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Abstract

Electric Field Mills (EFMs) located in the region surrounding Cape Canaveral

record the electrification of the atmosphere near them. Research studying how these

sensors could improve lightning warnings has had mixed results. This paper used

a Convolutional Recurrent Neural Network (CRNN) and data from 30 EFMs from

May-July of 2012-2016. The mean was calculated for every 60 second period and

30 minutes of this summarized data was used to create a lightning prediction with a

warning period of 15 minutes. This method achieved a True Positive Rate (TPR) of

77.6%, a False Positive Rate (FPR) of 8.3%, a False Discovery Rate (FDR) of 48.1%,

and an Operational Utility Index (OUI) of 53.9% (Kehrer et al., 2006). This suggests

that the EFM sensor array, when used as a means to measure the electrification of the

entire region, is capable of effectively predicting lightning for a 5-mile radius near Cape

Canaveral. Moreover, achieving a 53.9% on the OUI rivals the best methods currently

used implying that incorporating EFMs into lightning forecasting may reduced the

FPR and save millions of dollars in delay and cancellation costs.
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LIGHTNING PREDICTION USING ARTIFICIAL NEURAL NETWORKS AND

ELECTRIC FIELD MILL DATA

I. Introduction

1.1 Background

Research Motivation.

Cape Canaveral Air Force Station (CCAFS), Kennedy Space Center (KSC), and

Patrick Air Force Base (AFB) experience the highest rate of thunderstorms in the

world during the summer months due to their location in what is known as the thun-

derstorm capital of the United States (Florida Climate Center, 200). Lightning poses

a great risk to the organizations’ $17+ billion facilities, multi-billion dollar boost-

ers/payloads, and 25,000+ personnel (Roeder, Hajek, Flinn, Maul, & Fitzpatrick,

2000). The 45th Weather Squadron (45 WS) is tasked with issuing weather forecasts

and lightning warnings to ensure the risk to assets and personnel due to weather is

minimized.

Lightning strikes caused $825.7 million in U.S. home insurance claims and 38

lightning related deaths, 9 of those deaths in Florida, in the United States in 2016

(Insurance Information Institute, 2016). A cloud-to-ground lightning event that

strikes or nearly strikes a mission area or payload may result in injury or death

of personnel and/or destruction of expensive equipment and facilities. A strike on

a fuel-filled rocket may cause an explosion or lead to key guidance or navigational

systems being destroyed. In 1963, Pan Am Flight 214 caught fire and crashed after

being struck by lightning killing all 81 people passengers and crew (Erdman, 2014).
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In 1987, lightning destroyed an Atlas-Centaur rocket during launch (Christian et al.,

1989). Lightning warnings may have prevented such tragedies.

The Lightning Advisory Panel (LAP) was established in response to the Atlas-

Centaur disaster and was charged with creating what is now known as the Lightning

Launch Commit Criteria (LLCC) (Merceret et al., 2010). The LLCC is a set of

parameters that must be met in order to conduct space flight launches. These criteria

consist primarily of cloud thickness, reflectivity, temperatures, and electrification of

the atmosphere as predictors of lightning events (Koons & Walterscheid, 1996). The

two primary criteria that must be met for EFMs are:

1. Do not launch for 15 minutes after the absolute value of any electric field mea-

surement at the surface within 5 NM of the flight path has been greater than

1500 V/m.

2. Do not launch for 15 minutes after the absolute value of any electric field mea-

surement at the surface within 5 NM of the flight path has been greater than

1000 V/m (Koons & Walterscheid, 1996).

While it is generally accepted that voltage/meter of the atmosphere measured by

EFMs is strongly related to the presence of lightning nearby the sensor, the relation-

ship is not well understood. Several studies on EFMs and lightning prediction show

inconclusive results on how to use EFM measurements to predict lightning, such as in

Murphy, Holle, and Demetriades (2008). This thesis will attempt to more accurately

predict lightning using Artificial Neural Networks (ANNs) and the measurements

from the 31 EFMs surrounding the 45 WS.
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1.2 Problem Statement

Research Questions.

Performing space flight operations in Florida will inevitably result in cancellations

and delays due to weather, but better lightning prediction could lead to immense

savings and increased safety. This research seeks to answer two questions:

1. Does a relationship exist between the electrification of the atmosphere measured

by EFMs and lightning events near Cape Canaveral?

2. If this relationship exists, can it be used to predict lightning at or exceeding the

success rate of past methods?

Hypothesis.

Past attempts at using EFMs to predict lightning, such as Murphy et al. (2008),

focused on a small number of EFMs using the idea of a voltage/meter threshold as the

indicator for a lightning event near the EFM that was measured. This thesis takes a

more holistic view and looks at the voltage/meter of the region by considering all 31

EFMs simultaneously to predict a lightning event at a specific location. Additionally,

instead of ”smoothing” out the data by taking the mean over an interval, as Murphy et

al. (2008) did, which can hide large spikes in the voltage/meter, this thesis calculates

the mean, variance, kurtosis, and skew to capture the subtle changes across time

more completely. It is hypothesized that by looking at the regional electrification by

measuring all EFMs over a large period of time, the performance metrics evaluating

lightning prediction will be improved.

3



1.3 Methodology

Datasets.

The EFM sensor array consists of 31 EFMs spread across central Florida. Each

EFM collects the voltage per meter (V/m) of the surrounding atmosphere at 50 hertz

creating data consisting of three features: date, time and voltage per meter. This

information is available from 1996 to the present. This thesis combines data May-July

from 2013-2016 with the LDAR data to create its datasets.

The LDAR array consists of eight sensors spread across central Florida that detect

when a lightning event occurs. The system triangulates the lightning event’s location

using the readings from the eight sensors. The data consists of six features: Time,

Date, X location, Y location, Z location, and Event type. Data is available from 1994

to the present. The data used in this analysis was received from the 45 WS and was

preprocessed by them to only include the type of lightning events pertinent to this

analysis.

Approach.

This paper differs from past methods by considering a much larger dataset than

previous research (May-July, 2013-2016) coupled with the Lightning Detection and

Ranging (LDAR) dataset from 2013-2016. For each EFM, summary statistics (mean,

variance, skewness, and kurtosis) were calculated for every 20, 30, and 60 second

period, known as the statistic window (SW). Two measurement windows (MWs) of 30

and 60 minutes were used to create running windows of data. Responses were created

to identify when lightning occurred within a 15-minute prediction window (PW) after

a 15-minute warning window (WW). Lastly, the LDAR dataset was reduced to only

include lightning events that occurred within a 8.04 km (5 mile) and 16.09 km (10

mile) radius around Cape Canaveral, known as the area of concern (AOC).

4



A dataset was created for each of the possible SW, MW, PW, WW, and AOC

combinations, resulting in 12 datasets. Considering the EFM data as hyperspectral

images of the region across time, much like was done in the work by Tsironi, Barros,

Weber, and Wermter (2017); and Wu and Prasad (2017), a convolutional recurrent

neural network (CRNN) was chosen to capture both the spatial and temporal nature

of the data. All 12 datasets were trained on the CRNN and the results were compared

against past research and the current prediction methods used by the 45 WS.

1.4 Overview

Chapter 2 provides context to this paper by exploring some of the past research

on lightning prediction and some examples of how ANNs have improved machine

learning processes. Chapter 3 is the methodology and details this paper’s research,

to include the description of the neural networks, the selection of the parameters to

create the datasets, and the metrics used to evaluate performance. Chapter 4 is the

discussion of the research and the results. Chapter 5 presents the conclusions and

recommendations for future research.

5



II. Literature Review

2.1 Introduction

This chapter defines a number of terms to allow for discussion and comparison of

past research. Past research has been inconsistent with its definitions of statistics and

performance metrics requiring a discussion on how this paper will evaluate success

(Barnes, Schultz, Gruntfest, Hayden, & Benight, 2009). This chapter then discusses

past research into lightning prediction and compares how each method performed

using the terminology introduced. Lastly, artificial neural networks and their use in

meteorology and time sequenced prediction is discussed.

