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Abstract

Ground-based spacecraft simulators provide an accessible and necessary platform

for testing and evaluating control systems. The Attitude Control System Proving

Ground (ACSPG) at the Air Force Research Laboratory (AFRL) allows for test-

ing and verifying the performance of attitude control systems. Through the use of

an air bearing, the frictionless environment is replicated, but gravitational torques

are still prevalent. Gravitational torques distort and negatively affect the sustained

performance of simulators, limiting experimentation time.

Cost effective validation efforts require decreasing current set up times and in-

creasing current experimentation times. The distance between the center of rota-

tion (COR) and the center of mass (COM) of the simulator results in unwanted

gravitational torques, causing a tilting and unbalanced platform. Developing an au-

tomated system to precisely co-locate the COR and the COM will reduce said torques.

This research demonstrates two control techniques to improve the current sys-

tem balancing procedures. The first method is a non-linear adaptive control and is

validated with three primary scenarios, demonstrating an ability to reduce angular

velocities to zero. Through tuning, the control algorithm balances the platform ac-

cording to design constraints. The second method estimates the offset between the

COM and COR utilizing a least squares estimation method. The second method is

validated with two tests of varying lengths and is able to estimate the offset within

0.5%.
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APPLICATION OF AUTOMATED BALANCING METHODS

FOR AN ATTITUDE CONTROL TEST PLATFORM

WITH NON-ORTHOGONAL MASSES

I. Introduction

1.1 Motivation

The United States (U.S.) AFRL operates the ACSPG. The ACSPG is a

spacecraft simulator consisting of a large air bearing and a multi-level test platform,

with a mass of approximately 1,375 kg. It is used for a multitude of projects in

testing attitude determination and control systems (ADCS) in an environment with

minimal external disturbances.

It is important to state early the term “simulator” is a misnomer. It is,

however, the conventional term utilized widely throughout the literature discussing

similar test platforms. “Emulator” is more accurate as precisely replicating the

space environment is not possible with physical models. However, using platforms

such as the ACSPG and similar experimental designs, allows for modeling and

applying the effects of the space environment. To maintain consistency with the

industry, this paper uses the term simulator [2].

The ACSPG is capable of 3-axis movement with ± 30, 30, and 360 degrees of

motion in the roll, pitch, and yaw directions respectively. Rotating on a large

hemispherical air bearing, the ACSPG uses a variety of computers and sensors for

gathering experimental data and controlling the motion of the ACSPG. Compressed

air thrusters and control moment gyroscopes (CMG) actuate the attitude of the
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ACSPG. AFRL has worked on perfecting its test platform, utilizing hardware

designed and developed in conjunction with the Air Force Institute of

Technology (AFIT).

This chapter discusses the significance of spacecraft simulators and their

applications. First, a historical review of spacecraft simulators is presented. Second,

an overview of the proposed system is provided. Third, the problems and

motivations for this this research are outlined. Finally, this chapter provides an

overview of the thesis.

1.2 Background

Regular use of spacecraft test platforms over the past 60 years allows for lower

costs and lower risks when designing attitude control and decision making systems,

often referred to as guidance, navigation, and control (GNC) systems) [1]. As with

any test platform, the accuracy of the results depends on the ability of the platform

to accurately replicate the real-world environment, or in this case, the space

environment. The greatest shortcoming of a ground based test platform is the effect

of gravitational torques not encountered in space.

When the ACSPG is modified by either adding or subtracting equipment, the

COM no longer coincides with the COR. Gravitational torques disturb the system

causing the system to no longer exist in a state of equilibrium. Minimizing the

distance between the simulator’s COM and COR minimizes those torques.

Balancing the system realigns the COM and COR, eliminating the gravitational

torques. The ACSPG requires a lengthy manual balancing procedure of adding

incremented masses one at a time as a static mass balancing system (SMBS).

Lasting several hours, this mass balancing procedure still does not fully align the

COM and COR.
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1.3 Spacecraft Simulator Review

Ideally, researchers could test every new control system in the most realistic

environment possible, in this case space. Unfortunately such testing is cost

prohibitive. However, to reduce the cost and minimize the risks involved, tests are

conducted on Earth in a controlled environment [1]. After systems are refined, they

are moved to the space environment, with the hopes of replicating their

performance. Models tested in a laboratory setting experience forces not

encountered in space, such as increased torques due to gravity. To simulate a

weightless environment, astronauts practice their techniques underwater [3]. This is

not feasible for testing attitude control systems. Thusly, they are tested on

spacecraft simulators.

Spacecraft simulators tend to fall into two categories. The two categories are

planar and rotational systems. Planar systems allow for translation to simulate

rendezvous maneuvers, while spherical systems ideally allow for unconstrained

rotational movement. Many governmental, academic, and commercial facilities have

opperated simulators for over five decades. Utilizing compressed air flowing between

two spherical surfaces, a nearly frictionless surface is generated. The U.S.

government at AFRL and the U.S. Naval Research Laboratory operate two of the

largest spherical air-bearing simulators and use the simulators to research various

attitude control topics.

1.4 Problem Statement

As was previously stated, the ACSPG requires a lengthy balancing procedure

before any testing and experimentation begins or whenever the payload is modified.

Requiring between two to four hours of balancing each time the payload is altered,

regularly modifying the payload quickly becomes a costly effort. The imprecise
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initial balancing leaves the ACSPG subject to environmental torques such as those

induced by gravity. As the COM drifts from the COR, efforts are necessary to

reduce the generated torques [4].

The internal torques of the spacecraft cause rotation, requiring a reaction in the

opposite direction. Utilizing rotors and gimbals, CMGs generate torques on

flywheels, increasing the angular momentum. CMGs can offset the torques

experienced by a spacecraft [5]. During the operation of the ACSPG, it is able to

maintain balance using CMGs as the system detects the current torques and

provides torques to counteract the environmental torques. Unfortunately, the CMGs

reach their operational limitations and “saturate” within short periods of time,

often less than 30 seconds.

The ACSPG destabilizes too quickly for AFRL’s experimental purposes as the

initial balance point is close, but not exact. The lengthy system reset times and

short experimentation times are problems requiring a solution to improve the

capabilities of the system. As such, the need exists for a procedure to balance the

platform more quickly and accurately. This research presents a unique procedure for

implementing a dynamic mass balance system (DMBS), which will prevent the

system from destabilizing and improve the accuracy and duration of performed tests.

While appearing rigid, the steel test platform on the ACSPG still flexes. The

COM is continually changing as the platform rotates, especially in tilted or off-axis

maneuvers. The desire exists to eventually implement a solution to account for and

offset the changes due to the flexing of the platform.

1.5 Similar Research

Previous research regarding automatic balancing of satellite simulators focuses

on much smaller systems. One common method of balancing smaller simulators is

4



through the utilization of CMGs [6]. AFRL utilizes CMGs to counteract torques

and maintain the balance. However, they easily saturate and are not a sustainable

solution. The Naval Postgraduate School (NPS) identified further limitations of

using reaction wheels and CMGs, namely the requirement for a consistent amount

of weight and volume. To eliminate these limitations, NPS developed their own

DMBS [7]. AFRL evaluations have determined the dynamics and controls required

for smaller satellites do not scale well to larger systems. It is imperative to consider

and capture the complexities of the larger ACSPG structure.

In designing a mass balance system, the configuration of the masses is critical to

developing the needed dynamics equations. Researchers at the NPS have employed

orthogonal configurations, aligning the masses with the Cartesian coordinate system

[7]. Researchers at the Harbin Institute of Technology (HIT) in China have

developed a non-orthogonal structure [1]. AFRL has modeled and simulated

different designs, ultimately deciding on a non-orthogonal configuration comprised

of five masses on linear actuators, three horizontally aligned with the center of the

air bearing, offset from each other at 120 degrees, and two coupled linear actuators

positioned vertically.

Figure 1. Computer illustration of the actuator locations and coordinate system
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1.6 Research Objectives and Methodology

The need exists to design a system, upon a coarse manual balancing effort, that

will balance the platform with actuated masses. This research looks at ways of

implementing a dynamic system to balance the ACSPG. A dynamic system will

improve the initial manual balancing process, which occurs frequently as the

ACSPG is reconfigured. Improving the balancing process allows for better

utilization of resources.

It is assumed gravity is the primary cause of undesirable torques, and is the

focus of the control system which drives the DMBS. Following work applied to

other simulators, there are two proposed courses of action. The first is to solve for

the required control torque on the system due to the offset of the COM relative to

the COR. The second is to determine the offset of the centroid with a least squares

estimation approach and map this offset to the sliding masses.

The collected data is assumed as accurate enough to allow for the software to

precisely measure accelerations to determine the distance between the COM and

COR and torques created. This is determined in Matrix Laboratory (MATLAB)

using the ordinary differential equation (ODE) solver ode45 and the dynamic

equations presented later in this paper. Several simulation iterations evaluate the

effectiveness of the algorithms. The scope of this paper is limited to simulations of

the movement of the sliders. Future work is required to develop an internal control

to move the sliding masses.

1.7 Thesis Overview

In the following chapters, this thesis thoroughly investigates the objective of

balancing the platform through model development, simulation, and analysis.

Chapter II details literature regarding attitude control and mass balancing systems
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and the application of this previous research to solve the stated objectives. Chapter

III discusses the ACSPG’s configuration, how the mass balancing system was

designed, and explores the dynamics required to determine the position of the COM

relative to the COR. Chapter IV presents the algorithms implemented and reviews

the data acquired during simulations. Chapter V summarizes the findings and

presents future research paths.
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II. Background

2.1 ACSPG Overview

Improving the balancing process of the ACSPG allows for longer simulation

times, improving data collection. This is important because the results of these tests

are applied to the design of attitude control systems for use in space. Utilizing data

from on-board inertial measurement units (IMUs), angular accelerations and

velocities are captured and processed by the flight computer. Currently this data is

used in conjunction with a motion capture system in determining the ACSPG’s

orientation as explained by Penn and Reifler [8]. A MATLAB model of the

ACSPG’s control system is used to model and simulate its attitude. A

computer-generated model of the ACSPG is presented in Figure 2.

