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1. INTRODUCTION 

 JAMS Goals 
The Java Analysis at Massive Scale (JAMS) seedling sought to improve the speed and maximum 
complexity of static program analysis, particularly graph reachability analysis (GRA), using off-
the-shelf distributed processing techniques.  In particular, the goals were: 

• Build a framework for running distributed graph reachability analysis (dGRA). 
• Measure the benefits/tradeoffs of dGRA versus existing GRA approaches. 
• Explore the benefits of using a modular framework for GRA.  

This report resulted from research sponsored by the Defense Advanced Research Projects 
Agency (DARPA) for the Space/Time Analysis for Cybersecurity (STAC) program, under Air 
Force Research Laboratory (AFRL) agreement number FA8750-15-C-0108. The views, 
opinions, and/or findings expressed are those of the author(s) and should not be interpreted as 
representing the official views or policies of the Department of Defense or the U.S. Government. 

1.1.1 Arbitrary Scale through Arbitrary Hardware 
Graph reachability analysis is one of the most powerful formal software analysis techniques 
available.  However, it is famed for what is known as “combinatorial explosion” - relatively 
small increases in analysis precision and target program complexity result in huge increases in 
the size of the graph being analyzed.  State-of-the-art approaches use a combination of highly-
optimized implementation and clever limitations in analysis scope and precision to get as much 
out of one machine as possible.  However, there will always be questions that such an approach 
can’t answer, because it involves constructing a model too large for one machine to reason over 
in the time available, if it can be handled at all. 
JAMS sought to remove this barrier using the same force that’s driven recent advances in big 
data and machine learning:  the cloud.  Instead of avoiding the costs incurred by disk storage and 
network communication, we explored the possibility of a system that could scale to any formal 
analysis challenge, using a distributed computing cluster that could be resized to meet the needs 
of the problem at hand. 

1.1.2 Cooperation through Modularity 
The key strength of graph reachability is its flexibility.  In software analysis, finding a link 
between two nodes in a graph can tell you how functions call each other, how data moves 
throughout the program, or if certain events happen in a required order, all depending on the data 
you use to build your graph. 
Ordinarily, due to the heavy optimization required to handle complex software analysis tasks, a 
given GRA implementation focuses on, at most, a couple of questions.  To use the results of one 
GRA-based analysis to benefit the other, the first analysis must run to completion before the 
second can begin.   
Because JAMS would need a modular platform for testing GRA-based analyses, we explored the 
idea of running multiple GRA-based analyses cooperatively.  Instead of waiting for its 
dependencies to complete, a given analysis can use intermediate results immediately as they are 
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generated, allowing more work to be complete per stage of the GRA algorithm, and thus 
reducing the total time needed to complete analysis. 

 Previous Work 
JAMS sought to combine well-established fields that had not been readily explored together. 

1.2.1 GRA-Based Program Analysis 
Reachability-based program analysis is one of the most basic formal analysis techniques.  The 
textbook algorithm (presented as chapter one of [1]), forms the foundation of the JAMS 
approach.  A great deal of inspiration for this approach came from Massachusetts Institute of 
Technology’s (MIT) DroidSafe tool [2], developed for the Defense Advanced Research Projects 
Agency (DARPA) Automated Program Analysis for Cybersecurity (APAC) program 

1.2.2 The MapReduce Algorithm 
The MapReduce algorithm was originally developed by Google, Inc. [3] as a simple and versatile 
framework for distributing and executing computations at arbitrary scales.  MapReduce supports 
tasks that involve computing many partial results on small portions of a large data set (map), and 
then collating those results into a final answer (reduce).  Today, MapReduce is extremely widely 
used, and is available either as stand-alone applications such as Apache’s Hadoop and Spark, or 
as programming language libraries, such as Python’s. 

1.2.3 Parallel Program Analysis 
We found remarkably little work in attempting to parallelize or distribute graph-reachability-
based program analysis.  Marcus Edvinsson [4], out of Linaeus University, Sweden, developed 
an algorithm for parallelizing GRA on a small scale, such as on a single desktop computer.  In 
contrast to JAMS, Edvinsson’s core assumption was that optimized traversal of a single directed-
acyclic component of a static-single-assignment control flow graph could not be meaningfully 
improved through parallelism.  Based on this assumption, he built a GRA system that identified 
isolated start nodes of the control flow graph, and explored their descendants in parallel.  While 
extremely efficient, this approach is limited by the number of isolated paths through the program.  
When paths overlap, Edvinsson’s algorithm duplicates work instead of spending time 
synchronizing state between tasks.  Attempting to parallelize beyond a certain point gives no 
benefit, since there aren’t enough independent subgraphs to share amongst the workers.  
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2. METHODOLOGY, ASSUMPTIONS, AND PROCEDURES 

 Assumptions 

2.1.1 High Scale, High Risk 
JAMS predicated its success on the idea that, given enough workers, one iteration of GRA can be 
parallelized to the point where the load on a single worker is trivial, or at least significantly 
lessened.  However, the size of the working set for a program analysis task grows very rapidly 
with the complexity of the analysis being performed.  We didn’t know if or by how much 
distributed analysis could alter the asymptotic behavior of the algorithms to bring the answers to 
previously-intractable questions within reach.  

2.1.2 Implementation versus Optimization 
The goal of JAMS was to explore whether a distributed approach to formal analysis has any 
benefit over sequential or small-scale parallel approaches.  To support that goal as best as 
possible, we decided to focus entirely on system construction and testing, and to avoid fine-
tuning our use of the supporting frameworks.  This means that we were unable to control for the 
following factors: 

• Framework Scalability: Successfully scaling distributed systems is often more 
complicated than just adding more nodes.   

