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AFIT-ENY-MS-17-M-293 

Abstract 

Simplified General Perturbations 4 (SGP4), the current analytical model for daily 

tracking of objects in Earth orbit, provides at best kilometer-level accuracy with an average 

error growth of 1 to 3 kilometers per day.  An improved analytical model with increased 

accuracy is necessary to reliably track the ever-growing number of objects in Earth orbit.  

This research examines if a Kolmogorov-Arnold-Moser (KAM) torus constructed from 

SGP4 two-line element (TLE) sets provides a more consistent orbit prediction than SGP4.  

One year of TLEs are processed as pseudo observations to identify the time rate of change 

of orbital elements for eight objects in different Earth orbits.  The rates are then used to 

calculate torus basis frequencies, and an attempt is made to construct a torus for each test 

case.  A least squares algorithm is implemented to fit SGP4 position vectors to the surface 

of the derived torus.  The orbit path along the surface of the torus is compared to the orbit 

produced by SGP4 via a root-mean-square analysis.  The results show that KAM tori basis 

frequencies can be extracted from TLEs, but SGP4 position vectors are not valid sources 

of pseudo observation data for the KAM torus analytical model with the current 

methodology. 
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I.  Introduction 

Motivation 

Reasonable decisions are informed by relevant and accurate data.  A decision to act 

requires actionable data.  In most situations, a leader presented with a 1-in-10,000 chance 

that a risk will occur is unlikely to take any action to further mitigate that risk.  Yet, in 

mitigating spacecraft conjunctions, a 1-in-10,000 chance is considered a high probability 

of collision.  The National Aeronautics and Space Administration (NASA), for example, 

always maneuvers crewed space vehicles when the collision probability for the space 

vehicle exceeds 1 chance in 10,000 (25; 26:14). 

Conjunction predictions between Earth-orbiting objects utilize covariance matrices 

to characterize the positional uncertainty of the objects in space and time.  Typical 

uncertainty ranges from hundreds of meters to several kilometers.  A predicted close 

approach distance of 0 meters—i.e., a direct collision—between two satellites with 1 

square meter cross sections each and a positional uncertainty of 1 kilometer provides less 

than a 1-in-1,000,000 chance the objects will actually collide.  Avoiding a possible 

collision is not as simple as just performing a maneuver.  Spacecraft operators must also 

consider the reduced lifetime caused by expending propellant to maneuver and the amount 
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of time the spacecraft will need to be offline until it can maneuver back to the nominal 

orbit.  When faced with the consequences of performing an avoidance maneuver, 1 chance 

in 1,000,000 is not worth the loss in operation time and mission life. 

The uncertainty in orbital position predictions stems from multiple sources, 

primarily fluctuations of the atmosphere, excluded gravitational perturbation terms in the 

dynamics model, and the intrinsic uncertainty in measurement data from radar and optical 

tracking equipment (23:1109).  The primary orbit propagation model, Simplified General 

Perturbations 4 (SGP4), is known to provide, at best, kilometer-level accuracy with average 

error growth of 1 to 3 kilometers per day (33:30).  In short, space operators simply do not 

currently have access to actionable information. 

The commander of United States Strategic Command (USSTRATCOM) is directly 

responsible for space control and space surveillance.  This Joint Functional Component 

Command for Space (JFCC Space) conducts this aspect of the USSTRATCOM mission, 

known as space situational awareness (SSA).  One key element of SSA is to protect space 

capabilities, both from hostile attacks and orbit collisions. The Joint Space Operations 

Center (JSpOC), one of three operation centers within JFCC Space, performs SSA by 

operating the Space Surveillance Network (SSN) to detect, identify, and track objects in 

Earth orbit (17). 

As of 2015, 11 nations have space launch capabilities and over 170 countries have 

access to assets in space (10).  The JSpOC tracks over 23,000 objects in Earth orbit and the 

number of objects continues to grow every year.  As the commanders of the aforementioned 

organizations say, space is increasingly becoming more congested, contested, and 

competitive (10; 11; 17; 36).  Space-based capabilities are an indispensable component to 
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military and civilian operations around the world.  The United States in particular depends 

heavily on space assets both to maintain military superiority and to operate many civil and 

commercial aspects of the economy. 

With such a critical dependence on space capabilities, protecting space-based assets 

from damage is of significant importance to the United States.  The possibility of collision 

between Earth-orbiting objects is one of the primary threats to space assets.  A collision 

would not only destroy an operational satellite, it would also create a significant amount of 

debris.  The fragmented debris produced by one collision then greatly increases the 

probability of future collisions, potentially leading to the Kessler scenario in which the rate 

of collisions increases exponentially, culminating in a debris belt around Earth that renders 

one or more orbit regimes unusable (20). 

In addition to detecting and tracking objects in Earth orbit, the JSpOC also 

identifies potential orbital collisions.  The JSpOC utilizes two types of propagators to 

determine the predicted future location of orbiting objects: an analytical general 

perturbation propagator that can provide a position vector at any future time with one 

calculation and a numerical special perturbation propagator that is more accurate but must 

calculate several hundred or thousand positions between the current time and the future 

time of interest. 

Position data of all cataloged objects is propagated forward in time with SGP4, the 

analytical propagator.  Any detected close approaches—a miss distance of 1 kilometer for 

low Earth orbits (LEO) and 5 kilometers for geosynchronous1 orbits (GEO)—are then 

                                                 
1 The term GEO is used throughout this document to indicate low eccentricity orbits, 

regardless of inclination, with an orbital period equal or nearly equal to one sidereal day. 
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passed to Special Perturbations (SP), the numerical propagator (36).  SP produces a more 

accurate position estimation than SGP4 and includes a covariance matrix, but the 

propagation process takes significantly more computation time than the analytical model.  

The details of a potential collision are then issued to spacecraft operators via a Conjunction 

Data Message (CDM). 

The JSpOC issued 671,727 CDMs in 2014, resulting in 121 collision avoidance 

maneuvers (10; 24:2).  The following year saw 1.2 million warnings and 148 avoidance 

maneuvers (11).  If one assumed conservatively that those maneuvers would have resulted 

in a collision if a maneuver were not performed, then this means that less than 0.02% of 

predicted conjunctions would actually result in a collision, or that over 99% of CDMs are 

false-positive warnings. 

Although more accurate than SGP4, SP still maintains simplifications in order to 

reduce computation time (26).  Implementation of a high-fidelity numerical integrator is 

infeasible given the large quantity of objects in Earth orbit and the number of predicted 

close approaches, yet a higher fidelity model is clearly necessary in order to reduce the 

false-positive collision warnings.  Less orbits would need to be analyzed if the initial close 

approach estimate were more accurate. Time spent analyzing meaningful conjunction 

possibilities could then increase, allowing for higher fidelity numerical integration. 

Problem Statement 

Given the continual increase in space launches and the expected growth of the 

satellite catalog by an order of magnitude when the upcoming Space Fence system is 

activated, there exists a clear need for a fast and accurate analytical method of orbit 
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propagation (10; 30).  There are simply too many objects in space to perform special 

perturbation predictions for each object.  The quantity of close approaches predicted by 

SGP4 already exceeds the capability of SP to perform an appropriately detailed analysis 

for each close approach.  Numerical analysis cannot sustain the current rate of false positive 

conjunction predictions with the forecasted growth of the satellite catalog. 

Higher fidelity special perturbation propagators could be implemented if the 

number of predicted close approaches were lessened, resulting in a significantly lower rate 

of false positive conjunction predictions.  A fast analytical model with increased accuracy 

and reduced error growth over time is necessary in order to minimize the number of 

predicted close approaches and identify possible conjunctions with a reasonable probability 

of occurrence.  An improved analytical propagator that could provide position estimates 

with errors on the order of hundreds of meters or less, instead of the thousands of meters 

currently achieved by SGP4, is necessary. 

Research Objective 

Kolmogorov, Arnold, and Moser introduced and verified a theory that the path 

traced by the solution to a nearly-integrable system lies on the surface of an invariant—

albeit deformed—torus, known now as a KAM torus.  This research examines whether or 

not the KAM torus orbit model can utilize SGP4 data to provide a better analytical orbit 

determination than SGP4.  Specifically, this research aims to determine if the two-line 

element (TLE) sets produced by SGP4 can be used as pseudo observation data to generate 

a KAM torus model of the orbit capable of predicting the future position of the object more 
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consistently than SGP4 and for a longer period of time into the future.  In order to perform 

this comparison, this research addresses the following questions: 

1. How do the position predictions of SGP4 from one TLE diverge from the 

position predictions of subsequent TLEs? 

2. How do the position predictions of a reference orbit on a KAM torus diverge 

if the orbit is not updated with additional observation data? 

3. How do the position predictions of a KAM torus orbit model differ from the 

position predictions of SGP4? 

If the results show that the torus position predictions are more consistent than the 

SGP4 position predictions, then this research will indicate that TLEs can be utilized as 

pseudo observation data for the KAM torus model.  This result would also indicate that the 

torus model requires fewer updates than SGP4 and possibly provides better accuracy, 

though the exact accuracy of the orbit prediction cannot be determined by the work of this 

research alone.  If the results instead show that SGP4 position predictions are more 

consistent than the torus predictions, then this research will indicate that TLEs may not be 

a useful source of data for the KAM torus orbit model. 

Research Approach 

This effort utilizes three software packages to achieve the research objectives.  The 

first software package, developed by Wiesel (41), builds a KAM torus model of an orbit 

that includes air drag, eccentricity, and gravitational perturbations.  The gravitational 

perturbations include zonal, sectoral, tesseral harmonics of the geopotential through an 

order and degree specified by the user.  The software accepts orbit period and inclination 
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as inputs to specify an orbit with desired torus basis frequencies.  The second package is 

the publically available SGP4 code compiled and released by Vallado (32).  The software 

package accepts TLEs as inputs in order to output position and velocity vectors at a user-

defined time before or after the TLE epoch.  The final software package, also developed 

by Wiesel, performs a least squares fit to match position vectors to the surface of a KAM 

torus with minimal residuals.  This software outputs a state vector that specifies an epoch 

time, perturbations to the torus action variables, angle variables that define a position on 

the surface of the torus, and a ballistic coefficient that averages the effects of air drag over 

the timespan of the input position vectors. 

This research makes the following assumptions in order to achieve the research 

objectives.  First, the publicly available version of SGP4 released by Vallado is assumed 

to be a close enough representation of the Air Force Space Command (AFSPC) classified 

version.  Significant documentation is included with this public version of SGP4 to validate 

the accuracy of the software, yet no comparison is available to determine how closely it 

resembles the classified operational version.  Second, this research assumes that a TLE 

released less than 1 hour after the preceding TLE indicates an update to the previous TLE.  

TLEs are generally released several hours or days apart, but on occasion two sequential 

TLEs will be released with identical or nearly identical epoch dates.  The other elements 

all differ when this occurs, thus the two TLEs cannot both be valid.  Finally, this research 

assumes TLEs are statistically independent and equally reliable.  This assumption provides 

a covariance matrix equal to the identity matrix when using TLEs as pseudo observation 

data.  Although the covariance matrix for TLEs is known to not be equal to the identity 
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matrix, the true covariance cannot be known because the true accuracy of the measurement 

data is unknown.  The identity matrix is the best guess for the unknown covariance matrix. 

Thesis Overview 

This document contains five chapters.  This first chapter provided motivation for 

and an overview of this research.  Chapter I has also outlined how this research will be 

performed, provided the assumptions of this research, and summarized the possible 

outcomes that can be drawn from the results.  Chapter II expands upon the concepts 

presented in Chapter I and provides the operational, theoretical, and mathematical 

background necessary to understand the current methods utilized to track Earth-orbiting 

objects.  Chapter II also presents as a summary of similar research and the intended 

contributions of this research.  Chapter III details the methodology and process performed 

to acquire data and answer the research questions posed in Chapter I.  Chapter IV presents 

and discusses the results of the procedure outlined in Chapter III for one of the eight test 

cases and concludes with a summary of the overall results of this research effort.  Chapter 

V answers the questions posed in Chapter I, presents suggestions for future study, and 

summarizes the conclusions drawn from this research.  The appendices contain source code 

for the custom MATLAB2 scripts written in support of this research as well as the results 

for the additional seven test cases that are not presented in Chapter IV.  

                                                 
2 MATLAB is a registered trademark of The MathWorks, Inc. MATLAB release R2015b 

was used for this research. 
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II. Background 

Space Surveillance Network 

The SSN has been tasked to actively detect and track objects in Earth orbit since 

1957.  Of the approximately 23,000 cataloged objects currently tracked by the SSN, only 

about 5 percent are active satellites; the remaining 95 percent are inactive satellites, rocket 

bodies, and debris (31).  The network is capable of tracking objects 5 centimeters across or 

larger in LEO and 1 meter across in GEO (25).  The Department of Defense (DoD) and 

NASA estimate an additional one million pieces of debris too small to be tracked by the 

SSN are currently in orbit around Earth.  The upcoming Space Fence system will provide 

the ability to track objects 2 centimeters across and larger.  The number of cataloged objects 

is expected to increase astronomically the day the Space Fence is activated, growing to 

over 200,000 objects (10; 30). 

The SSN operates via a worldwide network of 30 radar and optical sensors 

positioned both on Earth and in orbit (31).  Due to the limited number of sensors in 

comparison to the quantity of orbital objects, the SSN is incapable of simultaneously 

tracking every object in real time.  Instead, the network combines a predictive technique 

with observation data to periodically track each object.  Past observations are propagated 

forward in time via the SGP4 dynamics model, and the SSN looks for the objects at the 

predicted future locations.  The SSN sensors perform approximately 400,000 total 

observations each day and the JSpOC must correlate the observations to the predicted 

positions of cataloged objects. 
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Orbit Propagation Models 

Although the orbital dynamicists in the late 1950s and early 1960s knew of the 

effects due to the nonhomogeneity of Earth, atmospheric drag, and other perturbations that 

affect an orbit, computers of that era were incapable of incorporating such perturbations 

into the calculations necessary to integrate trajectories for all objects in Earth orbit.  The 

most computationally powerful computer in 1958 required as little as 15 minutes and as 

much as several hours to update a single orbit with a simplified second-order special 

perturbation model (16:175).  An analytical orbit prediction model was necessary in order 

to maintain what would soon become a vast catalog of Earth-orbiting objects. 

Two Body Problem. 