2.2 Introducing Terminology

Model Parameter Terminology.

Reading past research into lightning prediction reveals that all research has several

parameters in common. Each method of research requires the researcher to select the

area of concern (AOC), the measurement windows (MW), and the warning window

(WW). Some methods also use a prediction window (PW) and a statistics window

(SW). While not all research explicitly states these values, the nature of the research

and the context of the study requires these parameters. Mazany, Businger, Gutman,

and Roeder (2002); Murphy et al. (2008); and Da Silva Ferro et al. (2011) had similar

terminology, but this thesis seeks to more explicitly define these and describe past

research in these common terms. For research which assumes but does not state these

values, this thesis attempts to explicitly identify them.

To begin, AOC is defined as the area in which the researcher is attempting to

predict lightning activity. The shape of this area may be circular, rectangular, or

6



elliptical. The total area covered by the AOC may range greatly depending on the

research and the design decisions.

Da Silva Ferro et al. (2011) provides a graphic that depicts their chosen AOC,

shown in Figure 1. Figure 1 shows they selected an AOC with a circular shape

centered around an electric field mill (EFM). The graphic does not depict the radius

of the AOC, but Da Silva Ferro et al. (2011) selected radii of 5, 10, and 15 kilometers

(km) and performed an analysis with each radius.

Figure 1. Graphical Representation of AOC

Once a researcher determines their AOC, the parameters for their data must be

selected. Figure 2 gives a graphic representing the different parameters described

here. First, the SW is a time period over which EFM readings may be summarized.

In most research, this is a small amount of time between 20 seconds and 1 minute.

The MW is the amount of time used by a model to predict a lightning event. For

example, if a prediction is made based off a single EFM reading, then the MW is

0.02 seconds, since EFMs measure the V/m once every 0.02 seconds. If 30 minutes

of EFM data is used to make a prediction, then the MW is 30 minutes.

The WW, referred to as warning time or lead time in some literature, is the amount

of time between the PW and the MW. WW is so named because in a real-world

lightning event, this is the amount of warning that one can expect to have before a

lightning event occurs. It is important to note that some lightning forecasting studies

7



do not establish this prior to analysis. Instead, a criteria is established that triggers

a lightning warning and the amount of time that passes between the instantiation of

the warning and a lightning event is recorded. At the end of the study the mean of

these times is calculated and established as the lead time. If it is assumed that the

recorded lead times approach a normal distribution, then 50% of the warnings fail to

meet the after-established lead time resulting in a constant 50% false negative rate.

This is concerning and should be addressed in future studies.

The PW is the time window in which lightning is predicted (or not predicted)

to occur. Given any given MW, a model will either predict lightning or not predict

lightning and the PW is the time for which that prediction is made.

Figure 2. Graphical Representation of Parameters

In Figure 2, if each tick mark is one minute, then the SW is 1 minute, the MW

is 5 minutes, the WW is 15 minutes and the PW is 10 minutes. This means that 5

minutes of data containing 5 one minute SW summarizations of the data are being

used to make predictions for the time period 15 minutes (WW) after the end of the

MW and 10 minutes (PW) after the end of the WW. Using a running window of MWs

ensures that a prediction is made for all time periods within the timeline. Since the

WW of one MW is part of the prediction window of a previous MW, a determination

of the model’s efficacy is not dependent on what happens in the WW. Only the events

occurring within the PW are important. Figure 3 depicts two MWs in time. The

lightning event occurs at the same time, but it happens in the first MW’s PW and

the second MW’s WW. Since the first MW predicts lightning and the second does

8



not, then both are correct since each MW is only concerned with its own PW. The

running window ensures the entire timeline has predictions.

Figure 3. Running Window Covering all Time Periods

Once these parameters are selected, common terminology and definitions of the

metrics used to evaluate a model. This section defines terminology and describes past

research methods in these terms in order to make an objective comparison of their

results. Chapters 4 and 5 will also use these terms to evaluate this thesis’ methods

and results.

Results Terminology.

To compare past methods of lightning prediction, the notion of accuracy must be

more clearly defined. Using the above diagram depicting SW, MW, WW, and PW,

this section explains the different situations that may arise and gives terms to each.

Table 1 depicts a commonly used confusion matrix. Using this structure only allows

for prediction within the PW, regardless of what lightning activity may be occurring

elsewhere. Since a running window is used to predict lightning continuously, a cor-

rectly functioning predictor would warn of lightning prior to any event (as depicted

9



in Figure 3 above).

Table 1. Confusion Matrix Example

Actual
Lightning No Lightning

Predicted Lightning True Positive False Positive
Predicted No Lightning False Negative True Negative

A True Positive (TP), or hit, is when the model predicts a lightning event from a

MW of readings and a lightning event occurs within that MW’s PW. A TP is depicted

in Figure 4.

Figure 4. True Positive

A False Negative (FN) occurs when a model does not predict lightning for a PW,

but a lightning event happens. This is the most dangerous real-world situation and

should be minimized as much as realistically possible. Figure 5 depicts a FN.

Figure 5. False Negative

The True Positive Rate (TPR), also known as probability of detection, hit rate,

sensitivity, or recall; is a statistic describing the ability of a model to ‘detect’ lightning

events. It describes how well a model does at accurately predicting true lightning

10



events. Equation 1 shows the calculation of this statistic. A model that has high

TPR often trades this success for a high number of predictions of lightning when no

lightning event occurs. While the risk of lightning would be absolutely minimized, this

situation is not realistic. A model that has a high TPR and still predicts nonlightning

events accurately is optimal.

TPR =
True Positives

True Positives + False Negatives
(1)

A False Positive (FP), or false alarm, is when a lightning event is predicted, but

one does not happen within the MW’s PW. Figure 6 depicts this. This situation is

realistically better than a FN because assets and personnel are not placed at risk.

However, a model that predicts only lightning events results in a large number of FPs

which would stop all space flight operations and not be realistic. Minimizing the FA

rate as much as possible is also optimal.

Figure 6. False Positive

A True Negative (TN) is the number of times a model did not predict lightning

and lightning did not happen. The idea of ‘correctly not warned’ is applicable. Figure

7 depicts a TN.

11



Figure 7. True Negative

Before proceeding, it is important to mention the confusion that has arisen, both

within the meteorological community and outside it, regarding Equations 2 and 3.

A brief discussion of the different terms used will be given and then a term will be

selected and used for the remainder of this paper. Equation 2 is the ratio of FPs to all

true nonlightning events. It can be thought of as the percentage of time a model will

issue a false alarm and resources will be expended needlessly because a lighting event

does not follow within a reasonable amount of time (for instance, the PW). Equation

3 is the ratio of the number of false positives to all events predicted as lightning. This

can be thought of as the probability of a model to produce a false alarm.

Equation 2 has commonly been called the False Positive Rate or the False Alarm

Rate. Barnes et al. (2009) suggest to use the term Probability of False Detection as

a means of alleviating the confusion that has arisen in the meteorological community

between False Alarm Rate and False Alarm Ratio. However, this creates further

confusion as this term is also used by some to refer to Equation 3. In an attempt to

remove ambiguity and unload these overloaded terms, this paper will use the terms

False Positive Rate (FPR) to refer to Equation 2 and False Discovery Rate (FDR) to

refer to Equation 3.

FPR =
False Positive

False Positives + True Negatives
(2)

12



FDR =
False Positive

False Positives + True Positives
(3)

The True Negative Rate (TNR) is the ratio of the number of true negatives to

all true nonlightning events (see 4. It is the effectiveness of a model to correctly not

warn of a lightning event.