• Framework Overhead:  Using general-purpose tools means that we could not control 
for the costs of converting our data into common formats, or for safety checks that might 
not be relevant given our control over the input.  

• Cloud Platform Performance: Since we used shared hardware, we didn’t have 
guaranteed processor, disk, or network priority. 

• Locality of stored data: The co-location of workers and their working sets is a difficult 
problem for JAMS (see 2.3.1), and is entirely dependent on the configuration of the data 
storage framework.  Bad configurations could introduce significant inefficiency as 
workers need to use the network to look up non-local data. 

We expected all of these factors to introduce overhead into our system.  We took this expressly 
into account in our experiment design (see 2.3.3), and we point out several places where we 
could trace inefficiencies to these factors in our results discussion (see 3.1). 

2.1.3 Scope of Program Analysis Tools 
The main focus of JAMS was to examine the feasibility of dGRA algorithms, not to build an 
advanced program analysis platform.  JAMS expressly ignored classically-difficult problems in 
Java Analysis: 

• Library Modeling:  We did not attempt to boost performance using simplified data flow 
models or stubs for libraries.  JAMS performed naïve whole-program analyses, and chose 
manageable analysis targets rather than spending time forcing the Java Runtime or third-
party libraries into manageable forms for analysis. 



  

Approved for Public Release; Distribution Unlimited 
4 

 

• Native Code: We did not intend to handle native code.  While it would be entirely 
possible to use a dGRA system to analyze native code, indirection and the lack of 
semantics introduce a whole host of problems that we didn’t want to address. 

• Algorithmic Optimization:  We used relatively primitive GRA techniques.  While a lot 
of work has gone into refining and optimizing program analysis using GRA, we preferred 
to focus on exploring basic dGRA rather than implementing and verifying highly-
optimized versions of the algorithm. 

2.1.4 Cost of Execution 
As imagined, JAMS would run on a lot of hardware.  This meant either spending a lot of capital 
setting up an appropriately-sized computer cluster, or paying for time on someone else’s.  This 
gets at a critical ideal behind JAMS; with dGRA, the limitation on the questions you can answer 
should be the resources you are willing to spend getting that answer, rather than fundamental 
limits of the analysis system.   
We did not expect dGRA systems like JAMS to be a complete replacement for fixed-scale 
program analysis systems.  Classical single-machine solutions are perfectly capable of handling a 
certain scale of analysis problem.  Given the overhead of running a distributed system, we didn’t 
expect JAMS to compete directly with existing tools at this scale.  Instead, we hoped to show 
that dGRA could scale further than traditional approaches, allowing it to tackle more complex 
problems. 

 Methodology 

2.2.1 Distributing Graph Reachability 
JAMS focused on a single formal analysis method: graph reachability.  Graph Reachability 
Analysis (GRA) answers the question “Which nodes in a directed graph are reachable from a 
given set of starting nodes?”  Depending on what the graph represents, you can answer a number 
of different questions; “what code blocks are reachable” or “where can data move inside a 
program” to name a few.  The basic GRA algorithm is as follows: 

1. Initialize a graph G = (V, E) 
2. Let S, subset of V, be the pre-determined set of starting nodes. 
3. Let set R, the current reachable nodes, contain all nodes in S. 
4. Let set R’ be empty. 
5. For each directed edge e in E:  If e.source is in R and e.sink is not in R, add e.sink to R’. 
6. If R’ is not empty:  Add all nodes in R’ to R, return to 5. 

Normally, this algorithm is executed sequentially. Each edge e is examined one at a time, 
sometimes in specific patterns to improve the amount of work achieved per iteration of the 
algorithm.  The problem with using a sequential approach for software analysis is that E can 
become extremely large. Complex programs will rapidly exceed millions of individual transfers, 
and high-resolution analyses may increase that by many orders of magnitude, duplicating nodes 
in order to express the impact of program state on execution.  As a result of this precipitous 
growth, many meaningful questions are beyond the capacity of even the most powerful 
traditional computers. 
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The key idea behind JAMS is that each edge examination in step 5 is Hamiltonian:  Any 
examination of an edge only depends on the data contained in R.  Since R does not change 
during step 5, these edge examinations are completely parallelizable.  The GRA algorithm now 
becomes extremely similar to a common parallel/distributed algorithm, MapReduce.  Rephrasing 
the GRA algorithm in terms of a parallel or distributed system, we came up with the following. 

1. Initialize a graph G = (V, E), partitioned across shared storage. 
2. Let S, subset of V, be the pre-determined set of starting nodes. 
3. Map all edges e in E in parallel: 

a. If e.source is in S, mark e.source uniquely. 
b. Apply all marks on e.source to e.sink 
c. If either e.source or e.sink had a new mark added, flag that node as changed. 

4. Reduce each node v in V, in parallel: 
a. Merge all sets of marks on all copies of v 
b. If any copy of v was flagged as changed, flag the final copy as changed. 

5. Write V, E back to shared storage. 
6. If any node in V was flagged as changed, return to 3. 

Our hypothesis was that, if given a large enough scale of parallelization and a complex enough 
problem, the benefit of splitting processing across multiple workers would exceed the increased 
time costs of communication and system maintenance.  Furthermore, by moving away from 
structural optimizations, we hoped to remove the theoretical limits that plagued Edvinsson’s 
approach.  We discussed our hypotheses regarding the performance versus overhead tradeoff in 
2.1.1, and our actual implementation of dGRA in 2.3.1. 

