

2 CrossTalk—January/February 2016

TABLE OF CONTENTS CrossTalk
NAVAIR Jeff Schwalb
DHS Joe Jarzombek
309 SMXG Karl Rogers

Publisher Justin T. Hill
Article Coordinator Heather Giacalone
Managing Director David Erickson
Technical Program Lead Thayne M. Hill
Managing Editor Brandon Ellis
Associate Editor Colin Kelly
Art Director Kevin Kiernan

Phone 801-777-9828
E-mail Crosstalk.Articles@hill.af.mil
CrossTalk Online www.crosstalkonline.org

CrossTalk, The Journal of Defense Software Engineering
is co-sponsored by the U.S. Navy (USN); U.S. Air Force (USAF); and
the U.S. Department of Homeland Security (DHS). USN co-sponsor:
Naval Air Systems Command. USAF co-sponsor: Ogden-ALC 309
SMXG. DHS co-sponsor: Office of Cybersecurity and Communica-
tions in the National Protection and Programs Directorate.

The USAF Software Technology Support Center (STSC) is the
publisher of CrossTalk providing both editorial oversight and
technical review of the journal. CrossTalk’s mission is to encour-
age the engineering development of software to improve the reliabil-
ity, sustainability, and responsiveness of our warfighting capability.

Subscriptions: Visit <www.crosstalkonline.org/subscribe> to
receive an e-mail notification when each new issue is published
online or to subscribe to an RSS notification feed.

Article Submissions: We welcome articles of interest to the defense
software community. Articles must be approved by the CrossTalk
editorial board prior to publication. Please follow the Author Guide-
lines, available at <www.crosstalkonline.org/submission-guidelines>.
CrossTalk does not pay for submissions. Published articles
remain the property of the authors and may be submitted to other
publications. Security agency releases, clearances, and public af-
fairs office approvals are the sole responsibility of the authors and
their organizations.

Reprints: Permission to reprint or post articles must be requested
from the author or the copyright holder and coordinated with
CrossTalk.

Trademarks and Endorsements: CrossTalk is an authorized
publication for members of the DoD. Contents of CrossTalk are
not necessarily the official views of, or endorsed by, the U.S. govern-
ment, the DoD, the co-sponsors, or the STSC. All product names
referenced in this issue are trademarks of their companies.

CrossTalk Online Services:
For questions or concerns about crosstalkonline.org web content
or functionality contact the CrossTalk webmaster at
801-417-3000 or webmaster@luminpublishing.com.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

CrossTalk is published six times a year by the U.S. Air Force
STSC in concert with Lumin Publishing <luminpublishing.com>.
ISSN 2160-1577 (print); ISSN 2160-1593 (online)

Increasing Collaboration By The Minute
It is possible for individual people in a collaborative session to directly
affect the mood for collaboration for better or for worse, minute by
minute.
by Alistair Cockburn

The Capability Conundrum: Creating Constructs for
Unleashing the Power and Potential of Your Most
Important Resource
How can we improve innovation, training, and motivation when it comes
to human capital?
by Jonathan Powell

The Tragedy of the Commons:
Establishing a Strategic Project Management Office (PMO)
Establishing and maintaining a strategic project office will help facilitate
and maintain the corporate transformation to a new level of efficiency,
productivity, quality and commitment to excellence.
by Peter D. Morris

Re-Using Open Source Software in Your Software Delivery
Reuse of software presents both potential cost and schedule savings
and corresponding risks to both cost and schedule.
by Karen McRitchie and Rick Spiewak

Breakdown Model: A Disruptive Software Development
Lifecycle for Fault Tolerant Software Systems
Only when we understand all possible failure scenarios can we truly
understand how to build software which is resistant to failure in each
phase of the development lifecycle.
by Vaibhav Prakash and Danny Sunderesan

Better Reliability Verification in Open-Source Software
Using Efficient Test Cases
The primary issues with integrating open-source software into a system
is that more often than not the developmental methods cannot be veri-
fied and the software is already in a post-release version.
by Patrick Pape and Drew Hamilton

Driving Secure Software Initiatives Using FISMA:
Issues and Opportunities
A method to classify security controls based on dimensions relevant to
secure software.
by Robin Gandhi, Keesha Crosby, Harvey Siy, and Sayonnha Mandal

8

4

12

20
28

Software - A People Product

Departments

Cover Design by
Kent Bingham

 3 From the Sponsor

 42 Upcoming Events

 43 BackTalk

31

37

http://www.crosstalkonline.org
http://www.crosstalkonline.org/subscribe
http://www.crosstalkonline.org/submission-guidelines
mailto:webmaster@luminpublishing.com
http://www.luminpublishing.com
mailto:Crosstalk.Articles@hill.af.mil
http://www.crosstalkonline.org/subscribe
http://www.crosstalkonline.org/submission-guidelines

CrossTalk—January/February 2016 3

FROM THE SPONSOR

CrossTalk would like to thank 309 SMXG for sponsoring this issue.

We often focus on the tools
required to develop software
and it’s true, there are many
tools available that help de-
velop requirements, design and
test software. There are tools
used to manage processes,
configuration and even tools
that help with software assur-
ance and cyber security. But
make no mistake, software is
a product of people. In the end

it’s people that communicate their need, it’s people that develop
and refine the requirements, design the architecture, code the
unit level programs, integrate the software modules, and test the
software and processes for quality and functionality. There’s no
getting around it, it’s a people product.

So, what are we doing to take care of the people? How do
we prevent knowledge base from walking out the front door and
signing on with the competition? How do we keep employees
interested in our products, trained with the latest tools, languag-
es, processes capabilities and management techniques to meet
the challenges that allow for success? How do we continue to
attract new talent to not only meet our existing demands, but
keep up with our continued growth? One thing I have learned is
if you are successfully developing software, then your busi-
ness is growing and it’s growing fast. Software is quickly taking
over in terms of functionality. We rarely have to make hardware
changes to add new capabilities; it’s all done with software.
Software is becoming more and more complex and the demand
for MORE is the challenge facing all of us in the industry. These
are the questions that keep me up at night while trying to suc-
cessfully manage the Software Maintenance Group at Hill Air
Force Base.

Not only do we have to figure out how to stay ahead of the
game as we continue to move software from the art form, to an
engineering discipline, we need to create a strategy for transfer-
ring the knowledge base from the grey beards to the young
superstars and keep them interested enough to stay. Money is
often considered the way to keep personnel from leaving, but
more and more, our new rising superstars are more interested
in the ability to work on products that interest them, work on
technology that they find interesting, while working in an envi-
ronment that’s flexible enough to fit their lifestyle. The current
market for software has created such a need that they can work
almost anywhere they want. I recently saw a report indicating
that there are four positions available for every software appli-
cant we have. Those are TOUGH odds for the software industry.

The Software Maintenance Group at Hill Air Force Base is
embroiled in a continual dilemma trying to overcome these ob-
stacles. We constantly review policies to create an enticing envi-
ronment for our employees. We recognize that getting “the right
people on the bus” is crucial to our continued success. As a
military organization, we certainly have our share of administra-
tive constraints, just as all companies have their own challenges
to overcome. We work hard to create the right mix of benefits,
flexibility and positive environment for our people. Our goal is to
create the “Best Place on the Planet to Work!”

The articles included in this edition of CrossTalk focus on
Software – A People Product. I hope you enjoy them as you turn
your organization’s eye inward and focus on your people.

Richard L. Burnett
Deputy Director
309th Software Maintenance Group

4 CrossTalk—January/February 2016

SOFTWARE - A PEOPLE PRODUCT

Increasing
Collaboration
By The Minute
Alistair Cockburn, Humans and Technology, Inc.

Abstract. You can increase or decrease collaboration directly by specific ac-
tions. Once you learn to see these actions in practice, you can notice immedi-
ately when the rules are used, or broken, and watch how collaboration changes
as a result.

Introduction
In 1971, Gerald Weinberg [1] described the central role of

a soda vending machine at a university’s programming help
desk. The department administration, disturbed by the students
congregating around the machine, ordered it removed. Much to
their surprise, the line at the help desk suddenly became much
longer. It took a while before they worked out that the students
congregating around the soda machine were helping each other
solve their programming problems, and thus reducing the load
on the help desk staff.

Around 1974, while creating the first Visa credit card clear-
ing system, Dee Hock [2] and his staff used an odd project
management scheme: Working in a warehouse, they simply put
on the large wall all the tasks they needed to get accomplished,
according to the date it needed to get done. Someone hung a
cup on a string to mark the current date. Each day, someone
moved the string to the right, and everyone jumped on whatever
tasks were now to the left of the string.

Forty years ago, these stories were mysteries. In 1995,
Hutchins [3] describing how merchant marines bring their ships
into port, used the term “distributed cognition” to describe how
the crew operates as a though a single brain with distributed
components.

This phrase, “distributed cognition,” helps us understand
why proximity and collaboration are so important on software
projects [4]. Each person on the team is busy forming a slightly
different idea of what problem they are solving, and how the
solution should look. Each is running into problems that possibly
someone else on the team might be able to help with.

Viewed in this way, we see software development as a prob-
lem of mental search and synchronization. We have to add the
difficulty of learning how the other people work, what motivates
them, what angers them, and so on, and the difficulty in resolv-
ing differing opinions as to whose view to accept.

We see, from this perspective, how it comes that communica-
tion and collaboration are so important on software projects.

The communication aspect has been heavily studied. Thomas

J. Allen [4], studying (non-software) research and development
teams, found that communication drops off at about 10 meters
in distance (basically, people won’t walk longer than the length
of a school bus to ask a question). Olson and Olson [5] describe
the nature of the productivity gain of collocated teams over
distributed teams.

However, the matter of collaboration is not so clear cut. A
search for “increasing collaboration” turns up more than 200
million results. The articles at the top of the list come from
Forbes [6], Harvard Business Review [7], and similar. Here are
the suggestions from the first two:

• Start a tradition
• Create a Board of Awesome
• Walk
• Eat right
• Don’t be late
• Smile
• Take regular breaks
• Breathe
• Nap
• Get executive support
• Invest in signature relationship practices
• Model collaborative behavior
• Create a gift culture
• Provide training for collaboration
• Create informal communities
• Assign leaders who are both task- and
 relationship-oriented
• Build on heritage relationships
• Clarify roles and tasks

All of those are no doubt good and useful. However, I often
find myself in a meeting or collaborative session and wondering,

“What can I specifically do, now, to make this session go bet-
ter (with respect to gathering everyone’s insights and contribu-
tions)?”

As the meeting rolls along, the level of collaboration and
contribution may change for the better or the worse. I wonder,
“What triggered that?”

The question I wish to address is, what specific actions can
people take to increase collaboration on a minute-by-minute
basis. What induces people to collaborate more?

Enabling Bravery
In 2007, I conducted a small grounded-research study to

address that question [8]. The raw results are posted online [9],
so that others might reach different conclusions from the data I
gathered.

In what follows, I highlight aspects of that study, what I have
learned since, and how the reader might add to the list.

Based on the study, when I watch a group collaborate, I see
the following:

• One person assumes enough bravery to claim
 the stage.
• Everyone else yields to that person.
• The speaker offers personal insights to the others.
• The speaker relinquishes the stage, opening it
 for someone else.

CrossTalk—January/February 2016 5

SOFTWARE - A PEOPLE PRODUCT

In that short sequence, the first is the most amazing. In decid-
ing to speak, the person has to conclude:

“What I have to say is more important than what anyone else
has to say, and they need to all be quiet and listen to me.”

For many people, that is a frightening proposition. It is a claim
of ego, and fraught with potential embarrassment.

As though watching a movie, I see a friendly game of Whack-
A-Mole [10] (without the hammer, of course). Different people
take turns standing up, talking, sitting down. In a good collabora-
tive session, everyone takes a turn standing. In a poor collabora-
tive session, only one or a few contributors stand, the others
stay seated, their insights remaining lost to the group.

The breakthrough in my understanding of the raw data in my
study came from the book “Impro,” by Keith Johnstone, an acting
trainer [11]. He describes how we immediately understand be-
ing above or below someone in a social hierarchy, and how our
body and behavior changes as a result.

Seen this way, the Whack-A-Mole image is remarkably appro-
priate. Each person has to assert social superiority for a moment
in order to contribute. How can we get all the timid people to
do this, and how can we get all the dominant people to leave
enough space for them to do so?

This turns out to be the central aspect of collaboration in this
one study.

Specific Actions
With the help from some friends and colleagues, I was able

to mine the data to extract several dozen specific actions that
seemed to change the immediate state of collaboration. I put
them into four categories:

• Lift Others
• Increase Safety
• Get Results
• Add Energy

It is important to note that the Whack-A-Mole image only cap-
tures the first two categories. But then a woman reader wrote:

“When I have a sympathy session with my girlfriend, we lift
each other all the time, and we have all the safety we need. Are
we collaborating?”

From that question came the need for the third category, Get
Results. Without results, the session might have been agreeable,
but is not what we would consider as “collaboration.”

The fourth category came from looking for additional actions
still not covered by the first three. It is possible there are more
major categories, these are the ones I have to this point. Further
in this article, I describe how to add your own recommendations
to the list.

The list has proved very effective in decoding collaboration
sessions. As we got used to noticing movements people made
according to the list, we could see instantaneous changes in the
group’s mood. As participants, we could help defuse a negative
action someone might have made with a counter-action to help
restore a collaborative mood. I, personally, became very sensitive
to when I unwittingly did the opposite of what the list said to do.
I could see one or more other people shrink down and decide
not to contribute for a bit. In short, the list turns out to be ac-
curate, useful, and actionable, both in the positive and negative
versions.

Collaboration Cards
Having the list on paper or in an article was sufficient for me,

but did not spread well to other people. So I created a deck of
“Collaboration Cards” [12] for others to learn from. While still not
perfect, the cards allow people to study one or two actions at a
time until they learn to recognize their being enacted or violated,
by themselves or other people.

Here is list of actions in the current set of Collaboration
Cards, with some additional notes on specific ones.

Note that these actions are not just for the session leader or
facilitator. They can be used by every person in the session.

As a reader, you might look for which one is your preferred
mode of operation in a collaborative session, and which one is
most difficult for to you enact.

Lift Others
This is possibly the most important category, since what we

are trying to do is get people to step forward when they might
be timid.

• Lower Your Relative Social Position
By tone of voice and gesture, place the other person at your

same level or higher. This includes self-deprecating humor. It
does not mean groveling.

Commentary: This is the keystone action coming from the
book, “Impro.” Watch as someone bows their head when they
speak, or literally shrink their body, to indicate their temporary
reduction in status. This is most effectively used by people in
important social positions.

• Recognize Others
Ask for their thoughts, accept an idea. When you build on

their idea, let them know, so they get recognition. Delight in the
ways they find to implement their ideas.

• Inquire, Don’t Contradict
When inclined to contradict, inquire instead, to discover

new information that makes the answer other than what you
expected. Work to understand why the other person’s answer is
so different.

• Challenge but Adopt
It is uplifting when someone disagrees with you at first but

then sees and adopts your view. Do this for someone else. Look
to adopt their ideas where possible, so they know they are heard
and their ideas valued.

Increase Safety
If “Lift Others” lets people operate from where they are,

“Increase Safety” expands the collaborative area. As such, it is
potentially more dangerous when you get it wrong.

• Be Yourself
People can usually tell if you are being yourself or acting.

Being yourself shows there is nothing to be afraid of. Try “being
in the bar at 9 p.m. with friends,” quite obviously relaxed and your
regular self. (This is not an excuse to be crude.)

6 CrossTalk—January/February 2016

SOFTWARE - A PEOPLE PRODUCT

Commentary: “Being in the bar at 9 p.m. with friends” is a
potentially dangerous move. My colleague Jeff Patton phrases
it this way: “There’s this person in a suit with his Blackberry,
messaging away, and suddenly he notices he’s not in a meeting
room any more, but in the bar at 9 p.m. with friends, and he puts
his Blackberry away and joins the discussion.”

• Say Something Honest, On the Edge of What You
Think is Allowed

Say or do something that you would like to, but which might
lie outside the expected boundaries. This widens the boundaries
of what others can do. What others were afraid to say or do may
suddenly appear “safe” to them.

Commentary: This is the most dangerous move in the list.
Unfortunately, it happens to be my specialty. Jeff Patton, com-
ments again, “By the time you get done violating all social
decorum, and everyone is having a great time, suddenly those
little obstacles other people were having look tiny in comparison,
and they start to contribute.” And of course, when I get it wrong,
it is embarrassing.

• Add Humor
Humor lowers tension, allows relaxation. It is not the making

of a joke that increases safety, it is that safe groups feel safe
joking with each other. Personal attacks disguised as jokes do
not count.

• Show You Won’t Hurt
Show that you won’t say things that hurt the other person.

With someone to back up and protect them, a person might feel
brave enough to step in and contribute.

• Leave Some Privacy
If there is nowhere safe to hide, fear goes up and safety goes

down.

• Don’t Leak Information That Will Hurt Someone
This should be obvious.

Get Results
There are different forms of “result” that improve the session.

• Get One Result
Getting a result is heartening. Good facilitators often generate

a victory to help encourage and bind the group. If the session
is ending, aim for a small goal, so that the group can end with a
victory.

Commentary: A collaboration session is not a collaboration
session without results. Getting a result, all by itself, changes
and improves the texture of the collaboration. Some astute lead-
ers and facilitators will specifically search for and arrange for
the group to share a “win” either early in the day, or to save the
group from depression at the end of a long, fruitless day.

• Say Something Valuable
Try to make your first speaking of value. This moves the work

forward, and it encourages others to listen to you.

• Get Back From Diversions
Keep your ideas on topic. Going off track for a little while

releases some tension in the room, but people appreciate being
brought back.

• Clarify the Way Forward
Sometimes it helps to “pull the threads together,” show what

has been achieved, what forward looks like, or where the group
is.

Add Energy
The final category addresses such things as posture while

listening, or ways of inject new energy.

• Keep Your Energy High
Avoid being lethargic yourself. Body posture, muscle tone, eye

alertness, all communicate your energy level. Even just sitting
alert contributes energy to the room. Pay close attention to the
speaker, digest what they say, ask a question.

• Contribute
Contributing your own ideas adds energy to the room. If

everyone only sits and listens, the group will wind down. When
people see that you are not afraid to give away your ideas, they
also feel safer in offering up their own.

• Challenge
Challenge others’ ideas. Not to put people down, but to

explore the truth and limits of the ideas. Challenging an idea is
part of being honest, listening intently, and making progress.

Commentary: This is the other potentially dangerous action in
the list, and needs to be used with some care. There are people
who challenge all the time, and become viewed as a nuisance to
the group. On the other side, I have come to notice the follow-
ing scenario: The group is tired or bored, the speaker is droning
on. People are slouched in their chairs, waiting for the speaker
to be done and the pain to be open. Suddenly, one of them
hears something interesting, leans forward, and asks a question
about or challenges what the speaker just said. In a moment,
everyone wakes up, sits forward, and listens. At this moment,
collaboration has started again.

Using the List
We quickly learned that it is too difficult to hand the list of

actions to everyone and ask them to notice the behavior of the
group while also participating in the session. Whether it was with
a list or cards made no difference.

What worked was to give each person just one card or item
from the list, and ask them only to notice occasionally when it
was being used or violated. Variations on this idea include ask-
ing them to make tick marks on a paper when they see it used,
other tick marks for violated. The important thing is not to take
too much of the person’s attention away from the content of the
meeting.

One pair of trainers who train upcoming facilitators hand out
one card in a facilitation session led by other students, and ask
them to watch their one card in action or violation during the
session. They then trade insights afterwards.

CrossTalk—January/February 2016 7

SOFTWARE - A PEOPLE PRODUCT
One town manager gave the cards to her division supervisors,

the police chief, the fire chief, chief of sanitation, and so on, for
them to use with their subordinates. She was less concerned
with collaboration inside a single meeting, than with building
a culture of collaboration over the long term. Her insight was
that the same actions have longer-term effects as well as in the
moment.

