

2 CrossTalk March/April 2017

TABLE OF CONTENTS CrossTalk

The Impact of Agile and Lean on Process Improvement
As definitions and approaches have evolved, how has it changed the
way we approach improving engineering processes in the real world?
By Richard Turner

Modernizing Earned Value Management
EVM’s longevity is discussed from the unique perspective of one who
led that evolution as a public servant in the Office of the Secretary of
Defense (OSD) for many years and is helping to define its newest form
— Integrated Program Performance Management (IPPM).
By Wayne Abba

DD-332/ED-217:
Using Modern Software Practice in Airborne Systems
This article addresses the traditional view of software development in
this area and the significant cost and schedule reduction which can be
realized by using the guidance and recommendations described in DO-
332/ED-217 over those practices based on DO-178B/ED-12B.
by Michael R. Elliott

Framework for Selecting the Preferred Networked Computer
System for Dynamic Continuous Mission
This paper presents a framework for selecting a combination of existing
systems to satisfy new, emerging requirements while reusing existing
and proven capabilities to ensure mission success.
Glenn Tolentino, Dr. Jeff Tian, Dr. Jerrell Stracener

Process is Easy, Change is Hard
Why is it that process improvement methods sound so simple and straight-
forward but usually prove difficult to implement? The answer is simple —
improvement methods all involve something very difficult: change.
by Paul Kimmerly

In Search of a Modern Software Lifecycle
If DevOps is needed to change the world, Secure DevOps is also needed to
save the world.
by Don O’Neill

The Software Deployment Process and Automation
Typical models for software deployment are explored. Based on these
models, the author develops a generic software deployment model, then
identifies deployment processes that lend themselves to further automation
and may lead to an overall reduction in the deployment effort.
By Nary Subramanian

Why is Sprint Zero a Critical Activity
There is nothing new about project preparation. It doesn’t matter how it is
conducted, as long as the organization and the project team take some actions
to ensure a majority of key obstacles are removed or mitigated.
By Dick Carlson and Earle Soukup

8
4

11

17

24
22

Modern Process Trends

Departments

Cover Design by
Kent Bingham

 3 From the Publisher

 38 Upcoming Events

 39 BackTalk

NAVAIR Jeff Schwalb
309 SMXG Kelly Capener
76 SMXG Mike Jennings

Publisher Justin T. Hill
Article Coordinator Heather Giacalone
Managing Director David Erickson
Technical Program Lead Thayne M. Hill
Managing Editor Mary Harper
Copy Editor Breanna Olaveson
Senior Art Director Kevin Kiernan
Art Director Mary Harper

Phone 801-777-9828
E-mail Crosstalk.Articles@hill.af.mil
CrossTalk Online www.crosstalkonline.org

CrossTalk, The Journal of Defense Software Engineering
is co-sponsored by the U.S. Navy (USN); and U.S. Air Force (USAF).
USN co-sponsor: Naval Air Systems Command. USAF co-sponsors:
Ogden-ALC 309 SMXG and Tinker-ALC 76 SMXG.

The USAF Software Technology Support Center (STSC) is the
publisher of CrossTalk providing both editorial oversight and
technical review of the journal. CrossTalk’s mission is to encour-
age the engineering development of software to improve the reliabil-
ity, sustainability, and responsiveness of our warfighting capability.

Subscriptions: Visit <www.crosstalkonline.org/subscribe> to
receive an e-mail notification when each new issue is published
online or to subscribe to an RSS notification feed.

Article Submissions: We welcome articles of interest to the defense
software community. Articles must be approved by the CrossTalk
editorial board prior to publication. Please follow the Author Guide-
lines, available at <www.crosstalkonline.org/submission-guidelines>.
CrossTalk does not pay for submissions. Published articles
remain the property of the authors and may be submitted to other
publications. Security agency releases, clearances, and public
affairs office approvals are the sole responsibility of the
authors and their organizations.

Reprints: Permission to reprint or post articles must be
requested from the author or the copyright holder and
coordinated with CrossTalk.

Trademarks and Endorsements: CrossTalk is an
authorized publication for members of the DoD. Contents
of CrossTalk are not necessarily the official views
of, or endorsed by, the U.S. government, the DoD, the
co-sponsors, or the STSC. All product names referenced in
this issue are trademarks of their companies.

CrossTalk Online Services:
For questions or concerns about crosstalkonline.org web content
or functionality contact the CrossTalk webmaster at
801-417-3000 or webmaster@luminpublishing.com.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

CrossTalk is published six times a year by the U.S. Air Force
STSC in concert with Lumin Publishing <luminpublishing.com>.
ISSN 2160-1577 (print); ISSN 2160-1593 (online)

28

35

mailto:Crosstalk.Articles@hill.af.mil
http://www.crosstalkonline.org
http://www.crosstalkonline.org/subscribe
http://www.crosstalkonline.org/submission-guidelines
mailto:webmaster@luminpublishing.com
luminpublishing.com

CrossTalk—March/April 2017 3

FROM THE PUBLISHER

CrossTalk would like to thank 309 SMXG for sponsoring this issue.

Since the early days of the quality revolution, improvements and efficiencies have been in the forefront of de-
veloping engineering disciplines. Various standards, guidelines, and models have employed learned best practices
from government and industry to continually evolve and change our methodologies, technologies and lifecycles.
Exciting new trends are emerging in architectural solutions, lean concepts, agile development, business process
models, etc.

In 1989, when Watts Humphrey published his book “Managing the Software Process,” it was widely perceived
that software was considered more of an arcane art than an engineering discipline. He suggested that software
should be managed like other engineering efforts and suggested a five-step maturation scale for software orga-
nizations. Fast forward to today’s set of practices where changes in processes and technologies have yielded the
ability to manage software from concept to delivery in weeks utilizing agile methods that have moved from mani-
festo to mainstream. Our understanding of how processes are defined and utilized maximize our ability to produce
high quality software in a fast-paced, ever-changing world.

In this issue of Crosstalk, we explore some of the technologies and techniques that continue to improve our
capabilities. One great example is Wayne Abba’s examination of traditional earned value methods and how the
concepts can still be utilized to great benefit, even in a more agile setting. Changes to the software lifecycle are
imperative to support current development needs which Don O’Neill details in his article “In Search of a Modern
Software Lifecycle.” Dr. Nary Subramanian’s treatise on improving and even automating of the software deploy-
ment process examines software improvements prior to delivery to the end user. Michael Elliott discusses the
employment of modern software engineering techniques to critical systems, such as civil airborne systems. And
the processes of process improvement are changing, as evidenced by Richard Turner’s examination of “The Impact
of Agile and Lean on Process Improvement.” However, as a frequent Crosstalk contributor, Paul Kimmerly reminds
us that change created by process improvement is not always simple in “Processes are Easy,”.

This issue’s line-up of articles show us how far we have come through the expansion of our knowledge and the
utilization of our technology to show just what we have – and can – achieve so far.

Justin T. Hill
CrossTalk Publisher

4 CrossTalk March/April 2017

MODERN PROCESS TRENDS

The overall consensus of the panel was that the evolution of the
system development environment and the way systems are devel-
oped has had a significant impact on the mechanics of process en-
gineering and improvement. At the same time, it has strengthened
the influence of a number of fundamental principles. Together, the
approaches incorporate planned experimentation and rapid adapta-
tion, increase focus on outcomes and stakeholders, and move away
from organizational control and conformance.

We could easily stop there, thank the panel for a job well
done, and move to another topic. However, there are a number
of interesting ideas that should be addressed, generally sup-
porting but also illuminating the panel’s concise summary. For
example, what do we see as the important differences between
our traditional concepts of PI and these recent approaches from
the Lean and Agile community?

Process Improvement Home Grounds
In our 2003 book “Balancing Agility and Discipline,” [14] Barry

Boehm and I identified a set of “home grounds,” or characteristics
associated with what the fifth edition of the PMI Guide now refers
to as “adaptive” and “predictive” project management environ-
ments. At that time, there was general antipathy (to the level of
religious fervor) between the proponents of traditional develop-
ment processes (so-called disciplined) and proponents of newer,
lighter and more adaptive (agile) development processes. In the
intervening years since that publication, there has thankfully been
significant rapprochement between these factions.

I believe recasting those characteristics can serve as a lens
through which to consider the evolution of process improve-
ment. Table 1 illustrates the original software development home
grounds we identified.

Although this was created as a software development spec-
trum, it is possible to inspect the application of PI in terms of
these characteristics. Table 2 presents a personal interpretation of
these home grounds in terms of the process improvement activity.

Now, let’s look at each of these modified characteristics
more closely.

Application
This characteristic covers the type of environment where the

approach is applied as well as the general goals and activities.
Much of traditional PI has been internally focused on meeting

specific standards (CMM/CMMI level, ISO Certification) based on
a set of goals or recommended practices that have little to do with
the end product’s applicability or capability. Often these are broadly
stated as critical success factors and then broken down to examples
of specific practices or activities. If these practices (or other equiva-
lent practices) are included in the process and are performed, then
the improvement is assumed to be accomplished. Measurements
of the impact are often included in the overall management metrics
and are usually evaluated within the organizational context.

Traditional PI has often depended on process expertise and
best practice to codify standard processes for all personnel. This is
primarily directed toward the establishment of common and certifi-
able practices. However, the concept of organizational standard
processes may be losing its relevance in a development environ-
ment with so much uncertainty. When there is so much change

Abstract. Since the early process improvement work in the ‘70s and
‘80s, our understanding of process in software and systems engineering
has changed significantly. The Agile and Lean movements have made us
think differently, and our processes have changed. Have our approaches
to process improvement (PI) changed as well? This article discusses how
Agile and Lean concepts inform process improvement approaches to
address those changes.

Richard Turner, Stevens Institute of Technology

The Impact of Agile
and Lean on Process
Improvement

Twenty-five years after the first version of the Software Capabil-
ity Maturity Model and the original SPICE standards, and more than
a century since Frederick Taylor introduced the concept of scientific
management, there have been significant changes in the way we
view process in software and systems engineering. Many of these
are responses to a changing engineering environment that includes
more uncertainty, continuously evolving systems of systems, and
rapidly changing needs and technologies.

The result has been a parade of diverse and often contradictory
concepts and approaches to management, development and sus-
tainment. INCOSE’s Systems Engineering Capability Model, [1]
CMMISM, [2] and numerous ISO/IEC process standards have co-
evolved with the introduction of adaptive development concepts
such as the Agile Manifesto, [3] Lean principles applied to knowl-
edge work, [4][5] model-based engineering,[6] and value-based
system and software engineering, [7] Kanban, [8] Lean Startup,
[9] SAFE, [10] DevOps, [11] and the Incremental Commitment
Spiral Model. [12] To add additional complexity, many of the
parade’s participants have mixed up, split off and re-formed into
myriad hybrids along the way. There have even been fundamental
changes to the revered Project Management Institute’s (PMI)
Guide to the PM Body of Knowledge (PMBOK). [13]

As definitions and approaches have evolved, how has this
parade of ideas — each with one or more corporate, academic
or consultative promoters — changed the way we approach
improving engineering processes in the real world? This article
discusses a number of factors observed along the parade route.

 Starting with a Consensus
At the 2015 International Conference on Software and

System Process, I was privileged to moderate a panel that
discussed whether the way we have developed systems has
significantly changed our pursuit of improved processes.
Lars-Ola Damm (Ericsson), Philipp Diebold (Fraunhofer IESE),
Anton Keks (Codeborne), Rory O’Connor (Lero), Lee Osterweil
(University of Massachusetts) and I represented various techni-
cal and governance arenas where these ideas have played both
with and against each other.

CrossTalk—March/April 2017 5

MODERN PROCESS TRENDS

happening, having everyone use the exact same process can often
result in the “Bed of Procrustes” effect where the process requires
the performers to radically redefine the project, often to the detri-
ment of the customer. [12]

There are circumstances, however, where the stability and
commonality of processes are critical to the performance and
certifiability of products. Safety and security standards are the
poster children for having broadly accepted and conforming
processes. These are the cases where PI should be carefully
orchestrated and systemically controlled.

Adaptive methods echoing Agile and Lean values apply a more
individualized experimental approach, whereas those performing
the work are always looking for improvement opportunities. They
can apply changes for improvement within every cycle, tracking the
results to determine success or failure. This echoes the expressed
goal of a level 5 CMMI organization. Figure 1 shows one combina-
tion of the two approaches introduced by Vic Basili under the name
“Quality Improvement Paradigm.” [15] This approach grew out of
25 years of PI work at a NASA facility, where a team developed
models specifically around the process needs of the organization
and empirically evaluated the models via experiments.

Governance
This characteristic describes how the approach is managed,

resourced, and measured.
Although often initiated from the bottom up as a response

to management failure, process improvement was created as a
management-driven activity. Traditionally there has been a large
infrastructure associated with process improvement with special
groups of process experts as well as assessors and QA people
that enforce standard processes. The responsibility being placed
in an organization (such as an SEPG) that lies outside the per-
forming organization does not necessarily establish ownership
of the improvement with the primary performers.

This model has worked relatively well in large organizations
where there was a desire for standard practices and the ability to
share resources between projects without process-related learning
curves. While these large organizations generally have a higher
probability of sufficient overhead funding, it also led to larger PI
activities with relatively long time scales for improvement evaluation.

The adaptive nature of contemporary work makes this a
very inefficient way of approaching PI. Technology has incor-
porated and often now enforces a certain level of process (as
in model-based engineering, repository-based CM tools or
required software development kits). Development is seen more
as brownfield evolution rather than greenfield creation, so actual
development activities have realigned in importance. Concurrent
engineering requires continual adjustments among hardware,
software and operational concept as the system evolves. Newer
approaches to PI tend to fit better in these environments,
primarily because they are more highly integrated into the work.
They require consistent and supportive communication among
management, developers and customers.

A traditional, organizational-centric model can considerably
raise the cost of PI in two ways. First, the expense of maintain-
ing an independent or matrixed process group and a set of
standard processes is not negligible. Second, whenever there is

Table 2. Interpretation of Home Grounds for the Process Improvement Spectrum

Table 1. Home Grounds from Boehm and Turner [14]

Characteristics Agile Plan-driven

Primary	Goals Rapid	value;	responding	to	change Predictability,	stability,	high	assurance
Size Smaller	teams	and	projects Larger	teams	and	projects

Environment Turbulent;	high	change;	project-focused Stable;	low-change;	project/org.	focused

Customer	Relations Dedicated	on-site	customers,	where	
feasible;	focused	on	prioritized	increments

As-needed	customer	interactions;	focused	on	
contract	provisions;	increasingly	evolutionary

Planning/Control Internalized	plans;	qualitative	control Documented	plans,	quantitative	control
Communications Tacit	interpersonal	knowledge Explicit	documented	knowledge

Requirements
Prioritized	informal	stories	and	test	cases;	
undergoing	unforseeable	change

Formalized	project,	capability,	interface,	
quality,	forseeable	evolution	requirements

Development
Simple	design;	short	increments;	
refactoring	assumed	inexpensive

Architect	for	parallel	development;	longer	
increments;	refactoring	assumed	expensive

Test Executable	test	cases	define	reqts. Documented	test	plans	and	procedures

Customers Dedicated,	collocated	CRACK*	performers CRACK*	performers,	not	always	collocated

Culture Comfort	and	empowerment	via	many	
degrees	of	freedom	(thriving	on	chaos)

Comfort	and	empowerment	via	framework	
of	policies	and	procedures	(thriving	on	order)

Application

*	Collaborative,	Representative,	Authorized,	Committed,	Knowledgeable

Personnel

Technical

Management

Characteristic Predictive	(Traditional) Adaptive

Application

Certification	or	appraisal,	internally	
focused;	large,	multiple	team	
organizations	with	standard	processes;	
good	for	highly	critical	processes	

Rapid	improvement,	customer	satisfaction,	
externally	focused;	individual	teams;	neutral	
to	criticality	

Governance
Organizational	responsibility,	process	
owners	are	process	team	(SEPG)	and	the	
organization

Individual	responsibility,	rapid	evaluation	of	
impact,	process	owners	are	the	actors

Values
Repeatability,	uniformity,	satisfaction	of	
requirements,	specific	process	areas	of	
activities

Customer	satisfaction,	quality	of	product,	
entire	lifecycle

Personnel

Organizational	team	drives	solutions,	
benefits	often	accrue	mostly	to	
marketing	or	management;	standard	
practice	drives	knowledge	

All	personnel	are	involved		with	solutions	
and	benefits;	cross-fertilization	of	teams	
spreads	knowledge

Figure 1. The Quality Improvement Paradigm [illustration from 17]

6 CrossTalk March/April 2017

MODERN PROCESS TRENDS

a “large” process improvement project, there is an unavoidable
churn across organizations as the performers change and adopt
the processes. This effect, often referred to as the “J curve,” ef-
fectively reduces productivity for a period of time relative to the
length of the process until the change is complete and the or-
ganization experiences the promised benefit. Figure 2 illustrates
how the curve impacts improvement, and it shows the difference
in effectiveness of shorter, continual improvement approaches.

Adopting the idea of more tailored, individually driven process
improvement has been difficult, and it is particularly uncomfort-
able in a command and control management structure. However,
it fits well into the more collaborative management approaches
emerging in many companies. Rather than having additional or-
ganizational overhead, adaptive approaches are more likely to use
coaching as opposed to traditional project management to help
individual teams instill improvement as a part of normal work.

Values
One of the drawbacks of earlier process improvement ap-

proaches was the concept and distribution of value. The overall
value of the process improvement initiative was often situational
at best and nebulous at worst. Where it was seen as a neces-
sity for competitive credibility, the value was in passing the audit
rather than in any value to the organization and the customer.
In other cases, the value was essentially associated with the
success of one or two champions and disappeared if they failed,
changed positions or left the company. On those occasions
where PI was primarily instituted for the actual improvement of
the organization, the internal focus on practices was often val-
ued as a way of cutting costs, standardizing work, or deploying
better predictive management capabilities rather than improving
the product or raising customer satisfaction.

With the emergence of Agile and Lean, the concept of value
became more aligned with outcomes. The focus on value stream
and value-based decision making and scheduling brought ad-

ditional considerations to what were once considered best prac-
tices. In Lean Startup and its laser focus on the market, value
is intensely associated with buyers and their desires, known or
unknown. Process improvement that does not improve the ability
to adapt has little value.

The values of PI in adaptive environments are both holistic
and individualistic. Agile and Lean focus on the ability to satisfy
the customer through value delivered for cost and product suit-
ability, and the ability to provide the individual with resources
to own and benefit from improvement. Traditional PI values
standardization and specifications and organizes according to
key technical areas rather than the overall value chain.

Personnel
This characteristic covers a good deal of ground but es-

sentially looks at the preferences of the people involved in
the process improvement.

Traditional PI focused more on the process than on the people
performing the process in a highly sterile and rigid atmosphere.
Often awards went to the team leading the PI project rather than
to those who suffered through the transition. The concept of hav-
ing a process expert that did not really understand you and your
work, but was trying to squeeze you into a predefined role or task,
caused more stress than was probably necessary.

Much of the fervor behind the Agile Manifesto came from
the recognition that creative people who are doing knowledge-
based work are not plug-and-play resources. Even with stan-
dard processes, they operate according to soul more than to
programmed instructions. People vary along the same types of
spectrums as their projects, environments, and PI approaches.
Thus, understanding the people following the process is key.

Lean has shown that we have outgrown Taylor’s view that
workers are too stupid to understand the “science” surrounding
their tasks. In an age of automation and technical service indus-
tries, this point of view is rarely applicable. And, given the number
of books on empowerment, coaching, collaboration and project-
less workflow, it is clear that management theory is catching up.

In adaptive organizations, the team performing the work is
responsible for their own processes. These team members are in-
dividually involved in both the PI activities and the derived benefits.
These organizations rely on cross-fertilization of personnel across
multiple projects to organically improve the organization as a whole.

A Way Forward from Looking Backward
So what is the purpose of process improvement? Returning

to the consensus of the panel, process improvement techniques
have certainly changed to adapt to the new realities of system de-
velopment. Both approaches to process improvement follow some
form of the “plan—do—check—act” or “observe—orient—decide—
act” cycles for identifying barriers and enablers to improvement.

Differences in process improvement approaches seem more
common in the governance and value characteristics. They
echo the general changes in the development process from the
greenfield, highly defined projects in the ‘70s and ‘80s to the
brownfield, uncertain, rapidly evolving projects of today. Similarly,
there have been more hybrid development life cycles and mod-
els to fit specific developmental and environmental needs, so

Figure 2. The J Curve (Illustration based on [16])

CrossTalk—March/April 2017 7

MODERN PROCESS TRENDS

combinations of predictive and adaptive process improvement
implementations have emerged.

Fundamentally, all processes and the approaches implemented
to improve them should be engineered to be as amenable to
change as the environment requires. Hybrid approaches are a
principal means of assuring this, and their structure and content
fall naturally out of a review of risks associated with the holistic
environment. Ways to balance approaches using risk is described in
detail in [14] and in the Meta-principle of Risk Balancing in [12].

Finally, process improvement fundamentals, generally derived from
change management fundamentals, remain valid. Implementing them
to PI approaches is a more difficult challenge. Here is a list of critical
success factors, drawn from experience with matching PI approach-
es to needs in software, systems, and systems of systems evolution:

— Improve for the benefit of the business, organization, and
personnel, not some externally mandated target.

— Clearly identify and exemplify the desired PI values, both inter-
nal and external, and use them to determine your approach.

— Fit the approach to the environment.
— Follow the pain in prioritizing what is to be improved.
— Understand the current capability; set achievable,

measurable and meaningful goals; track progress.
— Experiment and deploy incrementally; fail fast and safely;

reduce the improvement cycle time.
— Utilize reflection techniques to provide “double-loop

learning”: find an error, correct it, and then try to understand
how it happened to prevent it in the future.

— Involve and empower the people who do the work to adapt
and improve their own processes.

No list of one-liners can replace understanding, and process
improvement is critically dependent on understanding the
environment, the organization’s values and needs, and most
critically, the people. Improvement is necessary, so identify-
ing the collection of practices that holistically best suits the
improvement target worthwhile.