Figure 2. Computer rendering of the ACSPG
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2.2 Use of Satellite Simulators

Controlling the attitude of spacecraft was a concern nearly as long as spacecraft

have existed. Testing is conducted in order to verify the performance of the attitude

control systems. This is done on test beds, on either planar tables for evaluating

mating and docking maneuvers, or rotational air bearings for attitude and control

tests. Planar tables allow for three translational degrees of freedom (DOF) along

the x, y, and z-axes. Air bearings allow for three rotational DOF, roll, pitch, and

yaw, as detailed by Kim and Agrawal [6]. In certain cases, they are combined to

provide six DOF [4]. By utilizing air bearings, laboratories are able to create a

nearly torque-free environment. While their performance is not perfect, the

experiments they allow for are conducted in as close to a microgravity environment

as possible [9].

Stanford University, by modifying a planar system, was the first academic

facility to develop an air bearing platform. Stanford used their air bearing platform

for identifying the center of masses of objects in 1975 [4]. There is a high likelihood

of earlier usage in the government and private sector. However, there is limited

documentation available for early air bearings due to the secretive, classified, and

proprietary nature of the equipment at these facilities [4].

These institutions primarily utilize air bearings to reduce the effects of friction

during attitude control experimentation. Friction is a resistive force, preventing

translation or rotation between two surfaces [10]. The sheet of air forced between

the two surfaces substantially reduces the frictional force normally making control of

the simulator more difficult. The typical setup of an air bearing test platform

consists of two spherical or hemispherical surfaces creating a ball and socket type of

joint. They are separated by highly pressurized air flowing up through and out of

one sphere, creating a thin region of air between them as indicated by the hatching
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in Figure 3. While some systems utilize a magnetic suspension system, their limited

range of motion relative to air bearings reduces the usefulness of magnetic

suspension in many applications. One requirement of platforms is minimizing any

deviations of distance between the center of the air bearing and COM, while

maintaining a maximum level of range of motion in each axis [4].

Figure 3. Air flow through bearing, where the hatched area represents a thin sheet of
air separating the two bodies

Early air bearing platforms were the size of tables holding similarly small

payloads. In the 1990s, AFRL, then the Astronautics Laboratory under Air Force

Systems Command, developed the Advanced Space Structure Technology Research

Experiments (ASTREX) facility with an 18 inch diameter air bearing, capable of

supporting payloads over 14,500 pounds [11]. AFIT’s SIMSAT, and other similarly

used platforms are much smaller. These platforms support much smaller payloads,

typically hundreds of pounds [12]. The ACSPG is much larger than the typical air

bearing setup, though not quite as large as the ASTREX. These smaller platforms

have undergone work to create balancing systems for their usage. The ACSPG is

one of the largest test platforms of its kind in the world. Its size dictates a mass

balancing system capable of responding to its substantial inertia.

Housing air bearing platforms in proper facilities is important. It is necessary to

control and mitigate other environmental torques. G. Allen Smith identified several

10



additional factors not normally considered in the analysis of platform dynamics.

Those factors include the changing MOI from the elasticity of the platform as it

flexes under gravity, air currents in the laboratory, and magnetic fields generating

electromagnetic torques, as well as imbalances caused by wiring and battery

discharges [13]. He also discussed the importance of developing an automatic

balancing system stating three weights on orthogonal axes, driven by linear

actuators can accomplish this.

2.3 Fundamentals of Attitude Control

Any discussion of motion and inertia traces its history back to Issac Newton.

The physical laws governing the motion of the ACSPG are founded in his works.

His third law of motion is simplified as, “every action results in an equal and

opposite reaction.” Momentum exchange devices, such as CMGs, rely and this

principal in controlling spacecraft and see use on the ACSPG [14].

A CMG consists of a spinning flywheel rotating on a gimbaled axis. As the

wheel is tilted, angular momentum is transferred into the platform. Where the

angular momentum of a system ~H is defined by

~H = J̄~ω (2.1)

Where J̄ is the MOI tensor and ~ω is the angular velocity of the rotating body.

When implemented in the design of spacecraft, CMGs are used to either generate

rotation for a slewing maneuver or to change the attitude of the spacecraft [2]. This

allows for operational maneuvers such as aiming cameras at stars, pointing radios at

ground stations, or exposing solar panels to the sun. Similarly, if an unwanted

external torque is present, the CMGs are used to counteract this torque.
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The ACSPG has CMGs for minor attitude stabilization. A concern with CMGs

is they can only rotate up to 180 degrees before they encounter a singularity and are

no longer able to provide the necessary torque [15]. This limitation is not found in

reaction wheels (RWs), which are another mean of attitude control. Varying the

speed of the wheel varies the torque it generates. As the RWs spin faster, they

generate greater torques, but the speed of the wheels are mechanically limited and

they can become saturated. The saturation of a RW refers to it reaching the

maximum rotational velocity of the motor and its limit for storing momentum.

Variable speed CMGs (VSCMGs) combine the capabilities of CMGs and RWs by

allowing for adjusting the speed of the wheel and adjusting the orientation of the

gimbal. To eliminate the limitations of CMGs and RWs, studies have focused on the

number and arrangement of CMGs [5].

2.3.1 Application of MOI Calculations to the ACSPG

The ACSPG rotates on a large hemispherical air bearing. Various computers

and sensors are used for gathering experimental data and controlling the motion of

the ACSPG. The automated balancing system will comprise of actuators and sliding

masses in the vertical and horizontal directions. For mathematical purposes, the

center of the air bearing is used as the COR and the origin for the body and inertial

frame coordinate systems. The COM, also known as the centroid, is the point about

which the system balances. It is the average position of all the mass in an object,

calculated with Equation 2.2

∑
mi~ri∑
mi

=
m1~r1 +m2~r2 +m3~r3 +m4~r4 +m5~r5 +MACSPG~rACSPG

m1 +m2 +m3 +m4 +m5 +MACSPG

(2.2)

where mi represents each sliding mass and ~ri is the position of the mass relative to

the origin. The total mass of the ACSPG, not including the sliding masses, is
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represented by Mstr. The location of the COM of the ACSPG, not including the

sliding masses, is represented below by ~rstr.

Before experimentation begins, operators attempt to balance the static system

by adding incremented masses as accurately as possible. After experimentation on

the ACSPG begins, any slight deviations between the COR and COM are instantly

realized, and the platform tilts. The CMGs are used to counter the gravitational

torques and keep the platform balanced. Unfortunately the CMGs quickly reach

saturation, resulting in shortened experiments. Not only will the mass balance

system provide a more accurate initial starting point, as it evolves into a dynamic

system, it will maintain the COM and COR alignment,enabling longer experimental

run times.

2.4 Mass Balance Systems in Use

Two overarching designs exist for configuring mass balance systems. The

primary layout involves aligning masses orthogonally along the Cartesian coordinate

axes, as seen in Figure 4. This allows for direct mapping of deviations between the

COM and COR and the location of the masses. To a lesser extent, non-orthogonal

configurations, like the ACSPG and one at Harbin Institute of Technology (HIT),

are used as an alternative to the widely used orthogonal configuration [1].
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Figure 4. Mass balancing system with Cartesian coordinates [1]

Sliding masses as a means of stabilization is not just limited to ground based

simulators. Moving masses to adjust the center of mass is a topic also seeing

application for spacecrafts in orbit. Shifting weights in a linear fashion directly

affects the MOI, when used in conjunction with reaction wheels and magnetorquers

allows for attitude control of the spacecraft. The torques encountered in the space

environment are different than those on earth, however system stabilization is

important in both situations [16].

2.5 Orthogonal Configurations

Utilizing an orthogonal configuration, NPS has performed substantial analysis

on balancing spacecraft simulators [7]. With their orthogonal configuration, masses

move either parallel or perpendicular to the gravitational field. One challenge

encountered was simultaneously estimating torques parallel and perpendicular to

the gravitational field. If a mass is moved perpendicular to the gravitational field,

and the estimator is relying upon the ability to calculate torques parallel with the
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gravitational field, the feedback provided to the system is not very beneficial. NPS

determined this is overcome by implementing a two step procedure.

To determine the positioning of the sliding masses, NPS developed a nonlinear

adaptive control. The control initially accounts for offsets in the horizontal plane.

As the nonlinear adaptive control estimates the offsets perpendicular to the

gravitational field, sliding masses compensate for the estimated offset creating a

control torque. The control torque alters the angular velocity of the platform, which

is then used to continually update the offset estimation. As the error of the offset

estimation converges to zero, the angular velocities about the two horizontal axes

converge to zero, indicating the control has compensated for the offset perpendicular

to the gravitational field.

Upon determining the offset in the transversal direction, a Kalman filter is

employed to estimate the offset in the direction parallel to the gravitational field.

When evaluating both UKF and extended Kalman filter (EKF) performance, NPS

determined the performance of both filtering methods was similar. Applying an

UKF the vertical offset is estimated, which is compensated for by adjusting the

vertical sliding mass.

By aligning the balancing actuators with the principal axes of rotation, the

researchers at NPS are able to simplify their calculations. This assumption ensures

the MOI matrix remains diagonal. Furthermore, the assumption is made that

changes to the MOI are negligible due to the small size of the sliding masses relative

to the system, ˙̄J = 0 [7].

At the HIT, a six degree of freedom simulator was designed to account for both

planar and rotational motion. Yan, et al., explore various mass balancing system

configurations. They originally looked at an orthogonal configuration, having

masses arranged similar to three dimensional Cartesian coordinates, aligning one
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mass vertically and two aligned along the two perpendicular axes which create a

horizontal plane. When testing filtering methods, HIT favored an UKF. Similar to

NPS, the adaptive control system at HIT compensates for offsets perpendicular to

the gravitational field and then accounts for vertical offsets. Using proper Lyapunov

function, the closed loop control system is verified as stable, allowing for the

balancing of the system [17].