Some people adopt a habit of carrying around one card with
them each day, so they can become sensitive to that one item in
many settings, without having to focus on it all the time.

One person put a different card on his car windshield visor
day, as a form of passive learning as he drove to work.

One used that has been proposed, but not yet applied, to my
knowledge, is to video a meeting or collaboration, without any
use of the list of actions, and then to review the video after-
wards, using the list. In the review of the video, everyone would
have the entire list at hand, and would call out when an action
enacted or violated an item on the list. They could then replay
and examine that moment on the video, and decide what they,
as a group, wanted to learn from the moment.

This video-and-replay technique would be a good way to
notice additional actions, not on the list, that also contribute to
improved collaboration.

Discover More Yourself
The list is obviously not complete. I believe it would be a good

exercise for a group to personalize it by creating their own ad-
denda to the list.

Here is the technique I used to create the list in the first
place, adapted to a group adding to it:
• Have a meeting or collaborative session as normal, but ask

people to notice at what moments the mood to collaborate
increased or decreased.

• Write down in detail and objectively what happened just
before and just after that moment.

• Now comes the hard part: attempt to decode what caused
the shift in mood. What underlying action made the difference
at that moment?

• Give is a cute, short, verb name. Use the imperative voice, so
it is a “Do This” type of a phrase.

• Watch it in action, and see if it actually makes a difference,
and if violating it causes a loss in collaborative mood.

• When you have a good addendum, publish it online for others
to experiment with.

Summary
It is possible for individual people in a collaborative session

to directly affect the mood for collaboration for better or for
worse, minute by minute.

This article listed 17 specific actions, in four categories:
• Lift Others
• Increase Safety
• Get Results
• Add Energy

Enacting those actions tends to increase the mood for col-
laboration, violating them tends to decrease it.

The list is, of course, not complete. Each group might profit
from adding to the list as its own form of learning and personal-
izing the actions that improve collaboration.

Dr. Alistair Cockburn, one of the cre-
ators of the Manifesto for Agile Software
Development, was voted one of the “The
All-Time Top 150 i-Technology Heroes”
in 2007 for his pioneering work in use
cases and agile software development. A
renowned IT strategist and author of the
Jolt award-winning books “Agile Software
Development” and “Writing Effective Use

Cases,” he is an expert on agile development, use cases, pro-
cess design, project management, and object-oriented design. In
2001 he co-authored the Agile Manifesto, in 2003 he created
the Agile Development Conference, in 2005 he co-founded the
Agile Project Leadership Network, in 2010 he co-founded the
International Consortium for Agile. Many of his articles, talks,
poems and blog are online at <http://alistair.cockburn.us>.

Email: totheralistair@aol.com

ABOUT THE AUTHOR

REFERENCES

1. Weinberg, G., The Psychology of Computer Programming: Silver Anniversary Edition,
Dorset House, 1998.

2. Hock, D., Birth of the Chaordic Age, Berrett-Koehler Publishers, 2000.
3. Hutchins, E., Cognition in the Wild, MIT Press, 1995.
4. Allen, T., Managing the Flow of Technology: Technology Transfer and the Dissemination of

Technological Information Within the R&D Organization, The MIT Press, 1984.
<http://www.ics.uci.edu/~corps/phaseii/OlsonOlson-DistanceMatters-HCIJ.pdf>

5. Olson, G., Olson, J., “Distance Matters”, HUMAN-COMPUTER INTERACTION, 2000, Volume 15,
pp. 139–178.

6. <http://www.forbes.com/sites/ekaterinawalter/2013/12/23/how-to-reduce-stress-and-
increase-internal-collaboration-in-the-workplace/>

7. <https://hbr.org/2007/11/eight-ways-to-build-collaborative-teams>
8. <http://alistair.cockburn.us/Collaboration%3a+the+dance+of+contribution>
9. <http://alistair.cockburn.us/Collaboration%2c+the+Dance+of+Contribution%2c+raw+notes>
10. <https://www.youtube.com/watch?v=GVJL9oXgsAA>
11. Johnstone, K., Impro: Improvisation and the Theatre, Routledge, 1987.
12. <http://alistair.cockburn.us/Collaboration+Cards>

http://alistair.cockburn.us
mailto:totheralistair@aol.com
http://www.ics.uci.edu/~corps/phaseii/OlsonOlson-DistanceMatters-HCIJ.pdf
http://www.forbes.com/sites/ekaterinawalter/2013/12/23/how-to-reduce-stress-and-increase-internal-collaboration-in-the-workplace/
http://www.forbes.com/sites/ekaterinawalter/2013/12/23/how-to-reduce-stress-and-increase-internal-collaboration-in-the-workplace/
http://www.forbes.com/sites/ekaterinawalter/2013/12/23/how-to-reduce-stress-and-increase-internal-collaboration-in-the-workplace/
https://hbr.org/2007/11/eight-ways-to-build-collaborative-teams
http://alistair.cockburn.us/Collaboration%3a+the+dance+of+contribution
http://alistair.cockburn.us/Collaboration%2c+the+Dance+of+Contribution%2c+raw+notes
https://www.youtube.com/watch?v=GVJL9oXgsAA
http://alistair.cockburn.us/Collaboration+Cards

8 CrossTalk—January/February 2016

SOFTWARE - A PEOPLE PRODUCT

Introduction
Four years ago in this Journal I wrote:
“Today when the Navy needs next generation software for its

submarine sonar systems, defense contractors are not deploying
hordes of automatons to the Pentagon to gather requirements,
design the software, build the prototype, make it ready for produc-
tion, and then support it through operations and maintenance.
It still comes down to people, and I submit it will come down to
people for a long time to come. Even in the far out future, as parts
of this chain are automated, people will be needed to intercede,
because software is not perfect, and problems always arise. So
if one’s ability to overcome software challenges fundamen¬tally
comes down to people, the question becomes, ‘How do I get the
most out of my people?’ This will be the focus of this article.”

Indeed, not much has changed on that front. There may indeed
come a time when humans are removed from the Software
Development Life Cycle (SDLC) in significant measure. But in
the foreseeable future, humans remain key to software systems
development. Therefore, emphasis should be placed on how we
maximize both the potential and productivity of what is in fact the
most critical element of the SDLC. With this in mind, this article
will examine how do we enhance the quality of software talent.
And how do we improve innovation, training, and motivation when
it comes to human capital.

Attracting Talent
At a macro level, in the Aerospace and Defense Industry (A&D),

we need to improve our ability to attract talented individuals who
pursue careers in computer science, cybersecurity, and related
fields. This is particularly challenging in an era where Google and

The Capability Conundrum:
Creating Constructs for
Unleashing the Power and
Potential of Your Most
Important Resource
Jonathan Powell, UMBC and CACI

Abstract. In the foreseeable future, humans remain key to software systems
development. Therefore, emphasis should be placed on how we maximize both
the potential and productivity of what is in fact the most critical element of the
Software Development Life Cycle (SDLC).

Facebook are booming, and offer to college graduates the prom-
ise of riches and the opportunity to work on cutting edge technol-
ogy and innovation. While the landscape is challenging, is doesn’t
have to be daunting. In certain sectors of A&D (parts of Defense,
for example) there may be opportunities to expose prospec-
tive candidates to new technologies. However, what A&D really
needs to do in order to make substantial gains in attracting and
retaining top talent is “hook” them early. This is done by getting
them involved doing mission work. For many people, the value of
meaningful work outweighs money, new technologies, and other
factors. And it is hard to get more meaningful than supporting our
Nation’s work catching bad guys and terrorists. There are a whole
host of other meaningful areas in A&D as well, not just limited to
National Security or Defense. Exposing our young talent to these
areas and “setting the hook,” imbuing them with the thrill of pursu-
ing something higher than themselves, is what we’re after. The
characteristics of this work are where we have an advantage over
many commercial players. The younger the age where the hook is
set, the greater the chance of inspiring an enduring, even lifelong
motivation to serve in mission oriented roles. This can be done
through College Internships, CO-OPs, and the like. But younger is
better, even offering internships at the high school level or educa-
tion and exposure opportunities at ages younger than high school
are important. This is especially true since the Facebooks of the
world have an inherent advantage with their name brand and
clout, and often the important and interesting mission work we
perform is unknown to the general populace. Today, we in A&D
have the opportunity to go for the “two-fer” – not only entice the
younger generation with the attraction of “cool” mission-oriented
work, but link this work to the “cool” technologies in the market or
coming into the market, positively impacting the mission. A perfect
example of this is 3-D Printing, and the revolution in design it is
sparking. Take a kid who’s good with computers, knows about
3-D Printing because 3-D Printing is used to build cool custom
Lego parts, and introduce him or her to the cool applications that
are being used in the Defense community, and bingo – game, set,
match. And if that kid doesn’t “bite,” others will, and at a greater
rate than through the traditional model of competing with Silicon
Valley and others attempting to hire these students after they’ve
graduated college. One other point for consideration here – the
world has changed so now young talent can go work for a “cool”
company and still have a mission focus (look at what Amazon is
doing for the Intelligence Community). I would expect that the
increase in commercial players in mission oriented work will con-
tinue – DoD has even made this a point of focus by standing up
a Silicon Valley office. This is a positive development, and will only
help get the word out on the important work and opportunities
that exist in the A&D sector. This means traditional A&D players
will need to work harder and come up with different innovations to
continue to spark mission interest in youth in order to successfully
compete for talent against non-traditional players in the space.

Innovation and Motivation
So the conversation still begins and ends with people. Not as

pithy statements or some platitude, but a compass to follow. If
the organization makes hiring and retaining the right talent its
true guiding light, then innovation can surely follow. While having

CrossTalk—January/February 2016 9

SOFTWARE - A PEOPLE PRODUCT

CALL FOR ARTICLES
If your experience or research has produced information that could be useful to others,
CrossTalk can get the word out. We are specifically looking for articles on software-

related topics to supplement upcoming theme issues. Below is the submittal schedule for
the areas of emphasis we are looking for:

CMMI - The Agile Way
Jul/Aug 2016 Issue

Submission Deadline: Feb 10, 2016

Supply Chain Risks in Critical Infrastructure
Sep/Oct 2016 Issue

Submission Deadline: Apr 10, 2016

Agile Methods
Nov/Dec 2016 Issue

Submission Deadline: Jun 10, 2016

Please follow the Author Guidelines for CrossTalk, available on the Internet at
<www.crosstalkonline.org/submission-guidelines>. We accept article submissions on

software-related topics at any time, along with Letters to the Editor and BackTalk. To see
a list of themes for upcoming issues or to learn more about the types of articles we’re

looking for visit <www.crosstalkonline.org/theme-calendar>.

knowledgeable and skilled resources in place is a foundation, by
itself it is not enough. The organizational culture must encour-
age and enable innovation. Policies and procedures can support
innovation – for example, giving people free time at work “off
the clock” to innovate, experiment, and think. These policies and
procedures are especially needed in professional services orga-
nizations where there’s usually not a formal R&D organization, in
which staff is formally allocated significant time to pursue special
projects and experiments. Financial incentives can help entice
employees to come up with new ideas and bonuses and the like
for ideas that are reviewed and accepted could be codified in
policy. However, perhaps the single most important determinant
in promoting an organization where innovation thrives is through
setting the conditions for open and honest communications. This
has to start with the leader of the Organization – His/her behav-
ior will permeate all aspects of how business is done, and either
positively or negatively impact the “Corporate Culture,” defined
as “The way people behave from moment to moment without
being told” [1]. An Open and Honest Culture, often referred to as
“transparency,” has a multiplier effect, positively impacting not just
innovation, but also morale. Joyce Russell, Vice Dean at the R.H.
Smith School of Business writes, “When a firm does not have
trust or transparency, not only are there employee problems (low
morale, productivity, commitment and loyalty), but also employees
will undoubtedly pass that along to their clients or customers by
treating them poorly. On the other hand, firms with a transparent
culture are more successful since employees feel free to come
up with more creative solutions, they share issues before they
become major problems, and they are more engaged, motivated,
and productive at work” [2].

Note earlier I wrote knowledgeable and skilled resources, not
necessarily what’s coined as “experience” (i.e. number of years
of service). This is a bias, particularly in A&D, where experience
can be viewed as a prerequisite or barrier to entry, instead of just

one piece of the individual’s mosaic. For certain functions, there
may be a benefit in having “experience” act as a gate-keeper prior
to contribution, but innovation is not one of them. Case in point
– some senior engineers in our intelligence sector wrestled with
a thorny issue for months, without finding a solution. Around that
time, in came a couple of Virginia Tech Co-Ops and they literally
had the problem solved in a couple of weeks. Why? Were they
smarter? Better educated? No and No. The answer simply came
down to the fact these two individuals had a completely different
way of looking at things and brought that lens to the problem,
yielding a rapid breakthrough. This is a single vignette, but its
implications are telling. Silicon Valley recognizes this fact, and no-
toriously does not give the “gray hair” any more credence than the
new kid on the block. It is the best idea that matters and the one
Silicon Valley and the market rewards. More of this attitude needs
to be injected into A&D. In fact, this sort of cross pollination of
talented millennials and younger generations with the established
“gray hairs” is needed if A&D is to stay viable.

Training
For Cyber Security training, there are two facets. First, recogni-

tion of the fact there are plenty of well-trained folks out there.
But often times, these folks can’t be hired in A&D because of
barriers (for example, inability to get a security clearance because
of some disqualifying item from the past) or they have no interest
in working within the A&D arena – the white hat or ethical hacker
may be a category of individual who’s not necessary inclined to
work in the A&D space because they may perceive entities in this
space as being stuffy, bureaucratic, etc. Organizations like the FBI
are making changes in their clearance processes, to widen the
aperture of qualified candidates who can apply and be accepted.
In addition to looking at policies and procedures like the FBI is
doing, organizations can attempt to be innovative. For example, an
A&D company may elect to form an independent Skunk Works

http://www.crosstalkonline.org/submission-guidelines
http://www.crosstalkonline.org/theme-calendar

10 CrossTalk—January/February 2016

SOFTWARE - A PEOPLE PRODUCT

subsidiary, possessing a Google-like entrepreneurial bent and
freedom, that talented individuals like the ethical hacker may be
enticed to join. This can be challenging, because the organization
has to derive a way to get the technical gems out of the skunk
works and into the MILSPEC world of the end user. But where
there are risks, there are rewards, and the potential rewards for
successfully implementing such model could be huge for the A&D
firm. Second is the case where training is in place and needs to
be improved. Of course, many of today’s experts in Cyber Security
are self-taught or learn through non-traditional means. There
ought to be a way to recognize the talents these people bring to
the table. So today where a degree or certification is required,
instead look at experiential or other substitutes. The Army is es-
tablishing a Cyber Branch (an entire field, akin to Infantry, Artillery,
etc.). They should give serious consideration to non-traditional
means to fill this branch, especially since they need to get going
and reach critical mass of personnel immediately. So the tried and
true ASVAB exam, and picking those who score highest for some
form of follow-on training, won’t get it done. However, what could
work is offering bonuses to resources with a proven skillset (for
example, network penetration resources, hackers, etc.) without
barriers (i.e. not making a degree, certification, etc. a require-
ment), and have the entry procedure involve passing a one-on-
one interview with a slate of known cyber experts to see if the
resource really does have the skillset they portray. There’s a lot of
talent literally sitting in the basement of homes across America
(ala the classic movie ‘War Games’) just waiting to be tapped, and
the old pipeline approach simply won’t get it done. In situations
where training is needed and is provided, one enhancement has
to be increasing the hands on, in-person elements. Cybersecurity
is a space that requires on-the-job-training (OJT), where one
can learn side-by-side with an experienced mentor or have the
opportunity to experiment in a lab environment. I’ve heard numer-
ous complaints about college or other offerings possessing high
lecture content and low hands-on aspects, thus resulting in insuf-
ficient learning. Generally, anything that can be done to increase
the hands-on aspects of training will improve the quality of the
training and the curriculum. Note, here I am talking about the
Doers – the Network defense, Pen Testers, Ethical Hackers, etc.
Classroom and lecture are fine for policy makers, management,
etc. But A&D is in dire need of Doers, and the way to increase
the real pool of doers (different than the perceived pool of do-
ers – those with certifications and degrees but aren’t capable of
performing hands on Cyber Security functions) is to ramp up the
hands on aspects of training. There’s not a need to be prescrip-
tive in this regard. Just as long as the hands get on the keyboard
in engaged and meaningful work, under the tutelage of someone
who knows what they’re doing, the learning will occur and most
importantly, stick. And once this new pipeline of effectively trained
folks is in place, one benefit is the assurance more of these folks
will be effective in their roles sooner, versus the current scenario
where people with degrees and certs are hired, but a significant
portion are subsequently shown the door because they weren’t
the Doer they were perceived to be.

Conclusion
Software remains a product which is reliant upon human capi-

tal. Action needs to follow in order to nurture this critical resource,
especially in sectors like A&D, if it is to remain viable in the future.
While some companies and areas of government are making
steps in adjusting the frameworks for attracting, retaining, training,
and motivating software talent to meet current needs and those
of the future, not enough is being done. As a first principle, let’s
take a look at our existing organizations, and ask ourselves how
do we establish the conditions to harness and unleash the true
array of human capital already available and bring these capabili-
ties to bear. MIT Professor Alex Pentland sums this up nicely.

 “It is not simply the brightest who have the best ideas; it is
those who are best at harvesting them from others. It is not only
the most determined who drive change; it is those who most fully
engage with like-minded people. And it is not wealth or prestige
that best motivates people; it is respect and help from peers” [3].

CrossTalk—January/February 2016 11

SOFTWARE - A PEOPLE PRODUCT

REFERENCES
1. See <http://fortune.com/2015/03/05/perfect-workplace/>
2. See <http://www.washingtonpost.com/news/capital-business/wp/2015/04/02/

career-coach-the-importance-of-being-more-transparent-at-the-office/>
3. See <http://fortune.com/2015/03/05/perfect-workplace/>

www.facebook.com/
309SoftwareMaintenanceGroup

Like

Send resumes to:
309SMXG.Recruiting@us.af.mil

or call (801) 777-9828

Hill Air Force Base is located close to the
Wasatch and Uinta mountains with skiing, hiking,

biking, boating, golfing, and many other
recreational activities just a few minutes away.

Become part of the best and brightest!

The Software Maintenance Group
 at Hill Air Force Base is recruiting
 civilians (U.S. Citizenship
Required). Benefits include paid
vacation, health care plans, matching
retirement fund, tuition assistance,
paid time for fitness activities, and
workforce stability with 150 positions
added each year over the last 5 years.

Engineers and Computer Scientists

H i r i n g E x p e r t i s e

Jonathan W. Powell, CGFM, PMP, Secu-
rity+, is an Adjunct Professor at UMBC
and a Senior PM at CACI. A for¬mer sub-
marine officer, Mr. Powell has led complex
engagements for military, federal, and intel-
ligence agencies. His articles have been
published in PM Network and Con¬tract
Management, respectively. Mr. Powell
serves on the Board of the Montgomery
County Revenue Authority, where he is a
member of its finance committee. He holds
a B.S. from USNA and an MBA from the
University of Maryland.

E-mail: jopowell@caci.com

ABOUT THE AUTHOR

http://fortune.com/2015/03/05/perfect-workplace/
http://www.washingtonpost.com/news/capital-business/wp/2015/04/02/career-coach-the-importance-of-being-more-transparent-at-the-office/
http://www.washingtonpost.com/news/capital-business/wp/2015/04/02/career-coach-the-importance-of-being-more-transparent-at-the-office/
http://fortune.com/2015/03/05/perfect-workplace/
mailto:309SMXG.Recruiting@us.af.mil
http://www.facebook.com/309SoftwareMaintenanceGroup
mailto:jopowell@caci.com

12 CrossTalk—January/February 2016

SOFTWARE - A PEOPLE PRODUCT

Introduction

“100% of everyone’s time should be taken up by projects.”
-Tom Peters, Circle of Innovation

Popular theories about the Tragedy of the Commons hold that
government or organizational intervention and private prop-
erty are the only effective methods to prevent finite resources
from being ruined or depleted. This parable was popularized by
wildlife biologist Garrett Hardin in the late 1960s, and was em-
braced as a principle by the emerging environmental movement.