In the CMMI Survival Guide, [16] a book much more about
process improvement than about CMMI, Suzanne Garcia Miller
and I used the metaphor of a journey to describe our philosophy
for process improvement. I think it remains both accurate and

deep. My favorite epigraph included in the book sums it up nicely:

You must travel a long and difficult road —
a road fraught with peril, uh-huh,

and pregnant with adventure.
You shall see things wonderful to tell. . . .
I cannot say how long this road shall be.
But fear not the obstacles in your path,
for Fate has vouchsafed your reward.

And though the road may wind, a
nd yea, your hearts grow weary,

still shall ye foller the way,
even unto your salvation.

— An old blind man on a flatcar in

“O Brother, Where Art Thou?”,
a film by Ethan and Joel Coen.

1. INCOSE, “A Systems Engineering Capability Model.” Vol 1. (June 1996.)
2. Chrissis, Mary Beth; Conrad, Mike & Sandy Shrum. (2011.)“CMMI for Development v1.3.”

Addison-Wesley, Boston.
3. Beck, K., et al. “Manifesto for Agile Software Development.” http://agilemanifesto.org.
4. Reinertsen, Donald G. (1997.) “Managing the Design Factory: A Product Developer’s Toolkit.”

The Free Press, New York.
5. Shalloway, Alan; Beaver, Guy & Trott, James R. (2009.) “Lean-Agile Software Develop-

ment: Achieving Enterprise Agility.” (1st ed.). Addison-Wesley Professional, Boston.
6. Friedenthal, S., Moore, A. & Steiner, R. (2011.) “A Practical Guide to SysML: The Systems

Modeling Language.” Elsevier.
7. Biffl, Stefan et al. (2006.) Ed., “Value-based Software Engineering.” Springer, Berlin.
8. Anderson, David. (2010.) “Kanban: Successful Evolutionary Change for Your Tech-

nology Business.” Blue Hole Press, Sequim, Wash.
9. Ries, Eric. (2011.) “The Lean Startup.” Crown Publishers, Danvers, Mass.
10. Leffingwell, D. et al. “Scaled Agile Framework (SAFe) 4.0.”

http:/ /www.scaledagileframework.com.
11. Kim, Gene et al. (2016.) “The DevOps Handbook.” IT Revolution Press, Portland, Ore.
12. Boehm, B.; Koolmanojwong, S.; Lane, J. & Turner, R. (2014.) “The Incremental

Commitment Model: Principals and Practices for Successful Systems and Software.”
Addison-Wesley, Boston.

13. Project Management Institute and the IEEE Computer Society. (2013.)
“Software Extension to the Program Management Body of Knowledge
Guide Fifth Edition.” Project Management Institute Incorporated. Newton
Square, Penn.

14. Boehm, Barry & Turner, Richard. (2003.) “Balancing Agility and Discipline: A Guide
For The Perplexed.” Addison-Wesley, Boston, Mass.

15. Basili, V. (Sept. 1993.) “The Experience Factory and its Relationship to Other
Improvement Paradigms.” In “Proceedings of the Fourth European Software Engi-
neering Conference (ESEC) in Garmish-Partenkirchen, Germany.” The Proceedings
appeared as lecture notes in “Computer Science,” Sept. 1993.

16. Anderson, David. (March 29, 2016.) “Organizational maturity & the J-Curve Effect.”
Blog post, http://anderson.leankanban.com/organizational-maturity-the-j-curve-effect.

17. Miller, S. G. & Turner, R. (2007.) “CMMI Survival Guide: Just Enough Process
Improvement.” Addison-Wesley, Boston, Mass.

REFERENCES

Dr. Richard Turner has 40 years of ex-
perience in systems, software and acquisi-
tion engineering in both the private and
public sectors. Currently a Distinguished
Service Professor at the Stevens Insti-
tute of Technology, Turner is active in the
Agile and Lean engineering communities
and was a core author of the IEEE-CS/
PMI Software Extension for the Guide to
the PMBOK. His current research uses
simulation to investigate the effectiveness
of Agile, Lean, service and complexity
concepts in managing SoS evolution. He is
a Golden Core awardee of the IEEE-CS, a
senior member of the IEEE, and co-author
of four books.

ABOUT THE AUTHOR

http://agilemanifesto.org
http://www.scaledagileframework.com
http://anderson.leankanban.com/organizational-maturity-the-j-curve-effect

8 CrossTalk March/April 2017

MODERN PROCESS TRENDS

Background
After a half century, anyone familiar with DoD acquisition policy

for major programs should understand EVM principles. If not, the
literature is extensive. For an excellent explanation and history,
see Fleming and Koppelman, EARNED VALUE Project Manage-
ment.[1] The authors traced EVM’s origins back to industrial man-
agement processes from more than a century ago and noted that,
as a matter of Defense policy, nothing substantive had changed in
its first four decades. That remains true today.

EVM’s longevity is attributable to its nonprescriptive nature
and its holistic, integrative approach to industrial management.
The EVM pioneers did not tell the industry “how to manage” but
rather defined a set of mandatory, scalable criteria for industrial
management. Those criteria, now referred to as “guidelines,”
have proved remarkably resilient because they relate to underly-
ing essential management concepts such as defining, organiz-
ing, scheduling and measuring work performance.

The other key EVM attribute, integration, refers to relation-
ships between industrial management processes and project
(or contract) work. Simply put, as a contractor extends the
customer’s Work Breakdown Structure (WBS), EVM requires
that all work is identified, budgeted and scheduled to the extent
practicable. This disciplined planning makes possible the reliable
measurement of project performance against a baseline and the
ability to forecast the outcome.

The DoD Comptroller was the original policy owner for EVM. This
proved to be a two-edged sword. While independence from engi-
neering and acquisition disciplines allowed EVM to establish itself,
the Comptroller’s ownership identified it with financial manage-
ment and reporting. Indeed, the first DoD EVM policy was called
“Cost/Schedule Control Systems Criteria” (C/SCSC or CS2) and
was issued in 1967 as a DoD instruction in the Comptroller’s 7000
series. There was an accompanying instruction for reporting.

It was many years before responsibility for EVM was transferred
to the Office of the Under Secretary for Acquisition & Technology
in 1989, and it was two more years before EVM was incorporated
into the 5000 series in 1991.1 With EVM having proved itself over
more than two decades, the transfer placed EVM in its proper
context as the essential integrating management discipline for
major acquisition programs. New management processes, notably

the Integrated Baseline Review (IBR), were developed to improve
contract planning and execution. The DoD Acquisition Reform era
of the late 1990s further served to strengthen EVM.

As with any “control” policy, EVM was not without its detrac-
tors. Through five decades it’s been challenged, examined and
reexamined by various auditors and reformers, always emerging
stronger while other management fads came and went. OSD
staff confidence in the merits of integrated project management
using EVM grew as governments in other nations studied and
adapted U.S. EVM techniques for their acquisition organizations.

In the mid-1990s, the Office of Management and Budget
(OMB) mandated EVM for all government agencies. At the
same time, OSD reached out to industry experts to develop
a standard that could reduce the need for the government to
define industrial management requirements. In 1998, that led to
the American National Standards Institute standard EIA-748-98,
“Earned Value Management Systems,” issued by the Electronic
Industries Alliance.2 The criteria were virtually unchanged.

EVM gained further traction in the global project manage-
ment community in 2005 when the Project Management Institute
(PMI®) published the Practice Standard for Earned Value Manage-
ment.3 Thus in its first four decades, EVM evolved from a set of
industrial management criteria defined by the government to a set
of guidelines defined by the industry, codified in a national standard
and embraced by PMI® and other professional associations.

EVM and Information Technology
The relationship between EVM and information technology

(IT) has been fractious. That was not the case in the early years,
when IT development was much different than it is now and
typical lines-of-code measurement worked well with EVM. That
changed as new techniques were developed. Shortly before the
author retired from OSD in 1999, the executive in charge of IT
policy met with him to discuss issues being raised by her staff.

She said some people asserted that because EVM depends
on a definite scope of work, and because software engineers
don’t know what they will do in spiral development, the two were
incompatible. This argument doesn’t hold water, however, be-
cause defense contracts are not (or should not be) open-ended.
Further, EVM is fully able to accommodate changes to the se-
quence of work and changes that revise the contractual scope
of work. The executive was persuaded and EVM remained a part
of the DoD’s IT acquisition policy.

As years passed, the issue resurfaced occasionally. Spiral,
waterfall — each new IT development technique renewed the
assertion that “software is different.” And that was increasingly
true, at least in the commercial marketplace where requirements
for products such as cell phones are not as defined as, for ex-
ample, those for a developmental avionics system that must be
compatible with other defense systems.

With the evolution of Agile development, the issue intensified.
Several organizations began investigating the respective roles of
Agile and EVM, including the Government Accountability Office
(GAO), National Defense Industrial Association (NDIA), OSD and
the College of Performance Management (CPM), a not-for-profit
professional association that represents and advocates for EVM.

Modernizing Earned
Value Management
Wayne F. Abba, Abba Consulting

Abstract. Earned Value Management (EVM) has been part of Department
of Defense (DoD) acquisition policy for 50 years, remains an essential part of
that policy, and is growing internationally. EVM’s longevity is discussed from the
unique perspective of one who led that evolution as a public servant in the Office
of the Secretary of Defense (OSD) for many years and is helping to define its
newest form — Integrated Program Performance Management (IPPM).

MODERN PROCESS TRENDS

The GAO has researched Agile development as part of its
ongoing project to issue a series of “best practice” guidelines.
As of this writing, the research is continuing, with GAO teams
having “shadowed” Agile teams at several companies and
government organizations. The results will be incorporated as
appropriate in the cost and schedule guides that have been
published.4 Through semiannual meetings with an expert advi-
sory panel,5 the GAO ensures that it is up to date on Agile and
EVM developments. An example of such developments is “Agile
and Earned Value Management: A Program Manager’s Desk
Guide,” issued by OSD.[2] Another useful document, “Techniques
for Integrating Agile Development Processes into Department of
Defense Earned Value Management Systems,” was published by
the NDIA Planning & Scheduling Working Group.[3]

Through these coordinated efforts, both government and industry
are continuing to modernize EVM by adapting it to the latest man-
agement developments. CPM plays an important role by providing
independent, nonattribution venues for training and workshops and
symposia that clarify concepts and advance the state of the art.6

The Future of EVM
EVM was ahead of its time 50 years ago as management philos-

ophy, but supporting software tools were not adequate to deal with
the increasing complexity and volume of management data. This
placed practical limits on systems integration. Monthly reconciliation
with accounting data was the norm, and reporting lagged weeks
behind the accounting cutoff. Times have changed. Today’s EVM
systems are capable of operating in near-real time by using labor

hours to manage and measure progress. This allows contractors
to synchronize their EVM systems with their business rhythm by,
for example, aligning EVM with weekly or biweekly schedule status
reporting rather than monthly accounting cycles.

Given this progress, CPM is leading an initiative that draws on
knowledge gained over the past 50 years to move EVM to the
next level —Integrated Program Performance Management. IPPM
further enhances process integration by including Technical/Ben-
efits Management (TBM) practices. TBM prioritizes measuring and
managing for results that meet business or mission needs. IPPM
also emphasizes the Schedule/Resource Management (SRM)
practices that are necessary to accommodate more dynamic ap-
proaches, such as Agile, to schedule planning and control methods
that have emerged throughout the EVM experience.

Figure 1

www.facebook.com/

309SoftwareMaintenanceGroup

Like

Send resumes to:
309SMXG.Recruiting@us.af.mil

or call (801) 777-9828

Hill Air Force Base is located close to the

Wasatch and Uinta mountains with skiing, hiking,

biking, boating, golfing, and many other

recreational activities just a few minutes away.

Become part of the best and brightest!

T
he Software Maintenance Group

 at Hill Air Force Base is recruiting

 civilians (U.S. Citizenship

Required). Benefits include paid

vacation, health care plans, matching

retirement fund, tuition assistance,

paid time for fitness activities, and

workforce stability with 150 positions

added each year over the last 5 years.

Engineers and Computer Scientists

H i r i n g E x p e r t i s e

CrossTalk—March/April 2017 9

mailto:309SMXG.Recruiting@us.af.mil
http://www.facebook.com/
www.facebook.com/309softwaremaintenancegroup
www.facebook.com/309softwaremaintenancegroup

10 CrossTalk March/April 2017

MODERN PROCESS TRENDS

Little exists in the way of formal education or professional
credentials addressing IPPM as an integrated set of disciplines.
The IPPM professional certification is emerging to fill this void in
the integrated program management field. The IPPM model in-
cludes three levels of expertise — foundational, practitioner and
enterprise professional. The pyramid illustration (Figure 1) gives
a broad overview of the program and illustrates how practical
experience and career accomplishment builds upon a knowl-
edge base comprising the EVM, SRM, and TBM disciplines.

The IPPM foundation certification is designed to demon-
strate that people have learned the general knowledge and
basic concepts behind the core principles of IPPM. The inter-
mediate (practitioner) level builds on this foundation by requir-
ing mastery of analytical principles and ability to apply basic
principles to practical settings. Applicants for the practitioner
certification may choose either a “business management” or
“technical management” certification to match their situation.
Achieving the ultimate expert practitioner level will require both
mastery of the integrated set of disciplines and evidence of
practical experience and accomplishment.

Conclusion
As the senior program analyst for contractor performance

measurement in OSD for nearly two decades, the author was re-
sponsible not for defending EVM, but for implementing the most
effective management and measurement methods on behalf of
the taxpayer. His organization’s confidence that EVM was that
method was confirmed as one nation after another — Australia,
Canada, Japan, Sweden and the United Kingdom – adapted the
U.S. model for their acquisition organizations.

The Japan experience is especially noteworthy. The nation that
gave us so many management innovations — Kaizen, Deming’s
quality management and others — has embraced the U.S. model for
integrated program management as a core function of the new Ac-
quisition, Technology and Logistics Agency (ATLA) in the Ministry of
Defense. ATLA representatives are frequent visitors to OSD, GAO,
OMB and other government, industry and professional organiza-
tions as they study and adapt U.S. policies and processes.

One message they hear repeatedly is that management sys-
tems and reporting alone are not sufficient. Effective manage-
ment depends on people, both in government and in industry.
The systems and reports are not the end; they are a means to
an end. A half-century of EVM experience has shown repeatedly
that it works. It works best when both sides take full advantage
of EVM and the accompanying tools that have been developed,
such as the IBR and the Agile and EVM desk guide.

EVM works, whether by identifying failing contracts early and
permitting timely cancellation or by facilitating timely decisions
to help ensure success. Of course, the latter is preferable. His-
tory shows that the greatest successes are achieved not by hav-
ing EVM specialists independently record and report on techni-
cal teams’ progress, but rather by having both government and
industry managers understand and use EVM effectively within a
multidisciplinary team. IPPM will prepare the next generation of
managers by building on the knowledge gained over 50 years
on hundreds of defense programs.

Wayne Abba is an independent con-
sultant in program management. He was
the senior program analyst for contract
performance management in the Office of
the Under Secretary of Defense (Acquisi-
tion & Technology) for 17 years before
retiring in 1999. He is an expert adviser
to the GAO “Cost Estimating and Assess-
ment Guide: Best Practices for Developing
and Managing Capital Program Costs”
and “Schedule Assessment Guide: Best
Practices for Project Schedules” and is the
President, CPM.
6421 Lyric Lane
Falls Church, VA 22044
Phone (703) 658-1815
abbaconsulting@cox.net

ABOUT THE AUTHOR

1. Fleming, Quentin F. & Koppelman, Joel M. (2010.) “EARNED VALUE Project
Management (4th Edition).” Newtown Square, Penn. Project Management
Institute, Inc.

2. “Agile and Earned Value Management: A Program Manager’s Desk Guide.”
(March 3, 2016.) OUSD AT&L (PARCA).
 http://www.acq.osd.mil/evm/NewsList.shtml.

3. “Techniques for Integrating Agile Development Processes into Department
of Defense Earned Value Management Systems.” (October 2016.) Arlington,
Virginia. NDIA Planning & Scheduling Working Group.

REFERENCES

1. Currently DoD Instruction 5000.02. (January 7, 2015.)
2. Currently EIA-748 Revision C. (March 1, 2013.) Published by SAE International.
3. Currently 2nd Edition. (2011.)
4. “GAO Cost Estimating and Assessment Guide: Best Practices for Developing

and Managing Capital Program Costs.” (March 2, 2009.) http://www.gao.
gov/products/GAO-09-3sp; and “GAO Schedule Assessment Guide: Best
Practices for Project Schedules,” (Dec. 22, 2015.) http://www.gao.gov/
products/GAO-16-89G.

5. The author is a member of the GAO expert advisory panel and a contributor
to the cost and schedule guides.

6. www.mycpm.org

NOTES

mailto:abbaconsulting@cox.net
http://www.mycpm.org
http://www.acq.osd.mil/evm/NewsList.shtml
www.gao.gov/products/GAO-09-3sp
www.gao.gov/products/GAO-16-89G

CrossTalk—March/April 2017 11

MODERN PROCESS TRENDS

ment of DO178B/ED-12B was changed to help facilitate this
effort. A supplement to the emerging DO-178C/ED-12C was
produced, providing additional (and sometimes alternative) ob-
jectives, guidance and recommendations to aid the practitioner
in airborne software production and the certification authorities
in approval processes.

A. Object-Oriented Technology (OOT)
To date, few airborne computer systems in civil aviation have

been implemented using OOT. Although OOT is intended to
promote productivity, increase software reusability, and improve
quality, uncertainty about how to comply with certification
requirements has been a key obstacle to OOT use in airborne
systems. (OOTiA[1], 2004.)

The importance of object-oriented technology was recog-
nized as a key element to be addressed. One of the three
subgroups formed to address software development practice
was Subgroup 5 – Object-oriented and Related Technologies.

B. Object-oriented Technology Supplement
This supplement, as IP5 500, was formally approved at the

SC-205/WG-71 plenary session in Paris, France, on Oct. 29,
2009. It is singularly appropriate that the day that the last-ever
OOPSLA6 ended — the day that object-oriented programming
was considered so mainstream that it was no longer worthy of
a special conference — is the day that marked the first formal
acceptance of the use of object-oriented programming in the
international standards for safety-critical airborne software.

II. Background
Initially, software was viewed as a way to inexpensively

extend the versatility of analog avionics. However, software
in the system did not fit easily into the safety and reliabil-
ity analysis based on mean time between failure and other
service history based techniques.

A. DO-178
This initial effort at a standard for software development in

airborne systems was a set of best practices that was created
to provide a basis for communication between applicants and
certification authorities. It required applicants to meet “the intent”
of DO-178 without giving specific objectives or significant
guidance on how to do so. It did, however, introduce a three-
tiered system of software criticality — critical, essential and
nonessential — and set the level of verification to reflect the
criticality level. Additionally, it provided a link between software
verification and FAA documents, such as Federal Aviation Regu-
lations and Technical Standard Orders.

B. DO-178A
After the initial experience with certification using DO-178, there

was a consensus that it needed revision. SC-152 of RTCA created
DO-178A in 1985, and it turned out to be quite different from DO-
178. It introduced rigorous requirements for software processes
(based on the waterfall method), software production, and process
documentation and history. Applicants and certification authorities

DO-332/ED-217
Using Modern
Software Practice
in Airborne Systems
Michael R. Elliott

Abstract. In civil airspace, the methods needed to produce software
compliant with airworthiness have been considered overly burdensome,
expensive and process-heavy. This view is based largely on experience
with DO-178B/ED12B[5], which was the standard for software develop-
ment in civil airspace beginning in 1992. Finalized in 2011, DO-178C/
ED12C[6] was created to address these concerns and to apply more
modern software practice to issues of software production and verifica-
tion. Of special interest is DO-332/ED-217[7], the Object–oriented
Technology and Related Techniques supplement to DO-178C/ED-12C,
which addresses modern software practice and how it can be utilized in
the production of software in systems that need airworthiness certification.
This article addresses the traditional view of software development in this
area and the significant cost and schedule reduction which can be real-
ized by using the guidance and recommendations described in DO-332/
ED-217 over those practices based on DO-178B/ED-12B.

I. Introduction
The formal standard Software Considerations in Airborne

Systems and Equipment Certification, known in the industry
as DO-178B or more recently DO-178C, is the means by
which certification authorities, such as the FAA1 and EASA2,

determine whether aircraft and engines containing software
as part of their operational capability can be granted airworthi-
ness certification for operation in civil airspace. As such, it is
required reading for thousands of engineers worldwide who
produce software for aircraft and aircraft engines. It specifies
the means by which such software is produced and verified
so that airworthiness certification can be granted.

Military aircraft, such as the USAF C-17, have made use of
DO-178B for guidance in airworthiness even though not formally
required to do so. An effort began in late 2004 to produce a
successor document to DO-178B/ED-12B to be known as DO-
178C/ED-12C. Special Committee 205 (SC-205) of the RTCA3
and Working Group 71 (WG-71) of EUROCAE4 were formed to
address the perceived shortcomings of the existing standard from
a viewpoint more attuned to modern software practice.

The mission of this subgroup was to address the needs of
software practitioners in creating object-oriented software for
airborne systems, which was a practice widely viewed as pro-
hibitively difficult under the existing standard. The core docu-

12 CrossTalk March/April 2017

MODERN PROCESS TRENDS

frequently misinterpreted certification artifacts, sometimes causing
entire software development efforts to be abandoned. In general,
knowledge of why the certification requirements existed and their
purpose failed to be understood or appreciated. [2]

C. DO-178B
The avionics industry became more and more software-orient-

ed during the time DO-178A was in use. Many new companies
entered the field and produced equipment subject to certifica-
tion. Lack of experience, documentation, and understanding of
the reasons for satisfying DO-178A brought about a need for an
improved standard. In 1992, this became DO-178B, which was
developed in cooperation with EUROCAE as ED12B by SC-167
and WG-12. This updated document made many fundamental
changes to its predecessor. Salient among these was the intro-
duction of software criticality levels A through E, which replaced
the “critical, essential and non-essential” designations that were
used previously. It placed a strong emphasis on requirements-
based testing, which was seen as a more effective verification
strategy than traditional white-box testing. It also required that
these tests and their related artifacts be made available to certifi-
cation authorities for use as part of their approval process.

