

DYNAMIC LOGICAL MISSION MODELING TOOL

THESIS

Justin A. Sadowski, Captain, USAF

AFIT-GSS-ENY-17-M-290

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the United

States Government.

AFIT-GSS-ENY-17-M-290

DYNAMIC LOGICAL MISSION MODELING TOOL

THESIS

Presented to the Faculty

Department of Aeronautics and Astronautics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Space Systems

Justin A. Sadowski, BS

Captain, USAF

March 2017

DISTRIBUTION STATEMENT A.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-GSS-ENY-17-M-290

DYNAMIC LOGICAL MISSION MODELING TOOL

Justin A. Sadowski, BS

Captain, USAF

Approved:

___________________________________ ________
Eric D. Swenson, PhD, AFIT (Chairman) Date

___________________________________ ________
Richard G. Cobb, PhD, AFIT (Member) Date

___________________________________ ________
Bradley J. Ayres, PhD, Contractor (Member) Date

iv

AFIT-GSS-ENY-17-M-290

Abstract

The ability to test and evaluate spacecraft designs is limited by the challenges of

getting to (and operating in) the mission environment, and thus modeling and simulation

is one way the space industry drives down risk and assists development of new

technologies. The more accurate these models and simulations become, the more useful

they are to the designer. While there are many choices for orbital propagation software,

there are not many that allow dynamic modeling of both the spacecraft (to include its

mode states) and its interactions with the environment in which it operates. The

environmental model includes the spacecraft’s orbit and spatial relationship to other

agents in the simulation as well as non-agent entities such as planets and stars. The in-

house AFIT modeling and simulation software, the Logic-Based Mission Modeling Tool

(LMMT), has introduced the capability of behavior-based modeling by defining the

spacecraft’s modes as logical states in a state machine, however, in its current form it

does not allow for changes the satellite or other entities may make in how they interact

with the environment in which it operates.

This thesis research evaluates the usefulness of dynamic modeling as compared

with static modeling (such as that which is already possible with the LMMT). When

changes occur which make the spacecraft’s method of interacting with the environmental

model no longer relevant, due to either spacecraft mode changes or other agents in the

simulation, the model should be dynamically updated to include these changes by means

of repropagating the environmental model.

This research’s focus is to ideate and then evaluate a subset of use-cases that

would create changes in the environmental model. Through this research, it is hoped to

develop a method for identifying when a static model such as the LMMT should be

utilized versus a dynamic model such as that developed specifically for this research.

v

Acknowledgments

I would like to express my gratitude for my research advisor, Dr. Eric Swenson, for his

unflagging support, infectious energy, and optimistic outlook about what can be

accomplished in the world. It is through his example that the truth that one can never be

too filled with wonder is made abundantly clear. I would also like to thank the members

of my committee for working through this document with me. A special note goes out to

Chaplain Snyder, who sponsored a productivity class that served to guide my efforts

more efficiently. Finally, the rest of my fellow students deserve credit for pushing me to

fully realize the project that this has become and supporting me when things got

unnecessarily exciting toward the end.