TNR =
True Negatives

True Negatives+ False Positives
(4)

The Hanssen and Kuipers discriminant, or True Skill Score (TSS), is a mea-

sure of how well the model discriminated between lightning and non lightning events

(Hanssen & Kuipers, 1965; Woodcock, 1976). It is calculated by taking the differ-

ence between the TPR and the FPR (see Equation 5) and is a discriminant measure

that has been shown to yield an unbiased measure of forecasting accuracy for yes/no

forecasting (Woodcock, 1976). However, This statistic suffers heavily weighting the

TPR resulting in it becoming equal to TPR when a model is attempting to predict

rare events. This could be problematic for lightning events.

TSS = TPR - FPR =
(TP)(TN)-(FP)(FN)

(TP+FN)(FP+TN)
(5)

In addition to these statistics, an Operational Utility Index (OUI) will be cal-

culated. The OUI is a non-standard statistic created by the 45 WS to capture the

importance of finding the optimal balance between TPR and FDR (D’Arcangelo,

2000; Kehrer, Graf, & Roeder, 2006). The OUI uses the TSS (see Equation 5) in

addition to TPR and FDR and weights these three statistics to calculate a metric

with a maximum value of 0.83 being the best possible model. Equation 6 shows the

weights and calculation of the OUI.

13



OUI =
3(TPR) + 2(TSS)− FDR

6
(6)

The metrics used to report the effectiveness of a lightning prediction varies widely.

This paper attempts to compare methods according to these statistics to achieve as

objective of a comparison as possible. It is important to keep in mind that the

parameters and methods used in each research vary widely, so the notion of a ‘best’

method cannot be made. The comparison is done to show the success of the corpus

of lightning prediction methods and how this paper’s methods compare.

2.3 Research in Lightning Forecasting with Electric Field Mills

This section examines past research into lightning prediction and evaluates their

methods using the terminology and statistics introduced in the last section. Terminol-

ogy differs among researchers; when there is confusion, this paper attempts to clarify

the intent of the authors as best as possible. A brief introduction of the past research

is given followed by a comparison of the research decisions made in each. These are

summarized in Tables 3 and 4. Lastly, the methods are evaluated and compared in

Table 7.

The Lightning Launch Commit Criteria (LLCC) establishes criteria that must be

met for space flight launches. These criteria include two explicit references to Electric

Field Mills (EFMs):

1. Do not launch for 15 minutes after the absolute value of any electric field mea-

surement at the surface within 5 NM of the flight path has been greater than

1500 V/m.

2. Do not launch for 15 minutes after the absolute value of any electric field mea-

surement at the surface within 5 NM of the flight path has been greater than

14



1000 V/m (Koons & Walterscheid, 1996).

While the LLCC is used to mitigate the risk of triggered lightning at launch, the

idea of a V/m threshold being exceeded triggering a warning is common. The 45 WS

uses a similar threshold idea and other methods as criteria to issue Phase-1 lightning

watches which indicate lightning is probable within a 5 nautical mile radius within 30

minutes (Roeder et al., 2000). The research presented here includes methods that use

similar thresholds as seen in the LLCC and predict lightning for both long and short-

term periods. Mixed results show a continued need to understand the contribution

of EFM data to lightning prediction.

Lightning Prediction Techniques.

Mazany et al. (2002) created a lightning prediction index using Global Positioning

System (GPS) Integrated Precipitable Water Vapor (IPWV), along with several other

variables. Their research focused on improving the forecasting skill and increasing

the lead time of lightning forecasting for the KSC. The researchers used a logistic

regression model and performed statistical analysis to select four variables: the 30-

minute maximum value across all 31 EFMs (read every 5 minutes), GPS IPWV, the

change of GPS IPWV over a 9-hour period, and the K-Index (KI). The EFM data

was measured every 5 minutes and a 30-minute maximum was used as the predictor

variable (SW and MW both equal to 30 minutes). They fit a logistic regression model

with these four variables from data collected between May and September of 1999.

The output from this model was a probability of lightning which they called the GPS

Lightning Index.

Looking at the success of different probability thresholds, they selected a thresh-

old of 0.7; meaning that all GPS Lightning Indexes below 0.7 were predicted to be

lightning and all those above were not. They set their WW at 90 minutes, but did

15



not specify a PW. The intent of their research was for long-term prediction (≥90

minutes) for a 37.04 km (20 nautical mile) radius around Cape Canaveral (AOC).

When evaluating their model, if a lightning event happened anytime 90 minutes after

the GPS Lightning Index fell below 0.7, this was considered a TP. It is inferred based

on the discussions in the paper that the prediction is intended for the entire day or

at least for a 12 hour period after the 90 minute WW. Thus, this paper will set the

PW at 13.5 hours.

Mazany et al. (2002) reported evaluation metrics by day, meaning that each day

was seen as an observation. If a lightning event occurred during that day, then it was

seen as a lightning event. As stated before, a TP was counted if the GPS Lightning

Index fell below 0.7 and a lightning event happened more than 90 minutes after.

A False Negative was when the GPS Lightning Index fell below 0.7 but lightning

occurred less than 90 minutes after the prediction was made. Using these definitions,

Mazany et al. (2002) presented the confusion matrix in Figure 2 on a test dataset.

Table 2. Mazany et al. Confusion Matrix of Test Dataset (2002)

Actual
Lightning No Lightning

Predicted Lightning 7 3
Predicted No Lightning 1 10

In summary, Mazany et al. (2002) chose a circular AOC with radius 20 nm, SW

of 30 minutes, MW of 30 minutes, WW of 90 minutes, and a PW of 13.5 hours. Their

evaluation metrics are shown in 7.

Lambert, Wheeler, and Roeder (2005) performed a similar logistic regression but

used the Cape Canaveral Air Force Station (CCAFS) rawinsonde data (XMR) to

predict lightning in the CCAFS area. The equation was designed to calculate the

probability of lightning occurring during any given day between May and September.

To attempt to optimize their technique, they created five equations, one for each
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month May-September, which is the thunderstorm season for that region. To evaluate

their equations, they used the Brier Skill Score (BSS) and a reliability diagram. Their

methods and purpose differed significantly from this thesis’, so their results were

omitted.

Kehrer et al. (2006) optimized the work by Mazany et al. (2002) for forecast inter-

vals of 2 hours and 9 hours. Their intent was to create 2-hour and 9-hour models to

predict lightning within an AOC of 5 nautical miles around Cape Canaveral. Using

data from May-September of 2000-2003, they determined four different variables to

include in the logistic regression model: the 30-minute change in GPS Precipitable

Water, the 7.5-hour change in GPS Precipitable Water, the current Precipitable Wa-

ter, and the K-Index. The 2-hour forecast interval specifies a WW of 30 minutes

with the remaining 90 minutes accounting for real-world expected delays between

measurement and the warning being issued. Since this forecast interval more closely

aligns with the intent of this paper, these results are reported and the 9-hour forecast

interval results are omitted. The evaluation metrics are presented in Table 7. Kehrer

et al. (2006) discussed the potential improvements by using a nonlinear method such

as neural networks and by adding other predictors such as EFM data.

In summary, Kehrer et al. (2006) established an AOC of 5 nautical miles radius

around Cape Canaveral, using a WW of 30 minutes. As with Mazany et al. (2002),

an expiration was not explicitly given to the warning, so PW is difficult to determine;

however, Kehrer et al. (2006) provided a confusion matrix and a full report of their

evaluation metrics. The variables used in this study had MWs and SWs ranging from

7.5 hours to 0 (when measuring a current value of an instrument). Since the variables

did not include EFM data, this is not as important to this paper.

In 2008, Murphy et al. (2008) attempted to integrate EFM data into the previous

work by Murphy and Holle (2006) in order to better understand how EFMs could
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contribute to lightning prediction methods. They used a threshold method that

predicted lightning if the SW = 10 second and SW = 60 second means of two EFMs

simultaneously read greater than a threshold. Since the mean of these time periods

was the threshold measured, the MW is also set to the same 10 seconds and 60

seconds, respectively. Two thresholds of 1 kV/m and 2 kV/m were evaluated. The

EFMs were located 3.8 kilometers (km) apart and the rectangular AOCs with sides

measuring 20 and 40 km were centered between them. This research set WW = 0

since the prediction was made for the 15 minutes (PW) immediately following the

MW.