D. OOTiA
During the eight years following the release of DO-178B/

ED12B and its adoption by the industry, some people ex-
pressed concern that more modern software practices were
difficult to employ using that standard. In 2000, the FAA re-
sponded by contacting the representatives of several key com-
panies, including Boeing, BF Goodrich and others, to produce
an analysis of how object-oriented software procedures could
be adapted to the needs of airworthiness certification.

This process was later available to the industry in general,
and workshops were held in order to produce position papers
that would hopefully evolve into a best practices guide, be-
come an FAA Advisory Circular, or be rolled into the not-yet-
begun DO-178C effort. The FAA and NASA7 held meetings
that eventually resulted in the FAA publishing the four-volume
Handbook for Object-Oriented Technology in Aviation
(OOTiA). This document was never intended to contain objec-
tives or guidance for practitioners and certification authorities.
It was only meant to contain a set of suggestions for best
practices and warnings about problematic situations.

By 2005, the FAA had decided that it would no longer main-
tain sponsorship of OOTiA or facilitate any updates or correc-
tions to it. SC-205 of the RTCA was under consideration as a
means to upgrade DO-178B [1], and it was considered best to
turn OOTiA over to the nascent SC-205 to use as input for the
creation of an object-oriented supplement to the new standard.

E. Rationale
The views of a number of stakeholders, including certification

authorities, airframe manufacturers, and equipment suppliers,
were taken into account in the creation of DO178B/ED-12B.
A basic tenet of this document was that it should be writ-
ten, as much as possible, to be requirements- oriented; that is,

the document should be about objectives rather than pro-
cesses. This was fundamentally meant to minimize the impact
of technological evolution, as long diatribes such as the best
use of blank COMMON blocks in FORTRAN were considered
inappropriate in the long term. This brought about the philoso-
phy of creating the document in terms of objectives, guid-
ance, and guidelines so that applicants could use it in creating
airborne software and certification authorities could use it to
judge software’s suitability in an airworthiness determination.

A large part of the document is concerned with how software is
produced, how source and object code is traced to requirements,
how the requirements trace to source and object code, and how
the software is tested and shown to have been adequately tested.

F. Software Certification
There is a perception among those new to this field that soft-

ware is somehow “certifiable” for airworthiness. This may come
from a simple reading of the title of DO-178C/ED-12C
Software Considerations in Airborne Systems and Equipment
Certification. However, software is not actually “certifiable.” Entities
for which airworthiness certification can be granted are aircraft, en-
gines, propellers, and, in the U.K., auxiliary power units. This means
that the effort expended on achieving the “certifiability” of software
is in actual practice expended on ensuring the certifiability of the
aircraft, engine, or something else that is subject to the airworthi-
ness certification effort — not the software involved.

For example, it is not possible to produce a “certified” ver-
sion of a real-time executive or garbage collector, regardless
of any statements in the marketing material of a particular
vendor. What software vendors may do — and typically charge
a substantial fee for — is provide the requirements, source
traceability, requirements-based tests and test results for a
particular software component that it provides. This documen-
tation can then be submitted to the certification authority as
part of the applicant’s request for airworthiness certification
of an engine, aircraft, or something else.

G. Software Production Process
The DO-178 series of documents are widely perceived as

process-heavy; that is, they impose a substantial burden on
the applicant to show that a particular process has been
followed in the production of and verification of the airborne
software that is being considered for certification. Although this
has been widely considered a very expensive activity, over 35
years of airborne operations have not revealed any major safety
flaws. Contrast this with, for example, the maiden flight of the
Ariane 5 (Flight 501, June 4, 1996), which was destroyed 37
seconds after launch due to a software coding flaw — the failure
to handle an exception raised during the initial boost phase.
The Ariane 5 was never subjected to a civil airworthiness cer-
tification effort as its flights through civil airspace fall under
a different authority, but it serves to illustrate that software
coding errors can cause spectacular disasters.

Nevertheless, many people in the airborne software industry
still believe that DO-178B/ED-12B made using less process-
heavy techniques, such as model-based development, formal

CrossTalk—March/April 2017 13

MODERN PROCESS TRENDS

methods and object-oriented programming, difficult when certifi-
cation aspects were considered. The attitude is often one of “We
already know how to create certifiable software the old-fash-
ioned way. Why should we change now?” There is, therefore, a
substantial perceived risk to adopting more modern techniques,
regardless of the reduction in cost, errors, and time to market.

III. Rationale for Change
The answer to the question above is that the cost of doing

things the old-fashioned way is becoming prohibitive. It now
costs hundreds of millions of dollars for a new large aircraft to
achieve airworthiness certification. That makes even small in-
creases in efficiency lead to a competitive edge for airframe
manufacturers and their equipment suppliers, who are able to
be more efficient in their software production. Object-oriented
programming is one way substantial increases in efficiency
can be achieved, if only it can be used in an approved air-
worthiness certification effort.

Additionally, the software world has changed. Back in the 1980s,
almost all airborne software was written from scratch to run on a
single processor. This was a big problem for “commercial off the
shelf” (COTS) software, as it was almost certainly not developed
in an airborne software environment and therefore didn’t have all
the traceability and requirements-based test artifacts needed for
eventual certification. This, obviously, has an impact on cost.

As far as safety is concerned, there’s a real benefit to
investing substantial resources into doing certain things right
in a project- independent manner. Consider the wisdom of
using a memory management system written by a special-
ist in real-time garbage collectors and used by thousands of
developers rather than a pooled memory system written by a
specialist in terrain avoidance and used by fifteen developers.

In the 1980s, people wanted to achieve safety goals through
testing. One particular objective of software testing is “to
demonstrate with a high degree of confidence that errors
which could lead to unacceptable failure conditions, as
determined by the system safety assessment process, have
been removed.” [5] The realization that this objective is, by and
large, unobtainable in modern software systems has gained
substantial consensus. It is widely felt that this view does not
scale to the complex systems of current airborne software
— let alone future systems — due to both hardware and
software complexity. That is, exhaustive software testing will
not reach the desired conclusion that all necessary errors “have
been removed.” This, in turn, has brought about a refocusing
of the testing effort toward more realistic goals like reaching
a reasonable level of confidence that the software is correct,
safe, and useful rather than completely error-free.

IV. Changes with DO-178C/ED-12C
The creation of DO-178C/ED-12C brought about five auxil-

iary documents:
— DO-278A/ED-109A: DO-278A Software Integrity

Assurance Considerations for Communication,
Navigation, Surveillance and Air Traffic Management
(CNS/ATM) Systems.

— DO-330/ED-215: Software Tool Qualification Considerations.
— DO-331/ED-218: Model-Based Development and Verifi-

cation Supplement to DO-178C and DO-278A.
— DO-332/ED-217: Object-Oriented Technology and Relat-

ed Techniques Supplement to DO-178C and DO-278A.
— DO-333/ED-216: Formal Methods Supplement to

DO178C and DO-278A.
The remainder of this article will focus on only one of these:

DO-332/ED-217[7], which was meant to address coding and
verification issues.

Subgroup 5 — Object-Oriented and Related Technologies —
took on the challenge of addressing, to a large extent, all coding
issues. While issues such as dead and deactivated code, inlining,
ad-hoc and parametric polymorphism are not particularly object-
oriented, subgroup 5 addressed those issues along with more
obviously Object-oriented (OO) topics such as inheritance, class
hierarchy consistency, and run-time polymorphism.

The overall aim was to provide clarification of objectives
from an OO viewpoint, to provide any new objectives that were
deemed beneficial to airborne safety, and to provide guidance
and recommendations for achieving those objectives.

A. OOTiA, CAST, FAA and EASA
One of the initial responsibilities of the subgroup was to

address all issues raised in OOTiA and either incorporate them
into the supplement or deem them inapplicable or unfounded.
IP 508 was produced by the subgroup to respond to each in-
dividual concern raised by OOTiA. Additionally, concerns about
OO had been raised through CAST papers, EASA CRIs9 and
FAA IPs. The subgroup was to also address all of these.

B. Dead and Deactivated Code
DO-178C/ED-12C disallows dead code, which is basically

code that can never be executed. Dead code is treated as a
software error that should be eliminated. A variant on this is
deactivated code, which might be executed for a particular
configuration not used in flight. An example of this might be
a software- controlled radio, which includes code to control
a military hardware encryption/decryption device but which
would not be selected for a purely civilian application. This
is already addressed by DO-178C/ED-12C. However, when
reusing software components — especially externally developed
software components such as class libraries — this comes into
play as the abstraction for a component may include more
behavior than is actually exercised by the airborne software.

Consider a stack class which is used as a previously developed
component and which contains methods for “push”, “peek” and
“pop.” All of these methods fit the abstraction for how a stack
should work and are not out of place in a stack class. The particu-
lar airborne software using such a stack, however, might not actu-
ally use the “peek” method. The previous standard would have
forced the practitioners to actually remove the code for the peek
method before certification as it would be considered dead code.
The new standard relaxes restrictions on separately developed
components and allows this stack class to be used unmodified.

14 CrossTalk March/April 2017

C. Type Theory
Early on, the subgroup decided to provide a type theoretical

basis as a rationale for reducing the amount of redundant test-
ing and verification that involved base classes and their derived
subclasses. A great deal of this testing and verification can
be shown to be redundant and therefore unnecessary through
type-theoretical arguments that involve class hierarchy design,
as long as the type hierarchies in question share certain
properties. There is a notable absence of type theory — or, for
that matter, any sort of formal computer science — as a basis
for decision-making in DO-178B/ED12B. Subgroup members
perceived this as being at some risk of being rejected by the
subcommittee as a whole, but it was accepted in the end.

D. The Liskov Substitution Principle
This sort of type-theoretical formulation initially manifested

itself in the specification of the Liskov Substitution Principle
(LSP) [3] as the basis for establishing that superclass behavior
verification could be used as part of the verification compliance
of t h e subclass of that superclass. The point was that only
the additional behavior provided by the subclass needed to
be verified if that subclass conformed to LSP. Consider the
formulation LSP which appears in the supplement:

Let q(x) be a property provable about objects x of type T .
Then q(y) should be true for objects y of type S where S is a

subtype of T.
Regardless of the succinctness of this, the subgroup felt

that a purely theoretical expression of this concept might
place too great of a burden on the practitioners.

1) Explaining LSP: As the supplement neared comple-
tion, members of subgroup expressed that the definition given
above needed to be explained more clearly. The inclusion of a
Frequently Asked Questions (FAQ) section in the supplement
provided a less structured environment into which the subgroup
could place questions and answers that were presumed to be
destined to be frequently asked. These essentially addressed
the question “What’s the deal with the Liskov Substitution Prin-
ciple and why should I care?” The subgroup could have simply
reiterated the concept and continued to claim that it was a
good thing — which is true — but that probably wouldn’t get the
point across. Based on the idea that seeing a car crash is more
conducive to reminding drivers why safety is important than
listening to safety lectures, it was decided to show how failure to
follow LSP could lead to problematic behavior. DO-178C/ED-
12C is fundamentally a document about software safety, so this
approach was considered reasonable.

2) Creating a Counterexample: For purposes of the supple-
ment’s FAQ, the following situation was proposed: There exists
a conceptually abstract hardware speed controller that can be
instantiated with the necessary behavior to reflect the hardware
of many different manufacturers. This provides the necessary
basis for creating a base class so that concrete subclasses
could be created for each manufacturer’s particular version
with whatever device-specific low-level hardware interface
was necessary. Additionally, some members felt that this ex-
ample was something that practitioners would see as vaguely

similar to the sort of software they were developing — soft-
ware to control a pump for a fuel control system, maybe. A
stretch, perhaps, but not an outrageous one.

3) Preconditions, Postconditions and Invariants: The argu-
ment is made that a number of different manufacturer’s speed
controllers would be substitutable for the base class as long
as they correctly implemented the adjust speed method to
communicate the desired increase in speed through whatever
hardware-specific means necessary. A class invariant for the
speed controller is that an instance’s speed attribute is the mag-
nitude of the velocity and therefore can never be less than zero.
To use the Java terminology, the base class creates a means to
adjust the speed by giving a speed increment to an adjust speed
method. This adjust speed method’s postcondition is that when
given a positive, nonzero argument, the speed attribute of the
object has increased. Therefore, it must be nonzero.

4) Time to Divide by Zero: Based on this postcondition and
invariant, a method “time to go,” taking a distance argument, will
return in whatever units are convenient the time value it takes
to traverse that distance. This ultimately reduces to dividing
the given distance by the object’s current speed attribute, then
converting it to the correct units. The situation as outlined above
represents a valid use of LSP. Any desired number of subclasse-
ses of the speed controller can be created, each of which tailors
its behavior to what is required by the underlying hardware. In
order to demonstrate the failure of LSP, the subgroup intro-
duced an “auto controller,” a subclass of speed controller de-
signed to control a fundamentally different type of hardware that
is given a desired speed that it seeks to reach and maintain.

5) Breaking LSP: Since this new auto controller class no
longer needs the adjust speed by a speed increment method,
its necessary implementation of the method does nothing.
Additionally, a “set desired speed” method would need to be
introduced to address the new abstraction of this type of
speed controller. The point of all this is that by having the auto
controllers adjust speed method do nothing, the postcondi-
tion is violated, since invoking the adjust speed method on an
object with zero speed would fail to make the actual speed
attribute nonzero. This, in turn, would cause division by zero
when the “time to go” method was invoked, causing a divi-
sion by zero exception to propagate through the system. This
should leave the reader with an image of the smoke and debris
cloud ultimately resulting from that unhandled exception on
the Ariane 5’s maiden flight.

A. Local and Global Class Hierarchies
The supplement includes a brief explanation of the concept

of hierarchical encapsulation so that it could form the basis for a
discussion of class hierarchies which, in turn, brings about a discus-
sion of type consistency for local and global type hierarchies. The
supplement uses the term “local type consistency” to provide a
means to determine type consistency in a component, independent
of the type consistency of code which might utilize that component.
That is, developers could make type consistency determinations
with well-defined boundaries, facilitating the incorporation of sepa-
rately (and often externally) developed class hierarchies.

CrossTalk—March/April 2017 15

B. Taxonomy of Polymorphism
Although not really object-oriented in nature — the charter of

the subgroup being essentially all coding issues — the notion
of polymorphism is approached from a type-theoretical basis
as well. With a brief description of the forms of polymorphism
as being universal polymorphism and ad-hoc polymorphism,
each of these is discussed as being divided into parametric and
inclusion polymorphism, coercion and overloading, respectively.
Again, the subgroup did this with some apprehension but felt
that at least introducing the vocabulary would provide additional
means of clarifying situations where polymorphism is used and
provide a common vocabulary for practitioners and certification
authorities. A similar philosophy guided the decision to discuss
closures as a means of specifying behavior; that is, if the terms
are introduced in the supplement, an applicant can use the
concept with an expectation that the certification authority will at
least be on the same page.

1) Resource Management: One area in which DO-332
expects to have a large impact on software design in airborne
systems is the provision of a section on resource manage-
ment, especially heap management, where automatic garbage
collection is explicitly permitted for the first time. Garbage
collection in real-time systems is a subject on which a great
deal of religious fervor has been expressed in the software
safety community, especially the ongoing theme that garbage
collectors are somehow too complex and therefore should not
be allowed in a real-time or safety-critical situation.

A consistent problem encountered with this view is the in-
ability of any of its proponents — or at least the ones with whom
the subgroup communicated — to express just how complex “too
complex” is, or even how such complexity should be measured. It
was found to be especially curious that the notion was ex-
pressed — and fiercely defended — that garbage collectors
were inherently too complex to be used in aviation but that
high-bypass turbofan jet engines somehow were not.

While rejecting the notion that garbage collection — now and,
presumably, forever — is unusable due to some unspecified and
undefinable algorithmic complexity in all garbage collectors, the
supplement recognizes the potential for heap memory exhaus-
tion in an airborne system and gives guidance to detect it and
provide a degraded mode into which the subsystem can transi-
tion if such a situation becomes imminent. The idea of throwing
an unhandled out-of-memory exception is still possible, just as
is the throwing of an unhandled division by zero exception. But
the guidance and recommendations give developers and certifi-
cation authorities a specific set of criteria to verify.

2) Functional Programming: There is an expectation that
functional programming will be an increasingly important tech-
nique in future embedded systems, including airborne systems.
As the future of processors seems to be in more cores rather
than in more speed per core, a widely accepted technique for
handling additional throughput is to move to a computation
model involving an increased use of concurrency.

Handling concurrency will be increasingly important, and a
well-established method for handling massive concurrency is the
use of immutable data and functional programming. This was part

of the driving force behind providing guidance for polymorphism,
closures and garbage collection, all of which are heavily used in
functional programming. The subgroup wanted to ensure that it
left a path to functional programming for future practitioners.

V. Conclusion
Generally, the subgroup took the view that it should strive to

remain language- and technology-neutral, but that it should use
real languages (Ada, C++ and Java, in particular) and technol-
ogy to provide examples and illustrations of problem areas (for
example, static dispatch and violation of the Liskov Substitution
Principle). The subgroup also subscribed to the view that this
supplement will be the foundation for perhaps two decades of
future safety-critical software implementation, so the subgroup
needed to be careful and conservative in the resulting docu-
ment. This was also done with the knowledge that the real-time,
avionics and safety-critical communities are reluctant to intro-
duce new concepts (garbage collection and runtime polymor-
phism, for example), so the subgroup needed to provide a basis
for acceptability of such ideas to that community by furnishing
a theoretical base for discussion as well as an analysis of the
perceived risks of a given approach and recommendations for
mitigating those risks.

In general, the subgroup feels that DO-332/ED-217 provides
a sound collection of techniques to mitigate the difficulty and
expense involved with creating and validating airborne software,
now and in the future.

Michael R. Elliott is a software engineer
with a deep passion for modern software
practice, embedded systems architecture
and safety- and security-critical soft-
ware. Elliott was a member of SC-205/
WG-71 Subgroup 5, which developed DO-
178C/ED-12C and DO-332/ED-217. He
has a bachelor’s degree in information and
computer science from the University of
California, Irvine and a master’s degree
in software engineering from Edinburgh
University, Edinburgh, Scotland.
aicas GmbH
Haid-und-Neu Straße 18
76131 Karlsruhe Germany
elliott@aicas.de

ABOUT THE AUTHOR

mailto:elliott@aicas.de

16 CrossTalk March/April 2017

MODERN PROCESS TRENDS

1. Federal Aviation Administration (FAA). (Oct. 2004.) “Handbook for Object-Oriented
Technology in Aviation (OOTiA).” Washington, D.C., USA.

2. Johnson, L. (Oct. 1998.) DO-178B, “Software Considerations in Airborne Systems and
Equipment Certification.” Crosstalk, The Journal of Defense Software Engineering, 11 (10).

3. Liskov, B. & Wing, J. (Nov. 1994.) “A Behavioral Notion of Subtyping.” ACM Transac-
tions on Programming Languages and Systems, 16(6): 1811–1841.

4. Special Committee 152 of RTCA. (March 1985.) “DO-178A/ED-12A – Software
Considerations in Airborne Systems and Equipment Certification.” RTCA and
EUROCAE. Washington, D.C., USA and Paris, France.

5. Special Committee 167 / Working Group 12 of RTCA and EUROCAE. (Dec. 1992.)
“DO-178B/ED-12B – Software Considerations in Airborne Systems and Equipment
Certification.” RTCA and EUROCAE. Washington, D.C., USA and Paris, France.

6. Special Committee 205 / Working Group 71 of RTCA and EUROCAE. (Dec. 2011.)
“DO-178C/ED-12C – Software Considerations in Airborne Systems and Equipment
Certification.” RTCA and EUROCAE. Washington, D.C., USA and Malakoff, France.

7. Subgroup 5 of Special Committee 205 / Working Group 71 of RTCA and
EUROCAE. (Dec. 2011.) “DO-332/ED-217 – Object-Oriented Technology and Related
Techniques Supplement to DO-178C and DO-278A.” RTCA and EUROCAE. Washing-
ton, D.C., USA, and Malakoff, France.

REFERENCES
1. Federal Aviation Administration. Washington, D.C., USA. http://www.faa.gov.
2. European Aviation Safety Agency. Cologne, Germany. http://www.easa.europa.eu.
3. RTCA, Inc. (Washington, D.C., USA) is an organization that creates standards docu-

ments for the FAA. http://www.rtca.org.
4. The European Organization for Civil Aviation Equipment (Malakoff, France) is an orga-

nization that produces documents referred to as a means of compliance for European
Technical Standard Orders. http://www.eurocae.net.

5. Information Paper.
6. Object-Oriented Programming Systems, Languages and Applications conference of the

Association for Computing Machinery.
7. National Aeronautics and Space Administration. Washington, D.C., USA. http://www.

nasa.gov.
8. Certification Authority Software Team, a group of individuals representing several

certification authorities, including EASA, FAA, JAA and Transport Canada.
9. Certification Review Items.

NOTES

Send resumes to:
76SMXG.Tinker.Careers@us.af.mil

US citizenship required

Tinker AFB is only 15 minutes away from
downtown OKC, home of the OKC Thunder,
and a wide array of dining, shopping,
historical, and cultural attractions.

WE ARE HIRING
ELECTRICAL ENGINEERS AND COMPUTER SCIENTISTS

As the largest engineering organization on Tinker Air Force Base, the
76th Software Maintenance Group provides software, hardware, and
engineering support solutions on a variety of Air Force platforms and
weapon systems. Join our growing team of engineers and scientists!