2.2.2 Building on Existing Technology 
Distributed systems engineering for cloud infrastructures is extremely difficult.  Fortunately, a 
number of tools supporting different tasks in this space were reaching maturity.  In order to focus 
on the goal of building and testing a dGRA framework, most of the JAMS system was built 
using open-source frameworks.  We will discuss this more in section 2.3.2. 
Additionally, we did not have dozens of cores’ worth of distributed computing cluster readily 
available.  In order to perform large-scale distributed processing experiments, we purchased time 
from commercial cloud services. 
The risk in this approach was that we needed to compromise between our requirements, the use-
cases supported by the frameworks and services available, and the maturity of those frameworks 
and services.  We discuss our choices of frameworks in section 2.3.2. 

 Development Process 

2.3.1 System Architecture: dGRA Framework 
JAMS itself consists of four major components: 

• A dGRA driver 
• A data storage interface 
• A Preprocessor 
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• One or more Analysis Modules 

Our goal was to make each of these components as decoupled as possible, in order to minimize 
the risks from bad software choices.  Each component communicates using a set of software 
interfaces defining the components themselves, and the JAMS data representation.  If a 
component didn’t meet the needs of the program, we could remove it and re-implement its 
interfaces with minimal effort. 

2.3.1.1 Data Model 
To simplify analysis, JAMS operates on an abstract graph representation of Java bytecode.  Each 
basic block of the program is represented as a list of assignment expressions representing the 
data flow impact of the block, and a list of pointers to other blocks, representing the possible 
control paths out of the block.   
The assignment expressions are simplified abstract syntax trees based on the Jimple intermediate 
representation.  They take the form of a = op(B, C, …), where a is a storage reference – an object 
describing a direct or indirect memory reference, such as a variable, object field, or formal 
method parameter.  B, C and others are expressions on storage references. 
All basic blocks and their related artifacts are assigned a context, a list of string identifiers 
allowing different analysis modules to track their actions on a given artifact.  This is especially 
useful for creating contextual copies of artifacts, where different clones of the base artifact 
represent different choices made by the analyses. 
In addition to the basic blocks, JAMS also records state documents – data objects that can be 
attached to an artifact under a specific context.  This allows analyses to store conclusions that 
don’t directly impact the program structure.   
The basic block is the primary unit of work in JAMS.  Each parallel map task handles a fraction 
of the list of basic blocks; the more mappers, the smaller the apparent size of the graph from the 
perspective of one mapper and the more tractable the analysis. 
The state documents are stored separately from the basic blocks.  Because a single artifact – say, 
a variable – can be referenced from multiple blocks, there needs to be a separate data store to 
avoid having to synchronize state documents between all of those references.  The map tasks 
lazily load state documents as needed, and add to their local copy based on the data available 
from the block they are currently processing.  This creates multiple conflicting versions of the 
document; it’s the job of the reducer tasks to collate all versions of each artifact modified by the 
mappers, and produce a single coherent version of the artifact and its state that can be written 
back to storage. 

2.3.1.2 Preprocessor 
Because JAMS operates on a high-level representation of a program, the first stage of our system 
must lift raw Java bytecode into that representation.  The preprocessor is built on top of the Soot 
Java Optimization framework.  Soot converts Java bytecode instructions into the Jimple 
intermediate representation language, and then exposes transformer interfaces that allow 
developers to write software to operate over that language.  JAMS’ transformers read each 
method body in the soot classpath, extract the basic blocks, and build the data transfers.  These 
objects are then serialized, and saved to the permanent data store. 
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2.3.1.3 Analysis Modules 
The actual program analysis in JAMS is performed by a series of pluggable analysis modules.  
Each module defines a map algorithm that analyzes a single basic block, and one or more reduce 
algorithms to combine the results of that analysis on different artifacts.   The module also has 
control over how its associated state gets stored.  This allows for complicated mappings from 
state documents to artifacts, or non-trivial serialization schemes, without having to expose the 
details of the data storage interface to the analysis itself. 
When loaded into the system, the modules register with a central manager.  The manager’s 
responsibility is to check that all of each module’s dependencies are loaded, and to determine the 
order in which the modules should be executed based on those dependencies. 

2.3.1.4 dGRA Driver 
The dGRA driver picks up where the preprocessor leaves off, and loads the serialized state and 
structure data into a form suitable for distributed processing.  At the start of an iteration, all basic 
blocks get loaded from distributed storage and passed to their respective workers. 
Each worker is responsible for performing the map operation over each basic block in its 
partition.  For each block in the partition, the worker executes the mapper of each registered 
analysis module on that block, in order of module dependency. 
The results of each map task are a list of key/value pairs, representing basic blocks and all 
artifacts in them that were changed by the mapper.  These are then shuffled to separate reducer 
tasks based on their keys – all copies of the same artifact will be reduced together, resulting in a 
single copy at the conclusion of the reduce phase.  As with the map tasks, the reduce tasks use 
the reducers from each analysis module in turn to compute the merge between two copies. 
The reduced list is then fed to a second map phase, where any modified state documents attached 
to an artifact are saved to persistent storage.  This map phase also filters out everything except 
the basic blocks, creating an updated version of the original data set loaded at the start of the 
iteration. 
The final step is to perform a second reduce on the updated list of basic blocks.  This checks 
which analysis modules modified each block, and reports a single bit vector indicating which 
modules were active this iteration.  The updated list of blocks is then saved back to the database, 
and, if the vector indicates that there are still active modules in the system, the driver starts a new 
iteration. 