 Justin A. Sadowski

vi

Table of Contents

Page

I Introduction ..1

1.1 Overview ...1

1.2 Definitions ...3

1.3 Background ...4

1.4 Problem Statement ..8

1.5 Methodology ...9

1.6 Thesis Overview ..10

II Literature Review ...11

2.1 Chapter Overview ...11

2.2 Foundational Software ..11

2.3 The Logic-based Mission Modeling Tool ...14

2.3.1 LMMT: High-level Operation ...15

2.3.2 LMMT: Pre-Simulation Initialization Stage ...17

2.3.3 LMMT: Logical Processing ..18

2.4 AGI’s AMEOBA Plug-in ..21

2.5 Other State-Machine-Driven Software Suites ...22

2.6 Summary ...23

III Methodology ..24

3.1 Chapter Overview ...24

3.2 STK ...26

3.3 MATLAB ..27

vii

3.4 Development of the DyLoMMT ...28

3.5 Additional Changes Made ...32

3.6 Concept of Operations for Representative Mission ..34

3.7 Use-Cases ..35

3.8 Summary ...49

IV Analysis and Results ..51

4.1 Chapter Overview ...51

4.2 Generalized Imaging Mission: UC1 ..51

4.3 Straight into Fault: UC2 ..54

4.4 Into and Out of SunSafe, Then Survival: UC3..57

4.5 Into and Out of SunSafe Multiple Times: UC4...60

4.6 Power Positive in Survival: UC5 ..63

4.7 Mission with Thruster Burn: UC6 ...67

4.8 Research Objective Revisited/Impact of Results ..69

4.9 Summary ...70

V Conclusions and Recommendations ...72

5.1 Chapter Overview ...72

5.2 Conclusion and Significance of Research ...72

5.3 Recommendations for Action..73

5.4 Recommendations for Future Research ..76

VII Vita ...86

viii

List of Figures

Figure 1: Relative Complexity of Classes of Automata – Further-Out Layers are More

Complex/More Capable [14] .. 7

Figure 2: Close-up of Blue Modeler-Input Block in EPS, DyLoMMT 17

Figure 3: Full State Machine Diagram, LMMT.. 19

Figure 4: Wiring Diagram of State Machine, LMMT .. 20

Figure 5: Top-Level Feedback Loop Flowchart ... 25

Figure 6: Two Pieces of Software Integrated Together [31] [32] 26

Figure 7: DyLoMMT Simulation Flowchart .. 29

Figure 8: Function Call Block and Calling State, DyLoMMT ... 30

Figure 9: Dashboard view, DyLoMMT .. 32

Figure 10: Payload Configuration State, DyLoMMT ... 34

Figure 11: Notional LEOSat 1 Passing Over AFIT Ground Station 35

Figure 12: UC1 State Diagram, DyLoMMT... 36

Figure 13: UC3 State Diagram, DyLoMMT... 40

Figure 14: UC4 State Diagram, DyLoMMT... 43

Figure 15: UC5 Fault Mode State Diagram, DyLoMMT ... 45

Figure 16: UC6 State Diagram, DyLoMMT... 48

Figure 17: Fault Modes Triggered – UC1, DyLoMMT .. 52

Figure 18: EPS Telemetry – UC1, DyLoMMT .. 52

Figure 19: Data Usage – UC1, DyLoMMT .. 53

Figure 20: ADACS Readings – UC1, DyLoMMT ... 53

Figure 21: Static vs Dynamic Plot, X Magnitude – UC1, DyLoMMT............................. 54

ix

Figure 22: Fault Modes Triggered – UC2, DyLoMMT .. 55

Figure 23: EPS Telemetry – UC2, DyLoMMT .. 55

Figure 24: Static vs Dynamic Plot, X Magnitude – UC2, DyLoMMT............................. 56

Figure 25: Static vs Dynamic Plot, q1 Quaternion – UC2, DyLoMMT 57

Figure 26: Fault Modes Triggered – UC3, DyLoMMT .. 58

Figure 27: EPS Telemetry – UC3, DyLoMMT .. 58

Figure 28: Data Usage – UC3, DyLoMMT .. 59

Figure 29: Static vs Dynamic Plot, X Magnitude – UC3, DyLoMMT............................. 60

Figure 30: Static vs Dynamic Plot, q1 Quaternion – UC3, DyLoMMT 60

Figure 31: Fault Modes Triggered – UC4, DyLoMMT .. 61

Figure 32: EPS Telemetry – UC4, DyLoMMT .. 62

Figure 33: Static vs Dynamic Plot, X Magnitude – UC4, DyLoMMT............................. 62

Figure 34: Static vs Dynamic Plot, q1 Quaternion – UC4, DyLoMMT 63

Figure 35: Payload Configuration State, DyLoMMT ... 64

Figure 36: Fault Modes Triggered – UC5, DyLoMMT .. 65

Figure 37: EPS Telemetry – UC5, DyLoMMT .. 65

Figure 38: Static vs Dynamic Plot, X Magnitude – UC5, DyLoMMT............................. 66