BENEFITS INCLUDE:

x Job security

x Potential for career growth

x Paid leave including federal holidays

x Competitive health care plans

x Matching retirement fund (401K)

x Life insurance plans

x Tuition assistance

x Paid time for fitness activities

Oklahoma City SkyDance Bridge, Photo © Will Hider

http://www.faa.gov
http://www.easa.europa.eu
http://www.rtca.org
http://www.eurocae.net
mailto:76SMXG.Tinker.Careers@us.af.mil
http://www.nasa.gov

CrossTalk—March/April 2017 17

MODERN PROCESS TRENDS

Send resumes to:
76SMXG.Tinker.Careers@us.af.mil

US citizenship required

Tinker AFB is only 15 minutes away from
downtown OKC, home of the OKC Thunder,
and a wide array of dining, shopping,
historical, and cultural attractions.

WE ARE HIRING
ELECTRICAL ENGINEERS AND COMPUTER SCIENTISTS

As the largest engineering organization on Tinker Air Force Base, the
76th Software Maintenance Group provides software, hardware, and
engineering support solutions on a variety of Air Force platforms and
weapon systems. Join our growing team of engineers and scientists!

BENEFITS INCLUDE:

x Job security

x Potential for career growth

x Paid leave including federal holidays

x Competitive health care plans

x Matching retirement fund (401K)

x Life insurance plans

x Tuition assistance

x Paid time for fitness activities

Oklahoma City SkyDance Bridge, Photo © Will Hider

over their life cycles. While missions are being planned and satis-
fied by existing computer systems, there are new missions being
proposed which cannot be satisfied by a single existing computer
system capability. Therefore, this raises the question of whether a
Networked Computer System (NCS) is preferred in order to satisfy
new capability requirements by using combinations of existing and
developmental computer systems. This paper explores an approach
to identifying a preferred NCS solution and measuring the NCS’s
effectiveness in satisfying a mission.

Defense Computer Systems
The United States Department of Defense (DoD) requires

new capabilities with new requirements to address the
continuing evolution of missions, threats, budget and tech-
nology. These new capabilities can be satisfied with existing
operational systems, the development of new functionalities
into existing systems, or the development of completely new
systems. However, another approach is to develop a combina-
tion of existing systems for emerging requirements to satisfy
new capabilities while reusing existing and proven capabilities
with the goal of ensuring mission accomplishment. This “iden-
tification and selection” approach will reduce the risk associ-
ated with system development and integration efforts while
providing a better-informed decision making process in satisfy-
ing user requirements while considering cost, schedule, and
program execution performance. In addition to the decrease of
defense spending, the acquisition community must also seek
innovative ways to satisfy the new systems capabilities needed
in order to accomplish the DoD operational mission.

The research performed in this paper was based on the
United States DoD’s need for an operational system capabil-
ity that can satisfy a defense mission, and specifically seeks
to determine if the capability requires a group of computer sys-
tems to be developed into a single NCS solution (see Figure
1). Once a preferred NCS solution is identified, the question
becomes “How do we measure the effectiveness of these
developed and integrated computer systems with the end of
goal of satisfying mission success?”

Overview of Methodology Framework
The notional conceptual methodology includes a number of

steps that must be accomplished in order to select computer
systems in developing the NCS solution and measuring the so-
lution’s effectiveness. Table 1 describes the two phases followed
by a summary describing each of the steps under each phase.

Phase 1:
Selecting Computer Systems for an NCS Solution

This first phase focuses on developing an NCS solution for
a given mission based on mission requirements and objectives.
This phase will address the development of a NCS solution
based on existing computer systems that are either already
operational or currently being developed with a known time
for capability readiness and acquisition. The following sections
describe each of the steps.

Glenn Tolentino, Dr. Jeff Tian, Dr. Jerrell Stracener

Framework for
Selecting the Preferred
Networked Computer
System for Dynamic
Continuous Missions

Abstract. This paper presents a framework for selecting a combination
of existing systems to satisfy new, emerging requirements while reusing
existing and proven capabilities to ensure mission success. Decision at-
tributes will be considered during the selection process and will be used
to measure the networked computer system’s effectiveness to accom-
plish the mission. This approach will enable system stakeholders to make
critical, well-informed decisions to address the continuing evolution of
missions, threats, budget and technology.

Figure 1. Notional NCS Concept of Operations

Introduction
Defense Computer Systems developed and maintained over

the years have resulted in thousands of disparate, compartmented,
focused, and mission-driven systems that are utilized daily for delib-
erate and crisis mission planning activities. The defense acquisition
community is responsible for the development and sustainment of
these systems over the course of its systems engineering life cycle
from conception to utilization and eventually to the decommis-
sioning of these systems. In addition to the cost of these systems’
acquisition and development phases, there are associated invest-
ment costs that are necessary to sustain these computer systems

18 CrossTalk March/April 2017

MODERN PROCESS TRENDS

Phase 1 - Step 1:
Describe the NCS mission:

This step describes the intended overall mission or missions
of the NCS. Defining the mission is a high-overview activity that
specifies what is to be performed with specific mission objec-
tives. These mission objectives can be translated as a set of
activities that must be performed in order to achieve mission

success and can be characterized as the mission profile, which
translates to specific capabilities. There are a number of capabil-
ities that are required by the NCS in order to satisfy each of the
mission objectives and accomplish mission success.

Phase 1 - Step 2:
Identify Computer Systems to Satisfy Mission-Required
Capabilities

During this step, each of the capabilities required for the NCS
solution is identified. Once all of the capabilities are identified,
the capabilities objectives are established along with high-level
capabilities requirements to satisfy the objectives. The capability
requirements are then used to determine whether initial candi-
date computer systems will be able to satisfy the requirements.

Phase 1 - Step 3: Determine Computer Systems for NCS
Consideration

This step in the process assists in determining which computer
systems will be under consideration to be part of the NCS solution.
It provides a process to help select the systems based on system
capability availability, capability readiness, acquisition time, and acqui-
sition cost (see Fig. 2). This process provides a library list of computer
systems for each of the capabilities required for the NCS solution.

Phase 1 - Step 4:
Determine NCS Solution to Satisfy the Mission

During this step, a library list of computer systems that satis-
fies each of the capabilities defined by the high level capability
requirements will be available as part of a down select process.
This step will identify potential computer system candidates to
be considered into the NCS solution. The identification process
will utilize a process to determine which computer systems
are the “best” candidates in accomplishing the NCS capability
objectives. A selection process enables the stakeholders to be
able to provide a level of balance between objective and subjec-
tive decision-making in selecting the computer systems as a
component of the preferred NCS solution.

Phase 2:
Determining the Measure of Effectiveness
of the NCS Solution

The purpose of Phase 2 is to evaluate the NCS solution
based on the decision attributes in quantifying the NCS solu-
tion’s effectiveness. This phase will evaluate the NCS solution
based on the decision attributes selected (capability sustain-
ment, mission reliability, and life cycle cost) and measure the
effectiveness based on the estimation. The following sections
describe each of the steps of Phase 2.

Phase 2 - Step 1:
Evaluate NCS Solution Based on the
Decision Attributes

The NCS solution will be evaluated based on the decision at-
tributes that are related to the Measure of Effectiveness (MOE)
construct. In terms of MOE, the NCS solution will consider
capability sustainment (basic reliability), mission reliability, and
capability life cycle cost. Each of the decision attributes will be

Step 1 Describe the NCS Mission

Identify computer systems with capabilities to satisfy mission

required functionalities

Determine computer systems for NCS consideration

• System capability availability

• Capability readiness

• Acquisition time

• Acquisition cost

Step 4 Determine NCS solution to satisfy mission

Evaluate NCS solution based on decision attributes:

Capability sustainment definition and estimation

Mission reliability definition and estimation

Lifecycle cost definition and estimation

Step 2 Determine measure of effectiveness based on decision attributes

Phase 1

Step 1

Determining the Measure of Effectiveness of the NCS solution

Phase 2

Step 3

Step 2

Selecting Computer Systems in Developing an NCS Solution

Table 1. Methodology Framework Phase One and Two

Figure 2. Approach for Determining Feasible Candidate Computer Systems

CrossTalk—March/April 2017 19

MODERN PROCESS TRENDS

quantitatively estimated and analyzed in determining the MOE of
the NCS solution that could be further analyzed and evaluated.

a) Capability Sustainment Definition and Estimation:
Capability sustainment translated as basic reliability is consid-

ered to be a measure of sustainability and operations and support
of a system. As defined in MIL-STD-785B, [5] “the measures of
basic reliability such as Mean-Time-Between-Failures (MTBF)
include all item life units (not just mission time) and all failures
within the item (not just mission-critical failures of the item itself).”
Basic reliability requirements apply to all items of the system.

In terms of computer systems, two primary components can
affect basic reliability: software and hardware. The interrelation-
ship between hardware and software is a primary driver that can
affect the overall reliability of the system. The hardware’s reli-
ability would consist of all hardware elements of the system in
terms of failure that are assessed based on failure rates of the
hardware configuration items. [7] Similarly, software reliability
can also be characterized in terms of the number of software
components and its reliability based on the number of software
failures that occur over time. As part of the informed decision
making process, both hardware and software reliability and their
dependencies must be mathematically formulated in order to
estimate and calculate the overall reliability of the system.

b) Mission Reliability Definition and Estimation
“Mission reliability” is defined as the estimate of the probability

the NCS will perform its required functions during the mission
over a certain time period. This definition is based on the assump-
tion that all mission essential items are ready and operational
at the start of the mission. Furthermore, mission reliability is a
system-level reliability metric that is a function of (1) the mission
definition in terms of mission essential functions by mission phase
and (2) the configuration and failure rates of the NCS essential
items by mission phase. The mission must be defined and de-
scribed in terms of the duration of each phase and the functions
that must be accomplished for the NCS’ mission success. The
assurance of mission reliability can be attributed to systems with
increased levels of redundancies and failovers. However, increas-
ing the probability of mission success by improving the mission
reliability affects basic reliability in the form of increased logistics
overhead to include support, maintenance and costs. Therefore,
there is an underlying dependency between basic and mission
reliability considered as part of this research.

c) Life Cycle Cost Definition and Estimation
One of the requirements in the development of systems that

are managed and operated by the DoD is a determined cost of
its life cycle. [14] Systems developed within the defense acquisi-
tion model follow a cost model to support the affordability among
all the phases of a system’s life cycle to include material solution
analysis, technology development, engineering and manufactur-
ing development, production and deployment, and operation and
support. [6] It is important to know the program’s cost at particular
intervals in order to ensure that adequate funding is available to
execute the program according to plan. [11] “Affordability must
be a performance consideration from beginning throughout the

life cycle.” [8] Similarly, the NCS solution will also consider a cost
model as a measure of affordability in support of the NCS life
cycle to satisfy a mission. (See Figure 3.)

Since the NCS solution will only be acquiring existing systems
that are in development or systems that have already achieved
their initial operating capabilities, the NCS solution will support
two cost model components, (1) cost model for each of the
constituent computer systems and (2) cost model for the NCS
solution. [6] The first component is the costs associated with
acquiring and engineering the computer systems specifically in
developing, integrating, testing and deploying. These are cost
drivers that involve engineering efforts for each of the computer
systems that are part of the NCS solution. The second compo-
nent is the costs associated with managing, utilizing, maintaining
and supporting the NCS during its operational life cycle. The
cost is a reoccurring cost throughout the NCS life cycle for as
long as the operators utilize the NCS solution.

The cost structure and its elements are cost drivers in devel-
oping and sustaining an NCS solution throughout its life cycle.
These cost drivers can be categorized by the life cycle phases of
an NCS solution in the following cost structure elements table:

Phase 2 - Step 2:
Determine Effectiveness Based on Decision Attributes

In this step, the NCS solution and the estimated decision
attributes will be used to determine the MOE. The previous sec-
tion determines the decision attributes based on a quantitative
approach for measuring the attributes considered to be critical
components of the MOE of the NCS. The question is how to
balance all of the decision attributes that are considered impor-
tant to determining a specific measure in determining the MOE
of the NCS solution. Since this notional conceptual methodology
is based on determining a solution to be considered based on
specific decision attributes to calculate the effective measures
of the system, the methodology will consider a process that is

Figure 3. NCS Life cycle

Phase Number Life Cycle Phase Cost Elements Description

1 Planning
§ Engineering effort cost based on the NCS solution design with
respect to the mission, mission objectives, and mission requirements

2 Acquisition
§ Cost of Acquiring the computer systems required based on NCS
solution design

§ Cost of computer systems compliancy with the NCS architecture to
include development, integration, testing, and deployment

§ Cost of computer systems integration into the NCS architecture to
include testing and deployment

4
Operations and

Support
§ Cost of managing, operating, sustaining, and supporting the NCS
solution

5 Decommission § Cost of de-installation of the NCS solution

Development3

Table 2. Cost Structure Element

MODERN PROCESS TRENDS

able to calculate these decision attributes based on weighted
priorities. The weighted priorities take into account the impor-
tance of each of the decision attributes and prioritizes each of the
attributes based on historical information and experiences of the
decision stakeholders. Therefore, during this section, a generic
hierarchy or ranking process shall be considered in order to pro-
vide a solution that relies on the judgments of experts and subject
matter experts to provide a priority or weighted factor on area of
importance for each of the measuring attributes. For instance, if
the mission requires a higher factor in mission reliability, then the
process will take into account the importance of the reliability of
the mission. This also goes along with the decision attribute of
capability life cycle cost having a priority weight over the other
decision attributes. In this case, if the life cycle cost requires a
higher priority, subject matter experts weight it according to its
importance. Further research is required in this area in order to
determine the best approach in determining the feasibility of the
NCS solution based on the decision attributes considered.

Way Forward
The work being performed in this area will provide a well-

defined methodology in which a program office can utilize a
decision process to determine the best feasible approach for
satisfying an emerging capability. The approach hinges on the
utilization of current operational or developmental systems to
fulfill user requirements by taking advantage of existing systems.
This paper defined a methodology framework to explore the
selection of systems that can, when combined, provide a means
to satisfy an emerging capability by minimizing the number of
systems for development and utilizing current operational sys-
tem capabilities that are fielded.

1. Chelson, P. O. & Eckstein, R. E. (1971.) “Reliability Computation from Reliability
Block Diagrams.” Jet Propulsion Laboratory. California Institute of Technology,
Pasadena, California.

2. National Research Council. (2015.) “Reliability Growth: Enhancing Defense
System Reliability.” Washington, D.C. National Academy Press.

3. DAU. (2016). “Measure of Effectiveness (MOE).”
https://acc.dau.mil/CommunityBrowser.aspx?id=348978

4. Department of Defense. (2013.) “Defense acquisition guidebook.” In Defense
Acquisition Guidebook, Ed., 2013.

5. Department of Defense. (1980.) “Reliability Program for Systems and Equip-
ment Development and Production.” Vol. MIL-STD-785B. D. o. Defense, Ed., ed.
Washington, D.C.

6. Office of Secretary Defense. (2014.) “Operating and Support Cost-Estimation
Guide.” Office of Secretary of Defense, Ed., ed. Washington, D.C.: Cost Assess-
ment and Program Evaluation (CAPE).

7. Friedman, M. A.; Tran, P. Y., & Goddard, P. I. (1995.) “Hardware/Software System
Reliability Modeling.” in Reliability of Software Intensive Systems (Advanced
Computing and Telecommunications Series). 1st Edition ed: William Andrew.

8. Jaynes, R. A. S. C.; Simpson, T.; Mallicoat, D.; Francisco, J.; Mizell, W. & Cikovic,
D. (2012.) “Managing O&S Costs - A Framework to Consider.”

9. Mccallam, D. (2013.) “Improving Enterprise Security through Cybersecurity
Architecture Views.”

10. Office of the Secretary of Defense, C. (2011.) “DoD Financial Management Policy
and Procedures DoD 7000.14-R.” D. o. D. F. M. Regulation, Ed., ed. Washington
D.C.: Office of the Under Secretary of Defense (Comptroller).

11. Office, U. S. G. A. (2009.) “GAO Cost Estimating and Assessment Guide.” GAO-
09-3SP ed: GAO.

12. Sproles, N. (2001.) “Establishing Measures of Effectiveness for Command and
Control: A Systems Engineering Perspective.” 30.

13. Under Secretary of Defense for Acquisition, T. a. L., or USD(AT&L). (2003.) “The
Defense Acquisition System Directive 5000.01.” Vol. 5000.01. U. A. L. Department
of Defense, Ed., DoD Directive 5000.1 ed. Washinton, D.C.

14. Under Secretary of Defense for Acquisition, T. a. L., or USD(AT&L). (2015.)
“Operation of the Defense Acquisition System 5000.02.” Vol. 5000.02. U. A. L.
Department of Defense, Ed., ed. Washington, D.C.

In future work as part of the selection process, the NCS solu-
tion will be verified and validated by attaining a measurable metric
based on selected decision attributes that help determine the NCS
effectiveness. The measurement for the NCS effectiveness will
provide information to determine whether an investment in develop-
ing the NCS solution can be a viable commitment to successfully
satisfy the operational requirement for the users. There is continued
work to be performed in this area; however, this paper allows us to
review a notional conceptual methodology in identifying decision
attributes and using them as part of a process to identify an NCS
solution for consideration. We will continually strive to identify and
to quantify the preferred NCS solution to satisfy operational re-
quirements. This paper will be followed by a detailed methodology,
effectiveness models, and applications that will be applied toward
an NCS solution to be considered and addressed.

There will be continuing work to be performed in this area
to include a detailed methodology, effectiveness models, and
application to an existing operational or notional mission. This
will be a continued effort in the area of effectiveness measure in
identifying and quantifying the preferred NCS solution in satisfy-
ing an operational requirement.

20 CrossTalk March/April 2017

REFERENCES

https://acc.dau.mil/CommunityBrowser.aspx?id=348978

CrossTalk—March/April 2017 21

MODERN PROCESS TRENDS

Glenn Tolentino is a senior systems engineer for the Command and Control Department at Space and Naval
Warfare Systems Center Pacific located in San Diego, Calif. During the past 23 years, Tolentino has been di-
rectly involved as a software and systems engineer in the design, development, integration and deployment of
national level systems in the area of Command, Control, Computers, Communication, and Intelligence. Glenn’s
research interests include Systems of Systems, Mission Reliability, Capability Sustainment, and Systems Effec-
tiveness. He earned a B.S. degree in applied mathematics from San Diego State University and an M.S. degree
in software engineering from Southern Methodist University (SMU).
glenn.tolentino@navy.mil

Jeff Tian received B.S., M.S., and Ph.D. degrees from Xi’an Jiaotong University, Xi’an, China; Harvard Uni-
versity, Cambridge, Mass., USA; and the University of Maryland, College Park, Md., USA; respectively. He was
with the IBM Toronto Lab from 1992 to 1995. Since 1995, he has been with Southern Methodist University,
Dallas, Texas, USA, where he is currently a professor of computer science and engineering. He has been
the associate director of the National Science Foundation Industry/University Cooperative Research Center
for Net-Centric and Cloud Software and Systems (NSF NCSS IUCRC) since it was founded in 2009. Since
2012, he has also been a Shaanxi 100 Professor with the School of Computer Science, Northwestern Poly-
technical University, Xi’an. His current research interests include software quality, reliability, usability, testing,
measurement, and Web/service/cloud computing. Dr. Tian is a member of the ACM.
tian@lyle.smu.edu

Jerrell Stracener is Professor of Practice and founding director of the Southern Methodist University (SMU)
Systems Engineering Program. He teaches graduate-level courses in engineering probability and statistics,
systems reliability and availability analysis, and integrated logistics support (ILS). He performs and directs
systems engineering research and supervises Ph.D. student research. Prior to joining SMU full time in January
2000, Dr. Stracener was employed by LTV/Vought/Northrop Grumman where he conducted and directed
systems engineering studies and analysis as well as reliability engineering activities. He was also ILS program
manager on many of the nation’s most advanced military aircraft. Dr. Stracener was co-founder and leader
of the SAE Reliability, Maintainability and Supportability (RMS) Division (G-11) and is an SAE Fellow and an
AIAA Associate Fellow. Jerrell served in the U.S. Navy and earned both Ph.D. and M.S. degrees in statistics
from SMU and a B.S. in mathematics from Arlington State College (now the University of Texas at Arlington).
jerrells@lyle.smu.edu

ABOUT THE AUTHORS

CALL FOR ARTICLES
If your experience or research has produced information that could be useful to others,
CrossTalk can get the word out. We are specifically looking for articles on software-

related topics to supplement upcoming theme issues. Below is the submittal schedule for
the areas of emphasis we are looking for:

Software Release Management
September/October 2017 Issue

Submission Deadline: Apr 10, 2017

The Profession
November/December 2017 Issue
Submission Deadline: Jun 10, 2016

Please follow the Author Guidelines for CrossTalk, available on the Internet at
<www.crosstalkonline.org/submission-guidelines>. We accept article submissions on

software-related topics at any time, along with Letters to the Editor and BackTalk. To see
a list of themes for upcoming issues or to learn more about the types of articles we’re

looking for visit <www.crosstalkonline.org/theme-calendar>.

mailto:glenn.tolentino@navy.mil
mailto:tian@lyle.smu.edu
mailto:jerrells@lyle.smu.edu
http://www.crosstalkonline.org/submission-guidelines
http://www.crosstalkonline.org/theme-calendar

22 CrossTalk March/April 2017

MODERN PROCESS TRENDS

Organizations may encourage change, but people typically don’t
like it. At face value, change is disruptive. Before people will em-
brace change, they need to understand the reasons behind it and
how the change will benefit them. Resistance to change is inevi-
table, but organizations can manage change to help make desired
improvements easier to achieve. As if organizational change isn’t
hard enough, a new generation is entering the workforce with dif-
ferent attitudes and views. The introduction of a new generation
with a different point of view affects the dynamics of change. This
article will examine processes, process improvement methods
and change. How an organization manages change will determine
how successful any process improvement effort will be.

The Easy Part: Process and Process Methodologies
What is a process? Simply put, a process is a series of related

steps one follows to achieve a desired result. That end result
could be providing a service, producing a product, or reach-
ing an objective. Every organization follows processes, even
if they don’t realize it. Processes tend to arise naturally in an
organization. When the people in an organization first try to do
something, they realize that certain things must be done to ac-
complish the desired end result. As time goes on, these things
and the sequence in which they are performed become habit or
routine. People accept that certain things need to be done every
time. Hence, a process is born. It may not be formally written
down. It may not be followed exactly the same way each time.
But it’s there, and people accept it as the way things are done.