Kepler’s three laws of planetary motion, and Newton’s later mathematical 

derivation of those laws, provide the fundamental analytical model of periodic orbits.  The 

two-body solution3 results in the six classical orbital elements, which together completely 

define a periodic orbit: 

𝑎 semi-major axis 

𝑒 eccentricity 

𝑖 inclination 

Ω right ascension of the ascending node 

𝜔 argument of perigee 

𝜈 true anomaly 

                                                 
3 See Vallado (32) or other introductory astrodynamics texts for additional information on 

and the derivation of the two-body solution. 
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Figure 1 shows four of the six classical orbital elements.  The two elements missing 

in Figure 1 are the semi-major axis and eccentricity, which together define the shape of the 

orbit.  The classical orbital elements can be transformed to Earth-centered inertial position 

and velocity vectors and vice versa.  In this solution, all elements are constant save the true 

anomaly, which continually increases with time.  An additional parameter, 𝑀, the mean 

anomaly, can be used in place of the true anomaly to described where the satellite is in its 

orbit relative to perigee.  One benefit of the mean anomaly is that it increases at a constant 

rate, 𝑛, the mean motion, whereas the rate of the true anomaly is dependent on the position 

of the satellite in the orbit. 

 

Figure 1.  Classical Orbital Elements Angles 
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The classical orbital elements have some distinct disadvantages.  The argument of 

perigee and true anomaly become undefined for circular orbits, and the right ascension of 

the ascending node is undefined for zero inclination orbits.  These shortcomings can be 

overcome by transforming to a different coordinate system, such as the equinoctial 

elements, but one flaw of the two-body solution cannot be overcome: the equations of 

motion in the solution fail to account for any perturbations on an orbit.  The lack of 

perturbations makes the two-body solution unacceptable for real-world application to 

satellite tracking. 

Gravitational Perturbations. 

The oblate spheroidal shape and non-homogenous mass distribution of Earth causes 

a non-uniform gravitational field.  The gravitational acceleration at any point on or above 

the surface of Earth is expressed as a geopotential function.  Wiesel (38:91) presents an 

expansion of the geopotential in spherical harmonics as 

where 𝑟 is the distance from the center of Earth to the point of interest, 𝜃 is the latitude, 𝜑 

is the east longitude, 𝜇⨁ is the gravitational parameter of Earth, 𝑅⨁ is the radius of Earth, 

𝑃𝑛
𝑚(cos 𝜃) are Legendre polynomials in cos 𝜃, and the coefficients 𝐶𝑛𝑚 and 𝑆𝑛𝑚 are 

dimensionless coefficients that specify the shape of the gravitational field.  The values of 

 𝑉(𝑟, 𝜃, 𝜑) = −
𝜇⨁

𝑟
∑ ∑ (

𝑟

𝑅⨁
)

−𝑛

𝑃𝑛
𝑚(cos 𝜃)[𝐶𝑛𝑚 cos(𝑚𝜑) + 𝑆𝑛𝑚 sin(𝑚𝜑)]

𝑛

𝑚=0

∞

𝑛=0

 (1) 
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𝑛 and 𝑚 specify the order and degree of a term in the geopotential, respectively.  A set of 

values for 𝐶𝑛𝑚 and 𝑆𝑛𝑚 is called a gravitational model4.   

The terms in the geopotential of degree 𝑚 = 0 are called zonal harmonics and 

depend solely on the latitude of an object.  The first nonzero zonal harmonic is the J2 term, 

which is three orders of magnitude smaller than the Newtonian point mass gravitation and 

three orders of magnitude larger than the J3 and J4 terms.  The effects of the zonal harmonics 

are small but noticeable, and higher order zonal terms rapidly diminish as the distance from 

Earth increases (38:96).  Terms with equal order and degree, 𝑛 = 𝑚, are called sectoral 

harmonics and depend solely on the longitude of an object.  The largest sectoral harmonics, 

𝐶22 and 𝑆22, are on the order of 10-6, or about the same order of magnitude as J3 and J4.  

Finally, terms of degree 𝑚  0 and order 𝑛  𝑚 are called tesseral harmonics.  These terms 

are dependent on both latitude and longitude.  The largest tesseral harmonic terms are again 

roughly the same order of magnitude as J3 and J4, but their effect on an object rapidly 

decrease with only a slight increase in distance from Earth. 

Wiesel (38:119) also demonstrates how gravitational perturbations due to Earth’s 

oblateness, the J2 term, affect the two-body solution.  The non-periodic disturbances due 

to J2 cause the right ascension of the ascending node, argument of perigee, and mean 

anomaly at epoch, 𝑀0, to change at the constant rates 

                                                 
4 This research utilizes the World Geodetic Survey 84 (WGS 84) gravitational model 

through order 4 and degree 0 for implementation of SGP4.  All other applications in this 

research utilize Earth Gravitational Model 1996 (EGM96) through order and degree 20. 

 
Ω̇ = −

3𝑛𝐽2𝑅⨁
2

2𝑎2(1 − 𝑒2)2
cos 𝑖 (2) 



14 

The remaining two-body orbital elements are constants when periodic disturbances are 

excluded, therefore Equations (2)-(4) can be integrated with respect to time in order to 

solve for the right ascension of the ascending node, argument of perigee, and mean 

anomaly at any point in time as 

where 𝑀0 indicates an initial known value of mean anomaly at some epoch time and 𝑡 is 

the time elapsed since that known condition. 

These equations can also reveal some other information specific to the perturbations 

caused by Earth’s oblateness.  Equation (3), for example, reveals the critical inclination, 

i.e., the orbit inclination at which Earth’s oblateness will not cause the location of perigee 

to change within the orbit plane.  The value of 𝜔̇ equals zero when the inclination is 

approximately 63.435 or 116.565 degrees. 

History of Orbit Propagators. 

Dynamicists developed several different analytical theories in the 1950s to include 

the geopotential in the solution for motion of an object in Earth orbit.  The majority of 

solutions revolved around adding perturbations to the two-body solution.  Four noteworthy 

 
𝜔̇ = −

3𝑛𝐽2𝑅⨁ ⨁
2

2𝑎2(1 − 𝑒2)2
(

5

2
sin2(𝑖) − 2) 

𝑀̇0 = −
3𝑛𝐽2𝑅⨁

2

2𝑎2(1 − 𝑒2)1.5
(

3

2
sin2(𝑖) − 2) 

(3) 

  

(4) 

 Ω = Ω0 + Ω̇𝑡 

𝜔 = 𝜔0 + 𝜔̇𝑡 

𝑀 = 𝑀0 + (𝑛 + 𝑀̇0)𝑡 

(5) 

(6) 

(7) 
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solutions were developed by Vinti, Kolmogorov, Brouwer, and Kozai to partially account 

for the influence of zonal harmonics. 

Vinti Solution. 

Vinti approximated drag-free motion of a satellite under the influence of the 

second-, third-, and partial fourth-order zonal harmonics.  Unlike many other solutions 

available at this time, Vinti’s solution had no singularities for small eccentricity, zero 

inclination, or critical inclination orbits; however, Vinti’s solution was difficult to 

formulate due to the need to compute elliptical integrals in an oblate spheroidal coordinate 

system (34).  This difficulty may be the reason Vinti’s solution has remained virtually 

unutilized for decades.  Despite the notoriety, Vinti continued to extend his solution 

through the late 1900s to incorporate additional perturbation forces.  Vinti’s efforts are 

documented in his published textbook (35). 

Kolmogorov Solution. 

Another relatively unutilized model for satellite motion in Earth orbit is the KAM 

torus.  The solutions to integrable Hamiltonian systems5—i.e., systems with a number of 

constants of motion equal to the number of degrees of freedom—lie on the surfaces of 

invariant tori in the phase space.  Kolmogorov published a theory in 1954 that stated what 

happens to the solutions of integrable systems when subjected to small perturbations, 

thereby rendering the systems non-integrable.  Kolmogorov’s theory postulated that the 

solutions for a nearly-integrable system also lie on the surfaces of invariant yet deformed 

tori that are near the tori solutions of the integrable system.  Arnold and Moser provided 

                                                 
5 See Greenwood (14) or other analytical dynamics texts for a description of Hamiltonian 

systems and their solutions. 
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additional proofs of Kolmogorov’s theory in the early 1960s, hence the name Kolmogorov-

Arnold-Moser (KAM) torus.  Additional research efforts have provided further 

mathematical and numerical proofs for the KAM theorem and are documented by Celletti 

and Chierchia (4).  Wiesel has also shown that the KAM torus is the exact solution for 

objects in Earth orbit subjected to the geopotential (38:202). 

Action-angle variables best describe the path along the surface of a torus.  The 

action variables are constants that designate the spatial dimensions of the torus in the phase 

space.  The angle variables increment linearly in time and designate the trajectory along 

the surface of the torus.  A trajectory with angular rates that are integer multiples of each 

other results in periodic motion on the surface of the torus, i.e., the trajectory retraces the 

same path indefinitely.  For a trajectory with non-commensurate angular rates, the 

trajectory will never retrace the same path twice, but the trajectory will eventually pass 

arbitrarily close to every point on the torus.  Both periodic and quasi-periodic phase 

trajectories lie on the surfaces of N-dimensional tori in a 2N-dimensional phase space, 

where N is the number of independent coordinates (28:212-303).  The dimension of the 

torus specifies the degrees of freedom, e.g., a 2-dimensional torus in a 4-dimensional phase 

space has two degrees of freedom. 

Figure 2 (a) shows an example 1-dimensional torus.  Figure 2 (b) and (c) show a 2-

dimensional torus from a top-down view and cross-sectional view, respectively.  In both 

examples, 𝐽 are the action variables and 𝑄 are the angle variables.  Phase trajectories for 

the solutions to an integrable system lie on the surfaces of actual tori in the phase space, 

such as those shown in Figure 2; deformations to the tori occur only when a system is 

subjected to small perturbations and rendered non-integrable.  Both integrable and non-
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integrable systems may have multiple tori solutions dependent on the initial conditions of 

the system. 

 

Figure 2.  Example of 1-Dimensional and 2-Dimensional Tori 

KAM theorem explains the effects of small perturbations on integrable systems.  

The small perturbations cause the system to become non-integrable, but the system does 

remain nearly integrable with solutions that are near the solutions of the integrable system.  

When an integrable system is subjected to perturbations, the periodic tori trajectories of the 

(a) 

(b) (c) 
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integrable system are usually rendered invalid but the tori of quasi-periodic trajectories 

persist with deformation to the tori actions (38:193).  In the case of the periodic solutions, 

the resonances may lead to perturbations that potentially do not remain small, which 

violates the underlying premise of KAM theorem that states the system must be subject to 

small perturbations.  For the non-resonant solutions of an integrable system subjected to 

perturbations, most of the tori solutions are preserved and the new solutions for the non-

integrable system may show either periodic or quasi-periodic motion on the surfaces of 

deformed tori (7:416-417). 

Brouwer and Kozai Solutions. 

Both Brouwer’s and Kozai’s solutions modeled drag-free motion under the 

influence of zonal harmonics J2, J3, J4, and J5 as a function of mean orbital elements and 

time (32:692-696).  Both of these solutions had singularities for circular orbits, zero 

inclination orbits, and orbits near the critical inclination.  Despite the singularities, these 

models, particularly Brouwer’s solution, became the foundation for most space 

surveillance systems in the United States (16:175). 

Updates to analytical orbital theory over the subsequent few decades primarily 

consisted of modifying the Brouwer and Kozai solutions.  In 1961, Brouwer and Hori 

incorporated atmospheric drag with a static exponential representation of the atmosphere 

(16:175).  The United States Air Force’s initial general perturbations model, Simplified 

General Perturbations (SGP), was based on a modified version of Brouwer’s and Kozai’s 

solutions and included an empirical atmospheric model but excluded terms that caused 

singularities due to eccentricity.  By 1964, SGP had become the predominant prediction 

model for satellite tracking sites around the world (16:176). 
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Lyddane (22) performed a change of variables in 1963 to remove the singularities 

in SGP for zero eccentricity and zero inclination orbits.  Lane and Crawford developed an 

improved analytical atmospheric density model in 1969; however, the computers of that 

time proved incapable of managing the number of terms in the atmospheric model for all 

of the satellites in the catalog (16:176). 

Simplifications to SGP were implemented in 1970 to balance the growing number 

of satellites with the limited capability of computers, resulting in SGP4.  Lyddanne’s work 

to remove singularities and a simplified version of the Lane and Crawford atmospheric 

model were incorporated into SGP4 (16:176).  The gravitational model was likewise 

shortened for SGP4 to retain only periodic terms that lacked eccentricity as a factor. 

Whereas SGP approximated atmospheric drag via the rate of change of mean 

motion, the newer SGP4 encapsulated the secular effects of drag in a single term as a 

quadratic function in time.  The SGP4 ballistic coefficient, B*, relates to the aerodynamic 

ballistic coefficient by 

where 𝜌0 is a reference value for atmospheric density and 𝐵 = 𝐶𝐷𝐴/𝑚, the traditional 

definition for the aerodynamic ballistic coefficient in terms of drag coefficient, 𝐶𝐷; cross-

sectional area, 𝐴; and mass, 𝑚 (18).  The simplified model of the ballistic coefficient in 

SGP4 inadvertently captures other forcing effects not modeled by SGP4, sometimes 

resulting in a negative value that erroneously indicates energy added to the system (33). 

The Soviets launched Molniya-1, the first highly eccentric satellite with a 12-hour 

period, in 1965.  Soon after, the United States space community realized that a new general 

 
𝐵∗ =

𝐵𝜌0

2
 (8) 
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perturbations model that accounted for third body gravitation and additional Earth 

gravitational harmonics was necessary for this class of orbit.  Bowman modeled lunar and 

solar gravity as well as partial resonance effects of Earth tesseral harmonics in 1967.  By 

1977, Hujsak managed to incorporate a first-order model of Bowman’s work into an 

updated model for both near-Earth and geosynchronous satellites (16:176).  This model 

became Simplified Deep Space Perturbations 4 (SDP4) and is utilized for satellites with a 

period greater than 225 minutes, which corresponds to an altitude of 5,877 kilometers for 

circular orbits. 

Over the next few years, many users of SGP4 and SDP4 incorporated their own 

customizations.  Hoots and Roehrich released Spacetrack Report No. 3 in 1980 in an effort 

to synchronize code implementation among all users.  The report did not include equations 

but did contain source code for the propagation models.  The user community adopted this 

first public release of SGP4 and SDP4, but the community again made subsequent 

refinements with little documentation of changes.  NASA released a version of the code 

worldwide in 1990, at which point SGP4 and SDP4 were merged into a single model 

referred to as just SGP4 (33:2). 