Indiana University professor Elinor Ostrom won the Nobel
Prize for Economics for her theory that cooperative behavior
greatly boosts the legitimacy of the commons as a framework
for solving our social, environmental and personal advancement
problems. Dr. Ostrom died in June, 2012 with the distinction of
being the first and only woman to win the prize, although never
formally trained in economics (she was technically a political
scientist). Over many decades, Ostrom has documented how
various communities manage common resources—grazing lands,
forests, irrigation waters, fisheries—equitably and sustainably
over the long term. “When local users of a forest have a long-
term perspective, they are more likely to monitor each other’s
use of the land, developing rules for behavior,” she cites as an
example. “It is an area that standard market theory does not
touch [2].”

Hardin himself later revised his own view, noting that what he
described was actually the Tragedy of the Unmanaged Com-
mons. Ostrom’s research refutes the Tragedy concept with the
real life experience from places like Nepal, Kenya and Guate-
mala. A classic example of this is an acequia, a centuries-old
tradition of a cooperative irrigation in New Mexico and Colo-
rado where the small flow of water available for agriculture is
allocated by the community as a whole through a democratic
process.

The Tragedy of
the Commons:
Establishing a Strategic
Project Management
Office (PMO)
Peter D. Morris, PMP, PMI-ACP

Abstract. The Tragedy of the Commons is a dilemma arising from a situation in
which multiple individuals, acting independently and in their own self-interest, will
ultimately deplete a shared limited resource, even when it is clear that it is not in
the group’s long-term interest for this to happen [1].

The Tragedy of the Commons might be equally applied to
common project management practices where individual proj-
ects are siloed, acting almost as separate entities in organiza-
tions that would benefit from cooperative behavior, long-term
perspectives and the development of rules for behavior. Limited
project resources such as people, funding, equipment, facili-
ties, tools, network capacity and expertise replace lands, forests
and water, but are no less important to the success of a project
portfolio.

As a newly minted project manager with the DISA Joint Spec-
trum Center (JSC) back in the late eighties, I sought out the
one PM most admired for her estimation skills. I asked Elissa
what was her process? She said she simply asked her developer
how long it would take to develop the software, then tripled that
number, explaining that developers tend to estimate only their
own time (which was about one-third of the total lifecycle time)
to the exclusion of planning, requirements, testing, release and
documentation activities. While comprehensive studies later
confirmed that the development stage typically takes up 35% of
the total [3], it would have been nice to have a common reposi-
tory maintained by a PMO to discover this best practice. Much
like the Commons, where challenges are limited to physical
resources, organizations need a central entity to support project
management. It would have also been helpful at the JSC to have
a PMO where training, coaching and information were available
in configuration management, scheduling, metrics, monitoring,
reporting and management of risk, issues and decisions. The
challenge for any successful PMO, as with the Commons, is to
provide these resources and to prove without doubt that the
project manager will benefit from similar PMO services.

Most organizations have established a number of groups,
programs, initiatives, meetings and activities targeting project
management control and excellence. These may include struc-
tures dedicated to learning and applying project management
principles, and various status meetings and retrospectives where
progress, quality, budgets, metrics, risks, issues and other impor-
tant subjects are discussed and documented. The primary goal
is to promote solid project management processes, methodol-
ogy and culture. As companies begin to recognize the favorable
effects that project management has on profitability, emphasis
is now being placed on achieving professionalism in project
management using the project office concept. Even with new
process improvement practices in place, maturity and excellence
in project management does not occur simply by using project
management over a prolonged period of time. Rather, it comes
through strategic planning for both project management and the
project office [4]. Or to paraphrase Dr. Ostrom, when projects
have access to limited organizational assets, project-level strate-
gic planning with a long-term perspective will allow for monitor-
ing of overall objectives, common tools and services, project
metric and other repositories, dashboards, facilitators to support
detailed and predictable planning with desired results, new and
more efficient estimation techniques, cost effective organization-
al training and the development of rules for behavior. Success-
ful PMOs realize that it’s not enough just to deliver value—they
make the business value of the PMO known throughout the
organization, consistently and often [5].

CrossTalk—January/February 2016 13

SOFTWARE - A PEOPLE PRODUCT

Table 1. Importance of 27 PMO functions grouped into factors; n= 500, Hobbs & Aubry [2007]

Background
While organizations currently monitor or measure numerous

project activities, the only clear way to have a global sense of
how projects are doing is to have a defined project focus point:
the Project Management Office (PMO). A Gartner Group study
[6] predicted that companies that fail to establish a formal PMO
will experience twice as many project delays, overruns and
cancellations as will companies with a PMO in place. A more
recent Gartner study states “It brings structure and support to
evaluating, justifying, defining, planning, tracking and executing
IT modernization efforts. It also encourages more business-side
participation in IT modernization efforts and in the resolution of
conflicts caused by limited resources and other constraints [7].”
If Steven Covey is right, and interdependence is the name of the
game, then the PMO is the way for people throughout the orga-
nization to recognize and capitalize on their interdependencies,
to best manage and transfer project management knowledge,
and to get into step with each other for the benefit of all [8].

Once repeatable and managed processes are established
through Business Process Initiatives (BPI) and continuous
process improvement programs, initiation of a PMO would seem
to be the logical next step to ensure these programs are built to
last and that positive organizational innovations continue. Using
the theories of Jim Collins and other researchers, this article will
present a justification for the establishment of a strategic PMO,
along with a systematic approach to create and sustain project
management value through an institutionalized PMO function.

PMO Concepts

“The way a team plays as a whole determines its success.
You may have the greatest bunch of individual stars in the
world, but if they don’t play together, the club won’t be worth
a dime.” -Babe Ruth

Although companies have employed PMOs since the mid- to
late 1990s, the vast majority of PMOs have either been recently
created or restructured [4]. A PMO’s effectiveness and suc-
cess depends on choosing which functions to implement, and
adapting them and adjusting them to fit the organization’s needs
[9]. In a recent 3-phase program, it was determined that the
relative differences in importance of various individual functions
“reinforce the need to adapt to the organizational and strategic
context when deciding which functions to include within the
mandate of a particular PMO [10].” This research provides the
most extensive list of the functions PMOs perform in organiza-
tions today. The 500 respondents in the survey were responsible
for a variety of roles, but most were project managers or PMO
members. Respondents ranked the importance of each PMO
function on a scale of 1 to 5 (not important to very important),
and the study ultimately identified 27 functions that PMOs can
perform. Factor analysis grouped these into six distinct groups
as indicated in Table 1. Table 2 lists these same PMO functions
in decreasing order of industry importance, according to the
same survey. While this order of importance will likely change
for a given organization (e.g., a lessons learned or risk data-
base might be closer to the top than the bottom of the list), it
is instructive to note how industry as a whole prioritizes these
functions.

Monitoring & Controlling Project
Performance

• Report project status to upper
management

• Monitor & control of project
performance

• Implement & operate a project
information system

• Develop & maintain a project
scoreboard

Development of Project Management
Competencies & Methodologies

• Develop & implement a standard
methodology

• Promote project management
• Develop competency of personnel,

including training
• Provide mentoring for project

managers
• Provide a set of tools specific to

project needs

Multiproject Management

• Coordinate between projects
• Identify, select and prioritize new

projects
• Manage one or more portfolios
• Manage one or more programs
• Allocate resources between projects

Strategic Management

• Provide advice to upper
management

• Participate in strategic planning
• Benefits management
• Network & environmental scanning

Organizational Learning

• Monitor & control PMO performance
• Manage project documentation

archives
• Conduct post project reviews
• Conduct project audits
• Implement & manage lessons

learned database
• Implement & manage risk database

Other Functions

• Execute specialized tasks for
project managers

• Manage customer interfaces
• Recruit, select, evaluate and

determine salaries for project
managers

14 CrossTalk—January/February 2016

SOFTWARE - A PEOPLE PRODUCT

In Good to Great [11] Jim Collins suggested that sustaining
value generated from organizational investments requires both
“preserving the core” and “stimulating progress.” “Preserving
the core” explains why appropriate on-boarding of experienced
project managers is so important. His philosophy of first defin-
ing “who” before determining “what” speaks directly to the
importance of preserving the core ideology as an anchor point
while stimulating change, improvement, innovation and renewal.
When we maintain a steady culture of discipline, we can give
our employees more freedom to experiment and find their own

PMO Function % of PMOs Where Important

Report project status to upper management 83%

Develop & implement a standard methodology 76%

Monitor & control of project performance 65%

Develop competency of personnel, including training 65%

Implement & operate a project information system 60%

Provide advice to upper management 60%

Coordinate between projects 59%

Develop & maintain a project scoreboard 59%

Promote project management within organizations 55%

Monitor & control PMO performance 50%

Participate in strategic planning 49%

Provide mentoring for project managers 49%

Manage one or more portfolios 49%

Identify, select and prioritize new projects 48%

Manage project documentation archives 48%

Manage one or more programs 48%

Conduct project audits 45%

Manage customer interfaces 45%

Provide a set of tools specific to project needs 42%

Execute specialized tasks for project managers 42%

Allocate resources between projects 40%

Conduct post project reviews 38%

Implement & manage lessons learned database 34%

Implement & manage risk database 29%

Benefits management 28%

Network & environmental scanning 25%

Recruit, select, evaluate and determine salaries for project managers 22%

	Table 2. Identified PMO functions in decreasing order of industry importance, Hobbs & Aubry 2007

best path to results. It also explains why PMOs should not get
distracted from their primary focus (their hedgehog principle—
see what is essential and ignore the rest), by taking on other
responsibilities not part of their primary charter.

The PMO must stay focused on managing projects in order
to continue to add value to the company. This in no way infers
stagnation or neglecting core principles. As Collins observed, “If
you successfully apply these ideas, but then stop doing them,
you will slide backward…the only way to remain great is to
keep applying the fundamental principles that made you great.”

CrossTalk—January/February 2016 15

SOFTWARE - A PEOPLE PRODUCT

Table 3. Benefits of a Project Management Office

Collins’ “Stimulate progress” theorem has application to several
PMO-related issues, including developing project managers by
having them take on more challenging roles or different types of
projects, periodically updating or refreshing the project manage-
ment methodology, or adding new functions to the PMO that en-
hance its ability to manage projects on the organization’s behalf.

The Project Office: 1990s and 2000s
Project management competency represents important intel-

lectual property, and therefore must be managed wisely. This
responsibility is most appropriately that of the PMO [4]. After
reviewing the roles and responsibilities of the project office over
several decades, Kerzner listed PMO benefits in the 1990s
and 2000s. As indicated in Table 3, the purpose of a PMO
has changed with the business environment over the past two
decades.

With the dawn of the 21st century, the PMO became com-
monplace in the corporate hierarchy. While the majority of PMO
activities had not substantially changed, there was now a new
mission for the PMO:

• Responsibility for maintaining all intellectual property
related to project management

• Active support for corporate strategic planning

In the last decade the PMO began servicing the corporation,
especially the strategic-planning activities, rather than focus-
ing on a specific customer. The PMO was transformed into a
corporate center for control of project management intellectual
property. This was a necessity as the magnitude of project
management information grew almost exponentially throughout
organizations.

Note that the newer benefits of Table 3 relate specifically to
project management processes and procedures. It is absolutely
essential for an organization to establish mechanisms (intranet,
project team sites and databases, other information systems)
to capture this data and then disseminate the data to various
stakeholders. Since much of this information is important for
both project management and strategic planning, strategic plan-
ning for the PMO is imperative.

1990 – 2000 2001 – 2007

• Accomplishing more work in less time with fewer
resources and without any sacrifice in quality

• An increase in profitability
• Better control of scope changes
• More efficient and effective operations
• Better customer relations
• Better risk identification and problem solving
• An increase in quality
• A reduction in power struggles
• Better company decision making
• An increase in business and becoming more competitive

• Standardization of operations
• Company rather than silo decision making
• Better capacity planning
• Quicker access to higher-quality information
• Elimination or reduction of company silos
• More efficient and effective operations
• Less need for restructuring
• Fewer meetings that rob executives of valuable time
• More realistic prioritization of work
• Development of future leaders

	

The Project Office: 2008-Present
Since the seminal work of Hobbs & Aubry no survey has

come close to analyzing anything close to 500 respondents.
Forrester Research came close, conducting interviews with 40
PMO leaders and executives. In their four key findings they note
[12]:

• PMO leaders now have a seat at the executive table,
regarded as members of executive management

• PMOs are a vital part of the strategic planning team,
providing feedback about performance, labor costs and cus-
tomer feedback

• PMOs build significant learning and development
programs to mature project management skills

• PMOs drive success through alignment with business
stakeholders and operational excellence

By far the most influential studies regarding the challenges
and opportunities for the modern PMO were recently published
by Gartner on the Nexus of Forces regarding the convergence
and mutual reinforcement of mobile, social, cloud and informa-
tion [13, 14]. This research identifies cloud computing as the
glue for all the forces of the Nexus, enabling social and mobile
interactions to happen at scale, and information to be freed from
internal systems. A summary of PMO functions resulting from
the Nexus is given in Table 4. While the 21st century functions
noted in Table 3 continue to be important, more and more com-
panies are redirecting their PMO expertise, tools and techniques
at clients and external stakeholders, hoping to bolster client
satisfaction with increased productivity and quality. Whether this
is a good idea is debatable and only time will tell. But we must
remember that the PMO isn’t science, its business; rational
thought doesn’t always apply.

DTE Energy: A Case Study
A good example of a client-facing PMO can be found in the

Project Management Institute’s (PMI) selection of DTE Energy
as a finalist for their 2014 PMO of the Year Award [15]. Detroit
power company DTE Energy was upgrading Detroit’s aging
electrical infrastructure and improving service in long-neglected

16 CrossTalk—January/February 2016

SOFTWARE - A PEOPLE PRODUCT

areas. The PMO developed two centers of excellence, one
responsible for providing resources and the other for ensuring
quality. These centers provided oversight on standards, prac-
tices, coaching, mentoring and assessments, resulting in project
delivery on time, on budget, with the required scope. While
these are all standard early 21st century PMO functions, they
also communicated outcomes to stakeholders, implemented a
detailed change process to evaluate revisions to scope, budget
or requirements, and facilitated the redeployment of capital as
necessary. Way back in the early 2000’s these functions were
handled at the siloed project level. As DTE has shown though,
the new nimble PMO is capable of flexible configurations to
enact necessary changes and to collaborate strategically.

Confronting the Brutal facts and Reality

“Truth is incontrovertible, malice may attack it and ignorance
may deride it, but, in the end, there it is.” -Sir Winston Churchill

Collins explained that it is vitally important for organizations to
understand the brutal facts of its environment and its problems,
but to never lose faith in the organization’s ability to win out
in the long term. As he noted, Winston Churchill never failed
to confront the most brutal facts. During WWII he created an
entirely separate department outside the normal chain of com-
mand, the Statistical Office, with the principal function of feed-
ing him—continuously and unfiltered—the most brutal facts of
reality. He slept soundly knowing these facts. Recent research
suggesting best organizational practices for project manage-
ment similarly suggests that the best way to improve project
management is to have the “difficult conversations” necessary
to keep projects healthy [16]. To take this a step further, we
must retain faith we will prevail in the end and confront the most
brutal facts of our current reality (Collins’ Stockdale Paradox).

The PMO should ensure that the brutal facts associated with
a project are recognized in an effective and timely manner, so
that issues and risks can be addressed and corrective action
taken. Unaddressed risks and issues are compounded in a
multi-project environment, and a central office for handling of

2008-2014

• Hide complexity under a layer of simplicity
• Foster ideas that make technology transparent while

enhancing human behavior
• Empower knowledge workers to share ideas
• Create lasting relationships between users and cloud-

based ecosystems
• Develop a discipline of innovation through information by

harnessing the information in social media
• Maintain flexible IT configurations

• Transition from digital marketing to digital business
• Focus on consumer expectations through contextual

content delivery, behavioral analysis and location
awareness

• Facilitate an agile response to changes and innovation in
the workplace, disruptive trends, revised roles and
frequent changes in providers

• Plan for a future where the cloud-led model changes the
nature of applications and opens digital business
opportunities

Table 4. New Functions of a Project Management Office Gartner, 2014

various problems will ensure that personnel feel safe to report
and act on their concerns.

PMO Risk Management Considerations

“You’ll miss 100% of the shots you never take.”
-Wayne Gretzky

• Value. Issues of value and the contribution or lack of
contribution to project performance are key to the perceived
performance and ultimately to the legitimacy of the PMO.
Poor-performing PMOs are seen as contributing little to project
performance, while highly valued PMOs are seen as making
significant contributions to performance. The ability to show
contribution to performance is critical.

• Cost. While many companies see fit to establish large
and costly PMOs made up of a dedicated full-time team, the
administrative cost of a PMO should be minimal. The key is to
establish a culture wherein personnel devote their time and
energy toward continuous process improvement in addition to
their compensated level of effort. The PMO should be staffed
with Level 5 leaders who target the success of the company
over their own personal advancement. PMO membership should
be considered an honor and a privilege to serve, with effort
expended without additional compensation.

• Mandate. Organizations choose from a number of
possible roles or functions when deciding on the mandate to
give a PMO. They also choose between a PMO in a support role
with little or no authority and a PMO with considerable decision-
making power. Senior Management will need to form a balance
between these roles and functions that establishes an efficient
and effective PMO conducive to business culture and values.

• Best Practices. A Lessons Learned database is
vitally important to any organization for a number of reasons.
As a key mechanism for cross-project communication, it allows
for sharing of best practices and fosters continuous process
improvement. However, we often learn more from what we did
wrong than what went right on a project (luck often enters into
success). We should ensure such a database is not only useful

CrossTalk—January/February 2016 17

SOFTWARE - A PEOPLE PRODUCT

(i.e., searchable, organized by category, etc.), but is not viewed as
a ‘failure information database’. Internal marketing and commu-
nication are required to ensure this information is understood to
be used for improvement and not blame.

Agile vs. the PMO

“Agile methods derive much of their agility by relying on the
tacit knowledge embodied in the team, rather than writing the
knowledge down in plans.” -Barry Boehm

“Strange women lyin’ in ponds distributin’ swords is no
basis for a system of government. Supreme executive power
derives from a mandate from the masses, not from some farci-
cal aquatic ceremony.” -Monty Python and the Holy Grail

Agile development is characterized by frequent rapid delivery
of useable software by self-organizing teams with regular adap-
tation to change [17]. Working software is the principal measure
of progress; and increased throughput (velocity), by reduction of
bottlenecks, is the primary measure of efficiency. Such methods
are not very conducive to authoritarian control by the standard
PMO model.

In Agile, just as in chess and in the PMO, there are multiple
decisions and compromises to be made. By the second chess
move there are 72,084 possible games; by the 3rd move, 9 mil-
lion, and by the 4th move, 318 billion. There are more possible
games of chess than there are atoms in the universe [18]. Simi-
larly, the imposition of standard processes by a strategic PMO
on Agile projects can lead to multiple responses and disastrous
effects. Typically, when a PMO attempts to develop and imple-
ment a standard methodology, force common documentation
archives or standardize post project reviews on an Agile project,
the response is something like “Thank you very much, but we
already got one, and it’s very nice.”

In a recent unscientific blog that I posted (there is very little
research in this area), I received 72 comments on this subject
from both Agile PMs and Agile Practitioners. Most PMs thought
that a PMO could, if managed properly, benefit Agile teams.
However, most Agile Practitioners not only viewed the PMO as
the Evil Empire, but considered not only the PMO but all project
managers to be waste, bottlenecks and a hindrance to velocity.
Many questioned whether either should be allowed to breathe
oxygen in an Agile environment.

