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AFIT-ENP-DS-17-J-073
Abstract

This dissertation makes three distinct contributions to the field of compact cold atom

interferometry.

First, a two-dimensional grating magneto-optical trap (2D GMOT) is demonstrated, in

which a single laser and a planar diffraction grating produce a slow, high flux beam of 87Rb

atoms. This configuration increases experimental access when compared with a traditional

2D MOT. The output flux is several hundred million rubidium atoms/s at a mean velocity

of 19.0(2) m/s. The velocity distribution has a 3.3(17) m/s standard deviation. The atomic

beam from the 2D GMOT is used to demonstrate loading of a three-dimensional grating

MOT (3D GMOT) with 2.02(3)×108 atoms. Methods to improve flux output are discussed.

Second, a method to produce uniform magnetic fields of arbitrary direction from a

single planar microchip is developed. Chip-based fields reduce the dependence of cold

atom devices on large current-carrying coils external to the vacuum chamber. A chip

is fabricated that demonstrates equivalent magnetic field uniformity to the widely-used

Helmholtz coil pair. These results are used to propose a novel magnetic trap conveyor to

move atoms along the surface of the chip without the use of an externally-supplied field.

Third, using a thermal gas, the signal of a trapped atom interferometer is modeled.

This interferometer uses two short laser pulses, separated by time T , which act as phase

gratings for the matter waves. Near time 2T , there is an echo in the cloud’s density due

to the Talbot-Lau effect. The model uses the Wigner function approach and includes a

weak residual harmonic trap. The analysis shows that the residual potential limits the

interferometer’s visibility, shifts the echo time, and alters its time dependence. Loss

of visibility can be mitigated by optimizing the initial trap frequency just before the

interferometer cycle begins.
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DEVELOPMENT OF COMPACT, DEPLOYABLE SENSORS

USING COLD ATOM INTERFERENCE

I. Introduction

1.1 Context

Currently, clouds of atoms with sub-milliKelvin temperatures are being dropped from

110 m towers [1] and launched in sounding rockets [2–5]. Similar experiments are making

parabolic flights [6] and being prepped for the International Space Station [7, 8]. Nations

around the world are investing in efforts to create and measure cold atoms in harsh,

real-world environments [9–11].

Why?

Cold atoms provide one of the most direct methods of probing the quantum world,

in which it is impossible to know both a particle’s position and momentum with absolute

certainty. Specifically, for a gas with density nb, atomic mass m, and temperature T , the

average uncertainty in position is

λth =
h

√
2πmkBT

, (1.1)

where h is Planck’s constant and kB is Boltzmann’s constant.

As the gas cools, λth increases. Taken to the extreme, the position uncertainty becomes

larger than the average separation between particles. Below a critical temperature,

Tc =

( nb

2.6124

)2/3 h2

2πmkB
, (1.2)
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the gas, now called a Bose-Einstein Condensate (BEC), can no longer be described by the

locations of distinct constituents. Instead, a wave-like function gives the probability of

finding one of the many indistinguishable particles at a given coordinate. Describing the

probability as a wave leads to unexpected results. For example, Fig. 1.1, reproduced from

[12], shows the observed interference between two overlapped BECs. Remarkably, these

images were captured with a laser and a simple CCD camera.

Figure 1.1: Density modulation of two overlapped atomic BECs, reproduced from a

seminal early demonstration in [12].

By harnessing this and similar effects, cold atoms have enabled the premier

measurements of basic quantities such as time [13, 14], fine structure constant [15, 16],

mass [17], and gravity [18–20]. These successes raise hopes for applications outside

the laboratory environment such as gravitational wave detection aboard a constellation of

satellites [21] and improving the Global Positioning System (GPS) [22].
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1.2 Problem Statement

The potential of cold atoms is apparent to the highest levels of Air Force leadership.

In 2010, Secretary of the Air Force Michael B. Donley and Air Force Chief of Staff Gen.

Norton A. Schwartz commissioned the Air Force Technology Horizons survey [23]. They

wrote,

Technology Horizons presents a clearly articulated and credible assessment

of the strategic environment and enduring realities we face. It outlines a set

of overarching themes that defines attributes our future Air Force systems

will need to prevail. . .We believe the Air Force must boldly move forward

to advance these technologies through the dedicated, creative, and focused

efforts of our science, technology, engineering, and mathematics workforce.

The future is ours to shape.

Their list of the top ten Air Force research priorities over the next 20 years include

precision navigation in GPS-denied environments.

Widespread dependence of critical Air Force and other DOD systems on GPS

for precision navigation and timing functions has caused potential adversaries

to exploit GPS jamming as an asymmetric advantage. Key systems will

thus need GPS independence or augmentation to allow their use in such

environments.

To meet that need, the Cold Atom Group at the Air Force Research Laboratory (AFRL)

is focused on development of strategic grade inertial measurement devices using cold atom

interference [24–27]. We have demonstrated BEC in a compact experiment as well as

coherent splitting of the matter wave. This dissertation reports my series of efforts to

improve that system and its successors. First, I fabricate a cold atomic beam that reduces

the device’s total laser power and increases experimental access. Second, I create uniform

magnetic fields of arbitrary direction from planar sources to remove the need for external

current-carrying coils. Third, I investigate a confined atom interferometry technique that

operates at non-condensed temperatures to reduce the number of cooling stages before a

measurement is made.
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1.3 Outline of this Dissertation

Chapter 2 provides a brief history of compact cold atomic physics. The contributions

of this dissertation will be detailed in context with the broader field. Then, Chapter 3 briefly

discusses the range of products, methods, and techniques that support our experiments.

Chapter 4 explains the main experimental effort of this dissertation, a novel method

to create a cold atom beam called a Two-Dimensional Grating Magneto-Optical Trap (2D

GMOT). In an ultra-high vacuum chamber, a dilute gas of 87Rb is illuminated by a broad

beam of laser light. After passing through the gas, the light is directed back into the

chamber by diffraction from two reflective gratings. Under proper conditions of laser beam

polarization and detuning, the light provides optical forces which cool and trap in two

dimensions, forming an atom beam along the third.

This atom beam allows the source gas to be separated from a second, lower pressure

chamber in which a 3D GMOT is created. Like the 2D GMOT, the 3D GMOT creates

optical forces to cool and trap atoms, but this time in all three dimensions. Locating the

3D GMOT in a lower pressure chamber reduces cold atom loss due to collisions with

background room-temperature atoms. Indeed, this process shows the highest atom number

in a 3D GMOT so far reported.

While matter-wave interference is possible after the GMOT stage, better measurements

can be achieved with even colder atoms. Subsequent cooling stages require precise magnetic

fields created by co-axial pairs of current-carrying coils. Each pair provides a large volume

of uniform field. In particular, if the coils rest on an imaginary sphere of radius R, the field

is constant and unidirectional for points r if (r/R)4 << 1.

Despite the uniformity afforded by coils, there are significant downsides to their use.

Coils are bulky, blocking access to the experimental chamber. Additionally, they are heavy

and waste significant power creating field within a larger volume than necessary. Thus,

coils often require complicated structures to dissipate heat.
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In response, many experiments use atom chips, which capture atoms in magnetic

traps formed by currents flowing on a planar microchip. Atom chips enable precision

current placement by lithographic methods and are more easily cooled through techniques

borrowed from the electronics industry.

However, most atom chip designs still rely on a global uniform bias field provided by

external coils. Chapter 5 details a framework to create the same uniform fields from planar

structures. The resulting chips are tested and shown to be analogous to coil-based sources.

These results are then applied to demonstrate a fully planar, movable, bias-free magnetic

trap to convey cold atoms along the chip surface.

With the magnetic control developed by the Cold Atom Group, a promising

interference technique is possible. Most matter interferometers split the atom cloud with

processes that either require ultra-cold temperatures or free propagation of the atoms.

Ultra-cold temperatures raise the necessary experimental resources while unconstrained

motion necessitates large devices, especially on Earth where atoms fall with gravity.

However, the Talbot-Lau interferometer has been shown to operate at non-BEC

temperatures while being magnetically confined. Ideally, the atoms are trapped by a

magnetic field along two dimensions, while being allowed to split and recombine along

a free third direction. In reality, eliminating the field gradient along the third direction is

exceedingly difficult.

The question posed was how much of this remnant field could be tolerated. Chapter 6

describes the use of the Wigner function to investigate signal loss from a small, harmonic

potential. The model suggests an optimized sequence for loading atoms into the

interferometer. Finally, Chapter 7 summarizes the main results of this work and discusses

expected avenues of future research.

To improve clarity, lengthy derivations throughout this dissertation have been

compiled into a series of appendices.
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II. Background

2.1 Introduction

The allure of the very cold precedes its scientific study. In 1558, Giambattista della

Porta published a book titled Natural Magic [28]. In an appendix called The Chaos, he

described the mixing of saltpeter (potassium nitrate) with snow, producing a “mighty cold”

that was twice as cold as either substance. In the summer of 1620, Cornelius Drebbel used

the technique to cool the Great Hall of Westminster Abbey, to the astonishment of King

James I [29].

Rigorous scientific study began with Robert Boyle’s New Experiments and Observations

Touching Cold in 1665 [30]. By 1703, Guillaume Amontons, experimenting with expanding

gasses, predicted the existence of an absolute zero temperature [31]. Throughout the

eighteenth and nineteenth centuries, progressively lower temperatures were achieved, including

the liquefaction of ammonia (239.9◦K), chlorine (239.2◦K), oxygen (90.2◦K), and hydrogen

(20.3◦K). In 1908, the Cryogenic Laboratory led by Heike Kamerlingh Onnes became the

“coldest spot on earth” by liquifying Helium at 4.2◦K [32].

Until relatively recently, liquid Helium represented the lowest temperature in physics,

taken as low as 2 mK with the latest dilution refrigerators [33]. This chapter outlines

recently invented techniques that enable further cooling. Then, a description is given for

how these techniques are applied in the Air Force Research Laboratory’s Cold Atom Sensor

(CAS). Finally, my contributions to the CAS and the broader field are introduced.

2.2 Radiation Force

Several modern cooling methods rely heavily on the force radiation can apply to

matter. These developments were inspired in 1970, when Ashkin [34] proposed that
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Figure 2.1: Energy levels of a two-level atom at rest with ground state ψg and an excited

state ψe separated by energy E = �ω0. The probability a photon with frequency ω drives a

transition from ψg → ψe is shown as Pge(ω) in blue.

radiation pressure could be useful to “separate, velocity analyze, or trap neutral atoms.”

Therefore, this section provides a brief theoretical overview of the radiation force.

Consider the two-level approximation of an atom, shown in Fig. 2.1. The atom’s

electronic ground state ψg and an excited state ψe are separated by energy E = �ω0.

A photon can drive the electron from ψg → ψe with a probability Pge dependent on

its frequency ω. When the atom absorbs a photon traveling along the ε̂0 direction, its

momentum changes by an amount

pphoton = �k, (2.1)

where k = (ω/c) ε̂0, the wavevector of the photon. After an average time τsp, the atom

spontaneously re-emits a photon in a random direction ε̂1. The atom’s momentum shifts

again by an amount �k, this time in the −ε̂1 direction. The process is illustrated in Fig. 2.2.
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(a)

(b)

(c)

Figure 2.2: A two-level atom’s momentum changing during the absorption ((a)→ (b))

and re-emission (c) of a photon.

Over many scattering events, each absorption continues to provide an average

momentum change of �k. However, the average momentum change from re-emission is

zero due to the random direction of each re-emitted photon, as seen in Fig. 2.3. As a result,

the average force on the atom from monochromatic light with intensity I is

F = dp
dt
= �k × (steady state rate of photon absorption)

= �k
Γ

2

I/Isat

1 + I/Isat + 4Δ2/Γ2
, (2.2)
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where Δ = ω−ω0 is called the detuning of the photon from the atomic resonance, Γ = 1/τsp

is the natural line width of the transition, and Isat is the saturation intensity, defined as the

intensity of resonant (i.e. ω = ω0 ) light at which the atom spends 1/4 of its time in the

excited state [35] (for the σ± transitions used in later sections, Isat = �ω3Γ/12πc2 [36]).

The force is plotted as a function of detuning in Fig. 2.4. Further derivations are covered in

many textbooks [37, 38].

Figure 2.3: Average force on a two-level atom due to scattering from a beam of photons

with intensity I and frequency ω.

2.3 Slowing and Cooling

Soon after Ashkin’s proposal, light was used to partially slow an atom beam

[35, 39–41]. Atoms with velocity v = vv̂ encountered light traveling in −v̂, Doppler shifting

the light in the frame of the atoms to

ω′ = ω + kv. (2.3)
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Figure 2.4: Scattering force from Eq. (2.2) for typical values associated with the 87Rb

52S 1/2 → 52P3/2, F = 2→ F′ = 3 transition with circularly polarized light.

Accordingly, ωwas tuned to target the peak of the atom beam’s speed distribution. As these

atoms slowed, the frequency was ramped downwards to maintain resonance and continue

the slowing process. While the frequency changed, new atoms entering the beam did not

experience the ideal cooling force, resulting in a pulsed output of slow atoms.

To create continuous slowing, tapered solenoids were built that added a varied

magnetic field along the atom beam. Through the Zeeman shift introduced in the next

section, the magnetic field adjusted the atomic energy levels to maintain resonance. The

light never had to change frequency. In principle, atoms could be stopped, but the

experimental design prevented measurement of low velocities. According to Bill Phillips

in his 1995 Nobel prize lecture,

[Slow atoms exiting the solenoid] always continued to absorb enough light

while traveling from the solenoid to the detection region so as to stop before
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reaching the detector. By shutting off the cooling laser beam and delaying

observation until the slow atoms arrived in the observation region, we were

able to detect atoms as slow as 40 m/s with a spread of 10 m/s, corresponding

to a temperature (in the atoms rest frame) of 70 mK. [42]

In 1975, an alternative design was proposed by Hänsch and Schawlow [43]. Instead

of trying to bring a directed atom beam to rest, the low velocity range of a free gas could

be cooled towards v = 0. In one dimension, if red-detuned light was applied along both ±v̂,

a slow atom would be Doppler-shifted onto resonance with the light opposing its motion,

while being shifted away from resonance with co-propagating light. If the light in each

direction had intensity I, the radiation force then becomes

F =
[
�k
Γ

2

I/Isat

1 + 2I/Isat + 4(Δ − kv)2/Γ2
− �k
Γ

2

I/Isat

1 + 2I/Isat + 4(Δ + kv)2/Γ2

]
v̂, (2.4)

as shown in Fig. 2.5 for ω < ω0. Notice that the force only opposes the atomic velocity for

a narrow range of kv/Γ, typically corresponding to a few m/s. This low end of the thermal

velocity distribution is concentrated around v = 0 by

F ≈ 8�k2Δ

Γ

I/Isat(
1 + 2I/Isat + 4Δ2/Γ2

)2
v. (2.5)

The cooling force from Eq. (2.5) is often referred to as optical molasses because the

atom slows as if moving through a viscous fluid. Just as a particle in a fluid cannot slow to

zero velocity because collisions cause it to undergo random Brownian motion, so the atom’s

discrete photon absorption/re-emission process causes it to be heated as well, reaching a

steady state with the cooling power Fv. A gas of atoms with average kinetic energy kBT /2

finds equilibrium when

T = −
�Γ

8kB

1 + 2I/Isat + 4Δ2/Γ2

Δ/Γ
. (2.6)

If 2I << Isat, the minimum temperature is obtained for Δ = −Γ/2, yielding
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Figure 2.5: A laser beam traveling in −v̂ (blue dashed) is more absorbed by an atom with

positive velocity, while a beam traveling in +v̂ (red dashed) is more absorbed by an atom

with negative velocity. The black solid curve shows the combined force from Eq. (2.4),

the dashed line is the approximation for kv << Δ = −Γ/2 from Eq. (2.5).

TDoppler =
�Γ

2kB
, (2.7)

referred to as the Doppler limit. Fig. 2.6 shows the force curve at the Doppler limit (solid

black, Δ = −Γ/2) compared to non-optimized cooling. The dashed blue curve shows

Δ = −1.5Γ and the dashed red curve shows Δ = −0.1Γ. Notice that the restoring linear

region is steepest for the optimized case. In 1985, Steven Chu reached the Doppler limit

with 106 Na atoms/cm3 at a mean temperature of ∼ 240 μK, work partially responsible for

his share of the 1995 Nobel prize in physics [44, 45].
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Figure 2.6: The effect of detuning on total cooling power. The solid black curve shows

Δ = −Γ/2, corresponding to the Doppler limit, while the dashed blue curve shows

Δ = −1.5Γ and the dashed red curve shows Δ = −0.1Γ. The steep linear region of the

optimized curve corresponds to the maximal cooling force.

2.4 Magnetic Trapping

2.4.1 Static Trap

Doppler cooling raised the possibility of confining atoms in a magnetic field, inspired

by the 1978 trapping of cold neutrons [42, 46]. Simple schemes took advantage of the

atom’s magnetic dipole moment μ experiencing a force in a magnetic field B,

F = −μ · ∇B. (2.8)

The atom’s magnetic moment arises from its nuclear angular momentum I and

electronic angular momentum J. These angular momenta can be thought of as currents
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of charge flowing around the atom, creating a small magnetic field. Their combination

F = I+ J form states defined by the quantum numbers (F,mF). The energies of these states

vary with magnetic field by

VZeeman = mFgFμBB, (2.9)

called the Zeeman shift, where gF is the effective Landé g-factor and μB is the Bohr

magneton. Thus, the projection of μ along B is mFgFμB. Eq. (2.9) implies atoms in

positive mFgF states can be captured at minima of the magnetic field.

Suppose the magnetic field is zero at the atom cloud location and increases in

magnitude for all directions to a maximal value Bmax. A cloud of temperature T is

contained if

Bmax >>
3kBT

2mFgFμB
. (2.10)

For atoms at the Doppler limit (∼ 240 μK) with mFgF = 1, Bmax must be much greater

than ∼ 5 Gauss. In practice, if Bmax is ∼ 3× greater, a significant fraction of the Boltzmann

distribution is captured.

Unfortunately, such a simple magnetic trap is subject to rapid atom loss due to atomic

transitions to untrapped (i.e. mFgF ≤ 0) states [47]. These transitions are caused because

the atom is moving through a spatially variant field. In the moving frame, the field can

be recast as a time-dependent perturbation. Because the unperturbed atomic states form a

complete set, they can be used to describe the state of the perturbed atom as well. In most

regions of the trap, the Hamiltonian changes slowly and the likelihood of finding the atom

in a state other than its original is negligible. However, near the zero of the magnetic field,

the probability of a transition becomes significant.
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Specifically, using the quantum adiabatic approximation [48], state numbers are

conserved so long as the Hamiltonian’s rate of change is less than the frequency associated

with changing from state i→ f

ω f i =
E f − Ei

�
, (2.11)

where Ei, f are the energies of the unperturbed Hamiltonian. For the changing magnetic

field, the adiabatic condition implies

1

|B|
∂B
∂t
<<

gFmFμBB
�

. (2.12)

If the field has a zero point, atoms will experience an abrupt change in field direction,

violating adiabaticity and inducing transitions to untrapped states. These are called

Majorana losses, named for the physicist who first considered them [49]. Methods to

overcome these losses will be discussed later.

2.4.2 Magneto-Optical Trap

The difficulties of the static magnetic trap prompted efforts to trap atoms with the

radiation force. Initial hopes were dampened in 1983 by Ashkin and Gordon, who proved

an optical radiation Earnshaw theorem: A small dielectric particle cannot be

trapped by using only the scattering force of optical radiation pressure. [50]

However, the theorem assumes the radiation force is proportional to light intensity. The

addition of an external, position-dependent magnetic field can alter this strict proportionality

[51], leading to Dalibard’s elegant Magneto-Optical Trap (MOT), demonstrated by Raab in

1987 [52].

A simplified understanding of the MOT considers a F = 0 → F′ = 1 transition,

such that the ground state is defined by (F,mF) = (0, 0) and the possible excited states

have (F′,mF′) = (1, 1), (1, 0), and (1,−1). The excited state can have angular momentum

along B, while the ground state does not. Therefore, to conserve angular momentum,
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transitioning to state mF′ requires the absorbed photon be polarized with an appropriate

spin. If the photon is traveling along the magnetic field direction, a left (right) circular

polarization drives a transition to the mF′ = +1 (−1) state, as shown in Fig. 2.7. For a

photon traveling opposite the magnetic field vector, the reverse is true. Excitations where

mF′ − mF = −1, 0,+1 are referred to as σ−, π, and σ+ transitions, respectively, seen in

Fig. 2.8.

Figure 2.7: A left hand circularly polarized photon traveling along the magnetic field

vector must drive a mF′ − mF = +1 transition to conserve angular momentum.

Figure 2.8: Transitions to the mF′ = −1, 0,+1 states are referred to as σ−, π, and σ+,

respectively.

Consider a one-dimensional system in which the atom is illuminated by two beams

from both the ±ẑ directions. Each beam is red detuned by Δ from ω0 and given left hand

16



circular polarization. Apply a linear magnetic field of the form B = Gzẑ, such that the field

is zero and changes direction at the origin.

Figure 2.9: Origin of the position-dependent force in a Magneto-Optical Trap. Circular

polarization gives each beam angular momentum. Conservation of angular momentum

requires Beam 1 to drive only σ+ transitions for z < 0 and only σ− transitions for z > 0.

The reverse holds for Beam 2. Because of the laser detuning and Zeeman energy shift, σ−

transitions are more likely, resulting in a net optical force towards the origin.

The energy levels of the mF′ = ±1 states now change linearly with the absolute value

of position because of Eq. (2.9), as seen in Fig. 2.9. If the atom is located at z < 0, Beam

1 drives σ− transitions while Beam 2 drives σ+. On the other hand, if z > 0, Beams 1 and

2 switch roles. Accordingly, σ− transitions are only driven by the beam which would push

the atom towards the origin.

As distance from the origin increases, the Zeeman effect makes σ− transitions more

likely than π or σ+. This preferential scattering creates a position-dependent, restoring
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force centered around the origin. The combination of both beams can be captured as

another adjustment to the radiation force equations from Eq. (2.4)

F =
[
�k
Γ

2

I/Isat

1 + 2I/Isat + 4(Δ − kv − αzz)2/Γ2
− �k
Γ

2

I/Isat

1 + 2I/Isat + 4(Δ + kv + αzz)2/Γ2

]
ẑ,

(2.13)

where αz = (mF′gF′ − mFgF)μBG/�. For z < 0, the left term is from Beam 1 and the right

term is from Beam 2. For z > 0, the roles of each term reverse. However, the symmetry

of this simplified case allows the force to be written in this intuitive form. In cases where

the magnetic field and k vectors do not align, more complicated equations are necessary,

as will be shown in Chapter 4.

2.5 Polarization Gradient Cooling

With Doppler cooling and magneto-optical trapping, cold atom physics made dramatic

progress in little more than a decade. Then, in 1988, Lett reported something unexpected.

We have measured the temperature of a gas of sodium atoms released from

‘optical molasses’ to be as low as 43±20 μK. Surprisingly, this strongly

violates the generally accepted theory of Doppler cooling which predicts a

limit of 240 μK. [53]

The explanation for this unexpected cooling helped Claude Cohen-Tannoudji win a share

of the 1995 Nobel prize in physics [54].

Cohen-Tannoudji’s simplest theoretical demonstration uses an atomic transition where

the ground state has total angular momentum F = 1/2 and the excited state F′ = 3/2 [55].

The two ground states are then mF = ±1/2. Detuned light interacting with the atom causes

AC-Stark shifts in the ground states that differ according to the light’s polarization.

Suppose two counter-propagating beams in ẑ with perpendicular linear polarizations

illuminate the atom. The combined electric field of the light can be written
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E = E0 cos (ωt − kz) x̂ + E0 cos (ωt − kz) ŷ

= E0 (cosωt cos kz) (x̂ + ŷ) + E0 (sinωt sin kz) (x̂ − ŷ) . (2.14)

At z = 0, the total electric field will be linearly polarized

E = E0 (cosωt) (x̂ + ŷ) . (2.15)

However, at z = λ/8→ kz = π/4, the total electric field will be circularly polarized

E = E0 sin (ωt + π/4) x̂ − E0 cos (ωt + π/4) ŷ. (2.16)

Further, the electric field at z = 3λ/8 → kz = 3π/4 will be circularly polarized with the

opposite handedness.

Figure 2.10: Two counter-propagating beams with orthogonal polarizations create a

polarization gradient over the scale of half a wavelength.