Hoots published a technical information package on SGP4 in 1998 that outlined the 

history of the equations. In 2004, Hoots et al. (16) published complete documentation of 

all equations to incorporate resonances, third-body forces, drag, and other perturbations in 

SGP4.  This release appears to have standardized SGP4 for all users as no subsequent 

updates have been publically documented. 
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Current Orbit Perturbation Models. 

The JSpOC operates with two orbit propagators: SGP4 and SP.  SGP4 propagates 

orbits for all tracked objects and, if a close approach is detected, SP performs a higher 

fidelity propagation.  Table 1 lists some key features and differences of SGP4 and SP. 

Table 1. Comparison of SGP4 and SP Propagation Models 

Perturbation Feature SGP4 SP 

Atmospheric drag Simplified analytic model Empirical model 

Solar radiation pressure Not included Constant reflectivity model 

Earth tidal motion Not included Low-order model 

Earth gravity Low-degree zonal only Through degree and order 36 

Third body gravity Semi-analytic model Ephemerides model 

Error estimation Not distributed Covariance propagation 

 

General perturbation propagation methods produce orbit predictions that are 

qualitatively accurate over long periods of time whereas special perturbation propagation 

methods produce orbit predictions that are quantitatively accurate over short time periods. 

Numerical integration requires significantly more time to compute a prediction and is thus 

reserved only for detailed analysis of orbits rather than daily propagation. 

The National Research Council (26:32-33) emphasized the importance of 

maintaining efficient analytic orbit propagators in 2012, yet little effort has been made 

since the late 1990s to update the analytical solutions; instead, efforts have focused 

primarily on improving accuracy and speed of numerical integration models in order to 

capitalize on the availability of faster computer processors.  The constant increase of 
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objects in Earth orbit makes an accurate general perturbations model vitally important for 

tracking the objects and predicting collisions with a reasonable level of accuracy, yet SGP4 

has not received a software or hardware update for over 20 years despite modern 

advancements in astrodynamics systems research (26:46). 

Two-Line Element Sets 

The JSpOC publishes TLEs to report SSN observation and tracking data.  The 

values reported in a TLE represent the mean values of many observations calculated to fit 

the SGP4 dynamic model (19).  The JSpOC issues new TLEs as needed rather than on a 

set schedule.  Objects with the ability to maneuver and objects in LEO where atmospheric 

drag is significant will have TLEs updated more frequently than non-maneuvering objects 

or objects in GEO.  In general, the JSpOC releases a new TLE when the position predicted 

by SGP4 based on the current element set differs by 5 kilometers or more from the 

predicted position of a new element set based on recent observations. 

A TLE consists of two 69-character lines of alpha numeric values.  Figure 3 shows 

a TLE with an epoch date of 1 January 2016 for the Hubble Space Telescope and identifies 

the content of each field.  The subsequent paragraph provides additional detail for clarity.  

See Kelso (18) for a further description of each field with significant detail. 
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Figure 3.  Hubble Space Telescope Two-Line Element Set 

The epoch year and day increment at midnight in Coordinated Universal Time 

(UTC).  An epoch of 16001.50000000 corresponds to 2016 January 1 12:00:00.000.  Units 

of days are reported as 24-hour days rather than sidereal days.  The final two characters in 

the second derivative of mean motion and B* indicate an applicable power of 10.  In the 

B* value of Figure 3, for example, the -4 corresponds to 10-4.  The true value of B* is 

unknown for objects in orbit; instead the dynamics model adjusts the B* term as necessary 

to account for non-linear changes in mean anomaly.  B* has units of inverse Earth radii.  

The second derivative of mean motion, B*, and eccentricity all have an assumed leading 

decimal before the first digit.  The orbit revolution number normally increments each time 

the object passes the ascending node in orbit; however, the value occasionally does not 

increment correctly, erroneously failing to increment. 

The TLE format arbitrarily limits the precision of the data.  An ideal format would 

report a number of digits in the output equal to the number of digits used to calculate the 

data in order to minimize precision loss.  The eight digits after the decimal in the epoch 

day allow for precision within 4.32x10-4 seconds.  At an orbital speed in LEO of 7.6 

kilometers per second, a satellite will travel approximately 4 meters in that time.  The seven 

decimal places in eccentricity limit position of a satellite in GEO to approximately 2 
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meters.  The four decimal places in argument of perigee and mean anomaly create 

uncertainty of 6 meters at LEO and 35 meters at GEO (32:108). 

In addition to the loss of precision, the method to generate TLEs and report orbit 

data compounds errors into the reported values.  The raw observation data includes 

inaccuracies dependent on the type and location of the sensor used to record the observation 

while the SGP4 dynamics model incorporates numerous simplifications in order to ease 

computational requirements.  These errors vary for each observation and each generation 

of a new TLE, thus each TLE has a different yet unknown level of accuracy.  No known 

method exists to report the independent accuracy of each TLE released by the JSpOC; 

however, TLE data from SGP4 is, on average, accurate to approximately 1 kilometer at the 

TLE epoch with average error growth of 3 kilometers per day (33:30). 

Conjunction Assessment 

The CDM is an international standardized format to exchange spacecraft 

conjunction information between the agency that detects a possible conjunction and the 

satellite operator.  The JSpOC issues a CDM to satellite operators when an on-orbit 

collision is detected between an active satellite and any other object in orbit.  The CDM 

replaced the conjunction summary message in 2014 following recommendations from the 

National Research Council and the Consultative Committee for Space Data Systems. 

The CDM consists of a number of mandatory fields and allows for several optional 

fields to be populated depending on the amount of data available.  Among the mandatory 

fields are the identification of the two objects that are predicted to collide, the predicted 

time of conjunction, the predicted close approach distance, the current position and velocity 
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vectors of each object, and the covariance matrix for each object (5).  This information 

allows the spacecraft operators to independently calculate a probability of collision and 

determine whether or not to maneuver. 

Related Research 

Research into Vinti’s solution shows that it is more accurate and less 

computationally intensive than Brouwer’s and Kozai’s methods (2).  Vinti’s solution can 

also be used in semi-analytic computations—i.e., a mixture of numerical and analytical 

techniques—to produce results with greater accuracy than SGP4 in the same or less time 

(42).  This and similar research into other analytical and semi-analytical propagators 

identifies possible areas for improvement in how the JSpOC predicts future positions for 

objects in the satellite catalog. 

Other research has examined the consistency and uncertainty of TLEs.  Osweiler 

(27) found that TLEs displayed minor positive correlation to their immediate predecessors, 

indicating a consistency in the position predictions between subsequent TLEs.  As 

expected, the correlation decreases over time.  The correlation also decreases for objects in 

LEO where atmospheric and gravitational perturbations are more prevalent. 

Flohrer, Krag, and Klinkrad (12) compared TLEs to high-accuracy ephemerides 

data to estimate the intrinsic uncertainties of TLEs.  They found that TLEs for objects in 

orbits with high eccentricity will have greater uncertainty than TLEs for objects in low 

eccentricity orbits.  Additionally, for non-circular orbits, TLEs for objects in low 

inclination orbits tended to have greater uncertainty than those for objects in higher 

inclination orbits. 
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KAM Theorem. 

Much research effort has examined the application of KAM theorem on celestial 

bodies, but little research has examined the practical application for Earth satellite motion.  

Wiesel identified an exact KAM tori periodic orbit solution for Earth orbits utilizing the 

zonal harmonic subset of the geopotential.  Much like the two-body solution, sectoral and 

tesseral harmonics, air drag, and other forces can be included in the model as perturbations 

from the periodic orbit.  Expressed in an Earth-centered, Earth-fixed reference frame, the 

orbit plane of the periodic solution will precess at a rate that is unknown until the orbit has 

been constructed; therefore, the orbit must be defined in an Earth-centered inertial 

reference frame.  In order to achieve a periodic orbit, the orbit must satisfy the function 

where 𝑧(𝑡) is the z-component of the Cartesian position vector, 𝒓(𝑡) is the Cartesian 

position vector as a function of time, 𝒑(𝑡) is the Hamiltonian momentum vector as a 

function of time, 𝑥0 is the initial position at time zero, 𝑥̇0 is the initial radial velocity at 

time zero, and 𝜏 is the orbit period. 

Equation (9) specifies that the satellite must have the same radial velocity and be at 

the same distance from Earth at each ascending equatorial crossing.  The solution to this 

equation is documented in Wiesel (41).  The result identifies two actions and two angles 

that define the solution as motion on a torus, where one angular rate is the orbital frequency 

and the other is the inertial nodal regression rate.  These variables define a single orbit on 

the surface of a two-dimensional torus but fail to account for motion near the periodic orbit.  

 𝑮 = {

𝑧(𝜏)

𝒓(𝜏) ∙ 𝒑(𝜏) − 𝑥0𝑥̇0

𝒓(𝜏) ∙ 𝒓(𝜏) − 𝑥0
2

} = 𝟎 (9) 



27 

The Floquet solution6, which examines stability of motion near the periodic orbit, adds a 

third pair of action-angle variables, where the rate of the third angle is the apsidal 

precession rate.  Equation (9) and the accompanying Floquet solution result in a total of six 

variables—three actions and three angles—that define a position and trajectory on the 

surface of the torus. 

Most, if not all, research into KAM theorem as it applies to objects in Earth orbit 

appears to rely on Wiesel’s solution.  Wiesel demonstrated that a reference torus generated 

from frequencies identified with a Fourier analysis deviates from a numerically integrated 

orbit by only a few meters over several years of propagation (37; 40).  Various research 

efforts have applied Wiesel’s torus solution and construction algorithm to observation data, 

Global Positioning System (GPS) ephemeris data, and numerically integrated data, all with 

varying levels of success (1; 3; 6; 8; 9; 13; 15; 21; 43). 

Derbis (8) attempted to extract torus frequencies from ephemeris data for GPS 

satellites using a Laskar frequency analysis.  She compared the resulting tori to numerically 

integrated data and discovered inconsistent basis frequencies between those extracted from 

the ephemeris data and those extracted from the numerical integration.  These 

inconsistencies ultimately prevented her from identifying a third basis frequency.  She 

suspected the discrepancy resulted from GPS satellites residing in a resonance orbit, which 

results in two commensurate frequencies.  Bordner (3) expanded Derbis’s research and 

attempted to identify the third basis frequency as a libration frequency associated with the 

resonance orbit instead of the traditional apsidal rate.  Bordner identified a third frequency, 

                                                 
6 See Wiesel (38:15-16) for a brief introduction on Floquet Theory or Wiesel (41) for a 

description of Floquet Theory as it pertains to this research. 
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but the long period of the frequency prevented the tori from providing valid orbit fits due 

to the frequent maneuvers of GPS satellites. 

Little (21) also implemented a frequency analysis to identify torus frequencies from 

ephemeris data of the Jason-1 and Gravity Recovery and Climate Experience (GRACE) 

satellites.  Little analyzed short periods of data between maneuvers in order to identify the 

torus frequencies.  He successfully produced a KAM torus for the Jason-1 satellite that 

maintained residuals under 1 kilometer for over 30 days, but he failed to generate a torus 

for the GRACE satellite, likely because of the prevalence of atmospheric drag in the lower-

altitude orbit.  Little did not examine the possibility of extending the tori solutions for either 

satellite to determine if the tori remained valid after maneuvers. 

Other researchers have produced tori strictly from numerically integrated orbits.  

Craft (6) integrated orbits for hypothetical satellites orbiting in formation and generated a 

torus for the satellites.  He found that clusters of satellites spaced 100 meters apart and 

positioned on the same torus maintained their formation for over 60 days with deviations 

on the order of millimeters, indicating that satellites placed on the same torus will maintain 

their formation on the surface of that torus.  However, the drift between satellites was 

proportional to the initial separation, resulting in a worse fit for satellites that started farther 

apart.  Satellites experiencing high atmospheric drag and satellites near the critical 

inclination also displayed larger deviations. 

Hagen (15) examined the deviations caused by perturbations unmodeled in the torus 

construction algorithms.  Hagen began by generating a reference torus from an integrated 

orbit that contained perturbations only from Earth’s geopotential.  He then integrated 

additional orbits, one including air drag and another including third body gravitation 
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effects.  He found that air drag caused an error of 3 kilometers after 4 days while lunar 

gravity effects caused an error of 10 kilometers in the same period of time.  Both orbits 

displayed quadratic growth in error.  Hagen’s research identified the importance of 

modeling perturbation forces in the torus construction routine. 

Dunk (9) attempted to apply KAM theorem to highly eccentric orbits.  He 

numerically integrated several orbits of differing eccentricity and constant perigee altitude.  

Dunk was able to identify torus basis frequencies and generate a torus for eccentricities up 

to 0.5; however, the goodness of fit decreased as eccentricity increased, resulting in larger 

residuals as the orbits became more elliptical. 

Yates (43) attempted to combine previous research methods by using observation 

data in conjunction with numerical analysis.  Yates numerically integrated 1 year of orbit 

data based on the International Space Station (ISS) reference orbit parameters and created 

a reference torus based on the frequencies from that orbit.  He then performed a least 

squares analysis to update the reference torus based on NASA ISS tracking and observation 

data.  Yates found that the reference torus resulted in unbounded quadratic growth that 

reached 500 kilometers after 8 days.  The updated torus, however, had residuals less than 

3 kilometers that remained steady until a maneuver was performed. 

Frey (13) examined a different approach to produce a torus.  Frey was able to avoid 

the long numerical integration and frequency analysis by extracting basis frequencies 

directly from TLEs.  He performed a non-linear least squares analysis on 18 months of 

TLE data to identify the rate of change in mean motion, argument of perigee, and right 

ascension of the ascending node.  Frey attempted to fit a torus to four different orbiting 

objects but was only successful with one test case.  He suspected the failed cases were due 
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to the inability of the torus construction algorithm to handle air drag and near-zero 

eccentricity.  He compared the successful torus to both SGP4 and an integrated orbit with 

matching frequencies.  The torus remained within 60 meters of the integrated orbit after 6 

months of propagation but rapidly deviated from the SGP4 predictions.  Frey suspected the 

deviation from SGP4 was due to the inherent inaccuracies of SGP4 rather than a flaw in 

the torus construction. 

Following Frey’s research, Wiesel updated the torus construction algorithms to 

account for near-zero eccentricity and air drag in the torus construction routine.  The 

updated algorithms create a torus that models perturbations due to air drag, Earth’s 

geopotential, and second order terms in eccentricity (41). 