Currently many PMOs believe that Agile is a blip on the
process radar that will someday go away. Agile isn’t going any-
where, mainly because customers love frequent deliveries (call
it the Amazon conundrum). PMOs need to understand the Agile
methods being used in their company, and manage strategic
processes and decisions accordingly. Somebody’s got to be the
hero; it won’t be the Agile Practitioner who has a manifesto and
usually productivity metrics to back up their increase in produc-
tivity and client satisfaction. The successful PMO will be the one
that understands the difference between a project schedule
and an Agile roadmap, osmotic communication and talking, and
minimal documentation vs. maximum invisible documentation.
Remember that while there are more possible chess games, or

decisions to be made in a technical environment, than there are
atoms in the universe, if you make a mistake there is nearly an
infinite amount of ways to fix it.

Conclusion

“You don’t lead by pointing and telling people some place to
go. You lead by going to that place and making a case.”
-Ken Kesey

Research has shown that PMOs are largely new creations in
the corporate world and undergo frequent changes in relatively
short periods [19]. Therefore it should not come as any surprise
if an initial PMO has a short life span before being restructured
or refocused. Effective PMOs continue to add value specifically
by changing and reinventing themselves—as long as they stay
focused on the principle of improving project management.

• Establish a Strategic PMO. A strategic PMO should
be established, along with a systematic approach to create
and sustain project management value through a PMO charter.
There are many types of PMOs, a subject beyond the scope of
this article, but aligning the goals of a PMO with the strategic di-
rection of the company is critical to the success of this venture.

• Create a PMO Charter. A charter recognizes the
existence of a project. The PMO should be treated as a project,
with a charter that describes at a high level the business need,
scope, objectives, deliverables, constraints, assumptions and ap-
provals.

• Use Information Radiators. “Information Radiator”
[20] is an umbrella term for a number of highly visible ways to
display information, including video displays, data summaries
and email newsletters. Typically used in Agile software develop-
ment, it’s an ideal way to inform PMO benefits and services to
stakeholders and to maximize exposure of the PMO. Communi-
cate the potential benefits early and often, supported by metrics
relevant to business objectives.

• Drive Down Decision Making. Dr. Ostrom contended
that individuals and communities could effectively manage their
own collective resources without the intrusion of higher level
authorities. While occasionally tactical decisions at the project
level require coordination with strategic objectives of senior
management, project managers are usually in the best position
to make effective and timely decisions. A Strategic PMO will
allow for collaborative management of project risks and issues
with increased agility by the personnel closest to the action.

• First Who…Then What. A compelling high-level
corporate vision is imperative. As Collins notes, “People are not
your most important asset. The right people are.” Any company
should therefore concentrate on who gets on the PMO bus and
what seats they take before setting a direction for the PMO.

• Staffing with the Right People. Collins again. While
our first inclination may be to search for the most intelligent,
multi-disciplined personnel to staff the PMO, we should search
first for Level 5 leaders who exemplify the key trait of ambition
first and foremost for the company and concern for its success
rather than for one’s own riches and personal renown. These

18 CrossTalk—January/February 2016

SOFTWARE - A PEOPLE PRODUCT

individuals should be self-effacing people with extreme humility
and intense professionalism who will display the fierce resolve
to do whatever is needed to make the company great.

• Teaming: Integrating the Right People. While Col-
lins points out that once you have the right people in the right
seats on the bus, issues such as managing change, motivating
people or creating alignment largely melt away. Here I must
disagree. In a perfect world where you’ve identified the proper
people in the exact proper places I might agree. However, in our
imperfect world we will need to pay special attention, especially
in the initial stages, to assigning PMO members who have previ-
ously shown the ability to work together as a group.

• Foster Innovation through Best Practices. A recent
report from Forrester Research indicates that the most success-
ful PMOs focus on removing obstacles and delivering project
management best practices to the entire company [21]. It’s im-
portant to celebrate our successes and even to document them
in detail for others to learn from. It’s just as important, however,
to focus equal emphasis on learning from those projects that
appear to have run off-course [22].

• Progress Measurement and Continuous Improve-
ment. As the PMO evolves, members must concentrate on the
metrics by which their projects are measured as well as how
process effectiveness is determined. While there must be a
concerted effort to identify processes which require improve-
ment, data collection and indicators (graphs, charts, etc.) must
directly support both project and organizational goals. We can’t
manage what we can’t measure, and unless all the projects in
the company can be held up to the light and compared to each
other, we have no way of managing them strategically, no way
of making intelligent resource allocation decisions, no way of
knowing what to delete and what to add. The PMO will assist in
making these key decisions.

• Start Small. Tables 2, 3 and 4 provide examples of
typical PMO functions in use throughout industry. There will be a
strong inclination to initially load up the PMO charter with all the
company’s perceived problems and desired process improve-
ments. Highly valued PMOs are seen as making significant con-
tributions to performance and, especially in the initial stages, the
ability to show contribution to performance is critical. Once the
PMO is seen to produce some highly visible and useful improve-
ments, however small, personnel will begin to value the PMO
as a mechanism of positive transformation. The PMO charter
can then be revised, incorporating new functions in accordance
with the organization’s strategic goals. Research has shown that
successful PMOs start with a narrow portfolio of projects, and
as project management becomes a more systematic practice,
the PMOs broadened their scope. These PMOs had to demon-
strate value within their first six months of existence to maintain
executive support [23].

• Consensus. It’s important to note that the PMO
serves in an advisory function to the CEO. Therefore, the PMO
should not necessarily seek consensus on every issue, recog-
nizing that consensus decisions are often at odds with intel-

ligent decisions, and that dissenting opinions may well have
importance in the final analysis. The responsibility for the final
decision should remain with the CEO.

• Use Existing Assets to Assure Compliance. Most
PMOs I’ve studied had a tendency to make decisions and
attempt to follow through on implementation on their own.
Unfortunately, as an advisory committee to the CEO they had no
charter to force implementation and, once forced, to determine
compliance. Many organizations employ BPI and Quality Assur-
ance teams with vast experience in implementing change and
ensuring compliance. Upon CEO sign-off, the PMO should use
these teams to full advantage. While maintaining a separate
identity, these teams can be of great value in advancing the
goals of the PMO.

• Select PMO Functions that Make Sense for the
Corporate Culture. Although this paper lists 27 functions in
common use by industry, we must recognize that most compa-
nies are unique. They make a unique product for a unique client
base. While selection of PMO functions will be the responsibility
of the PMO, the following functions may be considered for initial
implementation:

> Report overall and individual project status, issues
 and risks to upper management
> Advise senior management on strategic project initiatives
> Provide coordination between projects, eliminate silos
 and ensure effective communication
> Provide mentoring, coaching and training in project
 management and methodologies
> Allocate resources between projects
> Implement and manage Best Practices and Lessons

 Learned databases to ensure the effectiveness
 of the program

Based on history and accomplishments, most companies
have both great advantages and unique challenges. Continuous
process improvement initiatives, along with the dedication of
talented personnel, should allow most companies to continue
their good to great journey, even in the current economy. The
opportunity exists, however, to improve to an extent that was
previously unimaginable only a few years ago. Establishing and
maintaining a strategic project office will help facilitate and
maintain the corporate transformation to a new level of efficien-
cy, productivity, quality and commitment to excellence.

CrossTalk—January/February 2016 19

SOFTWARE - A PEOPLE PRODUCT

Peter D. Morris, PMP, PMI-ACP is a Pro-
cess Engineering Consultant for INDUS
Technology Inc. under contract to SPAWAR
Systems Center (SSC) Pacific. He has
worked in both the commercial and DoD/
Federal sectors, including several Fortune
500 companies. He has authored numer-
ous technical reports, including publica-
tions for the NSA, DNA, US Army NTC,
USAF Space Command and the SINC-
GARS & JTIDS communications programs.
Mr. Morris has also been instrumental in
establishing successful PMOs at numer-
ous organizations, targeting strategic
Business Process Improvement associated
with Project and Process Management,
Engineering and Project Support enhance-
ments.

E-mail: pmorrispmp@aol.com

ABOUT THE AUTHOR REFERENCES
1. Garrett, H., “The Tragedy of the Commons.” Science Vol. 162 (3859): 1243–1248. 1968.
2. Ostrom, E., Governing the Commons: The Evolution of Institutions for Collective Action, Cam-

bridge University Press, November, 1990.
3. Boehm, B., Yang, Y., et al, Phase Distribution of Software Development, University of Southern

California, 2008.
4. Kerzner, H., Strategic Planning for a Project Office, Project Management Journal, 34(2), 2003.
5. “The State of the Project Management Office (PMO) 2014, pmsolutions, 2014.
6. Booth, Rose. “IT Project Failures Costly, TechRepublic/Gartner Study Finds,” TechRepublic,

2000.
7. “Gartner Says a Project Management Office Can Streamline IT Modernization”, Press Release,

21 July 2008.
8. Crawford, J. Kent, “The Strategic Project Office”, New York, Marcel Dekker, 2002.
9. Hill, G.M., Evolving the Project Management Office: A Competency Continuum, Information

Systems Management, 21(4), 2004.
10. Hobbs, B., & Aubry, M., A Multi-Phase Research Program Investigating Project Management

Offices (PMOs): The Results of Phase 1, Project Management Journal, 38(1), 2007.
11. Collins, J., Good to Great: Why Some Companies Make the Leap and Others Don’t, New York,

HarperCollins, 2001.
12. Strategic PMOs Play A Vital Role In Driving Business Outcomes, Forrester Research, November

2013.
13. The Nexis of Forces: Social, Mobile, Cloud and Information, Gartner Research, 14 June 2012.
14. The Nexis of Forces is Creating the Digital Business, Gartner Research, 3 December 2014.
15. Jones, T., Power Sources: 2014 PMO of the Tear Finalist, PM Network, February 2015, Volume

29, Number 2.
16. Grenny, J., Maxfield, D., & Shimberg, A., How Project Leaders Can Overcome the Crisis of

Silence, Sloan Management Review, 48(4), July 2007.
17. “Principles Behind the Agile Manifesto”, Agile Alliance, Beck, Kent, et al (2001).
18. Victor Allis, Searching for Solutions in Games and Artificial Intelligence, Thesis, University of

Limburg, Maastricht, The Netherland, ISBN 90-900748-8-0.
19. Hobbs, B., Aubry, M., & Thuillier, D., The Project Management Office as an Organizational

Innovation, International Journal of Project Management, 26.
20. Cockburn, A., Agile Software Development, Addison-Wesley Professional, October, 2001.
21. Levinson, M., “Project Management: 5 Characteristics of Transformational PMOs”, CIO Maga-

zine, April, 2011.
22. Julian, J., Cross-Project Learning and Continuous Improvement, Project Management Journal,

39(3), 2007.
23. Visitacion, M., Are You Ready To Transform Your PMO?, Forrester Research, April, 2011.

mailto:pmorrispmp@aol.com

20 CrossTalk—January/February 2016

SOFTWARE - A PEOPLE PRODUCT

Introduction
Open source software can be effectively incorporated into

larger software systems. It is important to understand the origin,
quality and completeness of such software. While the reuse of
software can be cost-effective, it does involve cost. These costs
can be taken into account using standard measurement and
estimation tools based on the completeness of the package and
the structure of the source code. This will help to avoid unex-
pected cost and schedule problems caused by incomplete or
problematic source code acquired via open source. An example
using the SEER for Software [1] modeling tool is used to il-
lustrate this.

Open Source Software Defined
The definition of Open Source software is generally attributed

to the Open Source Initiative [2]. In general terms, it requires the
following (abbreviated) features:

• Free redistribution – no fees or royalties
• Source code (in the preferred form for modification)
• Derived works are permitted
• Limited restrictions on distribution of modified source

code
• No discrimination as to persons or field of use
• License included without requiring re-licensing: not

specific to a product, not restricting other software, and not
technology-specific

This means that open source software is generally available
to be re-used by anyone who requires the capability which it
represents, and for any purpose.

Note, however, that this definition does not include any form
of warranty or support for open source software. Responsibility
for meeting any and all requirements, whether technical or in the
area of reliability, maintainability and availability, rests with the
user of open source software. This caveat also applies to any
security considerations.

Licenses for open source software vary, and need to be ex-

Re-Using Open Source Software in
Your Software Delivery
Karen McRitchie, Galorath Incorporated
Rick Spiewak, The MITRE Corporation

Abstract. Open source software is generally available with few restrictions (de-
pending on license) to be reused by other developers. Reuse of software pres-
ents both potential cost and schedule savings and corresponding risks to both
cost and schedule. The key defining characteristic which distinguishes between
risk and reward in this scenario is the quality of the software to be re-used. Well-
established metrics and best practices in software development can be applied
and assessed when examining open-source software for potential re-use.

amined to make sure that there are no unacceptable terms and
conditions relative to your intended use. Take care to ensure
that these do not conflict with the need to maintain modified
source code without distributing it or require contributing it back
to the original project if this is relevant.

Open Source Projects
There are a number of well-known, widely used open source

projects. These serve as examples of the fact that open source
development can produce viable, reusable products. Key in-
stances include:

• Operating systems based on the Linux kernel (several
variants)

• The Apache web server
• The Eclipse software development environment
• The NetBeans software development environment
• The Java language
• The MySQL database
• The Git version control system
• The JUnit unit testing framework for Java

These and other tools are often used to develop other open
source software, which is commonly available for download or
contribution on web sites such as GitHub [3] or SourceForge
[4]. The overall effect is the creation of a software ecosystem,
in which many developers contribute in a synergistic fashion
to related projects. While this ecosystem is particularly useful
to one-off or research projects which simply need a particular
function in order to reach an end objective, incorporating open
source into products which need to be delivered and sustained
as part of a program of record requires additional consideration.

Acquiring Open Source Software
While there is no direct cost involved in acquiring open source

software beyond the time and effort involved in locating and
downloading it, this doesn’t make it free of cost to use. There
are a number of elements that factor into the ability to re-use
software. These are outlined in Elements of Reusable Software,
below. Missing elements are likely to require additional work in-
cluding additional software development on the part of develop-
ers reusing the software.

As pointed out by Capers Jones [5], “Reuse of code, speci-
fications, and other material is also a two-edged sword. If the
materials approach zero-defect levels and are well developed,
then they offer the best ROI of any known technology. But if
the reused pieces are buggy and poorly developed … software
reuse has the worst negative ROI of any known technology.”

This means that open source software being considered for
reuse should be assessed according to the standards used for

CrossTalk—January/February 2016 21

SOFTWARE - A PEOPLE PRODUCT

new or reused internal development by the adopting organiza-
tion. Because the original developers may not be available to
answer questions or provide direct support, in some respects it
is more important to ensure that the initial quality meets these
standards.

Additional considerations which can improve reusability
include [6]:

• An active online community providing support forums
• Availability of training from authors or third parties
• Availability of paid support from authors or third parties
• Source code licensing which is appropriate for the

intended use

In addition to the above attributes of open source software,
it is important to distinguish the form in which this software is
acquired. Some repositories, such as NuGet [7], are oriented
towards ease of use and keeping current with referenced
projects. This can mean providing pre-compiled components
together with their dependencies. In some cases these compo-
nents represent released and supported products from major
companies. These are not in the same category as open source,
and don’t need to be treated in the same way. In cases where
pre-compiled components are actually related to open source,
the selection criteria may vary. If the pre-compiled components
are released products these may be the appropriate choice un-
less there is a good reason to modify the source.

When acquiring open source software for a program of re-
cord, an approach which provides compiled components should
only be used for products from an approved supplier. In this
case, they should likely be downloaded separately and configu-
ration managed in lieu of obtaining them from the repository
at build time. Source repositories such as GitHub or CodePlex
[8] can be used to acquire source code. Be sure to distinguish
among the various types of available components and select
your acquisition methods accordingly.

Applying Open Source Software
Applying open source software in a program of record re-

quires that the development team assess the completeness and
quality of the open source software under consideration using
the same standards as are required for new or internally reused
development. This means that the developers need to be able to
incorporate the open source software into their development as
if it were part of their original work.

Understanding and Inspection
It is necessary to understand open source software as well

as test it to the same standards used for internal development.
This should include appropriate inspection and testing using
the steps suggested by Capers Jones [9] and listed in Defect
Removal, below. This can serve as an important measure of the
defect potential and quality of the software.

Not all of these steps can be readily applied to software
acquired as open source. On the inspection side particular
attention should be paid to the code, any test cases and static
analysis. Automated tools are readily available to aid in this task,
providing the ability to measure elements such as:

• Conformance to best practices in coding – mea-
sured by static analysis tools, generally specific to particular
language(s) or development environments. Examples include
Cppcheck [10] for C and C++, FindBugsTM [11] for Java and
FxCop [12] or the equivalent Microsoft Visual Studio Code
Analysis [13] tool for Microsoft .NET, C and C++. These tools
report on potential errors in code and identify the potential
consequences. The number of potential errors can be compared
to standards as enumerated [14] by Capers Jones in terms of
potential defect density.

While static analysis does not completely detect all types of
defects, it will provide a good starting point for judging code
quality. When analyzing open source, you may find it necessary
to exclude pre-determined rules in areas such as spelling and
naming conventions. Analysis of code which was not originally
written with these conventions in mind can produce voluminous
errors which will tend to mask the potentially serious defects.
Another type of error which may require manual inspection to
validate is a common rule against catching general exceptions.
Some static analysis tools will flag this even if the exception is
then processed further. Manual inspection can distinguish cases
where exceptions are ignored from those whose processing
doesn’t conform to the analysis tool’s implementation.

• Complexity analysis [15] (most commonly Cyclomatic
complexity) is measured by a variety of tools, and can highlight
the potential for errors due to excessive complexity.

The common rule of thumb used as a test of excessive com-
plexity is that when Cyclomatic complexity exceeds a range of
10 to 15 that the software routine should be refactored in order
to reduce this metric [16]. Other investigators have found that
the probability of a routine or module being fault-prone increas-
es dramatically starting around a measurement of 38, and ap-
proaches a near certainty at 74 and up. Note: manual inspection
can mitigate this, as (for example) lengthy “switch” statements
will raise the complexity measurement. By ensuring appropriate
breaks, not all high-complexity routines will require re-factoring.

• A freeware application such as SourceMonitor [17],
can be used to analyze source code for “quality and quantity.”
This tool includes calculation of Cyclomatic complexity.

• Code reviews should be performed on open source
components which display either a large number of errors
flagged by static analysis or high complexity numbers.

If automated unit tests are included they should be run
against the acquired code. If they are not included provision
should be made for developing them on at least an as-needed
basis, including allocating additional resources for this purpose.
For example, if a defect is found in a particular routine it is
recommended that a test be written which fails (showing the
defect) followed by fixing the defect and re-running the test
to show success. If a particular section of code is found to be
unusually prone to defects, automated unit tests should be
written to exercise the public interfaces, and used to verify that
incorrect results are corrected.

As the authors have shown in a previous article [18], devel-
opment of automated unit tests (AUT) in place of traditional
manual unit testing does not add cost during the development

22 CrossTalk—January/February 2016

SOFTWARE - A PEOPLE PRODUCT

Table 1 – OpenVPN SLOC Count

cycle. However, this model doesn’t apply to AUT developed after
the fact. For this reason, these tests should be developed with
an eye towards appropriate return on investment. In addition to
the consideration above regarding defect prone code, routines
whose correct operation is deemed critical to the application
should be outfitted with AUT as well. One of the unheralded
benefits of this type of test is that it serves as a working
example of how a developer can successfully implement the
underlying functions in new code, which can be a productivity
enhancement.

Each of these aspects can be taken into account in modeling
the potential cost of re-using the open source software under
consideration.

Security Considerations
Additional inspection steps may be needed which specifically

address potential security issues, classified as weaknesses or
vulnerabilities [19]. This generally requires the use of special-
ized tools such as HP’s Fortify, klocwork Insight or Coverity
Code Advisor. These are static analysis tools specifically built to
inspect for potential security problems. All of these support the
languages most commonly found in open source software such
as C++, Java and C#.

If architecture specifications and diagrams or other informa-
tion is not available with open source software it may be advis-
able to allocate resources to generate this by using available
tools which include reverse-engineering capabilities. Examples
include Enterprise Architect (Sparx Systems) and Imagix 4D
(Imagix Corporation).