After people follow a process for a while, the organization
takes notice. The organization may decide that things could be
done better for any of a number of reasons. Organizations may
want to do things faster, cheaper or with better results. When
that happens, they start to look outside the organization for
ways to improve their processes. Suddenly, organizations face
a number of methodologies to choose from, including Lean
Six Sigma, Agile, International Standards Organization (ISO)
standards, Total Quality Management (TQM), and the Capability
Maturity Model Integration (CMMI), among others.

Which one should an organization choose? Lean sounds
good. Who wants a fat, bloated process? Six Sigma sounds
scientific. It has a Greek word in it, after all. The ancient Greeks
were pretty smart. Agile sounds good too. Who wouldn’t want to
be quick and agile? Slow and plodding doesn’t sound nearly as
good. ISO is international. That must be good, right? TQM must
mean that the organization is in control of something because
it is “managing” total quality, not just partial quality, but “total
quality.” The CMMI sounds pretty academic. It may not sound
as riveting or catchy as some of the others, but an organiza-
tion should want to be a mature grown-up about things. Mature
capability sounds pretty good too. After all, who wants to be
immature and incapable? It can come with a maturity rating too.
That’s even better — ratings look great on marketing brochures
and corporate reports.

Next comes research into what all of these methods involve.
When the organization reads the testimonials and thinks they
understand a little about some of the methods, in come the
consultants. When management meets the consultants, the
conversation goes something like this:

Management: “We want to improve our processes.”
Consultant: “Great! My methodology and I can help.”
Management: “Which processes should I improve?”
Consultant: “Well, your processes.”
Management: “I know, but which ones?”
Consultant: “The ones that are most important to you.”
Management: “Umm … Which ones should those be?”
From there, the conversation moves on to a general discus-

sion of process and organizational goals and needs. At some
point, the consultant describes his or her methodology and
how it can help. Management decides which processes need
focused effort. When agreement is reached on the methodology
and target processes, most process improvement efforts follow
the same basic steps:

—Document the current process.
—Identify the desired improvements.
—Involve the affected people.
—Apply the selected improvement methodology.
—Deal with resistance to change.

The Hard Part: Managing Organizational Change
Regardless of methodology, improving processes is pretty

simple, easy and straightforward up until changes to the process
are actually proposed or made. How organizations manage the
changes — and resistance to them — determines whether or not
changes are successful. If change is managed well, improve-
ment happens and the organization moves forward. If change is
not managed well, the organization often moves on to the next
“improvement du jour” and the cycle starts over again.

Resistance comes in many forms. Often, the first resistance
comes from the fact that the process is how things have always
been done. People are comfortable with it and know what to ex-
pect. Change involves uncertainty. People do not like uncertainty.

Process is Easy, Change is Hard
Paul Kimmerly, Double Play Process Diagnostics
Abstract. Process is all around us. We follow processes in just about
everything we do, from getting dressed in the morning to loading
the dishwasher after a meal to walking the dog. Processes provide
essential structure in life and in the workplace. Organizations rely on
processes to get work done. However, organizations are always look-
ing for ways to improve processes. This issue of “Crosstalk” covers a
number of process improvement methodologies that organizations can
use. All of these methods have their merits, but they have also expe-
rienced both success and struggle over the years. Why is it that pro-
cess improvement methods sound so simple and straightforward but
usually prove difficult to implement? The answer is simple — improve-
ment methods all involve something very difficult: change. Choosing
the process methodology is the easy part; managing the change and
the resistance that comes with it makes it difficult.

CrossTalk—March/April 2017 23

MODERN PROCESS TRENDS

The resulting resistance can come in many forms:
— Attacking the proposal.
— False acceptance of the proposal.
— Avoidance of the new process.
— Constantly asking questions and acting confused about

the new process.
— Never having time to commit to the improvement process.
— Agreeing with everything right up until the time to imple-

ment that change, and then finding a variety of questions
and concerns. 1

It’s easy for people to understand ideas like providing better
service to customers, building a better product, understanding
requirements before beginning work, planning the work so you
know what to expect, and managing against a plan to evaluate
progress. However, as soon they hear that they need to change
the way they do things, process improvement becomes hard.

Resistance tests an organization’s commitment to improvement
and change. For improvement efforts to be successful, organizations
must be able to clearly state the reasons for change in a way that
is meaningful to the people in the organization. No matter how cool
they sound, statements like, “We want to be a world-class provider
of choice,” mean absolutely nothing to the people in the organization.
The improvement efforts must be shown to support the work of the
organization. The organization’s mission will always win over process
improvement efforts, and it should. Getting the work done is para-
mount. However, the improvement efforts must support getting the
work done, or the organization is pursuing the wrong improvements.

Successful improvement efforts need more than a statement
of what needs to be improved and why. Improvement requires
resources and a plan. Management cannot simply supply
resources and step back, waiting to hear when things are bet-
ter. Management must show commitment to the change. The
improvement efforts must be supported and reinforced in order
to be successful. Peer pressure can be a great tool for manage-
ment to use. Reinforcement can come from rewarding those
that implement the change and applying pressure on those that
do not. Management cannot afford to be vague about their sup-
port for process improvements.

Resources for process improvements are critical to successful
change. These resources include the people needed to support
and manage the change. Supporting infrastructure also enables
improvement and includes the following:

— A process improvement plan.
— Documented processes.
— Organizational standards for processes, products and work

environments.
— Organizational repositories for processes, measurements

and lessons learned.

In order for a change to be successful, the entire workforce
must be engaged. Different approaches work for different people.
For example, as organizations integrate a new generation into the
workplace, communication becomes a greater concern. The new
generation looks at the world differently. They are used to always
being connected. To them, old communication methods are just that
— old and slow. Organizations must use a variety of tools to get the
word out and to reinforce the need for improvement and change.

As the new generation finds its place and value in the workforce,
longtime employees need to feel that they are not losing their value.
Change may be appealing to the new generation, but they will also
appreciate the support provided by an established process infrastruc-
ture. Long-term employees may feel that change threatens them, but
an organization should draw on these employees’ knowledge to help
establish an infrastructure for the new employees to follow. Both old
and new employees need to feel ownership of the processes and the
associated improvement efforts. The entire workforce must be able
to see that the change is organized and necessary. If they see things
as disorganized or unnecessary, resistance will increase.

Conclusion
Organizations will find that the most difficult aspect of process

improvement is truly the change associated with it, regardless of the
improvement methodology chosen. Organizations should consider
more than one methodology to find a good fit. Different improvement
methodologies complement one another and can be used in com-
bination. Something like the CMMI can provide an overall structure
by providing a menu of process areas to focus improvement efforts,
while Lean Six Sigma and Agile can help to streamline processes
and remove wasteful activities in those process areas.

Once an organization decides which approach it will follow for
process improvement, the focus needs to change from process
methodology to managing organizational change. Choosing the
process methodology is the easy part, but managing the change
and the resistance that comes with it is more difficult. Organizations
must set relatable improvement goals, plan their improvement like a
project, provide resources, involve the entire workforce, manage the
improvement project, reinforce desired behavior, and celebrate suc-
cess. Paying attention to those details will help make change easier.

1. For a more complete look at resistance and how to deal with it, see “Flawless Consulting” by Peter
Bloch, 3rd edition, c. March 2011, Pfeiffer and Company, San Diego, Calif.

NOTES

Paul Kimmerly worked for 25 years for the different incar-
nations of the United States Marine Corps Technology Ser-
vices Organization (USMC TSO). He spent the last 16 years
as the SEPG Lead before he retired in July 2011. Kimmerly is
a certified CMMI High Maturity Lead Appraiser and instructor
for the CMMI for Development and the CMMI for Acquisi-
tion. He works as an independent contractor with the CMMI
Institute teaching and observing candidate lead appraisers
and instructors. He is also a member of the editorial board
for “Crosstalk” magazine. He contributed several articles on
process improvement to “Crosstalk.” The articles cover topics
including organizational change, management’s role in process
improvement, acquisition, and high maturity concepts. Since
retiring from government service, Kimmerly continues to work
with clients in both the government and private industry as part
of Double Play Process Diagnostics, Inc.
Double Play Process Diagnostics, Inc.
P.O. Box 17015
Pensacola, FL 32522
Phone: (913) 220-4499
Paul.kimmerly@doubleplayconsulting.com

ABOUT THE AUTHOR

mailto:Paul.kimmerly@doubleplayconsulting.com

24 CrossTalk March/April 2017

The impact of this lost sponsorship was most keenly felt by the
Capability Maturity Model Integration (CMMI©) program, once
the crown jewel of the SEI and Carnegie Mellon University (CMU)
itself. Forced to depart the protection of the SEI and CMU, the
CMMI© has now landed at the Information Systems Audit and
Control Association (ISACA) in the form of the CMMI© Institute,
relegated to serving the commercial IT governance professionals
it catered to. Finding itself now in the competitive death grip of a
more innovative and popular Agile method, the CMMI© frame-
work continues to teeter. All this is occurring despite the fact that
the value of the CMMI© has not yet been fully discovered (Cross-
Talk, 2012) despite a quarter-century of use. Yet there may still
exist a way forward in harmonizing Agile and CMMI© (CrossTalk,
2016) as part of that discovery.

Even beyond the CMMI©, the broader software situation is
dire (Defense AT&L, 2015). Industry and government continue
to increase dependence on software produced by an immature
profession that has stumbled in delivering trustworthy software
components, systems, and systems of systems to the nation’s
critical infrastructure and defense industrial base. The result is
cybersecurity weaknesses and vulnerabilities exploited at will
by persistent adversaries whose capabilities and motivation can
only be surmised by assessing their consequences.

Center Stage
At play on center stage in all this is the software development

life cycle. Beginning with Winston Royce, managing the develop-
ment of large software systems became the center of attention

Secure DevOps Foundations for
Large-Scale Software Systems
Don O’Neill
Abstract. “In Search of a Modern Software Life Cycle” explores the “Secure DevOps Foundations for Large Scale Software Sys-
tems” in terms of voices from the trenches, the field of play, life cycle on center stage, and evolutionary features and issues including
sequential, prototype, incremental, iterative, spiral, CMMI©, technical debt, code and upload and frequency of release, next generation
software engineering, open source software, false claims, integration engineering, and a new way of thinking.

Heard from the Trenches
If DevOps is needed to change the world, Secure DevOps is also

needed to save the world. In a world where business questions
masquerade as technical questions, where programmers must ex-
perience an epiphany before they are motivated to master the skill
of writing secure code, [1] and where bonuses must be withheld to
obtain management attention to security, resistance rules.

If these are the risks, what are the outcomes? Acquirers com-
plain they don’t know how to ask for secure code from vendors,
adding that they get what they ask for but not what they want.
[2] It’s complicated! Programmers confess that writing code is
hard, and writing secure code may be beyond the tipping point.
[3] Software engineers wonder if there is any secure code
anywhere and assert that best practices are insufficient. Supply
Chain Risk Management Software Assurance practitioners
retreat behind the wall and only hope for bug-free, patchable
software deliveries accompanied by a bill of material. [4] These
were just some of the comments made at the 2016 CERT Se-
cure Coding Symposium conducted by the Software Engineer-
ing Institute in Arlington, Virginia, on September 8, 2016.

The Field of Play
Formed to support the advancement of software engineering

in the Department of Defense (DoD), the Software Engineering
Institute (SEI) lost its way by too vigorously pursuing commer-
cial partners. Like the dog that chased and caught the firetruck
without a plan for what comes next, the SEI lost its DoD spon-
sor, its principal foundation of financial support.

MODERN PROCESS TRENDS

In Search of a Modern Software Life Cycle

CrossTalk—March/April 2017 25

MODERN PROCESS TRENDS

based on a waterfall model of software activities and his belated
inclusion of prototyping as an essential step (Royce, 1970).

From Royce’s waterfall life cycle model followed by incremen-
tal, iterative, and spiral to the SEI’s CMMI© followed by Agile
methods and now DevOps, the software development life cycle
continues as an unsettled issue. Today’s unbridled complexity
(Sheard, 2015), the stresses of scale in the Internet of Things
(IoT) (Recode, 2016) with its explosion of endpoints and no
one in charge, and the unpredictability of cybersecurity threats
(CrossTalk, 2011) with their persistence of vulnerabilities like
System 7 and its public safety access points all combine to
destabilize software system development life cycle approaches.

At any point in time, Secure DevOps processes must possess
the capability to detect cyber vulnerabilities and malware. Com-
mon Weaknesses Evaluation (CWE) and Common Vulnerabilities
Evaluation (CVE) assist in this, as do tools like Hyperion from
Oak Ridge, Function Extraction (FX) from CMU, MUSE from the
Defense Advanced Research Projects Agency (DARPA), and Ap-
proximate Matching from the National Institute of Standards and
Technology (NIST). Beyond the range of typical Secure DevOps,
the sectors of the critical infrastructure with their stovepipe yet
interdependent operations face more insidious supply chain resil-
ience challenges (CrossTalk, 2014). And then there are cascade
triggers. Hidden or in plain sight, cascade triggers are capable of
invading various industry sectors in a variety of ways:

— The transportation sector can be brought to its knees if truck
drivers cannot use credit cards to charge for gas tank fill-ups.

— The medical sector depends on the Internet to distribute
and present patient electronic medical records.

— The electrical grid depends on a survivable electrical grid
with predictable demand profiles matched to planned
resources and capacities (Koppel, 2015).

— The banking and finance sector remains ever conscious of
its need to protect next-day opening, even in the pres-
ence of a flash crash disruption (Lewis, 2014).

— The users of the telecommunications sector are increas-
ingly vulnerable to Internet disruptions like Distributed
Denial of Service (DDoS) and encryption-based scams
like ransomware.

Evolutionary Features and Issues
The following life cycle evolutionary features and conse-

quences are introduced, including sequential, prototype, incre-
mental, iterative, spiral, CMMI©, technical debt, code and upload
and frequency of release, next generation software engineering,
open source software, false claims, integration engineering, and
a new way of thinking.

Sequential
The much-aligned waterfall model is a linear sequence of de-

pendent activities. Much of the focus on life cycle model improve-
ment is devoted to disrupting this dependence on the sequential.

Prototype
The use of prototypes — perhaps rapid prototypes — is an at-

tempt to produce an early kernel of operational capability that can
be exercised (not so much tested) to glean necessary insights into

selective component interactions, numerical analysis of algorithms
and their finite word effects, computer capacity utilization of both
memory and speed, and targeted operational usage considerations.

Incremental
The use of multi-level design (Defense AT&L, 2012) and

staged incremental development (SSJ, 1983) are tactics to
put early performance pressure on the development team and
its people, processes, and tools through incremental stages of
production; for example, operating system services, middleware,
and environment; executing system and subsystem interfaces
using underlying stubs; executing prime mode functional-
ity buildup in place of stubs; and exercising and transitioning
degraded mode scenarios.

Iterative
Larman skillfully traces the real-world application of various

evolutionary features in his “Agile & Iterative Development: A
Manager’s Guide” (Larman, 2004). Larman mentions the work
of the IBM Federal Systems Division (FSD) on the integration
engineering of the Trident Submarine Command and Con-
trol System (SSJ, 1983) and its pioneering work on design,
development, and management life cycle activities spanning
advanced design, systematic design, systematic programming,
code management, integration engineering, technical reviews,
cost management, and program management (IBM SJ, 1980).

Spiral
Introduced by Barry Boehm, the foundational spiral method is

a purposeful and strategic departure from the sequential waterfall
model in integrating prototype, incremental, and iterative tactics in the
systematic management of software system risk (Boehm, 2015).

CMMI©
Now that the CMMI© has been organized into three con-

stellations for assuring an organization’s capability to perform
development, acquisition, and service, there is a need to extend
the range of value of the CMMI© to a new normal (Cross-
Talk, 2012). As an organization improves its process maturity,
strategic imperatives need to replace waste and neglect as the
CMMI© value driver. Only those organizations able to elevate
their game and transition from tactical to strategic use of the
CMMI© will be able to reap its full value.

While the traditional treatment of the value of the CMMI© in
terms of cost, schedule, productivity, quality, customer satisfac-
tion, and return on investment is sufficient to promote adoption
of the CMMI© and even to sustain a process improvement ini-
tiative through the early maturity levels, the value of the CMMI©
determined in this way is likely to be underestimated as the
organization approaches higher maturity levels.

The value of the CMMI© can be framed more strategically as a
means for carrying out visionary statements of strategic intent in
achieving measured outcomes in business and competitiveness,
management and predictability, process and improvement, engi-
neering and trustworthiness, and operations and dependability.

© CMMI is registered in the U.S. Patent and Trademark Of-
fice by Carnegie Mellon University.

Secure DevOps Foundations for
Large-Scale Software Systems

26 CrossTalk March/April 2017

MODERN PROCESS TRENDS

Technical Debt
Technical debt is the organizational, project, or engineering

neglect of known good practices that can result in persis-
tent public, user, customer, staff, reputation, or financial cost
(Defense AT&L, 2013). Shortcuts, expedient activities, and poor
practices that contribute to the initial product launch or initial
operational capability are often cited as justifiable excuses for
taking on technical debt. But in truth, most technical debt is
taken on without this strategic intent, without even knowing it,
and without the capacity to do the job right.

Code and Upload and Frequency of Release
In order to simplify, relieve stress and sustain a very high

frequency of release, one major corporation is employing an
extreme move. They no longer test software upgrades, prefer-
ring instead to use the code-and-upload tactic. This leaves any
defects to be encountered by unsuspecting customers. The
frequency of release cited by this corporation is an amazing
30,000 per year.

Next Generation Software Engineering
Practical Next Generation Software Engineering addresses

the unclaimed benefits and unmet needs associated with
competitiveness, security and software. In accordance with the
austerity of the times, the immediate goal of practical next gen-
eration software engineering is to drive systems and software
engineering to do “more with less ... fast” (IEEE, 2009). Four
practical objectives are identified to advance this goal using
smart, trusted technologies:

— Drive user domain awareness.
— Simplify and produce systems and software using a

shortened development life cycle.
— Compose and field trustworthy applications and systems

from parts.
— Compose and operate resilient systems of systems from

systems.

Open Source Software
Open Source Software is openly available off-the-shelf soft-

ware that depends on community development and distribution
support subject to license compliance. Open source code is
openly available for inspection and change. By contrast, closed
source is a proprietary product dependent on the vendor for
support and not open to inspection or modification.

Open source software features free distribution of source code.
When open source software is extended or revised, the result is
termed a “derived work.” Furthermore, an open source software
license may permit resale of a derived work. While freely available,
there are project costs associated with modifying and integrating
derived works into deployable software systems.

The proper use, reuse, modification, and sale of open source
software as derived work lies in the art of program and contract
management. When this is done in government contracting,
retaining the classification of “Commercial Off the Shelf” (COTS)
and “Government Off the Shelf” (GOTS) software has financial
and legal consequences. Furthermore, blending all this into use

under the General Services Administration (GSA) contract may
introduce complexities not yet fully explored. The government
is recognizing the potential savings in absorbing software into
the GOTS classification and is now establishing target goals
for accomplishing this. Failure to assign the proper COTS and
GOTS classifications and associated fee structures may result
in a Department of Justice (DOJ) false claims charge against
the contractor under the False Claims Act.

False Claims
With 80 percent of government software procured as COTS

and accorded limited or restricted rights, government acquisi-
tion managers need to be aware of intellectual property consid-
erations (Defense AT&L, 2014). When modified and extended
through government funding, COTS software becomes GOTS
software and is entitled to government purpose rights. Unless
the government acquisition manager insists on it, a contractor
may engage in false claims practice by improperly marketing
and selling GOTS software products as COTS. Instead of re-
ceiving the benefits of government purpose rights, the govern-
ment may be charged a commercial product licensing fee and
accorded only limited or restricted rights. Neglecting intellectual
property rights can be costly.

Integration Engineering
The penultimate challenge in fielding large-scale systems and

systems of systems that are trustworthy, secure and resilient
resides in critical infrastructure (White House, 2016). Simply
put, the resilience value proposition is intended to yield a critical
infrastructure capable of anticipating, avoiding, withstanding,
minimizing, and recovering from the effects of adversity, whether
natural or man-made, under all circumstances. This is based on
an architecture of resilience that squarely faces the issues of
harmonizing a diverse industry sector culture and context and of-
fers effective prescriptions for success in the form of well-trained
intelligent middlemen, a resiliency maturity framework, a system
of systems technical architecture, a common and useful way
of working, and an integration engineering program structure
staffed by a capable resilience integrator. Anticipation and avoid-
ance replace cleanup, recovery, and opportunity loss.

The author offers the following integration engineering context
and culture harmonization guidance:

— Formality within an architectural framework facilitates the
imposition of distributed supervisory control, interoperabil-
ity, and operation sensing and monitoring protocols.

— Strong code management practices facilitate reconfigura-
tion and reconstitution.

— Exercising strong control over the workforce facilitates
business continuity and survivability.

— Exercising strong government control facilitates compli-
ance for the benefit of the commons at the expense of
initiative for the self-interest.

— The diverse industry sector expectations of trust, loyalty, and
satisfaction must be respected, blended, and harmonized.

— Technical debt must be eliminated.
— Cascading and propagating triggers must be anticipated,

CrossTalk—March/April 2017 27

MODERN PROCESS TRENDS

avoided, and minimized.
— Industry sector software sourcing exposures must be

understood and managed.
— Supply chain risk management operations must be as-

sured.
— Cybersecurity strategy policy decisions and defined tac-

tics must be assured.

A New Way of Thinking
The Integration Engineers, Resilience Integrators, and Intel-

ligent Middlemen must be equipped with a new way of thinking.
(Jacobson, I., Lawson, H.B., 2015). As the twig is bent, so grows
the tree. To get your project off on the right foot, expectations
should be set and evidence should be sought on the following
assertions and principles:

— Stakeholders are in agreement and share a vision for the
project.