2.6 Non-orthogonal Layouts

In addition to the above mentioned orthogonal configuration, other researchers

at HIT tested a non-orthogonal mass balancing configuration. Arranging their

masses symmetrically around the center, when viewed from above, the three

translational axes of the masses create an appearance shown in Figure 5. To

account for vertical imbalance, the masses are inclined at 30 degrees.

Figure 5. Harbin Institute of Technology mass configuration [1]
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HIT researchers determined the symmetrical arrangement, as well as aligning

the translational axes with the COR, simplifies the geometry of the system and the

needed calculations. When modeling and calculating the mass locations, HIT

assumes the masses are ideal point masses, an assumption also used in this study

[17]. When automatically balancing the test bed via a non-orthogonal configuration

a recursive least squares approximation is utilized [1].

The least-squares method is employed by integrating the output angular

accelerations to determine the centroid. By performing experiments HIT evaluates

this methodologies effectiveness in estimating the COM offset. The masses are

adjusted ensuring coincidence between the COM and the COR. They include the

Coriolis effects to ensure all possible sources of rotation are accounted for [17, 1].

While this research does not consider the Coriolis effect, including it will improve

the accuracy of future designs.

Utilizing Euler angles, HIT defines two coordinate systems, an inertial

coordinate system and a body fixed coordinate system, which rotates with the

platform. With the defined kinematics of the system, there exists a singularity when

the roll or pitch angle exceeds 90 degrees. Fortunately, the dynamics of the system

prevent it from rotating beyond 30 degrees in either direction. Applying Euler

angles, this also requires consideration. The ACSPG similarly benefits with its

similar rotational limits.

2.7 Mass Balancing at AFRL

Through simulations conducted by AFRL, several configurations for the mass

balance system (MBS) were evaluated. Different layouts were simulated on their

ability to account for deviations of the COM relative to the COR. The chosen

configuration allows for the largest region of coverage of movement of the COM.
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AFRL’s design features three linear actuators in the horizontal x-y plane, separated

by 120 degrees, and two linear actuators positioned vertically. Wang, et al.

employee a nonlinear control method similar to the one introduced by Chesi and

presented in this thesis for application to the ACSPG [17].

Figure 6. ACSPG feedback control loop

Upon calculating the centroid deviation, the required displacement of each

slider requires calculation. Upon moving the sliding masses, the centroid changes.

The system can iterate the process to determine additional changes required to

properly align the centroid with the COR [1]. The feedback loop is represented in

Figure 6 demonstrating as the masses move, torques on the system change, resulting

in changes in the angular velocities accelerations. The IMU detects the changes,

which are fed into the onboard computer directing new positions for the masses.

2.8 Dynamics Overview

The fundamental problem of balancing the platform, is in its simplest form,

similar to balancing a seesaw. When the centroid and COR are co-located the

system is balanced. When the COM does not align with the COR, an gravitational

torque exists. Adjusting the position of sliding masses allows for creating a control

torque to counteract the torque from the offset between the COM and the COR. As
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the position of the sliding mass changes, so too does the location of the COM. As

the angular rates are measured in the body frame, it is necessary to convert between

the inertial frame and the body frame.

The moment of inertia of a system and its first derivative are calculated by

Equation (2.3a) and Equation (2.3b),

J̄ =
n∑
i=1

mi~r
2
i (2.3a)

˙̄J =
n∑
i=1

2mi~ri
d~ri
dt

(2.3b)

where mi represents the ith point mass in the body and ~r is the position vector of

the mass relative to the center of the body. For a rigid body in the inertial frame

angular momentum is represented as

~Hc
I = J̄CI ~ω

BI
I (2.4)

where the angular velocities ω and accelerations ω̇ are extracted from the IMUs and

allow for conversion from between the body frame and the inertial frame. Knowing

the moment or torque of a system is the first time derivative of the angular

momentum yields [18]

~L =
n∑
i=1

~Fi~ri = J̄ ~̇ω + ˙̄J~ω (2.5)

As long as changes to the mass positions remain small, ˙̄J is assumed as zero. When

the system is balanced, angular accelerations no longer exist, and all torques on the

system offset each other.
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2.9 Lyapunov’s Direct Method

Due to a readily available candidate Lyapunov function, Lyapunov’s direct

method is used to demonstrate convergence of a nonlinear system upon an

equilibrium point [18]. For an autonomous nonlinear system f(x) = ˙̄x Lyapunov’s

method requires satisfying three conditions to prove the candidate function is a

positive definite scalar function. First, there must exist an equilibrium value (often

denoted as x̄∗ or x̄e) where the function equals zero. Second, the function requires a

value greater than zero for all other conditions. Third, for all values other than the

the equilibrium value, the first derivative of the function must equal or less than

zero [19]. These conditions are summarized as:

1) V (x̄∗) = 0

2) V (x̄) > 0 for all x̄ 6= x̄∗

3) V̇ (x̄) ≤ 0 for all x̄ 6= x̄∗ and all future time

Satisfying all three conditions is necessary properly determine the stability of a

system using Lyapunov’s direct method.

2.10 Unscented Kalman Filters

When the states of a system are not measurable, the states require estimating.

Due to its ease of use the Kalman filter (KF) is widely used for linear models. The

EKF was introduced to linearize nonlinear models. Difficulty arises in the EKF’s

implementation as deriving the required Jacobian matrix or tuning it present

challenges. The UKF was introduced by Julier and Uhlman to provide an elegant

method for estimating nonlinear systems. Using noisy data, taking estimations from

multiple sensors allows for estimating the true state [20].

The UKF uses an unscented transform within a Kalman Filter to transform

states from one coordinate system to another. Using prior states, a model is
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implemented to predict the next state. That state is measured and compared

against the original estimation to update the initial estimation method. Using the

new state, the next state is estimated utilizing the refined predictive model and the

process is repeated. Covariance between sampled points is propagated through the

model as deterministic sampling is used to pick sigma, or weighted, points through

the nonlinear transformations. As each state updates, the generated data is used to

constantly update the predictions [21].

2.11 Implementation Challenges

The determined COM is based upon calculations and estimations, all containing

error levels. Properly determining the offset requires minimizing this error through

accurate gathering of information. Error can exist in inaccurate mass and MOI

values, actuator calibration, and external disturbances [6]. Perfection is not required

as long as the gravitational torques are reduced to within the limits of other

attitude control systems in place.

Recursive estimation methods can provide good initial calculations. Upon the

repositioning of the masses, the control loop is continuously rerun, working to

ensure proper convergence. In other words, a prediction is made for the final

position. However, until the masses are moved, the system might not have properly

predicted the final location. This results in continual calculations to ensure stability.

Initial calculations are also made based on fixed locations of the items on the

simulator. As cables shift, structures flex, and components vibrate, additional

disturbances to the system develop. This creates a problem in verifying the

accuracy of the mass balancing system’s results [6].
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2.12 Summary

This chapter first reviewed previous work performed with satellite simulators. It

then discussed the fundamentals behind attitude control and mass balancing

systems. It reviewed applications of orthogonal and non-orthogonal mass balancing

layouts. Finally, it identified challenges for consideration when implementing a mass

balancing system. Chapter III will discuss the process and procedures used in the

design and implementation of a mass balancing system model.
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III. Methodology

This chapter begins by describing the equipment used in the mass balancing

system. Next, two techniques for balancing the system are presented. Following

those is a method for applying the controls to the non-orthogonal configuration.

Finally, this chapter discusses how the presented methods are evaluated for

application on the ACSPG. A comparison of the two methods is performed, first

evaluating a nonlinear control as applied to a simulator at NPS and a recursive least

squares approach as utilized in other locations.

3.1 Overview

The focus of this research is developing a control algorithm for the ACSPG for

the implementation of an automated balancing system. The development of the

mass balancing system consists of three fundamental steps. The first is developing

the control algorithm to efficiently reposition the masses. The second is applying

this control to the non-orthogonal configuration of the sliding masses. The final step

is characterizing the linear actuators responsible for adjusting the masses, meaning

their physical capabilities and performance need determining, however, due to time

limitations, characterizing the motion is not the focus of this research.

3.2 ACSPG Equipment

The motion of the ACSPG is controlled by a Speedgoat computer optimized for

operating the code AFRL developed in SimulinkTM. Several pairs of air nozzles

simulate on-orbit thrusters capable of rotating the platform. CMGs surround the

system to mitigate unwanted torques as they develop during experimentation. The

entire system is self-contained and powered by batteries to avoid wires extending to
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external systems, potentially restricting motion and impeding performance. All

necessary communication between external and on board systems is performed via

radio frequency communication. IMUs are used in determining the attitude of the

system. The mass balancing system comprises of five masses, each sliding along a

linear actuator, three horizontally and two vertically.

3.2.1 IMUs

The IMUs detect angular velocities with internal accelerometers and gyroscopes

and allow for determining angular accelerations. This information is captured in the

body frame as changes in angles Φ, Θ, and Ψ, which are the angles rotated about

the x, y, and z- axes respectively. Each measurement from the IMU has a small

amount of error, which has the potential to compound over time. However, the

angular velocities and accelerations are filtered by the on board computer to provide

more accurate measurements without the compounded error.

3.2.2 Linear Actuators

The linear actuators are responsible for moving the masses in a prescribed

manner. Each linear actuator consists of a high torque Moog Animatics

SmartMotorTM capable of driving a 3/8 inch threaded shaft 600 mm in length, as

pictured in Figure 7. Actuators slide the 20 kg masses to their desired locations.