Cost Modeling
Code reviews should be conducted on selected code samples

both for the purposes of inspection and for familiarization. De-
velopers who intend to incorporate open source software should
expect to become familiar with the code in order to effectively
use, test and troubleshoot systems using the open source code.

In assessing the impact of incorporating open source soft-
ware, an overall estimate of resource requirements can be cre-
ated by applying a model using SEER for Software.

Identify What Needs to be Costed
Open source is no different from any other estimate in

that you need to have an understanding of the scope of work
involved. Traditionally for software projects, this involves sizing
up the software to be built and using a parametric model or
productivity factors to project cost.

Open Source Cost Modeling Checklist
• Obtain code count
• Identify build configuration assumptions
• Identify source files/modules requiring manual code review.

 (If your estimate is being done prior to static code analysis,
 assume 5%-20% will require review.)

• Review results of static code analysis to identify potentially
 problematic modules.

• Are unit tests built-in? If, not make sure to include these as
 needed in your estimate

• Identify modules requiring testing
• Include size for features that need to be added or modified

 to meet overall requirements
• Review assumptions on productivity drivers, including

 experience or lack thereof for any OSS packages used
• Review allocation into roles and activities
• Assess aggregate risk to the overall effort and schedule

Cost Modeling Example
This section has an example showing the use of OpenVPN,

an open source VPN package that can be used to create con-
nections to private networks. SEER for Software will be used
to model and compute effort associated with the OSS package.
SEER for Software is a commercial software estimating solution
that can be used for a wide range of software development and
maintenance projects, published by Galorath Incorporated [20].
The general approach will be to use the OSS package size as
existing code and generate assumptions related to the review/
rework and testing associated with the open source.

OpenVPN
OpenVPN is a full-featured open source SSL VPN solution

that accommodates a wide range of configurations, including
remote access, site-to-site VPNs, Wi-Fi security, and enterprise-
scale remote access solutions. Starting with the fundamental
premise that complexity is the enemy of security, OpenVPN
offers a cost-effective, lightweight alternative to other VPN
technologies that is targeted for the small/medium business
and enterprise markets [21].

Using the USC Unified Code Count (UCC) tool [22], a full
count of all source files was generated for OpenVPN, as shown
in Table 1 – OpenVPN SLOC Count. The vast majority are the
C++ files, at over 200K Source Lines of Code (SLOC). It is
important to point out that for cost modeling purposes Logical
SLOC should be used and not physical lines of code which can
be considerably higher.

Language Name Number of Files Physical LOC Logical SLOC
Bash 10 7349 5908
C_CPP 172 62167 38789
JavaScript 1 73 48
Perl 2 47 42
Total 185 69636 44787

CrossTalk—January/February 2016 23

SOFTWARE - A PEOPLE PRODUCT

Table 1 – OpenVPN SLOC Count

OpenVPN Cost Modeling Assumptions
• The total SLOC size will be entered as pre-existing

code.
• OpenVPN supports multiple platforms and configura-

tion, however only Windows will be supported for this implemen-
tation.

• OpenVPN will have to be validated for use and will
undergo static code analysis to identify high risk modules that
will require manual code review. For this example, 33 of 2020
functions had an indicated risk of High or Very High (based on
Cyclomatic complexity evaluation). An additional 100 functions
have indicated a medium risk. Based on this, between 33 and
133 functions (of a total 2020, or 1.63% - 6. 58%) will require
manual code review and automated unit test insertion.

• In addition, static analysis was run against the C and
C++ files using Cppcheck. 3 errors and 7 warnings were found.
This is a low number by any measure, and indicates that the
manual inspections and code reviews conducted by the devel-
opers have been reasonably effective [23].

• The application will make use of 10% - 20% of the
overall features and functions and require regression test.

Because OpenVPN has not been used by the developing
organization, test drivers will need to be developed.

Sizing the Rework
The above assumptions are mapped into SEER for Software

inputs with the aid of the SEER for Software Rework Percent-
ages workbook to derive rework percentages that reflect the
review and test effort associated with the OSS.

Reimplementation captures the effort associated with
non-automated code reviews and unit test efforts. The retest
effort captures effort for running regression tests as well as
developing test drivers needed for such tests. It is assumed
that the overall design of the OSS will remain intact, thus no
redesign. The input assumptions are expressed as a range. This
is especially important when static code analysis has not been
done and the extent of the review is unknown. The computed
rework assumptions into the size inputs are reflected in Table
2 – Rework Assumptions:

The overall estimate is coupled with any custom or non-OSS
software that needs to be developed. In this case, a component
for new code for secure components was added to the estimate.

	

Table 2 – Rework Assumptions

Figure 1 – Overall Estimate

	

24 CrossTalk—January/February 2016

SOFTWARE - A PEOPLE PRODUCT

Figure 2 – Monte Carlo Simulation

Other Cost Driver Considerations
The default parameter settings are a good start for most input

drivers. However some were tuned to reflect the specific situa-
tions. The following adjustments were made to default param-
eter settings:

• With respect to adopting the open source software, no
special requirements effort is needed, so that effort component
is turned off. (Requirements Definition Formality = Vlo)

• No rehosting to alternate platforms is required, the
OSS packages provide multi-platform support. (Rehost from
Development to Target = Nom)

• The OpenVPN has no special UI (Special Display
Requirements = Nom)

• OpenVPN has added security requirements commen-
surate of Common Criteria EAL 1 (Security Requirements =
Nom+)

The overall effort to adopt this open source packages comes
to 325 hours, with a schedule of around two months (assum-
ing effort occurs in parallel). Looking at the allocation into labor
roles and activities, it is clear that this is effort is all in the code
and testing phases.

While the above estimate provides a good overall planning
figure, evaluation of the risks in terms of time and effort should
be taken into account. Running a Monte Carlo simulation of
the range of possible outcomes, it becomes clear that even
at a most likely scenario, more hours and schedule should be
considered, as seen in Figure 2 – Monte Carlo Simulation. In
planning for contingency, using a higher confidence level such
as the 70% or 80% is often prudent.

This cost modeling example focuses on the effort to adopt an
open source package and should be considered part of an over-
all system effort. Other efforts, such as training, maintenance
and deployment should also be part of a system total cost of
ownership analysis.

Elements of Reusable Software
For software to be reusable by other developers, whether

for modification or incorporation into larger systems, there are
elements that should be included in order to reduce the cost
associated with the adoption of the software. These include the
following:

• Programmer’s reference manual with examples for any
components with public interfaces.

• Interface definitions
• List of all software components with the following

information:
Purpose and function
Interfaces provided
Language/version for each module
• Complete source code:
Interface Definition Language files
Web Services Description Language files
Other source code as projects/solutions suitable for compila-

tion/build in the Integrated Development Environment (IDE) or
build/make program appropriate to the source type.

XML Schema and Schematron files
Database schema definitions as applicable
• Enterprise Architect or other Unified Modeling Lan-

guage (UML) source where available
• Use cases (text and diagrams) – diagrams are in-

cluded in UML design files in many cases
• Class diagrams where applicable
• Dependency diagrams if created or available
• Complete list of any third-party components with ver-

sion numbers
• List of commercial and public domain software

required to build the software, and the recommended order of
installing these on the build machine

• Distribution package and source code of public do-
main components used in the software

	

CrossTalk—January/February 2016 25

SOFTWARE - A PEOPLE PRODUCT

• Contact information for any outside dependencies
• Build procedures, including documentation for building

all components from source code
Detailed instruction on setting any necessary environment

variables on the build machine, e.g., IDE options, system path.
Build procedures must be executable in a standalone devel-

opment environment without requiring access to the developer’s
configuration management or source code control system.

No pre-installation of pre-built components included in the
delivered software can be required other than any build order
dependencies for components built from source as part of the
build procedure.

• Test procedures – including any automated unit tests
with source code, test scripts

• Installable versions of executable code, with and with-
out debug information/symbols.

• Source for installation scripts and procedures.

While the above requirements can be specified for new or
contracted development, open source software won’t always
include them. To the extent that these are missing or incomplete,
the organization reusing the software may incur additional de-
velopment or sustainment costs as a result. This must be taken
into account, and decisions made as to whether to mitigate the
risk associated with missing elements by assigning additional
work ahead of time or to accept and account for the associated
risk.

Pros and Cons of Using Open Source Software
Very often, the topic of pros and cons for open source are

comparisons to using COTS software for a particular purpose. In
this case, we need to consider the pros and cons in comparison
to either new or continued custom software development.

Pros
• Acquisition cost: Initial acquisition cost is usually zero

for source code.
Some software source code is provided free, but there is

a cost for documentation and training. This is generally much
lower than the cost of development.

• Maintenance: Open source software, because it is
used by many others, is updated as needed. These updates
are then available for incorporation. Changes you make may
be adopted and incorporated into future versions. You may also
benefit from changes made by others.

• Testing: Because there are many developers and us-
ers, there is ongoing testing. By participating in user forums it is
possible to be alerted to potential problems ahead of encounter-
ing them in use.

• Security: Vulnerabilities are often reported to the
development community, and fixes may be available in a timely
fashion.

Cons
• Obsolescence: While this is a known issue with

COTS software, it also exists with open source. If the system
under development has a longer development and sustainment

lifecycle than the open source software, it may be necessary to
make custom modifications which then make it more difficult to
move to a later version. Careful use of configuration manage-
ment and source code control systems and good development
practices can mitigate this by making it easier to identify and
isolate changes. Whenever changes are contemplated, it should
be determined whether a newer version should be adopted
which might incorporate the needed capability, or whether the
proposed changes might qualify to be submitted back to the
community.

• Maintenance: While there may be many develop-
ers and users, there is not always a single point of contact for
defect reporting and fixing. It may fall to the organization using
the software to identify a defect, provide a potential fix, and win
acceptance from the development community for implementa-
tion in a newer version.

• Quality: Coding standards may not meet those of the
overall project. Static analysis may not have been applied, and
peer review and inspections may not have occurred.

• Testing: The degree and depth of testing may not meet
the quality standards of the adopting organization. Provision
must be made for incorporating additional testing and inspection
steps (see Defect Removal, below).

• Security: Secure design and security testing are not
always high priorities in open source development. Depending
on the security level required, standard static analysis tools may
need to be supplemented with security-specific tools to examine
the software. This is an additional reason to ensure that source
code is used, rather than compiled versions.

• Licensing: This can vary. Some licenses require return-
ing changes to the community. Examples of licenses applicable
to cases where a requirement to post changes back is not ac-
ceptable include the Microsoft Public License, MIT license and
Apache 2 License.

Defect Removal
According to Capers Jones, as cited above, combining the

following recommended methods “will achieve cumulative defect
removal efficiency levels in excess of 95 percent for every
software project and can achieve 99 percent for some projects
[24].” These are divided into categories of Pre-test and Testing.
Pre-test methods consist of inspection and analysis steps. Test-
ing is categorized according to the stage of development:

Pre-test Defect Removal
• Requirements inspection
• Architecture inspection
• Design inspection
• Code inspection
• Test case inspection
• Automated static analysis

Testing Defect Removal
• Subroutine test
• Unit test
• New function test
• Security test

26 CrossTalk—January/February 2016

SOFTWARE - A PEOPLE PRODUCT

• Performance test
• Usability test
• System test
• Acceptance or beta test

Open source software should be examined with respect to
the needs of the application, and appropriate inspection and test
steps should be performed as part of the process of incorpo-
rating this software into a resulting system. To the extent that
documents or automated tests exist which represent any of
these steps, the required effort to ensure appropriate quality can
be reduced.

Summary
Open source software can be effectively incorporated into

larger software systems. However, it is important to understand
the origin, quality and completeness of such software.

While the reuse of software can be cost-effective, it does in-
volve cost. This cost can be estimated using standard measure-
ment tools and commercial cost estimation tools based on the
completeness of the package and the structure of the source
code. This will help to avoid unexpected cost and schedule prob-
lems caused by incomplete or problematic source code acquired
via open source. The potential need to maintain compatibility
with the original source should be taken into account as both a
possible cost and a possible cost savings.

Available tools can be used to assess the quality of open
source software in order to determine the likely applicability
of the software to a particular system, and allocate sufficient
resources to apply it effectively.

Disclaimer:
Approved for Public Release; Distribution Unlimited. 15-2075
©2015 The MITRE Corporation. ALL RIGHTS RESERVED.

http://www.dhs.gov/cybercareers
http://www.usajobs.gov

CrossTalk—January/February 2016 27

SOFTWARE - A PEOPLE PRODUCT

Karen McRitchie is Vice President of Development at Galorath Incorporated. Ms. McRitchie is responsible for the design, develop-
ment, implementation and validation of the parametric estimation relationships found in the SEER™ estimation products published
by Galorath Incorporated. She has worked in all domains of cost estimation, but much of her focus has been on the software/ap-
plication and information technology domains. Ms. McRitchie has participated in numerous estimation, data collection, and calibration
efforts and has trained hundreds of cost analysts in the use, application, and calibration of SEER-SEM™, SEER-H™ and SEER-IT™.
She has been active in the International Cost Estimating and Analysis Association (ICEAA) for many years was honored by ISPA in
2002 with the Parametrician of the Year award.

Rick Spiewak is a Lead Software Systems Engineer at The MITRE Corporation. He works as part of the Battle Management /
Command and Control & Surveillance Group, concentrating on Mission Planning systems. Rick has been focusing on the software
quality improvement process, and has spoken on this topic at a number of conferences as well as publishing in CrossTalk and
MSDN magazines. He has been in the computer software industry for over 45 years. His experience includes developing software
and managing software development for data acquisition systems, transaction processing, and data communications and network-
ing. Rick has also taught computer architecture and data communications and networking at the graduate level. He studied quality
management at Philip Crosby Associates.

ABOUT THE AUTHORS

REFERENCES
1. <http://galorath.com/products/software/SEER-Software-Cost-Estimation>
2. <http://opensource.org/osd>
3. <https://github.com/explore>
4. <http://sourceforge.net/>
5. Jones, Capers. Software Engineering Best Practices: Lessons from Successful

Projects in the Top Companies. McGraw-Hill, 2010. Chapter 2, p. 101
6. Discussion with David Smiley, OpenSource Connections
7. <https://www.nuget.org/>
8. <http://www.codeplex.com/>
9. Ibid, Chapter 9, pp. 618-619
10. <http://cppcheck.sourceforge.net/>
11. <http://findbugs.sourceforge.net/>
12. <http://www.microsoft.com/en-us/download/details.aspx?id=6544>
13. <https://msdn.microsoft.com/en-us/library/dd264897(v=vs.120).aspx>
14. Ibid, Table 9-8, p. 982
15. McCabe, Thomas J. “A Complexity Measure”, IEEE Transactions On Software

Engineering, Vol. SE-2, No.4, December 1976
16. <http://en.wikipedia.org/wiki/Cyclomatic_complexity>
17. Campwood Software, LLC - <http://www.campwoodsw.com/>
18. <http://www.crosstalkonline.org/storage/issue-archives/2008/200812/200812-

Spiewak.pdf>
19. See the Common Vulnerabilities and Exposures list at <http://cve.mitre.org/>
20. <www.galorath.com>

21. <http://openvpn.net/index.php/open-source/245-community-open-source-software-over-
view.html>

22. <http://sunset.usc.edu/ucc_wp/>
23. Conversation with Samuli Seppänen, Community Manager, OpenVPN Technologies, Inc
24. Jones, Capers. “Methods Needed to Achieve > 99% Defect Removal Efficiency (DRE) for

Software”, April 9, 2014

http://galorath.com/products/software/SEER-Software-Cost-Estimation
http://opensource.org/osd
https://github.com/explore
http://sourceforge.net/
https://www.nuget.org/
http://www.codeplex.com/
http://cppcheck.sourceforge.net/
http://findbugs.sourceforge.net/
http://www.microsoft.com/en-us/download/details.aspx?id=6544
https://msdn.microsoft.com/en-us/library/dd264897
http://en.wikipedia.org/wiki/Cyclomatic_complexity
http://www.campwoodsw.com/
http://www.crosstalkonline.org/storage/issue-archives/2008/200812/200812-ABOUTTHEAUTHORSKarenMcRitchieisVicePresidentofDevelopmentatGalorathIncorporated.Ms.McRitchieisresponsibleforthedesign
http://www.crosstalkonline.org/storage/issue-archives/2008/200812/200812-ABOUTTHEAUTHORSKarenMcRitchieisVicePresidentofDevelopmentatGalorathIncorporated.Ms.McRitchieisresponsibleforthedesign
http://www.crosstalkonline.org/storage/issue-archives/2008/200812/200812-ABOUTTHEAUTHORSKarenMcRitchieisVicePresidentofDevelopmentatGalorathIncorporated.Ms.McRitchieisresponsibleforthedesign
http://cve.mitre.org/
http://www.galorath.com
http://openvpn.net/index.php/open-source/245-community-open-source-software-over-view.html
http://openvpn.net/index.php/open-source/245-community-open-source-software-over-view.html
http://openvpn.net/index.php/open-source/245-community-open-source-software-over-view.html
http://sunset.usc.edu/ucc_wp/

28 CrossTalk—January/February 2016

SOFTWARE - A PEOPLE PRODUCT

Introduction
Traditional software development lifecycles follow 7 core

activities. They are requirements, design, construction, testing,
debugging, deployment and maintenance. Naturally, apart from
the requirements and testing phase, all other phases con-
centrate on building the software. In the requirements phase,
some teams calculate the risk management which deals with
the possible failure scenarios and in testing which deals with
finding the loop holes based on a multitude of input values
and boundary value working environments. The core idea of all
software development lifecycles is to build software and not
actually break it down. We believe that this is the main reason
for the declining quality of software. None of the models build
and destroy the software in parallel. It is quintessential to factor
into our equations of how our software can fail in each phase
while we are building the same. The breakdown model does
exactly this—build and destroy software in parallel. Destroying
software is as important as building it. Only when we understand
all possible failure scenarios can we truly understand how to
build software which is resistant to failure in each phase of the
development lifecycle.

Methodology - Breakdown model
The normal software lifecycle architecture involves the four

core parts of a software project lifecycle:
• Analysis (Requirements definition, Iterative prototypes,

Object Analysis)

Breakdown Model:
A Disruptive Software Development
Lifecycle for Fault Tolerant
Software Systems
Vaibhav Prakash, University of Texas
Danny Sunderesan, University of Texas

Abstract. The software development lifecycle is the most important part of Soft-
ware Engineering. It determines the outcome of an idea into a tangible software.
Here we present a variant of the Harmony process, the breakdown model which
focuses on not only developing software but deleting all possible scenarios for
failures in each phase of the development process. This framework is adaptable
with existing software development lifecycles.

• Design (Architectural Design, Detailed Design)
• Implementation (Translation, Unit Testing)
• Testing (Integration testing, Validation testing, Incre-

ment Review)

The breakdown model goes a step further and adds the fol-
lowing addition to the process

• Analysis and Anti-Analysis
• Design and Anti-Design
• Implementation and Anti-Implementation
• Testing and Anti-Testing

What is Anti-Analysis?
In order to understand what anti-analysis is, we will first see

what analysis means. Normally, the software team goes through
the requirements phase and risk management is a part of it.
But, in the breakdown model, a part of the team known as the
anti-team (20%-25% of the team) works in breaking down the
requirement documents and tries to find flaws it in. The sole pur-
pose of the anti-team is to find ways in which the requirements
definition can be proved false. The anti-analysis team can also
make the requirement definition resilient to change as “changing
requirements” are the number one cause for software failure

What is Anti-Design?
The same concept applies here too. A part of the team (20%

- 25% of the team) acts as the anti-team here. But, the people
involved in the anti-team in the anti-analysis phase cannot be
duplicated here. It has to be picked from the remaining 75% of
the team. The anti-design phase works in breaking down the
architecture and detailed design concepts which the team have
built. The anti-design team works carefully to weed out all pos-
sible scenarios where the design will fail.

What is Anti-Implementation?
A part of the team (20% - 25% of the team) acts as the anti-

team here. But, the people involved in the above two phases
cannot be duplicated and have to be picked from the remain-
ing 50% of the team. The anti-implementation phase works in
breaking down the implementation (such as test-driven develop-
ment) while the software is being built. The anti-implementation
team works in tandem with the implementation team to wipe out
all possible failures in the code.