As with several studies presented in this paper, the PW was not explicitly stated.

Since the number of a FPs was presented, some criteria must have been used to

determine when a warning should expire and a FA be counted. Murphy et al. (2008)

does mention that a warning expires 15 minutes after a criteria is no longer met. This

paper infers that this is the PW.

Using their criteria method and the two thresholds for the EFM means, they

determined that the inclusion of the EFM data actually decreased the effectiveness of

lighting prediction. They suggest that the effective range of an EFM does not allow

it to detect the electrification of storm clouds which are usually high altitude given

the size of the chosen AOC. By varying the size of the AOC and the orientation or

distribution of EFMs around the AOC may improve results (Murphy et al., 2008).

Their evaluation metrics are presented in Table 7.

Beasley, Williams, and Hyland (2008) examined if EFM readings exceeded a

threshold a number of minutes before a lightning event within a certain radius of

the lightning event. They asked three questions:

1. Given an amount of time, a distance, and a threshold, what fraction of cloud-

to-ground lightning events do the EFM readings exceed the threshold within
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the distance around the lightning event location?

2. In what fraction of cloud-to-ground lightning events do the EFM readings not

exceed a threshold within a distance around the lightning event location?

3. Given a time window, a distance, and a threshold, in what fraction of the cloud-

to-ground lightning events do the EMF readings exceed the threshold within

the distance around the lightning event location?

Since Beasley et al. (2008) did not create a predictive model, this thesis’ framework

does not match exactly. However, Beasley et al. (2008) implied the intent of the work

is to inform lightning warnings when they mentioned their work aligning with the

Weather Launch Commit Criteria. For this reason, this thesis attempts to put their

work into the same common terminology to allow for comparison of their findings

with explicitly predictive models. Their methods thus established a SW of 0.

The first question they asked specified times of 10, 5, 2, and 1 minutes with

distances of 10, 5, 2, and 1 km from the lightning event location. The EFMs within

the specified radius had to surpass thresholds of +/- 1, 2, or 5 kV/m. Translating this

to the common framework gives MWs of 10, 5, 2, and 1 minutes and PWs and WWs

of 0. The AOC is circular with radii equal to the distances specified, but emphasizing

that this is a radius around the lightning event, not around an area of interest. This

differs significantly from other methods mentioned and the methods of this thesis.

With these parameters specified, Beasley et al. (2008) reported that in 81.3% of

the lightning events an EFM reading exceeded a +/- 1 kV/m threshold within a 10

km radius around the lightning event within 10 minutes prior to the event. This

also results in 18.7% of cases where the threshold was not exceeded with the same

parameters. While other results were given, this question fails to adequately address

the purpose of this thesis’ research since it does not capture the idea of prediction.
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The other results are omitted and the first question is not included in the summary.

For the second question, Beasley et al. (2008) only specified a distance of 1 km

(AOC), a threshold of +/- 1 kV/m, and a time period of 10 minutes (MW). This

method resulted in a FNR in 18.7% of the cases.

For the third question, and the question most pertinent to this paper, Beasley et

al. (2008) establishes thresholds of +/- 1, 2, and 5 kV/m, distances of 10, 5, 2, and 1

km (AOC), and time windows of 3-6, 6-9, 9-12, and 12-15 minutes. Using these time

windows rather than a time period prior to the lightning event allowed for a notion of

a WW. Thus, given the MWs of 3-6, 6-9, 9-12, and 12-15 minutes, the corresponding

WWs were 3, 6, 9, and 12 minutes, respectively. PWs remained at zero. With these

parameters, Beasley et al. (2008) saw EFMs exceed a 1 kV/m threshold at least

9 minutes prior to the strike within 10 km of the lightning event in 56% of cases,

implying 44% of the cases this did not happen. Other results were given, but these

parameters are highlighted and most represent the intent of this paper.

In 2011, Da Silva Ferro et al. (2011) a single EFM in São José dos Campos,

Brazil and a threshold method to predict lightning events in order to issue lightning

warnings. Their research was unique because of the altitude of the EFM. The AOC

being collocated with an EFM sitting at 800 meters above sea level allowed for a

more accurate reading of the electrification of a storm in the AOC, rather than the

atmosphere of the ground below or near a storm, which is the case of studies with

EFMs at lower altitudes.

Da Silva Ferro et al. (2011) used thresholds of: +/- 0.5; 0.8; 0.9; 1.0; 1.2; and 1.5

kV/m. They used two types of AOC: circular and annular around the EFM. Their

annular method used regions ranging from 0 to 5 km; 5 to 10 km; and 10 to 15 km.

Their circular method used radii of 5, 10, and 15 km. They established a PW of 45

minutes; that is, when a lightning warning was issued, a lightning event was expected
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within 45 minutes of the issuing. If no lightning event occurred, then the warning

expired after this 45 minutes period. If at any point the mean of the EFM values

across a minute exceeded the threshold, then a warning was issued. This established

their SW = 1 minute, MW = 1 minute, and WW = 0, meaning that the PW started

immediately following a threshold-exceeding EFM mean reading. They did establish

a notion of Lead Time (LT), which they defined as the time between a warning and

a lightning event. This was gathered post-facto and not used in the same manner

that WW is defined in this paper. However, for all true positive lightning warnings

these LTs were recorded to give a notion of a warning metric. Da Silva Ferro et al.

(2011) reported with a 1 kV/m threshold and a circular 10 km AOC around the EFM

a TPR of 58% and a FPR of 41%.

Parameter Comparison.

This section uses the common terminology presented to compare the research

methods and results of the aforementioned studies. Table 3 compares the AOCs and

Table 4 compares the SW, MW, WW, and PW. Table 7 compares the TPR, FPR,

FNR and OUI, when possible.

As discussed above, lightning prediction requires a notion of time and location.

This paper calls the location the AOC and is defined in terms of the its center, the

area it covers, or its shape. In most cases, researchers chose circular AOCs centered

around a point of interest (POI), such as a launch site at Cape Canaveral (Mazany

et al., 2002). In other cases, a technique was used to widen the AOC and create a

larger area using a rectangle, as in Lambert et al. (2005) or Murphy et al. (2008).

Another approach taken by Da Silva Ferro et al. (2011) created a circle around the

EFM instead of a point of interest. Most researchers chose a distance from the center
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of the AOC of 5 or 10 miles. Table 3 outlines the AOC parameters chosen for each

of the studies.

Table 3. Area of Concern Parameters

Researcher Location

Relative to

Sensors

Shape Size

Mazany et al. (2002) POI Circular 20 nm

Kehrer et al. (2006) POI Circular 5 nm

Murphy et al. (2008) POI Square 10, 20 km

Beasley et al. (2008) POI* Circular 10, 5, 2, 1 km

Da Silva Ferro et al.

(2011)

EFM Circular 10, 5, 2, 1 km

Da Silva Ferro et al.

(2011)

EFM Circular 5, 10, 15 km

Point of Interest (POI) is a location chosen by the researcher for which the lightning

warnings are issued

*Beasley et al. (2008) establishes the AOC around the lightning event and analyzes

the sensor measurements around the event, thus making the AOC the event rather

than a pre-established location

Once the location parameters are chosen, a researcher must scope the time. Many

of the researchers looked at the EFM readings without summarizing them, resulting

in a SW of 0. Others chose to smooth the reading and established a SW of 10 to 60

seconds. The WW also ranged widely, if used at all. The PW ranged from 0 to 13.5

hours. Table 4 shows the selections of each parameter.
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Table 4. Time Window Parameters

Researcher Statistics

Window

Measure

Window

Warning

Window

Prediction

Window

Mazany et al. (2002) 30m 30m 0 13.5h

Kehrer et al. (2006)* Varied Varied 30m 0

Murphy et al. (2008) 10s, 1m 10s, 1m 0 15m

Beasley et al. (2008) 20s 3m 10m, 5m,

2m, 1m

0

Da Silva Ferro et al.