The pair of perpendicularly polarized beams thus creates a polarization gradient in

which the light field changes from linear to circular polarization over an eighth of a

wavelength, as seen in Fig. 2.10. Accordingly, the energies of the two ground states
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oscillate in space within the same period, as shown in Fig. 2.11. In addition, optical

pumping dictates that light polarized to drive σ+ (σ−) transitions will accumulate atoms

preferentially into the mF = +1/2 (mF = −1/2) state.

Figure 2.11: An atom’s ground state energy levels split based on the polarization of its

local light field. Optical pumping continually places the atom in its lower energy state,

requiring it to lose kinetic energy as it climbs the next potential hill.

If the atom starts at z = λ/8, the field is circularly polarized to pump it into the

mF = −1/2 state. Suppose the atom then travels approximately λ/4 in the optical

pumping time τOP, slowing as it climbs the potential energy gradient caused by the varying

polarization. Reaching z = 3λ/8, the atom is optically pumped to the mF = +1/2 state by

light of the opposite circular handedness. The atom must then repeat the cycle of slowing,

only to be pumped back to the original mF = −1/2 state.

As the cycle repeats, a new average force can be written

F (v) = 3�k2Δ

Γ

v
1 + (v/vcrit)2

, (2.17)

with critical velocity

vcrit =
Γ

9k
I/Isat

1 + 4(Δ/Γ)2
. (2.18)
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The damping force from polarization gradient cooling (PGC) is approximately an order of

magnitude larger than that of Doppler cooling, leading to a new temperature limit

Tsub−Doppler =
�Γ2

4kB|Δ|
I

Isat
, (2.19)

which corresponds roughly to the AC-Stark shift between the two ground energy levels.

The sub-Doppler temperature is often on the same order of magnitude as the recoil

temperature

Trecoil =
�

2k2

2mkB
, (2.20)

for atomic mass m, defined for the average kinetic energy associated with the scattering of

a single photon.

A similar polarization gradient exists for pairs of counter-propagating, circularly

polarized beams interacting with more complicated spin structures. Circular polarization

allows PGC to be performed using the same laser beams as the MOT, simplifying the path

to cold clouds of atoms with single μK temperatures.

PGC requires a true zero magnetic field over the size of the cloud. Otherwise, the AC

Stark shift would be washed out by the Zeeman shift from the remnant field. Particularly,

the magnetic field must be such that

VZeeman << VAC, (2.21)

where the AC-Stark shift is

VAC =
�Γ2I
8ΔIsat

. (2.22)

Thus,

B <<
�Γ2I

8mFgFμB|Δ|Isat
. (2.23)

Using typical values for 87Rb, the remnant field must be much less than 0.14 Gauss.
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Typical Earth and stray laboratory fields are on the order of 0.1 Gauss, and must

therefore be cancelled with a uniform bias field. In practice, knowing the direction of the

remnant field is difficult, requiring the ability to create uniform fields of arbitrary direction.

2.6 Magnetic Trapping Reconsidered

After PGC, static trapping becomes possible for significantly lower magnetic fields.

A 20 μK cloud with (mF , gF) = (2, 2) requires Bmax be much greater than only ∼ 0.1 Gauss.

Meanwhile, Majorana losses can be avoided by creating non-zero magnetic minima so

atoms can always adiabatically follow the field. An early example is the Ioffe-Pritchard

trap [56, 57]. The trap begins with four equal currents flowing in ±x̂, called Ioffe bars,

creating the magnetic field seen in Fig. 2.12. The field, called a 2D quadrupole or 2D

waveguide, has the form B = G(yŷ − zẑ) for small displacement around the origin. Two

current-carrying coils are then placed co-axially around the Ioffe bars, as seen in Fig. 2.13.

These coils create a x̂ field along what was the line of magnetic field zero at (y, z) = (0, 0).

The field peaks at each coil, creating a non-zero local minimum between them.

Through the early 1990’s, several groups realized magnetic trapping enabled even

colder temperatures than PGC. By applying radiation with radio frequency ωRF , atoms

experiencing a certain magnetic field were resonant with transitions to untrapped states

[58, 59], as seen in Fig. 2.14. By setting ωRF to correspond with a large magnetic

field, only the hottest atoms had enough kinetic energy to be ejected from the trap. The

remaining atoms then collisionally thermalized to a lower temperature. Ramping ωRF to

lower frequencies continually targeted the hottest edge of the thermal distribution, forcing

the remaining atoms to ever lower temperatures.

This process, aptly named evaporative cooling, made possible a new form of

matter first predicted in 1924-1925. Bose [60] and Einstein [61] derived that a gas of
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Figure 2.12: Magnetic field produced in the yz plane by four Ioffe bars in x̂.

indistinguishable bosons with density nb and mass m would significantly populate the

ground energy state below a critical temperature

Tc =

(
nb

ζ(3/2)

)2/3
2π�2

mkB
, (2.24)

where ζ is the Riemann zeta function, for which ζ(3/2) = 2.6124. Cornell and Wieman at

Colorado-Boulder and Ketterle at MIT were able to demonstrate the first Bose-Einstein

Condensates (BEC) [62, 63], for which they shared the 2001 Nobel prize in physics

[64, 65].

2.7 Cold Atom Interferometry

As atoms populate an increasingly narrow range of energy states, quantum dynamics

must be considered. Using a two photon process called the stimulated Raman transition

[66–69], interference can be observed between momentum states χn(p) with energies E′n.
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Figure 2.13: The Ioffe-Pritchard trap. Two coils placed along the Ioffe bars create a

magnetic field along x̂. The field peaks at each coil and is minimal between them.

During a stimulated Raman transition, two counter-propagating lasers with frequency

ω1 and ω2 interact with an atom in state χ1(p), characterized by momentum expectation

value p0 and energy E′1. The atom can absorb an ω2 photon and emit an ω1 photon via

stimulated emission. The result is an atom in χ2 with additional momentum �ke f f =

�(ω1 − ω2)/c along the ω1 beam direction. The state change is illustrated in Fig. 2.15.

The duration of the Raman pulse determines the likelihood that the atom transitions from

χ1 to χ2.

The interferometry process, Fig. 2.16, begins with an atom in state χ1. A laser pulse

at time t = 0 transitions the atom from its original χ1 state into an equal superposition of

χ1 and χ2. The resulting states will spatially separate as half of the probability distribution

begins to move along the ω1 beam direction. After time T , a second laser pulse transitions

the χ1 state to χ2 and the χ2 state to χ1. The two halves of the probability distribution

overlap again at time t = 2T , at which point a final laser pulse is applied. After a
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Figure 2.14: A RF frequency couples a trapped and anti-trapped state for a particular

magnitude of the magnetic field. Adjusting the RF field allows selective removal of the

most energetic atoms.

measurement time tm, the probability distribution separates again, and the final location

of the atom is found by absorption imaging.

In a cold cloud, the above interferometry process occurs simultaneously for each atom.

As a result, the final distribution of the atom cloud measures the full probability function.

The measured ratio of atoms in each state depends on the difference in accumulated phase

between the two paths of the interferometer. The phase can be separated into two parts,

one due to free evolution and the other to the Raman pulses themselves [70–72]. If

the interferometer is used to measure a uniform acceleration a, then the free evolution

phase difference is zero. On the other hand, the phase difference from the cloud locations
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Figure 2.15: Level structure and absorption/emission process for the stimulated Raman

transition.

within the Raman beams is ke f f aT 2. The first interferometer of this kind separated

laser-cooled atoms by 2.4 mm to measure local gravity to a resolution of Δg/g = 10−6.

The current state-of-the-art achieves separation by tens of cm to measure gravity routinely

at Δg/g = 10−9 [73–75].

2.8 From the Lab to the Real-World

Following the first cold atom gravity measurement in 1991, national and defense

applications were quickly recognized. Grants from the Air Force Office of Scientific

Research and the Office of Naval Research showed immediate interest in accelerometers

and frequency standards [76, 77]. Rapid progress resulted in multiple efforts by the Defense

Advanced Research Projects Agency (DARPA) [22]. A specific focus was placed on

outperforming GPS for certain disruptive capabilities [23].

To achieve these goals, the sensitivity of the Raman interferometer had to be improved.

One route attempted to increase ke f f . Recently, 102 individual �ke f f momentum transfers

were demonstrated [78]. Another route attempts to increase T [24]. However, atoms on

Earth fall due to gravity, so long interferometer times require large devices.
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Figure 2.16: Stimulated Raman transitions creating interference between two momentum

states to measure uniform acceleration. If the acceleration is zero, the atom can follow the

paths drawn as solid lines. If the acceleration is along −z, the atom follows the dashed

paths.

Accordingly, there has been a push for confined atom interferometry, in which the

atoms are held at a constant height [79]. To that end, the DARPA effort created 105

condensed atoms in < 3.8 seconds in a compact (∼ 1 m3) system [47, 80]. A critical

new component of this rapid, compact device was the atom chip. The atoms were held in a

magnetic trap partially created by currents flowing across a microchip placed near the atom

cloud, as depicted in Fig. 2.17. The atom chip enabled more precise field shape, higher

efficiency by reducing the distance from the current to the atoms, and simplified cooling of

the magnetic field source using techniques borrowed from the electronics industry. A few

common atom chip structures are detailed below [81].
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Figure 2.17: Cold atoms captured using magnetic fields generated from currents on an

atom chip.

2.8.1 Single Wire Guide

Suppose the chip sits in the xy plane. An infinite length wire with current Ichip along x̂

produces a magnetic field

B =
μ0Ichip

2πrchip

(
x̂ × r̂chip

)
, (2.25)

where μ0 is the magnetic permeability of free space and rchip is the radial vector from the

wire to the field point. If a uniform bias field Bbias = Bbiasŷ is applied as in Fig. 2.18, then

a line of magnetic field zero points will form where

(y1, z1) =

(
0,
μ0Ichip

2πBbias

)
. (2.26)
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Near the line of zeros, the magnetic field is linear with a form B = G
[
(z − z1)ŷ + (y − y1)ẑ

]
,

which is similar to the field produced by the Ioffe bars in Fig. 2.12 except the axes of

the field are angled by 45◦ from ẑ. Accordingly, this field is referred to as a rotated 2D

quadrupole, or a rotated 2D guide.

Figure 2.18: A uniform bias field creates a line of B = 0 along a current-carrying wire.

2.8.2 U-Wire Quadrupole

Place two additional infinite wires co-planar with the first, with equal currents running

in the ±ŷ directions, separated by a distance w, as depicted in Fig. 2.19(a). These extra

wires provide axial confinement. What was the line of zeros now has an x̂ field component

that is maximal in magnitude above each wire. This configuration produces a trap that is

linear in three dimensions with the magnetic field minimum being zero. The three-wire

system is often approximated by a single U-shaped wire, as seen in Fig. 2.19(b). The linear

trap is useful for MOT formation.

2.8.3 Z-Wire Trap

If the two additional wires had co-propagating currents, as in Fig. 2.19(c), an analog

to the Ioffe-Pritchard trap is formed, creating a non-zero magnetic minimum. The x̂ field

component peaks over each ŷ wire and is minimal between them. This three-wire trap is

usually approximated by a single Z-shaped wire, as shown in Fig. 2.19(d).
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(a) (b)

(c) (d)

Figure 2.19: Two parallel infinite wires add field along x axis to create two types of 3D

traps. Pairs of counter-propagating currents (a) create a zero field point along x,

approximated by (b) a U-shaped wire. Alternatively, co-propagating currents (c) create a

non-zero magnetic minimum, approximated by (d) a single bent Z-shaped wire.

2.9 The AFRL Cold Atom Sensor

Like the compact DARPA device, the Cold Atom Group at the Air Force Research

Laboratory (AFRL) is pursuing magnetic confinement of an interferometer using atom

chips. The group’s main experiment, the cold atom sensor (CAS), shown in Fig. 2.20,

represents the latest developments in that effort.

To aid viewing, Fig. 2.21 omits the vacuum pumping apparatus and removes

components obscuring the experimental chambers. Two lasers apply trapping and

cooling along ±ŷ and ±ẑ to create a two-dimensional Magneto-Optical Trap (2D

MOT). The resulting cold atom beam travels into a lower pressure chamber where two

counter-propagating lasers along (ŷ ± x̂)/
√

2 retro-reflect from a mirror positioned above

the chamber. Another laser pair propagates in ±ẑ. The resulting 3D MOT is labeled. After

the 3D MOT is created, three pairs of nested current-carrying coils cancel the magnetic

field at the 3D MOT location so PGC can begin. Once PGC is complete, the coils provide
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Figure 2.20: A current state-of-the-art system designed by the Air Force Research

Laboratory to investigate future deployable cold atom sensors.

the bias field necessary to capture the atoms in a Z-wire trap created by an atom chip above

the 3D MOT mirror. A RF coil (not shown) evaporatively cools the magnetic trap to Bose

condensation.

2.10 My Contributions

My contributions to the AFRL CAS are the subject of this dissertation. The

advancements described reduce the necessary components, size, weight, and power

consumption of the CAS to those seen in Fig. 2.22. By designing a new geometry to laser

cool atoms, five lasers are replaced with two, without losing operational performance. In

addition, I fabricated several new atom chips to replace the fields of external magnetic coils.

Removing these coils will significantly increase optical access for future experiments.
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Figure 2.21: The CAS with its vacuum pumps and some optics removed for clarity.

Then, I introduce a theoretical effort to model a promising confined interferometer.

The interference mechanism produces a useful signal with non-condensed atoms, enabling

less stringent requirements for the laser and power supply systems. However, this method

is subject to rapid signal loss due to small magnetic fields along the splitting axis. My

model puts limits on how much magnetic field is tolerable and proposes new methods

to improve signal quality. These contributions are more explicitly introduced in sections

2.10.1 through 2.10.3 below.

2.10.1 Grating Magneto-Optical Traps

The ease of the one-dimensional models for laser cooling often makes the initial

cooling stage an afterthought. Lasers simply approach the trap in both directions along

each cardinal axis. While effective, surrounding the experiment with optics on all sides has

unintended consequences.

32



Figure 2.22: The AFRL CAS incorporating improvements explained in this dissertation.

The 2D and 3D MOT now require a single laser beam each. The magnetic coils have been

removed in favor of a more elaborate atom chip. Requirements on the laser and power

supply systems (not shown) are reduced by using a high temperature interferometry

sequence.

First, optical access is severely reduced. As seen in Fig. 2.20, beam launchers

block other necessary components such as imaging cameras, magnetic field sources, or

interferometry beams. Second, the cooling light must be broken into several beams.

Multiple beams require significantly more optical components which can misalign under

vibration or thermal variation, and add size, weight, and cost. Additionally, optical power is

used inefficiently. Only one laser beam is required for laser cooling if its power is properly

recycled.
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Alternative MOT designs have been proposed, with a sample of the trade space shown

in Fig. 2.23. Many, such as the pyramid and mirror MOT, rely on advantageous mirror

placement to recycle optical power. Both suffer from optical access concerns. The focusing

MOT provides access through the transverse directions at the expense of weak trapping

along those directions. The prism MOT is promising in that its atom number scales like

typical MOTs with good transverse access, but requires two beams and the prism structure

might cause unwanted obstruction for later experimental stages.

Figure 2.23: Some common 3D MOT configurations.

Recently, a three-dimensional Grating Magneto-Optical Trap (3D GMOT) was

demonstrated that satisfies many needs of a deployable system [82, 83]. Like the prism

MOT, a single beam approaches downward towards the zero of a magnetic quadrupole,

illustrated in Fig. 4.1(c). However, instead of a second beam refracting upward through a

prism, the downward beam is diffracted upwards by a set of planar reflective gratings. The
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resulting 3D GMOT shows comparable atom number scaling to standard six-beam MOTs

[84] and is able to achieve sub-Doppler cooling [85].

A similar principle can be used to form a two-dimensional GMOT (2D GMOT), as

illustrated in Fig. 4.1(a), resulting in a cold atomic beam. Adapting from the 3D to the 2D

case requires different theoretical considerations and conditions on grating efficiency, laser

intensity, and polarization, which are detailed in Chapter 4. After demonstrating the first

2D GMOT, shown in Fig. 4.1(b), the atom beam is characterized and used to load a 3D

GMOT with the highest atom number reported so far in a grating-based system, as seen in

Fig. 4.1(d).

2.10.2 Planar Sources of Localized Magnetic Fields

While atom chips are commonly used in cold atom experiments, they often require

uniform bias magnetic fields to operate, as discussed for the common structures in Sec. 2.8.

These bias fields are typically created with large external coils.

The CAS uses coils, as seen in Fig. 2.24, despite the obvious obstruction they cause.

In large part, coils are used because they are a simple, effective way to create large volumes

of uniform magnetic fields with moderate strength. For that reason, these field sources can

be found across many scientific disciplines.

But coils have become a significant burden to our experiments. In addition to their

bulk, they are heavy and labor-intensive to fabricate. Their cylindrical form requires

specially designed cooling structures that further exacerbate size, weight, power, and cost

concerns. We wondered, would it not be simpler just to make all the necessary fields with

the atom chip?

Atom chips are lightweight and easily manufactured, as will be discussed in Chapter 2.

Their planar surfaces enable excellent heat transfer to a range of well-tested devices such

as thermo-electric coolers and micro-channel cold plates. Additionally, the chips rest on

only one of the vacuum chamber walls, enabling optical access from many angles.

35



Figure 2.24: The external magnetic coils required by the CAS. These coils can be replaced

by the atom chips designed in Chapter 5. As a result, increased optical access is given to

the 3D MOT chamber.

Motivated by these benefits, Chapter 5 investigates the theory of uniform magnetic

field generation in coil-based systems and applies a similar framework to the design of large

volume uniform fields from planar sources. A model is developed by which pairs of parallel

infinite currents eliminate successive unwanted orders of a magnetic field expansion. Based

on the model, an atom chip is designed, fabricated, and tested with a magnetic probe. The

field produced by the chip shows excellent agreement with simulations. The results are

considered in the context of a real-world application, a magnetic trap conveyor to move

atoms along the chip surface.
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2.10.3 Talbot-Lau Interference Modeled Through the Wigner Function

The magnetic control provided by atom chips enables a matter-wave interference

technique that operates at a higher temperature than BEC in a compact device. Most

so-called “thermal” techniques, such as the Raman pulse interferometer discussed in

Sec. ??, change the internal state of the interrogated atoms to achieve coherent splitting.

Because it is difficult to control multiple states with a magnetic field, atoms are then allowed

to propagate freely, necessitating a large system. The most sensitive devices use a 10-meter

long apparatus [24].

Single internal state splitting has allowed atoms to be trapped for the duration

of the interferometer cycle, reducing the apparatus length to a few millimeters [79].

Unfortunately, most of these techniques require BEC and thus cooling stages that increase

power consumption, decrease possible repetition rates, and lower atom numbers (see

double-well potentials [86], optical lattices [87], and standing wave pulses [88, 89]).

One single-state technique has been shown to work at thermal (i.e. non-condensed)

temperatures [90–92]. These interferometers, in the Talbot-Lau configuration, confine the

atomic sample in two directions and allow free propagation in the third. The atoms split

and recombine along the third direction.

However, due to the finite size of the device and uncontrollable external fields, there

remains a residual potential along the splitting axis. Unfortunately, the residual potential

and other field imperfections reduce coherence times [89, 93, 94].

With our atom chips, a high degree of control over the residual field is achieved,

though small defects still remain [26]. Chapter 6 analyzes the effect of a remnant harmonic

potential using a Wigner function approach. The model predicts the interference signal’s

decay while suggesting an optimized approach to loading the interferometer potential from

a magnetic trap.
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2.11 Conclusion

In this chapter, the foundation of theoretical and experimental concepts underlying

this dissertation were presented. Laser cooling, magnetic trapping, condensation, and

interference of atoms were discussed. A brief history was given as to how these techniques

led to the Air Force Research Laboratory Cold Atom Group and its cold atom sensor

experiment. Finally, my contributions were placed in context of improvements made to the

CAS and the broader field of cold atoms. A novel laser-cooling geometry, called the grating

magneto-optical trap was introduced to reduce optical power and increase experimental

access. To further increase access, planar magnetic field sources were proposed. These

sources replace external coils with currents on the atom chip. With increased magnetic

field control, a promising interferometer is examined using the Wigner function. These

contributions require a range of supporting experimental systems to be discussed in the

following chapter.
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III. Supporting Experimental Apparatus

3.1 Introduction

Several subsystems, methods, and laboratory techniques support the experiments

discussed in this dissertation. To avoid obscuring later results, these details have been

gathered together into this chapter.

3.2 Laser System

3.2.1 Requirements

We use 87Rb, an alkali metal atom which has a single valence electron. The 52S 1/2 →

52P3/2 manifold, depicted in Fig. 3.1, is of particular interest for cold atom systems. The

transition broadly exists near wavelength λ = 780.241 nm with Γ = 38.11 × 106 Hz .

Selection rules dictate that the F′ = 3 state can only decay back to the F = 2 state.

Accordingly, the F = 2 → F′ = 3 transition at λc = 780.246 021 nm approximates

the two-level atom used to discuss laser cooling. However, a laser red-detuned from this

transition has a small but non-zero probability of driving transitions to the F′ = 1 or 2

excited states. These states can decay to the F = 1 ground state, at which point the atom

would no longer interact with the laser.

To ensure the cooling process continues, atoms that decay to the F = 1 ground state

are repumped back to the F′ = 2 state, from which they can decay to the ground F = 2 state

and continue absorbing F = 2 → F′ = 3 light. The F = 2 → F′ = 2 repump transition

occurs at λrp = 780.232 683 nm.

After the completion of laser cooling (MOT+PGC), the atoms populate various mF

levels of the F = 2 ground state, with a small fraction in F = 1. The goal is to populate a

single magnetically trappable mF state.
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Figure 3.1: The energy levels of the 52S 1/2 → 52P3/2 manifold in 87Rb, showing

transitions of particular use for cold atom experiments.

One option is to apply circularly polarized cooling light (and some repump to clear

the F = 1 ground state) to drive σ+ transitions until the atoms occupy the F′ = 3, mF′ = 3

excited state, as seen in Fig 3.2(a). However, that state can decay to F = 2, mF = 2

and absorb again. These scattering events would add heat to PGC-cooled atoms. Instead,

circularly polarized light on the F = 2 → F′ = 2 transition optically pumps atoms to

the F = 2, mF = 2 ground state, seen in Fig. 3.2(b),which cannot absorb further. This

so-called “dark state” can be magnetically trapped. Optical pumping light has wavelength

λop = 780.245 370 nm.

Simply generating these three discrete wavelengths of light does not provide adequate

experimental capability. PGC continuously ramps the detuning of cooling light from

Δ ≈ −3Γ→ −11Γ. Additionally, certain steps are optimized for total optical power.
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(a)

(b)

Figure 3.2: Optical pumping where circularly polarized light drives σ+ transitions from

F → F′ (solid red arrows). The atom can decay to any state mF such that

mF′ − mF = −1, 0, 1 (dashed arrows). Note that in (a) the F = 2→ F′ = 3 case, the atom

will be pumped to the mF = 2→ mF′ = 3 transition, which can continue to absorb and

re-emit photons. In (b) the F = 2→ F′ = 2 case, if the atom decays from

m′F = 2→ mF = 2, it can no longer absorb on a σ+ transition.

3.2.2 Layout and Design

The laser system is designed to provide stable, constant power repump light and

tunable, variable power cooling light, as shown in Fig. 3.3. The cooling light can be

adjusted to optical pumping and imaging frequencies after laser cooling completes.

Fig. 3.4 shows the main frequency reference, a thermally stabilized diode laser from

Vescent Photonics called the Heterodyne Agile Laser (HAL). The HAL incorporates

an internal vapor cell and locks to the repump transition using saturated absorption

spectroscopy. The output power is only ≈ 3 mW, which is amplified using a tapered

amplifier (BoosTA) from Toptica Photonics. The resulting ≈ 100 mW are split and coupled

into two polarization-maintaining fibers. The output of one fiber is used for laser cooling.
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Figure 3.3: A schematic of the full laser system to provide two fiber coupled beams

containing stable, constant power repump light and tunable, variable power cooling light.

Figure 3.4: Repump light is amplified and fiber coupled for use in laser cooling and as a

reference to lock the cooling light.
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The other fiber (shown as a dashed line) is routed to the locking setup of the cooling

laser in Fig. 3.5. The fiber’s repump light has its polarization matched with the output of a

second laser from Vescent Photonics. The second laser (D2-100) will provide cooling light

and outputs ≈ 20 mW, 3% of which is picked off and mixed with the reference repump

light on a beamsplitter. Both beams are coupled to another fiber which routes to a series of

electronics, shown in Fig. 3.6.

Figure 3.5: The reference repump light is combined with light from the cooling laser,

creating an optical beat note used to lock the cooling light.