Each mass is comprised of eight steel plates.
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Figure 7. Profile view of actuator assembly

During the initial development of the control system, the acceleration of the

actuators is assumed as instantaneous. In reality, the motion is more accurately

profiled as a ramp function, where the mass accelerates to the desired speed. AFRL

is characterizing the performance of the actuators and determining the profile of the

motion to determine the response of the actuators to inputs. The movement of each

mass is also limited by the length of the actuator. Limits, such as actuator length,

are incorporated into the control system, without which, the model could easily

exceed the physical capabilities of the design.

Figure 8. The motor and the mass assembly
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3.3 Nonlinear Control Law Utilizing an UKF

This section describes the method for implementing a non-linear control law.

The control law is determined with a two-step process. First, the control law

compensates for the torques caused by offsets in the horizontal plane and

perpendicular to the gravity field. Second, the vertical offsets parallel to the

gravitational field are compensated for. The offset between the COM and COR is

represented by the position vector ~roff = [roff,x roff,y roff,z]
T . Before any balancing

efforts, any non-zero value of roff causes a torque to exist. For the purposes of this

research, roff is simulated, the controller then estimates the offset as r̂off, and the

estimate is verified as accurate when the error of the estimate, r̃off equals zero.

3.3.1 Horizontal Balancing

To develop the control law in the horizontal plane, this research follows the

procedure outlined by Chesi, et al. [7]. The angular momentum of the ACSPG is

represented by

~H = J̄~ω (3.1)

and the first derivative is

~̇H = ˙̄J~ω + J̄ ~̇ω (3.2)

where J̄ is the inertia tensor of ACSPG and ω is the angular velocity, and this is the

torque on a body. The motion of the sliders is assumed small and does not

contribute to changes in the MOI, ˙̄J = 0. The assumption of a constant MOI

requires further consideration with a simulator with the mass properties of the

ACSPG. As long as the masses remain fixed, the dynamics of the simulator follow

Euler’s equation of motion for a rotating body [7]
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~̇H + ~ω × J̄~ω = ~roff ×mstr~g
b (3.3)

where mstr is the mass of the simulator structure, and ~g b is the gravity vector in

the body frame. To compensate for imbalances, the system requires the

introduction of a control torque, τ̄r. Adjusting the position of the masses provides

the needed control to obtain a balanced system. As such, Equation (3.3) is

rewritten to include the torque as

~̇H + ~ω × J̄~ω = ~roff ×mstr~g
b + ~τr (3.4)

Let the control torque be [7]

~τr = mstr[~g
b×]~̂roff − kp ~wp (3.5)

where [~g b×] is the skew-symmetric matrix used to represent a cross product for

matrix multiplication defined as

[~g b×] =


0 −g b

z g b
y

g b
z 0 −g b

x

−g b
y g b

x 0

 (3.6)

and the estimated position vector of the COM is represented as ~̂roff and kp is a

tunable gain. Let κ = −mstr[~g
b×] .

Substituting κ into Equation (3.3)

J̄ ~̇ω + ~ω × ~J~ω = −κ~roff + ~τr (3.7)
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and then including Equation (3.5) and rewriting produces

J̄ ~̇ω + ~ω × J̄~ω = −κ~roff + κ~̂roff − kp ~wp (3.8)

which is simplified as

J̄ ~̇ω + ~ω × J̄~ω = −κ(~roff − ~̂roff )− kp ~wp (3.9)

The estimated error of the position vector between the COM and COR is the true

value of the position vector minus the estimated value of the position vector, defined

by

~̃roff = ~roff − ~̂roff (3.10)

Equation (3.9) is rewritten as

J̄ ~̇ω + ~ω × J̄~ω = κ(~̃roff )− kp ~wp (3.11)

Rearranging this to solve for ~̇ω produces the closed loop equation

~̇ω = J̄−1[−~ω × J̄~ω + κ(~̃roff )− kp ~wp] (3.12)

To appropriately rotate gravity from the inertial frame to the body frame, the

following is used

~g b = Rb
i × ~g i (3.13)

where gravity in the inertial frame is defined as ~g i =

[
0 0 −9.81

]T
m/s2 , and Rb

i

is the rotation matrix defined as
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Rb
i =


1− 2(q2

2 + q2
3) 2(q1q2 − q4q3) 2(q1q3 + q4q2)

2(q1q2 + q4q3) 1− 2(q2
1 + q2

3) 2(q2q3 − q4q1)

2(q1q3 − q4q2) 2(q1q3 + q4q1) 1− 2(q2
1 + q2

2)

 (3.14)

where q1:4 represents each term from the attitude quaternion. The current research

assumes that the quaternion attitude information is properly filtered and with

minimal error.

3.3.2 Stability Verification Using Lyapunov’s Direct Method

Upon determining the control law for the system, the need exists to prove the

control law guarantees stability. Stability is demonstrated using Lyapunov’s direct

method [18]. Restating the three required conditions from Section 2.9 where V is a

scalar:

1) V (x̄∗) = 0

2) V (x̄) > 0 for all x̄ 6= x̄∗

3) V̇ (x̄) ≤ 0 for all x̄ 6= x̄∗ and all future time.

Assuming the candidate Lyapunov function of the form [7]:

V (x̄) =
1

2
ωT J̄ω +

1

2
r̃Toffroff +

1

2
qT q (3.15)

where x̄ = [q, ω, r̃off ]
T . When x̄ = 0, V (x̄) = 0, which satisfies the first condition.

For positive values of x̄, V (x̄) > 0, satisfying the second condition. To prove the

third condition, the time derivative of the original function is taken as

V̇ (x̄) = ~ωT J̄ ~̇ω + r̃Toff ˙̃roff + qT q̇ (3.16)

With qT q̇ = 0 this combines with Equation (3.11) to allow for rewriting the above as
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V̇ (x) = ~ωT (−~ω × J̄~ω + κ~roff + ~τr) + r̃Toff ˙̃roff (3.17)

where ˙̃roff = −κT~ωg. Let ~ω = ~ωg + ~ωp where ωp are the two angular velocity

components perpendicular to ~g b and ~ωg is the angular velocity component parallel

to ~g b [16]. Substituting and rearranging, this is rewritten as

V̇ = −kp(~ωg + ~ωp)
T~ωp (3.18)

where ~ωTg ~ωp = 0 due to their perpendicular nature, so,

V̇ = −kp||~ωp||2 ≤ 0 (3.19)

satisfying the third condition, indicating closed loop stability.

Using LaSalle’s invariance principle to determine the largest invariant set [7]

{V̇ (t) ≡ 0} = {X̄ : V̇ (q̄, ~ω, r̃off ) ≡ 0} = {ω̄p(t) = 0} (3.20)

To determine if the estimator converges:

˙̂roff = κT~ω = κT (~ωp + ~ωg) = κT~ωp + κT~ωg (3.21)

By LaSalle, the system will converge on the largest invariant set in {ω̄p = 0} where

˙̂roff = κT ω̄g . Because ~ωg is perpendicular to κT , ˙̂roff = 0 .

Knowing

~ωp = Pp(q)~ω =

[
I− ~g b(~g b)T

||~g b||2

]
~ω (3.22)
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where I is the identity matrix and Pp is a projection matrix. If ~ωp =


0

0

0

 then

Pp =


1 0 0

0 1 0

0 0 1

−

g2
x 0 0

0 g2
y 0

0 0 g2
z



ω1

ω2

ω3

 1

||gb||2
=


1 0 0

0 1 0

0 0 0

 (3.23)

As this is a rotation about zb, gbx and gby converge to 0. Then

Pp~̇ω =
d

dt
(Pp~ω) = ~̇ωp = PpJ

−1(~ω × J~ω + κr̃off − kp~ωp) (3.24)

which is simplified as

0 = PpJ
−1(−~ωg × J~ωg + κr̃off ) (3.25)

Assuming J̄ is diagonal and movement of the sliding masses will not alter the

principal axes so ~ωg × J̄~ωg = 0 . This allows for rewriting Equation (3.25) as

0 = PpJ
−1(κr̃off ) (3.26)

κ is given as κ = −mstr


0 −gbz gby

gbz 0 −gbx

−gby gbx 0

 , but for ωp = 0, it must also be true

that gbx = gby = 0 .

Rearranging,


0

0

0

 = −mstr


1 0 0

0 1 0

0 0 0



J−1
xx 0 0

0 J−1
yy 0

0 0 J−1
zz




0 gbz 0

−gbz 0 0

0 0 0



r̃off,x

r̃off,y

r̃off,z

 (3.27)
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This is rewritten as

0 = J−1
xx g

b
z r̃off,y (3.28a)

0 = −J−1
yy g

b
z r̃off,x (3.28b)

0 = 0× r̃off,z (3.28c)

Knowing Jxx 6= 0, Jyy 6= 0, and gbz 6= 0 it follows for these equations to be true,

r̃off,y = r̃off,x = 0 . Equation (3.28c) is an identity and does not provide any

information regarding roff,z. Because of this, roff,z requires determination by other

means. The nonlinear adaptive control law is Lyapunov stable in the horizontal

plane and estimates the horizontal components of roff once on the invariant set, but

is unable to estimate the vertical component of roff.

3.3.3 Vertical Balancing

As explained in subsection 3.3.2, the offsets in the vertical direction were

indeterminable. To estimate offsets in the vertical direction, an UKF is used.

Filtering allows for attitude determination by taking measurements containing error

and noise, assuming a probability distribution, and estimating biases to remove

those biases from the state estimates [18].

The state space equations are

~̇ω = J̄−1(−~ω × J̄~ω + ~d) (3.29)
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where ~d is a disturbance torque

~d =


−mstr · gby · rz

mstr · gbx · rz

0

 (3.30)

The state space equations are implemented in MATLAB with an UKF and

evaluated at varying time step sizes to determine its ability to quickly estimate the

offset in the vertical direction. Any vertical offset is directly mapped to a precise

displacement needed by the two coupled vertical balancing masses.