Abay (1) examined how to convert the SSN satellite catalog to KAM tori using 

Frey’s method of basis frequency identification from TLEs and Wiesel’s updated torus 

construction algorithm.  Abay pseudo-randomly chose 1,500 test cases with altitude above 

300 kilometers, not in a resonance orbit, and not in critical inclination or polar orbit.  He 

identified torus basis frequencies for all 1,500 test cases and attempted to perform a least 

squares fit to align the tori with SGP4 position vectors at TLE epoch times.  He had 

moderate success but was unable to generate tori for many maneuvering satellites and 

objects near a resonance, near polar or critical inclination, and objects continuously in a 

high atmospheric drag environment. 

Contributions of Current Work 

The DoD, spacecraft owners, and much of the space user community operate 

software that relies on the TLE format in order to function. Following the National 
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Research Council’s (26:42) recommendation, any new system must maintain the TLE 

format to support legacy systems.  This research aims to validate or disprove the theory 

that a set of TLEs can be utilized as data for an alternative analytical propagator.  The 

research into Vinti’s theory of orbital motion and KAM theorem already demonstrates the 

possibility to develop analytical models with greater accuracy and speed than that of SGP4.  

The research of both Osweiler and Flohrer et al. into the consistency of TLEs appears to 

indicate a possibility to utilize a large set of TLEs as data to analyze the motion of Earth-

orbiting objects.  This research builds upon those findings and analyzes the possibility to 

implement an alternative analytical model that uses the consistency of a set of TLEs to 

generate the input data for the KAM torus analytical orbit model. 

This research aims to determine if orbit propagation via KAM tori provides greater 

consistency than SGP4.  Unlike previous research, this work does not attempt to fit a KAM 

torus to precision ephemeris or numerical data and instead generates a torus solely with 

basis frequencies extracted from TLE data sets.  This research extends the work of Frey 

and Abay by examining how quickly motion on a torus diverges from the reference orbit 

and how the torus compares to SGP4.  The results of this research will not indicate an 

accuracy for the KAM tori but rather will indicate if the torus created from TLE data can 

be updated less frequently than the JSpOC currently updates TLEs.  



32 

III.  Methodology 

Several test cases were selected in order to compare the SGP4 propagation method 

to the KAM torus propagation method.  Results of previous research indicate difficulties 

in applying KAM theorem to certain orbit regimes, specifically orbits with a period near 

an integer multiple of the rotational period of Earth, orbits near zero inclination or the 

critical inclination, and orbits with an eccentricity greater than 0.1. 

This research does not examine any objects that can perform impulsive station-

keeping maneuvers.  Each impulsive maneuver results in a slightly different orbit for the 

satellite, which alters the torus.  Examining transitions to nearby tori is beyond the scope 

of this research, thus all test objects for this research are either non-maneuvering objects 

or objects that operate solely with reaction wheels for attitude control. 

Table 2 lists approximate values for key orbital parameters of the test objects.  Note 

that several test cases feature properties that cause difficulties in applying KAM theorem.  

The Delta 11 test case, for example, has a fairly eccentric orbit.  These objects were selected 

specifically to see where KAM theorem fails.  In the order listed in Table 2, the test objects 

are a Thor Ablestar rocket body, two Delta 1 rocket bodies, Hubble Space Telescope 

(HST), Geostationary Operational Environment Satellite (GOES) 9, two Russian rocket 

bodies, and a large piece of Iridium 33 debris.  Each test case utilizes 1 year of TLE data 

from the year indicated in the rightmost column of the table. 
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Table 2. Orbit Properties of Test Objects 

Name 
Satellite 

Number 

Period 

(min) 

Inclination 

(deg) 

Perigee 

Altitude 

(km) 

Apogee 

Altitude 

(km) 

Eccentricity 

(10-4) 
Year 

Thor 293 59 106.43 28.25 921 1,202 188.9 2009 

Delta 11 341 157.51 44.79 951 5,615 2414 2009 

Delta 114 8133 88.10 25.28 175 186 8.386 2009 

HST 20580 95.45 28.47 539 542 2.168 2010 

GOES-9 23581 1,457.47 10.61 36,185 36,223 4.462 2014 

SL-14 26874 90.54 82.45 297 305 5.989 2014 

SL-18 29080 91.42 97.60 342 346 2.975 2014 

I33 debris 33874 100.70 86.29 731 852 84.39 2014 

 

A least squares analysis was performed to extract torus basis frequencies for each 

test case.  Then the KAM torus software package was run to generate a torus for each test 

case.  SGP4 was utilized to create 100 position vectors between the epoch times of each 

TLE.  These vectors were then fitted to the surface of the torus with another least squares 

analysis, which resulted in a state vector that specified an epoch time, perturbations to the 

action variables, angle variables that defined a position on the surface of the torus at the 

epoch time, and a B* value that averaged the effects of air drag for the fit interval.  An 

updated state vector of action-angle variables was produced for each subsequent set of 100 

SGP4 vectors.  The action-angle variables were then utilized to acquire torus position 

vectors with the same time steps as the SGP4 position vectors.  The first TLE and the first 

state vector of action-angle torus variables were also propagated forward to create position 

vectors throughout the full timespan of the data set.  Finally, these four sets of position 

vectors were compared in order to determine how quickly they diverged. 
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Reference Frames 

This research utilized two reference frames for position and velocity vectors, an 

Earth-centered inertial (ECI) reference frame and an orbit-oriented frame.  The values from 

TLEs and SGP4 are defined relative to the True Equator Mean Equinox (TEME) ECI 

reference frame, which is the inertial frame used for this research.  This frame is defined 

relative to Earth’s true rotation axis—the geographic North pole—and the mean direction 

of the vernal equinox.  Both the direction of Earth’s rotation axis and the position of the 

vernal equinox relative to Earth’s surface shift slightly as Earth precesses, nutates, and 

orbits around the sun.  The mean equinox direction accounts for precession but not the 

nutation of Earth.  Defining vectors relative to the TEME reference frame ensures all 

vectors are defined relative to the true equator.  In Cartesian coordinates, the X-axis points 

in the mean direction of the vernal equinox, which coincides with the intersection of the 

ecliptic and equatorial planes.  The Z-axis is the true rotation axis of Earth.  The Y-axis 

completes the orthonormal set, defined positive by the right-hand rule. 

The second reference frame is also Earth-centered but not inertial.  This reference 

frame is defined by the ECI position and velocity vectors of a reference object.  The first 

axis, U, points radially in the same direction as the ECI position vector.  The third axis, W, 

points normal to the orbit plane and is defined by the cross product 𝒓 ×  𝒗, where 𝒓 and 𝒗 

are the ECI position and velocity vectors, respectively.  The second axis, V, completes the 

orthonormal set, defined positive by the right-hand rule.  This reference frame rotates as 

the reference object orbits Earth.  The UVW reference frame is useful for comparing 

position vectors in order to quantify the difference between two vectors is in the radial, in-

track, and orbit normal directions. 



35 

Figure 4 portrays both reference frames relative to Earth.  The red axes are included 

for visual clarification only and show the orientation of the UVW basis vectors as if the 

reference frame were centered at the satellite instead of the center of Earth. 

 

Figure 4.  True Equator Mean Equinox and UVW Reference Frames 

Process TLE Data 

A custom MATLAB script was written to read TLE data and store the values in an 

array.  This script is available in Appendix A.  The TLEs were compared to determine if 

multiple TLEs were issued with the same epoch date.  Any TLE issued within 1 hour of 

the previous TLE was assumed to be an update of the preceding TLE.  In this case, the 

updated TLE was retained and the preceding TLE was removed from the data set. 

Days and dates were converted to canonical time units (TU) and Julian dates.  The 

duration of a TU is defined as 
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where 

𝑅⨁ = 6378137 m and 

𝜇⨁ = 3.986004418·1014 m3/s2, thus 

All angular data was converted to radians.  Absolute jumps exceeding 2 in right 

ascension of the ascending node, argument of perigee, and mean anomaly were adjusted to 

their appropriate 2 compliments, resulting in smooth angular data.  However, mean 

anomaly cycles through 2 radians with each orbit and several orbits occur between TLE 

epoch times, therefore the number of revolutions was taken into account when adjusting 

mean anomaly to ensure the appropriate 2 compliment was used. 

Frey noted that the revolution number in the TLE does not always increment 

correctly (13:45).  He attempted to eliminate the 2 jumps in mean anomaly via 

where 𝑀(𝑢𝑛𝑤𝑟𝑎𝑝𝑝𝑒𝑑) indicates the value of 𝑀 after the 2 jump has been eliminated, 

𝑀(𝑇𝐿𝐸) is the value of mean anomaly from the TLE, and 𝑟𝑒𝑣𝑛𝑢𝑚 is the number of 

revolutions since the first TLE.  This method resulted in non-linear curve fit residuals in 

excess of 20 radians for some of his test cases. 

A new method was developed for this research in order to unwrap the mean 

anomaly values from the set of TLEs.  This method assumes that the mean motion changes 

 

𝑇𝑈 = √
𝑅⨁

3

𝜇⨁
 (10) 

 1 𝑇𝑈 = 806.8111238242922 𝑠 (11) 

 𝑀(𝑢𝑛𝑤𝑟𝑎𝑝𝑝𝑒𝑑) = 𝑀(𝑇𝐿𝐸) + 2𝜋 ∙ (𝑟𝑒𝑣𝑛𝑢𝑚) (12) 
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at an approximately quadratic rate between TLE epoch times, thus the mean anomaly at 

the next TLE epoch time is estimated by 

where ∆𝑡 is the time difference between the current and next TLE epochs; 𝑀(𝑖), 𝑛(𝑖), and 

𝑛̇(𝑖)/2 are values of mean anomaly, mean motion, and first derivative of mean motion from 

the current TLE, respectively; and 𝑀(𝑖 + 1) is the expected unwrapped value of mean 

anomaly for the next TLE. 

The mean anomaly result from Equation (12) was compared to the result from 

Equation (13).  If the results differed by greater than 6 radians, or approximately 1 

revolution, it was assumed that the revolution number in the TLE failed to increment 

correctly, in which case 1 revolution needed to be added to the current and all subsequent 

revolution numbers.  Note, 6 radians was used as the error detection criterion instead of 2 

radians in order to account for small changes to 𝑛 and 𝑛̇ not modeled by Equation (13). 

This process was repeated for every value in the array of TLE data.  The correct unwrapped 

mean anomaly was then stored as 

where 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑣𝑛𝑢𝑚 indicates the corrected number of revolutions since the first 

TLE.  This method reduced the curve fit residuals to less than 2 radians, and in most cases 

reduced the residuals to less than 0.5 radians. 

 
𝑀(𝑖 + 1) = 𝑀(𝑖) + 𝑛(𝑖) ∙ ∆𝑡 +

𝑛̇

2
(𝑖) ∙ ∆𝑡2 (13) 

 𝑀(𝑢𝑛𝑤𝑟𝑎𝑝𝑝𝑒𝑑) = 𝑀(𝑇𝐿𝐸) + 2𝜋 ∙ (𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑣𝑛𝑢𝑚) (14) 



38 

Identify Torus Frequencies 

The first two basis frequencies for a torus, the orbital frequency and inertial nodal 

regression rate, are defined as 

A non-linear least squares curve fit was performed to calculate the time rate of 

change of mean anomaly, right ascension of the ascending node, and argument of perigee.  

Let column vectors 𝒅 and 𝒕 represent the angular data to be fit and the associated epoch 

time of each value.  The quadratic curve fit of the data is then 

where the 𝑎𝑖 are the curve fit coefficients.  The value of 𝑎1 approximates the time rate of 

change of data 𝒅. 

Next define a n-by-3 matrix 𝑻 as 

where 𝟏 indicates a column vector of ones with length n, and n is the length of the vectors 

𝒅 and 𝒕. 

The curve fit coefficients are then 

where 𝒂 is a 3-by-1 column vector of the coefficients 𝑎0, 𝑎1, and 𝑎2 and 𝑸 is the n-by-n 

covariance matrix for the data.  The covariance matrix, if known, provides a measure of 

accuracy and statistical independence for each value in the data set.  However, the true 

covariance cannot be known from the data contained within the TLE because the true 

 𝑤1 = 𝑀̇ + 𝜔̇ 

𝑤2 = Ω̇ 

(15) 

(16) 

 𝒅 = 𝑎0 + 𝑎1𝒕 + 𝑎2𝒕2 (17) 

 
𝑻 =

𝜕𝒅

𝜕𝑎𝑖
= [𝟏 𝒕

1

2
𝒕2] (18) 

 𝒂 = (𝑻𝑇𝑸−1𝑻)−1 𝑻𝑇𝑸−1𝒅 (19) 
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accuracy of the measurement data is unknown.  Thus, it was assumed that each TLE was 

equally reliable and statistically independent, which gives 𝑸 as the identity matrix.  

Equation (19) then reduces to 

The residuals of the curve fit are 

and the mean square error (MSE) of the residuals is 

where n is again the number of data points. 

The 3-by-3 covariance matrix for the curve fit coefficients, 𝑷, is 

where 𝑻 and 𝑸 retain the same values used to calculate the curve fit coefficients.  The 

covariance matrix from Equation (23) provides a measure of accuracy for the curve fit. 

The results from the curve fit were incorporated into Equations (15) and (16) to 

solve for the torus basis frequencies from the TLE data.  The second order terms from the 

curve fit indicate perturbations and were not included in the basis frequency calculations.  

The resulting frequencies are calculated as 

where the 𝑎1 terms are the linear coefficients from the curve fits and the 𝑷(2,2) terms are 

the values from the curve fit covariance matrices in the second row and second column.  

 𝒂 = (𝑻𝑇𝑻)−1 𝑻𝑇𝒅 (20) 

 𝒓 = 𝒅 − 𝑻𝒂 (21) 

 
𝑀𝑆𝐸 =

1

𝑛
∑ 𝑟𝑖

2

𝑛

𝑖=1

 (22) 

 𝑷 = (𝑻𝑇𝑸−1𝑻)−1(𝑀𝑆𝐸)2 (23) 

 𝑤1 = 𝑎1,𝑀 + 𝑎1,𝜔 ± (√𝑷𝑀(2,2) + √𝑷𝜔(2,2)) 

𝑤2 = 𝑎1,Ω ± √𝑷Ω(2,2) 

(24) 

(25) 
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This specific value from the covariance matrix provides an estimate of the accuracy of the 

𝑎1 coefficient and was incorporated into Equations (24) and (25) to provide a range of 

accuracy for the frequency calculation. 