The fiber carrying the beat note between the two laser outputs is connected to the

Offset Phase Lock Servo (D2-135) from Vescent. The servo divides the beat note frequency

by 64 so it can be compared to an externally-supplied stable radio frequency. The error

between the beat note and the stable frequency is used to adjust the cooling laser output via

the D2-105 Laser Controller. The stable RF frequency is sourced from a BK Precision 4065

Arbitrary Waveform Generator running at ≈ 102.292 MHz, which is stabilized to the 10

MHz output of a Hydrogen Maser from MicroSemi. The waveform generator frequency,
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and hence the cooling light’s detuning from repump, can be controlled externally by an

analog DC voltage input to the BK Precision 4065.

Figure 3.6: The beat note is input into an electronics box (D2-135). The desired frequency

offset between the repump and cooling light is generated (4065 and H-Maser) and

compared to the beat note. The error signal from the comparison is used to control the

cooling laser (D2-105).

The now-locked cooling laser is amplified by another tapered amplifier (TA-100 from

Toptica) which outputs ≈ 250 mW before being broken into multiple beams, as shown in

Fig. 3.7. The output of the TA is passed through a double passed acousto-optic modulator

(AOM) in the bowtie configuration. In this setup, the first order beam is routed back through

the AOM such that the frequency remains unchanged. However, the double pass provides
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extremely fast variable power control, adjusting the ratio of light in the zeroth and first

order beams on the μs timescale. The power of the AOM is controlled via an IntraAction

model VFE Frequency Synthesizer with analog external voltage control. At its extreme,

the double pass provides ≈ 60 dB extinction of the first order beam.

Figure 3.7: The locked cooling light is amplified and split into several ports, with the

power in each controlled via an analog controlled double-passed AOM and a series of

digitally controlled shutters.
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The zeroth order light is fiber coupled into one arm of a polarization-maintaining,

single mode 2-to-2 fiber splitter from Evanescent Optics. The other arm contains the

amplified repump light coupled previously. The output arms of the splitter produce two

polarized, Gaussian mode beams containing both cooling and repump frequencies. These

will form the main beams for the 2D and 3D GMOTs discussed later.

The first order light is directed through a series of waveplates and polarizing beam

splitters which adjust the power directed into three output fiber coupling ports. These

ports serve a range of purposes, including the provision of absorption imaging light and

frequency monitoring. Their original purpose was to provide the capability of creating

traditional 2D and 3D MOTs. As the GMOT parameters were optimized, these ports were

gradually shuttered off until the GMOTs could operate independently. The shutters for

these ports, as well as those for the main cooling and repump light, are operated via a

Uniblitz VMM-D4 four channel driver with digital external voltage control.

3.3 Magnetic Sources

As seen in Sec. 2.4.2, the 2D and 3D MOT require linear magnetic fields that go to

zero where the laser beams intersect. For the 2D MOT whose atom beam travels along

x̂, four NdFeB permanent magnets are arranged as seen in Fig. 3.8. Each magnet (K&J

Magnetics part number BX842) has volume 38.10× 3.18× 6.35 mm3, magnetized through

the 38.10 × 6.35 mm2 plane with a remnant field Br = 1.3 Tesla. Like the Ioffe bars, a 2D

quadrupole field forms along x̂. The magnets are epoxied onto cage rods and placed in a

tip/tilt optics mount, as seen in Fig. 3.9. Adjusting the magnetic structure moves the 2D

MOT location until it is aligned with a small exit pinhole leading to the 3D MOT chamber.

The 3D MOT requires a linear magnetic field along three axes. As discussed in

Chapter 5, a 3D quadrupole is created using two coils, as seen in Fig. 3.10. These coils
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Figure 3.8: Four permanent magnets are oriented to create a 2D quadrupole field along x̂

have radius Rcoil and are placed co-axially at z = ±Rcoil/2. Each carries current Icoil in

opposite directions.

The coils are held in place with cage rods placed around the 3D MOT chamber, as

shown in Fig. 3.11(a). Each is wound with 130 turns of 18 gauge magnet wire and is

11.2 mm in height. The inner diameter is 57 mm and the outer diameter is 76 mm. When

energized with 3 A, these coils create a 9.5 Gauss/cm gradient near z = 0 along the ẑ axis.

When the two coils carry current in the same direction, they create a constant ẑ field. With

a 0.1 A current, a 2 Gauss field is formed.

Typical Earth and stray laboratory fields are on the order of 0.1 Gauss. As discussed in

Sec. 2.5, these background fields must be cancelled for PGC. Two additional coil pairs are

placed along x̂ and ŷ, such that adjusting the currents in each pair creates a cancelling field

in any direction, as shown in Fig. 3.11(b). Thus, the experiment requires four independent

current controls: the upper ẑ coil, the lower ẑ coil, a pair of x̂ coils, and a pair of ŷ coils.
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Figure 3.9: The mounting and alignment of the 2D MOT magnets.

3.4 Timing and Control

In addition to accurate lasers and magnetic field, these experiments require precision

timing. For example, PGC uses a controlled analog frequency ramp fromΔ = −3Γ→ −11Γ

in 12 ms. Further, the camera used for absorption imaging triggers in 50 μs and must be

coincident with the imaging light being shuttered on.

The lab uses a home-built solution, written in Python, that controls and synchronizes

various hardware interfaces called the Arbitrary Waveform Generator, or Arbwave.

Arbwave can be programmed to output signals using two systems. The DIO-64 from

Viewpoint Systems is capable of delivering 50 ns pulses on 64 independent channels.

A National Instruments DAQ multifunction I/O module outputs 16 simultaneous analog

channels.
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Figure 3.10: Two coils with counter-propagating currents separated by their radius create

a linear field at their midpoint.

Shutters for the repump, cooling, imaging, and other light ports are controlled

digitally. Each shutter was calibrated against a photodiode to determine the delay between

the Arbwave signal and shutter operation, as shown in Fig. 3.12 for the repump beam.

The dashed curve is the scaled-down voltage from Arbwave and the solid curve is the

photodiode voltage. The calibration results are shown in Table 3.1.

The GMOT experiment’s magnetic fields are created by an array of Helmholtz coils

connected to KEPCO 20V, 10A bipolar operational power supplies, controlled via analog

voltages (part number BOP 20/10). The current, delay, and ringing of these coils was found

using four point measurements of voltage across an inline power resistor, with a typical
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(a) (b)

Figure 3.11: When the coils in (a) are used for the 3D MOT, the upper and lower coil

carry opposite direction currents. The coils carry current in the same direction for PGC to

cancel background ẑ fields. Additional coils are added (using red wire) to cancel x̂ and ŷ

background fields.

Beam On delay (ms) Full on time (ms) Off delay (ms) Full off time (ms)

Repump 1.1 1.7 1.4 2.5

Cooling 1.6 2.3 0.7 1.4

Block/Imaging (Port 1) 1.6 2.2 1.0 1.8

Push (Port 2) 1.6 2.4 0.6 1.4

Table 3.1: Shutter response times.

response shown in Fig. 3.13. The current had no noticeable delay within the resolution of

the scope (1 μs), and full on/off times were 55 ± 5 μs.
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Figure 3.12: Photodiode signal of the repump beam (solid) compared to the digital signal

provided by Arbwave (dashed).

Arbwave adjusts the cooling laser frequency via an analog signal to the 4065 Arbitrary

Waveform Generator referencing the lock. Control voltages were calibrated against cooling

light with a Bristol Instruments 621 wavelength meter.

Despite these controls, background fields emanating from 60 Hz power line

fluctuations are a well-known systematic issue in cold atom devices. A 60 Hz trigger,

sketched in Fig. 3.14, switches from low to high voltage when the phase of the AC

power line changes sign. The trigger is connected to Arbwave via the DIO-64, allowing

experimental runs to always begin at the same phase of the 60 Hz fluctuation.

The 120 V AC signal is met by an 11 kΩ power resistor, bringing the current to ≈ 11

mA. An external BAW75V silicon small signal diode prevents reverse current flow from

damaging a 4N35 optocoupler. The optocoupler drives the gate of an internal transistor
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Figure 3.13: Typical magnetic coil response (solid) to a digital signal from Arbwave

(scaled, dashed).

Figure 3.14: A circuit to trigger Arbwave to begin an experimental run in phase with the

60 Hz oscillation of the lab power lines.

to switch the voltage of the external triggering pin (24) on the DIO-64 board, starting an

experimental run.
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3.5 Vacuum System

Compact, cold atom systems typically use transparent vacuum chambers to maintain

optical access. The choice of material includes quartz, silicate, borosilicate, sapphire, or

even diamond. These optical surfaces are often treated for anti-reflection, making bonding

them into useful structures difficult as treatments fail at high temperature.

Few low temperature bonding techniques exist. Optical contact bonding requires

significant polishing, anodic bonding requires high voltages and difficult seals, and glass frit

is untested at our pressures. Instead, AFRL has opted to fabricate chambers from polished

borosilicate using a NASA-certified low-outgassing epoxy, 353-ND from Epo-Tek. These

chambers have been evacuated to pressures on the order of 10−10 Torr.

Via a glass-to-metal seal, the chambers are connected to more traditional ultra-high

vacuum (UHV) components. Stainless steel tubes are connected via Con-Flat flanges with

copper gaskets. Several pumps are attached to the system, including an Edwards nXDS dry

scroll pump and EXT75DX turbomolecular pump, a Varian 40 l/s ion pump, and a titanium

sublimation pump. Once sealed and evacuated, the system is baked at ≈ 200 ◦C for several

days to reduce outgassing of adsorbed particles, in particular water and H2.

A source of Rb must be placed inside the chamber prior to evacuation. The vapor

pressure of Rb at room temperature is ≈ 4 × 10−7 Torr, significantly higher than the ideal

10−8−10−9 Torr of Rb needed for laser cooling [95]. Common practice is to use a Rubidium

getter. These dispensers contain alkali metals in the form of a chromate salt of the type

Rb2CrO4. Resistive heating from an applied current evaporates Rb into the chamber [96].

To apply current through the chamber walls, the dispensers are formed into a ring as

shown in Fig. 3.15. The ring is then inductively heated by an AC coil outside the vacuum

cell. Adjusting the distance between the dispenser ring and the heating coil reduces the

inductive coupling, allowing manual control of the Rb vapor density.
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Figure 3.15: Rb dispensers formed into a ring so they can be inductively heated within the

vacuum system.

The induction heater fabricated for this purpose is shown in Fig. 3.16, from [97]. It

allows operation with a DC power supply and just two N-type MOSFETs (100 V, 35 A).

The primary difficulty of the heater’s construction is that the work coil is composed of

two inductors L1. At their midpoint, a choke inductor L2 (≈ 2 mH) connects to +V . The

current flows through L2 and then alternately through the upper or lower L1, depending on

the switching transistors. Components must be selected to handle the large currents heating

the work coil. In the diagram, R are 220Ω, 0.6 W resistors, D are 40V, 1A Schottky diodes,

and C is a 330 nF, 400 V polypropylene capacitor.

Prior AFRL experiments noted that the Rb chromate dispensers release undesirable

levels of remnant gas. The remnant gas lowered the trap lifetime by increasing background

chamber pressure. We developed a cleaner dispenser using Highly Oriented Pyrolytic

Graphite (HOPG). Usually used as a calibration surface for electron microscopy, HOPG

consists of carbon atoms in stacked parallel layers like sheets of graphene. Heat can force

54



Figure 3.16: The circuit diagram of the induction heater used to release Rb from the

getters and HOPG into the vacuum chamber.

Rb atoms between these layers. In practice, the 1 mm thick HOPG samples swell to ≈ 3

mm once loaded. The loaded HOPG samples were reheated and tested by a residual gas

analyzer. The Rb re-emerged with order of magnitude lower vapor pressures of remnant

gas. The GMOT experiment described below was the first operational test of the HOPG

source and its success validates future use of HOPG for cold atom devices.

3.6 Atom Chip Design and Manufacture

The size, weight, and power of the magnetic coils are identified as a major source of

inefficiency in the CAS. Instead, bias and quadrupole fields can be created using currents

on an atom chip as discussed in later chapters.

The atom chips are cut from blanks of direct-bonded Copper (DBC) on an Aluminum

Nitride substrate (AlN) obtained from Stellar Ceramics (part number: 5475-C840-D) [98].

AlN is a ceramic with a particularly high thermal conductivity (≈ 300 W/(m·K)), capable

of forming a eutectic bond with copper that has strong thermal and mechanical connection.
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The DBC method enables particularly thick copper layers as high as 305 μm. Using an

A-Series fiber laser micro-machining mill from Oxford Lasers, features as small as 20 μm

are cut into the DBC. The channels between features are cleared of copper in an etching

solution of HCl/H2O2 or cupric chlorate and then cleaned with vinegar. In testing, wires

with a 200 × 200 μm2 cross-section carried currents as high as 200 A for single ms pulses.

Chip designs are drawn in DXF format using a range of programs, including Inkscape

and AutoCAD. The DXF drawings are converted to specialized G-Code commands run

by the mill with in-house software. Completed chips are placed outside the vacuum

chamber, separated by a thin silicon or borosilicate membrane. Ex-vacuo chips allow rapid

prototyping, as chips can be replaced without breaking vacuum [27].

3.7 Conclusion

In this chapter, the requirements of laser cooling 87Rb were discussed and our

optical layout was detailed. MOT and PGC magnetic field sources were described. The

experimental timing and control system was shown with typical calibrations of shutters

and power supplies. An overview of the ultra-high vacuum systems and Rb sources used

was presented. Finally, the design and manufacture of atom chips were considered. In the

following chapter, these supporting systems are used to demonstrate a novel geometry for

laser cooling.
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IV. Initial Cooling: Grating Magneto-Optical Traps

4.1 Introduction

This chapter details the demonstration of the first 2D GMOT, seen in Fig. 4.1(a)-(b).

The 2D GMOT is used to load a 3D GMOT, seen in Fig. 4.1(c)-(d). The 3D GMOT is the

first to be loaded by an atom beam and has the highest atom number so far reported.

This chapter will be organized as follows: the theory considerations for adapting from

the 3D to the 2D case will be detailed. The design and characteristics of a 2D GMOT with

Doppler cooling along the atom beam axis (the 2D+ configuration [99]) are then presented.

Finally, the loading rates, lifetime, and atom number of the combined 2D+ to 3D GMOT

system are reported.

4.2 Theory and Design

Unlike most common MOT configurations, the GMOT wavevectors are not aligned

with the magnetic field axes. Accordingly, specific conditions for intensity and polarization

must be considered when selecting gratings. These conditions differ between the 2D and

3D GMOT case. A more detailed derivation of the following results is given in Appendix A.

Each atom in a MOT scatters light from multiple off-resonant laser beams with

wavevectors k j and polarization vectors ε̂ j. Assuming the atom absorbs from F = 0→ F′ =

1, a circularly polarized beam drives transitions to the mF = −1, 0,+1 excited states with

relative strengths αmF (ϕ, ε̂ j) that depend on the beam’s polarization and angle with respect

to the local magnetic field ϕ. For a beam whose polarization is labeled by s = +1 for right

circular or s = −1 for left, these strengths are α±1 = (1 ∓ s cosϕ)2/4 and α0 = (sin2ϕ)/2.

The average force from a single beam j, of intensity I j, on an atom with velocity v in a

magnetic field B is
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(a) (b)

(c) (d)

Figure 4.1: (a) A laser beam impinges on a series of diffraction gratings to form a 2D

GMOT. (b) Inverted greyscale fluorescence of the 2D GMOT viewed along its axis. (c) A

schematic of a 3D GMOT and (d) its corresponding inverted fluorescence image.

F j = �k j
Γ

2

I j

Isat

∑
mF=−1,0,1

αmF (ϕ, ε̂ j)

1 +
∑

j I j

Isat
+

4(Δ−k j·v−μFmF B/�)2

Γ2

, (4.1)

where Γ is the natural linewidth and Δ = ωL −ω0, the detuning of the laser frequency from

the transition. Isat is the saturation intensity and μF = gFμB. In the limit of small Doppler

and Zeeman shifts, the force becomes
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I j
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[
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k j · B
|k j|

)]
, (4.2)

where K = (1 +
∑

j I j/Isat + 4Δ2/Γ2)−1, C = 8ΔK2/Γ2[100].

For most MOT configurations, lasers approach the trap along the principal axes of

the magnetic field. Accordingly, |k̂ j · B̂| = 1, so trapping is optimized for pure circular

polarization. In a GMOT, the wavevector of each diffracted beam is not aligned with the

magnetic field. Therefore, the optimal light field does not have pure circular polarization.

Gratings are selected which balance the necessary contributions of each transition to form a

trap. These requirements differ between the 2D and 3D GMOT, as shown in the following.

A circularly polarized beam with intensity I1, normally incident on a grating, will

diffract upwards at an angle θ from normal (+ŷ) with intensity Iup, as shown in Fig. 4.2.

The incident beam has k1 = −|k|ŷ and s = +1, denoting pure circular polarization. The

magnetic field B = G (xx̂ − yŷ) has gradient G and is centered on the beam overlap region.

The resulting force from beam 1 is

F 1 ≈ −�k
Γ

2π

I1

Isat

[
K +C

(
−kvy −

μFG
�

y
)]

ŷ. (4.3)

In general, gratings do not preserve polarization. The diffracted beams will have a

fractional intensity P+Iup in the s = +1 polarization and P−Iup in the s = −1 polarization.

Summing over the polarizations, the total force in x̂ is

F x ≈ �kCΓsin2θ
Iup

Isat

(
kvx + (P− − P+)

μFG
�

x
)
x̂. (4.4)

Similarly,
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Figure 4.2: The input intensity profile, k vectors, and B field to model a 2D GMOT.

F y ≈ �kΓK cos θ
Iup

Isat

+ �kΓC cos θ
Iup

Isat

(
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�
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)
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2

I1
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[
K +C

(
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μFG
�

y
)]

ŷ. (4.5)
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The constant terms (i.e. those ∝ K) represent an intensity mismatch that will shift the

trap center if not properly balanced. In particular, a trap will only form at the field zero if

Iup =
I1

2 cos θ
. (4.6)

Then,

F x ≈ �kC
Γ

2

I1

Isat

sin2θ

cos θ

(
kvx + (P− − P+)

μFG
�

x
)
x̂, (4.7)

F y ≈ �kC
Γ

2

I1

Isat

(
kvy(1 + cos θ)

+
μFG
�

y
(
1 + (P+ − P−) cos θ

))
ŷ. (4.8)

Note that because Δ is negative, these forces perform trapping and cooling.

Eq. (4.6) shows the ideal intensity balance between the three beams of the 2D GMOT.

However, a subtle distinction separates Eq. (4.6) from the necessary grating efficiency.

Gratings compress the diffracted beam area with respect to the originally incident light.

Thus, a perfectly efficient grating (i.e. 100% of input power directed into the first order)

would produce Iup = I1/ cos θ. As a result, satisfying Eq. (4.6) requires a grating efficiency

of 50%, independent of θ. If not, the resulting intensity imbalance manifests as an offset in

the trap location from the field zero along the axis normal to the gratings [101]. In general,

for a GMOT with N diffracted beams, the ideal grating efficiency is 1/N.

The relatively high (1/N = 50%) efficiency requirements of the 2D GMOT preclude

many grating types. Any grating without a preferred direction would have to diffract

practically all power into the ±1 orders. Asymmetric (e.g. blazed) gratings are therefore

preferable.

Custom non-directional etched gratings have been fabricated to this standard for the

3D GMOT [84, 102, 103], albeit with considerable design time and fabrication cost.

Such gratings often require e-beam lithography for small (≈ 500 nm) feature sizes.
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Manufacturing large area gratings requires significant time in high-demand clean room

facilities, motivating our experiment to investigate the option of using replicated blazed

gratings.

Replicated gratings are inexpensive and readily available, but confined to existing

master gratings. Additionally, replicated gratings are not designed to minimize residual

specular reflections (normal to the grating plane), which can undermine trap performance

by driving anti-trapping transitions in the atoms. To avoid reflected light, GMOT systems

with blazed gratings have gaps between the gratings which are aligned with the central axis

of the input laser.

In addition to intensity balance, the polarization of the diffracted beams significantly

effects the GMOT forces. In particular, maximizing trapping in the x direction requires

P− = 1 and P+ = 0, as shown in Fig. 4.3(a). However, this polarization minimizes trapping

in the y direction.

Fig. 4.3 shows the effect of imperfect polarization on the trapping forces by adjusting

the ratio of P+ to P− within the 50% diffraction efficiency constraint. Fig. 4.3(a)-(d) show

(P+, P−) = (0, 1), (0.1, 0.9), (0.2, 0.8), and (0.3, 0.7), respectively. The linear approximation

of F x from Eq. (4.7) is shown as a dashed line. The force along y increases at the expense

of the x trapping strength. Equal trapping strength along each axis can be achieved for

P− − P+ = cos θ. For the case of θ = 45o, equal trapping in the x̂ and ŷ directions is

achieved for P− ≈ 0.85 and P+ ≈ 0.15.

4.3 Experimental Setup

We operate with 87Rb, cooled on the 52S 1/2 → 52P3/2, F = 2 → 3 transition at

λ = 780.246 nm. Thus, Eq. (4.1) must be modified to account for a different set of mF

states and gF factors. However, the simplified theory guides our choice of two test gratings.

62



(a) (b)

(c) (d)

Figure 4.3: Trapping forces in a 2D GMOT for varying polarizations of the diffracted

beams, assuming 50% total efficiency. Thin black curves show F x and thick blue curves

show F y. Dashed black lines are the linear approximation of F x from Eq. (4.7). Plots

(a)-(d) show (P+, P−) = (0, 1), (0.1, 0.9), (0.2, 0.8), and (0.3, 0.7), respectively.

Fig. 4.4 shows the theoretical diffraction efficiencies of two commercially produced

ruled gratings with different groove spacings and blaze angles for the case of normal

incidence. The efficiencies depend on both wavelength and incident polarization. The

results for the polarization parallel and perpendicular to the groove direction combine to

give the average efficiency, shown as the thick blue curve. Fig. 4.4(a) shows a grating G1

with 900 grooves/mm and 1000 nm blaze wavelength. At the transition, G1 provides equal
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(a) (b)

Figure 4.4: Grating efficiencies as a function of wavelength at normal incidence for two

gratings of interest in magneto-optical trapping. Figure (a) shows efficiencies for grating

G1 with 900 grooves/mm and an 1000 nm blaze wavelength, while (b) shows grating G2

with 830 g/mm and an 800 nm blaze.

linear polarization efficiencies near 60%. A different grating G2 (Fig. 4.4(b)), with 830

grooves/mm and an 800 nm blaze, diffracts a small fraction of its power into the opposing

circular handedness.

Equal linear polarization should result in a circularly polarized diffracted beam.

However, as discussed above, pure circular polarization does not provide equal trapping

strength along each axis. G2’s imperfect polarization should aid trapping along the x

direction. Both gratings G1 and G2 were tested but only G2 produces a 2D GMOT.

While G1 is unsuccessful in this experiment, it should be noted that the input light

has a Gaussian intensity profile (see Fig. 4.2). As a result, the diffracted intensity is further

diminished compared to the peak input intensity along the central axis. If the input light

had a more uniform profile, we expect G1 to create a trap. Similarly, it is possible that G2

diffracts too strongly for a uniform intensity profile.
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We measure the overall diffraction efficiency of G2 at 68% with P+ = 0.061 and

P− = 0.939 using a Thorlabs TXP polarimeter. Because the gratings are located outside

of the vacuum cell, the optical surfaces of the glass chamber modify the intensity and

polarization of the diffracted beams. As a result, the overall efficiency of G2 drops to 64%,

with P+ = 0.066 and P− = 0.934.

For the 2D GMOT, two 17.5 × 38 mm2 rectangular gratings are placed with their

blazes facing towards the central axis, separated by a 5 mm gap. For the 3D GMOT, four

trapezoidal gratings are combined to produce a 38 × 38 mm2 square with a 4 × 4 mm2

gap at its center, as shown in Fig. 4.5. Again, all the blazes point towards the central axis.

However, because the 3D gratings produce N = 4 diffracted beams, the 3D GMOT requires

an efficiency closer to 25%. To reduce the diffracted beam power, a 0.1 ND filter is placed

between the 3D gratings and the vacuum chamber wall.

(a) (b)

Figure 4.5: The gratings used for the (a) 2D GMOT and (b) 3D GMOT.