Figure 39: Static vs Dynamic Plot, q1 Quaternion – UC5, DyLoMMT 66

Figure 40: Fault Modes Triggered – UC6, DyLoMMT .. 67

Figure 41: EPS Telemetry – UC6, DyLoMMT .. 67

Figure 42: Static vs Dynamic Plot, X Magnitude – UC6, DyLoMMT............................. 68

Figure 43: Static vs Dynamic Plot, q1 Quaternion – UC6, DyLoMMT 69

x

List of Tables

Table 1: Timeline of AFIT Spacecraft Modeling Efforts ... 12

Table 2: UC1 – CD&H and TT&C Parameters .. 37

Table 3: UC1 – EPS and Payload Parameters .. 37

Table 4: UC1 – ADCS and Structures Parameters ... 37

Table 5: UC2 – CD&H and TT&C Parameters .. 38

Table 6: UC2 – EPS and Payload Parameters .. 38

Table 7: UC2 – ADCS and Structures Parameters ... 39

Table 8: UC3 – CD&H and TT&C Parameters .. 41

Table 9: UC3 – EPS and Payload Parameters .. 41

Table 10: UC3 – ADCS and Structures Parameters ... 41

Table 11: UC4 – CD&H and TT&C Parameters .. 43

Table 12: UC4 – EPS and Payload Parameters .. 44

Table 13: UC4 – ADCS and Structures Parameters ... 44

Table 14: UC5 – CD&H and TT&C Parameters .. 46

Table 15: UC5 – EPS and Payload Parameters .. 47

Table 16: UC5 – ADCS and Structures Parameters ... 47

Table 17: UC6 – CD&H and TT&C Parameters .. 48

Table 18: UC6 – EPS and Payload Parameters .. 49

Table 19: UC6 – ADCS and Structures Parameters ... 49

1

DYNAMIC LOGICAL MISSION MODELING TOOL

I Introduction

1.1 Overview

The challenges of operating a spacecraft in its design environment and the barriers

to entering space itself have always made spacecraft design a fertile ground for

constructing and evaluating models and simulations, and it is this modeling and

simulation effort that this research focuses on. As is stated in Simulation Modeling

Handbook: A Practical Approach [1], “Simulation modeling and analysis is the process

of creating and experimenting with a computerized mathematical model of a physical

system.” Given the cost of testing inside the operational space environment alongside the

difficulties of replicating the same conditions on Earth (cost-effectively or otherwise),

modeling and simulation is a valuable addition to most missions. Currently, however,

commercial orbital propagation software available to space professionals has limited or

no capability to handle logical decision-making effects. This research focuses on

considering the possibilities afforded by software which allows such logical decision-

making to have direct impacts upon the environmental model (as defined later).

Very few missions today utilize spacecraft that are only ever in one mode of

operation. And, as may be intuitive, the more accurate a model is, the more useful and

pertinent the predictions produced will be and thus the more-informed decisions based off

those predictions will be. As discussed above, commercial orbital propagation software

has limitations regarding its ability to include logical decision-making capabilities within

the simulations themselves. Software such as Analytical Graphics, Inc.’s Systems

2

ToolKit (STK) [2], The Aerospace Corporation’s Satellite Orbit Analysis Program [3], or

code written in MATLAB does not typically provide a comprehensive method to evaluate

an on-orbit spacecraft as it proceeds through differing modes of operation. Therefore, in

the course of this research, a feedback mechanism is developed which will allow a model

to change how the spacecraft interacts with the environment and vice versa over the

course of a simulation, with the goal of better reflecting the actual operation of a

spacecraft. This dynamic approach to modeling can then be utilized to evaluate whether a

dynamic or static approach is better suited to the chosen use-cases as they exhibit

expected spacecraft behaviors.

By allowing a model to logically decide how it will respond to certain stimuli or

triggers in the environment in a dynamic fashion (e.g. when a UAV enters an airspace, a

targeting radar switches from search mode to target track mode) extra information can be

gained from the simulation about the suitability of the chosen concept of operations

(CONOPS) for the system. In the actual operational life of a system, responses to the

environment are not made in a void where nothing in the environment responds back or

changes. The architecture built by three prior AFIT students [4–6] as a result of their

thesis research serves as a solid foundation for further research into this area, and the

focus of this research is to ideate and then evaluate a subset of use-cases that create

changes in the environmental model. This research will first build a new capability onto

the existing ones provided by the Logic-Based Mission Modeling Tool (LMMT) [6]; a

feedback mechanism which can drive an ‘environmental repropagation’ or a regeneration

of the data provided by the environmental model (as defined in the following section).