2.3.2 Infrastructure Design: Building on Open Source 
The dGRA framework represents only a tiny corner of the JAMS system.  The tasks of deploying 
a distributed compute cluster, managing a distributed map-reduce application, and maintaining a 
distributed data store are all handled by third-party software. 

2.3.2.1 Finding Hardware 
In order to experiment with distributed software, you need a computer cluster on which to run it.  
To build such a cluster, we chose to use Amazon Web Services Elastic Compute Cloud (AWS 
EC2).  EC2 allows you to rent virtual machines with varying resource limits and hardware 
priorities. 
For our experiments, we hypothesized that forcing nodes in the distributed cluster to 
communicate over a network connection versus over a local bus would be inefficient, so we 
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chose an r3.8xlarge instance, with thirty-two cores, 244 Gigabytes (GB) of Random Access 
Memory (RAM), and 640 GB of local Solid State Drive (SSD) storage.  Ideally, this would allow 
us to host multiple workers per instance.  Our hypothesis was that hosting multiple workers on 
one machine eliminates network overhead, assuming the machine has enough resources to 
support those workers. 

2.3.2.2 Deployment System 
In order to avoid spending cloud dollars for correctness testing, JAMS needed to be deployment 
agnostic. We wanted to be able to deploy it on a single machine, a local network, or the cloud 
with minimal changes to the software or its configurations. To do this, we built our entire 
deployment process around Docker Swarm.  Docker is a tool for deploying containerized 
software – it allows you to create a script that launches a program inside an isolated environment 
similar to a VM, while avoiding the overhead and heavier setup costs of a full guest operating 
system. 
The Swarm extension aids in creating and connecting a large number of duplicate containers, as 
well as balancing them across multiple hosts in a network.  This ability exactly supports our 
desired use-case of deploying JAMS in different cluster configurations by specifying the scale of 
a particular container type, we could effortlessly change the configuration of our system. 
JAMS departs from Docker’s normal use-case by treating containers as true virtual machines.  
Normally, a Docker Swarm is made up of containers each running a single service; if you need 
ten database servers and two web servers, you launch a total of twelve containers.  For JAMS, 
we wanted to keep some services co-located, so we used a tool called supervisord that allowed us 
to launch multiple services within one container.  Our different container types are as follows: 

• Master: Cluster coordinator.  Hosts the master node for the Spark cluster (see 2.3.2.3), 
and serves as a coordination point when collecting data from across the cluster. 

• Worker: A single worker in our distributed cluster.  Hosts a Spark worker (see 2.3.2.3), a 
Cassandra database server (2.3.2.4), and a Ganglia daemon (see 2.3.2.6). 

• Logstash/Elastic Search/Kibana (ELK): Traditional docker containers supporting the 
ELK logging framework services (see 2.3.2.6). 

 
  Figure 1: JAMS Cluster Architecture (VPC: Virtual Private Cloud) 
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A JAMS Swarm includes one master container, one each of the ELK-stack service containers, 
and at least one worker.  One worker – termed the “seed worker” – gets booted ahead of the 
others to serve as a single point of contact for the other workers’ Spark and Cassandra services to 
join the cluster. 

2.3.2.3 Distributed Processing System 
Because we based the dGRA algorithm off of MapReduce, there were two main choices of 
framework to actually host our distributed tasks.  The first was Hadoop, the original MapReduce 
implementation; and Spark, a newer platform built on top of Hadoop.   
As a strict improvement over MapReduce, Spark was the obvious choice.  On the pure 
performance side, Spark includes a number of optimizations that are difficult to implement in 
Hadoop.  Key among these is the idea of performing as much work as possible locally and in 
memory before sharing data between hosts, thus cutting down on overhead from disk 
input/output (I/O) and network communication compared to Hadoop.   
 
Architecturally, Spark also had a number of benefits over Hadoop.  Hadoop is designed for 
single-pass tasks; plug-in mapper and reducer classes get fed into a fixed Hadoop process that 
executes them in order, writes out the data, and then terminates.  Spark, on the other hand, allows 
developers to write their own driver classes, exposing distributed data as Resilient Distributed 
Datasets (RDDs) that can be manipulated like any other Java data structure.  Given that GRA is 
an iterative algorithm, building our own driver made implementing it far easier and more 
efficient than observing and re-launching a Hadoop process from an external script. 

2.3.2.4 Database Cluster 
When choosing which distributed data storage tool to use, there were four main criteria it had to 
meet. It had to support the JAMS data structures, have great performance, scale well, and it had 
to easily support data co-location. It also had to be Spark compatible. Our three main choices 
were Apache’s Hadoop Distributed File System (HDFS), Cassandra, and MongoDB databases. 
HDFS was designed expressly to work as a distributed file system for MapReduce systems, and 
supports all three of our criteria very well.  The problem is that it was designed to distribute 
pieces of single documents, so it does not have good support for data sets made of large numbers 
of small arbitrary-sized documents.  Its limitations make it unable to support the JAMS use case. 
MongoDB is a lightweight non-Structured Query Language (NoSQL) (non-relational) database 
designed for document storage.  It has excellent performance and can be distributed, but the size 
of a database cluster is difficult to configure, and its distribution algorithms are geared towards 
creating multiple identical replicas, not separate partitions of the same database. 
Apache Cassandra is a distributed relational database.  In addition to readily supporting our 
deployment and data structure needs, there was a third-party library for interfacing Cassandra 
with Spark’s RDD loading process, making it the ideal choice of the three.  Cassandra claimed to 
also support our performance requirements, but offered few details.  We will discuss our own 
experiences in this area in section 3.1. 