The experiment uses two epoxied glass vacuum cells [27] separated by a mini-conflat

flange cross, as shown in Fig. 4.6. All cell walls are anti-reflection coated on both sides

of the glass for 780 nm. The system pressure is 2 × 10−9 Torr as measured by a residual

gas analyzer on a pumping station a few meters from the experimental chambers. The 2D
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GMOT is produced in a chamber 30 × 40 × 72 mm3, which is capped by a silicon reflector

with a 1 mm diameter pinhole. The atom beam travels through the pinhole, then through

a second filtering (3 mm) pinhole in the copper gasket of the conflat cross. The atoms are

then collected on the opposing side of the cross in a 3D GMOT in a 25 × 40 × 85 mm3

chamber.

Figure 4.6: The experimental setup for a 2D GMOT loading a 3D GMOT. Input lasers,

push laser, and magnetic field sources omitted for clarity.

A single cooling laser beam is input into each chamber with 11.0 mW/cm2 light red

detuned from the cycling transition and 3.8 mW/cm2 at the repump transition for 87Rb. The

light is emitted from a single mode, polarization-maintaining fiber and expanded through
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a negative lens. A wide-angle quarter wave plate provides circular polarization to the

expanding beam, which is then reflected from a two inch mirror and collimated with a

100 mm focal length lens.

A push laser beam is directed along the 2D GMOT axis to provide enhanced cooling,

using 3.3 mW of cooling light in a beam with a 4 mm waist. The beam is retro-reflected

from the silicon reflector. We refer to the 2D GMOT with a push beam as a 2D+ GMOT.

Four permanent neodymium magnets are arranged along the corners of the 2D+

GMOT chamber, as was done in Fig. 2.21 and Fig. 3.8. These magnets create an extended

quadrupole magnetic field with a 20 Gauss/cm gradient. They are positioned via a three

axis translation stage and a tip-tilt mirror mount to aid alignment of the 2D+ GMOT with

the silicon pinhole. The 3D GMOT magnetic fields are produced by an anti-Helmholtz coil

pair, centered by cage rods that align the 3D GMOT optics. At 1.2 A current, they provide

an axial gradient of 10 Gauss/cm.

4.4 Diagnostics

A more detailed description of the theory underlying this section is presented in

Appendix B. The 3D GMOT fluorescence is monitored using a photodiode (Thorlabs

PDA100A). Light from the GMOT is collected using a f = 25.4 mm lens positioned 2 f

from the trap and the sensor surface. Switching the 3D GMOT’s magnetic field on produces

a rising fluorescence signal proportional to the number of captured atoms. The 3D GMOT

atom number N(t) is approximately described by the capture rate Rcapture and trap lifetime

τtrap

N(t) = τtrapRcapture

(
1 − e−t/τtrap

)
. (4.9)

The 2D+ GMOT beam is characterized by monitoring the 3D GMOT fluorescence as

a function of time. An 8 mW plug laser beam is positioned just before the exit pinhole,

as seen in Fig. 4.6. The plug laser acts via radiation pressure to misalign the atomic beam
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from the 3D GMOT, effectively reducing Rcapture. If the plug beam is turned off for a short

period, the 3D GMOT will grow as atoms traverse the distance L from the exit pinhole to

the capture volume of the 3D trap, as shown in Fig. 4.7.

Figure 4.7: A short pulse of the 2D+ GMOT is released at t = 0, traverses a distance L,

and is captured in a 3D GMOT, which grows as a function of time.

Two models are used to analyze the 2D+ GMOT flux using the transient response of the

3D GMOT. The first model assumes the atoms start at the exit pinhole of the 2D chamber

with a singular speed v0 and that the number of atoms reaching the capture volume per unit

time is Rcapture. The atom number will be zero for times 0 < t < T = L/v0, and then grow

linearly according to

N(t) = Rcapture(t − T ). (4.10)
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In the second model, the 2D+ GMOT before the plug beam is turned off is described

as a distribution of atoms in position and velocity

η(z, v) =
A

σ
√

2π
exp

(
−

(v − v0)2

2σ2

)
, (4.11)

where A represents the number of atoms/m in the beam, weighted by a normal distribution

in velocity with peak v0 and spread σ. That is, the density of atoms with velocities between

v1 and v2 is given by A
∫ v2

v1
exp

[
−(v − v0)2/2σ2

]
/σ
√

2π dv. The normal distribution

represents a low temperature approximation of the thermal velocity distribution.

When the plug beam is turned off, the 3D GMOT grows as atoms reach the capture

volume in time t with v < vc, the capture velocity of the trap. For t << τtrap, loss terms can

be neglected. Defining the exit pinhole to be at z = 0,

N(t) =
∫ 0

L−vct

∫ vc

(L−z)/t
η(z, v) dv dz

= A
σt
√

2π

⎛⎜⎜⎜⎜⎝exp

⎡⎢⎢⎢⎢⎣− (v0 − L
t )2

2σ2

⎤⎥⎥⎥⎥⎦ − exp

[
−

(vc − v0)2

2σ2

]⎞⎟⎟⎟⎟⎠
+

A
2

(v0t − L)

⎛⎜⎜⎜⎜⎝erf

⎡⎢⎢⎢⎢⎣v0 − L
t

σ
√

2

⎤⎥⎥⎥⎥⎦ + erf

[
vc − v0

σ
√

2

]⎞⎟⎟⎟⎟⎠ . (4.12)

The distribution η(z, v) leads to a more experimentally useful result, the flux Φ(v)dv,

defined as the number of atoms exiting the pinhole at velocity v per unit time. The normal

approximation for η yields

Φ(v) = vη(z, v) =
A

σ
√

2π
v exp

(
−

(v − v0)2

2σ2

)
. (4.13)

4.5 Results

Fig. 4.8 shows the rise in atom number when the 3D magnetic coils were switched

on. The solid curve is a fit to Eq. (4.9) in which Rcapture = 9.97(5) × 107 atoms/s and

τtrap = 2.03(2) seconds. The steady state MOT number was 2.02(3) × 108 atoms. Note that
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the uncertainty listed here is from the statistical fit to the data using the fluorescence to atom

number calibration discussed in Appendix B. This calibration depends on several factors

such as photodiode response time, temperature dependence, mechanical vibration, and faith

in the manufacturer’s specifications. Further, fluctuations in the power and frequency of

the push beam are known to cause variations in Rcapture. Thus, the atom numbers reported

should be used only for order of magnitude comparisons to other MOT systems.

Figure 4.8: Atom number vs. time after 3D GMOT magnetic field is switched on.

The plug beam was then applied to reduce Rcapture. The plug beam was turned off for

197 ms and the resulting 3D GMOT growth is shown in Fig. 4.9. The data was collected

by an average of 16 independent runs and then smoothed using a centered simple moving
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average. The dashed line uses Eq. (4.10) with Rcapture = 7 × 107 atoms/s and T = 11.0 ms.

The solid curve is a fit using Eq. (4.12) with A = 3.51(5) × 106 atoms/m, σ = 3.3(17) m/s,

and v0 = 19.0(2) m/s.

It should be noted that the plug beam used detuned light and did not act as a perfect

shutter. Because some flux continued to feed the 3D GMOT, the reported values for Rcapture

represent the fraction of atomic flux that was affected by the plug beam.

Figure 4.9: 3D GMOT atom number vs. time as plug laser beam is turned off, allowing

the 2D+ GMOT to load the 3D GMOT. The dashed line assumes no spread in the velocity

distribution of the 2D+ GMOT, as in Eq. (4.10). The solid curve is a fit using Eq. (4.12),

which accounts for a range of velocities.
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Assuming typical atom beam divergence as discussed in [99], it is likely that only

≈ 25% of the 2D+ GMOT beam actually entered the capture volume of the 3D GMOT.

Using Eq. (4.13), we therefore estimate the total flux at the pinhole to be > 4×108 atoms/s.

4.6 Comparisons and Outlook

Traditional 2D+ MOT’s have typical flux values near 109 atoms/s [99], and in extreme

cases are as high as 1011 atoms/s [104]. However, high flux 2D+ MOT’s form across 10

cm lengths or higher and saturate with laser intensities near 20 mW/cm2. By comparison,

the 2D+ GMOT reported here forms over a length of several mm with 11 mW/cm2 laser

intensity. The short beam length is expected, as circular Gaussian beams cause the

input intensity profile to vary significantly, limiting the range over which optimal cooling

parameters are achieved. Future work will employ beam shaping techniques to create a top

hat intensity profile within the trap region. A top hat intensity profile will also help make

more effective use of available laser power.

Increasing the 2D+ GMOT length allows atoms with higher longitudinal velocities to

be collimated into the MOT beam [104–106]. Assuming the pressure is low enough that

collisions are negligible, the flux should scale linearly with increased length.

Both the 2D+ GMOT and 3D GMOT should benefit from higher laser intensity, which

acts to raise the capture velocity. Prior work has shown that 2D+ GMOT flux is maximal

near 20 mW/cm2, while the 3D GMOT atom number saturates with input intensities near

50 mW/cm2 [84]. Both are significantly higher than the maximal 11 mW/cm2 produced by

our laser system. Despite the difference, the loaded 3D GMOT described here shows the

highest atom number reported so far in a grating based system, likely due to the improved

vacuum quality of the 3D GMOT chamber.

These results encourage further development and integration of gratings into future

cold atom experiments. In particular, gratings are easily integrated into atom chip designs,

in which magnetic fields are created with currents on microchips instead of large coil-based
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systems. GMOTs specifically aid alignment of atomic clouds with small chip features,

further suggesting their use in field-deployable devices.
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V. State-Preparation: Planar Sources of Uniform Fields

5.1 Introduction

As seen in Chapter 2, two magnetic field types are particularly necessary for cold atom

systems. First, the MOT requires a linear field with gradient G that extends over the capture

volume of the trap. In two dimensions, such a field can be written as

B2D = G (yŷ − zẑ) , (5.1)

called a 2D quadrupole. In three dimensions, the field is

B3D = G (xx̂ + yŷ − 2zẑ) , (5.2)

called a 3D quadrupole. Second, PGC can only operate when the Zeeman energy shift is

less than the AC Stark shift. Thus, a uniform field must be applied to cancel background

Earth and laboratory fields. If the stray background field points in some unknown direction

ε̂B, then the uniform field must be

Buni f orm = −CBε̂B, (5.3)

for some constant CB. By far, the most common route to satisfy these requirements is the

Helmholtz/Anti-Helmholtz coil pair, introduced below.

Consider two coaxial coils of radius Rcoil with N turns and current Icoil placed at

z = ±D/2, as seen in Fig. 5.1. The field along the ẑ axis is

Bz =
μ0N IcoilR2

coil

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ 1[
R2

coil + (z − D/2)2
]3/2
+

1[
R2

coil + (z + D/2)2
]3/2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ẑ. (5.4)

To determine the separation D that creates a uniform field over the largest volume possible,

Taylor expand around the point z = 0,
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Figure 5.1: Two coils with equal current separated by a distance D produce a magnetic

field along their common axis. The most uniform field between the coils is found by the

Helmholtz condition that D = Rcoil.

Bz(z) ≈ Bz

∣∣∣∣∣
z=0

+
dBz

dz

∣∣∣∣∣
z=0

z +
1

2

d2Bz

dz2

∣∣∣∣∣
z=0

z2 +
1

6

d3Bz

dz3

∣∣∣∣∣
z=0

z3 + · · · (5.5)

where

Bz

∣∣∣∣∣
z=0

=
μ0N IcoilR2

coil[
R2

coil + (D/2)2
]3/2
,

dBz

dz

∣∣∣∣∣
z=0

= 0,

d2Bz

dz2

∣∣∣∣∣
z=0

= −
μ0N Icoil

2

6(R2
coil − D2)[

R2
coil + (D/2)2

]7/2
,

d3Bz

dz3

∣∣∣∣∣
z=0

= 0. (5.6)

Clearly, the second derivative is zero when D = Rcoil, known as the Helmholtz

condition. Then, the field is uniform to fourth order, or (z/Rcoil)
4 << 1, with Bz

∣∣∣
z=0
=

μ0N Icoil/(5/4)3/2R.
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To create the 3D quadrupole field, suppose the coil at z = −D/2 carries current −Icoil.

Then,

Bz

∣∣∣∣∣
z=0

= 0,

dBz

dz

∣∣∣∣∣
z=0

=
μ0N IcoilR2

coil

2

3D[
(D/2)2 + R2

coil

]5/2
,

d2Bz

dz2

∣∣∣∣∣
z=0

= 0,

d3Bz

dz3

∣∣∣∣∣
z=0

= −
μ0N IcoilR2

coil

2

15D
(
3R2

coil − D2
)

[
(D/2)2 + R2

coil

]9/2
. (5.7)

Applying the Helmholtz condition to this situation creates what are called anti-Helmholtz

coils. The resulting field is only linear to third order, or (z/Rcoil)
3 << 1.

Typical large MOT capture volumes are ∼ 8 cm3, so an anti-Helmholtz coil with

Rcoil ≈ 5 cm is usually sufficient. An equal-sized Helmholtz pair provides a uniform field

over a ∼ 12 cm3 volume, more than necessary for PGC.

Due to its simplicity, the Helmholtz coil pair is seen across a broad swath of scientific

endeavors. Silicon crystal growth, electron microscopy, and magnetic resonance imaging

are just a few applications that use either Helmholtz coils or their more engineered cousins,

to be described below.

Unfortunately, coils do have drawbacks. Active cooling is difficult, limiting the

currents that can be used, and therefore the magnetic field strength. Prior versions of the

AFRL cold atom sensor pumped externally chilled water through hollow copper coils to

raise the field capacity. In some applications, strong fields require superconducting wire.

Specialized structures are developed to funnel liquid nitrogen or helium through the device.

In addition, each coil pair produces a uniform field along one axis only. To create a

magnetic field of arbitrary direction, three coil pairs are nested along each of the cardinal

axes, as shown in Fig 5.2. If the innermost pair must fit around an obstruction, such as a
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vacuum chamber, coils often define the maximal required size of the system. The coil nest

also significantly blocks optical and experimental access.

Figure 5.2: Three orthogonal Helmholtz coils nested around the vacuum chamber of the

AFRL cold atom sensor. Space limitations require the innermost pair to be approximated

by square coils.

Recognizing these challenges, we wondered if all the necessary magnetic fields of our

experiment could be formed by a combination of atom chips. Chips can be actively cooled

with a series of well-tested electronics techniques (e.g. thermal paste, thermo-electric

coolers, cold plates). The added weight of additional chips is minimal compared to the

equivalent coils. Chips are comparatively less labor-intensive to fabricate. Finally, optical

access is opened to all but one surface of the vacuum chamber.
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To motivate the creation of uniform and linear gradient fields from planar structures,

a more general consideration of coil-based magnetic field sources is introduced. Using a

similar framework, we optimize, design, and test chips that produce uniform B fields of

arbitrary direction to the same mathematical order as the Helmholtz pair. Similarly, chips

are shown to generate equivalent linear gradient fields to the anti-Helmholtz pair. Then, a

magnetic trap conveyor is proposed that does not require an externally-supplied uniform

field. The conveyor is capable of three-dimensional translation of the atom cloud using

only three independent currents.

5.2 Multipole Expansion of the Axially Symmetric Magnetic Field

In 1951, Milan Garrett detailed methods to create precision fields in axially symmetric

(e.g. coil) systems [107, 108]. His derivations show that the Helmholtz (anti-Helmholtz)

coil pair is just one of a class of configurations to produce uniform (linear gradient) fields.

His methods are summarized to motivate later derivations for planar systems.

5.2.1 Field Equations

Figure 5.3: Coordinate and variable definition for analysis of axially symmetric fields.
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Consider a spherical coordinate system with points defined by (r, θ, ϕ), as seen in

Fig. 5.3. Alternatively, points can be described in cylindrical coordinates by (ρ, ϕ, z), where

ρ = r sin θ and z = r cos θ. Static magnetic fields are generated by currents Icoil withN turns

around a common axis of revolution ẑ. These currents lie on the surface of an imaginary

sphere of radius R, depicted in Fig. 5.4.

Figure 5.4: A single coil with N turns and current Icoil on a sphere of radius R produces a

field described by associated Legendre polynomials with coefficients hn.

For r � R,

∇ × B = 0, (5.8)

implying the existence of a magnetic scalar potential ζ such that

B = −∇ζ. (5.9)

The axial symmetry implies ζ is independent of ϕ and equal to
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ζ(r, θ) = R
∞∑

n=1

hn

n + 1

(
R
r

)n+1

Pn (cos θ) , r > R

ζ(r, θ) = −R
∞∑

n=1

hn

n

( r
R

)n
Pn (cos θ) , r < R (5.10)

where Pn(cos θ) are the Legendre polynomials and hn are coefficients defined by the

boundary conditions.

The scalar potential gives the magnetic field along ẑ and ρ̂ as

(a) Bz(r, θ) =
∞∑

n=1

hn

(
R
r

)n+2

Pn+1 (cos θ) ẑ, r > R

(b) Bz(r, θ) =
∞∑

n=1

hn

( r
R

)n−1

Pn−1 (cos θ) ẑ, r < R

(c) Bρ(r, θ) = −
∞∑

n=1

hn

n + 1

(
R
r

)n+2

P1
n+1 (cos θ) ρ̂, r > R

(d) Bρ(r, θ) =
∞∑

n=2

hn

n

( r
R

)n−1

P1
n−1 (cos θ) ρ̂, r < R (5.11)

where P1
n(cos θ) are associated Legendre polynomials of degree n and order 1. Each coil,

located on the sphere by θi, has source coefficients

hn = −
μ0N Icoil

2R
sin θiP1

n (cos θi) , (5.12)

for positive integers n.

5.2.2 Uniform Axial Fields

A uniform axial field through the (nmax − 1) order is defined as h1 � 0 and hn = 0 for

1 < n ≤ nmax. If so, the field is constant within a radial volume (r/R)nmax−1 << 1, as seen in

Eq. (5.11)(b). Place M/2 equal current coils on the sphere such that

P1
M+1 (cos θ) = 0, (5.13)
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and place M/2 more coils symmetrically below the equator. Then nmax = 2M + 1. That is,

the field will be uniform through the 2Mth order.

For the Helmholtz case of M = 2, Eq. (5.13) implies cos θ = 1/
√

5. The radius of

each coil is then

Rcoil = ρ =
2R
√

5
, (5.14)

while the height of the coil above the equator is

z =
R
√

5
. (5.15)

The coil below the equator is found at −z, implying the total separation is 2z = 2R/
√

5 =

Rcoil, as seen in Fig. 5.5. Note these results match the Helmholtz condition, Rcoil = D.

Figure 5.5: The Helmholtz pair making a uniform field for volume (r/R)4 << 1, shown as

a special case of coils placed on a sphere of radius R.

Clearly, the Helmholtz coil pair is a specific case of a broader method to create uniform

fields. Indeed, various combinations can be found throughout literature, including the

Maxwell’s coils (M = 3) [109], McKeehan’s coils (M = 4) [110], and Sauter’s coils

(M = 6) [111].
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5.2.3 Linear Gradient Fields

In Garrett’s approach, the linear gradient magnetic field requires coils below the

equator to carry negative current. In order to set h1 = 0, h2 � 0, and hn = 0 for 2 < n ≤ nmax,

place M/2 coils above the equator such that

P1
M+2 (cos θ) = 0. (5.16)

Then, the first non-zero coefficient other than the linear term is h2M+2. Note in particular

that the coil locations for the linear gradient field are not the same as those found for the

uniform field.

5.3 Analogous Expansion for a Planar System

Garrett’s method requires coil pairs symmetrically placed about the equator of an

imaginary sphere. Similarly, our method requires parallel, co-planar, infinite wire pairs

be symmetric about a common axis. These pairs create uniform or linear gradient fields by

successively eliminating undesired orders of the field expansion.

To begin, consider the magnetic field of a single infinite wire parallel to x̂ located at

(y, z) = (bd, d) with current Ip,

B =
μ0Ip

2π

[
f (y, z)ŷ + g(y, z)ẑ

]
, (5.17)

where

f (y, z) =
−(z − d)

(y − bd)2 + (z − d)2

g(y, z) =
y − bd

(y − bd)2 + (z − d)2
. (5.18)

A two-dimensional Taylor expansion around (y, z) = (0, 0) gives
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f (y, z) ≈
1

d(1 + b2)
+

2b
d2(1 + b2)2

y +
1 − b2

d2(1 + b2)2
z +

1

2

[
6b2 − 2

d3(1 + b2)3
y2 + 2

2b(3 − b2)

d3(1 + b2)3
yz −

6b2 − 2

d3(1 + b2)3
z2

]
+ · · ·

g(y, z) ≈
−b

d(1 + b2)
+

1 − b2

d2(1 + b2)2
y −

2b
d2(1 + b2)2

z +
1

2

[
2b(3 − b2)

d3(1 + b2)3
y2 − 2

6b2 − 2

d3(1 + b2)3
yz −

2b(3 − b2)

d3(1 + b2)3
z2

]
+ · · ·

(5.19)

Figure 5.6: A pair of co-propagating currents in the z = d plane at locations y = ±bd.

Clearly, several terms have similar coefficients. If two wires with equal currents are

placed at y = ±bd, as seen in Fig. 5.6, each wire produces its own Taylor series like

Eq. 5.19. The total field adds these two series together, resulting in greatly simplified

expressions for the ŷ and ẑ field components,

f++(y, z) ≈
2

d(1 + b2)
+

2(1 − b2)

d2(1 + b2)2
z +

2(3b2 − 1)

d3(1 + b2)3
(y2 − z2) + · · · , (5.20)

g++(y, z) ≈
2(1 − b2)

d2(1 + b2)2
y −

4(3b2 − 1)

d3(1 + b2)3
yz + · · · . (5.21)

Similarly, if the wire at y = +bd carries positive current, and the wire at y = −bd carries

negative current, then
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f−+(y, z) ≈
4b

d2(1 + b2)2
y −

4b(b2 − 3)

d3(1 + b2)3
(yz) + · · · , (5.22)

g−+(y, z) ≈ −
2b

d(1 + b2)
−

4b
d2(1 + b2)2

z −
2b(b2 − 3)

d3(1 + b2)3
(y2 − z2) + · · · . (5.23)

Thus, at the origin, co-propagating current pairs create purely ŷ fields while

counter-propagating pairs create purely ẑ fields. But this logic can be taken further. The ŷ

field can be made uniform to second order by choosing b = 1. Naı̈vely, the same could be

said for selecting b = 0 for the ẑ field. However, that case is trivial because then the two

counter-propagating currents cancel.

Using two wire pairs with spacings b1 and b2, a non-trivial solution can be constructed

for the ẑ field. Assuming the first pair has current Ip and the second pair has current −Ip,

the ẑ field is uniform to second order in y and z if

4b1

d2(1 + b2
1
)2

y −
4b2

d2(1 + b2
2
)2

y = 0

→ b4
1(−b2) + b2

1(−2b2) + b1(1 + 2b2
2 + b4

2) − b2 = 0. (5.24)

The solutions to this quartic equation in b1 are lengthy and do not significantly contribute

to this discussion. Rather, we postulate that generally for N + 1 wire pairs, N orders can be

non-trivially eliminated. This statement is not proven, though it is strongly suggested by

our similar work examining one-dimensional fields [26].

5.4 Manipulating Fields From Planar Sources

5.4.1 Uniform ŷ Fields Through Second Order

Having shown the first order field can be eliminated with two wire pairs, consider the

requirements for creating a uniform ŷ field through the second order (N = 2). Accordingly,

N + 1 = 3 wire pairs are needed. The corresponding conditions are
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3∑
i=1

Ii

(
1

1 + b2
i

)
� 0,

3∑
i=1

Ii

(
(1 − b2

i )

(1 + b2
i )2

)
= 0,

3∑
i=1

Ii

(
3b2

i − 1

(1 + b2
i )3

)
= 0. (5.25)

In rectilinear coordinates, solving this system analytically is not tractable. While we expect

a cleaner formulation exists in cylindrical functions, our coordinates more closely match

the planar system’s geometry. Many solutions are easily found using numerical methods.

Which solution to choose depends on the particular application.

In this case, the uniform field is generated by an atom chip, so overall size is a factor.

Thus, bi is arbitrarily required to be less than three. Also, in order to control the ŷ field with

a single power supply, all currents are set to equal magnitude, |Ii| = Ip. Initial solutions had

difficulty with the b = 0 case, which implies a single wire of current 2Ip. Instead, a central

wire with current Ip is placed at b = 0. Under these constraints, searching for the maximal

field strength gives the spacings

(b1, b2, b3) = (0, 0.431, 0.869),

for currents

(I1, I2, I3) = Ip(−1/2, 1,−1).

The resulting field has strength

B(0)
z =

μ0

2π

4∑
i=1

Ii

d
2

1 + b2
i

= 0.23
μ0Ip

πd
. (5.26)

This solution is illustrated in Fig. 5.7(a), which shows a contour plot of the magnetic field

strength. The locations of the wires (white circular regions along z/d = −1) are seen
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with respect to the region over which uniformity is achieved (dashed box). The volume of

interest is shown more clearly in Fig. 5.7(b), where each side is of length d.