(2011)

1m 1m 0 45m

*Kehrer et al. (2006) the statistics window varied for each variable in their model

s= seconds, m = minutes, h = hours

With the space and time parameters clearly identified, the methods must be eval-

uated. The metrics comparing the ability of the models to predict lightning are shown

in Table 7. When a statistic cannot be calculated, inferred, was not presented, or is

not applicable, the metric is left blank. If a paper does not specify how a metric was

calculated, it is assumed the method of calculation in Frei (2008) was used.
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Table 5. Method Results Comparison

Researcher TPR FPR FDR OUI

Mazany et al. (2002) 87.5% 23.1% 30.0% 60.2%

Kehrer et al. (2006)* 95% 47% 45.3% 45%

Murphy et al. (2008) 37.7% - 41% -

Da Silva Ferro et al. (2011) 60% - 41% -

Mazany et al. (2002) statistics were calculated from the confusion matrix in Table 6.

Kehrer et al. (2006) statistics are from the validation set

Murphy et al. (2008) statistics calculated from the counts presented in Table 3 for a

SW of 10 seconds and 1 kV/m threshold.

Da Silva Ferro et al. (2011) did not report values for the circular AOC method. Only

the TPR and FPR are reported. Statistics for 10 km AOC and 1.0 kV/m threshold

were used.

2.4 Artificial Neural Networks

General.

Artificial Neural Networks (ANNs) are machine learning methods loosely inspired

by the neural synapses of the brain. ANNs, like other machine learning techniques,

perform such tasks as regression, time series predictions, and classification. Their

uniqueness lies in their ability to adapt to any arbitrary degree of complexity, making

them capable of approximating a function to an arbitrary degree of precision (Hornik,

1991).

This capability makes ANNs particularly useful in nonlinear contexts, in which

the nature of the phenomenon being studied is unknown. Their usefulness has been

shown in the improvements in image classifications using Convolutional Neural Net-
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works (CNNs) (Krizhevsky, Sutskever, & Hinton, 2012). Text completion, time series

predictions (Sutskever, Vinyals, & Le, 2014), and speech recognition (Sak, Senior, &

Beaufays, 2014) (Graves & Jaitly, 2014) have also seen vast improvements through the

use of Recurrent Neural Networks (RNNs). Combining CNNs and RNNs, known as

Convolutional Recurrent Neural Networks (CRNNs), or in some literature Recurrent

Convolutional Neural Networks, has lead to even greater improvement.

Tsironi et al. (2017) experienced improvements to gesture recognition by com-

bining CNNs with the Long-Short Term Memory RNN layers. Likewise, Wu and

Prasad (2017) applied a CRNN to hyperspectral images for object recognition and

saw improved performance over traditional CNNs and RNNs. This section of Chap-

ter 2 explores the methods of CRNNs to ascertain why they experience performance

improvements over CNNs and RNNs applied to the same problem.

Convolutional Recurrent Neural Networks.

CRNNs combine the feature extraction benefits of a CNN with the time series

prediction strengths of a RNNs. CNNs convolve a matrix of weights over data, yield-

ing a feature map indicating the presence or lack of a desired outcome. In image

analysis, these high level features are generally lines, curves, shapes, or colors, and

the outcomes are objects such as signs, animals, or people. RNNs are capable of such

classification, but their strength truly lies in time series data.

RNNs identify long-term dependencies across datasets. This makes them useful

for tasks where an outcome is dependent on both data immediately presented as

well as data from past observations. In long-short term memory (LSTM) RNNs, the

LSTM layers contain a memory unit that allows the net to retain information about

all past observations. In this way, RNNs perform well on tasks such as sentence

completion, translation, and speech recognition. By ”remembering” how a sentence
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was structured in past data, the RNN can predict well what word should come next

given the most recent words given to it. These two tasks, feature extraction from

images and sentence completion, can be related to many other tasks.

Consider weather data. In much the same way that sentence structures are similar

throughout a story and that given a set of words limits the next word to follow,

weather is dependent on what has happened in a region in the past and what has

immediately happened leading up to a moment in time. In this way, weather data is

similar to a problem optimally suited for a RNN. However, if the same information

was presented as a large array of data consisting of many sensors placed throughout

a region, the data may appear more similar to a hyperspectral image. This type of

problem is more suited to a CNN. By combining these ideas, the CRNN is born.

Wu and Prasad (2017) applied this theory to hyperspectral images of an urban

environment and a rural environment to classify the different types of terrain in each.

The convolution layer in their CRNN captures the middle-level, abstract, and invari-

ant spacial information of the images. The recurrent layers captured the contextual

difference between the spectral bands of the images. In this way, the CRNN outper-

formed CNNs, RNNs, and several other ANNs in classifying the type of terrain in

each image. CRNNs have also been applied successfully in classification of gestures.

Tsironi et al. (2017) analyzed a set of images of individuals performing 9 different

gestures. By taking the differential of the images that comprised a gesture and train-

ing a CRNN (in this case, a LSTM) with them, Tsironi et al. (2017) achieved vastly

improved performance over CNNs and RNNs. Tsironi et al. (2017) processed the

images significantly and was careful to construct the dataset in such a way that the

convolution layers and the recurrent layers had access to the features of the set of im-

ages required for it to learn meaningful information. For example, by calculating the

differential images of the images comprising a gesture, the model could then extract
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both the spatial features and perform a gesture sequence classification. By feeding

each differential image to the CRNN and identifying the start and end of a gesture,

the convolution layers extracted the change in position of the hands and body, which

was then fed to the recurrent layers. These changes in position over time allowed for

accurate classification of the combined gesture.

These examples of CRNNs being used to extract two distinct properties of a

dataset are inspiration for the research performed in this thesis. The next chapter

describes the methodology used and how, like Tsironi et al. (2017) and Wu and Prasad

(2017), CRNNs can outperform other methods at classification in specific contexts.

2.5 Conclusion

Lightning is a complicated atmospheric event and is affected by many variables.

The methods and data studied to predict lightning vary greatly. All of the presented

works show the trade-off between FAR and TPR. This thesis analyzes the effectiveness

of predicting lightning using CRNNs and the electric potential gradient measured by

electric field mills.
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III. Methodology

3.1 Introduction

This section describes the methodology chosen in this analysis. First, the equip-

ment is described so duplication of the research is possible. Next, the datasets used

are described in detail including the cleaning, augmentation, and reduction tech-

niques. Lastly, the ANN used is detailed to include the reasoning for hyperparameter

selection and network structure.

3.2 Materials and Equipment

Software.

ANNs require several pieces of software working together to perform the extensive

calculations at the heart of neural networks. The recent resurgence of ANNs in deep

learning has resulted in a number of open-source software packages, but these packages

are sensitive to changes in other software versions. For this reason, this thesis states

the specific software versions used to produce this research.

This research used Python 3.6.4 with PyCharm 2017.3.2 as an IDE running on

a 64-bit Windows 10 Enterprise operating system. The machine used an Intel Xeon

CPU E5-2680 and a NVIDIA Quadro K6000. Keras 2.0.9 with a TensorFlow 1.4.0

backend was chosen to produe the ANNs. To utilize the GPU maximally, CUDA 8.0

and cuDNN v5.1 were used. These versions are specified because they are not the

most updated versions.

Sensors.

EFMs are instruments that measure the voltage per meter (V/m) of the nearby

atmosphere. EFMs measure at a rate of 50 hertz with values ranging from approxi-
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mately -15,000 V/m to 15,000 V/m (Livingston & Krider, 1978). There are 31 EFMs

in the area surrounding the 45 WS (Finn et al., 2010). These sensors measure voltage

per meter, but are not capable of explicitly identifying a lightning event.

The LDAR array records lightning flashes and is comprised of nine sensors sur-

rounding the KSC. The LDAR array detects lightning flashes up to 100km from the

KSC, providing the precise location in X, Y, Z distances from the center and the time

of the lightning event using Chi-squared minimization of the estimate of all sensors

(Global Hydrology Resource Center, n.d.). This thesis combines the LDAR lightning

data with the EFM voltage per meter measurements to produce a dataset identifying

the state of the atmosphere at the time of the lightning event.