2.3.2.5 Dependency Management 
In order to make JAMS as modular as possible, we decided to use a dependency injection 
pattern, where analysis modules and other system components are connected at runtime.  Java 
comes packaged with the Contexts and Dependency Injection (CDI) framework, which provides 
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seamless dependency injection in its enterprise software framework.  To use CDI without trying 
to run Spark in a web server, we used Apache’s DeltaSpike tool, which allows the use of CDI 
without a full Java Enterprise Edition (EE) environment.   
The benefit of this approach is that CDI, unlike other dependency injection libraries, requires no 
configuration whatsoever; it works purely off of Java introspection.  The downside is that 
DeltaSpike is an extremely heavy-weight library, and required a steep learning curve to integrate 
unobtrusively (in its default configuration, DeltaSpike can generate gigabytes of log data). 

2.3.2.6 Instrumentation Design: Gathering the data we need 
Our key challenge in trying to measure system performance was that we wanted to focus on the 
timing of certain events that occur solely within the confines of our system without drastically 
impacting system performance.  To that end, we did not want to use a traditional profiler; 
although accurate and purpose-built for our goals, we were not aware of any that would work on 
a distributed platform, and the ones we were aware of had such a heavy impact on system 
performance that they would not be useful for us. 
We wound up writing what amounts to our own profiler using a technique we termed Semantic 
Logging.  Using the log4j logging framework backed by the ELK stack, we built a library that 
allowed us to send custom messages marking the start and end of arbitrary tasks.  We included 
these. 
The benefit of this approach is that we could instrument our own system events, such as single 
analysis module executions or entire analysis ticks, which don’t have a clear analog in any of the 
frameworks we used.  Additionally, log4j is optimized to have almost no impact on its host 
program, allowing for zero-profile profiling. 
The downside is that we could not measure the costs of events outside our control.  The greatest 
of these “blind spots” is when Spark shuffles data between map and reduce tasks.  However, we 
can estimate these costs based on the missing time between the phases we did control. 
In addition, we experimented with using Ganglia, a distributed system monitoring tool, to 
measure load on different system resources, such as Central Processing Unit (CPU) and RAM. 

2.3.3 Experiment Design 
2.3.3.1 Experimental Data Set 
In a twist of good luck, the previous work performed by Edvinsson used a large list of open-
source Java programs and libraries as its test set.  In order to save ourselves work in vetting test 
programs, and to allow nearly-direct comparisons with existing work, we decided to use as many 
of these programs as we could find.  
We ran into two complications with this approach.  The first was that, in the years since 
Edvinsson was published, the test projects had gone through several versions.  We decided that, 
since our approach was already too dissimilar to make a scientifically-precise comparison to 
Edvinsson’s results, we would use the more-readily-available current releases of the applications. 
The second was that a number of the programs proved difficult to feed into our preprocessor.  In 
order for Soot to meaningfully process a Java program, it needs access to all the program’s 
dependencies.  Rather than spend a lot of time understanding complex and undocumented build 
configurations, we chose a subset of the test programs that we knew our platform could handle. 
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We also added two test applications of our own.  The first, jams-example, is a very small (11 
basic block) program we constructed specifically to test the correctness of our analyses.  The 
program is a series of primitive data and object manipulations designed to cover code structures 
significant to our analyses. To keep things as simple as possible, the program does not reference 
any external libraries. 
The second program we chose to add was the Soot Java Analysis Framework.  Aside from 
Jython, most of the applications used by Edvinsson were relatively small.  Since larger programs 
are generally easier to examine through timing-based analyses, and because Jython proved 
difficult to process in early tests, we added Soot to give us another large test app. 
The list is as follows: 

• Jams-example 
• Antlr-4.6 
• Emma-2.0.5312 
• Jython-2.7.0 
• Sablecc-3.7 
• Soot-3.0.0 

2.3.3.2 dGRA Scaling Tests 
Our first goal is to measure exactly how far we can scale a dGRA-based system.  To measure 
this, we will build a primitive intraprocedural data taint analysis tool.   

• Wall-Clock Time: Time to run the analysis from end-to-end.  Gathered from Spark, 
logging frameworks. 

• Performance Multiplier: Ratio of Wall-Clock Time for a reference configuration to 
Wall-Clock Time for the experimental configuration. 

• Overhead Ratio: Ratio of number of workers in the cluster (an ideal maximum 
performance multiplier for a given cluster) to the Performance Multiplier of that 
configuration. 

As stated in 2.1.1, we expect our prototype tool to suffer from a great deal of computational 
overhead, so we do not expect to compare Wall-Clock Time directly to existing work.  Instead, 
we are focusing on Performance Multiplier.  As described in 1.2.1, Edvinsson’s approach 
suffered from a theoretical maximum performance multiplier due to limitations in partitioning 
their working set for parallel operations.  The JAMS approach has no such limitation, so our 
hope for this project is to create a tool that can achieve a better maximum multiplier than past 
approaches. 
We hoped to present data on CPU and RAM usage in order to analyze what fraction of the 
cluster resources each experiment used.  However, we discovered late in the program that 
Ganglia cannot correctly monitor resource usage for multiple Docker containers on the same 
host.  Since Ganglia references the host’s hardware directly, running one Ganglia daemon per 
container lead to over- and – in some cases – under-counting that we could not trace accurately 
enough to correct. 
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2.3.3.3 Cooperative Analysis Tests 
Compared to measuring the performance of a distributed system, testing the cooperative analysis 
hypothesis is extremely simple.  The goal of running cooperative analyses is to reduce the 
number of GRA iterations the analyses need to reach a fixed-point, so this experiment focuses 
solely on measuring that reduction. 
To create a chain of cooperative analyses, we wrote a pair of interdependent analysis modules 
implementing the following analyses: 

• Points-To Analysis: Starting at object allocation sites – wherever the “new” operator 
gets used in the code – trace the handoff of objects from one storage location to another.  
In a way, this is a simpler version of taint analysis; each allocation site defines a unique 
source of taint, and object references are passed between storage locations by simple 
assignments. 
When run on its own, the Points-To analysis module is only capable of analyzing inside 
individual methods.  To reason over the whole program, this analysis must take 
advantage of the inter-procedural links established by the call graph analysis.  