What is Anti-Testing?
 The remaining team members (20% - 25%), who have

not participated in the above three phases come into picture in
this phase. The anti-testing team does not break the software
but shows if the software works for the intended purpose. Test-
ing and re-testing only for positive values (or) working values.
They can work with the customer or simulate the intended
customer who will use the software.

CrossTalk—January/February 2016 29

SOFTWARE - A PEOPLE PRODUCT

The breakdown model can be used in conjunction with the
Spiral model to develop better fault tolerant systems. In order
to determine the number of iterations needed for a complete
fault tolerant system, we divide the number of iterations by 100,
which gives the percentage of team members needed for the
anti-team.

Let us take an example to better understand the above
concept. If we want our software to be completed in 3 itera-
tions, then we divide 100/3 which gives 33.3% (recurring). This
means that in each iteration of the spiral, 33.3% of members
act as the anti-team. Since there are primarily four phases of
development, we divide it by 4, which gives 8.25% of the team
to participate in anti-analysis, anti-design, anti-implementation
and anti-testing separately.

Therefore, in three iterations, the entire team, in effect would
have contributed to build and destroy software from end to end
which gives a substantially higher probability of a fault tolerant
system as all the team members would have contributed to it.
The more you can involve people in the anti-teams, the better
your chances are of building software which has fault tolerance.

Even when N=1(i.e. the most basic software development
lifecycle incorporating the waterfall model with 4 phases viz.
analysis, design, implementation and testing), the breakdown
model results in a system which is 4 times more fault tolerant.
This is because the system is tested only during the testing
phase in the above traditional methodology. In the breakdown
model, the system is broken down and tested for loop holes in
each phase resulting in a better fault tolerant system.

Figure 1 Figure 2

Highlights
Weeds out errors through multiple iterations and different

perspectives
We found out that with N=5. A relatively high fault tolerant

system can be developed
This framework can be adapted into any of the existing soft-

ware development lifecycles

Case study (Application)
We applied this to 15 software projects at the Erik Jonsson

School of Engineering, The University of Texas at Dallas. All the
projects were part of the coursework for graduate students. All
the teams who used this framework had better fault tolerance
in their software code. Although they used variants of this and
incorporated the thinking into their lifecycles, it made a signifi-
cant change to the product at the end compared to other teams
who followed traditional lifecycles.

Conclusion
The breakdown model is best utilized when used in conjunc-

tion with the spiral or other iterative models where repeated
phases are inserted into the development lifecycle. They key
aspect here is using every team member’s capability to see as
many ways in which the system might fail in the analysis and
design phase itself. The breakdown model produces better
systems when used with the simplistic waterfall model too.
Lastly, from the case study it is evident that the model works as
intended.

	

•Anti	Analysis	 •Anti	Design	

Analysis	 Design	

Testing	 Construction	

•Anti	Testing	 •Anti	
Construction	

	

Number of iterations needed – N, Number of phases
in life cycle – P (4 in this case)

Number of anti-team members per cycle – 100/N

Number of anti-team members in each phase – N/P

Higher the value of N, higher the probability of a
software system that is fault tolerant

 Fault tolerance

Ideally, N-

Practically, N=5 should result in a fairly fault
tolerant system

30 CrossTalk—January/February 2016

SOFTWARE - A PEOPLE PRODUCT

Vaibhav Prakash is currently a Site Reliability Engineer at Microsoft Corporation in Redmond, Washington,
United States of America. He holds a bachelor’s degree in Computer Science and Engineering from S J
College of Engineering, Mysore, India. He has completed his Master’s degree in Software Engineering and
Computer Networks from The University of Texas at Dallas, USA. He has published 2 papers and has done
internships at The Indian Institute of Science, Bangalore, India; IBM Research and Development, Bangalore,
India; Research Assistant, Multi Agent and Visualization Lab, The University of Texas at Dallas and at Microsoft
Corporation, USA.

Email: vaibhav.prakash@utdallas.edu

Danny Matthew Sundaresan received his bachelor degree in Electronics and Communication from Anna Uni-
versity, India and is currently a Master’s student in The University of Texas at Dallas, USA graduating in the field
of Software Engineering. He has an experience of 6 years working as a web developer in the corporate world.
He was a co founder of a freelancing web firm which brought innovative solutions to its clients during his time
as an undergraduate student. His main interest involves developing user friendly tools and methods to increase
the performance of the web.

Email: danny.sunderesan@utdallas.edu

ABOUT THE AUTHORS

REFERENCES
1. Benington, Herbert D. (1 October 1983). “Production of Large Computer Programs”. IEEE Annals of the History of Computing (IEEE Educational Activities Department) 5 (4):

350–361. doi:10.1109/MAHC.1983.10102. Retrieved 2011-03-21.
2. Smith MF Software Prototyping: Adoption, Practice and Management. McGraw-Hill, London (1991).
3. Dr. Alistair Cockburn (May 2008). “Using Both Incremental and Iterative Development”. STSC CrossTalk (USAF Software Technology Support Center) 21 (5): 27–30.
 ISSN 2160-1593. Retrieved 2011-07-20.
4. Boehm, B, “Spiral Development: Experience, , Special Report CMU/SEI-2000-SR-008, July 2000
5. Boehm, Barry (May 1988). “A Spiral Model of Software Development”. IEEE Computer. Retrieved 1 July 2014.
6. Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile Software Development Methods: Review and Analysis. VTT Publications 478.
7. Hughes, Bob and Cotterell, Mike (2006). Software Project Management, pp.283-289. McGraw Hill Education, Berkshire. ISBN 0-07-710989-9
8. <http://en.wikipedia.org/wiki/Lightweight_methodology>
9. “Crystal Methods Methodology | Infolific”. Mariosalexandrou.com. Retrieved 2013-07-25.
10. “Manifesto for Agile Software Development”, Agile Alliance, 2001, webpage: Manifesto-for-Agile-Software-Dev
11. Coad, P., Lefebvre, E. & De Luca, J. (1999). Java Modeling In Color With UML: Enterprise Components and Process. Prentice Hall International. (ISBN 0-13-011510-X)
12. Rosenberg, D. & Stephens, M. (2007). Use Case Driven Object Modeling with UML: Theory and Practice. Apress. (ISBN 1590597745)
13. ACM Digital Library, The chaos model and the chaos cycle, ACM SIGSOFT Software Engineering Notes, Volume 20 Issue 1, Jan. 1995
14. <http://en.wikipedia.org/wiki/ Incremental_funding_methodolog y>
15. Mike Goodland; Karel Riha (20 January 1999). “History SSADM – an Introduction. Retrieved 2010-12- 17.
16. <http://www.martinfowler.com/bliki/TechnicalDebt.html>
17. Jacobson, Sten (2002-07-19). “The Rational Objectory Process - A UML-based Software Engineering Process”. Rational Software Scandinavia AB. Retrieved 2014-12-17.
18. Clarus Concept of Operations. Publication No. FHWA- JPO-05-072, Federal Highway Administration (FHWA), 2005

mailto:vaibhav.prakash@utdallas.edu
mailto:danny.sunderesan@utdallas.edu
http://en.wikipedia.org/wiki/Lightweight_methodology
http://en.wikipedia.org/wiki/Incremental_funding_methodology
http://www.martinfowler.com/bliki/TechnicalDebt.html

CrossTalk—January/February 2016 31

SOFTWARE - A PEOPLE PRODUCT

Introduction
 Using open-source software in lieu of consumer and

government off-the-shelf options for adding modular functionality
to software projects or as a foundation for starting new soft-
ware projects is a rapidly trending upward. [1] In our experience
the government prefers an open-source software option when
feasible and when robustness and security requirements of the
project allow. There is abundant open-source software that per-
forms operations across most applications. Primary drawbacks to
utilizing open-source software include: no guarantee of depend-
ability, unreliable development methods and the costs of integrat-
ing software in the late stages of development. Despite these
drawbacks, open-source software is still seeing a large increase
in private sector usage. [2] Open-source software can be used in
many cases to reduce both the time and cost of adding new func-
tionality or starting the development of a new project. The method
discussed here will detail how to retain these cost and time
savings while overcoming the reliability limitations of open-source
software in systems with strict specifications for verification test-
ing.

 The inspiration for this work comes from academic
research clients interested in using open-source solutions in order
to save time and money in spite of software reliability concerns.
The primary issue from a development point of view was trying to

Better Reliability Verification
in Open-Source Software
Using Efficient Test Cases
Patrick Pape, Mississippi State University
Drew Hamilton, Mississippi State University

Abstract. With the increasing popularity of open-source solutions in projects
across varying domains and levels of dependability requirements, there is a need
for a way to efficiently bring open-source software to a level that passes reli-
ability verification testing before being integrated into a pre-existing system. The
primary issues with integrating open-source software into a system is that more
often than not the developmental methods cannot be verified and the software
is already in a post-release version. So, how do you retain the benefits of utilizing
open-source solutions to problems while bringing the open-source software to a
reliable operational level that meets specifications for your project? In this article,
we will discuss a method for efficiently locating key areas for the placement of
error handling in order to increase fault tolerance and for drastically reducing
the number of tests necessary to verify that the open-source software to be
integrated meets specifications.

look at post-release software and implementing some methods
for increasing the reliability of the code and performing reliability
verification. One key example was an open-source mission control
software for a programmable UAV. The mission control module
was a mission-critical portion of the system and had strict specifi-
cations for dependability measures. The time it would take to test
the system and bring it up to specifications was more than the
time it would take to find alternate software that performed the
same task. This dismissal of open-source software as a valid al-
ternative to high specification systems lead to researching a way
to make the method more efficient and the code more reliable.

 The problem with most current solutions to the problem
of making the verification process for software more efficient
is that there is a lack of consideration for dealing with software
only in the late stages of development and in post-release. With
open-source software, unless you are involved in the development
at some early stage, you are likely attempting to incorporate it into
an existing system for some added functionality. This means that
the solutions which focus on working on verification through each
developmental iteration are not of use. A different approach must
be taken in order to bring the software up to the desired level of
reliable operation with acceptable overhead. Adding error han-
dling in the late stages of development can add large overhead.
The testing process discussed in this article will detail a method
for making this last stage verification and reliability enhancement
process more efficient.

Importance of Variables
The method utilizes static and dynamic analysis of the software

to reduce the total number of tests needed to verify the software
and to determine the key locations for placing error handling in
order to bring the software up to the required level of reliable
operation. The method focuses on utilizing the relative use of the
open-source software to be integrated into an existing system
to expand functionality. A recently developed metric known as
importance [3] is used as a baseline for determining the prior-
ity of the variables in the software that are the highest priority
for error handling. The drawbacks to this approach are a lack of
cross-module measurability, meaning that each measure of im-
portance is only relative to the other variables in a single module.
The approach described here adapts the metric to establish the
importance of variables across an entire system, including a large
number of modules and functions.

 The importance metric basically works by determining
the failure rate of a variable, f, its spatial impact and its temporal
impact, written as:

where m and n are coefficients that can be modified to place
more or less emphasis on either the failure rate of a variable or
its impact on the system. [3] Failure rate in this scenario is the

Iv,C = 1÷ 1− f n× σv,C ÷ σmax + τv,C ÷ τmax
m
	

32 CrossTalk—January/February 2016

SOFTWARE - A PEOPLE PRODUCT

frequency that a fault injected into a variable lead to a full-blown
failure in the system. Spatial impact is defined as the diameter of
the area in the code that is affected by the failure, written as:

[3] and the temporal impact is defined as the duration that a
program is affected by the failure, written as:

σv,C = max σv,C
r , ∀r,	

[3]. Basically, these equations state that the impacts mea-
sure the diameter of the affected area and amount of time the
program state remains affected, when a variable v in component
C is corrupted. A higher spatial impact indicates the difficulty
of recovering from the corruption and a higher temporal impact
indicates a higher chance for the program to fail.

Software Faults
 The capability of utilizing an accurate measurement of

the importance of a variable in a system relies on the concept of
relating variables in different functions in different modules of a
system to each other. The common trends of software faults and
failure data from real-world case studies is explored in [4] and
provides focused discussed on the localization of faults which
can lead to varying types of software failures and the distribu-
tion of failures in a system. The conclusion of this study was that
the primary types of faults include: requirement faults, coding
faults and data problems. Of importance to the issue at hand is
the conclusion that the trends of software failures are intrinsic
characteristics of software faults and not specific to the individual
project. This coincides with the belief that it is possible to create
a metric to measuring the relative likelihood and impact of faults
across any system.

Detecting and Correcting Faults
There are numerous ways to increase the reliability of a system

using data flow analysis, including check-pointing [5], informa-
tion flow relations [6], and other techniques. Check-pointing
involves looking at the code at the instruction level and splitting
it between protected and unprotected sections. In the protected
code the data values are replicated and are compared at branch
instructions to check for discrepancies. This concept is utilized
with respect to the error handling placed into the code after the
relative importance metric is calculated to ensure accurate read-
ing and writing of variables. This error handling is currently in the
form of a wrapper-based function call for each read and write
of variables dependent on the level of importance. [7] The most
important variables are triplicated and less important variables
are duplicated during writes. This means that when the variable is
being read during a program statement, the wrapper-function will
check what the most common value is and return that. This allows
for some data corruption without jeopardizing the values of the
variable completely. Information flow and state flow analysis [8]
can be used to detect errors in variables and program statements
that cause undesirable actions and states in the software.

Fault-Injection Framework
 There are a number of fault-injection frameworks that

	τv,C = max τv,C
r , ∀r	

could be utilized depending on the application and structure
of the software that is to be tested, including: PROPANE [9],
MESSALINE [10] or FIAT [10]. PROPANE is an environment
that supports fault-injection through mutation of source code and
data errors by manipulating variables. MESSALINE [10] and FIAT
[11] are used as sources of information as far as design consid-
erations for the framework, but like PROPANE were proposed
years ago and have since become less prominent solutions to
new fault-injection problems. Current fault-injection frameworks
are generally limited in usefulness based on the structure of the
software system being tested and rely on being a part of the V&V
testing process before deploying the software. These frameworks
are useful for investigating the effects of individual faults on a
system and identifying potentially vulnerable locations in code, but
the results are not context sensitive.

The base of the method is the fault-injection framework that
was written specifically to work for this particular project. The
framework utilizes two models for injecting faults. The global
model constrains the occurrence of the faults to dependability
measurements and assumes any variable in the system could be
affected by the data fault. The local model states that the types
of faults to occur in the system will be transient data value faults.
This means that the faults can occur at any time and any place in
the software and will not remain in the program after execution
stops. The framework can be split into three main components:
injectors, probes, and environment simulator. The injections are
done manually by inserting code into the source, depending on
the type of fault different inputs are needed. For boundary testing,
the desired injection value is required, otherwise the injection will
target a random bit in the memory space for the variable and will
flip the bit. The probe component is implemented through insert-
ing code into the source that records the value in certain variables
at different points throughout the execution of the code. The
environment simulator works by emulating the existing system
and controlling the execution of the target software during the
intended test cases. This is done in order to get accurate results
for the specific use cases of the open-source software during the
testing phase.

Case Study – Mp3gain
 Testing is based on an open-source program called

Mp3gain which can be used to normalize volume and other audio
modifications to mp3 files. Mp3gain is highly modular and was
developed primarily by a single developer, a common occurrence
with open-source software. The goal of the experiment was to
utilize Mp3gain with several real use cases. Three test cases were
selected: scan album for maximum gain adjustment, normalize
volume across all tracks, and undo all changes to album. The
input to the experiment was an album of 25 tracks, where faults
were injected 25 times in each test at 25 equally spaced points.
So, there was a single fault injection per track analysis. For each
fault injection test for a variable, the program was run 100 times,
meaning that each use case was run 100 times with 25 input
tracks.

The first round of testing obtains the worst case impacts and
determine the failure rate. The second round of testing used the
probability of execution found in stage one to create a number

CrossTalk—January/February 2016 33

SOFTWARE - A PEOPLE PRODUCT

of fault injections relative to the actual expected number of faults
to occur in that function given the intended use cases. Using
the relative failure rate found in the second run of tests and the
impact metrics, the local and relative importance is calculated for
each variable. This process was completed a second time using
another critical path of lower priority modules to show that the
results would be a lower chance of causing system failure. The
number of tests was tracked in order to show the difference in
the total number of tests needed for completing a cost-benefit
analysis on placing error handling using this method versus test-
ing every function and variable in the software. The method was
validated by comparing the total number of relevant failed test
cases found versus those test cases found using local impor-
tance. The following sections will provide the results and details of
the relevant stages of method.

Defining a Critical Path
 The first step in the method is to determine the critical

path, or the key flows of data throughout the source code. This
requires that we instrument the code in order to determine which
of the modules, and the functions within, are most important to
the intended use case of the system. The idea is to reduce the
number of unnecessary tests cases at the beginning of the test-
ing process. The frequency that each function in each module
is called during the running of the use cases is measured. This
frequency value is then used along with the worst case lines of
code in a function to determine the effective lines of code for
each function written as:

Figure 1 - Overview of the method [12]

Figure 2 - Caller side for first critical path [12]

	

[12]. This measures the total number of lines of code that will
be run during the execution of the program for that function. For
the sake of brevity, this particular table is left to the reader to
examine in [12] as it includes a large number of entries.

The next step in this stage is data flow analysis on the source
to generate the caller and call graphs for each function. This is
done in order to see which functions and modules are commu-
nicating with each other, so that we can track where the data is
going. This is important because it helps to gauge the propaga-
tion factor of each of the functions in the code. The propagation
factor is the call depth of a function divided by the maximum call
depth of any of the functions, written as:

ELoCf = LoCwc	×	Fcf	

[12]. Functions that have a high number of caller functions are
more likely to spread corrupted data. Once these functions are

p = Fcd ÷Maxcd	

given a value for priority, the priority of the modules are deter-
mined. The caller graph for the first critical path of the case study
can be seen in Figure 2. The figure shows the most critical flow
of data throughout the target software, where the focus of the
placement of error handling will be. Each box represents a differ-
ent module in the system.

A functions’ priority, written as:

	

[12], is calculated based on the probability that a single bit fault
will occur in memory related to a function, probability that the
code corrupted by this fault is run in the current execution of the
program, and the propagation factor. The probability of execution
is written as:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃(×𝑃𝑃*×𝑝𝑝	

[12], meaning the effective lines of code in the function divided
by the total effective lines of code across all functions. The mod-
ule priority is the summation of the priority of the functions that
compose the module. A more detailed look at each stage of the
method can be found in [12].

Identifying Locations for Error Handling
 Once the critical path throughout the code is found, we

must determine the relevant variables within the critical path to
be tested. All the variables from high priority modules on the path
are added. For each of these variables, a dynamic program slice is
done for both the caller and called graph to get a clear measure
of all the variables that are affected and affect the variable that
is being analyzed. Variables with the highest relative importance
ranking are located in this critical path. The output of this step is
the list of all the relevant variables that gets passed to the next
stage of instrumentation for fault injection testing.

Fault injection test cases are run for each relevant variable
found in the critical path to obtain metrics to measure relative im-
portance. These include: spatial impact, temporal impact, relative
failure rate, and failure rate, for validation. The importance metric
was taken from its generic form:

Pe = ELoCf ÷ TELoC	

in [3] and is used with the failure rate and impact of the vari-
able to determine the importance of a variable within its own
function. This equation is modified to give the importance of a
variable relative to the intended use cases of the target software:

Iv,C = G K σv,C ,L τv,C 	

[12] and compared to the local importance.
The results for the top threshold of variables in the case study

can be seen in table 1. This shows the top fifteen percent of
variables in terms of relative importance across variables in the
system. Note that given how the program handled albums, the

RIv,C = 1÷ 1− fr
n× σv,C ÷ σmaxr + τv,C ÷ τmaxr

m
	

34 CrossTalk—January/February 2016

SOFTWARE - A PEOPLE PRODUCT

faults that manifested as failures would either cause failure for
all twenty-five tracks or just one, leading to the similar temporal
impact values. Another interesting note is how the curframe
variable was ranked in the main module. The relative failure rate
was incredibly low, but it was still ranked the sixth most important
variable. This was because the fallout in the system from having
this value corrupted was bad enough to outweigh the miniscule
chance that the variable be read after having been corrupted.