Generate Torus 

The software package developed by Wiesel to generate torus data files accepts 

period, inclination, and a maximum geopotential order and degree as inputs rather than the 

two torus basis frequencies identified from Equations (24) and (25).  The geopotential was 

limited to order and degree 20.  The first torus frequency was converted to orbit period by 

Wiesel’s torus software simultaneously solves Equation (9) and finds the Floquet 

solution through an iterative process, thus the inclination cannot be found directly from the 

basis frequencies.  Instead, Equation (2) was used to acquire a suitable initial guess for the 

inclination.  After algebraic manipulation, Equation (2) becomes 

where the two-body solution has been assumed for the semi-major axis and eccentricity 

has been assumed zero. 

The inclination from Equation (27) was input into Wiesel’s torus generation 

routine, and the output nodal regression rate was compared against the calculated second 

torus frequency.  The input inclination was then manually adjusted and Wiesel’s software 

rerun until the output nodal regression rate was within the range specified by Equation (25).  

The torus was assumed to be invalid for a test case if the inclination that resulted in the 

 
𝜏 =

2𝜋

𝑤1
 (26) 

 
𝑖 = cos−1 (

2𝑤2𝑎2

−3𝑤1𝐽2𝑅⨁
2) (27) 
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calculated nodal regression rate was more than 5 degrees outside the range of inclinations 

of the set of TLEs for that object.  Based on this criterion, torus generation failed for the 

Thor 293, Delta 11, and GOES-9 test cases. 

This process produced a set of data files for each successful test case that defined 

the surface of the torus and how motion propagates along the surface due to various 

perturbations.  The data files include the periodic orbit, the Floquet modes, and 

perturbations due to the geopotential, air drag, and eccentricity.  The atmospheric model 

used for the air drag perturbations is the model developed by Regan and Anandakrishnan 

(29).  This atmospheric model divides the atmosphere into 20 layers such that temperature 

fluctuates approximately linearly within each layer.  Air density is then estimated based on 

temperature fluctuations and molecular weight of atoms within the layers. 

Create Position Vectors 

Position vectors were defined in the ECI reference frame.  Four sets of vectors were 

generated for each test case: the first TLE propagated forward for the full year, each TLE 

propagated forward to the epoch time of the next TLE, the first state vector of action-angle 

variables propagated forward for the full year, and each updated state vector of action-

angle variables propagated forward to the epoch time of the next update.  The time stamps 

for the position vectors in each set are identical, thus a total of four position vectors were 

acquired to define the position of the test object at any given time.  The epoch times of the 

TLE were used to set the time steps for the position vectors.  A total of 100 position vectors 

were generated between each TLE epoch time with the first and hundredth vector 
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corresponding to the TLE epoch times.  This resulted in a variable time step across the total 

data set but maintained the identical time stamps for the four sets of vectors. 

TLE Position Vectors. 

Vallado (32) provides software routines to implement SGP4 based on the work of 

Vallado, Crawford, Hujsak, and Kelso (33).  The MATLAB version of this software 

package was utilized to produce SGP4 position vectors from TLEs.  The software accepts 

as input a single TLE and a time in minutes from the epoch of that TLE.  The software then 

implements SGP4 to propagate the TLE to the desired time and outputs a position and 

velocity vector.  A custom MATLAB script was written that iteratively called Vallado’s 

SGP4 program 100 times for each TLE and stored the resulting position and velocity 

vectors into arrays.  The first TLE was called an additional 100 times for each subsequent 

TLE.  The script to call SGP4 is available in Appendix B. 

Torus Position Vectors. 

The position vectors from SGP4 were fitted to the surface of the torus and converted 

to action-angle variables.  Each set of 100 position vectors between TLE epoch times was 

fitted via Wiesel’s least squares orbit fitting software, and a single set of 6 action-angle 

variables was produced for each set of 100 position vectors.  The residuals of the least 

squares fit provided an indication of whether or not the TLE vectors could be fit to the 

surface of the torus.  Any fit with residuals in tens of kilometers or more was considered 

as an invalid torus result.  Based on this criterion, torus generation failed for the Delta 114 

and Iridium 33 debris test cases. 
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The initial guess for Wiesel’s least squares orbit fitting software consists of three 

action perturbations, three angle variables, and an associated epoch time.  Values from the 

first TLE were used to create the initial guess for the actions and angles: 

where here 𝐽 = 0 indicates zero perturbation to the torus action variables and 𝜃𝑠 is the angle 

representation of Greenwich mean sidereal time (GMST).  The subtraction of 𝜃𝑠 provides 

the ascending node with reference to Greenwich, which allows the software to perform 

calculations with respect to an Earth-centered rotating frame where the geopotential and 

atmospheric model do not rotate.  GMST is calculated as 

where 𝑇 is Julian centuries since 1 January 2000 12:00:00 Universal Time.  Equation (31) 

gives the GMST in seconds.  Recognizing that Earth rotates 2π radians in 1 Julian day and 

there are 86,400 seconds in 1 Julian day, GMST can be converted to an angle via 

The result from Equation (32) was then reduced to a commensurate value between 0 and 

2π radians. 

The output from the least squares fitting routine was a state vector of six action-

angle variables, a ballistic coefficient, and the epoch time of the angle variables that 

provided the best fit for the 100 position vectors used to perform the fit.  The action 

perturbations were generally on the order of centimeters or less.  The ballistic coefficient 

 𝐽1 = 𝐽2 = 𝐽3 = 𝑄3 = 0 

𝑄1 = 𝜔 + 𝑀 

𝑄2 = Ω − 𝜃𝑠 

(28) 

(29) 

(30) 

 

𝐺𝑀𝑆𝑇 = −6.2 ∙ 10−6 ∙ 𝑇3 + 0.093104 ∙ 𝑇2 
+(8.766 ∙ 105 ∙ 3600 + 8640184.812866) ∙ 𝑇 + 67310.54841 

 

(31) 

 

 
𝜃𝑠 =

𝐺𝑀𝑆𝑇 ∙  2𝜋

86400
 (32) 
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for the torus model shares the same definition as the SGP4 B* value in Equation (8) except 

that the reference atmospheric density, 𝜌0, is the atmospheric density at perigee of the orbit. 

Rather than repeating the calculations of Equations (28)-(32) for each fit, the action-

angle values from one fit were used as the initial guess for the subsequent least squares 

fitting attempt.  This process produced a number of torus state vectors equal to the number 

of TLEs.  The epoch times of each torus state vector matched the epoch times of the TLEs. 

The action variables are constant and the angle variables fluctuate linearly at a rate 

defined by the torus basis frequencies.  Therefore, the angle variables can be propagated 

forward or backward to determine the state that defines the position on the surface of the 

torus at any time.  The angle variables were propagated via 

where 𝑄 is the value of the angle variable at some time t before or after the epoch time of 

the known value 𝑄0 from the least squares fit.  The subscript 𝑖 indicates which angle 

variable is being updated. 

Recall that the torus basis frequencies only account for first-order changes to mean 

anomaly, right ascension of the ascending node, and argument of perigee, yet the least 

squares fit identified these as quadratic functions of time.  The second order effects were 

accounted for when the action-angle variables were converted to position vectors using the 

process outlined by Wiesel (41:635).  Wiesel’s process produces torus position vectors that 

account for three key elements: the period orbit, the Floquet modes, and the perturbations. 

 𝑄𝑖 = 𝑄𝑖,0 + 𝑤𝑖𝑡 (33) 
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Compare Vectors 

A root-mean-square error (RMSE) calculation was performed to quantify the 

differences between sets of vectors.  Three comparisons were made: first, the vectors 

produced by propagating each TLE to the epoch of the next TLE with SGP4 were compared 

to the set of vectors produced by propagating the first TLE through the full data set; second, 

the torus vectors produced from the updated action-angle variables were compared to the 

vectors produced by the first state vector of action-angle variables; and third, the torus 

vectors produced from the updated state vectors of action-angle variables were compared 

to the vectors produced by propagating each TLE forward to the next TLE epoch time with 

SGP4.  The RMSE was calculated for each set of 100 vectors, resulting in one RMSE 

calculation for each TLE or each state vector of action-angle variable used in the full data 

set.  This provides a new RMSE corresponding to each time the orbit model was updated, 

either by the issuance of a new TLE or the update of the action-angle variables. 

The RMSE was calculated for each Cartesian coordinate in the vector as 

where ∆𝑥𝑖 indicates the difference between the two position vectors for one of the three 

Cartesian coordinates.  The magnitude of the RMSE was then calculated as 

Note that Equations (34) and (35) also apply for the UVW coordinate system.  The 

result from Equation (35) was then plotted against time to view how quickly the first 

 

𝑅𝑀𝑆𝐸𝑖 = √
∑ ∆𝑥𝑖

2100
1

100
 (34) 

 
𝑅𝑀𝑆𝐸 = √𝑅𝑀𝑆𝐸𝑋

2 + 𝑅𝑀𝑆𝐸𝑌
2 + 𝑅𝑀𝑆𝐸𝑍

2 (35) 
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position predictions diverged from subsequent updates and to view how quickly the torus 

model diverged from the SGP4 model. 

Methodology Summary 

The following process concisely summarizes the methodology implemented for 

this work: 

1. A quadratic curve fit was performed to calculate the time rate of change of 

mean anomaly, right ascension of the ascending node, and argument of 

perigee from 1 year of TLE data.  These rates identified the basis frequencies 

for a KAM torus. 

2. Torus data files were generated with Wiesel’s torus software.  The files 

identified and included the periodic orbit, the Floquet modes, and 

perturbations due to the geopotential, air drag, and eccentricity. 

3. Each TLE was propagated to the epoch time of the subsequent TLE to 

produce 100 position vectors.  The first TLE was repeatedly propagated 

forward to produce an additional 100 position vectors between the epoch 

times of all subsequent TLEs. 

4. The 100 position vectors from each TLE were fitted to the surface of the torus 

with a least squares analysis.  This resulted in a set of action-angle variables 

that defined a location on the surface of the torus at a specific epoch time. 

5. Each set of action-angle variables was propagated forward to the epoch time 

of the next set to produce 100 position vectors.  The first set of action-angle 

variables was repeatedly propagated forward to produce an additional 100 
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position vectors between the epoch times of all subsequent sets of action-

angle variables. 

6. A RMSE calculation was performed and the magnitude of the RMSE was 

plotted against time to quantify and view the differences between the four sets 

of position vectors. 
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IV.  Analysis and Results 

This chapter provides a description of the results and relevant figures for one of the 

eight test cases.  The results of the other seven test cases are included in Appendix C.  Not 

all test cases were successful based on the criteria outlined in Chapter III, i.e., the inability 

to generate a valid torus for the orbit or residuals from Wiesel’s least squares periodic orbit 

software in excess of tens of kilometers.  The unsuccessful test cases are summarized in 

this chapter, and the data acquired up to the point of failure is included in Appendix C.  A 

brief summary of the overall result of this research is provided at the end of this chapter. 

Many plots contained in this chapter and Appendix C display only a portion of the 

data, not the full year.  The first 2 weeks of data is the most critical to show the length of 

validity for a KAM torus.  The error growth of SGP4 invalidates TLEs after at most a few 

days, thus a KAM torus model that remains accurate for a week or two would be a 

significant improvement over SGP4.  Additionally, propagation of the action-angle 

variables reaches the limits of double precision accuracy as the propagation time increases 

beyond several months. 

Unsuccessful Test Cases 

Torus construction failed for three of the eight test cases.  Wiesel’s torus generation 

software required an inclination outside the range of inclinations from the TLEs for Thor 

293, Delta 11, and GOES-9.  The GOES-9 torus, for example, required an inclination of 

31 degrees to get the desired nodal regression rate, yet the GOES-9 orbit remained inclined 

to 9.2  1 degrees throughout the year.  A possible reason that a torus could not be generated 
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for these test cases is that the orbit was too eccentric or the inclination too near zero or the 

critical inclination. 

An additional two test cases failed when the SGP4 position vectors could not be fit 

to the surface of the torus with acceptable residuals.  When the position vectors were fitted 

to the surface of the torus, the piece of debris from Iridium 33 had residuals in excess of 

300 kilometers and the Delta 114 rocket body had residuals above 20 kilometers.  These 

large residuals demonstrate a poor fit of the SGP4 position vectors to the surface of the 

torus and appear to indicate that position vectors from SGP4 may not be a reliable source 

of pseudo observation data for the KAM torus model. 

Hubble Space Telescope Results 

The non-linear least squares curve fit results for right ascension of the ascending 

node, argument of perigee, and mean anomaly are presented in Table 3. 

Table 3. Hubble Space Telescope TLE Curve Fit Results 

Angle 𝑎0 (rad) 𝑎1 (rad/TU) 𝑎2 (rad/TU2) 

Ω 3.873573429531065e-02 -1.063801687612538e-03 -1.101680865868937e-09 

𝜔 4.008390963534933e-02 1.733194011491032e-03 -4.002018700173017e-09 

𝑀 1.844358107584371e-02 8.806081679341767e-01 3.851875195433959e-07 

Note.  Curve fit of the form 𝑋 = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 

 

Figures 5-7 plot the curve fit and associated residuals based on the results listed in 

Table 3.  The days along the horizontal axis correspond to the number of days since the 

first TLE.  These figures also provide some representation of the frequency of TLE updates, 

which can be discerned from the gaps between data points. 
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Figure 5.  HST Right Ascension of the Ascending Node Curve Fit and Residuals 

 

 

Figure 6.  HST Argument of Perigee Curve Fit and Residuals 
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Figure 7.  HST Mean Motion Curve Fit and Residuals 

The linear terms from the curve fits resulted in the torus basis frequencies listed in 

Table 4.  The nodal regression rate output by Wiesel’s torus generation software for the 

second torus frequency was -1.06380222604781e-03 rad/TU, which is within the margin 

of error of the calculated frequency. 

Table 4. Hubble Space Telescope Torus Basis Frequencies and Error 

 Frequency (rad/TU)  Error (rad/TU) 

𝑤1 8.823413619456678e-01 3.057719441995443e-06 

𝑤2 -1.063801687612538e-03 1.978932194728906e-09 

 



52 

The SGP4 position vectors fit to the surface of the torus with residuals under 2 

kilometers for the full year, as shown in Figure 8.  The error in the fit occurred primarily 

in the radial and in-track directions. 

 

Figure 8.  HST Vectors to Torus Action-Angle Least Squares Residuals 

Figures 9-11 show the comparison between vector sets.  Figure 9 shows the error 

growth between position vectors produced by SGP4 from the first TLE compared to 

position vectors from all subsequent TLEs.  Figure 10 shows the error growth between 

position vectors produced from the first set of action-angle variables compared to all 

subsequent sets.  Figures 9 and 10 (a) show the initial error growth after a few days.  Figures 

9 and 10 (b) show the same error growth curve but over a longer period of time.  Figure 11 
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shows the error between position vectors produced by SGP4 from the full set of TLEs 

compared to position vectors produced by the torus model from the full set of updated 

action-angle variables. 