• Call Graph Construction: Starting at the entrypoint method, link callsites and their 
arguments to specific methods and their parameters.  As each link is established, the 
module builds an approximation of the current call-stack, or an execution context.  Every 
basic block in the called method – and the storage references it contains – is cloned for 
each context under which it’s executed, representing the possibility of different behavior 
when a method gets called from different places. 
Because of polymorphism, all non-static method calls in Java are indirect; you can’t tell 
exactly which method is getting called until you know the exact class of the receiver 
object.  As such, Call Graph Construction depends heavily on Points-To Analysis to 
provide possible receiver object types. 

Additionally, the basic taint analysis was upgraded to use the context data provided by the call 
graph analysis, improving the sensitivity of the results and allowing taint to pass between 
methods. 
To create a reference data set, we performed two analysis runs on each test program using the 
same database.  The first pass exercised the Call Graph Construction and Points-To Analysis 
modules and saved their results to the database. The second pass exercised the improved Taint 
Analysis module, using results from the previous GRA pass to complete its work.  For each pass, 
we recorded the number of GRA iterations needed to reach a fixed point.  
The experimental run involved running all three analyses as part of the same GRA pass.  We 
noted the number of iterations needed to reach a fixed point, and compared it to the sum of the 
iterations from the reference analysis.  Ideally, the number of iterations for the experimental run 
should be less than the total for the reference analysis. 
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3. RESULTS AND DISCUSSION 

 dGRA Scaling Results 
Our scaling experiments clearly demonstrated that distributing GRA can provide a benefit.  As 
shown in Table 1, all test applications performed better with increased parallelism: 
Table 1: Scaling Results 

Application Base Time 
(min.) 

Best Time 
(min.) 

Best Config. 
(Hosts x 
Workers) 

Multiplier 

Soot-3.0.0 25 9.7 8x9, 16x17 (tie) 2.58 

Antlr-4.6 8.2 3.3 8x9 2.48 

Sablecc-3.7 1.6 1 8x9 1.6 

Emma-2.0.5312 4.1 1.9 16x17 2.15 

Jython-2.7.0 29 13 8x9, 16x17 (tie) 2.23 

All applications showed two definite trends.  One was that performance increased with the 
number of instances hosting a given number of workers.  This suggested that local overhead or 
resource starvation outweighed the overhead from network communications. 
The second trend was that increasing the number of workers would improve performance to a 
point, after which.  This suggests a communications bottleneck somewhere in our system that 
does not come into play until a certain level of parallelism. 
In examining the fine-grained timing data, it turned out that the overwhelming majority of our 
execution time was spent writing to Cassandra. As shown in Figure 2, the vast majority of time 
spent in one iteration of the GRA algorithm is spent on writing the basic blocks out to the 
Cassandra data store.  The only other noticeable time sinks were the map and consolidate phases, 
both of which also involve reads and writes to Cassandra, to load and save state documents.  
Their 9% represents about one minute of work out of twelve minutes for the entire iteration.   
It is interesting to note that there was no unaccounted time.  If the Spark framework incurred 
overhead when shuffling data between workers, it would have increased the time for the iteration 
without increasing the cost of any monitored phase.  This means that the impact of distribution 
itself is negligible. 
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  Figure 2: Time Spent By Analysis Stage (ms: milliseconds) 
Additionally, we suspect that inefficiencies in our Cassandra configuration are the reason for 
both major trends in our scaling data.  We could not run experiments with more than thirty-three 
workers because the Cassandra cluster would fail while writing the program structure.  This 
initially confused us, because Cassandra’s claim to fame is scaling to tens of thousands of nodes.  
However, reading more about these examples showed that they involved extremely careful 
communication configurations between the nodes in the Cassandra cluster.  Since we used an 
extremely naïve method for establishing connectivity between nodes, we suspect that our 
configuration could not keep up with the demands placed upon it.   
We would have liked to have presented CPU and RAM metrics to show how much of the 
hardware a given configuration used, but we discovered that we had an error in our 
instrumentation after our experiments were complete.  Ganglia’s CPU and RAM reporting are 
not reliable when run inside of docker containers; they measure the usage of the entire system, 
leading to over-counting if there are multiple docker containers on one machine.  We could not 
find a way to undo Ganglia’s errors with any confidence, and did not want to redo all 
experiments. 