3.4 Recursive Least Squares

Another method implemented in mass balancing systems involves a recursive

least squares approach. By weighting measured values, a deterministic approach is

utilized for calculating the offset between the COM and COR. Where the previous

method employed use of quaternions in determining the attitude this method is

solved using the Euler angles. The presented method follows that as detailed by

HIT [1]. A true comparison of the balancing methods requires utilizing quaternions

3.4.1 Least Squares Equation Transformation

The inertial frame is located at the center of the simulator and at the beginning

of the simulation (at t0 = 0) the body frame is co-located to align with the inertial

frame of the simulator. The attitude matrix for the transformation between the
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inertial and body reference frames, using a 3-2-1 rotation is [18]

ABI =


cosφ cos θ sinφ cos θ − sin θ

− sinφ cosψ + cosφ sin θ sinψ cosφ cosψ + sinφ sin θ sinψ cos θ sinψ

sinφ sinψ + cosφ sin θ cosψ − cosφ sinψ + sinφ sin θ cosψ cos θ cosψ


(3.31)

The kinematic relation for Equation 3.31 is B(θ, ψ) where φ is yaw, θ is roll,

and ψ is pitch. 
φ̇

θ̇

ψ̇

 = B(θ, ψ)~ω (3.32)

The angular velocities about their respective axes are represented as

~ω ≡ [ω1 ω2 ω3]T . These dynamics are rewritten as:


φ̇

θ̇

ψ̇

 =
1

cos θ


0 sinψ cosψ

0 cos θ cosψ − cos θ sinψ

cos θ sin θ sinψ sin θ cosψ



ω1

ω2

ω3

 (3.33)

so cos(θ) 6= 0 . When θ equals ±π
2

radians, a singularity occurs. The physical

configuration of the ACSPG prevents pitch and yaw rotation exceeding pi
6

radians.

The angular momentum of a body ~H with respect to the origin of the inertial

coordinate system is

~H0 =
n∑
i=1

~r i0 ×mi~v
i0 (3.34)

where i represents all of the point masses comprising the body.

To use the angular momentum of the COM in the body frame requires a

transformation from the inertial frame as presented in Equation (2.4) to the body
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frame and is given by

~Hc
B = ABI ~H

C
I = ABI J̄

C
I ~ω

BI
I = J̄CB ~ω

BI
B (3.35)

The inverse follows such

~ωBIB = (J̄ cB)−1 ~Hc
B (3.36)

as long as each rotation is about a principal axis, the angular momentum and

angular velocity of the body remain parallel [18] The first derivative of angular

momentum is torque.

d ~H

dt
= ~̇H = ~L (3.37)

when the COM is not at the COR, this can is rewritten as

dH0

dt
= (~r ×m~̈r) + Ḣc + [~ω × (~r ×m~̇r)] + (~ω × ~Hc) (3.38)

which reduces to

~̇HC
B = ~LCB − ~ωBIB × ~HC

B (3.39)

combining with Equation 3.35

~̇ωBIB = (J̄CB )−1[~LCB − ~ωBIB × (J̄CB ~ω
BI
B )] (3.40)

Assuming the motion and off-axis terms are small compared to the other terms, ~̇ω

simplifies to
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~̇ω =


mg
Jxx

(−ry cosψ cos θ + rz sinψ cos θ)

mg
Jyy

(rx cosψ cos θ + rz sin θ)

mg
Jzz

(−rx sinψ cos θ + ry sin θ)

 (3.41)

where Jxx,yy,zz are the MOIs about each axis.

The angular accelerations are integrated:

∫
~̇ω = mg


∫

(−ry cosψ cos θ + rz sinψ cos θ)/Jxx∫
(rx cosψ cos θ + rz sin θ)/Jyy∫

(−rx sinψ cos θ + ry sin θ)/Jzz

 (3.42)

producing

~ωxt2−~ωxt1 =
mg∆t

2Jxx
[((cosφ cos θ)t2 + (cosφ cos θ)t1) ry − ((sinφ cos θ)t2 + (sinφ cos θ)t1) rz]

(3.43)

~ωyt2 − ~ωyt1 =
mg∆t

2Jyy
[((cosφ cos θ)t2 + (cosφ cos θ)t1) rx + ((sin θ)t2 + (sin θ)t1) rz]

(3.44)

~ωzt2 − ~ωzt1 =
mg∆t

2Jzz
[((sinφ cos θ)t2 + (sinφ cos θ)t1) rx + ((sin θ)t2 + (sin θ)t1) ry]

(3.45)
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where t1 represents values at the first time step and t2 represents values at the

second time step. This is written in matrix form as:


∆ωx

∆ωy

∆ωz

 =
mg∆t

2


0 − ((cφcθ)t2 + (cφcθ)t1) /Ixx ((sφcθ)t2 + (sφcθ)t1) /Ixx

((cφcθ)t2 + (cφcθ)t1) /Iyy 0 ((sθ)t2 + (sθ)t1) /Iyy

− ((sφcθ)t2 + (sφcθ)t1) /Izz − ((sθ)t2 + (sθ)t1) /Izz 0




rx

ry

rz


(3.46)

where cφ and sφ are used to represent cos and sin of each respective angle.

Rearranging Equation 3.46 allows for solving for the position vector of the offset

between the COM and COR.

3.5 Evaluating the Methods

Both methods require evaluation with several factors. MATLAB is used to

perform several simulations. The non-linear control is simulated and verified with

varied masses and MOI. This allows for testing the model and tuning it based on

the changing variables. The least squares estimation method is tested by adding

noise to simulated angular rates and then simulated at varying time intervals to

determine the convergence ability of the method.

The most important element is the ability of a method to quickly converge on a

solution. While simplifying assumptions ease the development of each method,

importance is placed on minimizing assumptions. Assumptions may impact the

accuracy of the results, as such weight is given to limiting assumptions.

3.6 Non-orthogonal Equations

Upon determining the relation between the COM and the COR, the desired

location of the sliding masses is determined. The initial centroid of the overall

system relative to the center of the air bearing, r is
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r =
1

M
[(M −

5∑
j=1

mj)r0 +
5∑
j=1

mjrj,0] (3.47)

where r0 represents the location of the centroid of the ACSPG without the

balancing system, M is the mass of the whole simulator, and rj,0 is the initial

position of each slider. A top down view of the sliding masses along their actuators

in the x-y plane is depicted in Figure 9

Figure 9. Depiction of sliders in the horizontal plane

As the sliders are moved, the new location of the centroid and sliders are given

by

rnew =
1

M
[(M −

5∑
j=1

mj)r0 +
5∑
j=1

mjrj,new] (3.48)
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the resulting change in location of the overall system centroid becomes:

∆r = rnew−r =
1

M
[(M −

5∑
j=1

mj)r0 +
5∑
j=1

mjrj,new]− 1

M
[(M −

5∑
j=1

mj)r0 +
5∑
j=1

mjrj,0]

(3.49)

and this reduces to

∆r =
1

M

5∑
j=1

mj∆rj (3.50)

For a mass balancing system with orthogonally configured actuators and masses,

the motion of the centroid rx,y,z is directly mapped to a sliding moving along each

axis. All sliding masses are equivalent in mass. Each ∆r is then solved for by


∆x

∆y

∆z

 =
M

mp


∆rx

∆ry

∆rz

 (3.51)

where ∆x, ∆y, and ∆z represent the change in position of a slider corresponding to

each axis. However, due to AFRL’s non-orthogonal configuration, the positioning of

the masses is determined by the following method with changes in the centroid

mapped to the five sliding masses. First, the three horizontal sliding masses each

have components of motion in the X and Y directions. Their changes in movement

are solved by

∆X =
3∑
j=1

cosθj∆rj (3.52)

∆Y =
3∑
j=1

− sin θj∆rj (3.53)
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where θj represents the known angle between the x-axis and each linear actuator.

The positions of the two vertically sliding masses are solved by

∆Z = ∆r4 + ∆r5 (3.54)

Equations 3.52 - 3.54 are combined with Equation 3.51 and rewritten as

M

mp


∆X

∆Y

∆Z

 =


cosθ1 cosθ2 cosθ3 0 0

− sin θ1 − sin θ2 − sin θ3 0 0

0 0 0 1 1





∆r1

∆r2

∆r3

∆r4

∆r5


(3.55)

As this is not a square matrix a pseudoinverse is utilized to rearrange this as follows



∆r1

∆r2

∆r3

∆r4

∆r5


=
M

mp


cosθ1 cosθ2 cosθ3 0 0

− sin θ1 − sin θ2 − sin θ3 0 0

0 0 0 1 1


† 

∆X

∆Y

∆Z

 (3.56)

where ‘†’ is used to notate the required Moore-Penrose pseudoinverse.

3.7 Conclusion

Due to the unique characteristics of the ACSPG, determining the control

algorithms for automatically balancing the system was necessary. This was

determined via two methods used on other systems and applied to the ACSPG.
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Also, a method of mapping changes to the centroid to a non-orthogonal mass

balancing configuration was presented. The next chapter is used to test the

effectiveness of the methods.
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IV. Results and Analysis

4.1 Overview

This chapter applies the methodologies presented in Chapter III to account for

and mitigate the gravitational torques as identified in Section 1.4. An iterative

approach is used to apply the presented techniques and evaluate their applicability

and performance. While developing the models, refining the initial conditions and

tuning kp are also important. All simulations in this research were performed using

a Hewlett Packard® computer with a 3.5 GHz Intel ® processor with four cores and

32 Gb of random access memory.

First, this chapter presents the non-linear adaptive control method, detailing

the ability of the control to account for both horizontal and vertical offsets. Second,

this chapter presents an examination of the recursive least squares approach. Last is

a determination of the maximum allowable variation between the COM and COR.

This chapter concludes by reviewing the performance of the two balancing methods.

4.2 Non-linear Adaptive Control Method

The application of the aforementioned nonlinear adaptive control requires

verifying the performance of the control by ensuring the ability of the control

method to produce a constant angular velocity. A constant angular velocity

indicates no gravitational torque is present to cause angular acceleration. This is

initially done by simulating a system similar to that at NPS. After verification, the

next step is to increase the mass and MOI, ultimately to the levels of the ACSPG.