Following this, a non-inclusive list of events and/or actions by an agent which would

3

have an impact on how the spacecraft interacts with the environmental model during a

simulated spacecraft mission are conceived. A subset of these events and/or actions is

chosen to be replicated in use-cases to be evaluated by the software, and conclusions are

drawn determining what sort of modeling projects would benefit from a dynamic

approach as opposed to the simpler static approach.

1.2 Definitions

To add some clarity to this research endeavor, a brief glossary of key terms used

and their meaning in the context of this research follows. Throughout this thesis, where

any term’s definition may be in question, italicization will denote that the definition listed

below is to be used. These definitions are not by any means considered standard or

widely-used throughout the modeling world. Environmental Model in particular is simply

a chosen set of words to reflect a concept that was otherwise not easily explained in a

clear and concise manner.

Mode: a state of operation of a system, specifying certain actions or responses to stimuli

(e.g. during Survival, the spacecraft’s attitude and determination control subsystem

(ADACS) will be powered down and the spacecraft will tumble). Jewell [5] took a

different approach and delineated a difference between the ‘state’ of a system and

‘mode,’ which is deemed unnecessary for this particular research’s purposes. ‘Mode

state’ is sometimes used to illustrate this blending.

State Machine: a logic-based decision-making set of triggers and responses that allows

an agent’s behavior to be regulated by a series of rules derived from the desired concept

of operations (CONOPS), operating in discrete time steps

4

Agent: a system or subsystem whose actions or interactions could be governed by a state

machine (e.g. a satellite, a subsystem, a ground station)

Environmental Model: the model that replicates the physical world in order to govern

how agents interact within a simulation (e.g. orbit propagator, RF link suite, weather

model), to be held as distinct from the model of the system, such as the satellite or other

agent

1.3 Background

This section begins by providing the reader more depth about modeling and

simulation, further developing this research’s validity of purpose. Next, an overview of

prior AFIT students’ research into this area, with an emphasis on the software this

research is built upon is provided. The section concludes with a high-level discussion of

what a state machine is and how it applies to modeling spacecraft behavior. This provides

the reader a better understanding of the type of models which form the logical decision-

making segment of the software this research focuses on.

1.3.1 Modeling and Simulation

Modeling and simulation, as a tool for risk reduction and design validation, has

been heavily leveraged by the space community because of the operationally challenging

environment most spacecraft face as well as the high cost of entry into that environment

(i.e. cost of launch) [7]. Beyond the expense of the materials and electronics suitable for

the space environment, launch costs run in the thousands per kilogram. SpaceX’s Falcon

9 [8] can launch to geostationary transfer orbit at ~$11,300 per kilogram while the United

Launch Alliance’s Atlas V [9] can launch to the same orbit at ~$18,600 per kilogram.

5

This price gets even more expensive when measured not by pure, amorphous mass but by

mass and volume, which is a more relevant/realistic measure of launch cost. When

measured in units of CubeSat volume (with one U equal to a 10x10x10cm cube [10]), one

12U, 20 kg spacecraft costs nearly $3M to launch into the same geostationary transfer

orbit [11], and this is while using a ride-share program to save on costs. Clearly, there are

severe entry barriers to getting into space.

According to Space Mission Engineering [7], modeling is “the art and science of

creating virtual builds (or, models) of systems of varying complexity and levels of

integration.” Simulation then refers to evaluating how a model changes/interacts over

time. The text continues, “Today’s space systems are designed and deployed in the

context of existing surface-based and space-based systems. Interactions within the subject

mission and with these existing systems should be exercised early and often…”

Furthermore, “It is rarely practical to exercise an end item or test article in the full

mission environment and durations before committing it to space deployment and fielded

service.” As discussed at the beginning of this subsection, to even get into actual space

incurs a program severe cost penalties, which apply whether the spacecraft is intended for

operational use or just for testing. But even once there, the spacecraft is subjected to a

variety of hardships not easily replicable on earth (i.e. vacuum, thermal loading,

radiation, etc.). As a result, models are used to gain insight into predicted behavior of

designs and stretch limited resources further. Given that modeling and simulation are

firmly entrenched in the space industry, improving the fidelity of these models is an area

of continuing research, including this research.