Each figure show the magnitude of the RMSE as well as the components of the 

error in the radial, in-track, and orbit normal direction.  Days on the horizontal axis indicate 

the number of days since the first TLE.  Note that the straight lines connecting data points 

are included solely for ease of reading the plots; the lines connecting data points do not 

represent actual data. 
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Figure 9.  HST RMSE: All TLEs Compared to First TLE 

(a) 

(b) 
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Figure 10.  HST RMSE: Updated Action-Angle Sets Compared to First Set 

(a) 

(b) 
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Figure 11.  HST RMSE: Updated Action-Angle Sets Compared to All TLEs 

As shown in Figure 9 (a), the position predictions from the TLEs exceed a RMSE 

of 1 kilometer after 5.9 days, which occurred between the fourth and fifth TLEs in the set.  

The RMSE exceeds 5 kilometers after 19.8 days, which was between the eleventh and 

twelfth TLEs in the set.  The error continues to grow at a quadratic growth rate, as shown 

in  Figure 9 (b), until the error reaches a maximum value approximately equal to double 

the orbit radius, at which point the error begins to cycle up and down.  The maximum error 

corresponds to two orbit predictions that are on opposite sides of Earth. 

The RMSE for the torus position predictions grow at a faster rate than the TLE 

predictions.  Figure 10 (a) shows the RMSE exceeds 1 kilometer after 1.6 days, which 

occurred with the second action-angle set.  The RMSE exceeds 5 kilometers after 9.7 days 



57 

with the seventh action-angle set.  As with the SGP4 model, Figure 10 (b) shows that the 

torus RMSE continues to grow at a quadratic growth rate. 

Figure 11 shows the RMSE between the torus and SGP4 models for each set of 100 

vectors over the full year.  The torus and SGP4 position vectors differ primarily in the in-

track direction for all predictions with a mean in-track difference of 1.59 kilometers.  The 

vectors also differ by an average of 586 meters in the radial direction and have a nearly 

constant difference of 138 meters in the orbit-normal direction. 

Although the torus action-angle variables were updated each time a new TLE was 

issued, the SGP4 vectors never fit well to the surface of the torus.  Figure 12 presents the 

same data as Figure 11, but now the magnitude of the RMSE is plotted against the elapsed 

time before the next TLE was issued. 
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Figure 12.  HST Torus-to-TLE RMSE Correlation to Elapsed Time 

With the exception of a few outliers, the RMSE visually shows a strong correlation 

to the time between TLEs.  The R2 coefficient of a linear fit through the data is 0.711.  

Figure 12 shows that the position vectors from the torus model continuously diverged from 

the SGP4 model as each model propagated for longer periods of time, resulting in larger 

error as the propagation time was increased.  This indicates that the two dynamics models 

propagate the orbit differently.  The position predictions of the two models separate as the 

time of propagation increases.  Previous research has shown the KAM torus to be far more 

accurate than SGP4, thus this divergence between the models is expected. 

In both the SGP4 and torus prediction models, the majority of the RMSE is in the 

in-track direction, though the SGP4 model does show more error growth along the orbit 
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normal than the torus model.  This indicates that each new TLE updates the SGP4 model 

primarily to correct position predictions in the in-track direction of the orbit. 

The action-angle variable updates generated from position vectors produced by 

SGP4 for each new TLE appear to follow the same pattern as the TLE updates, which 

makes sense considering the action-angle variables are produced by fitting SGP4 position 

vectors to the surface of the torus.  As each new TLE causes an additional in-track error 

compared to the first TLE, each new action-angle variable set also causes an in-track error 

compared to the original set of action-angle variables. 

Effects of Atmospheric Drag 

There are three primary sources for in-track error.  An incorrect mean anomaly at 

epoch offsets the orbit with a constant in-track error.  An incorrect semi-major axis results 

in an error in the orbit period, causing linear in-track error growth.  Lastly, an incorrect 

ballistic coefficient produces an unmodeled force on the object that results in quadratic in-

track error growth over time (39:99). 

Although not the sole source of error, atmospheric drag is the primary source of the 

quadratic in-track error growth shown in Figures 9-10, 32-33, and 40-41.  The SL-14 rocket 

body, which resides at the lowest altitude out of the three successful test cases, showed the 

fastest error growth, while Hubble, which orbits much higher above Earth, showed the 

slowest error growth.  For each day of propagation time, the RMSE between the SGP4 

model and the torus model of the SL-14 rocket body orbit reached as much as 20 kilometers 

whereas the RMSE between the models of the Hubble orbit grew at most 2.6 kilometers. 
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Figure 13 shows a histogram of the B* values SGP4 used for each successful test 

case throughout the 1 year of TLE data.  The histograms are superimposed to allow 

comparison between the different test cases. 

 

Figure 13.  Histogram of Ballistic Coefficients 

Each histogram in Figure 13 shows a nearly Gaussian distribution of B* values.  

The Gaussian distribution appears to indicates that the simplified analytical atmosphere 

model SGP4 uses to approximate drag follows a nearly random distribution about some 

average value.  The true value of the ballistic coefficient fluctuates continuously as the 

object rotates and as the atmosphere expands or contracts, so a random distribution for B* 

is expected.  However, the in-track error shown in Figures 9-10, 32-33, and 40-41 for the 
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orbit propagations—which are worse for objects in lower orbit—and the Gaussian 

distributions of the B* values shown in Figure 13 indicate that atmospheric drag may not 

be appropriately modeled by the deterministic assumptions of SGP4 that B* is constant 

over a period of hours or days. 

Results Summary 

The increased rate of error growth for the torus model compared to the SGP4 error 

growth does not indicate that the torus is the inferior model.  These results do not indicate 

which model provides a more accurate representation of the true orbit because the true orbit 

is unknown.  Rather, the increased error between subsequent action-angle sets indicates 

that the torus model propagates along a different orbit trajectory or at a different rate around 

the orbit than the orbit propagated by SGP4.  This difference in predicted orbit path results 

in a more drastic change for the torus model with each update to the action-angle set as the 

torus must adjust to account for the new TLE and reconverge to the SGP4 orbit.  This result 

appears to indicate that, while the TLEs can be used to extract torus basis frequencies, the 

SGP4 position vectors produced from TLEs may not be a viable source of data for the 

KAM torus orbit propagator. 
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V.  Conclusions and Recommendations 

This research aimed to examine whether or not the KAM torus model was a viable 

alternative to SGP4 and could use TLEs as pseudo observation data by examining the rate 

at which orbit predictions diverge from an initial prediction.  Other research efforts—

outlined in Chapter II—have shown that the KAM torus diverges from a numerically 

integrated reference orbit by a few meters over a period of several months.  This research 

successfully identified torus basis frequencies from TLEs and, for some test cases, 

generated a torus model to represent the position vectors corresponding to the TLE epoch 

times.  However, the tori generated from SGP4 position vectors were poor predictors of 

the TLE data with errors averaging 1.7 kilometers for the best case and exceeding 50 

kilometers for the worst case.  Additionally, when using TLEs as pseudo observational data 

for the torus model, the KAM torus appears to require more updates to the action-angle 

variables than the number of updates SGP4 provides for TLEs. 

Significance of Research 

This research has identified three noteworthy contributions to research into KAM 

theorem.  First, a new method was developed to successfully remove absolute jumps 

exceeding 2 radians in the mean anomaly angular data of TLEs.  This new method enables 

researchers to examine the time history of mean anomaly as reported by SGP4 and perform 

accurate analysis on changes to an orbit.  Second, this research confirmed that torus basis 

frequencies can be extracted from the mean orbital elements contained within TLEs.  

Although the accuracy of the extracted frequencies was not determined as the true orbit 

was unknown, the extracted frequencies were successfully utilized to generate tori for five 
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of the eight test case.  Finally, this research has identified that position vectors from SGP4 

may not be suitable for use as pseudo observation data for the KAM torus model. 

The concept of applying KAM theorem to Earth orbit determination is still in its 

infancy.  As shown by this research, the current implementation of KAM theorem still 

needs additional work before it can apply to all orbit regimes.  This research did not 

examine any orbiting objects with impulsive maneuver capabilities, yet a torus could not 

be generated using the basis frequencies extracted from the TLEs for three of the eight test 

cases.  There clearly exists some subset of orbit regimes for which the torus model remains 

unusable, though further examination is required to identify specifically which orbit 

regimes are viable candidates to be modeled with the KAM torus. 

The results of this research pose an interesting question for examination: what is 

the limiting factor of predictability?  For the KAM torus model as it was generated in this 

research, the limiting factor was the way in which SGP4 produces position vectors.  The 

KAM torus action-angles propagate along a different orbit path than the SGP4 TLEs 

despite using data from SGP4 to produce the action-angle variables.  For SGP4, the limiting 

factor of predictability appears to be dominated by air drag.  The simplified analytical 

model SGP4 implements for atmospheric drag fails to account for non-deterministic effects 

of the atmosphere.  SGP4 is known to have at best an average error of 1 kilometer at the 

TLE epoch time.  The lack of consistency with the position vectors produced by TLEs from 

the SGP4 model contributed to the significant divergence of the torus models produced in 

this research. 
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Recommendations for Future Research 

The next step in this research process is to compare the orbit data produced in this 

research to actual observation data or, if available, GPS ephemeris data.  TLEs provide an 

approximate position of a satellite as a best fit of available observation data to the SGP4 

dynamic model.  If the torus model was generated using raw observation data as reference 

vectors instead of vectors produced by SGP4, the model may show less divergence with 

each update to the action-angle variables, though the initial fit to the surface of the torus 

would likely have higher residuals to account for various sensor inaccuracies.  This is an 

area of research that should be explored.  If precise ephemeris data derived from GPS 

position data for the orbiting object is also available, then a comparison should be made to 

see how closely the KAM torus model resembles the true orbit of the object and determine 

for how long the KAM torus model can be used before the action-angle variables need to 

be updated.  If further research can show that the KAM torus model resembles the true 

orbit to within a few kilometers or less after several days of propagation, then one could 

definitively conclude that the KAM torus is more accurate than SGP4. 

If true observation data is not available, then observations could be simulated from 

a numerically integrated orbit.  The position vectors from the numerically produced orbit 

can be converted into measures of azimuth, elevation, range, and range-rate to simulate 

radar tracking, or the vectors can be converted to azimuth and elevation or right ascension 

and declination to simulate optical tracking.  Sensor error can be simulated by corrupting 

the numerically true measurement data with Gaussian noise. 

Another area for examination is the possibility of modeling an orbit with B* as a 

random variable.  Propagation models that maintain a constant B* for hours or more ignore 
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the constant fluctuations of the atmosphere and any rotations of the orbiting object.  A 

stochastic model of B* may reveal additional information about changes to an orbit 

between observation updates. 

Further research in this field should also examine a potential change to the 

methodology implemented by this research.  The SGP4 vectors showed large residuals 

when fit to the surface of the torus.  Although the residuals provide a strong indication that 

the SGP4 vectors do not fit well to the surface of the torus, these residuals may also have 

been slightly influenced by the reference frame used.  The residuals may, in part, indicate 

that the TEME reference frame is not sufficiently inertial for this application.  The J2000 

frame, which defines the Cartesian vectors according to the mean equator mean equinox as 

of noon Terrestrial Time on 1 January 2000, may be more suitable than the TEME frame.  

A future researcher should convert the SGP4 vectors to the J2000 inertial reference frame 

before fitting to the torus to check if the J2000 reference frame provides smaller residuals. 

Another potential change to examine is to attempt to produce a better covariance 

matrix for the TLE data when identifying the torus basis frequencies.  If the most recent 

TLE is assumed to be the best estimate of the true position, then one could iteratively 

examine the error between state vectors produced by earlier TLEs and the current TLEs to 

produce a covariance matrix.  Although a covariance matrix produced in this manner still 

will not be the true covariance matrix, it may provide a better estimate of the covariance 

than the identity matrix. 
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Conclusions of Research 

This research examined the rate at which new SGP4 position predictions diverge 

from previous SGP4 predictions.  SGP4 position vectors were also used as pseudo 

observational data for the KAM torus orbit model.  The rate at which SGP4 diverges from 

itself was then compared to the rate at which the KAM torus orbit model generated from 

SGP4 position vectors diverges.  This research found that SGP4 position predictions 

remained more consistent with each TLE update than the KAM torus orbit predictions 

produced by fitting SGP4 position vectors to the surface of the torus. 

The results of this research appear to indicate that the KAM torus model in its 

current state is not a viable alternative to SGP4 due to the fact that several test cases failed 

to produce valid torus models. However, part of that failure may be attributed to the 

position data from SGP4 used to generate the torus state vector.  Two test cases showed 

residuals between the SGP4 vectors and the torus surface ranging from tens to hundreds of 

kilometers.  This is a strong indicator that the inaccuracies of the SGP4 dynamics model 

may be prohibitive for constructing KAM tori. 

If the results had shown that the position predictions of a KAM torus diverged 

slower than the position predictions of SGP4, then this research would have indicated not 

only that the KAM torus model is potentially a better alternative, but also that TLEs can 

provide more information than is immediately apparent by serving as pseudo observation 

data for an alternative analytical model.  Since the results instead show that SGP4 

predictions diverge slower than KAM torus predictions, this research fails to provide an 

indication either way about which general perturbations propagator is a better model.  

Instead, the research has shown that the KAM torus propagates along a different orbital 
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path than SGP4 and that position vectors from SGP4 appear to be an unviable substitute 

for true observation data for the KAM torus model with the current methodology.  
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Appendix A. MATLAB Script to Identify Torus Basis Frequencies from TLEs 

% ProcessRawTLE.m 

% Author: Capt Kenneth Stuart 

% 

% This script reads a text file containing two-line element set data and 

% stores epoch, bstar, inclination, right ascension of ascending node,  

% eccentricity, argument of perigee, mean anomaly, mean motion, and first 

% derivative of mean motion. Duplicate TLE data points are removed. 

% 

% Units are (mostly) converted to radians, TU, and DU. Angles are unwrapped  

% to remove 2*Pi jumps.  Conversion factors are from EGM96. 

% 

% Quadratic curve-fits are found for RAAN, omega, and M.  Torus frequencies 

% are found to create a periodic orbit. 