(a) (b)

Figure 5.7: (a) A contour plot of the planar system to produce a uniform ŷ field. The wires

are the white circular regions along the lower section of the plot, while dashed box shows

the central region over which the field is uniform. A zoomed in vector plot of the region of

interest is shown in (b). The plots use Ip = 1 A.

Another method of visualizing this process is shown in Fig. 5.8. In Fig. 5.8(a), the

common coefficient of the first order

c(1)(b) = Ii
(1 − b2)

(1 + b2)2

is plotted as a solid curve for Ii = Ip. The dashed curve presents the case of Ii = −Ip. Each

point represents a single wire pair in the given solution. The b = 0 wire lies on a dotted

curve representing Ii = −Ip/2 in accordance with the constraints given above. Note that

the three individual wire coefficients sum to zero. Fig. 5.8(b) repeats the process for the
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common coefficient of the second order

c(2)(b) = Ii
3b2

i − 1

(1 + b2
i )3
.

(a) (b)

Figure 5.8: The common coefficients of the (a) first and (b) second order fields as a

function of wire pair spacing for co-propagating currents. The case of positive current is

plotted with a solid curve, while negative current is dashed. The dotted curve represents

negative half current, corresponding to the b = 0 wire. Each point represents a single wire

pair in the given solution. Note the three individual wire coefficients sum to zero for each

order.

5.4.2 Uniform ẑ Fields Through Third Order

Helmholtz coils provide field uniformity to fourth order, i.e. (r/R)4 << 1. Here,

equivalent uniformity (i.e. (r/d)4 << 1) is demonstrated for the planar system. The

demonstration simultaneously shows a key advantage of planar field sources. On a second

layer of the same chip as the uniform ŷ field wires from the previous section, pairs of

counter-propagating currents create a uniform ẑ field. Thus, arbitrary directionality can be

achieved from a single planar source.

The uniform ẑ field to fourth order is produced by solving
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4∑
i=1

Ii

(
bi

1 + b2
i

)
� 0,

4∑
i=1

Ii

(
bi

(1 + b2
i )2

)
= 0,

4∑
i=1

Ii

(
bi(b2

i − 3)

(1 + b2
i )3

)
= 0,

4∑
i=1

Ii

(
bi(b2

i − 1)

(1 + b2
i )4

)
= 0. (5.27)

Note that the third order condition is introduced without derivation. This condition is a

natural extension of the Taylor series performed in Eq. (5.19). Using the same single current

and size requirements as the ŷ field case, the maximal field solution is

(b1, b2, b3, b4) = (0.071, 0.870, 0.644, 2.980),

for currents

(I1, I2, I3, I4) = Ip(1, 1,−1,−1).

The resulting field has strength

B(0)
z =

μ0

2π

4∑
i=1

Ii

d
2bi

1 + b2
i

= 0.19
μ0Ip

πd
, (5.28)

illustrated in Fig. 5.9. Note that this field is slightly weaker than the uniform ŷ field shown

previously. In canceling one higher order, the added wire pair subtracts from the remnant

field, as seen in Fig. 5.10. This is a key weakness of the planar system in comparison

to Garrett’s coils, in which each additional coil adds field to the central region. This

comparative weakness is further detailed below for the fabricated test chip. However, it

should be noted that extra coils have the drawback of further obstructing optical access.
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(a) (b)

Figure 5.9: (a) A contour plot of the planar system to produce a uniform ẑ field. The wires

are the white circular regions along the lower section of the plot, while dashed box shows

the central region over which the field is uniform. A zoomed in vector plot of the region of

interest is shown in (b). The plots use Ip = 1 A.

5.4.3 Linear Gradient Planar Fields

As in the axial case, linear gradient fields can be created by allowing the combined

first order to be non-zero, while canceling the zeroth and higher orders. To match

the performance of the anti-Helmholtz pair, only the zeroth and second order must be

eliminated.

For example, using pairs of co-propagating wires, the conditions are

3∑
i=1

Ii

(
1

1 + b2
i

)
= 0,

3∑
i=1

Ii

(
(1 − b2

i )

(1 + b2
i )2

)
� 0,

3∑
i=1

Ii

(
3b2

i − 1

(1 + b2
i )3

)
= 0. (5.29)

Eq.’s (5.20) and (5.21) show these requirements produce a rotated 2D quadrupole field
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(a) (b)

(c) (d)

Figure 5.10: The common coefficients of the (a) zeroth, (b) first, (c) second, and (d) third

order fields as a function of wire pair spacing for counter-propagating currents. The case

of positive current is plotted with a solid curve, while negative current is dashed. Each

point represents a single wire pair in the given solution. Note the four individual wire

coefficients sum to zero for the first, second, and third orders.

B ≈ G
[
zŷ + yẑ

]
. (5.30)

Fig. 5.11 depicts such a field where

(b1, b2, b3) = (0, 0.414, 1.352)
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for currents

(I1, I2, I3) = Ip(−1/2, 1,−1).

The rotation arises because the field of the outer wire pairs is canceling the field of the

central wire, which is along ŷ at the origin. By contrast, as seen in Eq.’s (5.22) and (5.23),

pairs of counter-propagating wires create standard 2D quadrupole fields

B ≈ G
[
yŷ − zẑ

]
, (5.31)

under the conditions

4∑
i=1

Ii

(
bi

1 + b2
i

)
= 0,

4∑
i=1

Ii

(
bi

(1 + b2
i )2

)
� 0,

4∑
i=1

Ii

(
bi(b2

i − 3)

(1 + b2
i )3

)
= 0, (5.32)

because the field of the inner wire pair is along ẑ at the origin. One such system is given by

(b1, b2, b3) = (−2.981, 0.752, 0.185),

for currents

(I1, I2, I3) = Ip(1, 1,−1).

The resulting linear gradient field is shown in Fig. 5.12.

5.5 Finite Wire Optimization

The process of transitioning the infinite wire pair model to a realistic atom chip will

be shown for the case of the uniform ẑ field. The considerations and methods are similar

for the uniform ŷ and linear gradient fields.
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(a) (b)

Figure 5.11: (a) A contour plot of the planar system to produce a rotated 2D quadrupole

field. The wires are the white circular regions along the lower section of the plot, while

dashed box shows the central region over which the field is linear. A zoomed in vector

plot of the region of interest is shown in (b). The plots use Ip = 1 A.

The uniform ẑ field to third order requires three infinite wire pairs. However, on a

realistic atom chip, wire lengths are finite. Additionally, wire leads attached to the chip

create fields that are difficult to model.

To approximate the infinite wires, consider three rectangular loops of current. The

incoming and outgoing current leads can then be placed together to minimize their

long-range magnetic field. One loop is centered at y = 0 with width w1d. Two more

are placed symmetrically around the y = 0 axis, centered at (x, y) = (0, cd) with width w2,

as depicted in Fig. 5.13.

As the loop length L → ∞, the magnetic field of these three loops should align with

the infinite wire pair model. To reduce Ohmic heating of the chip, the loop length should

be minimized to the extent possible because each loop dissipates power

Pi = I2
p
ρΩ(4L + 2wi)

Awire
, (5.33)
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(a) (b)

Figure 5.12: (a) A contour plot of the planar system to produce a standard 2D quadrupole

field. The wires are the white circular regions along the lower section of the plot, while

dashed box shows the central region over which the field is linear. A zoomed in vector

plot of the region of interest is shown in (b). The plots use Ip = 1 A.

where ρΩ is the resistivity of the chip material (copper) and Awire is the wire’s

cross-sectional area.

To find the minimal acceptable loop length, a simulation calculates the magnetic field

vector B at one hundred points within a cubic volume of interest with side length d/2,

centered at the origin. Each loop is constructed of four finite current segments where the

field of a single segment flowing from point a to b is given by

B =
μ0Ip

π

(rb + ra)

rbra + rb · ra
(r̂b × r̂a) , (5.34)

where ra,b are vectors from a and b to the field point, respectively.

The simulation uses a genetic algorithm with 50 generations of 100 individuals each

to search for the most uniform field at a given loop length L. A single-valued merit function

judges each individual. The merit function calculates the average angular deviation θ̄ of B
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Figure 5.13: Characteristic loop parameters for optimization of the planar uniform ẑ field

chip to third order.

from ẑ at each point in the volume of interest. For uniform fields, ∇ · B = 0 implies the

magnetic field is also constant when θ̄ = 0.

Using θ̄, the simulation steps through a range of possible L. At each value, the

individual with the smallest average angular deviation is plotted in Fig. 5.14. The red

solid line shows the equivalent infinite wire solution with three counter-propagating current

pairs. Clearly, increasing loop length reaches a point of diminishing returns for L � 5d.

5.6 Results

The L = 5.2d solution results in an average angular deviation θ̄ = 0.529 degrees from

a true uniform ẑ field at a distance d from the chip surface. The optimization calls for

the central loop to have width w1 = 0.2892d and the two outer loops to be centered at

c = ±1.3040d with widths w2 = 0.7377d. The resulting chip is drawn in Fig. 5.15 for
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Figure 5.14: The minimum average angular deviation of the optimized magnetic field as a

function of chip length.

the case of d = 5 mm with 500 micron wide wires. Using the techniques described in

Chapter 3, a DBC/AlN chip was fabricated as shown in Fig. 5.16.

The field produced by the chip was measured using an Ametes MFS-3A three axis

magnetic field sensor from GMW Associates. Once the sensor was properly positioned

over the chip surface, an initial reading of the background laboratory magnetic field was

taken. Then, the wires were energized with current Ip = 15 A. The chip was scanned

across the sensor with a three axis linear translation stage with 0.0254 mm precision. The

background field was subtracted from each measurement. The results are shown compared

to the simulated field in Figs. 5.17 and 5.18.
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Figure 5.15: The chosen design for creating a uniform bias field parallel to the chip

normal.

Within the volume of interest, the magnetic field was ∼ 3 Gauss. By comparison, a

single turn Helmholtz coil with current Icoil = 15 A and radius Rcoil = d = 5 mm provides

a field

B(0) ≈
μ0N Icoil

(5/4)3/2Rcoil
= 27 Gauss. (5.35)

The Helmholtz pair provides an order of magnitude higher field per turn. Further

complicating matters, implementing multiple turns on a chip is challenging given the

narrow gap between loops. However, the ease by which chips are cooled enables higher

current capacity than free-space coils, reducing the discrepancy of maximal output field.

Further, recall that the CAS has external Helmholtz coils with radius Rcoil ∼ 5 cm,

creating a uniform field over a ∼ 12 cm3 volume. That volume is excessive considering
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Figure 5.16: A fabricated chip for creating a uniform bias field parallel to the chip normal.

the atom cloud is only a few mm across during PGC. The smaller volume of uniformity

created by the d = 5 mm chip is adequate. Meanwhile, the lower source-to-atom distance

creates an equivalent field strength to that of the coils.

5.7 Application: Cold Atom Transport

Another application where the planar uniform field holds promise is the magnetic

trap conveyor, which moves atoms controllably along a chip surface, as demonstrated in
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Figure 5.17: The magnetic field as predicted and measured as a function of x (transverse

to the chip normal).

2005 [112]. The scheme is depicted in Fig. 5.19. Qualitatively, a central current I0 and a

bias field Bbias create a line of magnetic field zeros as in Eq. (2.26). Two other currents

Ia and Ib flow back and forth along I0, offset by a quarter period. The crossing currents

oscillate in time according to

(Ia, Ib) = Ipeak(cosΥ(t),− sinΥ(t)), (5.36)

resulting in local magnetic field minima which move across x, as shown in Fig. 5.20,

reproduced from [112].
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Figure 5.18: The magnetic field as predicted and measured as a function of z (parallel to

the chip normal).

In the experiment, the central current was I0 = 2 A, the peak oscillating current was

Ipeak = 1 A, and the bias field magnitude was Bbias = 17.5 Gauss. Using Eq. (2.26), the

resulting traps were just d = 200 microns from the chip surface. If the bias field is formed

by the uniform ŷ field chip, the required current is

17.5 Gauss = 0.23
μ0Ip

πd
→ Ip = 3.8 A. (5.37)

This current is easily achieved with standard power supplies.
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Figure 5.19: A chip to translate cold atoms along a current I0 flowing in x̂, as shown in

[112].

5.7.1 Bias-Free Atom Conveyor

The uniform ŷ field chip could produce the necessary bias above. However, a conveyor

can be constructed that does not rely on a bias field at all. Our design is sketched in

Fig. 5.21.

On a first layer, four wires are aligned in the x̂ direction to create an aligned linear

gradient field such as Fig. 5.12. A second layer consists of a series of equally spaced

wires along the ŷ direction (colored blue), each with alternating current directions. That

is, each wire is located at position x = nl for integers n, with currents In,1 = Iy(−1)nU(t).

Another set of ŷ wires (colored red) is placed at positions x = nl+ l/2. These have currents

In,2 = Iy(−1)nV(t), where
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Figure 5.20: Translation of cold atoms via the chip in Fig. 5.19. (a) shows the magnetic

potential, (b) shows absorption images of translated cold atoms. Reproduced from [112].

U(t) = cos(πx0(t)/l),

V(t) = sin(πx0(t)/l). (5.38)

The locations of the minimum field points are dependent on both the x̂ and ẑ components

of the ŷ crossing wires. However, if the guide wire currents are much stronger than

the crossing wire currents, then the ẑ components of the crossing wire field become
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Figure 5.21: A chip design to translate atoms without the use of a global bias.

insignificant, enabling uniform translation of the magnetic trap at a fixed height z = h

from the chip surface.

The guide is thus a 2D quadrupole field with the maximum gradient possible. To find

the maximal gradient, suppose the wires are located in the z = d plane at y/d = −p,−q, q, p

with currents

I−p = IG(1 − ΔI + δI),

I−q = −IG(1 + ΔI + δI),

I+q = IG(1 + ΔI − δI),

I+p = −IG(1 − ΔI − δI), (5.39)

respectively, where IG is called the guide current and ΔI , δI << 1. As shown in Appendix

C, if p = 1/q and q ≈
√

2 − 1, then the gradient of the linear field is maximized to

BG =
μ0IG

2πd2

[
(y − y0)ŷ − (z − z0)ẑ

]
(5.40)

with y0 =
√

2δId and z0 = −
√

2ΔId.

Meanwhile, the first set of ŷ crossing wires creates a field at height z = h from the chip

surface
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Bcross−wires =
μ0IyU(t)

2π

[
βx(x)x̂ + βz(x)ẑ

]
, (5.41)

where

βx(x) =
2π

l

∞∑
n=0

e−knhcos(knx),

βz(x) = −
2π

l

∞∑
n=0

e−knhsin(knx). (5.42)

Derivation of these relations are detailed in Appendix D. The field of the second set of ŷ

crossing wires is derived similarly such that the total crossing wire field is

Bc−w,x =
μ0Iy

l

⎡⎢⎢⎢⎢⎢⎣U(t)
∞∑

n=0

e−knhcos(knx) +V(t)
∞∑

n=0

e−knhcos(kn(x − l/2))

⎤⎥⎥⎥⎥⎥⎦ x̂,

Bc−w,z = −
μ0Iy

l

⎡⎢⎢⎢⎢⎢⎣U(t)
∞∑

n=0

e−knhsin(knx) +V(t)
∞∑

n=0

e−knhsin(kn(x − l/2))

⎤⎥⎥⎥⎥⎥⎦ ẑ. (5.43)

In the limit that πh/l << 1, then e−knh → 0 for n � 0. Keeping only the n = 0 terms and

noting k0 = π/l, then the field is

Bc−w,x =
μ0Iy

l
e−
πh
l

[
cos

(
π

l
(x − x0)

)]
x̂,

Bc−w,z = −
μ0Iy

l
e−
πh
l

[
sin

(
π

l
(x − x0)

)]
ẑ. (5.44)

When the guide field is added to the field from both sets of crossing wires, the

magnetic potential energy is

V = −μBmFgF

√
C2

1
+C2

2
(y − y0)2 +C2

2
(z − z0)2 + 2C1C2 (z − z0) sin

[
π

l

(
x − x0(t)

)]
(5.45)

where C1 = (μ0Iy/l)e−πh/l and C2 = μ0IG/(2πd2). The minimums for the conveyor then

occur at the positions
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xmin =
(2n + 1)l

2
+ x0(t),

ymin =
√

2δId,

zmin = −
√

2ΔId −
2πd2

l
e−
πh
l

Iy

IG
(−1)n. (5.46)

Notice that the minimum of the trap can be independently controlled in the all three

directions by varying ΔI , δI , and x0(t). A contour plot showing these minima is given in

Fig. 5.22. For the simulation, h = d = l = 1 mm. The guide current is IG = 10 A and the

crossing wire current is Iy = 1 A. The traps are of approximate depth C1, so the trap depth

is maximized for l = πh ≈ πd. The traps were derived under the assumption that z << d,

giving the following constraint on the currents

z
d
=

2

e
Iy

IG
<< 1. (5.47)

5.8 Conclusion

Localized uniform fields of arbitrary direction can be produced by a multi-layer stack

of planar currents. Similarly, linear gradient fields can be created on the same chip. These

chips were shown to be a capable alternative to external coils in certain applications. For

example, using a 15 A current, a 3 Gauss uniform field was created over a 16 mm3 volume.

This volume is comparable to that required for PGC of a cold atom cloud a few mm in

diameter. Finally, an alternative magnetic conveyor was described that does not rely on a

bias field at all. With these designs, the three external Helmholtz coil pairs can be removed

to improve optical access and experimental efficiency of the AFRL cold atom device.
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Figure 5.22: The magnetic field magnitude of the trap conveyor as a function of x and z at

y = 0.
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VI. Measurement Sequence: Coherence in a Magnetic Talbot-Lau Interferometer

6.1 Introduction

Thus far, this dissertation has examined methods to reduce the necessary size, weight,

and power of laser cooling and magnetic trapping. However, these gains are quickly

reversed if the following typical measurement sequence is used.

Most atom interferometers rely on a Raman pulse technique which changes the

internal state of the interrogated atoms. Because of the difficulty in confining multiple

states with a magnetic field, atoms are allowed to propagate freely, necessitating a large

system. The most sensitive devices use a 10-meter long apparatus [24].

Single internal state splitting has allowed atoms to be trapped for the duration of the

interferometer cycle, reducing the apparatus length to a few millimeters [79]. Techniques

for confined splitting include double-well potentials [86], optical lattices [87], and standing

wave pulses [88, 89]. However, these interferometers have used Bose-Einstein condensates,

which require cooling stages that increase power consumption, decrease possible repetition

rates, and lower atom numbers.

One single state technique has been shown to work at thermal (i.e., non-condensed)

temperatures [90–92]. These interferometers, in the Talbot-Lau configuration, confine

the atomic sample in two directions and allow free propagation in the third. In an ideal

situation, the potential along the third direction would vanish. However, due to the finite

size of the device and uncontrollable external fields, there is a residual potential along the

waveguide.

Unfortunately, the residual potential and other field imperfections reduce coherence times [89, 93, 94].

Recent research has demonstrated a high degree of control over the residual field [26].

Here, we analyze the effect of a controlled residual potential in a Talbot-Lau interferometer

with a gas of cold, thermal atoms using a Wigner function approach.
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6.2 Interferometer Operation

To prepare the atomic gas for the interferometer cycle, a laser-cooled sample is loaded

into a magnetic trap with frequencies ω(e)
i , where i = (x, y, z). The collision rate is directly

proportional to the geometric average of these trap frequencies ω̄(e) = (ω(e)
x ω

(e)
y ω

(e)
z )1/3,

so ω̄(e) should be made as large as possible to maximize the efficiency of the evaporative

cooling. In typical atom chip experiments, the gas is evaporatively cooled in a trap with

frequency ω̄(e) ∼ 2π × 200 Hz.

Once the atoms are cooled to a temperature on the order of T ∼ 10 μK, the potential is

adiabatically transformed into a trap that tightly confines the atoms in the radial direction,

with frequencies ωy = ωz = ω⊥ ∼ 2π × 200 Hz; and in the axial direction, with frequency

ωx = ω0. Just before the interferometer cycle starts, the potential is non-adiabatically

transformed into a waveguide potential, while holding the radial trap frequency constant to

reduce the effects of transverse excitations. In a realistic device, there remains a residual

potential along the waveguide with frequency ω.

Once the atoms are loaded in the waveguide, the interferometer cycle begins. In

this analysis, we considered the case of the trapped atom Talbot-Lau interferometer

schematically shown in Figure 6.1. The figure traces the different paths that an initially

stationary atom could experience when moving through the device. Time moves from left

to right, and the displacement of the atom along the waveguide is shown in the vertical

direction.

At time t = 0, the atomic cloud is illuminated with a short, standing wave laser pulse

that acts as a diffraction grating. The pulse is sufficiently short that it is in the Kapitza-Dirac

regime, i.e., the atoms do not move for the duration of the laser pulse. The pulse splits the

wave function for each atom into several momentum states separated by the two photon

recoil momentum δP = 2�kl, where kl is the wave number of the laser beams.
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Figure 6.1: The schematic of a Talbot-Lau interferometer. An atomic cloud is split in

space (vertical axis) by a laser pulse at time t = 0. The resulting diffracted orders separate

and are further diffracted at t = T . At the recombination time t = 2T , the various orders

overlap, allowing a probe laser to produce a back scattered signal from the periodic atomic

distribution. Only two diffraction orders are shown because for typical laser pulses, higher

orders are suppressed.

After the laser pulse, the atomic cloud propagates in the waveguide for a time T , at

which point it is illuminated with a second laser pulse. The paths of the different momentum

states are shown as blue lines between 0 and T . Ideally, the momentum of each mode should
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be constant in time. However, the residual curvature along the waveguide will cause the

paths to become curved (not shown in the figure), giving rise to decoherence.

For simplicity, it is assumed that the laser pulse at time T has the same strength and

affects the atomic wave function in the same manner. Each of the momentum states that

were populated after the first laser pulse are split into several modes. After the second laser

pulse, the number of possible paths increases dramatically. However, near time 2T , the

different paths come together to form a density modulation that has the same period as the

standing wave.

An extraordinary feature of a Talbot-Lau interferometer is that the location of the

density echo is independent of the initial velocity of the atom. For example, if the initial

atom in Figure 6.1 had some momentum, each of the diffracted orders would gain this

additional momentum. After tracing out all possible paths, it is easy to show that the

density modulation appears in exactly the same location as for the initially stationary atom.

As a result, the density echo is still visible even when the initial atomic gas is relatively hot.

In the absence of external forces, the density echo will have the same relative phase

as the standing wave laser pulse. However, if there is a force on the cloud, the echo will

move in response to the force. By detecting the shift in the echo, it is possible to measure

the force on the cloud.

This phase shift can be measured by reflecting a traveling wave off the density

modulation. Due to the Bragg effect, there will be a strong backscattered signal for the

duration of the echo. By heterodyning the back-reflected light with a reference beam, the

phase of the density echo can be determined.

In this chapter, we present a theoretical model of a trapped Talbot-Lau interferometer

that includes the decoherence due to the residual potential curvature. The Wigner function

approach is used to model the dynamics of a thermal gas, which can be extended to include

more complex laser pulse sequences [94]. For brevity, only the simple case of a two-pulse
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interferometer is discussed. Our model predicts the amplitude of backscattered light for

an arbitrary initial Wigner function and is then specialized to the case of an initial thermal

distribution. Decoherence due to finite temperature and initial axial trap frequency are

discussed. Finally, the model is used to determine the ideal axial frequency for a given

initial phase space density and residual potential.

6.3 The Model

Following the prescription of [26], we assume that the potential is separable, i.e.,

V(rrr) = V(x) + V⊥(r⊥), and the k-vectors of the laser beams point in the x-direction.

Collisions are neglected as we have previously analyzed the effects of collisions in a similar

interferometer and do not expect atom-atom collisions to have a significant impact on the

results [113]. We also ignore the mean field interaction, as it is mainly relevant for strongly

interacting condensates, which we do not consider here. Inclusion of these terms may be

possible, but are omitted to keep the discussion concise.

The Hamiltonian that governs the axial dynamics of the interferometer is one-dimensional

and can be written as

H =
P2

2M
+

1

2
MβX2 + �Ω cos(2klX), (6.1)

where X and P are the canonical operators with commutation relation [X, P] = i�, kl is

the wave number of the laser, M is the atomic mass, and β is the curvature of the residual

potential. The parameter Ω is the frequency of the AC-stark shift due to the standing wave

laser pulse, which depends on the intensity and detuning of the beam and is, in general, a

function of time.