6

1.3.2 AFIT Student Efforts Overview

Students of the Air Force Institute of Technology (AFIT) have been designing and

refining a suite of spacecraft-specific modeling tools written in MATLAB since 2012

[12]. The latest three of these produced the pieces of and then the integrated software

suite of the LMMT [4–6]. These efforts have resulted in a software suite that leverages

the simulation capabilities of Simulink, the analytical and display capabilities of

MATLAB proper, and the logic-based decisions capability afforded by Stateflow. Most

recently, Loudermilk [6] combined the logical decision capabilities of the CubeSat State

Analysis Tool (CSAT) [5] with the analytical processing of the Mission Modeling Tool

(MMT) [4]. Driven by an initial (and importantly, static) set of data reports from STK,

the integration of both tools into a single software suite allowed Loudermilk to pave the

way for further research into mode-based CubeSat mission analysis. More information on

the initial CSAT and MMT can be found later in this thesis, in their respective

developers’ theses, and, most recently, in Loudermilk’s thesis, A Logic-Based Mission

Modeling Tool for Designing CubeSats [6]. More details about the lineage of these efforts

is found in Section 2.2 and Table 1.

1.3.3 Finite State Machine

This subsection draws on knowledge and definitions provided in the Encyclopedia

of Computer Science and Technology [13]. Finite-State Machines (or more simply, state

machines) are ways of looking at a system as a black box with a discrete number of input

and output ports. This concept applies whether the system being modeled is defined as

software, hardware, or some sort of hybrid. In respect to spacecraft modeling, these

7

systems are the modes in which a spacecraft exists. The action of the system (the

response to inputs) is constrained to occur at discrete time-steps, which is important to

note when constructing these models in environments such as Stateflow/Simulink, which

can only process actions in discrete time steps. State machines, therefore, fit well into this

constraint/design consideration. While not as “strong” as the Turing model of computing,

state machines prove useful in modeling the behavior of systems that react to outside

stimuli in a consistent and pre-planned fashion. Simply stated, the “strength” of a

computational model is a measure of its ability to solve problems. Turing models can be

described as abstract computational models which are the most capable; able to solve any

problem [that is solvable by means of an algorithm].

Figure 1: Relative Complexity of Classes of Automata – Further-Out Layers are

More Complex/More Capable [14]

Modeling spacecraft, however, allows the use of the lower-tier (as relative to the

graphic in Fig. 1) state machine class as there are indeed only a finite series of states the

spacecraft can be in. State machines can be used to represent the spacecraft in its entirety

8

or can be nested in layers to represent individual subsystems; each different state defined

by the logic it uses to process the inputs and outputs it receives and produces. In this

research, the spacecraft’s modes are represented as states, with triggers leading to entry

and exit from each state and actions accomplished while in that specific mode state. For

example, the spacecraft will enter SunSafe mode state when the battery depth of

discharge reaches a set, user-input, level. State machines accurately and efficiently model

the behavior of a spacecraft which operates within a predefined set of modes.

1.4 Problem Statement

This thesis research evaluates the usefulness of dynamic modeling as compared

with static modeling (such as that which is already possible with the LMMT). When

changes occur that make the spacecraft’s interactions with the environmental model no

longer relevant, due either to the spacecraft’s actions (such as spacecraft maneuvers) or

that of other agents in the simulation, the environmental model should be updated and

repropagated to account for these changes. This research’s focus is to ideate actions and

events that would create changes in the spacecraft’s interactions with the environmental

model and then evaluate a subset of these actions in use-cases via a software which

includes the capability to repropagate the environmental model. Through this research, it

is intended to develop a method for identifying when a static model such as the LMMT

should be utilized versus a dynamic model such as that developed specifically for this

research.