— An opportunity value proposition has been established,
and stakeholders share a vision for achieving it.

— Requirements or user stories are coherent and accept-
able, and stakeholders share a vision for them.

— The software system architecture is selected and comprises
a domain-specific architecture to guide software system
implementation. The software system implementation is also
made ready and operational with no technical debt.

— The team operates in collaboration, shares a vision for the
project, and is ready to perform with respect to shared
vision, software engineering processes, software project
management, software product engineering, operations
support, and domain-specific architecture processes,
methods, and tools.

— The way of working by the team has established foun-
dations for software engineering processes, software
project management, software product engineering, and
operations support.

— Work begins only when everything is prepared, includ-
ing coherent requirements and acceptable user stories,
stakeholders that are in agreement, and an established
foundation for the way of working.

— All work products are prepared and inspected in accor-
dance with a defined standard of excellence assuring
completeness, correctness and consistency.

A product focus on perfection is assisted by the “work
product” expectations as shown here. The work product
should be:

— Identified as part of the way of working.
— Produced, shared with the team, and inspected.
— Complete with parts that are traceable to predecessor

work products.
— Correct with parts that are verified and provably correct.
— Consistent in style and form of recording, and consistent

with the software system architecture and its rules of
construction.

— “Value add,” traceable to user stories and the “Done”
criteria for the way of working.

1. David Svoboda. (Sept. 8, 2016.) SEI CERT Secure Coding Team, 2016 CERT Secure Coding
Symposium. Arlington, Virginia.

2. Kris Britton. (Sept. 8, 2016.) NSA Center for Assured Software, 2016 CERT Secure Coding
Symposium. Arlington, Virginia.

3. Dr. Carl Woody. (Sept. 8, 2016.) CERT Cyber Security Engineering Team, 2016 CERT Secure
Coding Symposium. Arlington, Virginia.

4. Josh Corman. (Sept. 8, 2016.) The Atlantic Council, 2016 CERT Secure Coding Symposium.
Arlington, Virginia.

Don O’Neill served as the president of the Center for
National Software Studies (CNSS) from 2005 to 2008.
Following 27 years with IBM’s Federal Systems Division
(FSD), he completed a three-year residency at Carnegie
Mellon University’s Software Engineering Institute (SEI)
under IBM’s Technical Academic Career Program and has
served as an SEI visiting scientist. A seasoned software
engineering manager, technologist, independent consultant,
and expert witness, he has a Bachelor of Science degree
in mathematics from Dickinson College in Carlisle, Penn.
His current research is directed at public policy strategies
for deploying resiliency in the nation’s critical infrastructure;
disruptive game-changing fixed price contracting tactics
to achieve DOD austerity; smart and trusted tactics and
practices in supply chain risk management assurance; a
defined “software clean room method” for transforming a
proprietary system into a clean system devoid of proprietary
information, copyrighted material, and trade secrets and
confirming, verifying, and validating the results; and a con-
structive approach to sequencing the transition of SEMAT
Essence Kernel Alpha states with an eye to pinpointing the
risk triggers that threaten success and lead to the accumu-
lation of technical debt.

ABOUT THE AUTHOR

NOTES

Conclusion
Clearly the search for an ideal model software life cycle is a

journey, not a destination. The disruptive journey continues, with
the tension of Agile and cybersecurity serving as current dis-
rupters. As before, a variety of adaptations and innovations will
emerge from practice, and some will be absorbed in the body
of professional practice for those that follow. And so goes the
evolution of the software profession.

O’Neill, D. (January/February 2012.) “Extending the Value of the CMMI to a New Normal.” Cross-
Talk, The Journal of Defense Software Engineering. http://www.crosstalkonline.org/storage/
issue-archives/2012/201201/201201-ONeill.pdf.

O’Neill, D. (July/August 2016.) “The Way Forward: A Strategy for Harmonizing Agile and CMMI.”
CrossTalk, The Journal of Defense Software Engineering. http://static1.1.sqspcdn.com/
static/f/702523/27124563/1466890559753/201607-ONeill.pdf?token=CYClitqj%2B4Q5KzD%
2B8d1nHTuHh9s%3D.

REFERENCES

http://www.crosstalkonline.org/storage/issue-archives/2012/201201/201201-ONeill.pdf
http://static1.1.sqspcdn.com/static/f/702523/27124563/1466890559753/201607-ONeill.pdf?token=CYClitqj%2B4Q5KzD%2B8d1nHTuHh9s%3D

28 CrossTalk March/April 2017

MODERN PROCESS TRENDS

1. Introduction
Software deployment or installation represents the final

handover of software from the development team to the
customer. After successful deployment, the software system is
finally operational so that the customer can benefit economically
from its use. At the end of this deployment effort, the software
development organization receives payment from the cus-
tomer and the project is considered successful from both the
developer’s and the customer’s viewpoints. However, software
deployment is anything but trivial, depending on the scale of
implementation. While a nontechnical person can install a desk-
top application by either installing a downloaded file or installing
from a disk, a large-scale enterprise resource planning (ERP)
system such as SAP may take several months — if not years —
to be fully configured and ready to use [1, 2, 3].

A question one might have is why certain software deploy-
ments take a long time. Is it possible to shorten all deployments
to the time it takes to install a desktop application? In this article
we examine typical deployment models and discuss some
answers to these questions. To answer these questions, we
develop a generic deployment model based on typical deploy-
ment models, and this generic model will help us rationalize our
answers. We also explore opportunities to automate some or all
deployment activities.

What happens when, after successful software deployment,
users notice defects (or bugs) during normal software opera-
tion? The customer reports these bugs to the software develop-

The Software
Deployment Process
and Automation
Dr. Nary Subramanian, Associate Professor of Computer Science,
University of Texas at Tyler

Abstract. Software deployment is the last step in the software develop-
ment life cycle. During deployment, control of the software transfers from
the development team to the customer. After deployment, people in the
customer organization will use the software as part of their jobs and de-
rive economic benefits from the software. Any defects found in software
post-deployment are resolved as part of the maintenance phase. The first
step in mitigating user problems is the proper deployment of software.
Software deployment is anything but trivial. Some enterprise software
may take months, if not years, to completely deploy. Therefore, efficient
software deployment will considerably shorten the deployment phase
and save resources in terms of cost and labor. In this article, we explore
typical models for software deployment. Based on these models, we
develop a generic software deployment model, then identify deployment
processes that lend themselves to further automation and may lead to an
overall reduction in the deployment effort.

O’Neill, D. (May/June 2015.) “Software 2015: Situation Dire.” Defense
Advanced Technology and Logistics (DAT&L) Magazine. http://www.dau.
mil/publications/DefenseATL/DATLFiles/May-Jun2015/O’Neill.pdf.

Royce, Winston W. (August 25–28, 1970.) “Managing the Development of
Large Software Systems.” Technical Papers of Western Electronic Show
and Convention (WesCon). Los Angeles, Calif., USA.

Sheard, Sarah. (2015.) “Chapter 5: Complexity, Systems, and Software, ‘Soft-
ware Engineering in the Systems Context.’” Edited by Ivar Jacobson and
Harold “Bud” Lawson. College Publications, King’s College, London. ISBN
978-1-84890-76-6. 578 pages;

O’Neill, D. (1983.) “Integration Engineering Perspective.” The Journal of
Systems and Software, 3. 77-83. http://www.sciencedirect.com/science/
article/pii/0164121283900067.

O’Donnell, Bob. (June 22, 2016.) “The Internet of Things is facing challenges
with scale.” Recode. http://www.recode.net/2016/6/22/11991414/
internet-of-things-iot-challenges-scale.

O’Neill, D. (September/October 2011.) “Cyber Strategy, Analytics, and
Tradeoffs: A Cyber Tactics Study.” CrossTalk, The Journal of Defense
Software Engineering. http://www.crosstalkonline.org/storage/issue-
archives/2011/201109/201109-ONeill.pdf.

O’Neill, D. (March/April 2014.),“Software and Supply Chain Risk Manage-
ment Assurance Framework.” CrossTalk, The Journal of Defense
Software Engineering. http://www.crosstalkonline.org/storage/issue-
archives/2014/201403/201403-ONeill.pdf.

Koppel, T. (2015.) “Lights Out.” Crown Publishing Group. ISBN 978-0-553-
41996-2. 277 pages.

O’Neill, D. (1983.) “Integration Engineering Perspective.” The Journal of
Systems and Software, 3, 77-83. http://www.sciencedirect.com/science/
article/pii/0164121283900067.

Larman, C. (2004.) “Agile & Iterative Development: A Manager’s Guide.”
Pearson Education, Inc. ISBN 0-13-111155-8, 82-85.

O’Neill, D., Linger, R.C., Dyer, M. & Quinnan, R.E. (1980.) “The Management of
Software Engineering.” IBM Systems Journal, Vol. 19, Number 4, 414-477.
http://www.research.ibm.com/journal/sj/.

Boehm, Barry. (2015.) “Chapter 6: Principles and Rationale for Successful
Systems and Software Processes, ‘Software Engineering in the Systems
Context.’” Edited by Ivar Jacobson and Harold “Bud” Lawson. College
Publications, King’s College, London. ISBN 978-1-84890-76-6. 578 pages.

O’Neill, D. (March/April 2013.) “Technical Debt in the Code: Cost to Software Plan-
ning.” Defense Advanced Technology and Logistics (DAT&L) Magazine. http://
www.dau.mil/pubscats/ATL%20Docs/Mar_Apr_2013/O%27Neill.pdf.

O’Neill, D. (June 2009.) “Preparing the Ground for Next Generation Software Engi-
neering.” IEEE Reliability Society, Annual Technology Report 2008, 148-151.

O’Neill, D. (November/December 2014.) “Avoiding Proprietary Problems: A
Software Clean-Room Method.” Defense AT&L Magazine. http://www.
dau.mil/publications/DefenseATL/DATLFiles/Nov-Dec2014/O’Neill.pdf.

O’Neill, D. (April 14, 2016.) “Integration Engineering in the Pursuit of Critical
Infrastructure Resilience: A Unified Theory.” White House Cyber Commis-
sion on Enhancing National Cybersecurity, Kickoff Meeting. http://www.
nist.gov/cybercommission/upload/Meeting_Minutes_April_14.pdf.

Jacobson, I. & Lawson, H.B. (2015.) “Software Engineering in the Systems
Context.” Edited by Ivar Jacobson and Harold “Bud” Lawson. College
Publications, King’s College, London. ISBN 978-1-84890-76-6. 578 pages.

Lewis, Michael. (2014.) “Flash Boys: A Wall Street Revolt.” W.W. Norton and
Company, Ltd. ISBN 978-0-393-24466-3. 274 pages.

REFERENCES CONT.

http://www.dau.mil/pubscats/ATL%20Docs/Mar_Apr_2013/O%27Neill.pdf
http://www.dau.%20mil/publications/DefenseATL/DATLFiles/May-Jun2015/O%E2%80%99Neill.pdf
http://www.sciencedirect.com/science/article/pii/0164121283900067
http://www.recode.net/2016/6/22/11991414/internet-of-things-iot-challenges-scale
http://www.crosstalkonline.org/storage/issue-archives/2011/201109/201109-ONeill.pdf.
http://www.crosstalkonline.org/storage/issue-archives/2014/201403/201403-ONeill.pdf
http://www.sciencedirect.com/science/article/pii/0164121283900067
http://www.research.ibm.com/journal/sj/
http://www.%20dau.mil/publications/DefenseATL/DATLFiles/Nov-Dec2014/O%E2%80%99Neill.pdf
http://www. nist.gov/cybercommission/upload/Meeting_Minutes_April_14.pdf.

CrossTalk—March/April 2017 29

MODERN PROCESS TRENDS

ment organization’s help desk. From there, the software enters
its maintenance phase. But a prerequisite for a normal opera-
tional state is a successful deployment effort from the software
deployment team. In this article, “software developer” refers to
the organization that developed the software, while “customer”
refers to the organization that has procured the software and
will deploy it.

What happens when the deployment effort fails? The failure
may have been due to misunderstood system configuration
requirements on the customer’s end. This means that improper
or insufficient hardware resources (including CPU, memory and
network bandwidth) were allocated, or that required software
(including databases, servers and operating systems) was not
provisioned. If the customer is not willing to accept incomplete
software — that is, software that has defects or does not satisfy
requirements — then the software deployment may need to be
scrapped, the developer may not be paid any pending invoices,
or (in extreme cases) delayed or failed deployment may lead to
litigation[4]. In all cases, failed deployment leads to increased
cost for both the software developer and the customer and to
unhappy users at the customer organization. An example of this
is the FBI’s Sentinel project that incurred extensive time and
budget overruns and still did not satisfy its users; [5] also, it has
been reported that only 7 percent of ERP projects are expected
to be deployed on time. [6] Proper understanding of the deploy-
ment effort and its success are essential before the software is
useful to the customer.

2. Software Deployment Models
Figure 1 depicts the typical model for software deployment

for small-scale software, such as software for home use or for a
small company. The first step in this deployment is to verify that
software meets the user’s requirements, including functional re-
quirements like features as well as nonfunctional requirements
like performance and reliability. For custom-developed software,
this is typically done by demonstrations and references. For
COTS (commercial off-the-shelf) software, this is usually done
by running trial freeware versions.

At this stage the customer also verifies the constraints imposed
on the software, such as the hardware requirements and the
operating system. If the software satisfies all requirements, then the
customer compares its cost and features to similar software from
other vendors and decides on a specific software and vendor. The
customer then purchases the software and either downloads it or
inserts a disc containing the software in a computer. The software
executable is then run either by double-clicking, by issuing a com-
mand on the terminal, or by using a GUI-driven setup program.
During this process, any activation keys issued by the software
manufacturer need to be entered, and the customer must agree
to the end-user license agreement. The software is then installed,
which is followed by the almost inevitable reboot or restart of the
computer. Upon restarting, the software asks for configuration
information such as language, time zones, user information and so
on. If the software requires access to other systems, like email or
the Internet, then this integration information is also provided. For
example, when an app is installed on a smart phone, integration au-
thorization is often required. After this, the software is ready to use.

Figure 1. Deployment Process for Small-Scale Software

Figure 2. Deployment Process for an IBM Machine

However, the customer has to perform the user acceptance test
(UAT) to ensure that the purchased software actually satisfies the
requirements in the customer’s computer. If UAT fails, the customer
can contact the developer to fix defects or get a refund. However, if
the UAT is successful, the customer can use the software.

Many of us have followed this deployment process when
installing shrink-wrapped software on our computers for
many years. Today, apps for smartphones are also installed by
following most of the steps in Figure 1. As can be seen, the
deployment process has several manual steps, and the comput-
er-based activities are limited to the installation, testing, and ex-
ecution of the software. Therefore, even though we tend to think
of software installation as a one-click process, there is usually
significant time spent waiting for the computer to complete
executing the code based on our inputs. We also must perform
several manual steps, which we tend not to include in the time
it takes to install software for personal use or small office use.
However, the whole process does not last more than an hour for
most normal deployments.

Now let’s consider the process for installing software on an
IBM machine. [7] As mentioned in this reference, the whole pro-
cess can take several days, if not weeks. The deployment process
for the IBM machine may be abstracted, as shown in Figure 2.

For the IBM deployment process, the first step is to verify the
hardware and system requirements for software. Typical system

30 CrossTalk March/April 2017

MODERN PROCESS TRENDS

requirements include the ability to restart the system, ability to
log in and out, and the ability to install fixes. Subsequently, the
deployment team obtains the hardware and software resources
needed for software deployment. Any license agreements that
need to be signed before the software is installed must be com-
pleted, and the server must be prepared for installation, includ-
ing prepared to accept the media used for software distribution.
The distribution media used for software is then attached to or
inserted into the system, and the OS and any licensed code for
running the software are first installed. The software package
is then installed, and the entire system is initialized so that the
software package installation is complete. Another aspect cov-
ered during initialization is any integration with other systems,
including collaboration systems (email, calendar) or authentica-
tion (for single login) or payment gateways. Software is then
configured as required and tested by users. Any data migration
or addition of critical mass of data also happen at this step. If
defects are found during UAT, the developer is required to fix
them. The cycle then repeats with any changes during defect-
fixing incorporated in the process. If the UAT passes, then the
software can be used normally. In the IBM deployment process
and small-scale deployment, the installation, UAT, and normal
use are automated to a large extent. Remaining steps require
substantial human intervention.

Figure 3 shows the deployment process for a cloud-based
system. For example, documentation for OpenStack, an open-
source cloud platform, deployment may be seen in [8]. The
typical deployment process starts again with understanding the
hardware, software, and networking requirements for the soft-
ware. These include considerations of average and peak CPU,
RAM, disk, and network input and output requirements. To get a
clear picture of these requirements, the deployment team needs
input from the sales and marketing teams as well. For example,
the sales team can provide the total number of expected users,
while the marketing team can predict peak loads to expect
during sales promotion activities. Using this information, the
deployment team can compare the offerings of different cloud
service providers. For example, the rates and standard flavors
supplied by different cloud vendors need to be matched with the
requirements. It is possible that none of the offerings are good
enough. If so, the deployment team will have to install the soft-
ware on a bare-metal server. Once the vendor and solution have
been decided, the system will need to be procured and appropri-
ate service-level agreements signed. Subsequently, either the
provider or the deployment team will need to spin up the virtual
machines, networks, and external gateways based on system
requirements. After that, the software packages required are in-
stalled in the VMs. The system is then initialized, which includes
connecting the application with its front and back ends. Again,
during initialization, integration with any external systems (such
as email servers, authentication servers or payment gateways)
are also performed. Then comes the configuration phase, when
the software is customized to be able to add users or custom-
ers. Also during configuration, any licenses for software to be
used are also activated. UAT is then done on the software, and
the developer fixes any defects that arise. The cycle then re-
peats from the requirements phase with the modified software.

Finally, upon successful UAT, the software enters the produc-
tion phase. In the cloud deployment, the installation, UAT, and
normal use are also automated; the remaining steps are largely
manual. Typical cloud deployment can take anywhere from a few
hours to a few weeks [9] depending on the manual parts of the
process and defect fixing.

3. The Generic Deployment Model
After analyzing the typical processes for deploying systems at

three different scales, we can create a generic model for soft-
ware deployment and discuss the reasons for frequent unsatis-
factory deployments. We can also recommend ways to improve
the situation. The generic model is shown in Figure 4.

The generic model has eight steps. The first step is the
“verification” process, when the software requirements are
established in terms of the hardware and software required for
deploying the software. These include networking requirements,
CPU, RAM, disk, backups, recovery processes, security appli-
ances, and so on. In addition, a developer must identify the op-
erating system, databases, servers, and other software require-
ments at this point. The next step in the deployment process is
the “negotiation” phase, when the deployment team negotiates
the best offer for both hardware and software from vendors or
the IT team (if in-house). Any service-level agreements are also
negotiated at this time. The third step is to “procure” the best
possible solution. This may include ordering the items and get-
ting them shipped and delivered for on-premise deployments or
getting the appropriate third-party provider to set up the solution
for hosted or cloud deployments. The fourth step is “installation,”
when the software environment (including the operating system,
databases, servers, and the like) are installed on hardware or
appropriate virtual machines spun off for cloud deployments. All
required software packages are installed once the environment
is installed. The fifth step is “initialization,” when the software
and hardware systems are started up and global settings for
administration credentials, licenses, database schema, and the
like are established. Any external network access for emails,
the payment gateway or the Internet are also established. The
sixth step is the “configuration” step, when the number of us-
ers, their access credentials, their authorizations, their memory
restrictions, and so on are configured in the software. Any data
migration from a legacy system, adding of sufficient data for
users, and vendor licenses are also established in this step.
The seventh step is the “User Acceptance Testing (UAT),” when
users test the software to ensure it satisfies its requirements
including performance, security and reliability. If any defects
are found during this step, then it is sent to the developer for
fixing and the cycle restarts with the modified software. In the
eighth and final step, the UAT is passed, the software is used for
production, and economic benefits are derived.

As shown in Figure 4, most of the steps in the deployment
model are manual. The only steps that are mostly automated are
the installation, UAT, and use of the software. All the remaining
steps require extensive human involvement. The step “Fixing De-
fects” is usually the responsibility of the developer, and therefore
is outside the scope of the deployment organization. However, if
defects are due to improper deployment in the steps so far, then

CrossTalk—March/April 2017 31

MODERN PROCESS TRENDS

the deployment organization must step in to fix them.
Table 1 gives the activities performed during each step of the

generic deployment model and approximate timeframes. Each of
the steps in this table is discussed in section 4.

3.1 Applying the Generic Deployment Model to
Common Software Deployment

In this subsection we will apply the generic deployment model
to the deployment of three common types of software: web
applications, SaaS, and mobile applications. This discussion will
allow us to understand the extent of this model’s applicability.

A. Deploying Web Applications
There are several steps involved in the deployment of web

applications[10]. Three layers characterize a typical web applica-
tion: the “database layer” or back end, the “application layer” or
business logic, and the web server that serves the web pages.
Therefore, all three layers need to be understood during the
verification step, including the product’s brand name, its operating
system, and the hardware’s sizing requirements. During the nego-
tiation phase, the software and hardware required for deployment
are procured from either internal resources or external vendors,
and any agreements for this procurement are signed. During the
procurement phase, the software and hardware are obtained. For
open source software such as LAMP (Linux, Apache, MariaDB or
MySQL, and PHP) the software is downloaded into the hardware
and installed. The operating system, database software, applica-
tion software, and web server are first installed during installation
phase, then the web application is also installed. During initializa-
tion, the empty database tables are created using scripts, super
user is created, initial users for the system are registered, and the
application is set to a known initial state. During configuration,
access rights for users are set, authorizations are configured, any
needed database migration is done, and any needed connections
to payment gateways are established. During UAT, a small initial
set of users test the system. If no defects are found, the system
is open to all users. If defects are found, the process repeats from
the stage where the defect originated.