The Hamiltonian can be recast in the dimensionless form

H′ =
P′2

2
+

1

2
β′X′2 + Ω′ cos X′, (6.2)

where P′ = P/P0, X′ = X/X0, and t′ = t/t0 where P0 = 2�kl, X0 = 1/2kl, and t0 = M/4�k2
l .

The other parameters in Equation (6.1) become β′ = βt2
0 and,Ω′ = Ωt0. The other important
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dimensionless parameter is the cloud temperature T ′ = T /T0, where T0 = 4�2k2
l /MkB,

where kB is the Boltzmann constant. For 87Rb where the standing wave laser is near the D2

transition, t0 = 5.3 μs, and T0 = 1.4 μK. For the rest of this chapter, primes will be dropped

for clarity, and unless otherwise stated, all introduced variables will be dimensionless.

Since the interferometer uses an incoherent gas, the state of the system cannot be

written as a wave function. Instead, the system is described by the density operator ρ. The

equation of motion for the density operator, in dimensionless form, is

iρ̇ = [H, ρ], (6.3)

where the dot denotes the time derivative and the brackets are the usual commutation

operator. The density operator can be recast in terms of the Wigner function, which is

defined as

f (x, p) =
1

π

∫
dξ〈x + ξ|ρ|x − ξ〉e−2ipξ (6.4)

where |x〉 are the eigenvectors of the coordinate operator, i.e., X|x〉 = x|x〉. The Wigner

function f (x, p) can be interpreted as the probability density, however for non-classical

states the Wigner function may be negative. As a result,
∫

dx f = P(p) is the momentum

density of the cloud and
∫

dp f = ρ(x) is the spatial density. Even when the Wigner function

is negative, the densities, P and ρ are always positive.

It is worth noting that the Wigner approach works for pure states as well. In this case,

it is defined as

fpure(x, p) =
1

π

∫
dξψ∗(x + ξ)ψ(x − ξ)e−2ipξ. (6.5)

We will find that the results of the incoherent process are easily extended to include the

results of a pure state (BEC) interferometer.

Substituting Equation (6.4) into Equations (6.2) and (6.3), the equation of motion for

the Wigner function is(
∂

∂t
+ p
∂

∂x
− β
∂

∂p

)
f (x, p, t) = Ω sin x

[
f
(
x, p −

1

2

)
− f

(
x, p +

1

2

)]
, (6.6)
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where the left side of the equation describes the motion of the distribution in the potential

while the right side describes the interaction with the standing wave laser field.

Since the duration of the laser pulses τp is much shorter than the interferometer time T

(T � τp), the evolution of the distribution can be separated into relatively slow dynamics

when the distribution is not being illuminated and fast dynamics when it is. Additionally,

since each laser pulse is short τp � 1/ω0 and strong Ω � ω0, the pulses are in the

Kapitza-Dirac regime, which occurs in the Raman-Nath limit. As a result, the coordinate

and momentum derivatives in Equation (6.6) may be neglected during the pulse.

The dynamics of the distribution for the periods when the laser is off, Ω = 0, are such

that each part of phase space evolves classically. For simplicity, it is useful to write the

classical equations of motion in the form

ẋxx = Mxxx (6.7)

where xxx = (x, p) is the coordinate-momentum vector, and the matrix M is

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1

−β 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (6.8)

The solution to Equation (6.7) can be written as xxx(t) = Utxxx(0), where Ut = exp(Mt). By

direct substitution, it can be shown that in between the laser pulses the distribution evolves

as

f f (xxx) = fi(U−txxx). (6.9)

The laser pulses are more involved and fundamentally quantum in nature (i.e.,

resulting in negative Wigner distributions). The effect of the laser pulse is to transform

an initial Wigner distribution fi into a final distribution f f according to

f f (Ω � 0) =

∞∑
nk=−∞

(−i)nJk(Ξ)Jn+k(Ξ)ei(n+2k)x fi

(
x, p −

n
2

)
(6.10)
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for the pulse area, Ξ =
∫

dτΩ(τ), where the functions Jn are the Bessel functions of the

first kind. In terms of xxx, Equation (6.10) can be written in the more compact form

f f (Ω � 0) =
∑

nk

αnkeigggnk ·xxx fi(xxx − Nn) (6.11)

where gnkgnkgnk = (n + 2k, 0), NNNn = (0, n/2), and αnk = (−1)nJkJn+k.

The interferometer sequence is characterized by four unique operations separated in

time. The first laser pulse at t = 0 operates on an initial Wigner distribution f0 and

transforms it to f1, ( f0 → f1). There is then a propagation period from t = 0 to T , over

which the distribution transforms f1 → f2. The second laser pulse at t = T transforms

f2 → f3. Lastly, another propagation to t = 2T + τ transforms the distribution to its final

form f3 → f4.

Near the end of the interferometer cycle, the cloud is illuminated with a short traveling

wave laser pulse of duration τ0, where τ0 � T . To determine the time dependence of the

back-scattered light, the Wigner function must be found for times near the echo time, i.e.,

t = 2T + τ. By direct substitution into Equations (6.9) and (6.11) for the interferometer

cycle discussed in Figure 6.1, the Wigner function near the echo time is

f4 =
∑
mlnk

αmlαnk

× exp
[
i(gggml · UT + gggnk) · U−2T−τ · xxx − igggnk · U−T · NNNm

]
× f0(U−2T−τ · xxx − U−T · NNNm − NNNn). (6.12)

According to [93], the amplitude of the back-scattered light is proportional to

S =
∫

d2xeiggg01·xxx f4(xxx) (6.13)

For the rest of the chapter, the quantity S will be referred to as the signal of the

interferometer. Changing the integration variable from xxx to yyy, where

yyy = U−2T−τxxx − U−T Nm − Nn, (6.14)
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the signal can be written as

S =
∑
mlnk

αmlαnkeiΘmlnk

∫
d2yeiΔΔΔmlnk ·yyy, (6.15)

where

ΔΔΔmlnk = gggml · UT + gggnk + ggg10 · U2T+τ, (6.16)

and

Θmlnk = ΔΔΔmlnk · (U−T · NNNm + NNNn) − gggnk · U−T · NNNm. (6.17)

In what follows below, it will be assumed that both the echo duration is small as

compared to the interferometer time τ � T , and the residual trap curvature is β � 1/T 2.

When these inequalities are fulfilled, only the linear contributions in both τ and β are

retained. In this limit, the time propagation operator for small values of β is UT ≈

U (0)
T + βU

(1)
T , where U (0)

t =
(

1 t
0 1

)
, and U (1)

t =
(

t2/2 t3/6
t t2/2

)
, and for small values of time τ,

Uτ = 1 + M(1)τ, where M(1) =
(

0 1
0 0

)
.

Equation (6.16) can now be written as

ΔΔΔmlnk = ΔΔΔ
(0)

mlnk + β
(
gggml · U (1)

T + ggg10 · U (1)

2T

)
+ τ

(
ggg10U (0)

2T M(1)
)
, (6.18)

where Δ(0) is given by Equation (6.16) where β → 0 and τ → 0. In the limit where the

distribution is slowly varying, the elements of the sum in Equation (6.13) are vanishingly

small unless Δ(0) = 0. This implies that gggml = −2ggg10 and gggnk = ggg10. Using the definition

of ggg, these relations can be written as k = (1 − n)/2 and l = −(2 + m)/2. In addition, only

the terms where n, (m) are even (odd) contribute to the signal. Equation (6.18) becomes

independent of the indices m, l, n, k.

Substituting the explicit matrix representations for Δ and Θ, the interferometer signal

is given by

S = A
∫

dudv exp
[
−iβT 2u + iτ′v

]
f0(u, v), (6.19)
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where τ′ = τ − βT 3 and u, v are the components of the vector yyy. The parameter A in

Equation (6.19) is the amplitude of the signal and can be expressed as the sum

A =
∑

n,even

∑
m,odd

γnm

2i
exp

[
i
(
mT
2
+

m + n
2
τ′ +

5m
12
βT 3

)]
, (6.20)

where

γnm = 2(−1)(n−1)/2+m/2J(1−n)/2J(1+n)/2J−(2+m)/2J−(2−m)/2 (6.21)

determines proportion of the atoms scattered into each mode.

Equation (6.19) is the primary result of this analysis and will be used for the case of a

thermal atomic cloud in Section 6.4.

6.4 Discussion

By taking the limit where Ξ � 1, only the lowest order contributions to

Equation (6.20) need to be retained. If we keep n = ±1 and m = 0,±2 and use the limiting

values of Jn for the small argument, γ10 ≈ −2γ12 ≈ Ξ/4, then

A = sin

(
1

2
τ′
)
Ξ3

4

[
1 + cos

(
T +

5βT 3

6
+ τ′

)]
. (6.22)

Assuming that the initial distribution is a thermal cloud of temperature T that is in

equilibrium with the trap with frequency ω0, the distribution f0 becomes

f0 =
ω0

2πT
exp

(
−

p2

2T
−
ω2

0x2

2T

)
. (6.23)

By comparison, the initial distribution of a condensate would be well approximated

by the ground state of a harmonic oscillator. Using Equation (6.5), the pure state Wigner

function is equivalent to Equation (6.23) when T = ω0/2. During the transition from an

incoherent thermal gas to a pure BEC, the distribution is a sum of f0 and fpure, weighted

by the number of atoms in and out of the ground state, where N0/N = 1 − (T /Tc)
3 and

Tc = ω̄0(N/ζ(3))1/3. N0/N is the ratio of condensed atoms to the total, and ζ is the

Riemann zeta function. This combined distribution can be used with Equation (6.19) to

find the expected signal.
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Returning focus to the incoherent thermal gas, substituting Equations (6.22) and (6.23)

into Equation (6.19) and performing the integral yields

S = A exp

⎡⎢⎢⎢⎢⎢⎣−T2
(
βT 2

ω0

)2

−
T
2
τ′2

⎤⎥⎥⎥⎥⎥⎦ . (6.24)

To quantify the signal visibility, we define the echo strength as I = Ξ6
∫

dτ′S 2, which

is proportional to the total number of photons (electromagnetic energy) of the backscattered

light during the read-out pulse. In the limit where T � 1, Equation (6.24) can be

integrated, yielding

I =
π1/2A2

32T 3/2
exp

⎡⎢⎢⎢⎢⎢⎣−T
(
βT 2

ω0

)2
⎤⎥⎥⎥⎥⎥⎦ , (6.25)

where

A =
1

4

[
1 + cos

(
T +

5

6
βT 3

)]
. (6.26)

Equation (6.25) diverges in the limit T → 0, which is clearly an unphysical result.

However, the numerical integration of Equation (6.24) remains finite.

Note that I is an oscillating function, and is well known in the β = 0 case [114].

Figure 6.2 shows a schematic of Equation (6.25) as a function of interferometer time T for

β > 0. The dotted line is the envelope of the echo strength. Figure 6.3 shows a schematic

of Equation (6.25) as a function of interferometer time T for β < 0.

The oscillation frequency increases when β > 0 and decreases when β < 0, and there

is a maxima when T + 5βT 3/6 = 2πn. These oscillations depend only on the values of

β and T . In a typical experiment, the oscillation frequency is much larger than depicted

in Figure 6.2 or Figure 6.3. For the remainder of the chapter, it will be assumed that the

interferometer time is tuned to be at the peak of an oscillation, which will be referred to as

Im.

In order to maximize signal strength, it is also useful to release the atomic sample into

the waveguide from the correct initial trap. Typically, the atomic gas is evaporatively cooled
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Figure 6.2: A schematic of the echo signal strength, I, as a function of interferometer

time, T , for an interferometer in a positive residual trapping potential, i.e., β > 0. The

signal strength is proportional to the total number of backscattered photons during the

readout laser pulse. I is periodic with an increasing frequency within an envelope defined

by the dotted curve.

to a temperature T (e) in a trap with frequency ω(e). After cooling, the trap frequencies are

adiabatically changed to a trap with frequency ω0 and then released into a waveguide with

residual potential curvature β. During the adiabatic transformation, the phase space density

is constant. This condition implies D = T 3/ω is held constant, assuming the radial trap
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Figure 6.3: A schematic of the echo signal strength, I, as a function of interferometer

time, T , for an interferometer in a negative residual trapping potential, i.e., β < 0. Like the

positive potential case, the signal strength is periodic and contained within a decaying

envelope. However, the negative potential causes a decreasing frequency. Both positive

and negative potentials have the same envelope.

frequencies ω⊥ are unchanged. Then Equation (6.25) can be recast as

Im =
π1/2

32(D(e))2ω2
0

exp

⎡⎢⎢⎢⎢⎢⎣− (D(e))1/3

ω5/3
0

(βT 2)2

⎤⎥⎥⎥⎥⎥⎦ , (6.27)

where D(e) = (T (e))3/ω(e) is proportional to the phase space density at the end of the

evaporation.
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For this analysis, assume the cloud is evaporatively cooled in a trap with frequency

ω(e) = 2π × 10−4 and to a temperature T = 10. For 87Rb, these parameters correspond

to a gas cooled in a trap with a frequency of 20 Hz to a temperature of 14 μK. The

phase space density is proportional to D(e) = 10−6/2π. Figure 6.4 shows the echo

strength, Equation (6.27), as a function of decompressed trap frequency ω0. The remaining

parameter |β|1/2T = 10−2, corresponds to a cycle time of 10 ms and a residual frequency of

0.3 Hz. In this case, the decompressed trap frequency is roughly half the evaporative trap

frequency.

For small values of ω0 � 1, the echo strength vanishes because the weak trap creates

a large cloud, which experiences more de-phasing due to the residual potential. On the

other hand, when ω0 � 1, the echo strength vanishes because the tight trap increases the

temperature of the cloud, resulting in a shorter echo duration.

The ratio of ideal starting trap frequency ω0 and evaporation trap frequency ω(e) =

2π × 10−3 is shown as as a function of |β|1/2T in Figure 6.5. The dash-dot line is the ideal

frequency if the gas is cooled to a temperature of T = 1, the solid line is the ideal frequency

when T = 10, and the dashed line is when T = 20.

For values where ω0/ωe < 1, the ideal starting frequency is lower than the evaporation

frequency, i.e., the gas should be decompressed before the beginning of the interferometer

cycle. At the cost of increasing the cloud size, it is more advantageous the lower the

temperature. For the case where ω0/ωe > 1, the gas should be compressed, raising the

temperature by reducing the size of the cloud.

6.5 Outlook

Tuning the interferometer time T and the injection trap frequency ω0 allows for

maximal signal visibility. However, these optimizations cannot overcome the exp(−β2)

dependence in Equation (6.25). Even a small residual potential dramatically reduces
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Figure 6.4: The signal strength as a function of injection trap frequency, ω0. After

evaporation in a trap with frequency ω(e), the trap potential is adiabatically transformed to

ω0 before the interferometer cycle begins. At the start of the cycle, the trap is snapped to

ω =
√
β, where it stays. The signal strength peaks at a non-zero injection frequency ω0.

For this case, βT 2 = 10−4 and D(e) = 106/2π.

coherence times in this version of a trapped Talbot-Lau interferometer. Figure 6.6 shows

the signal visibility, Equation (6.25), for several residual potentials. The dashed curve

is β = 5 × 10−13, the solid line is 10−12, and the dash-dot curve is 10−11. For this plot,

I0 = π
1/2A2/32T 3/2, withA = 1/2 to correspond to maxima in the signal oscillation. For

the time axis, T × 10−2 corresponds roughly to 1 ms.
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Figure 6.5: The ratio of the ideal injection trap frequency, ω0, to the evaporation trap

frequency, ω(e), as a function of |β|1/2T . Here, we use ω(e) = 2π × 10−3, and plot for

temperatures T = 1 (dash-dot), T = 10 (solid), and T = 20 (dash). As the ratio ω0/ω
(e)

becomes greater than one, the gas should be compressed before being released into the

interferometer. This compression step raises the temperature, but reduces the size of the

cloud.

Clearly, the signal visibility has a strong dependence on residual potential, which must

be extremely small for coherence times compared to free space interferometers. In future

work, we will explore modifications to the trapped Talbot-Lau scheme with the potential to

minimize the coherence time’s sensitivity on residual field imperfections.
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Figure 6.6: The signal visibility, i.e., the decaying envelope that limits the maximum

possible signal strength for a given interferometer time T . The decay is proportional to

exp(−β2), causing rapid signal loss for even small residual potentials. Here, β = 5 × 10−13

(dashed), 10−12 (solid), and 10−11 (dash-dot). T × 10−2 corresponds roughly to 1 ms.

The Wigner function approach allows a straightforward way to model interference

in an incoherent system such as a cold atomic gas. It can be readily applied to

consider different pulse schemes such as those of [93], as well as propagation in more

complex confining potentials. The Talbot-Lau interferometer’s ability to operate at thermal

temperatures is a significant enough benefit to a real-world device that further study is

warranted.
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VII. Conclusion and Outlook

7.1 Summary of Major Results

In this dissertation, I have detailed the production and characteristics of the first

two-dimensional Grating Magneto-Optical Trap. The 2D GMOT theory was presented and

analyzed, revealing the importance of beam intensity, polarization and grating efficiency.

Using optimized parameters, the 2D GMOT was used to load a 3D GMOT in a lower

pressure chamber.

The 2D GMOT flux (∼ 108 atoms/s) compares favorably to typical 2D MOTs, given

our experiments short atom beam length and low optical power. By using pre-cooled atoms

from the 2D GMOT and large-area gratings with substantial capture volume, our 3D GMOT

trapped 2× 108 atoms, the highest GMOT number so far reported. Standard improvements

such as higher vacuum quality, more optical power, better beam shaping, and more stable

lasers should enable the GMOT flux and trap number to compete with the other known

MOT techniques.

Methods were analyzed to fabricate uniform bias and linear magnetic fields on planar

structures so external coils would not be necessary. These methods were optimized via a

genetic algorithm to account for finite wire length and a promising solution emerged. A

chip was tested and showed strong agreement with simulations. Similar methods were used

to design a magnetic trap conveyor that does not rely on an external bias.

The chips were shown to project 3 Gauss uniform magnetic fields 5 mm from their

surface using a 15 A current. When compared to typical size Helmholtz coil pairs,

these results demonstrate planar sources are an attractive alternative with increased optical

access.

Finally, the effect of a small harmonic magnetic field along the splitting axis of a

thermal Talbot-Lau interferometer was discussed. The non-condensed atoms were modeled
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using the Wigner function and the interferometer’s signal was derived. The model showed

the signal decays rapidly as the remnant field increases.

To combat signal loss, the cold atom production sequence was considered. The

magnetic trap used to inject atoms into the interferometer waveguide was shown to have a

large impact on signal. In particular, if the injecting trap is too weak, the atom cloud is too

large, causing de-phasing due to the residual potential. Alternatively, a strong trap heats the

cloud, reducing the time for which the signal appears. Between these extremes, an ideal

injection trap was identified for future experiments.

7.2 Future Directions

The flux and speed distribution of the 2D GMOT can be improved with a higher,

more uniform cooling laser intensity. The Cold Atom Group is currently building models

to predict how a new intensity profile will effect the trap, using theory presented here.

The GMOT design enables a significantly smaller experimental footprint incorporating a

vacuum chamber with a volume of only ∼ 9 × 5 × 1 cm3.

Besides scaling down in size, this new chamber will utilize a stack of chips designed

using the magnetic field expansions of Chapter 5. Particularly, the 2D GMOT magnetic

field will be similar to the optimized 2D guide of the magnetic conveyor, and the 3D GMOT

will utilize a three layer chip stack to create a uniform field of arbitrary direction.

If these methods prove successful, the magnetic field control could enable significant

suppression of the remnant field in a Talbot-Lau interferometer. Such suppression may

result in an improved interference signal from confined thermal atoms on a chip.

7.3 Concluding Thoughts

As cold atom technologies are pushed to harsh environments, many of the traditional

methods for cooling, trapping, manipulating, and measuring atoms must be improved. The

contributions discussed here represent only a small fraction of the development needed

124



for a viable, deployable system. While I am convinced that the GMOT is a promising

alternative to traditional MOT designs, I have little doubt that newer, better techniques lay

on the horizon. Similarly, atom chips and the Talbot-Lau device are promising, but so are

other techniques for confined matter interferometry, including optical traps and RF-dressed

potentials.

The promise of cold atoms has been apparent for decades, with generations of

scientists continually redefining leading-edge technology with increased sensitivity and

robustness. I hope that my results contribute to that progress and accelerate cold atom

advancements to more widespread applications.
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Appendix A: GMOT Theory

A.1 Linear Approximation of the MOT Force

A beam with intensity I j and detuning Δ drives F = 0 → F′ = 1 transitions from the

ground state mF = 0 to three excited states mF = −1, 0,+1. If the beam has right circular

polarization, define s = +1. If the beam has left circular polarization, define s = −1.

The beam’s wavevector k j makes an angle ϕ with the local magnetic field B such that

cosϕ = k̂ j · B̂. The beam drives transitions to state mF with fractional intensities ImF given

by

I−1 = I j

(
1 + s cosϕ

2

)2

,

I0 = I j

(
sin2 ϕ

2

)
,

I+1 = I j

(
1 − s cosϕ

2

)2

. (A.1)

Then, defining αmF = ImF/I j, the average force on an atom with velocity v located within B

is

F j = �k j
Γ

2

I j

Isat

∑
mF=−1,0,1

αmF

1 +
∑

j I j

Isat
+

4(Δ−k j·v−μFmF B/�)2

Γ2

, (A.2)

where μF = gFμB for the excited state.

Expand for the case of small Doppler and Zeeman shifts with respect to the detuning

(i.e. k j · v + μFmF B/� << Δ ). To prepare, pull the Δ out,

F j = �k j
Γ

2

I j

Isat

∑
mF=−1,0,+1

αmF

1 +
∑

j I j

Isat
+ 4Δ2

Γ2 (1 − k j·v
Δ
− μFmF B

�Δ
)2
, (A.3)

and call

x =
k j · v
Δ
+
μFmF B
�Δ

.
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Then,

F j = �k j
Γ

2

I j

Isat

∑
mF=−1,0,+1

αmF

1 +
∑

j I j

Isat
+ 4Δ2

Γ2 (1 − x)2
. (A.4)

The Taylor expansion says f (x) = f (0) + f ′(0)x + · · · , so

F j ≈ �k j
Γ
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Γ2 (1 − x)(
1 +

∑
j I j

Isat
+ 4Δ2

Γ2 (1 − x)2
)2

∣∣∣∣∣
x=0

x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (A.5)

F j ≈ �k j
Γ

2

I j

Isat

∑
mF=−1,0,+1

αmF

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1

1 +
∑

j I j

Isat
+ 4Δ2

Γ2

+

8Δ2

Γ2(
1 +

∑
j I j

Isat
+ 4Δ2

Γ2

)2
x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (A.6)

Now identify the constant K = 1/
(
1 +

∑
j I j

Isat
+ 4Δ2

Γ2

)
. Then,

F j ≈ �k j
Γ

2

I j

Isat

∑
mF=−1,0,+1

αmF

(
K +

8Δ2K2

Γ2
x
)
. (A.7)

Identify C = 8K2Δ/Γ2. Then,

F j ≈ �k j
Γ

2

I j

Isat

∑
mF=−1,0,+1

αmF (K +CΔx) . (A.8)

Reinserting x,

F j ≈ �k j
Γ

2

I j

Isat

∑
mF=−1,0,+1

αmF

(
K +CΔ

(
k j · v
Δ
+
μFmF B
�Δ

))
. (A.9)

We arrive at

F j ≈ �k j
Γ

2

I j

Isat

∑
mF=−1,0,+1

αmF

(
K +C

(
k j · v +

μFmF B
�

))
. (A.10)

Now insert the transition strengths αmF ,

F j ≈ �k j
Γ

2

I j

Isat

[
(1 − scosϕ)2

4

(
K +C

(
k j · v +

μF B
�

))
(A.11)

+
sin2ϕ

4

(
K +C

(
k j · v

))
+

(1 + scosϕ)2

4

(
K +C

(
k j · v −

μF B
�

)) ]
.

Note that sin2ϕ/4+(1+ scosϕ)2/4+(1− scosϕ)2/4 = 1 and (1+ scosϕ)2/4−(1− scosϕ)2/4 =

scosϕ. Then,
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F j ≈ �k j
Γ

2

I j

Isat

(
K +C

(
k j · v − s

μF B
�

cosϕ
))
. (A.12)

Recalling the definition of cosϕ,

F j ≈ �k j
Γ

2

I j

Isat

(
K +C

(
k j · v − s

μF

�

k j · B
k j

))
. (A.13)

A.2 2D GMOT Forces

The average force from the jth beam is

F j ≈ �k j
Γ

2

I j

Isat

[
K +C

(
k j · v −

μF s
�

k j · B
|k j|

)]
. (A.14)

The magnetic field is B = G (xx̂ − yŷ). The three beams have k vectors,

k1 = −kŷ

with polarization s = +1 and

k2 = k (sin θx̂ + cos θŷ)

k3 = k (− sin θx̂ + cos θŷ)

with fraction P+ in the s = +1 polarization and the remainder P− in the s = −1 polarization,

where θ is the diffraction angle from the +ŷ axis.