9

1.5 Methodology

1.5.1 Research Objective

The research’s objective is to develop a method of identifying when a dynamic

modeling approach would provide more value than a simpler static approach to spacecraft

modeling. Included in this objective is the development of software that will add the

capability to dynamically model and simulate a spacecraft over a given mission,

repropagating the environmental model autonomously when necessary. This software will

allow use-cases to be run to illustrate some of the possible actions or events which would

invite repropagation. The LMMT does not (by design) allow for any changes to its

environmental model data as the original desire during its inception was to develop a

‘fast’ simulation which still included the orbital propagation and behavior [12]. It does,

however, form a starting point from which additional repropagations can be introduced

into the model.

1.5.2 Scope, Assumptions, and Limitations

There are three primary limiting factors in this research.

• The decision-making that goes into what change in the satellite model is

significant enough to justify repropagation will not be investigated in this

research. It should be left up to the individual spacecraft designer to determine

what necessitates repropagation and when said repropagation should occur.

For this research, a set of mode changes deemed ‘significant’ is selected and

implemented.

10

• Although more than just spacecraft mode changes may give impetus to

repropagate the environmental model (i.e. mobile ground stations, moving

targets) this research will not provide them the separate state machines that

would be necessary to allow them to drive repropagations, nor will this

research include them in the environmental model.

• The calculations made within the framework of the MMT 2015 (the

MATLAB post-processing work) have not been validated [6], and this

research does not seek to do so. Whatever values provided to the state

machine side of the LMMT are assumed to have been derived correctly for the

purposes of this research.

1.6 Thesis Overview

 This thesis follows a five-chapter format. This section concludes Chapter 1:

Introduction and Background. A review of the relevant literature and others’ research is

provided in Chapter 2 in order to frame the research in its appropriate context, and

Chapter 3 discusses the methodology and means by which the research was conducted.

Chapter 4 provides the reader with the results of the use-cases chosen to demonstrate the

new software’s functionality and discusses their behavioral repercussions of certain

design choices. Chapter 5 presents the larger significance of the results in Chapter 4,

discusses remaining work, suggests future research, and concludes the thesis.

11

II Literature Review

2.1 Chapter Overview

First, this chapter will discuss the software this research is built upon, the LMMT,

to include a more in-depth look at the two progenitors of the LMMT and a discussion of

similar software capabilities provided by a commercial modeling plug-in to STK. The

chapter concludes with a discussion of AGI’s AMOEBA plug-in, which seeks to utilize

state machines and a commercial simulation tool kit to accomplish many of the same

aims as this research. The AMOEBA initiative, which was not available for evaluation

and testing at the time of this research, was a driving consideration in developing the

focus of this research.

2.2 Foundational Software

This section details the LMMT and the two immediately-preceding efforts that led

to its creation. Additionally, a table is provided below cataloging the complete efforts of

the AFIT ENY spacecraft modeling and simulation effort as begun in 2006 with Project

Insight [15]. Table 1 presents a list of the previous thesis work on the AFIT modeling

efforts starting from 2006. Efforts are generally listed in chronological order when

applicable – when multiple theses were completed in the same year, they are listed

alphabetically with respect to their author.

12

Table 1: Timeline of AFIT Spacecraft Modeling Efforts

Thesis/Effort Primary Author/Researcher Year
Project Insight: Threat Modeling And

Assessment For Earth-Orbiting Satellites [15] Reed M. Bond et al. 2006

A Simulink Based Tool for Design Reference
Mission Modeling [16] Jusdon E. McCarty 2010

A Colony II CubeSat Mission Modeling Tool
[17] Blythe Andrews 2012

Electrospray Propulsion Interface and Mission
Modeling for CubeSats [18] Angela Hatch 2012

Applying Model-Based Systems Engineering
to CubeSats: A Tailored Approach for a

Reusable State Analysis Tool [5]
Benjamin A. Jewell 2015

A CubeSat Mission Modeling Tool [4] Heather M. Udell 2015
A Logic-Based Mission Modeling Tool for