The ability of the control method to adequately compensate for greater mass and

MOI parameters requires performance within the capabilities of the ACSPG’s

design.
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This control algorithm was initially utilized by NPS on a system with an inertia

matrix of J̄ = diag(0.0226, 0.0257, 0.0266) kg · m2, a simulator mass of ms/c = 4.2

kg, and three orthogonally arranged 0.3 kg sliding masses [7]. Furthermore, the

system is excited with an initial angular velocity of ~ω = [0.0888 0.8229 1.3611]T

rad/s and a simulated offset between the COM and COR of

~roff = [1 − 0.9 − 1.4]T · 10−3 m. The simulation of the balancing procedure in this

research utilizes these conditions as a starting point. This is solved in MATLAB

and the time the system requires to reach equilibrium is less than two seconds.

Figure 10. Angular Velocity (rad/s) with a simulator mass of 4.2 kg, slider mass of 0.3
kg, MOI=diag(0.0226; 0.0257; 0.0266) kg m2, ω0=[0.0888 0.8229 1.3611]’ rad/s, and
kp=1

In Figure 10, the angular velocities of the satellite simulator about the

horizontal axes, ω1 and ω2, are driven to zero. The angular velocities about the

vertical axis, ω3, remain at their initial value and are not compensated for by the

horizontal balancing procedure. The initial angular velocity about axis one is

smaller than that about axis two and is compensated much more quickly than the

angular velocity about axis two.
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Figure 11. Determination of roff with a simulator mass of 4.2 kg, slider mass of 0.3 kg,
MOI=diag(0.0226; 0.0257; 0.0266) kg m2, ω0=[0.0888 0.8229 1.3611]’ rad/s, and kp=1

Figure 11 plots the estimated location of the COM relative to the COR. As the

system runs, the roff vector is driven to the steady state simulated truth value.

This demonstrates an ability to quickly and accurately balance the system.

The error of the estimated position relative to the simulated offset quickly

approaches zero as seen in Figure 12. Figure 13 illustrates the change in position of

each sliding mass, indicating the necessary actuator length before also reaching a

neutral position. The simulation has performed as expected in quickly and

accurately estimating the offset while simulating motion of the sliding masses.
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Figure 12. Estimated offset error of the COM displacement with a simulator mass
of 4.2 kg, slider mass of 0.3 kg, MOI=diag(0.0226; 0.0257; 0.0266) kg m2, ω0=[0.0888
0.8229 1.3611]’ rad/s, and kp=1

Figure 13. Change in horizontal slider positions with a simulator mass of 4.2 kg, slider
mass of 0.3 kg, MOI=diag(0.0226; 0.0257; 0.0266) kg m2, ω0=[0.0888 0.8229 1.3611]’
rad/s, and kp=1
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4.2.1 Parametric Study

Upon verifying the control capably balances a system similar to that at NPS, it

is necessary to increase the mass and MOI properties of the simulated system and

test the response. The MOI and the masses of the structure and sliding masses are

increased to identify the system response. The simulations are again performed in

MATLAB.

The increased mass and MOI values result in longer balancing times and the

oscillation frequency and magnitude increases for the mass positions relative to

those seen above in Figures 10-13. As is stated in Chapter III kp is a tunable value.

While previously indicated as an arbitrary value, kp does possess significance in

determining an improved solution [7]. Increasing kp increases the system response

and causes the system to balance faster. Full results of these simulations are

presented in Appendix A.

4.2.2 Simulating the Dynamics of the ACSPG

Upon showing this method for balancing the platform accomplishes the

intended goal of reducing angular velocity to zero and reaching a steady state for

the estimation of roff on smaller scales, the method is applied to the full scale

dynamics of the ACSPG. As provided by AFRL, J̄ = diag(1100, 2100, 1050)kg·m2.

To better simulate the ACSPG, the MOI is assumed to as

J̄ = diag(1106, 2274, 810)kg·m2. Appendix B presents intermediate results during

the tuning process. The intermediate results required significant computational time

of over 6,800 seconds, failed to provide solution is anywhere near converging after

200 seconds of simulated run time, and were highly volatile with frequent

oscillations of great magnitude. There is nearly ± 40m of error in the COM

displacement, and the sliders require 3 km actuators.
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4.2.2.1 Fixed-step Integrator

One attempt to resolve the volatile nature of the simulations involved utilizing a

fixed-step integrator. Using a step size of 0.05 seconds simulates a reasonable data

refresh rate. Unfortunately, the step size of 0.05 seconds is too large, and the system

fails to converge on a steady state. Decreasing the step size attempts to find a

balance between the volatility of the system and the convergence time. Through

many adjustments the step size, only significantly small step sizes allow for

convergence. This simulation run time also requires significant convergence time

and is equally volatile as the previous simulations.

4.2.2.2 System Refinement

The applicability of the proposed balancing method necessitates short

computational times and short convergence times. Similarly, the motion of the

balancing masses must remain within the limits of the designed actuators.

Increasing kp can shorten the necessary computational time, so this is explored

further.

Currently, the system is designed with 20 kg sliding masses. Increasing the mass

of each slider allows for a greater magnitude of solvable conditions for roff . Larger

sliding masses also create greater control torques, allowing for quicker dampening

and shorter traveling distances of the masses. Changing the mass of each slider

dictates changes to the configuration of the system and requires different linear

actuators. Applying these considerations, each sliding mass increases to 50 kg and

kp=1000 producing results found in Appendix B.

This simulation converges at a much more quickly; however, the travel of the

sliding masses is still impractical. Increasing the mass of each sliding mass

substantially reduces the distance each slider travels. However, having the masses
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travel 1.2 km is highly impractical. There exists a means of applying the balancing

system while staying within the limitations of the designed linear actuators.

The initial angular rates and simulated offsets up through this point are those

as simulated by NPS [7]. Upon further consideration, exciting a simulator the size

of the ACSPG with the large angular rate is impractical. Such initial angular rates

are greater than what the ACSPG encounters. The offset between the COR and

COM causes an initial rotation immediately after releasing the ACSPG from a level

position. The resulting angular velocities are simulated with ~ω0=[0.4440, 4.1145,

6.8055]×10-5 and adjusting the tunable constant as kp=4000 due to the sensitivity

of the ACSPG to initial conditions. These changes to the initial conditions produce

the following results.

Figure 14. Angular Velocity (rad/s) with a simulator mass of 1375 kg, slider mass of
20 kg, MOI=diag(1100; 2100; 1050) kg m2, ω0=10−5×[0.4440, 4.1145, 6.8055]’ rad/s,
and kp=4000
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Figure 15. Determination of roff with a simulator mass of 1375 kg, slider mass of 20
kg, MOI=diag(1100; 2100; 1050) kg m2, ω0=10−5×[0.4440, 4.1145, 6.8055]’ rad/s, and
kp=4000

Figure 16. Estimated offset error of COM displacement with a simulator mass of 1375
kg, slider mass of 20 kg, MOI=diag(1100; 2100; 1050) kg m2, ω0=10−5×[0.4440, 4.1145,
6.8055]’ rad/s, and kp=4000

Figure 14 illustrates the small initial angular rates. The rates about the two

horizontal axes approach steady state within 10 seconds. As seen previously, the
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angular rates about the third, vertical axis are uncompensated. This improved

system similarly determines the horizontal COM offset in Figure 15, converging in

under 10 seconds. The small values of the COM are within the physical volume of

the ACSPG. The limits of the deviation of the COM are explored later in this

research.

Figure 16 depicts the error between estimated value for roff and the true value.

The error of the estimation for axes one and two converges on zero. The offset in

the vertical direction is uncompensated, and so the error remains constant and does

not converge to zero. Figure 17 demonstrates appropriately constrained motion of

Figure 17. Change in horizontal slider positions with a simulator mass of 1375 kg, slider
mass of 20 kg, MOI=diag(1100; 2100; 1050) kg m2, ω0=10−5×[0.4440, 4.1145, 6.8055]’
rad/s, and kp=4000

the three horizontal sliding masses. The motion of the sliding masses is restricted to

the length of the actuators designed for use on the ACSPG. The system would

require further tuning if the motion exceeded 0.6 m.

The tuning parameter kp was identified previously to affect convergence time.

As seen in Figure 18, small values of kp result in large convergence times, where
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larger values of kp generate shorter convergence times. Tuning kp can also affect the

highly oscillatory nature displayed in the results.

Figure 18. The affects of the tuning parameter kp on convergence times

4.2.3 Vertical Balancing

The previous section demonstrates successful mitigation of distance between the

COR and COM in the horizontal plane. Accounting for vertical offsets is necessary.

Offsets in the horizontal plane are perpendicular to the gravitational field, directly

correlating to noticeable rotation and tilting of the simulator. Offsets in the vertical

direction may still exist, but due to their alignment with the gravitational field,

they will not cause rotation to a level platform. Applying the UKF as mentioned in

Section 3.3.3 estimates the offsets.
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(a)

(b)

Figure 19. Estimated (a) angular velocities and (b) roff compared with the simulated
true value

Figure 19 illustrates the ability of the filter to quickly and accurately estimate

the offset. Even with random noise introduced to the system, the filter maintains

small angular rates within the true values as seen in Figure 20. Combining the

horizontal nonlinear control method with the vertical offset estimation method, this

procedure quickly and effectively determines and adjusts for offsets of the COM

relative to the COR.
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(a)

(b)

Figure 20. Error between true and estimated (a) angular velocities and (b) roff

4.3 Recursive Least Squares

Verifying the recursive lease squares approach requires simulating the

effectiveness of the method. Upon initial testing of the algorithm, there were

consistent errors of 200% between the MATLAB generated data and simulated true

values. The error was consistently the same magnitude, but of the opposite sign
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from the simulated truth data. This indicates an error in the algorithm as presented

by HIT [1].