3.3 Dataset Creation

The EFM data was pulled from the https://kscwxarchive.ksc.nasa.gov/ using a

script written in Python 2.7. Due to server settings that restricted the amount of

time a host can maintain connection to the server, the data was pulled in 5 day

increments as a .zip file for each 5 day group. The data unzipped into a folder for

each day with each folder containing .zip files for each 30 minute period during that

day. Each of these .zip files unzipped into a folder that contained a .dat file. These

.dat files were text files that had been compressed and required a .exe executable file

from https://kscwxarchive.ksc.nasa.gov/ to extract the usable information. The .exe

extracted a collection of .RAW data files, one file for each EFM. These .RAW data

files required their extension to be changed to .txt to before being ready for further

processing. The entire process from the initial unzipping of the five-day group file to

the changing of the extension was called the preprocessing step.

The EFM data, once preprocessed, was organized into a folder for each day of

data, meaning that folder contained 48 folders corresponding to every 30 minute time
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period that made up a 24 hour day. Each of these folders contained 31 files of data,

one file for each of the 31 EFMs. Thus, for a complete day of data, there were 31

x 48 = 1,488 data files, each with 90,000 (30 minutes worth of 50 hertz readings)

observations. The data files contained three columns of data: date, time, and voltage

per meter (V/m). This thesis analyzed data from May through July of 2013-2016,

301 out of the 364 days in this time period were available for download and were

included in the analysis.

The first action taken to clean the data was to remove data from faulty sensors.

An EFM consistently failed to provide meaningful data; the data from this sensor was

removed entirely leaving 30 EFMs. The next step was to handle instances repeated

data. Several files contained multiple EFM readings with the same date/time. Only

the first occurring instances of these repeated data points were kept. Missing data

was accounted for after the summary statistics were calculated.

Four summary statistics were chosen: mean, variance, skewness, and kurtosis. By

using four summary statistics, a more holistic analysis of a time period was possible.

For example, Figure 8 shows the graph of multiple probability density functions with

mean = 0 and variance = 1. The nature of these distributions is very different, even

though two of their summary statistics would indicate they are the same. This figure

demonstrates the limited perspective given by only using one summary statistic to

describe data. In the EFM data, if only mean and variance were measured, important

information about the nature of the atmosphere may be missed. For this reason, all

four statistics are calculated using several time periods to ensure the most accurate

description of the electric gradient of the atmosphere is obtained.
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Figure 8. Effect of Kurtosis on Distributions with Mean=0 and Variance=1

These time periods were called statistics windows (SWs). The data was summa-

rized over SWs 20, 30 and 60 seconds. This resulted in a dataset with timestamps of

the start of the time period over which the data was summarized. For example, for

time period 6/12/2013 12:00:00 to 6/12/2013 12:01:00 (3000 observations) and SW =

20, 3 observations were calculated with timestamps 12:00:00, 12:00:20, and 12:00:40.

Additionally, this expanded the number of variables from 30 V/m readings to 120

statistics, 4 for each V/m reading. The 4 statistics were called channels, remaining

consistent with the terminology of 4D tensors in CNNs. A fifth channel was added

to account for any missing data.

The fifth channel was a binary value that indicated if insufficient data was available

to calculate the summary statistics. If there were less than four values within a SW,

then attempting to calculate the statistics would result in a NaN for at least one of the

statistics. The corresponding fifth channel would be set to zero, indicating missing

data. After the fifth channel indicator variables were set, any NaNs that resulted from

attempting to calculate the statistics with insufficient data were set to 0. Using this

fifth channel indicator variable allowed the ANN to learn which readings contained

missing data and how to appropriately account for the resulting zero values. By
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making this indicator variable a channel, this allowed for an indicator of missing data

to be assigned to each EFM and each SW. To ensure the integrity of the data, the

number of SWs for which all EFMs during that SW had indicator variables indicating

missing data were counted. If the sum total of time of these SWs totaled more than 1

hour, then the entire day was removed from the analysis. Additionally, any day that

did not contain a lightning event within the AOC was excluded from the analysis.

The 45 WS provided the preprocessed LDAR data for 2013-2016 . While addi-

tional data was available on the https://kscwxarchive.ksc.nasa.gov/ website, it re-

quired additional processing and interpreting to be meaningful to this analysis. For

this reason, only the provided 2013-2016 data was used and the scope of the analysis

was restricted to this time frame. The preprocessed LDAR data included date, time,

and distances of lightning events from the center of the LDAR system. The LDAR

data was processed to remove all lightning events not occurring within the AOC. Two

circular AOCs were established with radii of 5 miles and 10 miles, both centered at

the LDAR center at KSC. This created two LDAR datasets, one for each AOC. By

comparing the time of the lightning event to the EFM statistic window time period,

a response of 1 or 0 was given to the corresponding observation. The response was

set to 1 if a lightning event occurred within the AOC in the SW and a 0 otherwise.

Analyzing these statistics revealed that the data was unfit for use in a neural

network. Table 6 shows the maximum, minimum, mean, and variance of the means

and variance calculations for 11 May 2013. These values are extremely large and

could cause exploding gradients in an ANN. To prevent this and to maximize the

likelihood of training, all statistics were min-max scaled.
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Table 6. Descriptive Statistics Describing the Statistics Datasets

Dataset of SW=20 Dataset of SW=30 Dataset of SW=60

Mean Variance Mean Variance Mean Variance

Max 6546.12 4.5×107 6146.08 3.5×107 6114.21 3.5×107

Min -9531.57 0 -8243.65 0 -7562.07 0

Mean 81.26 59440.98 81.19 69284.52 80.95 87480.06

Variance 1.2×109 1.2× 1023 1.2×109 1.2×1023 1.1×109 2×1023

To mitigate the risk of vanishing or exploding gradients, all the data was min-max

scaled using Equations 7 and 8 where min and max are the minimum and maximum

values the scaled data can achieve. The min(X) and max(X) are the minimum and

maximum values attained by the Xth EFM to which the x value belongs; that is,

x is a single value to be scaled from the Xth EFM that attained a maximum and

minimum value of M and m, respectively, over all the observations.

xscaled = xstd ∗ (M−m) + (m) = 2xstd − 1 (7)

xstd =
x−min(X)

max(X)−min(X)
(8)

In summary, data from the EFM sensors near Cape Canaveral were collected from

the https://kscwxarchive.ksc.nasa.gov/ website. The data was cleaned and consoli-

dated into datasets containing 30 minutes worth of readings for 30 of the 31 EFMs.

The data was then summarized across SWs 20, 30, and 60 seconds by taking the

mean, variance, skewness, and kurtosis over each SW. A missing data indicator was

added to identify statistics there were calculated without all SW of the readings avail-

able. This resulted in 3 separate datasets of 150 variables each. The LDAR data was
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then modified by removing all lightning events that did not occur within AOCs of 5

and 10 miles radii centered at KSC. This resulted in 2 LDAR datasets. Combining

the EFM and LDAR datasets allowed for the creation of the response variable by

determining if a lightning event occurred during the time period over which the sum-

mary statistics were calculated: 1 if yes, 0 if no. This resulted in 6 distinct statistic

datasets: 3 SWs ∗ 2 AOCs = 6 datasets.

The intent of this thesis was to predict lightning with sufficient warning time to

seek shelter. To reflect this intent, the data was restructured. MWs of 30 and 60 min-

utes were chosen and a PW and WW were both set to 15 minutes. A running window

of MW was taken over each statistics dataset resulting in 12 windowed datasets. For

example, one day of the SW=20 dataset was originally 4320 observations, since there

are 4320 non-overlapping, contiguous 20 second periods in a day. If the MW=30

minutes, then this dataset becomes a 3-dimensional dataset of (4140, 90, 150). There

are 3 SWs per minute; thus, 90 SWs per MW, 45 SWs per PW, and 45 SWs per

WW, which leads to 4140=4320-90-45-45. Some data was lost in this restructuring,

but it was lost towards midnight where few lightning events occur. In general, this

conversion resulted in 3-dimensional datasets consisting of (# of SW observations-

MW-PW-WW, sequence length (MW), 30 EFMs x 5 channels = 150). To account

for the prediction of lightning at a future time, a new response was created based on

the selection of the WW and PW.