Wrapper-Based Error Handling
 An efficient and verified error handling mechanism from

the same paper as the original importance metric is used. There
are two stages of wrapping used in this error handling. First, any
time an important variable is written to, the wrapper function is
called and copies of the value are stored in case the original
variable value is corrupted. The second stage is during reads of
an important variable. When an important variable is read, another
wrapper function is called which uses a majority voting algorithm
to return the correct value. Custom thresholds are determined
based on acceptable levels of overhead for determining how
many variables will be wrapped. This method of wrapper was
shown to be lightweight, efficient and well tested in [11].

Results
 The results of the case study for the method are reas-

suring. The method is able to effectively reduce the total number
of tests needed for reliability verification by using a measured
means of removing irrelevant and unnecessary tests and focusing
on only the most important variables. Table 2 shows the results of
the comparison between using the given method and just the lo-
cal importance. The failed tests column indicates the total number
of test that resulted in system failure that occurred and the rela-
tive failed tests indicate how many of these failed tests involved
variables with a significant importance rating in the system. The
results show the discrepancy between the total number of test
cases and how many of those test cases would have a significant
impact on the system.

 Table 2 also shows a clear measurement of the number
of failed tests found using a modified failure rate that is relative to
the whole system local measurement of failure rate. Remember
that the modified failure rate is determined utilizing the probability
of execution of the corrupted data. Instead of the assumption that
all data corruptions are equally likely to occur, by disregarding the
probability of the data fault being executed, the modified failure
rate takes this into account. The number of failures that are found
with the method is significantly greater than with just local module
analysis.

http://www.navair.navy.mil

CrossTalk—January/February 2016 35

SOFTWARE - A PEOPLE PRODUCT

Table 1 - Fault injection results for variables for critical path one [12]

Table 2 - Number of failed tests comparison [12]

Table 3- Method vs. Local Cost-Benefit Analysis [12]

Function Variable 𝝈𝝈𝒗𝒗,𝑪𝑪 𝝉𝝉𝒗𝒗,𝑪𝑪 Failure Rate Relative Failure
Rate

Relative
Importance

synth_1to1 bandPtr 3 25 0.0138666667 0.0088 1.7816802003

synth_1to1 pnt 3 25 0.0088 0.0056 1.769765878

do_layer3 pcm_point 3 25 0.0284 0.0002666667 1.7511506951

synth_1to1 buf 2 25 0.0321333333 0.0206666667 1.5640653421

synth_1to1 maxAmpOnly 2 25 0.0081333333 0.0052 1.5158384332

main curframe 2 25 0.0188 0.0000001416 1.5

synth_1to1 window 1 25 0.0734666667 0.0472 1.3772426984

	

Critical Path

Failed Tests –
Method

Failed Tests-
Local

% difference
Failure Rate

Relative Failed
Tests – Local

Relative Failed
Tests –
Method

% difference
Modified

Failed Rate

CP1 2135 3647 -70.82 110 1145 90.39

CP2 6601 6551 0.76 1110 1406 21.05

CP1/2 5398 9100 -68.58 1155 1724 33.01

	

Mp3gain # of tests – method # of tests Local Cost-Benefit Analysis % difference

CP1 47 551 91.47

CP1/2 97 551 82.40

	
Table 3 shows a reduced number of total tests required to

identify the most important error handling locations in the open-
source software. Given these initial results, the method appears
to accurately locate variables with a high relative failure rate, in
addition to reducing the total number of tests needed to com-
plete this reliability verification process. Meaning that the method
should decrease the time needed to verify the reliability of the
target software when compared to local cost-benefit analysis,
which requires that each of the variables in the system be tested
in order to get an accurate reading on where to prioritize error
handling mechanisms.

Conclusion
 The method shows a satisfactory reduction in testing

time and accurate identification of locations for error handling
placement in open-source software components to be integrated
into a pre-existing system. This serves as a step in the right
direction for promoting a wider usage of open-source solutions in
various domains. Though directed at open-source software, any
post-release software with available source code could be tested
using this method. The current shortcomings of similar solutions
of needing to be utilized from the early stages of development
and a lack of bias in the modular structure of the system do not

apply for this method. The discussed method incorporates an
understanding of system structure and dependability properties to
give an insight into the relative operation of the system for intend-
ed use cases of the software. This allows the user of the method
to focus their reliability verification testing only on the code that
affects how they intend to utilize the code. The next step for this
method is to further reduce the number of tests required to locate
key variables for wrapping and to determine how the metrics used
in the method can be expanded upon to be more accurate.

36 CrossTalk—January/February 2016

SOFTWARE - A PEOPLE PRODUCT

Dr. Patrick Pape is an Assistant Research Professor with the Distributed Analytics and Security Institute
(DASI) at Mississippi State University. He holds a B.S. in Computer Engineering from the University of Alabama
in Huntsville, an M.S. in Computer Science with a minor in Information Assurance and a Ph.D. in Computer
Science at Auburn University. His research interests include: open-source security and reliability, test case
prioritization and minimization, software fault modeling, and machine learning.

Box 9627, Mississippi State, MS 39762
Phone: (662) 325-2080
E-mail: pape@dasi.msstate.edu

Drew Hamilton is the Associate Vice President for Research at Mississippi State University and a professor
of computer science and engineering. Previously he held faculty appointments at Auburn University and the
US Military Academy and a visiting appointment at the US Naval Postgraduate School. Dr. Hamilton earned
his doctorate in computer science from Texas A&M University. Dr. Hamilton is a distinguished graduate of the
Naval War College.

Box 6343, Mississippi State, MS 39762
Phone: (662) 325-3570
E-mail: hamilton@research.msstate.edu

ABOUT THE AUTHORS

REFERENCES
1. Ayala, C. P., Cruzes, D. S., Hauge, O., Conradi, R. (2011). Five Facts on the Adoption of Open Source Software. Software, IEEE, 28(2), 95-99.
2. Spinellis, D., Giannikas, V. (2012). “Organizational Adoption of Open Source Software”. Journal of Systems and Software, 85(3), 666-682.
3. Leeke, M., Jhumka, A. Towards Understanding the Importance of Variables in Dependable Software. In Dependable Computing Conference (EDCC). (Valencia, Spain 2010) 85-

94.
4. Hamill, M., Goseva-Popstojanova, K. “Common Trends in Software Fault and Failure Data”. Ed. IEEE Transactions on Software Engineering, 34 (4). 484-496. August 2009.
5. Xiong, L., tan, Q. Data Flow Error Recovery with Checkpointing and Instruction-level Fault Tolerance. In 12th International Conference on Parallel and Distributed Computing,

Applications and Technologies, (Gwangju, Korea 2011). 79-85.
6. Bergeretti, J., Carre, B. “Information-Flow and Data-Flow Analysis of while-Programs”. Ed. ACM Transactions on Programming Languages and Systems, 7 (1). 37-61. January

1985.
7. Leeke, M., Jhumka, A. An Automated Wrapper-based Approach to the Design of Dependable Software. In DEPEND 2011: The Fourth International Conference on Dependability.

(Cta d’Azur, France 201
8. Taylor, R., Osterweil, L. “Anomaly Detection in Concurrent Software by Static Data Flow Analysis”. Ed. IEEE Transactions on Software Engineering, 6 (3). 265-278. May 198043-

50.
9. Hiller, M., Jhumka, A., Suri, N. PROPANE: AN Environment for Examining the Propagation of Errors in Software. In ACM SIGSOFT International Symposium on Software Testing

and Analysis. (New York, USA 2002) 81-85.
10. Arlat, J., Aguera, M., Amat, L., Crouzet, Y., Fabre, J., Laprie, J., Martins, E., Powell, D. “Fault Injection for Dependability Validation: A Methodology and Some Applications”. Ed.

IEEE Transactions on Software Engineering, 16 (2). 166-182. February 1990.
11. Barton, J., Czeck, E., Segall, Z., Siewiorek, D. “Fault Injection Experiments Using FIAT”. Ed. IEEE Transactions on Computers. 39 (4). 575-582. April 1990.
12. Pape, P. 2013. “A Methodology for Increasing the Dependability of Open Source Software Component”. Master’s Thesis. Auburn University, Auburn, AL.

mailto:pape@dasi.msstate.edu
mailto:hamilton@research.msstate.edu

CrossTalk—January/February 2016 37

SOFTWARE - A PEOPLE PRODUCT

Driving Secure
Software Initiatives
Using FISMA: Issues
and Opportunities
Robin Gandhi, University of Nebraska at Omaha
Keesha Crosby, Tri-Guard Risk Solutions, LTD
Harvey Siy, University of Nebraska at Omaha
Sayonnha Mandal, University of Nebraska at Omaha

Abstract. Federal agencies install many security controls for Federal Informa-
tion Security Management Act (FISMA) implementation. National Institute of
Standards and Technology (NIST) Special Publication (SP) 800-53 revision 4
(rev4) standardizes these security and privacy controls. This article presents a
study of NIST SP 800-53 security controls. The purpose is to classify the se-
curity controls from dimensions relevant to software security. This classification
highlights issues and motivates opportunities to drive software security initiatives
using FISMA.

Introduction
FISMA mandated security controls drive many information

security programs in the federal government. But their impact
on the development and/or acquisition of secure software is
not well understood. Secure software (or software assurance)
provides the basis for the belief that it will operate as expected
in its threat environment. Such software has capabilities to
resist most attacks. It can tolerate as many as possible of those
attacks it cannot resist. Finally, it can contain the damage and
recover to a normal level of operation as soon as possible. This
article outlines a method to classify security controls based on
dimensions relevant to secure software. The findings highlight
issues and motivate opportunities for driving secure software
initiatives using FISMA.

Let’s begin by taking a look at the source of FISMA man-
dated security controls for a federal information system. As part
of the FISMA implementation project [1], NIST has produced
several key security standards and guidelines. This includes the
Federal Information Processing Standard (FIPS) 199, FIPS 200,
and NIST SP 800-53. Guidance within these documents work
hand-in-hand for executing the first two steps in the NIST Risk
Management Framework (NIST SP 800-37). Step 1 requires
security categorization of information and information systems.
The potential for impact to confidentiality, integrity, and avail-
ability of information determines the categorization. FIPS 199
establishes standards for categorizing information systems in
this step. Step 2 requires selection of security controls based
on the security categorization in step 1. In this step FIPS 200
establishes the low, moderate and high security baselines for
control selection. A baseline is a set of minimum security con-
trols defined for a low-impact, moderate-impact, or high-impact
information system [2]. NIST SP 800-53 documents these

control baselines as part of a larger control catalog [2].
NIST SP 800-53 specifies controls at the level of an or-

ganization or information system. There are many mandatory
controls for perimeter security, system integration, operations,
and organizational processes. But controls for building-security-
in the information system components, i.e. software, are hard to
discern. These controls are often tangled with other system con-
cerns. In particular, organization or system level controls need
expert interpretation for secure software relevance. This article
addresses this issue by the development of a coding instrument.
The instrument inquires the relevance of a control along the
many dimensions of secure software.

 The paper is organized as follows. Section 2 outlines
the development of a coding instrument. Section 3 enumerates
findings from applying the instrument to NIST SP 800-53. The
findings provide insights that were not accessible before due to
the large volume of the control catalog. They highlight software
assurance practices buried within a larger organizational and
information system context. To conclude, section 4 summarizes
issues and opportunities identified from this study.

Coding Instrument for Software Assurance
Bootstrapping development of a coding instrument requires a

recognized definition of software assurance. NIST SP 800-53
states the definition of assurance from a system perspective. Its
focus is on the emergent behavior of the components for meet-
ing the security requirements of the system. A narrower focus
on software assurance exists in many definitions by govern-
ment agencies (e.g. NASA, CNSS, DHS, etc.), focus groups (e.g.
SAFECode) and academics/researchers. Finally, the following
definition became basis of the coding instrument. CERT/SEI
has also adopted this definition for their Masters in Software
Assurance curriculum project.

“Software Assurance is the application of technologies
and processes to achieve a required level of confidence that
software systems and services function in the intended manner,
are free from accidental or intentional vulnerabilities, provide
security capabilities appropriate to the threat environment, and
recover from intrusions and failures [3].”

Further analysis identified more dimensions. These include
dimensions related to developers, software artifacts, policies,
operations, weaknesses and lifecycle processes. These provide
a more holistic perspective of software assurance within the
coding instrument. A brief summary of the resulting 18 coding
dimensions in the instrument is as follows:

The control …
… requires the application of process for software assurance:

(P)
… requires the application of technology for software assur-

ance: (T)
… requires the application of process and technology com-

bined for
software assurance: (P+T)
…is not directly applicable to software assurance: (N)
…is withdrawn from the control catalog: (W)

38 CrossTalk—January/February 2016

SOFTWARE - A PEOPLE PRODUCT

The control is relevant to …
… a developer involved in the software construction or main-

tenance: (Developer)
… the implementation of software artifacts: (Artifact)
… software lifecycle processes: (Lifecycle)
… policies to be enforced by software: (Policy)
… software weaknesses to be avoided, accidental or inten-

tional vulnerabilities in software or its use, or if compliance as-
sessment with the control will fail due to a software weakness:
(Weakness/Vulnerability/Failure)

… processes for software use, configuration or maintenance:
(Operations)

… security capabilities to be provided by software in a threat
environment: (Capability)

… software recovery from intrusions and failures: (Recovery)
The wording of NIST SP 800-53 control descriptions have

direct implications on enforcement. Control refinements by in-
terpretation in the context of software can impact enforceability.
Thus, the instrument distinguishes control descriptions that are
enforceable for software security. Controls which need refine-
ment to apply in the context of software are also identified. The
instrument accomplishes these tasks as follows:

The control description …
… explicitly constraints information system components,

software, code, services or applications: (E)
… implicitly constrains software components, requiring expert

interpretation: (I)
… as part of the supplemental guidance refers to software

components, but not in the regulatory-enforced description: (IS).
This considered a subset of (I).

Each security control beings with the phrase “the organiza-
tion” or “the information system.” These terms are defined as:
“... information system refers to those functions that generally
involve the implementation of information technology (e.g., hard-
ware, software, and firmware). Conversely, the term organization
refers to activities that are generally process- driven or entity-
driven—that is, the security control is generally implemented
through human or procedural-based actions. Security controls
that use the term organization may still require some degree
of automation to be fulfilled.” [2] This characteristic of a control
description is captured as follows:

The control description...
… starts with the phrase “The organization”: (ORG)
… starts with the phrase “The information system” (SYS)
The authors applied the final instrument to investigate each

NIST SP 800-53 security control. This includes controls in
26 families, including the new privacy families. A total of 958
security controls, including control enhancements, were part of
the study.

To begin the study, the four authors of this article reviewed
each control. Later in a group session the authors discussed
controls with divergent categorizations. The authors performed
peer evaluations of early coding efforts to ensure consistent
instrument use. These peer evaluations helped identify and
remove sources of ambiguity early in the process.

The process resulted in a preliminary list of software assur-
ance related controls. For feedback the authors disseminated
these controls using the NIST software assurance mailing list.

Several community members provided feedback. Based on
the feedback and internal team review, the authors added 17
controls to the initial set of 535 controls. This brought the total
number of software assurance related controls to 552. This list
of security controls can is available here [4].

Observations and Findings
This section reports observations from applying the instru-

ment to NIST SP 800-53 security controls. A brief discussion of
significance follows each observation.

Do NIST SP 800-53 controls emphasize software assurance
related topics?

• Target of observation: # of controls and control fami-
lies relevant for software assurance

• Observed data:
• 57.62% (552/958) controls are relevant to software

 assurance
• 69.23% (18/26) families have controls relevant to

 software assurance
• Significance: Software is a key element in a majority

of information system components. The instrument observed rel-
evance for software assurance across NIST SP 800-53 security
controls.

How obvious are the control interpretations for software
security?

• Target of observation: # of Explicit and Implicit controls
• Observed data:

• 189 controls are Explicit
• 363 controls are Implicit

• Significance: A large number of implicit controls
show a significant burden for stakeholders in the A&A activi-
ties. Stakeholders need to interpret, negotiate and agree upon
implicit software assurance related controls.

 How many controls related to software security are strictly
enforceable?

• Target of observation: # of Explicit controls assigned
to baselines

• Observed data:
• 16 explicit controls are assigned to the LOW

 baseline.
• 38 explicit controls are assigned the

 MODERATE baseline.
• 53 explicit controls are assigned the HIGH baseline.
• 342 controls (62%) are not assigned to any

 baseline.
• Significance: A small percentage of software assur-

ance related controls are enforceable by minimum security
baselines. Furthermore, a large number of software assurance
controls remain unassigned to any baseline. The A&A activities
rely on the effectiveness of the tailoring step to select the unas-
signed controls. Tailoring activities adjust the control baselines
to a level commensurate with the perceived risk.

Which control families have a high density of explicit software
assurance controls?

• Target of observation: % of software assurance
controls with the Explicit (E) coding dimension within a control
family

• Observed data:
• Percentage of software assurance controls with the

CrossTalk—January/February 2016 39

SOFTWARE - A PEOPLE PRODUCT

	
0.00%$ 10.00%$ 20.00%$ 30.00%$ 40.00%$ 50.00%$ 60.00%$ 70.00%$ 80.00%$ 90.00%$ 100.00%$

Access$Control$(AC)$
AuditandAccountability(AU)

ConAngency$Planning$(CP)$
Risk$Assessment$(RA)$

Security$Assessment$and$AuthorizaAon$(CA)$
IdenAficaAonandAuthenAcaAon(IA)

Maintenance(MA)
PrivacyNData$Quality$and$Integrity$(DI)$

SystemandCommunicaAons$ProtecAon$(SC)$
SystemandInformaAon$Integrity$(SI)$

ConfiguraAon$Management$(CM)$
SystemandServices$AcquisiAon$(SA)$

 Explicit (E) coding dimension within control families.
 See figure 1.

• Significance: Figure 1 shows that explicit controls are
concentrated in the SA, SI, SC and CM families. This observa-
tion aligns well will the assertions made by NIST SP 800-53
authors. They have described SA, SI and SC control families
with the most emphasis on software assurance. There is one
surprising observation. The AC family has the least amount of
explicit controls. But this family also has the most number of
software assurance controls (95 software assurance controls).

What topics do explicit software assurance controls focus on?
• Target of observation: Co-occurrence of Developer,

Artifact, Lifecycle, Policy, Weakness/Vulnerability/Failure,
Operations, Capability and Recovery coding dimensions with the
Explicit coding dimension.

• Observed data:
• 61.38% Operations
• 47.09% Capability
• 39.68% Artifact
• 36.51% Developer
• 32.80% Lifecycle
• 20.11% Weak/Vuln/Fail
• 15.87% Policy
• 7.94% Recovery

• Significance: The observed data shows that explicit
control descriptions are not balanced. NIST SP 800-53 authors
bias them more towards software use, configuration, mainte-
nance and functional capabilities. Guidelines for developers,
software artifacts and lifecycle activities form the next set of
biases. Finally, weakness/vulnerability/failure topics seem to get
much less mention compared to other topics.

Which control families have the most number of software
assurance controls? What software assurance topics do they
cover?

• Target of observation:
• Within a control family

• # of software assurance related controls
 within a family (includes both explicit and
 implicit controls)

• frequency of occurrence for Developer, Artifact,
 Lifecycle, Policy, Weakness/Vulnerability/Failure,

 Operations, Capability and Recovery coding dimen-
 sions within a family as well as across families

• Observed data:
• # of software assurance related controls within a

 family as shown in Figure 2
• Frequency of occurrence for Developer, Artifact,

Lifecycle, Policy, Weakness/Vulnerability/Failure, Operations,
Capability and Recovery coding dimensions in a control family.
Top three coding dimensions in the top five control families with
the most number of software assurance controls are shown in
Figure 3.