  

  

%% Conversion factors, constants 

format longE 

mu = .3986004418e15;    % gravitational constant, m^3/s^2 (from EGM96) 

DU = 6378137;           % radius of Earth, m (from EGM96) 

TU = (DU^3/mu)^.5;      % time unit, s 

MU = 1;                 % gravitational constant, DU^3/TU^2 

wEarth_s = 7292115e-11; % rad/s (from EGM96) 

wEarth = wEarth_s*TU;   % rad/TU 

dg2rd = pi/180;         % degrees to radians 

dy2TU = 24*3600/TU;     % 24-hour day to TU 

twopi = 2*pi;           % also used for revolutions to radians 

  

  

%% Read TLE Data File 

% File shall have TLE data beginning on line 1 and ending on the last line 

% of the TLE text file.  There shall be no empty lines in the text file. 

% Several values in the TLE are ignored. 

  

fid=fopen('Hubble_1Jan10_31Dec10.txt'); 

% fid=fopen('SL14_1Jan14_31Dec14.txt'); 

% fid=fopen('SL18_1Jan14_31Dec14.txt'); 

% fid=fopen('Iridium33debris_1Jan14_31Dec14.txt'); 

% fid=fopen('GOES9_1Jan14_31Dec14.txt'); 

% fid=fopen('Delta114_1Jan09_31Dec09.txt'); 

% fid=fopen('Delta11_1Jan09_31Dec09.txt'); 

% fid=fopen('Thor293_1Jan09_31Dec09.txt'); 

  

% Determine number of TLEs in file 

num_TLE=0; 

while ~feof(fid) 

    line1 = fgetl(fid); 

    line2 = fgetl(fid); 

    num_TLE=num_TLE+1; 

end 

fseek(fid,0,-1); 

  

% Preallocate matrices 

M=cell(num_TLE,1); epoch_raw=M; ndot2=M; bstar_raw=M; incl=M; RAAN=M; 

ecc_raw=M; omega=M; 

n=zeros(num_TLE,1); epoch=n; bstar=n; rev=n; 



69 

% Read data 

for ii=1:num_TLE 

    epoch_raw(ii) = textscan(fid,'%*n %*s %*s %s',1); 

    ndot2(ii) = textscan(fid,'%f',1); 

    bstar_raw(ii) = textscan(fid,'%*s %s %*[^\n]',1); 

    incl(ii) = textscan(fid,'%*n %*n %f',1); 

    RAAN(ii) = textscan(fid,'%f',1); 

    ecc_raw(ii) = textscan(fid,'%f',1); 

    omega(ii) = textscan(fid,'%f',1); 

    M(ii) = textscan(fid,'%f',1); 

    nrev = textscan(fid,'%16c %*[^\n]',1);%,'delimiter',';'); 

    nrev = nrev{1}; 

    n(ii) = str2double(nrev(1:11)); 

    rev(ii) = str2double(nrev(12:16)); 

end; fclose(fid); 

  

  

%% Process Raw Data 

% Convert cell data to numbers 

ndot2 = cell2mat(ndot2); incl = cell2mat(incl); RAAN = cell2mat(RAAN); 

omega = cell2mat(omega); M = cell2mat(M); ecc = cell2mat(ecc_raw)*1e-7; 

  

% Process revnum 

% The rev in the TLE has 5 digits. If the revnum goes over 99999, it resets 

% to 0 in the TLE. The following loop corrects for that, then sets the rev  

% to start at 0 so rev counts the revolutions since the first TLE. 

for ii=2:num_TLE 

    if rev(ii-1)>rev(ii) 

        rev(ii:end) = rev(ii:end)+1e5; 

    end 

end; rev = rev-rev(1); 

  

% Process epoch 

% Epoch in TLE is solar time (24-hour days) 

date1 = str2double(epoch_raw{1}); 

year1 = floor(date1/1000); day1 = date1-year1*1000; 

if year1 < 57; year1 = year1+2000; 

else year1 = year1+1900; end 

jdate1 = jday(year1,1,day1,0,0,0); 

  

for ii=1:num_TLE 

    date = str2double(epoch_raw{ii}); 

    year = floor(date/1000); day = date-year*1000; 

    if year < 57; year = year+2000; 

    else year = year+1900; end 

    jdate = jday(year,1,day,0,0,0); 

    epoch(ii) = jdate-jdate1; % 24-hr days since first TLE 

     

% Process bstar 

    b_string = char(bstar_raw{ii}); 

    if length(b_string) == 7 

        b_string = strcat('+',b_string); 

    end 

    bstar(ii) = str2double(b_string(1:6))*1e-

5*10^str2double(b_string(7:8)); 

end 
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% Remove duplicate TLE entries and any TLE issued less than 1 hour before 

% the next TLE (this indicates a correction to a TLE). 

data = [epoch,ndot2,bstar,incl,RAAN,ecc,omega,M,n,rev]; ii=2; 

num_data=num_TLE; 

while ii < num_data 

    if abs(data(ii,1)-data(ii-1,1)) < .041667   % 1 hour = 0.041667 days 

        data(ii-1,:)=[]; 

        num_data=num_data-1; 

    end 

    ii = ii+1; 

end 

epoch=data(:,1); ndot2=data(:,2); bstar=data(:,3); 

incl=data(:,4);RAAN=data(:,5); 

ecc=data(:,6); omega=data(:,7); M=data(:,8); n=data(:,9); rev=data(:,10); 

  

% Convert revolutions or degrees to radians 

ndot2 = ndot2*twopi; n = n*twopi; 

incl = incl*dg2rd; RAAN = RAAN*dg2rd; omega = omega*dg2rd; M = M*dg2rd; 

  

% Unwrap RAAN and omega 

RAAN = unwrap(RAAN); omega = unwrap(omega); 

  

% Unwrap M 

% Rev number may be inaccurate, thus can't set M=M+2*pi*rev. Instead, use 

% M=M+n*dt+ndot2*dt^2, compare to M=M+2*pi*rev, and adjust M to match value 

% in TLE plus the appropriate 2*pi*rev adjustment.  Corrected rev number  

% is stored in rev_adj.  Explanation of steps: 

%   M(:,1) = raw data 

%   M(:,2) = M_raw+2*pi*rev 

%   M(:,3) = M_raw+2*pi*rev +/- 2*pi corrections 

%   M(:,4) = corrected previous M(:,3) + n*dt + ndot/2*dt^2 

M(:,2)=M+twopi*rev; M(:,3)=M(:,2); M(1,4)=M(1,1); M(1,5)=0; rev_adj = rev; 

for ii=2:num_data 

    dt=epoch(ii)-epoch(ii-1); 

    M(ii,4) = M(ii-1,3) + n(ii-1)*dt + ndot2(ii-1)*dt^2; 

    diff = M(ii,3)-M(ii,4); 

    if abs(diff) > 6 

        multiplier = round(diff/2/pi); 

        M(ii:end,3) = M(ii:end,3)-twopi*multiplier; 

        rev_adj(ii:end)=rev_adj(ii:end)-multiplier; 

    end     

end 

M=M(:,3); 

  

% Recompile data matrix with processed data 

data = [epoch,ndot2,bstar,incl,RAAN,ecc,omega,M,n,rev,rev_adj]; 

  

  

%% Perform Least Squares Fit 

% Data = a0 + a1*t + .5*a2*t^2 

% Assuming all data points are equally reliable and statistically 

% independent, i.e., data covariance matrix Q is the identity matrix 

T=ones(num_data,3); T(:,2)=epoch; T(:,3) = .5*epoch.^2; 

TtranT = T'*T; TtranT_inv = inv(TtranT); TtranT_inv_Ttran = TtranT\T'; 
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% Quadratic curve-fit coefficients, a 

% Units: a(1)=rad; a(2)=rad/day; a(3)=rad/day^2 (day=24hrs) 

a_RAAN = TtranT_inv_Ttran*RAAN; 

a_omega = TtranT_inv_Ttran*omega; 

a_M = TtranT_inv_Ttran*M; 

  

% Residuals, res 

% Units: rad 

res_RAAN = RAAN-T*a_RAAN; 

res_omega = omega-T*a_omega; 

res_M = M-T*a_M; 

  

% Mean square error, sig2 

% Units: rad^2 

sig2_RAAN = 1/num_data*(res_RAAN'*res_RAAN); 

sig2_omega = 1/num_data*(res_omega'*res_omega);  

sig2_M = 1/num_data*(res_M'*res_M); 

  

% Covariance of curve-fit, P 

% Covariance matrix for state vector a 

P_RAAN = TtranT_inv*sig2_RAAN; 

P_omega = TtranT_inv*sig2_omega;  

P_M = TtranT_inv*sig2_M; 

  

  

%% Calculate Torus Frequencies 

% Excluding second order terms in quadratic curve-fit (these are the 

% perturbation terms).  Units converted to rad/TU. 

% w1 = d/dt(M) + d/dt(omega) 

% w2 = -w_Earth + d/dt(RAAN) 

w1 = (a_M(2)+a_omega(2))/dy2TU; 

w2 = a_RAAN(2)/dy2TU; %-wEarth;  % Earth rotation rate is already included 

in the TEME frame, otherwise it would need to be subtracted. 

w1_err = (sqrt(P_M(2,2))+sqrt(P_omega(2,2)))/dy2TU; 

w2_err = sqrt(P_RAAN(2,2))/dy2TU; 

  

  

%% Clear non-needed working variables 

clearvars ans b_str* date* day* dg2rd diff dt DU dy2TU fid ii jdate* line* 

mu MU mult* nrev *_raw result* sig2* Ttran* TU twopi wEar* year* 
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Appendix B. MATLAB Script to Produce Position Vectors with SGP4 

% TLEPositionCompare.m 

% Author: Capt Kenneth Stuart 

% 

% This script reads a text file containing at least 2 two-line element sets 

% and creates N position vectors for each TLE forward to the next TLE and N  

% position vectors backward to the previous TLE.  The position vectors are 

% then compared to see how well SGP4 agrees with itself. (The value N is 

% set by the variable Npts below.) 

% 

% The script also propagates the first TLE forward through all time steps 

% in order to see how one TLE diverges from all subsequent TLEs. 

% 

% When the script encounters a set of TLEs with identical epoch dates,  

% only the last TLE of the set is recorded, regardless of whether or not 

% other elements in the TLEs are different. 

% 

% If you run ProcessRawTLE.m first, you can use a FOR loop in the Read TLE 

% Data File section of this code instead of the WHILE loop for increased 

% speed.  Comment/Uncomment the appropriate line to adjust. 

% 

% note: this program is heavily dependent on directory/sub-directory layout 

% and will likely need revision if adapted for future use. 

%  

% All SGP4 code was downloaded from Vallado's software package at 

% www.MicrocosmPress.com.  This software was used without modification. 

  

Npts = 100; 

format longE 

 

  

%% Select data source 

% 1 = Hubble, 2010 

% 2 = SL-14, 2014 

% 3 = SL-18, 2014 

% 4 = Iridium 33 debris, 2014 

% 5 = GOES-9, 2014 (fails next step) 

% 6 = Delta 114, 2009 

% 7 = Delta 11, 2009 (fails next step) 

% 8 = Thor 293, 2009 (fails next step) 

source = 1; 

  

  

%% Read TLE Data File 

% File shall have TLE data beginning on line 1 and ending on the last line 

% of the TLE text file.  There shall be no empty lines in the text file. 

switch source 

    case 1; fid=fopen('../Hubble_1Jan10_31Dec10.txt'); 

    case 2; fid=fopen('../SL14_1Jan14_31Dec14.txt'); 

    case 3; fid=fopen('../SL18_1Jan14_31Dec14.txt'); 

    case 4; fid=fopen('../Iridium33debris_1Jan14_31Dec14.txt'); 

    case 5; fid=fopen('../GOES9_1Jan14_31Dec14.txt'); 

    case 6; fid=fopen('../Delta114_1Jan09_31Dec09.txt'); 

    case 7; fid=fopen('../Delta11_1Jan09_31Dec09.txt'); 

    case 8; fid=fopen('../Thor293_1Jan09_31Dec09.txt'); 

end 
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% Initialize variables for SGP4 

% Each TLE set is stored as a nested structure: satrecs.TLE# 

% For TLEs with identical epoch dates, only the later TLE is stored. 

% Use FOR loop if length of TLE file is known from ProcessRawTLE.m,  

% otherwise use WHILE loop.  Comment/Uncomment appropriate line. 

satrecs.TLE1=struc([]); count='TLE1'; num_data=0; epoch_date_old = 0; 

line1=cell(1); line2=line1; 

  

% while ~feof(fid)      % Use WHILE LOOP if running as standalone code 

for ii=1:num_TLE      % Use FOR LOOP if running after ProcessRawTLE 

(num_TLE is defined) 

    line1{1}=fgetl(fid); 

    line2{1}=fgetl(fid); 

    [~,~,~,satrec] = twoline2rv(line1{1},line2{1},'c','','',84); 

    epoch_date_new = satrec.jdsatepoch+satrec.jdsatepochf; 

    if abs(epoch_date_new-epoch_date_old) < .041667 % disregard TLE if the 

next TLE is issued less than 1 hour later 

        satrecs.(count)=satrec; 

    else 

        num_data=num_data+1; 

        count=strcat('TLE',num2str(num_data)); satrecs.(count)=satrec; 

        line1{num_data+1,1}=line1{1}; line2{num_data+1,1}=line2{1}; % store 

TLEs that were not discarded 

    end 

    epoch_date_old = epoch_date_new; 

end 

fclose(fid); num_vec=(num_data-1)*Npts; line1(1,:)=[]; line2(1,:)=[]; 

  

  

%% Run SGP4 

% Initialize loop variables 

bwd='TLE1'; 

epoch_date=[0;satrecs.TLE1.jdsatepoch+satrecs.TLE1.jdsatepochf]; 

times_TLE=zeros(num_vec,1); ctr=1; t_1=0; r_TLE=zeros(num_vec,3); 

r_TLE_bwd=r_TLE; r_TLE_1=r_TLE; v_TLE=r_TLE; v_TLE_1=r_TLE; 

r_TLE_J2000=r_TLE; v_TLE_J2000=r_TLE; r_TLE_1_J2000=r_TLE; 

v_TLE_1_J2000=r_TLE; 

  

% Create position vectors 

for ii=2:num_data 

    % Load 2 TLEs, determine time between them 

    fwd = bwd; 

    bwd = strcat('TLE',num2str(ii)); 

    epoch_date(1) = epoch_date(2); 

    epoch_date(2) = satrecs.(bwd).jdsatepoch+satrecs.(bwd).jdsatepochf; 

    epoch_diff = epoch_date(2)-epoch_date(1);   % difference, days 

    epoch_diff_min = epoch_diff*1440;           % difference, minutes 

     

