r
ii

s s s s i s s
s

k rq r , (E3) 

where . Defining the scattering amplitude as: 

( /4)

8
( , ) ( , )

s

s
s i s s i k r

k r
f E

e
k k r        (E4) 

and applying the EFA to the scattered field within the object, 
( ' /4)si k r

s s s i
s

,       (E5) 

Eq. (E3) can be written as: 
( ' /4)

'2 2 ' 2
s

s

i k r
ii

s i s s i s i
s

k rq r . (E6) 

Solving for the scattering amplitude, we obtain: 
2 2 '

( ' / 4)
'2 2

( ) '
( , )

1 (0) '
8 '

s
s

i
s s i

s i i k r
i

s
s

k d r e
f

ek d r e
k r

q r

k r
k k       (E7) 

The integral in the numerator of Eq. (E7) can be evaluated in cylindrical coordinates as: 
2

2 ' 'cos

0 0

0
0

1

' ' '

                 ' '2 ( ')

2                 ( )

a
i iqr

a

d r e dr r d e

dr r J qr

a J qa
q

q r

      (E8) 

where Ji(x) are Bessel functions. The integral in the denominator of Eq. (E7) cannot be solved 
analytically, but it can be reduced to the following form: 
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2( ' /4) ( ' /4)
' 'cos2

0 0

( ' /4)

0
0
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8 ' 8 '

                                 ' ' 2 ( ')
8 '
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s s

a i k r

s
s

e ed r e dr r d e
k r k r

edr r J k r
k r

k r

    (E9) 

Thus, the final expression for the scattering amplitude is: 
22

1
( ' /4)

2
0

0

( ) ( )
( , )

1 2 (0) ' ' ( ')
8 '

s

a
s s i q

s i a i k r

s s
s

k J qa
f

ek dr r J k r
k r

k k .     (E10) 