A.2.1 Beam 1

For the input beam,

F ≈ �k1

Γ

2

I1

Isat

[
K +C

(
k1 · v −

μF s
�

k1 · B
|k1|

)]

≈ −�k
Γ

2

I1

Isat

[
K +C

(
−kvy −

μFG
�

y
)]

ŷ. (A.15)
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A.2.2 Beam 2

For the s = +1 fraction of the second beam,

F ≈ �k〈sin θ, cos θ〉
Γ

2

P+I2

Isat

[
K +C

(
kvx sin θ

+ kvy cos θ −
μFG
�

x sin θ +
μFG
�

y cos θ
)]
. (A.16)

For the s = −1 fraction of the second beam,

F ≈ �k〈sin θ, cos θ〉
Γ

2

P−I2

Isat

[
K +C

(
kvx sin θ

+ kvy cos θ +
μFG
�

x sin θ −
μFG
�

y cos θ
)]
. (A.17)

A.2.3 Beam 3

For the s = +1 fraction of the third beam,

F ≈ �k〈− sin θ, cos θ〉
Γ

2

P+I3

Isat

[
K +C

(
− kvx sin θ

+ kvy cos θ +
μFG
�

x sin θ +
μFG
�

y cos θ
)]
. (A.18)

For the s = −1 fraction of the third beam,

F ≈ �k〈− sin θ, cos θ〉
Γ

2

P−I3

Isat

[
K +C

(
− kvx sin θ

+ kvy cos θ −
μFG
�

x sin θ −
μFG
�

y cos θ
)]
. (A.19)

A.2.4 Total Forces

Combining the contributions of each beam in the x̂ direction with Iup = I1 = I2 and

P+ + P− = 1,
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F tot,x ≈ �kCΓsin2θ
Iup

Isat

(
kvx + (P− − P+)

μFG
�

x
)
. (A.20)

Similarly,

F tot,y ≈ �k cos θ
Γ

2

Iup

Isat

(
2K +

[
2C

(
kvy cos θ

+ 2(P+ − P−)
μFG
�

y cos θ
)])

− �k
Γ

2

I1

Isat

[
K +C

(
− kvy −

μFG
�

y
)]
. (A.21)

For the constant terms (i.e. those ∝ K) to cancel, Iup = I1/2 cos θ. Then,

F tot,y ≈ �kC
Γ

2

I1

Isat

(
kvy(1 + cos θ) +

μFG
�

y(1 + (P+ − P−) cos θ)
)
. (A.22)
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Appendix B: Measuring the GMOT

B.1 3D GMOT Atom Number

The 3D GMOT was measured using scattered light from the main laser to a

side-viewing photodiode, a Thorlabs PDA100A with gain set at 40 dB. A 2 f imaging

system was used, in which a f = 25.4mm lens with diameter D = 25.4mm was placed

in a 50.8mm lens tube such that the lens was 2 f from the MOT and the detector, as shown

in Fig. B.1.

Figure B.1: The 2 f imaging setup to measure fluorescence of a 3D GMOT.

According to [115], pg. 26, the atom number is given by
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N =
4π(photodiode current)

(solid angle)(responsivity)(energy of the photon)(scattering rate)(surface transmissivity)k ,

(B.1)

where k is the number of reflective surfaces in the imaging setup.

B.1.1 Photodiode Current

The photodiode current is related to the measured output voltage of the PDA100A,

which Thorlabs says is 150 kV/A for 40 dB of gain on a high impedance load, i.e. a 1 MΩ

oscilloscope. So, the photodiode current is

Isignal =
Vsignal

150kV
A

.

A typical florescence signal is shown in Fig. B.2. The 3D coils were pulsed off and

then on, showing a difference in voltage of Vsignal = 150mV. This corresponds to 1.0× 10−6

A of photodiode current.

B.1.2 Solid Angle

The solid angle is defined as

Ω =

∫ ∫
sinθdθdφ = (φ2 − φ1)cosθ1 − (φ2 − φ1)cosθ2, (B.2)

where θ is the angle from the north pole and φ is the longitudinal angle.

The solid angle of the imaging system is limited by the retaining ring in the 1 inch

lens tube. The ring has a clear aperture of 0.9 inches or 22.9mm. The angle from the MOT

to the edge of this ring, from horizontal is

θ

2
= arctan

0.45

2
= 0.221 radians.

So, the solid angle is

141



Figure B.2: Typical photodiode signal when the 3D GMOT magnetic field is pulsed off

and then on.

Ω f ull = (0.44)cos(0) − (0.44)cos(0.44) = 0.042

However, viewing Fig. B.1, it is clear the upper portion of the solid angle is cut off by

the top wall of the vacuum chamber. Comparing pixels in the image, only 95.32% passes

unclipped by the top wall. Then, the actual solid angle is

Ωactual = 0.042(0.9532) = 0.04.

B.1.3 Responsivity

The responsivity of the photodiode at λ =780nm is 0.51 A/W.

B.1.4 Energy of the Photon

The energy of the photon is given by
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Eγ =
hc
λ
= 2.546 × 10−19 J.

B.1.5 Scattering Rate

Using the scattering rate from [36],

Rsc =

(
Γ

2

)
I/Isat

1 + 4
(
Δ
Γ

)2
+ I

Isat

. (B.3)

Isat = 1.669 mW/cm2 for σ polarized light [36]. The lifetime Γ = 38.11 × 106 Hz. The

detuning Δ = 49.245 × 106 Hz. The intensity of the cooling beam was measured to be 7.5

mW/cm2. Assuming the same amount of intensity going up as going down, this is doubled

to 15 mW/cm2. This measurement used 50 mW of power, implying I = 22 mW/cm2. Then,

Rsc =

(
38.11 × 106

2

)
22/1.669

1 + 4
(

49.245×106

38.11×106

)2
+ 22

1.669

= 1.204 × 107 Hz.

B.1.6 Reflective Surfaces

There are four AR-coated surfaces in the imaging train, two chamber walls and two

lens surfaces. These are 99.7% transmissive.

B.1.7 Resulting Atom Number

Combining the above data, the atom number measured is

N =
4π(1.0 × 10−6)

(0.04)(0.51)(2.546 × 10−19)(1.204 × 107)(0.997)4
= 2.03 × 108 atoms.

More generally, 40 dB voltages to atom number,

N =
4π(Vsignal)

(150 × 103)(0.04)(0.51)(2.546 × 10−19)(1.204 × 107)(0.997)4

= (1.355885193 × 109)Vsignal. (B.4)
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B.2 3D GMOT Loading Rate

B.2.1 Beam Distribution

When the plug beam is pulsed off for a short period, a small packet of atoms from the

2D+ GMOT is allowed to pass through the pinhole, across a distance L, to the 3D GMOT

trapping region. If the atoms from the beam packet are slower than the capture velocity vc,

they will be collected into the 3D GMOT, which will grow with increased atom number.

The process is illustrated in Fig. 4.7.

Define the pinhole to be at x = 0. Assume that at t = 0, the atoms are distributed

uniformly behind the pinhole (x < 0) with no atoms past the pinhole (x > 0). Assume the

atoms have a Gaussian distribution in velocity. The number of atoms between x and x+ dx

with velocities between v and v + dv is given by

η(x, v) dx dv =
A

σ
√

2π
exp

(
−

(v − v0)2

2σ2

)
dx dv (B.5)

where v0 is the peak velocity of the distribution and σ is the velocity spread. A represents

the number of atoms/m, which is weighted by a normal distribution in velocity. The total

number of atoms with initial positions between x1 and x2 with velocities between v1 and v2

is

N =
∫ x1

x2

∫ v2

v1

η(x, v) dv dx . (B.6)

The 3D GMOT size at time t is proportional to the number of atoms that reach the

point x = L with velocities less than vc at or before time t. In other words, an atom at

position x must travel at least L + |x| in time t. Accordingly, the minimum velocity that

reaches the 3D GMOT by time t is v1 = (L + |x|)/t. The velocity range that can effect the

3D GMOT at time t is then [v1, v2] = [(L − x)/t, vc].

At t = 0, no atoms exist past the pinhole, so x2 = 0. The fastest atom capable of being

trapped is vc and it can only travel a distance vct in time t. The fastest atom can have an
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initial position no further behind the pinhole than x1 = L − vct. Using these limits, the total

number of atoms that reach the 3D GMOT by time t is

N(t) =
∫ 0

L−vct

∫ vc

(L−x)/t
η(x, v) dv dx

=
A

σ
√

2π

∫ 0

L−vct

∫ vc

(L−x)/t
exp

(
−

(v − v0)2

2σ2

)
dv dx

=
A
2

∫ 0

L−vct
erf

⎡⎢⎢⎢⎢⎣v0 − L−x
t

σ
√

2

⎤⎥⎥⎥⎥⎦ dx −
A
2

∫ 0

L−vct
erf

[
v0 − vc

σ
√

2

]
dx.

= A
σt
√

2π

⎛⎜⎜⎜⎜⎝exp

⎡⎢⎢⎢⎢⎣− ( L
t − v0)2

2σ2

⎤⎥⎥⎥⎥⎦ − exp

[
−

(v0 − vc)
2

2σ2

]⎞⎟⎟⎟⎟⎠
+

A
2

(v0t − L) erf

⎡⎢⎢⎢⎢⎣v0 − L
t

σ
√

2

⎤⎥⎥⎥⎥⎦ − A
2

t(v0 − vc) erf

[
v0 − vc

σ
√

2

]

+
A
2

(L − vct) erf

[
v0 − vc

σ
√

2

]
. (B.7)

B.2.2 Flux Distribution

Define the total flux, in atoms/second at speeds between v1 and v2, as
∫ v2

v1
Φ(v)dv.

Φ(v) can be derived knowing η(x, v). The number of atoms at speed v′ in the 2D+ GMOT

distribution that exit the pinhole in time t is given by

N(v′, t) =
∫ 0

−v′t

∫ v′+dv

v′
η(x, v) dv dx

=

∫ 0

−v′t

[
η(x, v′)dv

]
dx

= A
∫ 0

−v′t

[
1

σ
√

2π
exp

(
−

(v′ − v0)2

2σ2

)
dv

]
dx

=
Av′t

σ
√

2π
exp

(
−

(v′ − v0)2

2σ2

)
dv. (B.8)

Thus, the flux of atoms in a narrow range of velocities between v and v + dv is

Φ(v)dv =
N(v, t)

t
=

A

σ
√

2π
v exp

(
−

(v − v0)2

2σ2

)
dv, (B.9)
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which peaks when v = (v0 ±
√

v2
0
+ 4σ2)/2. The total flux that was blocked by the plug

beam is

∫ ∞

−∞
Φ(v) dv = Av0. (B.10)
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Appendix C: Conveyor Guide Field

C.1 Setting up the Problem

For an x̂ wire at position (y, z) = (0, 0), the magnetic field is

B =
μ0I
2π

[
−z

y2 + z2
ŷ +

y
y2 + z2

ẑ
]
. (C.1)

A guide field is made with four wires in the x̂ direction. The wires are located in the

z = d plane and spaced at y = ±P and y = ±Q. The exact field of the guide wires is

BG = B1 + B2 + B3 + B4, (C.2)

where

B1 =
μ0I1

2π

[
−(z − d)

(y + P)2 + (z − d)2
ŷ +

y + P
(y + P)2 + (z − d)2

ẑ
]
,

B2 =
μ0I2

2π

[
−(z − d)

(y + Q)2 + (z − d)2
ŷ +

y + Q
(y + Q)2 + (z − d)2

ẑ
]
,

B3 =
μ0I3

2π

[
−(z − d)

(y − Q)2 + (z − d)2
ŷ +

y − Q
(y − Q)2 + (z − d)2

ẑ
]
,

B4 =
μ0I4

2π

[
−(z − d)

(y − P)2 + (z − d)2
ŷ +

y − P
(y − P)2 + (z − d)2

ẑ
]
.

Break the total field into its components

BG = Byŷ + Bzẑ, (C.3)

such that

By(y, z) =
μ0

2π

[
−(z − d)I1

(y + P)2 + (z − d)2
+

−(z − d)I2

(y + Q)2 + (z − d)2
+

−(z − d)I3

(y − Q)2 + (z − d)2
+

−(z − d)I4

(y − P)2 + (z − d)2

]
,

Bz(y, z) =
μ0

2π

[
(y + P)I1

(y + P)2 + (z − d)2
+

(y + Q)I2

(y + Q)2 + (z − d)2
+

(y − Q)I3

(y − Q)2 + (z − d)2
+

(y − P)I4

(y − P)2 + (z − d)2

]
.
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To simplify the above expressions for the field, Taylor expand in two dimensions

according to

T (x, y) ≈ T (a, b) + (x − a)Tx(a, b) + (y − b)Ty(a, b) + O(x2, y2)

where (a, b) is the expansion point and Tx,Ty are partial derivatives of f in x and y,

respectively. In our case, the beam is confined to travel along the origin, so (a, b) = (0, 0).

However, By and Bz have many terms. These can be expanded all at once by noticing that

all the By terms have the generic form

fŷ =
−(z − r)

(y − s)2 + (z − r)2

for different values of r and s. Meanwhile, all the Bz terms have the generic form

fẑ =
(y − s)

(y − s)2 + (z − r)2
.

Then the generic partial derivatives, evaluated at (y, z) = (0, 0) are

( fŷ)y =
(z − r)2(y − s)

[(y − s)2 + (z − r)2]2
→

2rs
(s2 + r2)2

,

( fŷ)z =
−[(y − s)2 + (z − r)2] + (z − r)2(z − r)

[(y − s)2 + (z − r)2]2
=
−(y − s)2 + (z − r)2

[(y − s)2 + (z − r)2]2
→

r2 − s2

(s2 + r2)2
,

( fẑ)y =
[(y − s)2 + (z − r)2] − (y − s)2(y − s)

[(y − s)2 + (z − r)2]2
=

(z − r)2 − (y − s)2

[(y − s)2 + (z − r)2]2
→

r2 − s2

(s2 + r2)2
,

( fẑ)z =
−(y − s)2(z − r)

[(y − s)2 + (z − r)2]2
→

−2rs
(s2 + r2)2

.

Finally, assume the currents are

I1 = IG(1 − ΔI + δI)

I2 = −IG(1 + ΔI + δI)

I3 = IG(1 + ΔI − δI)

I4 = −IG(1 − ΔI − δI). (C.4)
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C.2 Performing the Taylor Expansion

C.2.1 The Zeroth Order Terms

Collecting all the zeroth order terms of By,

B0
y =
μ0

2π

(
I1

d
d2 + P2

+ I2

d
d2 + Q2

+ I3

d
d2 + Q2

+ I4

d
d2 + P2

)

=
μ0

2πd

(
(I1 + I4)

1

1 + p2
+ (I2 + I3)

1

1 + q2

)

=
μ0IG

πd

(
δI

1 + p2
+
−δI

1 + q2

)
, (C.5)

where p = P/d and q = Q/d. Similarly, the four zeroth order terms of Bz reduce to

B0
z =
μ0IG

πd

(
(1 − ΔI)

p
1 + p2

+ (−1 − ΔI)
q

1 + q2

)
. (C.6)

C.2.2 The First Order Terms in y

Collecting the terms of By that are multiplied by y,

B1,y
y =

μ0

2π

(
I1

−2Pd
(d2 + P2)2

+ I2

−2Qd
(d2 + Q2)2

+ I3

2Qd
(d2 + Q2)2

+ I4

2Pd
(d2 + P2)2

)

=
2μ0IG

πd2

(
(−1 + ΔI)

p
(1 + p2)2

+ (1 + ΔI)
q

(1 + q2)2

)
. (C.7)

Similarly, collect the terms of Bz that depend on y,

B1,y
z =

μ0

2π

(
I1

d2 − P2

(d2 + P2)2
+ I2

d2 − Q2

(d2 + Q2)2
+ I3

d2 − Q2

(d2 + Q2)2
+ I4

d2 − P2

(d2 + P2)2

)

=
μ0IGδI

πd2

(
1 − p2

(1 + p2)2
−

1 − q2

(1 + q2)2

)
. (C.8)
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C.2.3 The First Order Terms in z

Collect the four terms of the expansion of By that are multiplied by z,

B1,z
y =

μ0

2π

(
I1

d2 − P2

(d2 + P2)2
+ I2

d2 − Q2

(d2 + Q2)2
+ I3

d2 − Q2

(d2 + Q2)2
+ I4

d2 − P2

(d2 + P2)2

)

=
μ0IGδI

πd2

(
1 − p2

(1 + p2)2
−

1 − q2

(1 + q2)2

)
. (C.9)

Similarly, the four terms of the expansion of Bz that are multiplied by z are

B1,z
z =

μ0

2π

(
I1

2Pd
(d2 + P2)2

+ I2

2Qd
(d2 + Q2)2

+ I3

−2Qd
(d2 + Q2)2

+ I4

−2Pd
(d2 + P2)2

)

=
2μ0IG

πd2

(
(1 − ΔI)

p
(1 + p2)2

− (1 + ΔI)
q

(1 + q2)2

)
. (C.10)

C.3 Putting It All Together

We now have the terms of the Taylor expansion for the four guide wire field. The

approximate field for small y and z around the origin is

Btot =
(
(B0

y + B1,y
y y + B1,z

y z)ŷ + (B0
z + B1,y

z y + B1,z
z z)ẑ

)
. (C.11)

The ŷ term is

By = B0
y + B1,y

y y + B1,z
y z,

so

πd
μ0IG

By =

(
δI

1 + p2
+
−δI

1 + q2

)
+

2

d

(
(−1 + ΔI)

p
(1 + p2)2

+ (1 + ΔI)
q

(1 + q2)2

)
y+
δI

d

(
1 − p2

(1 + p2)2
−

1 − q2

(1 + q2)2

)
z.

Assuming ΔI and δI are small, and recalling that y and z are small, then their products (i.e.

zδI or yΔI) are negligible. Then,

2πdBy

μ0IG
=

2δI

1 + p2
+
−2δI

1 + q2
−

4

d
py

(1 + p2)2
+

4

d
qy

(1 + q2)2
, (C.12)
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which can be written in the form

By = Gy(y − y0),

by setting p = 1/q. Then,

By =
μ0IG

2πd

[
2δIq4 − 2δI − 4yq3/d + 4yq/d

(1 + q2)2

]
. (C.13)

Similarly, the ẑ term is

Bz = B0
z + B1,y

z y + B1,z
z z,

which becomes

2πdBz

μ0IG
= 4

q(−ΔI − ΔIq2 + z
d q2 − z

d )

(1 + q2)2
, (C.14)

for p = 1/q.

C.4 Maximizing the Gradient

The gradient of |B| is then

�∇|B| =
μ0IG

2πd
�∇

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
√√⎛⎜⎜⎜⎜⎝−2

(q − 1)(q + 1)(−δIq2 − δI +
2
d qy)

(1 + q2)2

⎞⎟⎟⎟⎟⎠
2

+

(
4

q(−ΔI − ΔIq2 + z
d q2 − z

d )

(1 + q2)2

)2
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
μ0IG

2πd
�∇

⎛⎜⎜⎜⎜⎜⎜⎝
√

4

(1 + q2)4

[
(C − Dy)2 + 4 (F −Gz)2

]⎞⎟⎟⎟⎟⎟⎟⎠ , (C.15)

where C = δIq4 − δI , D = 2q3

d −
2q
d , F = qΔI + ΔIq3, and G = 1

d q3 − 1
d q.

Then,

�∇|B| =
μ0IG

πd
1

(1 + q2)2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−CD + D2y√

(C − Dy)2 + 4 (F −Gz)2

ŷ +
−4FG + 4G2z√

(C − Dy)2 + 4 (F −Gz)2

ẑ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
(C.16)
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We know that the divergence of a magnetic field is zero, so the magnitude of the

gradient in ŷ and ẑ will be equal for this 2D problem. Arbitrarily choosing to maximize z,

∂

∂q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1

(1 + q2)2

−4G(F −Gz)√
(C − Dy)2 + 4 (F −Gz)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0. (C.17)

Notice C and F contain δI and ΔI , which were assumed to be small. For the purpose of

mass-simplification, these terms are set to zero. Then

(1 + q2)2(3q2 − 1) − (q3 − q)(4q(1 + q2))

(1 + q2)4
= 0, (C.18)

which yields

q ≈ 2.413 OR 0.414.

Using q = 0.414 =
√

2 − 1 and Eq.’s C.13 and C.14, we find the maximized field for

small y, z around the origin is

By =
μ0IG

2πd2
(y − y0)ŷ

Bz = −
μ0IG

2πd2
(z − z0)ẑ (C.19)

with y0 =
√

2δId and z0 = −
√

2ΔId.
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Appendix D: Conveyor Crossing Wire Field

D.1 The Magnetic Field

For ŷ wire at position (x, z) = (0, 0), the magnetic field is

B =
μ0Iy

2π

[ −z
x2 + z2

x̂ +
x

x2 + z2
ẑ
]
. (D.1)

The atom beam is taken to travel in x̂ with transverse position (y, z) = (0, 0) and will

interact with a series of ŷ wires running alternating currents. Those wires are at positions

(x, z) = (nl, h) with currents In,1 = Iy(−1)n. To find the the field due to the alternating

currents, use Eq. D.1, plugging in z = 0 and offsetting the x positions by nl,

B(z = 0) =
μ0Iy(−1)n

2π

[
h

(x − nl)2 + h2
x̂ +

x − nl
(x − nl)2 + h2

ẑ
]
. (D.2)

The field can be written

B =
μ0I j

2π

[
βx(x)x̂ + βz(x)ẑ

]
, (D.3)

having defined

βx(x) =

∞∑
n=−∞

(−1)n h
h2 + (x − nl)2

, (D.4)

and

βz(x) =

∞∑
n=−∞

(−1)n x − nl
h2 + (x − nl)2

, (D.5)

where kn = π
2n+1

l . We will now derive that

βx(x) =
2π

l

∞∑
n=0

e−knhcos(knx), (D.6)

and

βz(x) = −
2π

l

∞∑
n=0

e−knhsin(knx). (D.7)
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D.2 Deriving the Fourier Series Expressions for βx and βz

Equations D.6 and D.7 are not trivial to achieve from equations D.4 and D.5. The

derivation of βx(x) is shown here. First, recall the Poisson Sum Formula, which states that,

given some f (t) which has a Fourier transform f̂ (s) defined as

f̂ (s) =

∫ ∞

−∞
e−2πist f (t)dt,

then

∞∑
n=−∞

f (n) =

∞∑
s=−∞

f̂ (s). (D.8)

So, for this specific problem, substitute f (n) to write

βx(x) =

∞∑
n=−∞

(−1)n h
h2 + (x − nl)2

=

∞∑
s=−∞

f̂ (s).

Therefore, βx(x) is found through the Fourier transform

f̂ (s) =

∫ ∞

−∞
e−2πist(−1)t h

h2 + (x − tl)2
dt.

Note that here t replaces n, not x. Rewriting (−1)t = eiπt, then

f̂ (s) =

∫ ∞

−∞
e−2πisteiπt h

h2 + (x − tl)2
dt

=

∫ ∞

−∞
e−iπ(2s−1)t h

h2 + (x − tl)2
dt. (D.9)

D.2.1 Sidebar - Required Residue Calculus

Evaluating this integral for f̂ (s) from Eq. (D.9) requires residue calculus. The Cauchy

Residue Theorem states that the integral of a complex function over a closed path in the

complex plane is equal to 2πi times sum of the function’s residues evaluated at each of its

poles. Explicitly,
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∮
γ

f (z)dz = 2πi
∑

k

Res( f , ak),

where f (z) is said to have a pole at point a if f (z)→ ∞ as z→ a. In this problem, the poles

are located at

t =
x
l
± i

h
l
,

which is verified by plugging into the denominator

h2 + (x − tl)2 → h2 + (x − x ∓ ih)2 → h2 − h2 = 0,

meaning

f (t)→
g(t)
0
= ∞.

For simple poles, if

f (z) =
g(z)

h(z)
,

then the residue is given by

Res( f , a) =
g(a)

h′(a)
.