Revisiting the derivation and making several adjustments ensures consistency

with all signs. Upon the next simulation, the system correctly identifies the offset in

accordance with the true values. When the presented angular rates are without

noise, they converge quickly and precisely.

To increase the realism to the simulation, white Gaussian noise is included.

Using an initial angular velocity of ω0 = [0.7, 0.5, 0.6] deg/s, a simulation

conducted over an intervals of 30 seconds is presented in Table 1. The estimated

offset of the COM relative to the COR is given in the second column. The

percentage of error between the truth data and the estimated data is provided in

the third column. After a simulation of 30 seconds, all errors are within 2%. The

variation of the angular rates are presented in Figures 21.

Table 1. Least Squares Approximation (30 sec.)

True Least Squares Estimation Error

rx 7.0×10-4 7.075×10-4 1.07654 %

ry 7.0×10-4 7.129×10-4 1.84765 %

rz 4.0×10-4 4.071×10-4 1.77566 %
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Figure 21. Simulated angular velocity values for 30 seconds

This method is then simulated for 90 seconds produces the following results.

The estimated values for rx, ry, and rz are even closer as indicated by the percentage

of error in the third column of Table 2. All error values are under 0.5%. The

simulated angular velocities with the added noise are depicted in 22. These values

are what are integrated according to the equations as presented in Chapter III.

Table 2. Least Squares Approximation (90 sec.)

True Least Squares Estimation Error

rx 7.0×10-4 6.976×10-4 0.34796 %

ry 7.0×10-4 6.981×10-4 0.27856 %

rz 4.0×10-4 4.002×10-4 0.04247 %
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Figure 22. Simulated Euler angles for 120 seconds

The low error values presented in Tables 1 and 2 indicate the least squares

method determines the offset within short periods of time. During actual usage of

the ACSPG, the collected data is processed and filtered, allowing for more accurate

estimations of roff . As presented, the methodology utilizes Euler angles instead of

quaternions. The potential remains to re-derive the least squares method using

quaternions to prevent any singularities in the attitude information. However, due

to the limited time elapsed and the physical limitations of the system, no

singularities are expected.

Upon solving for the offset between the COM and COR, the required position

of the sliders is easily determined. This method does not eliminate angular velocity,

indicating a balanced platform, like the first approach. Upon moving the sliders to

the determined locations, no gravitational torques will exist, preventing further
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acceleration. As a result, the platform requires leveling before starting any

experiments. While similar to the method used at HIT, this model is a vast

improvement as it properly accounts for all signs and produces errors less than 0.5%.

4.4 Determining the Performance Envelope

The deviation between the COM and the COR must exist within a small area.

The area is limited by the maximum and minimum throw distances of the actuators

and the mass of each slider. The small allowable deviations are indicated in Figure

23, where the origin of the plot coincides with the COR. These were determined by

using all possible combinations of the sliding mass positions and solving for the

given maximum location of the COM given those sliding mass locations.

Figure 23. Region of effective COM values in meters
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As long as the deviations are within this prescribed area, the balancing system

will account for and negate the offset. If the offset is beyond this area, the system is

unable to converge upon a solution. To correct for this, the coarse balancing

method requires further adjustment until the COM is within the illustrated region.

As was determined while refining the model, there are limitations to the

maximum initial angular velocity on the platform. If the initial angular velocity is

within that maximum, the control is able to provide a realistic solution. If the

initial angular velocity exceeds the maximum value, the control requires motion of

the sliding masses beyond the physical limitations of the linear actuators. Using the

nine points indicated in Figure 24, the maximum possible initial conditions for

angular velocity were determined. Angular velocities were varied about both

horizontal axes, and the simulated motion of each sliding mass was analyzed.

Figure 24. Locations where maximum initial angular velocities were evaluated

The linear actuators have a maximum throw distance of 0.6 meters. During the

simulation, if the calculated travel of the sliding mass exceeded this 0.6 meter limit,

the angular velocity is determined as unreasonable for the design of the system. The
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motion of the non-orthogonal sliding masses is coupled. Because of this, there is not

a specific a maximum angular velocity about both axes. The maximum angular

velocity about the x-axis exists when the angular velocity of the y-axis is zero and

the reverse is also true.

Maximum and minimum throw distances are determined by simulating a range

of initial angular velocities about each axis. A difference of less than 0.6 meters

between the maximum and minimum throw distance for each sliding mass is

required. If the magnitude of the mass travel is within the 0.6 meter limitation a

potential initial condition is indicated. Using ω0 ≤ [9.0; 8.0; 0]× 10−5 rad/s produces

a difference between the maximum and minimum change of position for each sliding

mass of less than 0.6 meters at each of the nine points. While there are possible

combinations where one angular velocity is larger and the other smaller than these

values, using this ω0 as a boundary ensures a solvable solution where the motion of

the sliding masses is within the limitations of the actuators.

Many combinations of initial angular rates exist which will provide converging

solutions within the limitations of the ACSPG’s design. When looking at the

identified 9 extreme points, Table 3 depicts maximum initial angular velocities

about the x-axis when the angular velocity about the y-axis is zero. Similarly, Table

4 depicts maximum initial angular velocities about the y-axis when the angular

velocity about the x-axis is zero for those same 9 points. Any initial excitation

greater than these tabulated values requires a solution not possible with the current

design of the ACSPG.

4.5 Summary

This chapter investigated two different balancing methods. The non-linear

control method required significant refinement to the simulated initial conditions to
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Table 3. Tabulated values for the maximum initial angular velocity about the x-axis at
varried COM offsets

Point roff,x (m) roff,y (m) ωx(rad/s) ωy(rad/s)

1 0 0 1.99×10-4 0
2 0 8.73×10-3 1.32×10-4 0
3 7.56×10-3 4.36×10-3 1.99×10-4 0
4 7.56×10-3 0 1.99×10-4 0
5 7.56×10-3 -4.36×10-3 1.99×10-4 0
6 0 -8.73×10-3 1.30×10-4 0
7 -7.56×10-3 -4.36×10-3 1.99×10-4 0
8 -7.56×10-3 0 1.99×10-4 0
9 -7.56×10-3 4.36×10-3 1.99×10-4 0

Table 4. Tabulated values for the maximum initial angular velocity about the y-axis at
varried COM offsets

Point roff,x (m) roff,y (m) ωx(rad/s) ωy(rad/s)

1 0 0 0 1.56×10-4

2 0 8.73×10-3 0 1.56×10-4

3 7.56×10-3 4.36×10-3 0 1.07×10-4

4 7.56×10-3 0 0 1.56×10-4

5 7.56×10-3 -4.36×10-3 0 9.90×10-5

6 0 -8.73×10-3 0 1.56×10-4

7 -7.56×10-3 -4.36×10-3 0 1.02×10-4

8 -7.56×10-3 0 0 1.56×10-4

9 -7.56×10-3 4.36×10-3 0 9.90×10-5

allow it to work. The nonlinear control method operates under the assumption of a

constant MOI of the platform. Through considerable tuning, the nonlinear control

was shown to quickly and effectively minimize angular velocities within the system.

The second method, involving a recursive least squares estimating procedure,

determines the position of the COM relative to the COR, from which the position of

the sliding masses are mapped. The recursive least square method does not level the

platform and requires this additional step of moving the masses.
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V. Conclusions and Recommendations

The ACSPG is currently balanced via a time consuming and imprecise manual

method. This necessitated an automated system to balance the system. This

research reviewed two techniques in use on other simulators and detailed the ability

to apply such methods to the non-orthogonal configuration of the ACSPG.

Application of both methods to the ACSPG is possible within the assumptions and

limitations described in this research.

This research improves on the previously presented methods by determining

and refining the initial conditions applicable to the ACSPG. Without determining

the performance envelope of the ACSPG it is not possible to effectively apply the

nonlinear adaptive control. Furthermore, the least squares estimation method as

presented in this research identified and corrected an error as presented in the

reviewed literature, allowing for effective application to the ACSPG.

5.1 Summarization of Adaptive Nonlinear Control

The first method evaluated in this research employs a nonlinear control to

determine the offset between the COM and COR. Sliding masses are adjusted and

balance the system, eliminating angular velocities. This method is potentially

computationally expensive depending on the initial conditions. It also operates

under the assumption the motion of the sliding masses is not significant enough to

alter the moment of inertia, and so it is assumed ˙̄J = 0. NPS determined this as

valid for smaller simulators, but this requires verification through experimentation

with the ACSPG.

During the research process, it was determined that the initial conditions

applied to smaller simulators prevented convergence within the design limitations of
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the DMBS. The initial condition for angular velocity used at NPS represented an

excitation of the simulator that is too large for the ACSPG. The ACSPG requires

an initial angular velocity much closer to the natural rotation of the platform. With

proper tuning and a small initial angular velocity, the simulation demonstrated the

ability of the nonlinear control to determine roff and produce angular velocities that

converge to zero.

5.2 Summarization of Least Squares Method

The second technique utilizes a recursive least squares approach. This

methodology estimates the offset between the COM and COR. This estimated offset

is used to precisely relocate the sliding masses even in their non-orthogonal

configuration. Upon mass relocation, the system requires manual re-leveling before

the commencement of experimentation.

As simulated, this method was able to estimate the offset between the COM

and the COR within 0.5% after 90 seconds. Longer estimation times provide more

accurate results. If the duration of the estimation period results in the platform

reaching its physical limits, moving the masses to their estimated positions,

relevelling the platform, and running the least squares estimation again allows for

improving the estimation of roff.

5.3 Performance Envelope

The nonlinear adaptive control is not only limited by the initial angular

velocities on the system, there are limitations to the initial offset between the COM

and the COR. These limitations are due to the throw distances of the linear

actuators. Vertical offsets must exist between ± 0.0087 m. Offsets in the horizontal

plane are constrained by the hexagonal region depicted in Figure 23 with offsets
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along the x-axis between ± 0.0076 m and offsets along the axis between ± 0.0087 m.