    % Create timestep parameters 

    times_TLE(ctr) = epoch_date(1);         % time of data point, days 

    tstep = epoch_diff/(Npts-1);            % time step, days 

    tstep_min = epoch_diff_min/(Npts-1);    % time step, minutes 

    t_fwd = 0:tstep_min:epoch_diff_min;     % times for SGP4, minutes 

    t_bwd = t_fwd-epoch_diff_min; 

    t_1 = t_1(end)+t_fwd; 
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    % Run SGP4 

    for jj=1:Npts 

        [~,r_TLE(ctr,:),v_TLE(ctr,:)] = sgp4(satrecs.(fwd),t_fwd(jj)); 

        [~,r_TLE_bwd(ctr,:),~] = sgp4(satrecs.(bwd),t_bwd(jj)); 

        % propagate first TLE through entire series 

        [~,r_TLE_1(ctr,:),v_TLE_1(ctr,:)] = sgp4(satrecs.TLE1,t_1(jj)); 

                 

    % Convert to J2000 reference frame 

        ttt=epoch_date(1)/36525; 

        

[r_TLE_J2000(ctr,:),v_TLE_J2000(ctr,:),~]=teme2eci(r_TLE(ctr,:)',v_TLE(ctr,

:)',[0 0 0]',ttt,50,2,'a'); 

        

[r_TLE_1_J2000(ctr,:),v_TLE_1_J2000(ctr,:),~]=teme2eci(r_TLE_1(ctr,:)',v_TL

E_1(ctr,:)',[0 0 0]',ttt,50,2,'a'); 

         

        ctr=ctr+1; times_TLE(ctr)=times_TLE(ctr-1)+tstep; % time of data 

point, days 

    end 

end 

times_TLE = times_TLE(1:end-1);   % remove extra data point created by loop 

above 

  

times_TLE_mod = times_TLE-2440000;          % Time, modified Julian date 

times_TLE_zero = times_TLE-times_TLE(1);    % Time, counting up from zero 

 

 

%% Clear non-needed working variables 

clearvars ans bwd count ctr epoch_d* fid fwd ii jj satrec t_* ttt tstep* 
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Appendix C. Results for Additional Test Cases 

Results for all test cases except Hubble are presented here without preamble.  Note 

that for unsuccessful test cases, results are presented up to the point of failure.  These results 

are presented here in the same order as the Hubble results are presented in Chapter IV.  

Refer to Chapter IV for an explanation of the data presented. 

Delta 11 Rocket Body Results 

Table 5. Delta 11 Rocket Body TLE Curve Fit Results 

Angle 𝑎0 (rad) 𝑎1 (rad/TU) 𝑎2 (rad/TU2) 

Ω 3.752839679281807e-02 -3.039516009881237e-04 3.112042550028040e-11 

𝜔 2.445364852700072e-02 3.248952437491975e-04 -4.240662362985422e-10 

𝑀 3.663427918133740e-02 5.363758166513375e-01 -3.841781684896315e-08 

Note.  Curve fit of the form 𝑋 = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 
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Figure 14.  Delta 11 Right Ascension of the Ascending Node Curve Fit and Residuals 

 

 

Figure 15.  Delta 11 Argument of Perigee Curve Fit and Residuals 
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Figure 16.  Delta 11 Mean Motion Curve Fit and Residuals 

Table 6. Delta 11 Rocket Body Torus Basis Frequencies and Error 

 Frequency (rad/TU)  Error (rad/TU) 

𝑤1 5367007118950867e-01 1.483034581406186e-07 

𝑤2 -3.039516009881237e-04 2.254144125515855e-09 

 

Torus construction failed for the Delta 11 test case.  No further data was collected 

for this test case. 
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Delta 114 Rocket Body Results 

Table 7. Delta 114 Rocket Body TLE Curve Fit Results 

Angle 𝑎0 (rad) 𝑎1 (rad/TU) 𝑎2 (rad/TU2) 

Ω 3.441424379393487e-02 -1.103525303929862e-03 -1.055192694781698e-08 

𝜔 1.608265718821470e-03 1.882824479292471e-03 1.823592831389637e-08 

𝑀 5.617886088083420e-02 8.831055129890579e-01 3.690266877701797e-06 

Note.  Curve fit of the form 𝑋 = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 

 

 

Figure 17.  Delta 114 Right Ascension of the Ascending Node Curve Fit and Residuals 
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Figure 18.  Delta 114 Argument of Perigee Curve Fit and Residuals 

 

 

Figure 19.  Delta 114 Mean Motion Curve Fit and Residuals 
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Table 8. Delta 114 Rocket Body Torus Basis Frequencies and Error 

 Frequency (rad/TU)  Error (rad/TU) 

𝑤1 8.849883374683504e-01 1.446924275551539e-06 

𝑤2 -1.103525303929862e-03 4.278440632676324e-09 

 

The nodal regression rate used for the torus was -1.10352532368809e-03 rad/TU. 

 

Figure 20.  Delta 114 Vectors to Torus Action-Angle Least Squares Residuals 

Large residuals from the least squares orbit fitting software indicate the SGP4 

vectors did not fit well to the surface of the torus.  The torus action-angle variables from 

this fit are a poor representation of the orbit and considered invalid.  No further data was 

collected for this test case. 
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GOES-9 Results 

Table 9. GOES-9 TLE Curve Fit Results 

Angle 𝑎0 (rad) 𝑎1 (rad/TU) 𝑎2 (rad/TU2) 

Ω 8.306288025486594e-03 -1.804103127379547e-06 2.658400119870909e-10 

𝜔 2.864403810083728e-03 2.564041341910887e-05 8.230356394557856e-08 

𝑀 5.769707985547703e-02 5.794617040746732e-02 -8.280782489298334e-08 

Note.  Curve fit of the form 𝑋 = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 

 

 

Figure 21.  GOES-9 Right Ascension of the Ascending Node Curve Fit and Residuals 
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Figure 22.  GOES-9 Argument of Perigee Curve Fit and Residuals 

 

 

Figure 23.  GOES-9 Mean Motion Curve Fit and Residuals 
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Table 10. GOES-9 Torus Basis Frequencies and Error 

 Frequency (rad/TU)  Error (rad/TU) 

𝑤1 5.797181082088643e-02 4.265789282743295e-06 

𝑤2 -1.804103127379547e-06 1.555111658141705e-09 

 

Torus construction failed for the GOES-9 test case.  No further data was collected 

for this test case. 

Iridium 33 Debris Results 

Table 11. Iridium 33 Debris TLE Curve Fit Results 

Angle 𝑎0 (rad) 𝑎1 (rad/TU) 𝑎2 (rad/TU2) 

Ω 1.559474876829538e-02 -6.869113440559658e-05 -1.067517117562366e-09 

𝜔 3.108816376446168e-02 -5.212606617146095e-04 -1.055160329396633e-08 

𝑀 3.223578156805461e-02 8.343064294416605e-01 5.270321967360674e-06 

Note.  Curve fit of the form 𝑋 = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 
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Figure 24.  I33 Debris Right Ascension of the Ascending Node Curve Fit and Residuals 

 

 

Figure 25.  I33 Debris Argument of Perigee Curve Fit and Residuals 
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Figure 26.  I33 Debris Mean Motion Curve Fit and Residuals 

Table 12. Iridium 33 Debris Torus Basis Frequencies and Error 

 Frequency (rad/TU)  Error (rad/TU) 

𝑤1 8.337851687799458e-01 9.372959316111540e-06 

𝑤2 -6.869113440559658e-05 2.125088103220731e-09 

 

The nodal regression rate used for the torus was -6.86911350750460e-05 rad/TU. 
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Figure 27.  I33 Debris Vectors to Torus Action-Angle Least Squares Residuals 

Large residuals from the least squares orbit fitting software indicate the SGP4 

vectors did not fit well to the surface of the torus.  The torus action-angle variables from 

this fit are a poor representation of the orbit and considered invalid.  No further data was 

collected for this test case. 

SL-14 Rocket Body Results 

Table 13. SL-14 Rocket Body TLE Curve Fit Results 

Angle 𝑎0 (rad) 𝑎1 (rad/TU) 𝑎2 (rad/TU2) 

Ω 2.550420838985319e-02 -1.696805309791247e-04 -6.319711037344882e-09 

𝜔 4.876101343323117e-02 -5.899067935333994e-04 -4.420252504056470e-08 

𝑀 3.917328838329103e-03 9.083805904867033e-01 1.418456093475879e-05 

Note.  Curve fit of the form 𝑋 = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 
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Figure 28.  SL-14 Right Ascension of the Ascending Node Curve Fit and Residuals 

 

 

Figure 29.  SL-14 Argument of Perigee Curve Fit and Residuals 
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Figure 30.  SL-14 Mean Motion Curve Fit and Residuals 

Table 14. SL-14 Rocket Body Torus Basis Frequencies and Error 

 Frequency (rad/TU)  Error (rad/TU) 

𝑤1 9.077906836931700e-01 1.585789863786196e-05 

𝑤2 -1.696805309791247e-04 5.698164948718659e-09 

 

The nodal regression rate used for the torus was -1.69680540178524e-04 rad/TU. 
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Figure 31.  SL-14 Vectors to Torus Action-Angle Least Squares Residuals 
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Figure 32.  SL-14 RMSE: All TLEs Compared to First TLE 

(a) 

(b) 
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Figure 33.  SL-14 RMSE: Updated Action-Angle Sets Compared to First Set 

(b) 

(a) 
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Figure 34.  SL-14 RMSE: Updated Action-Angle Sets Compared to All TLEs 

 

 

Figure 35.  SL-14 Torus-to-TLE RMSE Correlation to Elapsed Time 
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Figure 32 (a) shows the SGP4 RMSE grows to 1 kilometers after 1.2 days, which 

occurs shortly after the epoch time of the second TLE in the set.  The error reaches 5 

kilometers at 2.6 days after the third TLE.  Figure 33 (a) shows the torus RMSE grows 

beyond 5 kilometers after a matter of hours, reaching 17 kilometers with the first update to 

the action-angle variables.  Figure 34 shows the RMSE between the torus and SGP4 models 

for each set of 100 vectors over the full year differ primarily in the in-track direction for 

all predictions with a mean in-track difference of 10.47 kilometers.  The vectors differ by 

an average RMSE of 615 meters in the radial direction and 159 meters in the orbit-normal 

direction. 

The SL-14 rocket body orbits at the lowest altitude of the three test cases with a 

valid torus model.  Figure 35 shows the RMSE between the torus and SGP4 orbit models 

can reach as much as 20 kilometers over a one day period.  Atmospheric drag is the most 

likely cause for this rapid divergence and may be the limiting factor affecting how well 

SGP4 position vectors will fit to the surface of the KAM torus.    The R2 coefficient of a 

linear fit through the data in Figure 43 is 0.377, indicating that the unpredictable 

atmospheric drag conditions greatly affect the divergence of the models. 
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SL-18 Rocket Body Results 

Table 15. SL-18 Rocket Body TLE Curve Fit Results 

Angle 𝑎0 (rad) 𝑎1 (rad/TU) 𝑎2 (rad/TU2) 

Ω 2.642468070258952e-02 1.692593162690922e-04 8.305364182764667e-09 

𝜔 -1.794307885938283e-03 -5.831137479926340e-04 -4.431142126331949e-08 

𝑀 1.229010167779068e-02 9.008805514109712e-01 1.520471427642581e-05 

Note.  Curve fit of the form 𝑋 = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 

 

 

Figure 36.  SL-18 Right Ascension of the Ascending Node Curve Fit and Residuals 
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Figure 37.  SL-18 Argument of Perigee Curve Fit and Residuals 

 

 

Figure 38.  SL-18 Mean Motion Curve Fit and Residuals 
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Table 16. SL-18 Torus Basis Frequencies and Error 

 Frequency (rad/TU)  Error (rad/TU) 

𝑤1 9.002974376629787e-01 2.196155792730019e-05 

𝑤2 1.692593162690922e-04 6.233876829013437e-09 

 

The nodal regression rate used for the torus was 1.69259318046536e-04 rad/TU. 

 

Figure 39.  SL-18 Vectors to Torus Action-Angle Least Squares Residuals 
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Figure 40.  SL-18 RMSE: All TLEs Compared to First TLE 

(a) 

(b) 
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Figure 41.  SL-18 RMSE: Updated Action-Angle Sets Compared to First Set 

(a) 

(b) 
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Figure 42.  SL-18 RMSE: Updated Action-Angle Sets Compared to All TLEs 

 

 

Figure 43.  SL-18 Torus-to-TLE RMSE Correlation to Elapsed Time 
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Figure 40 (a) shows the SGP4 RMSE grows to 1 kilometers after 1.2 days, which 

occurs shortly after the epoch time of the second TLE in the set.  The error reaches 5 

kilometers at 9.7 days after the ninth TLE. Figure 41 (a) shows the torus RMSE grows 

beyond 5 kilometers after a matter of hours, reaching 17 kilometers with the first update to 

the action-angle variables.  Figure 42 shows the RMSE between the torus and SGP4 models 

for each set of 100 vectors over the full year differ primarily in the in-track direction for 

all predictions with a mean in-track difference of 7.28 kilometers.  The vectors differ by an 

average of 192 meters in the radial direction and 156 meters in the orbit-normal direction.  

The R2 coefficient of a linear fit through the data in Figure 43 is 0.629.  The correlation is 

not as strong as the Hubble RMSE correlation likely because the SL-18 rocket body is in a 

higher drag environment. 

Thor 293 Rocket Body Results 

Table 17. Thor 293 Rocket Body TLE Curve Fit Results 

Angle 𝑎0 (rad) 𝑎1 (rad/TU) 𝑎2 (rad/TU2) 

Ω 1.826055416145551e-02 -8.369327449133814e-04 -3.432109406765128e-11 

𝜔 1.404738190629151e-02 1.367514961815496e-03 -1.776467205688424e-11 

𝑀 4.497505790335756e-02 7.937256946477702e-01 1.237708899455352e-08 

Note.  Curve fit of the form 𝑋 = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 
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Figure 44.  Thor 293 Right Ascension of the Ascending Node Curve Fit and Residuals 

 

 

Figure 45.  Thor 293 Argument of Perigee Curve Fit and Residuals 
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Figure 46.  Thor 293 Mean Motion Curve Fit and Residuals 

Table 18. Thor 293 Rocket Body Torus Basis Frequencies and Error 

 Frequency (rad/TU)  Error (rad/TU) 

𝑤1 7.950932096095857e-01 3.456321706034434e-08 

𝑤2 -8.369327449133814e-04 1.084015342511635e-09 

 

Torus construction failed for the Thor 293 test case.  No further data was collected 

for this test case. 
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