 Cooperative Analysis Results 
The experimental run took 24 iterations to complete all three analyses on jams-example.  Our 
baseline implementation took 19 iterations to finish Call Graph and Points-to analysis, and a 
further 11 iterations to complete taint analysis, for a total of 30 iterations, so by sharing iterative 
cycles between analyses, we saved six iterations, proving our hypothesis. 
This test involved an 11-block program, less than 100 lines of code.  Since the majority of 
JAMS’ costs come from moving data between workers, using tandem analysis to reduce analysis 
cycles would probably give a bigger benefit for more complicated programs. 
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4. CONCLUSIONS 

 Success of System 
The JAMS system proved that distributing GRA-based program analyses can provide a benefit.  
Across all test apps, distributed computation showed a distinct improvement over a base 
configuration.  However, our results show mixed improvements when compared to existing 
approaches. 
JAMS may not be constrained by structural limitations, but we do suffer from the predictable 
massive overhead of distributed computation.  Because we focused on implementation instead of 
optimization, we can’t tell from these experiments if a distributed analysis system could ever 
become competitive with single-machine platforms, or whether dGRA could significantly 
change the asymptotic behavior of an analysis.  Our current results showed that performance 
improved logarithmically with the number of workers in the cluster.  However, we cannot tell if 
that trend is innate to distributed algorithms, or due to our choice of supporting software.  In 
particular, we can’t tell if our returns diminished because of distributed communications in 
general, or because of poor performance from our naïve Spark and Cassandra configurations. 
Of separate interest is the benefit discovered from having multiple algorithms work together in 
one reachability computation.  This concept isn’t tied to distributed program analysis; it could 
also be used to improve other reachability-based analysis platforms. 

 Examination of Assumptions 
As stated above, our focus on implementing our framework and leveraging open source software 
instead of precisely optimizing our approach proved to be a tradeoff.  It limited the value of our 
ultimate results, since we incurred a number of large sources of overhead that added uncontrolled 
variables to our data.  However, it made our problem tractable.  Without Spark, Cassandra, and 
our other open-source components, it is extremely unlikely we could have completed JAMS on 
time, and we would have left ourselves open to a host of extra risks from trying to correctly 
implement and optimize complex software from scratch.  Now that JAMS has proven the initial 
feasibility of dGRA, future efforts can go back and control for the costs that we could not 
address on this program. 
Another assumption we definitely proved incorrect was the benefit of hosting multiple workers 
on large hosts.  We could not identify the contested resources responsible for starving the 
workers, so we can’t say if our workers required large amounts of standard resources such as 
CPU or RAM, if we were overloading more basic parts of the system such as communications 
busses, or if running multiple Cassandra servers per host was simply too expensive regardless of 
the workload on the host.  
Because we had relatively little experimental control, it’s difficult to say whether using basic 
blocks as the unit of work for map tasks was a good idea.  In Java programs, basic blocks tend to 
be extremely small due to the reliance on indirect and exceptional control flow.  How this 
impacted JAMS’ performance, and how this performance would change for different languages, 
is still unknown. 



  

Approved for Public Release; Distribution Unlimited 
16 

 

 Avenues for Further Work 

4.3.1 Refine Data Storage Architecture 
As stated in 3.1, a huge amount of overhead came from using Cassandra as a data storage engine.  
In hindsight, Cassandra was not the best choice of data storage solution. 
JAMS’ transactional model is extremely simple; each document will be written at most once per 
iteration after all reads are complete, so there is no risk of conflicting reads and writes.  
Cassandra focuses on providing transactional guarantees – protecting against conflicting reads 
and writes, especially in the case of redundant replicas of the database. 
What we really needed is something closer to a distributed file system or a very simple shared 
no-sql database.  We had originally ignored MongoDB because of its aggressive load balancer.  
However, we now know this can be disabled, preventing costly data moves and allowing us to 
experiment with our own data locality algorithms (see 4.3.2). 

4.3.2 Explore Locality of Reference 
One source of overhead in JAMS is the time needed to load data from one host in the distributed 
cluster onto another.  This happens if a map task needs to reference a part of the state or structure 
that was partitioned onto another server.  While Spark’s partition-based mapping helps keep 
basic blocks local, JAMS currently does nothing to ensure that state documents are stored locally 
to the blocks that need them, or that blocks which reference similar state are stored together.  
With an improved data storage architecture, it would be interesting to see how much benefit a 
good locality algorithm could bring to dGRA. 

4.3.3 Explore New Cluster Architectures 
We tested JAMS under one cluster architecture: a few high-capacity machines hosting multiple 
workers each.  Our experiments proved that this isn’t the most efficient configuration for our 
current implementation.  Since resource starvation contributed more to overhead than network 
communication, it makes sense to explore a cluster configuration where each host is scoped 
appropriately for a single worker.  Determining this “appropriate scope” would also tell us 
exactly where our system ran into resource starvation issues, which we were unable to determine 
in this round of experiments. 

4.3.4 Beyond Reachability 
While graph reachability is a powerful technique for program analysis, it isn’t the only technique 
being researched.  Symbolic execution engines use a combination of graph-based value analysis 
and expression satisfiability to track the conditions under which execution can reach a particular 
state.  Satisfiability solvers are extremely computationally-intensive, and are often implemented 
to take advantage of multi-core processors or GPUs.  With performance improvements to the 
JAMS system, it could serve as a platform to expand satisfiability-based analysis even further, 
with each host in the JAMS cluster running its own Satisfiability Modulo Theories (SMT) solver. 

4.3.5 Native Code 

We chose to focus on Java on the JAMS program because it presents a tantalizingly easy target 
for program analysis.  An obvious next step would be to alter JAMS to work on machine code.  
The basic idea of performing reachability analysis on a semantic program representation isn’t 
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novel to JAMS; we borrowed the idea from the Binary Analysis Platform (BAP) framework [5], 
which is expressly designed to work on native code.  There are a few challenges that would need 
to be overcome before JAMS could operate on assembly: 

• New Structural Representation:  Several components of JAMS’ program representation 
are specific to Java.  Most significantly, JAMS’ representation of indirect control and 
data transfers are specifically tailored to use Java’s object references.  These constructs 
would need to be redesigned to fit a language with pointer-based indirection. 