• Significance: The most number of software assurance
related controls come from the AC family. This family also has a
high percentage of implicit controls. Like this family, other con-
trol families also exhibit tangled and hidden software assurance
concerns.

The next observations show that Operations and Capability
dimensions dominate several control families. But, the other
co-occurring dimensions do reflect the focus of the family. For
example, Artifact, Developer and Lifecycle dimensions best
characterize the SA family. Policy dimension best characterizes
AC and IA family. Finally, the Weakness/Vulnerability/Failure
dimension best characterizes SI family.

The Developer dimension frequently overlaps with Artifacts,
Lifecycle, Operations dimensions. This is because process-
related activities (Lifecycle and Operations) involve developers.
They also produce software artifacts that have to meet certain
standards.

Next, there are many more controls coded as Operations
(337) than Lifecycle (113). This implies that NIST SP 800-53
controls focus more on operational issues than on the develop-
ment process. Roughly half of the controls coded as Lifecycle
are also coded as Operations (51/113). This implies that many
of the lifecycle processes are also biased towards operations.

Finally, there are many more controls coded as Capability
(319) than Artifact (151). This implies that NIST SP 800-53
controls emphasize functional security requirements a lot. But
focus less on placing requirements on the artifact creation
process.

How do “organization” related controls compare to “informa-
tion system” related controls for software assurance?

• Target of observation: Co-occurrence of ORG and SYS

Figure 1: Percentage of software assurance controls with the Explicit (E) coding dimension within control families

40 CrossTalk—January/February 2016

SOFTWARE - A PEOPLE PRODUCT

	

Policy'
58'

Opera/ons'
41'

Capability'
85'

AC#

Developer'
57'

Ar/fact'
59'

Lifecycle'
55'

SA#
Policy'
20'

Opera/ons'
59'

Capability'
62'

SC#

Weak./
Vuln./Fail.'

16'

Opera/ons'
51'

Capability'
32'

SI#

Policy'
35'

Opera/ons'
26'

Capability'
48'

IA#

Figure 2: Total # of software assurance controls across all families

Figure 3: Distribution of Developer, Artifact, Lifecycle, Policy, Weakness/Vul-
nerability/Failure, Operations, Capability and Recovery coding dimensions for
controls in the top five control families

	

1"
3"
4"

6"
6"
6"

8"
10"

12"
13"

26"
34"

50"
56"

62"
75"

85"
95"

Incident"Response"(IR)"
Media"Protec=on"(MP)"

Physical"and"Environmental"Protec=on"(PE)"
Personnel"Security"(PS)"

PrivacyFAuthority"and"Purpose"(AP)"
PrivacyFIndividual"Par=cipa=on"and"Redress"(IP)"

PrivacyFTransparency"(TR)"
PrivacyFUse"Limita=on"(UL)"

PrivacyFSecurity"(SE)"
PrivacyFAccountability,"Audit,"and"Risk"Management"(AR)"

PrivacyFData"Quality"and"Integrity"(DI)"
Awareness"and"Training"(AT)"

Planning"(PL)"
PrivacyFData"Minimiza=on"and"Reten=on"(DM)"

Program"Management"(PM)"
Con=ngency"Planning"(CP)"

Security"Assessment"and"Authoriza=on"(CA)"
Risk"Assessment"(RA)"

Maintenance"(MA)"
Audit"and"Accountability"(AU)"

Configura=on"Management"(CM)"
Iden=fica=on"and"Authen=ca=on"(IA)"
System"and"Informa=on"Integrity"(SI)"

System"and"Communica=ons"Protec=on"(SC)"
System"and"Services"Acquisi=on"(SA)"

Access"Control"(AC)"

coding dimensions with respect to Process (P), Technology (T),
(P+T), and Explicit (E) coding dimensions

• Observed data:
• 93.62% (191/204) of SYS controls are purely

 Technology-oriented
• 99.7% (347/348) of ORG controls are

 Process-oriented,
• 51.14% (178/348) of ORG controls have both a

 Process and Technology component (P+T).
• ~45% (154/348) of ORG controls are Explicit
• ~17% (35/204) of SYS controls are Explicit.

• Significance: This observation confirms that SYS con-
trols suggest technological solutions. Next, almost all ORG con-
trols are process oriented. But more than half of these controls
also have a technological component. These observations align
well with the definition of SYS and ORG in NIST SP 800-53.

Only a small percentage of explicit controls are SYS com-
pared to ORG. This suggests that explicit controls recommend
process and technology combined solutions over just technology.

Which control families predominantly emphasize Process,
Technology or Process and Technology combined for software
assurance?

• Target of observation: % of controls with Process (P),
Technology (T) or Process and Technology (P+T) coding dimen-
sions within a control family

• Observed data:
• Over 50% Process (P): MA (19/26), SA (55/85)
• Over 50% Technology (T): AC (67/95), AU (20/34),

 IA (29/56), SC (41/75)
• Over 50% Process and Technology (P+T): CA

 (10/12), CM (28/50)
• Significance: The following justifications explain these

observations. Process based controls are common for mainte-
nance and acquisition activities. Emphasis on process in MA
and SA control families reflects this. Next, automatic control
mechanisms are common for access control, audit, identifica-
tion, authentication and secure communications. Emphasis on
technology in AC, AU, IA and SC control families reflects this.
Finally, automated mechanisms often support manual processes
of performing security assessments. Emphasis on process and
technology combined in CA and CM families reflects this.

Issues and Opportunities
Information systems are software intensive. As a result, weak-

nesses in software components present a significant source
of risk. Due to many implicit software assurance controls these
risks are not well understood in the context of FISMA. This
makes it difficult to manage software assurance as a first-class
entity in the system lifecycle. Furthermore, in new system ac-
quisitions, stakeholders tailor security controls based on system
needs. During tailoring, stakeholders address many system
security controls. But software security gets less attention than
it deserves. Thus, the system matures with unmitigated software
deficiencies and flaws. At the same time, software evolves with
new features and capabilities more rapidly than the system. This
fact is also evident during security test and evaluation as well
as operational test and evaluation. During these assessments
software components are many development versions ahead of
the system maturity.

The Common Weakness Enumeration (CWE) provides a
unified and measurable set of weaknesses. But, this large
enumeration of over 700 weaknesses presents a significant
cognitive challenge. A&A stakeholders need to understand what
weaknesses are most relevant to security controls. Yet many se-
curity controls do not provide any CWE selection guidance. For
example, supplemental guidance for the SI-2 Flaw Remediation
control states the following. “...Organizations take advantage of
available resources such as the Common Weakness Enumera-
tion (CWE) or Common Vulnerabilities and Exposures (CVE)
databases in remediating flaws discovered in organizational
information systems.” It is encouraging to see the mention of
standard enumerations of software weakness like CWE. But, as-
sessing compliance with this control will likely not be repeatable
or uniform.

CrossTalk—January/February 2016 41

SOFTWARE - A PEOPLE PRODUCT

Finally, controls to avoid some of the most egregious software
weaknesses do exist in the catalog. For example, controls for
static code analysis, threat and vulnerability analyses exist.
But they are not assigned to any control baseline (not even
high-impact!). NIST SP 800-53 categorizes them as assurance
controls. Stakeholders can use these as needed in different
situations but not mandated. So it becomes easy for a software
developer or organization to just “tailor these controls out.” Tools
that support security A&A activities make it even easier to filter
out these controls.

While there are issues, as with any other A&A process, many
opportunities also exist. NIST SP 800-53 rev 4 control catalog
has a comprehensive set of requirements to develop or procure
secure software. But the FIPS 200 minimum security baselines
needs to include them in the low, moderate, or high-impact
baselines. To build-security-in, the bar needs to be raised.

NIST SP 800-53 controls are often specified independent
of specific technologies and platforms. As a result, the controls
align well with abstract “Class” and “Base” level software weak-
nesses in the CWE. Thus, developing mappings between se-
curity controls and standard software weaknesses is essential.
This effort is currently being undertaken using assurance cases
as a mapping mechanism. These results are beyond the scope
of this article. Finally, many relationships exist among controls
as well as among CWEs. These will be essential to unravel the
cascading dependencies among system components.

Just regulatory processes and controls alone cannot guaran-
tee secure software. But, they do play a significant role in mak-
ing software security programs a strategic priority. Our goal is
to make software assurance related controls easily understood,
communicable, and manageable. These attributes are an es-
sential precursor to measure control effectiveness for software
security. That is if the controls do in fact lead to reduction in se-
curity weaknesses in software. Also, prove the impact of these
controls for acquiring software that can be securely configured,
deployed and maintained.

Acknowledgements
This research is partially funded by the US Department of

Homeland Security Science and Technology Directorate Cyber
Security Division, D13PCC00228, “An Engagement to Look
Forward to: Security Requirements and Software Weaknesses.”
We also thank the anonymous reviewers for their thoughtful
comments on previous drafts of this paper.

Robin A. Gandhi, Ph.D. is an Associate Professor in the
College of Information Science and Technology at the
University of Nebraska, Omaha. He received his Ph.D. from
The University of North Carolina at Charlotte. The goal
of Dr. Gandhi’s research is to develop theories and tools
for designing dependable software systems that address
both quality and assurance needs. He is a member of DHS
Software and Supply Chain Assurance Working Group on
Workforce Training and Education.

Keesha M. Crosby is the Founder and CEO of Tri-Guard
Risk Solutions, Ltd (T-GRS). Prior to founding T-GRS, Cros-
by served as industry and government subject matter expert
in software assurance as well as system security engineer-
ing arena. She has authored articles for IEEE and several
patents pending. T-GRS has a tool called SACRE (Software
Assurance Compliance verification and Risk Evaluation)
which automates the decision making for developers and
auditors based on weaknesses likelihood of breach.

Harvey Siy, Ph.D., is an associate professor in the De-
partment of Computer Science at the UNO. He received
his doctorate in computer science from the University of
Maryland at College Park. He conducts empirical research
in software engineering to understand and improve tech-
nologies that support the development and evolution of
reliable software-intensive systems. Siy has previously held
positions at Lucent Technologies and its research division,
Bell Laboratories.

Sayonnha Mandal is currently pursuing her Ph.D. in Infor-
mation Technology at the University of Nebraska, Omaha.

ABOUT THE AUTHORS

REFERENCES
1. “FISMA Implementation Project.” NIST Computer Security Division. N.p., n.d. Web. 28 May 2014. <http://csrc.nist.gov/groups/SMA/fisma/index.html>.
2. United States. National Institute of Standards and Technology. SP 800-53 Revision 4. Security and Privacy Controls for Federal Information Systems and Organizations. N.p., Apr. 2013. Web.

<http://csrc.nist.gov/publications/PubsSPs.html#800-53>.
3. Mead, N., Allen, J., Ardis, M., Hilburn, T., Kornecki, A., Linger, R., & McDonald, J. (2010). Software Assurance Curriculum Project Volume I: Master of Software Assurance Reference Curricu-

lum (CMU/SEI-2010-TR-005). Retrieved November 07, 2013, from the Software Engineering Institute, Carnegie Mellon University website: <http://resources.sei.cmu.edu/library/asset-view.
cfm?AssetID=9415>

4. Draft list of software assurance related NIST SP 800-53 rev4 controls: <http://faculty.ist.unomaha.edu/rgandhi/swa/controls.pdf> <http://resources.sei.cmu.edu/library/asset-view.
cfm?AssetID=9415>

http://csrc.nist.gov/groups/SMA/fisma/index.html
http://csrc.nist.gov/publications/PubsSPs.html#800-53
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9415
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9415
http://faculty.ist.unomaha.edu/rgandhi/swa/controls.pdf
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9415
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9415

42 CrossTalk—January/February 2016

COMING EVENTS

Upcoming Events
Visit <http://www.crosstalkonline.org/events> for an up-to-date list of events.

13th Annual IEEE Consumer Communications &
Networking Conference
Las Vegas, NV
January 9-12, 2016
http://ccnc2016.ieee-ccnc.org/

12th Annual Open Forum for Large-Scale Network
Defense Analytics
Daytona Beach, FL
January 11-14, 2016
http://www.cert.org/flocon/

International Conference on Verification, Model
Checking, and Abstract Interpretation 2016
St. Petersburg, FL
January 17-19, 2016
http://conf.researchr.org/home/VMCAI-2016

ICCMS 2016: the 7th International conference on
Computer Modeling and Simulation
Brisbane, Australia
Jan 18-19, 2016
http://www.iccms.org/

POPL 2016 Annual Symposium on Principles of
Programming Languages
January 20-January 22, 2016
St. Petersburg, FL
https://regmaster4.com/2016conf/POPL16/register.php

D2D 2016: the First International Workshop on
Data to Decision
February 3-5, 2016
Laguna Hills, CA
http://ssrg.nicta.com.au/Events/conferences/D2D2016/

Developer Week
February 12-18, 2016
San Francisco, CA
http://www.developerweek.com/

MODELSWARD 2016- The 4th International Con-
ference on Model-Driven Engineering and Soft-
ware
Rome, Italy
Feb 19-21, 2016
http://www.modelsward.org/

The Eleventh International Conference on Digital
Telecommunications (ICDT 2016)
February 21-25, 2016
Lisbon, Portugal
http://www.iaria.org/conferences2016/ICDT16.html

14th USENIX Conference on File and Storage
Technologies
February 22-February 25, 2016
Santa Clara, CA
https://www.usenix.org/conference/fast16

The 9th ACM International Conference on Web
Search and Data Mining
February 22-February 25, 2016
San Francisco, CA
http://www.wsdm-conference.org/2016/

LEAN AND SIX SIGMA CONFERENCE
February 29- March 1, 2016
Phoenix, AZ
http://asq.org/conferences/six-sigma/

SIGCSE 2016
March 2-March 5, 2016
Memphis, Tennessee
http://sigcse2016.sigcse.org/

IoT Dev + Test Conference
April 17-22, 2016
San Diego, CA
https://iotdevtest.techwell.com/

http://www.crosstalkonline.org/events
http://ccnc2016.ieee-ccnc.org/
http://www.cert.org/flocon/
http://conf.researchr.org/home/VMCAI-2016
http://www.iccms.org/
https://regmaster4.com/2016conf/POPL16/register.php
http://ssrg.nicta.com.au/Events/conferences/D2D2016/
http://www.developerweek.com/
http://www.modelsward.org/
http://www.iaria.org/conferences2016/ICDT16.html
https://www.usenix.org/conference/fast16
http://www.wsdm-conference.org/2016/
http://asq.org/conferences/six-sigma/
http://sigcse2016.sigcse.org/
https://iotdevtest.techwell.com/

CrossTalk—January/February 2016 43

SOFTWARE - A PEOPLE PRODUCTBACKTALK

The story goes that that a general building contractor was
looking to cut expenses, and noticed that he had two bricklay-
ers working on the same project. He decided that he could get
rid of one, and still finish the project on time. He decided to ask
each of the two bricklayers what they though of their jobs.
He asked the first bricklayer “What do you do every day?” The

first bricklayer replied “Every morning, I can’t wait to get up and
come into work, inspired by what I will get to accomplish that
day. I prepare my bricks and mortar, and work on raising a cathe-
dral to the sky. My humble bricklaying will help finish this work
of art, and the glory and majesty that the cathedral presents will
be due, in some small measure, to the quality of my work!” The
general contractor, moved beyond words, wiped a tear from his
eye, and sought out the second bricklayer.
He asked the second bricklayer the same question - “What do

you do every day?” The second bricklayer had a totally different
attitude. The bricklayer replied “I come in exactly at 8, no earlier.
I mix my mortar, and – except for two breaks and lunch, I pile
one stupid brick on top of another. I can’t wait for the 5 p.m. bell,
so I can clean my trowel and mortar bucket and go home.”
The general contractor realized the choice was obvious. With-

out hesitation, he quickly decided to fire the first bricklayer. You
see, the two bricklayers were supposed to be building a small
utility shed, not a cathedral.
Back in 1976, I was a young applications programmer working

at Offutt AFB. Part of my job involved supporting the programs
for handling collection and analysis of satellite data. A Lt. Col,
who was one of the more experienced analysts, asked me to
write a special program for him to help reduce some data. I don’t
think the term “data analytics” existed yet – but that was what
we were accomplishing. To expedite the program – I wanted
to mix the data into a common file and store it on a tape drive
(1975. Honeywell 6800. 96K of main memory. 4 tape drives.
Card input. What more could you ask for?)
Looking for a way to distinguish one set of data from another, I

realized that I would need a record separator to help me analyze
the data. I asked the user if “special characters” were part of the
input data – and was informed that no special characters were
ever used.
Armed with this data, and a copy of Knuth’s “The Art of Com-

puter Programming: Volume 3 Sorting and Searching,” I started
writing code. Because the actual data was classified, I did
not have access to the actual input data yet – an unclassified
system was used for development and testing. Given a schema
(a description of the physical format of the eventual input file),
I created a series of dummy records to test my program. In
short time, I had a working prototype. Several days of testing
confirmed my obvious skill and both a designed and developer.
It was efficient, concise, and gave accurate results. My program
was ready for real data.

The trial run of my masterpiece was scheduled during the
active database downtime, or what we called “night process-
ing.” During the day, the analysts needed the database “live”, so
background processing that modified or manipulated the data
ran every night. My program was scheduled for 2 a.m. At 2:01
a.m., I was woken up from a sound sleep to hear an operator
tell me that my program has crashed, and in fact had crashed
immediately upon starting execution. Not much else he could
tell me (remember that classified part?) so I got dressed and
headed into the computer room. At about 3 a.m., I was examin-
ing the 96K core dump to find the status of registers, files, and
program counters (remember the Honeywell 6800? 96K of an
octal dump.)
It took quite a while to decipher the dump, but I eventually dis-

covered that the first character of the first input file was a “!”. As
a matter of fact, the entire classified input file was littered with
“!”, “#”, “#”, and every other special character you could imagine.
By this time, it was 6 a.m. – so I just hung around for the Lt.

Col to show up. When he finally arrived at his desk, I showed
him the input file and the program dump, and reminded him that
he was told me that there were no special characters in the
input file.
His response? “Exclamation marks? Those aren’t special char-

acters. We use them all the time!”
And the moral of the story is that I was a young and inexpe-

rienced programmer, who should have known to examine the
input files themselves, rather than just a schema of the file.
Or maybe the moral is that users and developers (and analysts

and testers and maintainers) all speak a different language –
and the same word carries different connotations and meanings
for each person.
The hardest part of building large software? Communications.

Talking to all the users, and fathering their requirements. De-
termining what is a “requirement” and what is just a “that would
be nice to have, but we could live without it.” Determining from
the user how to test each requirement. Then explaining to the
users how to correctly run the system, including how to handle
occasional problems, shortcomings, and failures.
Come to think of it – compared to working with lots of people,

coding is probably the easy part.

David A. Cook
Professor of Computer Science
Stephen F. Austin State University
cookda@sfasu.edu

People-less Requirements and Analysis

mailto:cookda@sfasu.edu

CrossTalk thanks the
above organizations for
providing their support.

www.facebook.com/309SoftwareMaintenanceGroup

Like Send resumes to:
309SMXG.Recruiting@us.af.mil

or call (801) 777-9828

Hill Air Force Base is located close to the Wasatch and Uinta
mountains with skiing, hiking, biking, boating, golfing, and
many other recreational activities just a few minutes away.

The Software Maintenance Group at Hill Air Force Base is recruiting civilians
 (U.S. Citizenship Required). Benefits include paid vacation, health care plans,
matching retirement fund, tuition assistance, paid time for fitness activities, and
workforce stability with 150 positions added each year over the last 5 years.
 Become part of the best and brightest!

Engineers and Computer Scientists

H i r i n g E x p e r t i s e

CrossTalk / 517 SMXS MXDED
6022 Fir Ave.
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

http://www.facebook.com/309SoftwareMaintenanceGroup
mailto:309SMXG.Recruiting@us.af.mil
https://buildsecurityin.us-cert.gov/swa/about.html
http://www.navair.navy.mil
http://www.309smxg.hill.af.mil