The current design cannot compensate for offsets beyond these limits. Longer

actuators allow for greater initial offsets.

5.4 Future Work

Both of the presented techniques require precise knowledge of the simulator’s

MOI. Without this knowledge, the balancing system is unable to accurately

determine the final positions of the sliding masses. It is imperative for AFRL to

perform further refinement of their current MOI estimation of the ACSPG.

In order to properly apply the nonlinear adaptive control to the ACSPG, the

actuators require characterization. The actuators must quickly and precisely move

the masses in accordance with the nonlinear adaptive control. Characterizing the

linear actuators determines their ability to quickly and effectively respond to the

controller. If the nonlinear adaptive control determines a solution beyond the

capabilities of the actuators, further tuning of the system is required.

In the event that experimental verification determine the assumptions are to

great, re-deriving the equations of motion for both methodologies will improve their

robustness. Including a changing MOI with the non-linear control ensures

accounting for the substantial size difference between the ACSPG and smaller

simulators. Using quaternions With least squares removes possibilities of

singularities.

Finally, to ensure an accurate moment of inertia, the potential exists for using

the least squares method iteratively. If the system does not balance with the

determined location of the masses, it indicates an inaccurate MOI. As such, there is

the potential to use Euler’s equation to solve for the MOI.
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5.5 Conclusion

The best solution to the challenges at AFRL is to use a hybridized method.

Using the recursive least squares approach approximates the offset between the

COM and COR. The non-linear control can use this information to properly

reconfigure the masses to provide a level final state with the vertical balancing

procedure estimating and accounting for offsets along the z-axis. To simplify the

system, applying an orthogonal configuration ensures stability along the principle

axes of the simulator. Upon refinement of the mass and MOI properties of the

ACSPG implementation of an automated mass balancing system will improve the

accuracy of the balancing procedure as well as reduce setup times and increase the

duration of experimentation. However, it is very difficult to implement any system

without more precisely determining the MOI of the simulator.
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Appendix A. Parameter study for larger simulators

Upon verifying the control capably balances a system similar to that at NPS, it

is necessary to increase the mass and MOI properties of the simulated system and

test the response. The MOI increases to J̄ = diag(7, 8, 4)kg ·m2, ms/c= 45 kg, and

balancing masses increase to 5 kg. These are arbitrarily larger values to identify the

system response to increased dynamics. The simulations are again performed in

MATLAB with an initial angular velocity of ~ω = [0.0888 0.8229 1.3611]T and a

simulated offset between the COM and COR of ~roff = [1 − 0.9 − 1.4]T · 10−3 m.

Figure 25. Angular Velocity (rad/s) with a simulator mass of 45 kg, slider mass of 5
kg, MOI=diag(7; 8; 4) kg m2, ω0=[0.0888 0.8229 1.3611]’ rad/s, and kp=1

Balancing times are longer and the oscillation frequency for increases for the

mass positions relative to those seen above in Figures 10-13. Figure 25 depicts

values similar to those seen in Figure 10, albeit oscillating at a much greater rate
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and over a longer overall balancing time. The angular velocities about the vertical

axis oscillate before settling on the initial, uncompensated initial condition.

Figure 26. Determination of roff with a simulator mass of 45 kg, slider mass of 5 kg,
MOI=diag(7; 8; 4) kg m2, ω0=[0.0888 0.8229 1.3611]’ rad/s, and kp=1

The estimation of the COM relative to the COR, roff , in Figure 26 varies

between ± 2.5m before ultimate proper determination. An emulator with the above

initial conditions would likely have a much smaller diameter than the overall

estimation distance of roff , meaning the COM is estimated to travel beyond the

physical properties of the simulator.
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Figure 27. Estimated offset error of COM displacement with a simulator mass of 45
kg, slider mass of 5 kg, MOI=diag(7; 8; 4) kg m2, ω0=[0.0888 0.8229 1.3611]’ rad/s,
and kp=1

67



Figure 28. Change in horizontal slider positions with a simulator mass of 45 kg, slider
mass of 5 kg, MOI=diag(7; 8; 4) kg m2, ω0=[0.0888 0.8229 1.3611]’ rad/s, and kp=1

There is a simulated motion of the sliding masses of more than 12.5 meters in

both the positive and negative directions, implying a need of an actuator of

approximately 25 meters long. This is unreasonable, and is only exacerbated as the

mass and MOI of the platform increase.

As is stated in Chapter III kp is a tunable value. While previously indicated as

an arbitrary value, kp does possess significance in determining an improved solution

[7]. Increasing kp increases the system response and causes the system to balance

faster. The previous simulations used kp=1, though to see the system response to

changing values of kp, the simulation is rerun with kp=10.
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Figure 29. Angular Velocity (rad/s) with a simulator mass of 45 kg, slider mass of 5
kg, MOI=diag(7; 8; 4) kg m2, ω0=[0.0888 0.8229 1.3611]’ rad/s, and kp=10

Figure 29 illustrates the effects of increasing kp on reducing the angular velocity.

By increasing kp from one to 10, the angular velocities about axis one and axis two

are reduced to zero in less that one tenth of the time.
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Figure 30. Determination of roff with a simulator mass of 45 kg, slider mass of 5 kg,
MOI=diag(7; 8; 4) kg m2, ω0=[0.0888 0.8229 1.3611]’ rad/s, and kp=10

Figure 30 has the same initial displacements as Figure 26, indicating the COM

is similarly estimated to exist beyond the physical confines of the simulated system.

However, it is quickly reduced to small values and reaches a steady state

approximation in under 10 seconds.
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Figure 31. Estimated offset error of COM displacement with a simulator mass of 45
kg, slider mass of 5 kg, MOI=diag(7; 8; 4) kg m2, ω0=[0.0888 0.8229 1.3611]’ rad/s,
and kp=10
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Figure 32. Change in horizontal slider positions with a simulator mass of 45 kg, slider
mass of 5 kg, MOI=diag(7; 8; 4) kg m2, ω0=[0.0888 0.8229 1.3611]’ rad/s, and kp=10

The two previous plots indicate substantial volatility still exists with the

estimation of roff , as indicated by the plot of the estimation error in Figure 31 and

the motion of the sliding masses as depicted in Figure 32. However, the system

converges much more quickly, both computationally and for the simulated run time

of the balancing system to reach a steady state. The motion of the sliding masses

along the actuators is still impractical as indicated in Figure 32.
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Appendix B. Additional ACSPG Simulations

2.1 Initial Simulations

Upon demonstrating the control system with small masses and MOI, it was

necessary to apply it to the ACSPG. AFRL provided an MOI of

J̄ = diag(1106, 2274, 810)kg·m2. This does not satisfy the triangle inequality.

The triangle inequality requires that for a triangle with sides x, y, and z, the

sum of any two sides as greater than the third. For two vectors ~x and ~y, summed to

equal a third vector ~z, ~x+ ~y = ~z , the following is required as true

||~x+ ~y|| ≤ ||~x||+ ||~y|| (2.1)

As such, this research uses an MOI of J̄ = diag(1100, 2100, 1050)kg·m2. Figures

33-36, demonstrate highly volatile motion. The system requires significant

computational time, over 6800 seconds to determine this solution. Unfortunately,

the solution is nowhere near converging after 200 seconds of simulated run time.

Figure 35 indicates there is nearly ± 40m of error in the COM displacement, and

the sliders require 3km actuators.
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Figure 33. Angular Velocity (rad/s) with a simulator mass of 1375 kg, slider mass of
20 kg, MOI=diag(1100; 2100; 1050) kg m2, ω0=[0.0888 0.8229 1.3611]’ rad/s, and kp=1

Figure 34. Determination of roff with a simulator mass of 1375 kg, slider mass of 20
kg, MOI=diag(1100; 2100; 1050) kg m2, ω0=[0.0888 0.8229 1.3611]’ rad/s, and kp=1
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Figure 35. Estimated offset error of COM displacement with a simulator mass of 1375
kg, slider mass of 20 kg, MOI=diag(1100; 2100; 1050) kg m2, ω0=[0.0888 0.8229 1.3611]’
rad/s, and kp=1

Figure 36. Change in horizontal slider positions with a simulator mass of 1375 kg,
slider mass of 20 kg, MOI=diag(1100; 2100; 1050) kg m2, ω0=[0.0888 0.8229 1.3611]’
rad/s, and kp=1
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2.2 Modifying Slider Mass While Increasing kp

Changing the mass of each slider dictates changes to the configuration of the

system and requires different linear actuators. Applying these considerations, each

sliding mass increases to 50 kg and kp=1000 producing the following results.

Figure 37. Angular Velocity (rad/s) with a simulator mass of 1375 kg, slider mass of 50
kg, MOI=diag(1100; 2100; 1050) kg m2, ω0=[0.0888 0.8229 1.3611]’ rad/s, and kp=1000
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Figure 38. Determination of roff with a simulator mass of 1375 kg, slider mass of 50
kg, MOI=diag(1100; 2100; 1050) kg m2, ω0=[0.0888 0.8229 1.3611]’ rad/s, and kp=1000
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Figure 39. Estimated offset error of COM displacement with a simulator mass of 1375
kg, slider mass of 50 kg, MOI=diag(1100; 2100; 1050) kg m2, ω0=[0.0888 0.8229 1.3611]’
rad/s, and kp=1000
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Figure 40. Change in horizontal slider positions with a simulator mass of 1375 kg,
slider mass of 50 kg, MOI=diag(1100; 2100; 1050) kg m2, ω0=[0.0888 0.8229 1.3611]’
rad/s, and kp=1000

This simulation converges at a much more reasonable rate; however, the travel

of the sliding masses is still impractical. This change substantially reduces the

distance each slider travels. However, having the masses travel 1.2 km is highly

impractical. To fully realize an acceptable solution requires refining the tuning of kp.
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