B. Deploying SaaS Applications
The first step when deploying a SaaS application is to verify

its requirements — the operating system, the back end, the front
end, the hardware requirements, backup and disaster recov-
ery procedures and so on. Then negotiation takes place with
different cloud service vendors who can provide the software
and hardware to satisfy the requirements and the service level
agreements. In fact, there is usually a checklist [11] that must
be completed before SaaS can be deployed. Negotiation is
also required if the software has to interface with third-party
application providers or if any agreements need to be signed.
During the procurement phase, the required virtual environment
for hosting the SaaS is deployed. The software is installed in the
virtual environment during the installation phase. SaaS is then
initialized with the data necessary for its operation, including the
pointers to the databases, networks, and backup devices. During
configuration users are created, the access rights matrix is es-
tablished, user constraints on memory and processor usage are

Figure 3. Deployment Process for Software in the Cloud

Figure 4. The Generic Deployment Model

established, payment gateway interconnections are established,
and connections with other external APIs (Application Program-
ming Interfaces) are also established. During UAT, the initial set
of users test the system and if no defects are found, the system
is open to all users. If defects are found, then the process is
repeated from the stage where the defect originated.

C. Deploying Mobile Applications
When we think of deploying a mobile app, we usually think of

downloading and using it. However, even a trivial app must go
through several steps. We first verify the need for the app, even
if the need is simple curiosity. We then decide where to down-
load it from — the official store for the device (AppStore for
iOS devices and Google Play Store for Android) or a third party
store (such as Amazon.com). We then purchase the software if
it is not free. After that, we download the app during the install
phase. During initialization, we give permissions for the app
to access directories, devices, and logs. During the configura-
tion phase, if needed, we set up permissions to use the device,
location settings, the look and feel of the user interface, and so
on. UAT is the actual trial run of the software to see if it works

32 CrossTalk March/April 2017

MODERN PROCESS TRENDS

as we expected. If we like the app we keep it; otherwise, we
uninstall or disable it. Optionally, we may choose to report bugs
to the vendor or, if we are happy, give the vendor a good review.

However, for an enterprise app, there are more stringent
procedures at each step since such apps are usually frontends
for a web application, a server application, or a SaaS applica-
tion. These apps are approved for download by the enterprise IT
team. Therefore, there are two flavors — those installed by the
enterprise IT on enterprise devices and those installed by the
employee on his or her device following a BYOD (Bring Your
Own Device) policy. In either case, the steps are mostly similar.
First, verify that the app is indeed the frontend for the enterprise
application and will perform most of the functions on the mobile
device. Next, negotiate with the vendor on the price or compat-
ibility with different platforms and sign any agreements for sup-
port and upgrades. Third, procure the software if it is distributed
by an enterprise device manager [12] or else download the app
from the appropriate app store during the install phase. During
initialization, give permissions for the app to access personal
information on the device and sign any end-user agreements.
During configuration, enter the authentication credentials into
the device as well as the path to the backend systems and the
frequency of synchronization of data with the backend. During
UAT, use the device and see if it meets the established expecta-
tions. If it does, we continue to use it. Otherwise, we report is-
sues to the IT (if downloaded by the employee) or to the vendor
(if downloaded by the IT).

For enterprise apps there are also associated issues of mobile
device management, mobile device enrollment, and configuring
mobile device settings. Device management [12] distributes
applications, configuration settings, and security tools (for ex-
ample, some organizations encrypt devices for using their apps).
Device management can be part of the negotiation, installation,
initialization, and configuration steps. It usually becomes a big
part of normal mobile device operation after deployment in case
devices get lost or become part of a botnet (the device manager
can either locate the device or remotely wipe it). Mobile device
enrollment [13] allows the organization to enroll many devices at
the same time and to monitor and manage their use. Enrollment
can be part of the verification, initialization, and configuration
steps. Mobile device configuration [14] manages mobile device
settings and is usually part of the configuration step.

As can be seen, we are not focusing on deploying a mobile
app to the app store, [15] which is part of the app development
process.

4. Analyzing the Performance of the Generic
Deployment Model

As can be seen from Table 1, software deployment takes a
long time, even when automated tools are used. This is mainly
because of the extensive human involvement in the process. Even
though actual software usage occurs over years, it can take sev-
eral days or months before the benefits from software usage can
begin to accrue. We will now analyze each step and see if further
automation of the step can help reduce deployment time.

In the first step, the deployment team needs to understand

software requirements and obtain sizing estimates. The deploy-
ment team often requires a detailed specification sheet so that
any deviations from the organization’s IT procurement policies
may be identified early and budgeted for. Organization compli-
ance teams, including audit and risk management divisions,
may also be involved to identify any risks to the organization’s
information security that may be caused by the deployment of the
software. Other professionals, like consultants (who may help with
the integration effort later), lawyers (who may help clarify the re-
quirements terms), networking specialists, database experts, and
others may also be involved. Thus, the typical timeframe can be
anywhere from a few days to months. However, for smartphone
apps and small-scale software for home or small business use, a
team of professionals is rarely used even though there are reports
that privacy policies for some apps may invite legal attention[16].

However, there is very little scope for automating this effort, even
if requirements are written using a standard such as BPEL (Busi-
ness Process Execution Language) [17] because cross-domain
human expertise may be required for this step.

In the second step, “negotiation,” the agreements are signed
with the software developer and the negotiation of cost and
delivery with hardware and support software vendors takes
place. Therefore, several divisions, including legal, procurement,
and finance, could be involved in this process. The legal team is
involved to ensure the customer organization is using standard
clauses in its agreements and no unreasonable terms are in-
volved. Purchasing is involved to make sure contracted standard
vendors are used and any deviations are approved. Finance is
needed for payment. Again, the cross-domain expertise required
for this step makes automation difficult. Therefore, time needed
for this step can be anywhere from a few days to months, espe-
cially if the software will be used in several countries and legal
ramifications of multi-country use need to be explored. Software
for negotiation is still in the research stage [18] and does not
seem to have been adopted in mainstream legal practice, [19]
so there is little scope for automation in this step.

The third step is procurement, when IT infrastructure is ordered
for deployment. This ordering process can be largely automated
using an ERP like SAP, [20] and software can be downloaded.
However, hardware has to be physically delivered, and this takes
time — especially if specialized made-to-order hardware is in-
volved in deployment. Therefore, this step is mostly manual.

The fourth step is installation of software, and this step is usu-
ally automatic. However, strict checklists used by organizations
during this process and any consultant input will add time to this
step. Sometimes corporate audit and review teams need to certify
that the installation was successful; this can also delay this step.

The fifth step is the initialization step and involves several
manual activities. During initialization disk partitions are created;
accesses to network, databases, network attached storages
(NAS), and authentication and authorization systems (for ex-
ample, active directory integration) are provided; and user keys
for encryption are provided. Integration with external systems,
such as emails, payment gateways, and the Internet, also occur
during this step. The company account will need to be used
for integrating with such external systems for proper financial

CrossTalk—March/April 2017 33

MODERN PROCESS TRENDS

accounting purposes. Use of initialization
scripts can automate parts of this process, but
subsequent validation of all initialization steps
is usually done manually.

In the sixth step, the configuration step, the
software is configured for use. This includes
assigning users to the software, updating
database schemas, and any other configuration
needed for proper use of the software. Data
migration also takes place at this point so the
system is ready for use, especially if the system
is replacing a legacy system. For new systems,
critical mass of data need to be entered into
the system before it can be used. For example,
in a Document Management System, [21]
scans of existing physical documents need
to be input into the system before the system
becomes useful. Any vendor licenses required
for using the software are also activated
during this step. Backup procedures are also
implemented at this stage so that disaster
recovery procedures are ready once the system
becomes operational. This configuration step
is usually performed manually, though several
automated configuration management tools
[22] that run configuration scripts are now ap-
pearing in the market to automate parts of this
process.

The seventh step is UAT. During this step,
the software is tested to ensure that it is ready
for use. Users are provided software train-
ing, then use the software as expected. Any
defects found during this step are fixed. These
defects may be in the software, which means
the software developer fixes them. Or, if the
defects are due to improper implementation of
the deployment steps, the deployment orga-
nization fixes them. Once the software or the
deployment activities are corrected, the UAT

5. Conclusion
Software deployment is one of the most important phases

in the software development life cycle, though the last one to
occur before the software enters its maintenance phase. How-
ever, software deployment is anything but trivial and can last
for months or even years depending on the complexity of the
software. Improper deployment can lead to rejection of software
by users, financial loss, or even litigation.

The software deployment process can be broken down into
eight steps: verification, negotiation, procurement, installation,
initialization, configuration, User Acceptance Testing (UAT), and
production use. During verification, the software’s deployment
requirements regarding hardware and support software are
understood. During negotiation, developers negotiate agreements
and cost and delivery for deployment hardware and software.
During procurement, the hardware and software needed for de-
ploying the original software are procured. All software is installed

Table 1. Typical Activities and Timeframes for the Generic Deployment Process

Deployment Step Typical Activities Extenuating Issues Timeframe Automated or Manual

Verification

Understand the software
requirements document;
get hardware and
software sizing estimates;
complete organization IT
procurement datasheet

Involvement of
consultants, lawyers, and
other professionals;
involvement of corporate
IT audit and risk
management team

Few days to months
(depending on the scope
of software deployment)

Manual

Negotiation

Legal agreement with
software developer; cost
and delivery with
hardware and support
software vendor (the
software to be deployed
has already been
negotiated by the
customer); service-level
agreements

Involvement of
consultants, lawyers,
corporate procurement, IT
audit, risk management,
and finance; multiple-
country jurisdiction

Few days to months
(depending on scope of
agreements and cost)

Manual

Procurement
Actual shipment and
delivery of all software
and hardware

Shipment of specialized
hardware or import from
other countries

Few days to weeks Manual

Installation Of hardware and all
software

Corporate checklists,
external experts,
corporate audit and
review teams

Hours to days Automated

Initialization

Hardware and software
are initialized with data in
the global settings
including backup system
settings; connect
application with front-end
(web and application
servers) and backends
(databases)

Multiple administrators for
specialized domains
(such as networking,
database, NAS, security,
etc.); integration with
external systems such as
emails and payment
gateways

Hours to days Manual

Configuration

Software is configured for
use with user information
and sufficient mass of
data is populated in
databases

Data migration, license
activation, backup
procedures
implementation

Hours to days Manual

User Acceptance Test
(UAT)

Software is tested by
users; automated testing
tools may also be used
for stress testing

Any defects found need to
be fixed and depending
on the severity the cycle
of deployment process
need to be revisited; user
training

Days to months Automated

Use Actual production use of
software; “going live”

Cutover - parallel or
abrupt, helpdesk
procedures, periodic user
training, backups,
business continuity,
disaster recovery,
maintenance contracts

years Automated

continues until users consider the software acceptable. Several
automated tools exist for testing, [23] but this step is still largely
manual [24] and can take several weeks to complete.

The final step of the deployment process is “going live” with
the new software, which means the software is put to normal use.
There are several issues to consider during this step, including the
cut-over process, the establishment of a help desk for mainte-
nance, a provision for regular user training, proper backups, and
processes for ensuring business continuity and disaster recovery.
The cut-over process can be parallel or abrupt — if it’s parallel,
the old and new versions of the software must be run together
before all users are migrated to the new version. However, this
step usually keeps the software running for many years. During
this process, all stakeholders — including users — interact with the
software. The developer maintains the software under a mainte-
nance contract, which may need approval from other departments.
Therefore, there is significant manual interaction during this step.

34 CrossTalk March/April 2017

MODERN PROCESS TRENDS

during the installation phase. During initialization, the software is
prepared for subsequent steps. During configuration, user infor-
mation is entered in the system and any integration with external
systems are taken care of. During UAT, users test the software
to ensure that it is ready for normal use. Any defects during this
step are sent to the software developer for fixing. Finally, once the
software passes the UAT, it is put to normal use.

Almost all of these steps require human involvement to a
large extent. Only the installation, UAT, and actual use steps are
mostly computerized. While automation can help reduce human
effort in all eight of the steps, we are still a long way from com-
pletely automating the deployment process.

1. “2015 ERP Report.” (2015.) Panorama Consulting Solutions. Available at http://go.panorama-
consulting.com/rs/panoramaconsulting/images/2015%20ERP%20Report.pdf

2. http://searchsap.techtarget.com/definition/SAP-Rapid-Deployment-Solutions-SAP-RDS
3. Amin, P. (August 2012.) “What is the SAP Rapid Deployment Solution Implementation

Methodology? Does It Work?” Available at http://scn.sap.com/community/rapid-deployment/
blog/2012/08/06/what-is-the-sap-rapid-deployment-solution-implementation-methodology-
does-it-work

4. Baumann, W. (April 2016.) “Courtroom lessons from a failed SAP ERP implementation.” TechTar-
get. www.techtarget.com

5. Stein, J. (September 2014.) “FBI’s Expensive Sentienl Computer System Still Isn’t Working,
Despite Report.” Newsweek. http://www.newsweek.com/fbis-expensive-sentinel-computer-
system-still-isnt-working-despite-report-272855

6. Wailgum, T. (September 2009.) “Why ERP Is Still So Hard.” CIO. Available at http://www.cio.
com/article/2424944/enterprise-software/why-erp-is-still-so-hard.html

7. Software Installation Process, IBM Knowledge Center. Available at http://www.ibm.com/sup-
port/knowledgecenter/ssw_i5_54/rzahc/rzahcswinstallprocess.htm

8. http://docs.openstack.org/developer/heat/template_guide/software_deployment.
html#software-deployment-resources

9. http://www.tsg.com/resource-centre/articles/how-long-does-it-take-deploy-crm-system.
Accessed Oct. 8, 2016.

10. https://docs.oracle.com/cd/E13222_01/wls/docs60/adminguide/config_web_app.html.
Accessed Nov. 14, 2016.

11. http://www.oracle.com/us/products/applications/checklist-saas-2193759.pdf. Accessed Nov. 16, 2016.
12. http://searchmobilecomputing.techtarget.com/definition/mobile-device-management.

Accessed Nov. 17, 2016.
13. https://docs.microsoft.com/en-us/intune/deploy-use/enroll-corporate-owned-devices-with-the-

device-enrollment-manager-in-microsoft-intune. Accessed Nov. 17, 2016.
14. “General settings for Mobile Devices in Configuration Manager.” (June 2015.) https://technet.

microsoft.com/en-us/library/dn376523.aspx. Accessed Nov. 17, 2016.
15. https://developer.apple.com/library/content/documentation/ IDEs/Conceptual/AppDistribution-

Guide/ Introduction/ Introduction.html. Accessed Nov. 17, 2016.
16. http://www.iubenda.com/blog/the-need-for-privacy-policies-in-mobile-apps-an-overview/.

Accessed Oct. 8, 2016.
17. Vemulapalli, A. & Subramanian, N. (November 2009.) “Transforming Functional Requirements

from UML into BPEL to Efficiently Develop SOA-Based Systems.” Lecture Notes in Computer
Science. No. 5872, 337-349. Proceedings of On The Move 2009 Conference, edited by Meers-
man, R., Herrero, P. & Dillon, T.

18. Reeves, D. M., Wellman, M. P.,Grosof, B. N. & Chan, H. Y. (2000.) “Automated Negotiation from
Declarative Contract Descriptions.” American Association for Artificial Intelligence. http://www.
mit.edu/~bgrosof/paps/kbem00.pdf

19. http://www.capterra.com/law-practice-management-software/. Accessed Oct. 9, 2016.
20. http://go.sap.com/product/srm/supplier-relationship-management.html. Accessed Oct. 8, 2016.
21. Krishnan, S. & Subramanian, N. (April 2015.) “Evaluating Carbon-Reducing Impact of

Document Management Systems.” IEEE Green Technologies (GreenTech) Conference.
New Orleans, Louisiana.

22. Jacobs, D. “How to choose and implement automated configuration management tools.” http://
searchnetworking.techtarget.com/How-to-choose-and-implement-automated-configuration-
management-tools. Accessed Oct. 8, 2016.

23. Vingrys, K. (July 2010.) “Acceptance Test Automation.” https://www.thoughtworks.com/in-
sights/blog/acceptance-test-automation. Accessed Oct. 8, 2016.

24. Carman, C. (November 2013.) “How to Manage User Acceptance Testing.” http://insights.dice.
com/2013/11/11/how-to-manage-user-acceptance-testing/. Accessed Oct. 9, 2016.

Nary Subramanian is an associate
professor of computer science at the
University of Texas at Tyler in Tyler, Texas.
Dr. Subramanian received his Ph.D. in
computer science from the University of
Texas at Dallas. He is a Fellow of Service
Learning at UT Tyler’s Center for Excel-
lence in Teaching and Learning. He has
over 15 years’ industry experience in
engineering, sales and management. His
research interests include software engi-
neering, system engineering and security
engineering.
Department of Computer Science
College of Business and Technology
University of Texas at Tyler
Tyler, Texas 75799
nsubramanian@uttyler.edu

ABOUT THE AUTHOR

REFERENCES

http://ieee-stc.org/

28th Annual
IEEE Software Technology Conference

September 25 - 28, 2017
The National Institute of Standards and Technology

Gaithersburg, MD USA

Call for Presenters, and Registration Information at

http://go.panorama-consulting.com/rs/panoramaconsulting/images/2015%20ERP%20Report.pdf
http://go.panorama-consulting.com/rs/panoramaconsulting/images/2015%20ERP%20Report.pdf
http://go.panorama-consulting.com/rs/panoramaconsulting/images/2015%20ERP%20Report.pdf
http://searchsap.techtarget.com/definition/SAP-Rapid-Deployment-Solutions-SAP-RDS
http://scn.sap.com/community/rapid-deployment/
http://www.techtarget.com
http://www.newsweek.com/fbis-expensive-sentinel-computer-system-still-isnt-working-despite-report-272855
http://www.newsweek.com/fbis-expensive-sentinel-computer-system-still-isnt-working-despite-report-272855
http://www.newsweek.com/fbis-expensive-sentinel-computer-system-still-isnt-working-despite-report-272855
http://www.cio
http://www.ibm.com/sup-port/knowledgecenter/ssw_i5_54/rzahc/rzahcswinstallprocess.htm
http://www.ibm.com/sup-port/knowledgecenter/ssw_i5_54/rzahc/rzahcswinstallprocess.htm
http://www.ibm.com/sup-port/knowledgecenter/ssw_i5_54/rzahc/rzahcswinstallprocess.htm
http://docs.openstack.org/developer/heat/template_guide/software_deployment
http://www.tsg.com/resource-centre/articles/how-long-does-it-take-deploy-crm-system
https://docs.oracle.com/cd/E13222_01/wls/docs60/adminguide/config_web_app.html
http://www.oracle.com/us/products/applications/checklist-saas-2193759.pdf
http://searchmobilecomputing.techtarget.com/definition/mobile-device-management
https://docs.microsoft.com/en-us/intune/deploy-use/enroll-corporate-owned-devices-with-the-device-enrollment-manager-in-microsoft-intune
https://docs.microsoft.com/en-us/intune/deploy-use/enroll-corporate-owned-devices-with-the-device-enrollment-manager-in-microsoft-intune
https://docs.microsoft.com/en-us/intune/deploy-use/enroll-corporate-owned-devices-with-the-device-enrollment-manager-in-microsoft-intune
https://technet
https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistribution-Guide/Introduction/Introduction.html
https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistribution-Guide/Introduction/Introduction.html
http://www.iubenda.com/blog/the-need-for-privacy-policies-in-mobile-apps-an-overview/
http://www
http://www.capterra.com/law-practice-management-software/
http://go.sap.com/product/srm/supplier-relationship-management.html
http://searchnetworking.techtarget.com/How-to-choose-and-implement-automated-configuration-management-tools
http://searchnetworking.techtarget.com/How-to-choose-and-implement-automated-configuration-management-tools
http://searchnetworking.techtarget.com/How-to-choose-and-implement-automated-configuration-management-tools
http://searchnetworking.techtarget.com/How-to-choose-and-implement-automated-configuration-management-tools
https://www.thoughtworks.com/in-sights/blog/acceptance-test-automation
https://www.thoughtworks.com/in-sights/blog/acceptance-test-automation
https://www.thoughtworks.com/in-sights/blog/acceptance-test-automation
http://insights.dice
mailto:nsubramanian@uttyler.edu
http://ieee-stc.org/

MODERN PROCESS TRENDS

CrossTalk—January/February 2017 35

To be consistent herein with terms used in Scrum, we shall use
the term “sprint zero” in this article. Also, the point of this article is
to emphasize how vital sprint zero activities are to the success of
any campaign, endeavor, mission, operation, program or project.

What is Sprint Zero?
The definition of sprint zero is vague. Its roots likely origi-

nated from costly lessons learned when things went awry
during initial project execution. Typically used before an Agile
or Scrum project commences, sprint zero has never, to our
knowledge, been defined very well. The authors of this article
believe the critical activities conducted by preparation or sprint
zero are paramount to the success of any project. Such critical
activities include the following:

— Identifying an Agile Champion.
— Writing some high-level user stories.
— Preparing an initial release plan.
— Training everyone on the benefits and use of Agile.
— Obtaining stakeholder buy-in prior to implementing any

Agile method.
— Identifying a product owner (one per project).
— Identifying a Scrum Master (or Scrum Masters if multiple-

teams will be employed).
— Identifying personnel that meet all requisite skill sets.
— Obtaining approvals from activity executives (who provide

funding) and senior management (who provide personnel
and other resources).

— Establishing all necessary infrastructures (e.g. test bench-
es, racks, harnesses, initial architectures, Wi-Fi, and so on).

— Establishing all critical environments (e.g. test labs for
operations, the software development area, team areas to
support daily stand-ups, and so on).

— Creating just enough architecture to support initial sprints.
— Determining the most likely and the most significant risks.
— And more.

Many companies that teach Scrum do not mention sprint
zero due to its unacceptable and controversial nature and its
Scrum-like term. It could also be that sprint zero is not an Agile
or Scrum activity, thus the resistance to the “sprint zero” term.
The following are a few vague attempts to define sprint zero by
both those who execute it and those who abhor it:

— Sprint zero is usually claimed as necessary because there are
things that need to be done before a Scrum project can start.