• New Preprocessor: The Soot framework only handles Java bytecode; we would need to 
identify a new disassembly/code analysis framework to help convert native code into the 
JAMS representation language. 

• Improved Analysis: Tracing data through a native application is far more difficult than it 
is in Java.  Resolving pointer arithmetic requires value analysis to track the actual 
arithmetic manipulation of referenced addresses, as well as an efficient means of 
representing the program’s memory space.  While the basic dGRA framework would still 
be valid, new analysis modules would be needed to perform the more complex 
indirection analysis.  JAMS may have an advantage in this area; its use of disk in place of 
main memory may allow for more verbose and precise memory models than are possible 
in a memory-constrained system. 
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APPENDIX: FULL SCALABILITY RESULTS 
The following tables show the complete experimental timing results for the dGRA scaling tests.  
Each row indicates a different number of hosts, while each column is a different number of 
worker containers.  Results are presented in minutes.  Blank cells represent experiments that 
failed because the preprocessor could not successfully connect to the Cassandra cluster. 
 
Table A 1: Soot-3.0.0 

 2 3 5 9 17 33 65 
1 25 17 14 18 21 N/A N/A 
2 N/A 16 13 14 19 46 N/A 
4 N/A N/A 11 11 15 29   
8 N/A N/A N/A 9.7 12 23 44 

16 N/A N/A N/A N/A 9.7 16 34 
32 N/A N/A N/A N/A N/A 13 29 
64 N/A N/A N/A N/A N/A N/A   

 
Table A 2: Antlr-4.6 

 2 3 5 9 17 33 65 
1 8.2 6.2 4.8 5.2 6.8 N/A N/A 
2 N/A 5.7 5 5.1 7.3  N/A 
4 N/A N/A 4.6 3.6 4.4 8.5   
8 N/A N/A N/A 3.7 4.8 7.6 15 

16 N/A N/A N/A N/A 3.3 6.8 11 
32 N/A N/A N/A N/A N/A 5.7 8.7 
64 N/A N/A N/A N/A N/A N/A   

 
Table A 3: Sabblecc-3.7 

 2 3 5 9 17 33 65 
1 1.6 1.5 1.5 1.3 1.8 N/A N/A 
2 N/A 1.5 1.3 1.1 1.3 2.4 N/A 
4 N/A N/A 1.3 1 1.1 1.8   
8 N/A N/A N/A 1 1.3 1.9 1.1 

16 N/A N/A N/A N/A 1.1 1.4 2.5 
32 N/A N/A N/A N/A N/A 1.2 2.5 
64 N/A N/A N/A N/A N/A N/A   
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Table A 4: emma-2.0.5312 

 1 2 4 8 16 32 64 
1 4.1 3.7 3.4 2 2.8 N/A N/A 
2 N/A 3.3 2.9 1.9 2 4.2 N/A 
4 N/A N/A 2.7 1.8 1.9 3.1   
8 N/A N/A N/A 2 2.2 2.9   

16 N/A N/A N/A N/A 1.9 2.4 4.3 
32 N/A N/A N/A N/A N/A 2 3.8 
64 N/A N/A N/A N/A N/A N/A   

 
Table A 5: Jython-2.7 

 2 3 5 9 17 33 65 
1 29 20 18 20 28 N/A N/A 
2 N/A 19 16 16 23  N/A 
4 N/A N/A 16 16 19 36   
8 N/A N/A N/A 13 16 26 60 

16 N/A N/A N/A N/A 13 19 41 
32 N/A N/A N/A N/A N/A 17 34 
64 N/A N/A N/A N/A N/A N/A   
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GLOSSARY/ACRONYMS 

• AFRL: Air Force Research Laboratory 
• APAC: Automated Program Analysis for Cybersecurity, DARPA program 
• AWS: Amazon Web Services  
• BAP: Binary Analysis Platform 
• Basic Block: A section of computer code where control flow neither branches nor 

merges.  
• Call Graph: A graph that shows how the execution of a computer program can progress 

from one procedure to another, separated by specific “call” instructions. 
• CDI: Contexts and Dependency Injection 
• Control Flow Graph: A graph that shows how the execution of a computer program can 

progress from one basic block to another. 
• CPU: Central Processing Unit 
• DARPA: Defense Advanced Research Projects Agency 
• DB: database 
• dGRA: Distributed Graph Reachability Analysis.  A modified version of Graph 

Reachability Analysis developed on the JAMS program that can be performed as a 
distributed computation. 

• EC2: Elastic Compute Cloud 
• ELK: Logstash/Elastic Search/Kibana logging framework services 
• GB: Gigabytes 
• GRA: Graph Reachability Analysis.  Also known as Reaching Definition Analysis or 

Reachability Analysis, GRA seeks to determine which nodes in a graph can be reached 
from a set of defined starting nodes. 

• HDFS: Hadoop Distributed File System 
• I/O: input/output 
• Iteration: One step in the GRA algorithm.  GRA and dGRA work by repeatedly 

analyzing a graph until no additional information can be gathered.  An iteration is one 
repetition of that analysis. 

• Java EE: Java Platform, Enterprise Edition 
• MIT: Massachusetts Institute of Technology 
• N/A: Not Applicable 
• NoSQL: non-Structured Query Language  
• RAM: Random Access Memory 
• RDD: Resilient Distributed Dataset 
• SMT: Satisfiability Modulo Theories 
• SQL: Structured Query Language 
• SSD: Solid State Drive 
• STAC: Space/Time Analysis for Cybersecurity, DARPA program 
• VPC: Virtual Private Cloud  
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