D.2.2 Resuming the Derivation - Decomposing the Integral and Jordan’s Lemma

We seek a solution to Eq. (D.9),

f̂ (s) =

∫ ∞

−∞
e−iπ(2s−1)t h

h2 + (x − tl)2
dt,

which is along the real axis of t. To use residue calculus, notice that if we integrate in the

complex plane ∮
γ

f (z)dz =
∫

C1

f (z)dz +
∫

C2

f (z)dz,

where C1 extends on the real axis of t from −R to R and C2 is a path which closes the curve

through the imaginary part of the t plane as a half-circle, then
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∫
C1

f (z)dz =
∫ R

−R
f (t)dt.

Meanwhile, Jordan’s Lemma states that for functions f (z) of the form

f (z) = eibzg(z)

with b > 0, then
∫

C2
f (z)dz → 0 as R → ∞. In our integral, b = −π(2s − 1). Thus, for

positive b and R→ ∞, the complex contour integral reduces to

∮
γ

f (z)dz =
∫ ∞

−∞
f (t)dt = 2πiRes( f , a+), for (2s − 1) < 0.

Only the positive pole is evaluated, as the curve encloses the positive half circle above the

Re(t) axis.

Meanwhile, for those values of s in the sum such that (2s−1) > 0, we must integrate in

the opposite direction along Re(t) to still use Jordan’s Lemma, from∞ to −∞. Integrating in

this direction uses the lower half circle below the Re(t) axis, and thus encloses the negative

pole, a−. Therefore,

∮
γ

f (z)dz =
∫ −∞

∞
f (t)dt = 2πiRes( f , a−), for (2s − 1) < 0.

D.2.3 Evaluating the Integral

If (2s − 1) < 0, then∫ ∞

−∞
f (t)dt = 2πiRes( f , a+) = 2πi

g(a+)
h′(a+)

.

Note that

g(t) = he−iπ(2s−1)t,

and

h(t) = h2 + (x − tl)2,

156



so

h′(t) = −2l(x − tl).

Thus, the integral becomes

∫ ∞

−∞
f (t)dt = 2πi

g(a+)
h′(a+)

= −2πi
he−iπ(2s−1)t

2l(x − tl)

= −2πi
he−iπ(2s−1)( x

l +i h
l )

2l(x − (x + ih))

=
π

l
e−iπ(2s−1)( x

l +i h
l ). (D.10)

Employing similar logic, the integral can be evaluated at the negative pole, using the

negative half circle as C2 to close the curve. Because we must integrate counterclockwise

on this curve, integration occurs from t = ∞ to −∞, picking up an extra minus sign.

∫ ∞

−∞
f (t)dt = −

∫ −∞

∞
f (t)dt = −2πiRes( f , a−) = −2πi

g(a−)
h′(a−)

= 2πi
he−iπ(2s−1)( x

l −i h
l )

2l(x − (x − ih))

=
π

l
e−iπ(2s−1)( x

l −i h
l ). (D.11)

D.2.4 Putting It All Back Together

Recall the Poisson Sum Formula states

∞∑
n=−∞

f (n) =

∞∑
s=−∞

f̂ (s),

so

βx(x) =

∞∑
n=−∞

(−1)n h
h2 + (x − nl)2

=

∞∑
s=−∞

f̂ (s).
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Breaking the sum apart for the (2s − 1) > 0 and (2s − 1) < 0 cases and using Eq.’s (D.10)

and (D.11),

βx(x) =
π

l

⎛⎜⎜⎜⎜⎜⎝ 0∑
s=−∞

e−iπ(2s−1)( x
l +i h

l ) +

∞∑
s=1

e−iπ(2s−1)( x
l −i h

l )

⎞⎟⎟⎟⎟⎟⎠
=
π

l

∞∑
s=−∞

e−
πh
l |2s−1|e−i πx

l (2s−1). (D.12)

If this sum is evaluated for the s = −1, 0, 1, 2 cases, a pattern emerges

=
π

l

(
· · · + e−

3πh
l e3i πx

l + e−
πh
l ei πx

l + e−
πh
l e−i πx

l + e−
3πh

l e−3i πx
l + . . .

)
.

The matching exponent parts of the series can be combined by the relation

eix + e−ix

2
= cos(x),

so that

βx(x) =
2π

l

∞∑
n=0

e−knhcos(knx),

where kn =
π
l (2n + 1). Deriving βz(x) follows a similar procedure and is left to the reader.
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Appendix E: Full Conveyor Analysis

E.1 Two Sets of Crossing Wires

The results of Appendices C and D allow consideration of the total magnetic field of

the atom conveyor.

Consider two sets of alternating ŷ wires, the first at positions x = nl, as before, and

a second set at positions x = nl + l/2. The first set has current In,1 = Iy(−1)nU(t) and the

second set has current In,2 = Iy(−1)nV(t). Then the total field from both sets will be

Bx =
μ0Iy

l

⎡⎢⎢⎢⎢⎢⎣U(t)
∞∑

n=0

e−knhcos(knx) +V(t)
∞∑

n=0

e−knhcos(kn(x − l/2))

⎤⎥⎥⎥⎥⎥⎦ , (E.1)

and

Bz = −
μ0Iy

l

⎡⎢⎢⎢⎢⎢⎣U(t)
∞∑

n=0

e−knhsin(knx) +V(t)
∞∑

n=0

e−knhsin(kn(x − l/2))

⎤⎥⎥⎥⎥⎥⎦ . (E.2)

In the limit that πh/l << 1, then e−knh → 0 for n � 0. Keeping only the n = 0 terms,

noting k0 = π/l,

Bx =
μ0Iy

l
e−
πh
l

[
U(t)cos

(
πx
l

)
+V(t)sin

(
πx
l

)]
, (E.3)

and

Bz = −
μ0Iy

l
e−
πh
l

[
U(t)sin

(
πx
l

)
−V(t)cos

(
πx
l

)]
. (E.4)

If

U(t) = cos(
πx0(t)

l
),

and

V(t) = sin(
πx0(t)

l
),

simple trigonometry allows us to write,

Bx =
μ0Iy

l
e−
πh
l cos

(
π

l
(x − x0)

)
, (E.5)
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Bz = −
μ0Iy

l
e−
πh
l sin

(
π

l
(x − x0)

)
. (E.6)

E.2 Finding the Position of the Full Conveyor’s Potential Minimum

Combining the conveyor guide and crossing wires, the magnitude of the magnetic field

is given by

|Btot| =
√(

C1cos
[
π

l
(x − x0)

])2

+ (C2(y − y0))2 +

(
C1sin

[
π

l
(x − x0)

]
+C2(z − z0)

)2

, (E.7)

where C1 = (μ0Iy/l)e−πh/l and C2 = −μ0IG/(2πd2). Expanding and simplifying,

|Btot| =
√

C2
1
+C2

2
(y − y0)2 +C2

2
(z − z0)2 + 2C2C1(z − z0)sin

[
π

l
(x − x0)

]
. (E.8)

To find the position of the minimum, we seek (x, y, z) such that

∂|Btot|
∂x

= 0,

∂|Btot|
∂y

= 0,

∂|Btot|
∂z

= 0. (E.9)

These are three equations for three unknowns,

∂|Btot|
∂x

=
1

2|Btot|

(
2πC2C1

l
(z − z0)cos

[
π

l
(x − x0)

])
= 0,

∂|Btot|
∂y

=
2C2

2(y − y0)

2|Btot|
= 0,

∂|Btot|
∂z

=
1

2|Btot|

(
2C2

2(z − z0) + 2C2C1sin
[
π

l
(x − x0)

])
= 0. (E.10)

Note that |Btot| is always positive and non-zero, so solutions are found by setting the

numerators equal to zero. Not surprisingly, the y equation implies the zero occurs at
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y = y0.

For x and z, two numerators are set equal,

z − z0 =
lsin

[
π
l (x − x0)

]
πcos

[
π
l (x − x0)

]
− C2l

C1

. (E.11)

Then, using the ∂|Btot|/∂z = 0 condition with Eq. (E.11),

x − x0 =
(2n + 1)l

2
, (E.12)

where n is an integer. Taking that result and substituting back into Eq. (E.11) gives

z − z0 = −
2πd2

l
e−
πh
l

Iy

IG
(−1)n. (E.13)

The position of the zero of the minimum field is then given by (xmin, ymin, zmin) where

xmin =
(2n + 1)l

2
+ x0(t),

ymin =
√

2δId,

zmin = −
√

2ΔId −
2πd2

l
e−
πh
l

Iy

IG
(−1)n. (E.14)
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Appendix F: Understanding the Wigner Function

F.1 Let’s Start From the Very Beginning...

The Wigner function allows for tracking the time evolution of a gas with many

quantum states using the density operator

ρ̂ = |ψ〉〈ψ|. (F.1)

The time evolution of ρ̂ is

i�
∂

∂t
ρ̂ = i�

∂

∂t
|ψ〉〈ψ|. (F.2)

Performing the product rule and recognizing the Schrödinger equation i� ∂
∂t |ψ〉 = Ĥ|ψ〉,

i�
∂

∂t
ρ̂ = i�

(
∂

∂t
|ψ〉

)
〈ψ| + i�|ψ〉

(
∂

∂t
〈ψ|

)

= i�
(
∂

∂t
|ψ〉

)
〈ψ| − |ψ〉

(
−i�
∂

∂t
〈ψ|

)

= Ĥ|ψ〉〈ψ| − |ψ〉〈ψ|Ĥ†

= Ĥ|ψ〉〈ψ| − |ψ〉〈ψ|Ĥ

= Ĥρ̂ − ρ̂Ĥ

→ i�
∂

∂t
ρ̂ = [Ĥ, ρ̂]. (F.3)

F.2 When You Sing You Begin with f (x, p)...

The following basic relations from elementary quantum mechanics are needed,

〈x|p〉 =
eipx/�

√
2π�
. (F.4)

∫
dx|x〉〈x| =

∫
dp|p〉〈p| = 1̂. (F.5)

δ(x) =
1

2π

∫
dp eipx. (F.6)
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The Wigner function is defined (with no explanation yet) as

f (x, p) =
1

π�

∫
dq〈p + q|ρ̂|p − q〉e2iqx/�. (F.7)

We will now show that there is an equivalent definition for the position coordinate,

f (x, p) =
1

π�

∫
dε〈x + ε|ρ̂|x − ε〉e−2ipε/�. (F.8)

Beginning with Eq. (F.7),

f (x, p) =
1

π�

∫
dq〈p + q|ρ̂|p − q〉e2iqx/�.

Operate on both sides of ρ̂ with 1̂ from Eq. (F.5),

=
1

π�

∫ ∫ ∫
dqdx′dx′′〈p + q|x′〉〈x′|ρ̂|x′′〉〈x′′|p − q〉e2iqx/�.

Evaluate using Eq. (F.4),

=
1

π�

1

2π�

∫ ∫ ∫
dqdx′dx′′e−i(p+q)x′/�〈x′|ρ̂|x′′〉e−i(p−q)x′′/�e2iqx/�

=
1

2π2�2

∫ ∫ ∫
dqdx′dx′′〈x′|ρ̂|x′′〉exp

( iq
�

(−x′′ − x′ + 2x) +
ip
�

(x′′ − x′)
)
.

Using the definition of the δ function from Eq. (F.6),

=
1

π�

∫ ∫
dx′dx′′〈x′|ρ̂|x′′〉exp

( ip
�

(x′′ − x′)
)
δ(2x − x′ − x′′).

Integrating across x′′ using the δ function,

=
1

π�

∫
dx′〈x′|ρ̂|2x − x′〉exp

( ip
�

(2x − x′ − x′)
)
.

Performing a change of variables x′ = x + ε → dx′ = dε,

=
1

π�

∫
dε〈x + ε|ρ̂|x − ε〉exp

(
−2ipε
�

)
.
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F.3 Why Do All That?

The Wigner function is useful because when integrated across x or p, it gives the

position density or momentum density, respectively. In other words,

∫
dp f (x, p) = 〈x|ρ̂|x〉 = n(x). (F.9)∫
dx f (x, p) = 〈p|ρ̂|p〉 = η(p). (F.10)

We now show Eq. (F.9). Using the definition of the Wigner function from Eq. (F.8),

∫
dp f (x, p) =

1

π�

∫ ∫
dpdε〈x + ε|ρ̂|x − ε〉e−2ipε/�. (F.11)

Using the definition of the δ function from Eq. (F.6), with the change of variables that

x = −ε and p′ = �p/2, then dp′ = (�/2)dp. δ(ε) = 1
π�

∫
dp′ e−2ip′ε/�. So,

∫
dp f (x, p) =

∫
dε〈x + ε|ρ̂|x − ε〉δ(−ε). (F.12)

Evaluating the δ function integral picks out the value at −ε = 0,

= 〈x|ρ̂|x〉 = n(x). (F.13)

F.4 Time Evolution

Thus, to model the density as a function of time, we only need the time evolution of

the Wigner function. Using Eq. (F.3),

i�
∂

∂t
ρ̂ = [Ĥ, ρ̂]

〈p + q|i�
∂

∂t
ρ̂|p − q〉 = 〈p + q|[Ĥ, ρ̂]|p − q〉. (F.14)
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Multiply both sides by 1
π�

e2iqx/� and integrate both sides in q,

1

π�

∫
dq〈p + q|i�

∂

∂t
ρ̂|p − q〉e2iqx/� =

1

π�

∫
dq〈p + q|[Ĥ, ρ̂]|p − q〉e2iqx/�

i
π

∫
dq〈p + q|

∂

∂t
ρ̂|p − q〉e2iqx/� =

1

π�

∫
dq〈p + q|[Ĥ, ρ̂]|p − q〉e2iqx/�

i�
∂

∂t
f =

1

π�

∫
dq〈p + q|[Ĥ, ρ̂]|p − q〉e2iqx/�, (F.15)

because ∂
∂t f = 1

π�

∫
dq〈p + q| ∂

∂t ρ̂|p − q〉e2iqx/�.

F.5 Use the Wigner Function To Do Something Real

Now we can model the density distribution as a function of time under the influence

of some Hamiltonian

Ĥ =
p̂2

2m
+ V̂ .

The time evolution of the Wigner function depends on [Ĥ, ρ̂] = [T̂ + V̂ , ρ] = [T̂ , ρ̂]+ [V̂ , ρ̂].

Thus, each component of the Hamiltonian can be considered independently.

F.5.1 Free Particle

A free particle (i.e. V̂ = 0) can be solved using Eq. (F.15),

i�
∂

∂t
f =

1

2mπ�

∫
dqe2iqx/�

[
〈p + q|p̂2ρ̂|p − q〉 − 〈p + q|ρ̂p̂2|p − q〉

]

=
1

2mπ�

∫
dqe2iqx/�

[
(p + q)2 − (p − q2)

]
〈p + q|ρ̂|p − q〉

=
4p

2mπ�

∫
dqe2iqx/�q〈p + q|ρ̂|p − q〉

=
�

i
p
m
∂

∂x
f

∂

∂t
f = −

p
m
∂

∂x
f (F.16)
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F.5.2 Harmonic Trap

What if a harmonic potential contributes V̂ = βX̂2/2 to our Hamiltonian?

i�
∂

∂t
f =

β

2π�

∫
dε〈x + ε|[X̂2ρ]|x − ε〉 − 〈x + ε|[ρX̂2]|x − ε〉e−2ipε/�

=
β

2π�

∫
dε[(x + ε)2 − (x − ε)2]〈x + ε|ρ|x − ε〉e−2ipε/�

=
4xβ
2π�

∫
dε ε〈x + ε|ρ|x − ε〉e−2ipε/�

= −
�

i
βx
∂

∂p
f

→
∂

∂t
f = βx

∂

∂p
f (F.17)

F.5.3 Light Pulse

What about a potential V̂ = �Ωcos(x) = �Ω
2

(eix + e−ix)? Here, we operate on |x〉

eigenstates using the version of the Wigner function from Eq. (F.8).

i�
∂

∂t
f =
Ω

2π

∫
dεe−2ipε/�

(
〈x + ε|eix̂ρ̂|x − ε〉 − 〈x + ε|ρ̂eix̂|x − ε〉 + 〈x + ε|e−ix̂ρ̂|x − ε〉 − 〈x + ε|ρ̂e−ix̂|x − ε〉

)
i�
∂

∂t
f =
Ω

2π

∫
dεe−2ipε/�

[
ei(x+ε) − ei(x−ε) + e−i(x+ε) − e−i(x−ε)

]
〈x + ε|ρ̂|x − ε〉

i�
∂

∂t
f =
Ω

2π

∫
dε

[
eixeiε(− 2p

�
+1) − eixeiε(− 2p

�
−1) + e−ixeiε(− 2p

�
−1) − e−ixeiε(− 2p

�
+1)

]
〈x + ε|ρ̂|x − ε〉

i�
∂

∂t
f =
Ω

2π

∫
dε

[
(eix − e−ix)

(
eiε(− 2p

�
+1) − eiε(− 2p

�
−1)

)]
〈x + ε|ρ̂|x − ε〉

∂

∂t
f =
Ω

π�
sin(x)

∫
dε

(
eiε(− 2p

�
+1) − eiε(− 2p

�
−1)

)
〈x + ε|ρ̂|x − ε〉

∂

∂t
f =
Ω

π�
sin(x)

∫
dε

(
e−2iε(p−�/2)/� − e−2iε(p+�/2)/�

)
〈x + ε|ρ̂|x − ε〉

∂

∂t
f = Ωsin(x)

[
f (x, p − �/2) − f (x, p + �/2)

]
(F.18)
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Appendix G: Wigner Function Analysis of the Talbot-Lau Interferometer with a

Small Harmonic Potential

G.1 Equations of Motion

As shown in Appendix F, the interferometer is described by the density operator ρ̂ that

is governed by the equation of motion

i
∂

∂t
ρ = [Ĥ, ρ̂], (G.1)

where we have moved to a unitless expression. Accordingly, in our model of the

interferometer, the unitless Hamiltonian is

H =
P2

2
+

1

2
βX2 + Ω cos X. (G.2)

G.1.1 Solving the Full Equation of Motion

Using the results of Appendix F, the three contributions to the Hamiltonian are

combined to find the full equation of motion for the interferometer

(
∂

∂t
+ p
∂

∂x
− β
∂

∂p

)
f (x, p, t) = Ω sin x

[
f
(
x, p −

1

2

)
− f

(
x, p +

1

2

)]
. (G.3)

At t = 0, a laser pulse is applied. The laser pulses used in this type of interferometer

are in the Kapitza-Dirac regime, which occurs in the Raman-Nath limit. In this limit, the

coordinate and momentum derivatives in Eq. (6.6) may be neglected. If f0 is the Wigner

function just before the laser pulse, it can be shown that just after the laser pulse the Wigner

function is

f1 =

∞∑
nk=−∞

(−i)nJk(Ξ)Jn+k(Ξ)ei(n+2k)x f0

(
x, p −

n
2

)
, (G.4)

for the pulse power Ξ =
∫

dτΩ(τ), where the functions Jn are the Bessel functions of the

first kind.
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After the first laser pulse, the atoms are free to propagate in the harmonic potential.

During this time, the right hand side of Eq. (6.6) is zero. The remaining part of this equation

can be solved by substution. If f2 is the Wigner function after open propagation for time t,

f2(x, p, t) = f1(x cosωt −
p
ω

sinωt, ωx sinωt + p cosωt), (G.5)

where ω2 = β. Note that when β < 0, ω becomes imaginary and the cosine and sine

functions are replaced by hyperbolic functions.

If only a small residual potential to lowest order in β is considered, the equations of

motion become

f2 = f1

[
x − pt − β

(
xt2

2
−

pt3

3

)
, p + β

(
xt −

pt2

2

)]
. (G.6)

These equations are used again for the laser pulse at t = T , and for the final propagation

until time t = 2T + τ.

G.2 Recasting in Matrix Notation

Matrix notation is useful in order to better track the many terms involved in the

evolution of equations (G.4) and (G.6). We define

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x

p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

ẋ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ẋ

ṗ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = Mx =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1

−β 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
p

−βx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Note that with this definition

x(t) = exp(Mt)x0 = U(t)x0, (G.7)

and that U(t + τ) = U(t)U(τ). Using this notation, the effect of the first laser pulse at t = 0

(given by Eq. G.4) is
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f1 =
∑

nk

αnkegnk ·x f0(x − Nn), (G.8)

where

g =
(
i(n + 2k) 0

)
and Nn =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0

n/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (G.9)

The effect of a propagation until time t = T is given by

f2 = f1(U(−T )x) = f1(U−T x)

=
∑

nk

αnkegnk ·U−T x f0(U−T x − Nn). (G.10)

The effect of the second laser pulse at t = T is given by

f3 =
∑
ml

αmlegml·x f2(x − Nm)

=
∑
ml

αmlegml·x
∑

nk

αnkegnk ·U−T (x−Nm) f0(U−T (x − Nm) − Nn)

=
∑
mlnk

αmlαnkexp
(
gml · x + gnk · U−T x − gnk · U−T Nm

)
f0(U−T x − U−T Nm − Nn). (G.11)

The final propagation until time t = 2T + τ is given by

f4 = f3(U−(T+τ)x)

=
∑
mlnk

αmlαnkexp
(
gml · U−(T+τ)x + gnk · U−T U−(T+τ)x − gnk · U−T Nm

)
f0(U−T U−(T+τ)x − U−T Nm − Nn).

(G.12)

G.3 The Interferometer Signal

The interferometer signal is given by

S =
∫

d2xeix f4(x). (G.13)
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At this point, it is useful to define,

y = U−(2T+τ)x − U−T Nm − Nn

and

i =
(
, i 0

)
which allows the signal to be written as

S =
∑
mlnk

αmlαnkexp
[
iU2T+τNn + iUT+τNm + gml · Nm + gml · UT Nn + gnk · Nn

]
×

∫
d2yexp

[
(iU2T+τ + gmlUT + gnk)y

]
f0(y). (G.14)

If τ << T , we approximate

U(τ) ≈ 1 + Mτ,

U2T+τ ≈ U2T + U2T Mτ,

UT+τ ≈ UT + UT Mτ. (G.15)

Under these approximations, note that U(T + τ) � U(T )U(τ) as before. The approximated

signal is now

S =
∑
mlnk

αmlαnkexp
[
iU2T Nn + iU2T MτNn + iUT Nm + iUT MτNm + gml · Nm + gml · UT Nn + gnk · Nn

]
×

∫
d2yexp

[
(iU2T + iU2T Mτ + gmlUT + gnk)y

]
f0(y). (G.16)

Assume that β is small. By expanding U(t) in a Taylor series and keeping all the

lowest orders of β, we express

Ut ≈ U (0)
t − βU

(1)
t , (G.17)
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where

U (0)
t =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 t

0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ and U (1)
t =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
t2/2 t3/6

t t2/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
and

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1

−β 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = M(0) − βM(1),

where

M(0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ and M(1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0

1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Applying this approximation and eliminating terms that go as βτ and β2, the signal becomes

S =
∑
mlnk

αmlαnkexp
[
(iU0

2T Nn + iU0
T Nm + gmlNm + gmlU

0
T Nn + gnkNn)

− β(iU1
2T Nn + iU1

T Nm + gmlU
1
T Nn) + τ(iU0

2T M0Nn + iU0
T M0Nm)

]
×

∫
d2yexp

[
(iU0

2T + gmlU
0
T + gnk)y − β(iU1

2T + gmlU
1
T )y + τ(iU0

2T M0)y
]

f0(y). (G.18)

The exponential in the integral has three terms, proportional to 1, β, and τ. The term

proportional to 1 will oscillate quickly and only contribute when

iU0
2T + gmlU

0
T + gnk = 0, (G.19)

which forces l = −m/2 − 1 and k = (1 − n)/2. Under this condition,

S =
∑
mn

αm,−m/2−1αn,(1−n)/2

× exp
[
(iU0

T Nm + gmlNm) − β(iU1
2T Nn + iU1

T Nm + gmlU
1
T Nn) + τ(iU0

2T M0Nn + iU0
T M0Nm)

]
×

∫
d2yexp

[
− β(iU1

2T + gmlU
1
T )y + τ(iU0

2T M0)y
]

f0(y). (G.20)
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Evaluating the expression back from matrix form gives

S = A
∫

dudv exp
[
−iβ

(
T 2u + T 3v

)
+ iτv

]
f0(u, v), (G.21)

where

(u, v) =
(
x − (2T + τ)p +

mT
2
, p −

m + n
2

)
,

A =
∞∑

nm=−∞
αm,−m/2−1αn,(1−n)/2exp

[
i
(
mT
2
− β[6n + m]

T 3

12
+

m + n
2
τ

)]
,

and

αab = (−i)nJb(Ξ)Ja+b(Ξ), (G.22)

for whole integer indices a, b.
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