— Sprint zero has three goals:
1. Populate the product backlog with quality items.
2. Provide a minimal environment that enables the writing

of quality code.
3. Write some code, no matter how small.

— Estimate the most important features, agree on a defini-
tion of “done,” and rebuild confidence with the customer.

— The planning team is responsible for producing three
deliverables by the end of the planning iteration:

1. A list of all prioritized features or stories that
include estimates.

2. A release plan that assigns each feature or story
to a sprint.

3. A high-level application architecture, i.e., how the
features will likely be implemented.

In April 2015, the author, Dick Carlson, posted a question
to LinkedIn readers entitled, “Is Sprint Zero for You?” The pur-
pose of the post was to determine how Sprint Zero is regarded
by the Agile community and how many people use it. (You can
read the post on LinkedIn at https://www.linkedin.com/pulse/
sprint-0-you-dick-carlson?trk=mp-reader-card.) For those who
are not LinkedIn members and do not have access to the post,
portions of the post are included in the following section.

Is Sprint Zero for You?
The Original LinkedIn Post (April 14, 2015)

Watts Humphrey (1927–2010) once said, “If you don’t
know where you are, a map won’t help.” This may sound silly,
but have you noticed how often excitement trumps logic when
preparing for a new project? It would be interesting to know
how many of you support sprint zero before project execution
and how many of you avoid sprint zero altogether. Below are a
few questions about the conduct of sprint zero, so please share
your thoughts and opinions on this very important activity.

— What is the potential impact that Agile adoption has on
a company’s operations, and which areas might be af-
fected the most?

Why is Sprint Zero a
Critical Activity?
Dick Carlson and Earle Soukup

Introduction. There is nothing new about project preparation. It doesn’t
matter how it is conducted, as long as the organization and the project
team take some actions to ensure a majority of key obstacles are removed
or mitigated. Have you seen projects halted — or worse, canceled — when
progress was impaired to the point of utter chaos?
On Agile [1] or Scrum [2] projects, project preparation activities are often
known as “iteration zero,” “sprint zero,” or “inception sprint.” An investment
in project preparation can vary depending on the complexity of the prod-
uct, schedule constraints, the availability of skilled personnel and critical
environments, and the amount of customer involvement. From our experi-
ences, sprint zero activities for large teams are critical to ensure things go
well from the start. A majority of our Agile work activities during the last
20-plus years has been with large, distributed teams that support govern-
ment contracts in military weapon systems, avionics, mission planning, and
satellite development. Small teams that are serious about paving the way
to successful project execution perform some preparation, but not on the
same scale as larger teams and projects. However, preparing for a project
should not turn into a project itself, and while there is no set time for such
preparation, budget and schedule constraints may be a major timing factor.

https://www.linkedin.com/pulse/

36 CrossTalk March/April 2017

MODERN PROCESS TRENDS

— Which critical foundational necessities must be completed
during sprint zero to avoid major obstacles that might
otherwise obstruct progress?

— Who should define all known requirements and create
the initial product backlog prior to the start of a project?

— Who is responsible and the most capable person for cre-
ating a product vision, a product roadmap, and an initial
release strategy?

— Who decides the amount of appropriate architecture that
must be created to ensure that the completed functional-
ity can be conducted successfully to ensure the team is
building the right thing?

(Latter portions of the LinkedIn post were removed from this
article to avoid any perceived marketing pitches by the authors.)

The Reaction
Responses varied widely. Some supported sprint zero, while

others had strong negative opinions regarding it. The majority
of responses were received within a month. Since the reac-
tions from readers were so mixed, a thorough analysis was
needed. Earle Soukup, this article’s co-author, took on the task.

The Analysis
The methods and results are explained herein, although

an unspecified amount of readers may disagree with some
of the conclusions.

Analytical Methods Used
The methods used for the analysis were partially quantita-

tive and partially qualitative, but a portion of the quantitative
analysis was subjective. The subjective aspect is derived from
the difficulty of assigning a numerical value to someone’s state-
ment when its value is based on the opinion of the assessor.

Ground Rules
The ground rules for the analysis were simple:
— Each comment was assigned a value from -3 points (very

negative) to +3 points (very positive). This includes a
value of zero for some comments.

— A comment assigned a value of 0 was deemed to be inap-
plicable to the analysis. For example, a question or a request
for an explanation may relate to the topic but not state an
opinion. These comments were assigned a value of zero.

— A comment about any topic other than the subject of the
LinkedIn post also received a zero value.

— A response of only a “Like” or a “Dislike” received a value
of +1 or -1, respectively.

— A written response received a value of +/-2 or +/-3
depending upon its strength of support or rejection of the
topics in the article.

— A longer written comment indicated a more intense opin-
ion about the subject, so it generally received an assign-
ment of +3 or -3.

— A comment containing an intense expression of opinion
received a +3 or -3 value regardless of length. For ex-
ample, “This is rubbish” received an assignment of -3.

— All comments or responses from the author, Dick Carl-
son, were excluded from the analysis and considered to
be part of the original article.

The Results of the Analysis
The analysis revealed both strong (+/-2) and very strong (+/-

3) opinions in the Agile- and Scrum-using community. Some
respondents were of the opinion that there is an “orthodox”
Agile, and any method that deviates from that orthodoxy is not
Agile, nor can it be allowed to be classified as Agile. Other
respondents were more flexible about using Agile.

Some interesting responses:
— Some respondents ignored the fact that Agile has ex-

panded beyond the realm of developing software.
— Originally the application of Agile was to small,

co-located teams, but now Agile is also being used by
large, distributed teams.

— Some respondents seemed to reject the idea of evolution
applying to Agile.

— Some respondents seemed to ignore one of the key val-
ues of the Agile Manifesto, “Individuals and interactions
over processes and tools.”

— Sometimes the agility associated with using Agile was ignored.
— Other respondents supported the ideas in the LinkedIn

post, including the term “sprint zero.”
— Yet other respondents supported the ideas in the LinkedIn

post, but rejected the use of the term “sprint zero.” Some
respondents suggested terms would be appropriate to
replace the term “sprint zero.” Many suggestions had
merit, but a few might introduce an ambiguity of the pur-
pose for executing a sprint zero activity.

— One respondent expressed the opinion that the concept
of sprint zero was apropos since there were zero deliver-
ables at the end of the sprint—untrue, but interesting.

The Major Disagreement
The term “sprint zero” was the largest source of disagree-

ment. The concept was anathema to some respondents.
Their general opinion seemed to be that “a sprint must begin
with a numeral, and it must produce some operating soft-
ware at its end, or it is not a sprint.” The implication of this
statement is that only tested, accepted and executable code
counts. No considerations were given to a project using
Agile but developing something other than software.

Also rejected or ignored were the concepts that road-
maps, risk assessments, coding standards, and other work
products that are valuable to project management. Com-
pany executives (who many people consider stakeholders),
end-users, and other stakeholders do not count such as
deliverable items. (Note: The aforementioned items are
considered valuable to those holding the purse strings in a
large corporation.)

Further Viewpoints
Other respondents liked the value of the activity but did not

like the use of the term “sprint zero.” Such comments were
assigned values of +2, because a dislike for a particular term

CrossTalk—March/April 2017 37

MODERN PROCESS TRENDS

seems less important than the value of the effort.
Many respondents agreed with the thesis of the LinkedIn post,

either generally or wholly. In fact, on a weighted basis, more were
in favor of the thesis in the LinkedIn post than opposed to it.

Some respondents drifted to other topics that were not
germane to the subject of the LinkedIn post. These comments
were assigned a value of zero (0), though some of these com-
ments were rather interesting.

The Numerical Analysis
The numbers are revealing.
— Responses from the author were excluded, leaving a total

of 171 responses from members of several LinkedIn
groups, including the Agile & Lean Software Development
Group, the Agile and Lean Europe Group, the Certified
Scrum Master Group, the Non-Tribal Lean Agile Group, the
Lean Agile Software Development Community, and Linke-
dIn Pulse contributors (who must be LinkedIn members to
post such write-ups). The author’s responses to comments
made from respondents were explanatory in nature. (Note:
The respondents included mostly software and system
engineers from around the globe.)

— Neutral comments: questions, answers, or off the topic.
20 total responses.

— Comment: commenters provided only one or two com-
ments each; one commenter provided at total of 23.
Each comment was evaluated separately.

— Total Points: total, absolute value of the weighted com-
ments was 286 points.

— The positive comments totaled 191 points; the negative
comments totaled 95 points.

— The ratio of the positive to negative points is greater than 2:1.
— One discussion group provided 45 comments.

Conclusion
One might believe that for a technical project, the rules of

logic would be the only rules that apply. But this analysis reveals
that emotions may overrule the rules of logic; thus, emotions can
influence technical decisions and opinions. Many people have
strong emotions concerning Agile and how to apply it.

Some appear to believe that there is an “orthodox” ap-
proach to Agile, and any deviation from that
approach prevents an activity from being called “Agile.”
Other users of Agile are prone to adjust their application to
meet the needs of the situation. Their comments supported
the approach that the emphasis should be on “meeting the
needs of the situation”
and not on establishing a process that followed
“orthodox” procedures.

The responses from both sides of the issue demonstrated a
strong support for Agile and Scrum, so the use of both meth-
ods should be viable for the future. Some individuals prefer to
follow an “orthodox” approach while others are willing to apply
Agile and Scrum in a flexible but comprehensive manner. Flex-
ibility seems to outweigh rigidity by more than 2 to 1.

Emotional attitudes may have a stronger influence on the
structure and behavior of a project than many people might

believe. If the sprint zero term is offensive to you, then call it
whatever you wish, but do not skip this step.

The distribution of responses is depicted in the
following chart.

Dick Carlson has a B.S. degree in business management
and is certified as a Scrum Professional, Scrum Master, Scrum
Product Owner, and in Lean-Agile Project Management. He
has shared successful experiences of Agile, Lean, and Scrum
implementations at conferences, workshops, and symposia.
Dick’s engineering career spans 50 years, and he has taught
courses in mathematics, electronics, CMMI, configuration and
data management, Agile, Lean, and Scrum for more than 30
years.

Mr. Soukup holds a Bachelor’s and Master’s degree in
Electrical Engineering, a Juris Doctor in Law, certificates for
software development, project management, functional man-
agement, systems engineering, and Agile and Lean including
being a Certified Scrum Master. He was a development and
test engineer, manager, and project manager for both hard-
ware and software. Also he developed and taught courses
in mathematics, electronics, ethics, Lean, and Agile. He is an
accomplished analyst.

ABOUT THE AUTHORS

Figure 1. Distribution of Responses

NOTES
1. Agile Alliance. https://www.agilealliance.org
2. Scrum, Scrum Alliance. https://www.scrumalliance.org

As a final thought, essentially all training providers make it very
clear that the team’s Scrum Master has the authority to cancel a
project should impediments and other daunting obstacles become
burdensome and overwhelming.

https://www.agilealliance.org
https://www.scrumalliance.org

Upcoming Events
Visit <http://www.crosstalkonline.org/events> for an up-to-date list of events.

Software Solutions Sympo-
sium 2017
Arlington, Virginia
20-23 March 2017
http://www.sei.cmu.edu/sss/2017/

15th Annual Conference
on Systems Engineering
Research
23-25 March 2017
Redondo Beach, CA
http://viterbi.usc.edu/sae/
cser2017.htm

Design, Automation and
Test in Europe
Lausanne, Switzerland
27-31 March 2017
https://www.date-conference.com/

2017 IEEE Third Interna-
tional Conference on Big
Data Computing Service
and Applications (Big Data
Service)
San Francisco, CA
6-9 April 2017
http://big-dataservice.net

Cyber-Physical Systems
Pittsburgh, PA
18-21 April 2017
https://cpsweek2017.ece.cmu.edu/

Mobile Dev + Test Conference
24-28 April 2017
San Diego, CA
https://mobiledevtest.techwell.com/

Software Engineering
Institute (SEI) Architecture
Technology User Network
Conference (SATURN) 2017
Denver, Colorado
1-4 May 2017
http://www.sei.cmu.edu/saturn/2017/

ACM CHI Conference
on Human Factors in
Computing Systems
Denver, Colorado
6-11 May 2017
http://chi2017.acm.org/

39th International Conference
on Software Engineering
20-28 May 2017
Buenos Aires, Argentina
http://icse2017.gatech.edu/

IWPE 2017 : 3rd IEEE In-
ternational Workshop on
Privacy Engineering
25 May 2017
San Jose, CA
http://ieee-security.org/TC/
SPW2017/IWPE

ENCASE 2017: 12th Interna-
tional Conference on Evalu-
ation of Novel Approaches
to Software Engineering
28-29 April 2017
Porto, Portugal
http://www.enase.org/

12th Annual System of Sys-
tems Engineering Confer-
ence
18-21 June 2017
Waikoloa, Hawaii
http://sosengineering.org/2017/

10th IEEE International
Conference on Cloud
Computing
25-30 June 2017
Honolulu, Hawaii
http://www.thecloudcomputing.
org/2017/program.html

28th Annual IEEE Software
Technology Conference
25-28 September 2017
Gaithersburg, MD
www.ieee-stc.org

UPCOMING EVENTS

38 CrossTalk March/April 2017

http://www.crosstalkonline.org/events
http://www.sei.cmu.edu/sss/2017/
https://www.date-conference.com/
http://big-dataservice.net
https://cpsweek2017.ece.cmu.edu/
https://mobiledevtest.techwell.com/
http://www.sei.cmu.edu/saturn/2017/
http://chi2017.acm.org/
http://icse2017.gatech.edu/
http://www.enase.org/
http://sosengineering.org/2017/
http://www.ieee-stc.org
http://ieee-security.org/TC/SPW2017/IWPE
http://www.thecloudcomputing.org/2017/program.html
http://viterbi.usc.edu/sae/cser2017.htm

CrossTalk—March/April 2017 39

BACKTALK

How long have software developers been
around? Well, seventy-five years ago – we
were using slide rulers, and we were happy to
see electronic calculators (invented in 1972?)
Doctors talk about blood-letting in their history,
and engineers talk of building bridges with
just rock and mortar. Software developers?
Younger ones talk about “OMG – I actually had
to code a program in FORTRAN!!”

Back in the 1970s, I was an instructor in the
basic developer course at Keesler AFB, Missis-
sippi. We taught a basic programming course
using, as I recall, a Hughes 407L (although I can
find no reference to this computer – my memory
might be slipping. Feel free to email if you have
a better memory.) Granted – it was an old
computer – but still adequate for teaching basic
concepts. We used it to teach assembly lan-
guage programming. To the best of my memory,
listed below are the steps involved in running a
program. Note that this was only 45 years ago!

0. Before you started, of course, you had
to punch your program onto a card deck. We
used an IBM 029 model.

1. Take your card deck with you into the com-
puter room during your reserved 30-minute slot.
Kick out the developers using the computer,
ignoring their “Just 5 more minutes?” please.

2. Power down the computer (which was room
sized!) and power it up, to ensure clean memory.

3. Locate the “Operating System” card deck
from the card shelf, and place it in the card reader.

4. Go to main panel, and press the “Boot
Init” button, which would load the OS deck, and
execute the code. OS now running. Return OS
deck to card shelf. Locate the Assembler deck,
and place it in the card reader.

5. Go to the main console, and type “load/

run”. This caused the OS to read the Assembler
card deck into memory, and execute it. The as-
sembler was now ready for input.

6. Place the Assembler deck back. Load
your program into the card reader, go to con-
sole, and type “continue”. You card deck (your
program) was now loaded as data into the as-
sembler, and the assembler, well, “assembled” it.

a. If there was an assembly error – you got
a listing of the error at the printer. You then
frantically tried to fix it during your 30-minute
slot, and restarted from step 2 above.

b. However, IF your program had no
errors, the card punch produced an object
deck – ready to be linked and loaded.

7. Grab the “Link and Load” card deck, add
your object card deck to the end, place it in the
card reader, and type “load/run” on the console.
The “Link and Load” program linked in code for
system routines, created an executable module
in memory, and executed it.

a. IF the program ran successfully, your
output showed up on the console. Tear off
the paper from the console (it was a teletype,
NOT a CRT monitor) and you were done!

b. On the other hand, if an ABEND (Ab-
normal ENDing) occurred (i.e. the program
crashed) you went to the console, typed
“dumpmem/all” and retrieved a dump of
ALL 32K (!) of memory on the line printer.
Try and pour through memory to find error.
Go to step 6b above.

Processes are MUCH simpler now. But –
you know what? We have forgotten the art of
desk-checking code in the last 40 years. The
pain and difficulty of the steps above guar-
anteed that you didn’t just casually type up a

Whole Lotta Shakin’ Going On!
(with apologies to Jerry Lee Lewis)

Come on over baby, whole lotta processes goin’ on
Yes I said come on over baby, baby you can’t go wrong

We ain’t fakin’ a whole lotta processes goin’ on

deck of cards without seriously reading (and
re-reading) looking for typos. However, the
great part of desk-checking was that you found
both syntax AND semantic (logic) errors as you
read through your code.

Nowadays, compiles are so quick and easy
(typically, “push one button”) that we no longer
desk-check for syntax (“let the compiler do
that!”) And, sadly, we seldom desk-check for
semantics until we try and run the code. We
have forgotten how to individually review code
for semantics. We have IDEs (Integrated De-
velopment Environments) that compile as we
are coding – and fix syntax errors as we type.
Why bother to desk-check?

Back in the 1970s, we had a simple process
for writing code – it was called the “code and
fix” process. Basically, it was a “repeat until
somebody gives up” process.

Nowadays – NOBODY uses the “code and fix”
process model, right? (Pause for sarcastic and
guilty laughter). We have developed more complex
and better processes that produce software that
is more reliable, understandable, modifiable/
maintainable and efficient. The processes improve
quality, increase productivity, and reduce wasted
time fixing the same error over and over …

But remember that a process does not replace
creativity, imagination, and thinking. There is even
more of a need to desk-check code. Back in
the 1970s, a 2000 line program was considered
huge. Now? 7 million lines of code is relatively
common. Rather than just reading 2000 lines of
a single program, we now need to review the code
and the design of a tightly coupled 7 million line,
100+ program system. In fact, we have to review
multiple components of the design: architectural,
data, interface, and finally module (the code).

There has never been a greater need for
good processes. Likewise, there has never been
a greater need for developers who understand
the process, and use their skills and intelligence
and experience to keep alive the spirit of desk-
checking. Don’t let the process take the place
of individual reviews and common sense.

It could be worse. You could still be looking
for a FORTRAN compiler card deck to load into
a card reader. And “keep on shakin’ “.

David A. Cook, Ph.D.
Stephen F. Austin State University
cookda@sfasu.edu

I have to admit – I am not a young man anymore. In fact, unless I plan on living into my 120s, I’m not
even “middle aged”. As a college professor, I promise each class that they will not have to hear more
than five “Back when I was your age….” stories per class. (OK – truthfully, I tell them ten). It’s hard
not to tell those stories – I don’t think you can fully appreciate modern technology and processes un-
less you understand the way “it used to be done”. And our profession is so young. Engineers have
been building bridges, great walls, and pyramids for thousands of years. Doctors has been practicing
medicine a long time – the Hippocratic oath dates from the fifth century BCE. Lawyers and politi-
cians have been around …… never mind.

mailto:cookda@sfasu.edu

CrossTalk thanks the
above organizations for
providing their support.

CrossTalk / 517 SMXS MXDED
6022 Fir Ave.
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Hiring Expertise

Engineers and Computer Scientists

Send resumes to:
309SMXG.Recruiting@us.af.mil

or call (801) 777-9828

www.facebook.com/
309SoftwareMaintenanceGroup

Like

Send resumes to:
309SMXG.Recruiting@us.af.mil

or call (801) 777-9828

Hill Air Force Base is located close to the
Wasatch and Uinta mountains with skiing, hiking,

biking, boating, golfing, and many other
recreational activities just a few minutes away.

Become part of the best and brightest!

The Software Maintenance Group
 at Hill Air Force Base is recruiting
 civilians (U.S. Citizenship
Required). Benefits include paid
vacation, health care plans, matching
retirement fund, tuition assistance,
paid time for fitness activities, and
workforce stability with 150 positions
added each year over the last 5 years.

Engineers and Computer Scientists

H i r i n g E x p e r t i s e

T he Software Maintenance Group at Hill Air Force Base is recruiting
civilians (U.S. Citizenship Required). Benefits include paid vacation,

health care plans, matching retirement fund, tuition assistance, paid time
for fitness activities, and workforce stability with 150 positions added
each year over the last 5 years.

Become part of the best and brightest.

Hill Air Force Base is located close to the Wasatch and Uinta mountains
with skiing, hiking, biking, boating, golfing, and many other recreational
activities just a few minutes away.

www.facebook.com/
309SoftwareMaintenanceGroup

Like

Send resumes to:
309SMXG.Recruiting@us.af.mil

or call (801) 777-9828

Hill Air Force Base is located close to the
Wasatch and Uinta mountains with skiing, hiking,

biking, boating, golfing, and many other
recreational activities just a few minutes away.

Become part of the best and brightest!

The Software Maintenance Group
 at Hill Air Force Base is recruiting
 civilians (U.S. Citizenship
Required). Benefits include paid
vacation, health care plans, matching
retirement fund, tuition assistance,
paid time for fitness activities, and
workforce stability with 150 positions
added each year over the last 5 years.

Engineers and Computer Scientists

H i r i n g E x p e r t i s e
Hiring Expertise

Engineers and Computer Scientists

mailto:309SMXG.Recruiting@us.af.mil
www.facebook.com/309SoftwareMaintenanceGroup

	Table of Contents
	From the Sponsor
	The Impact of Agile and Lean on Process Improvement
	Modernizing Earned Value Management
	DO-332/ED-217: Using Modern Software Practice in Airborne Systems
	Framework for Selecting the Preferred Networked Computer System for Dynamic Continuous Missions
	Process is Easy, Change is Hard
	In Search of a Modern Software Life Cycle: Secure DevOps Foundations for Large-Scale Software Systems
	The Software Deployment Process and Automation
	Why is Sprint Zero aa Critical Activity?
	Upcoming Events
	Backtalk