Previously each SW received a response. In this new construct, each MW time

period of data receives a response. If at any point in the PW a lightning event

occurred, then the entire MW received a 1 response. Figure 9 from Chapter 2 depicts

the method used to create the new response. The notion of lightning onset prediction

was attained by using a running window.
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Figure 9. Graphical Representation of Windows

To appropriately evaluate the effectiveness of the model, the data was split into

training, validation, and test datasets by randomly selecting 70% of the day datasets

for training, 15% for validation, and 15% for testing. Since the number of lightning

events versus nonlightning events was highly skewed toward nonlightning events, the

training data was randomly oversampled to produce equal number of lightning and

nonlightning events. The 3-dimensional arrays of (# of SW observations, sequence

length (MW), 150) were then split into (# of SW observations, sequence length

(MW), 30 EFMs, 5 channels) to reflect the notion of a hyperspectral image over

time. This was thought of as a 5 channel picture of the regional electric gradient of

the atmosphere.

3.4 Motivation and Creation of the ANN

A Convolutional Recurrent Network Approach.

CNNs are widely used in image classification due to their ability to create filters

that identify distinguishing characteristics, i.e., vertical/horizontal lines, changes in

colors, shapes, etc. It is hypothesized that EFM readings may also be able to capture

some features of lightning events immediately prior to their happening. In Beasley et

al. (2008), they discuss one such characteristic when they state that EFM readings

often show a steep gradient several minutes prior to a flash in an area 5 km to 10

km from where the flash occurs. In the same way that CNNs identify distinguishing

characters of objects in images, they also can identify patterns in EFM data that
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indicate lightning events.

To express the motivation for using CNNs, consider a dataset consisting of 18000

EFM readings from 30 EFMs with the first reading being at time t0. Since readings

are taken at 50 hertz, these 18000 readings cover a time period of 6 minutes. Suppose

this data is summarized with four statistics over a SW of 1 minute, reducing the

dataset to 6 observations. This results in a dataset with index of t0, t1, t2, t3, t4, t5

where each index represents the starting time over which the data was summarized.

The 120 columns of this dataset arise from taking the 4 summary statistics for each

of the 30 EFMs. The dimension of the entire dataset is (6, 120): 6 observations and

120 statistic values. Alternatively, this could be seen as a dataset of size (6, 30, 4),

but to remain consistent with how the actual data is organized and processed, this

example will remain a dataset of size (6, 120).

Now set the MW to 3 minutes. The dataset is then transformed into a 3D tensor

where each observation consists of 3-1 minute periods. This results in four observa-

tions: [t0, t1, t2], [t1, t2, t3], [t2, t3, t4], and [t3, t4, t5]. The dimension of the dataset is

now (4, 3, 120), since there are 4 sets of time periods each consisting of 3 statistic

windows of 120 statistic values.

The data is reordered into a 4D tensor to place all four statistics for an EFM in

the same dimension. That is, for t0 of the first observation, the dimension is now (1,

1, 30, 4) where 30 represents the 30 EFMs and 4 represents the 4 summary statistics.

By performing this on each time period, the dataset dimension is now (4,3,30,4): 4

observations, 3 time periods in each, 30 EFMs, and 4 statistics per EFM.

In this form, 5 kernels of size (1,30) are convolved across each observation, resulting

in a new observation of dimension (1, 5) where each pass yields a sum of dot products

of the kernel values with the values of the 4 statistics for each time period and each

EFM. The dimension of the dataset is reduced to (4, 5) where each observation is
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now a feature map of the entire region over the time periods [t0, t1, t2], [t1, t2, t3],

[t2, t3, t4], and [t3, t4, t5]. Each of these four observations are correlations of all the

EFMs across the region over a SW window. This example illustrates the motivation

for the selection of the model used in this analysis and how the data was visualized

as a hyperspectral image. The methods and procedures in this example are similar

to that used in this paper.

To translate this into the context of this analysis further, consider Figure 10. The

correlation of the change at each of the 31 EFM locations should yield a more complete

picture of the electrification of the region compared to readings from any subset of

the EFMs. Figure 10 shows the location of all 31 EFMs in the Cape Canaveral region,

as well as the center of the LDAR array which is co-located with the center of the 5

mile radius AOC chosen for this study.
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Figure 10. Location of EFM Sensors (red) and the center of the LDAR array (Green)
and a five mile AOC around the LDAR center (Google Maps, 2018)

RNNs specialize in time series data. Their usefulness has been shown in speech

and text recognition and in video analysis. Since the EFM datasets contain both a

notion of time and space, combining a CNN and RNN into a CRNN allowed for their

combined specializations to improve lightning prediction. By adding a long-short

term memory recurrent layer after the (1,30) convolution, the CRNN would learn the

patterns of change seen across the region in the minutes leading up to a lightning

event in the AOC.
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Model Selection and Hyperparameter Optimization.

Model selection began with a single LSTM layer with 4 neurons and a single

neuron dense output layer with a sigmoid activation function. Adam was chosen as

the optimizer and binary crossentropy as the loss function for all iterations of the

model selection process and the final model (Kingma & Ba, 2014). This initial was

able to achieve a 65% accuracy on the training dataset which indicated it did not

have sufficient capacity to overfit to the training data. More neurons were added,

and the most improvement was seen when 16 neurons were used.

Two additional LSTM layers were added each with 16 memory cells and the

training accuracy jumped to 76%. A number of different initial learning rates were

used, but the best performance was seen when using an initial rate of 0.1 decaying

gradually. A convolution layer was added before the LSTM layers to attempt to

capture patterns of change of each EFM across small windows of time. Eight kernels of

size (3,1) were used with same padding and a Rectified Linear Unit (ReLU) activation

function. This resulted in an improvement to 83%. Adding an additional convolution

layer with the same parameters improved the accuracy to 86%.

Next, a convolution layer across the EFMs was used to capture the correlation

of the EFMs across a time period. Eight kernels of size (1,30) were used with valid

padding and a ReLU activation function. This saw an improvement to 93%. By

increasing the number of kernels on all convolution layers to 16 and decreasing the

initial learning rate to 0.01, the final configuration of the model was established. It

achieved a 96% accuracy in the training data.

Once a model was found that overfit to the training data, regularization was added

and the validation loss and accuracy were observed. Adding dropout layers with 30%

dropout between the second and third convolution layers, between the third convo-

lution and the first LSTM layer, and between the third LSTM layer and the output

39



layer resulted in a steadily decreasing validation loss over several epochs. This veri-

fied that the architecture had both the capacity necessary to learn the datasets, but

could generalize to a validation dataset. A diagram of the model is shown in Figure

11. This model trained on all 12 datasets and then ran against the corresponding

test datasets to calculate metrics to determine the models quality. These results are

presented in the Chapter 4.
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Figure 11. CRNN Architecture
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IV. Discussion and Results

Due to time constraints and hardware limitations, only the dataset with SW =

60, MW = 30, and AOC = 5 miles was used to train the model. Additionally, the

dataset was reduced in size to only include the mean of the EFMs and the missing

data indicators. By analyzing such graphs as shown in Figure 12, it was concluded

that mean may be sufficient to predict lightning. This graph shows the mean value of

the last SW in 10000 sequences on the y-axis and what sequence the SW came from on

the x-axis. The orange dots are the corresponding responses for the 10000 MW where

a 0.1 reading is a lightning event and a 0 is a nonlightning event. The stark difference

of the mean measurements during lightning events versus nonlightning events at this

one EFM site indicates a clear pattern exists.
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Figure 12. Mean of EFM with Lightning Event
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Figures 13 and 14 show the training and validation accuracy and loss history for

this dataset. The model trained for 27 epochs, but saw a plateauing loss on the

validation set around epoch 15. The training loss continued to improve, but this was

likely overfitting.

Figure 13. Training and Validation Loss History

Figure 14. Training and Validation Accuracy History
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Both the validation loss and accuracy were somewhat erratic towards the begin-

ning of training. This is likely due to a high initial learning rate or to the sparse

nature of the validation data. With additional optimization of the learning rate and

kernel initialization weights, better validation loss may be achieved.

The model with the lowest validation loss was chosen and used on the test data.

It achieved an accuracy of 90.3% on the test dataset. Since the default evaluation

threshold for model predictions is .5, a Receiver Operating Characteristic (ROC)

curve was used to identify a threshold that optimized the Operational Utility Index

(OUI). Figure 15 shows this ROC curve with pointers identifying where the model

achieved its OUI. The Area Under the Curve of a ROC is also an indication of a

model’s performance. The AUC for the presented ROC is 0.88 where 1 is a perfect

model. Since the 45 WS established the OUI as the weighted metric that optimizes

models for their intents, this paper focused on the it.

Figure 15. Receiver Operating Characteristic Curve
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The maximum OUI was obtained at a threshold of 0.547. A confusion matrix was

created at this threshold as is shown in Figure 16. The model achieved an overall

accuracy of 90.3% with a True Positive Rate (TPR) of 77.6%, a Probability of False

Detection (POFD) of 8.3%. and an OUI of 53.9%.

Figure 16. Confusion Matrices

These metrics are displayed in Table 7 alongside the past research discussed in

Chapter. This method achieved comparable results to past methods in both the

TPR and OUI, falling in the middle of all methods for which these metrics could be

calculated. The FPR was significantly lower than all methods presented, but this

may be the result of of the short WW and PW used in this method as opposed to

Mazany et al. (2002) and Kehrer et al. (2006). In summary, these results indicate

that if OUI is a metric that the 45 WS deems a good evaluation of methods, then

this method performs comparably to past methods that used EFMs as predictors.
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Table 7. Method Results Comparison

Researcher TPR FPR FDR OUI

Mazany et al. (2002) 87.5% 23.1% 30.0% 60.2%

Kehrer et al. (2006) 95% 47% 45.3% 45%

Murphy et al. (2008) 37.7% - 41% -

Da Silva Ferro et al. (2011) 60% - 41% -

This Paper 77.6% 8.3% 48.1% 53.9%
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V. Conclusion and Future Work

This paper demonstrates that EFMs have a short-term predictive relationship

with lightning events in the Cape Canaveral area. Using a method that takes into

consideration 30 EFM sensors and accounts for both the temporal and geographic

nature of lightning, the EFM array alone is capable of predicting lightning with a

comparable success rate as other methods according to the 45 WS’s OUI. The LLCC

currently uses a threshold from a nearby EFM as a determining factor to permit

space flight launches (Koons & Walterscheid, 1996)(McNamara, Roeder, & Merceret,

2010). Referencing works such as Murphy et al. (2008) who saw poor predictive results

when using an EFM threshold as a predictor, this paper suggests that a potentially

improved criteria may be the change of a running mean across a 30 minute time

period.

Additionally, this method provides a running lightning prediction which should

allow for a prediction of both lightning onset and lightning cessation. While the

results presented in this paper focus on lightning prediction for a single set of time

windows (MW, WW, PW), by looking at the prediction results of multiple sets of

time windows this method can be used for prediction of lightning cessation and onset.

Figure 17 displays an example of a storm moving across time windows of MW= 5,

WW= 15, and PW = 15 (blue = MW, pink = WW, green = PW). These values

are arbitrary and are used only to demonstrate how to use this method for lightning

onset and cessation prediction.

While this paper uses a traditional confusion matrix from classical detection theory

in which their are a total of four possible scenarios (TP, FP, FN, TN) (see Table 8),

this traditional confusion matrix can be expanded into the modified confusion matrix

presented in Table 9. Establishing multiple time windows allowed for the possibility

of 12 outcomes. Table 8 and Table 9 are color coated to show how each of the four
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(a) Pre-Storm (b) Storm Onset

(c) Early Storm (d) Late Storm

(e) Storm Cessation (f) Post-Storm

Figure 17. Example of Time Windows Moving Through a Storm

possible outcomes in Table 8 correspond to the possible outcomes in Table 9.

Using the hypothetical example of a storm moving across an AOC in Figure 17

and assuming a perfect predictor, Tables 10 a-f show the classical confusion matrices

for the corresponding storm state from Figure 17. These tables look very similar and

without labels Tables b and d cannot be distinguished. However, by looking at the

same storm example and using a modified confusion matrix, a pattern emerges.

Looking at Table 11 shows a clear distinction between storm phases. The Storm

Table 8. Classical Confusion Matrix Example

Actual
Lightning No Lightning

Predicted Lightning True Positive False Positive
Predicted No Lightning False Negative True Negative
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Table 9. Modified Confusion Matrix Example

Actual
Lightning in PW Lightning Not in PW

In WW Not in WW In WW Not in WW
In

MW
Not in
MW

In
MW

Not in
MW

In
MW

Not in
MW

In
MW

Not in
MW

Predicted
Lightning

Predicted No
Lightning

Onset phase is denoted by predictions being made for lightning in the PW only

and predictions being made for no lightning without any other lightning happening

in the other windows. The Storm Cessation phase is distinguished by no lightning

predictions being made but ongoing lightning happening within the MW and within

and out of the WW. Examining this table suggests a follow-on study using a similar

method as in this paper may be useful in predicting lightning cessation.

Additionally, future applications should apply this method to the multiple warning

circles established by the 45 WS in Roeder et al. (2017) determine its effectiveness

throughout the Cape Canaveral region. The proof-of-concept given in this paper at

one location is expected to generalize across all locations near Cape Canaveral.

Future work should add the remainder of the stormy season (May-September) to

this dataset and perform analysis to determine the optimal MW and SW. Expanding

the results from this study to a 30 minute WW is expected to attain similar results

as presented for the 15 minute WW. Adding additional features such as higher order

statistics, time of day, and month of year may increase the effectiveness of this method.

Lastly, the techniques from this paper should be augmented with other methods and

features to improve the results of lightning forecasting.
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Table 10. Classical Confusion Matrices for Hypothetical Storm Progression

(a) Pre-Storm

Actual
Lightning No Lightning

Predicted
Lightning

Predicted No
Lightning

5

(b) Storm Onset

Actual
Lightning No Lightning

Predicted
Lightning

3

Predicted No
Lightning

2

(c) Early Storm

Actual
Lightning No Lightning

Predicted
Lightning

5

Predicted No
Lightning

(d) Late Storm

Actual
Lightning No Lightning

Predicted
Lightning

3

Predicted No
Lightning

2

(e) Storm Cessation

Actual
Lightning No Lightning

Predicted
Lightning

Predicted No
Lightning

5

(f) Post-Storm

Actual
Lightning No Lightning

Predicted
Lightning

Predicted No
Lightning

5

Table 11. Modified Confusion Matrices for Hypothetical Storm

Actual
Lightning in PW Lightning Not in PW

In WW Not in WW In WW Not in WW
In

MW
Not in
MW

In
MW

Not in
MW

In
MW

Not in
MW

In
MW

Not in
MW

Pre-Storm
Predicted
Lightning

Predicted No
Lightning

5

Storm Onset
Predicted
Lightning

3

Predicted No
Lightning

2

Early Storm
Predicted
Lightning

2 3

Predicted No
Lightning

Late Storm
Predicted
Lightning

3

Predicted No
Lightning

2

Storm Cessation
Predicted
Lightning

Predicted No
Lightning

3 2

Post-Storm
Predicted
Lightning

Predicted No
Lightning

3 2
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