Designing CubeSats [6] Joshua R. Loudermilk 2016

2.2.1 The Mission Modeling Tool 2015

Udell [4] upgraded the Mission Modeling Tool from the uncompiled standalone

computer-based research code that it was into a MATLAB-based classroom-ready tool

for students to analyze CubeSat designs and architectures. Originally written with the

Colony II bus (as designed by Boeing) in mind, Udell updated the MMT to remove many

of the elements that were hard-coded to specifics of the Colony II bus, allowing for a

wider range of CubeSat designs to be evaluated. The MMT 2015 would take a set of STK

scenario data and post-process it, generating plots detailing various telemetry data points

of interest to the modeler and demonstrating if the chosen design met the chosen mission

parameters. Modes were not so much switched between as triggered on and off based on

values that were set by the modeler. For instance, the bus voltage could be set such that

13

when a certain value was passed, the MMT would report the satellite in ‘Survival Mode’.

No changes to either the satellite or the environmental model would occur, and the

simulation would continue logging data. Should the voltage rise above the threshold level

again, the satellite would be logged as no longer existing in Survival Mode. As Udell

wrote, “In an actual mission, the modeler would not want the satellite to eternally switch

between these two modes. Instead, they would want the satellite to stay in one mode or the

other long enough to recharge the batteries, reset, or otherwise correct the issue. However,

the MMT is designed merely to indicate potentially detrimental orbit conditions or

improperly sized hardware early in the design process. Any triggering of sun safe, and

especially of survival mode, signifies that there is a problem with the design that needs to be

resolved.” The intent of the MMT 2015 was not to evaluate CONOPS choices or the response

of the satellite in a hierarchical mode structure. In Loudermilk’s modification, the MMT

2015 essentially became the trigger generator for the CSAT state machine, replacing the task

list and adding further realism to the simulation.

 While STK proper does not allow for the sort of calculations the MMT 2015

provides to the LMMT, a plug-in is available called SOLIS [19]. This third-party

software from Advanced Solutions Inc. allows a long list of modeling and simulation

techniques to be run inside the STK environment, as detailed in the list on their website

[19]. For example, under the Attitude Determination Modeling, the plug-in touts its

ability to model sun sensors, horizon sensors, rate sensors, magnetometers, and star

trackers with options for perfect attitude determination, fixed-gain filters, and/or Kalman

filters being applied.

14

SOLIS is a relatively new plug-in, first introduced in 2011 [20], and new features

are being added as they are coded and tested, so in a few years it is planned to be even

more capable. However, even with the added capability, SOLIS will not be suitable for

the focus of this research, as it does not support STK Connect scripting (as of this

writing). Due to the autonomous nature of the desired feedback loop, some sort of script-

based initialization is a required feature.

2.2.2 CubeSat State Analysis Tool (CSAT)

Jewell’s thesis [5] led to the state machine controller of the LMMT. Jewell

created a working model of a satellite bus and its operations based on a representative

CubeSat mission within Stateflow/Simulink, and the CSAT was the result. Applying

Model-Based Systems Engineering principles, Jewell created a tool that provided

“reusable states, modes, and logic in a CubeSat modeling framework.” One drawback

that Jewell had to contend with was that by running the state machine as a standalone

simulation, the operator had to inject change events and triggers manually into a ‘task

list’ to validate how the logical models interacted. Loudermilk, when integrating the

CSAT into the MMT architecture, was able to do away with manual triggering by setting

up the MMT to provide the necessary injects to the state machine at each discrete step

throughout the simulation.

2.3 The Logic-based Mission Modeling Tool

Because this research is built upon the work done to produce the LMMT, a

description of its evolution is provided in this section and its subsections. In Swartwout’s

article [21], it is noted that the vast majority of the failed CubeSat missions were

15

university-led projects, and, more tellingly, nearly half of all university-led CubeSat

missions (even of just those that reach orbit) fail to achieve mission success. The

information provided in this 2013 article was cited as a driving consideration for several

of the student research efforts into developing software that could be used at government

locations (to include AFIT) to help design and model CubeSats. The latest generation of

these efforts is the LMMT; designed and coded by Loudermilk [6] in the Spring of 2015.

The LMMT allows a student to test a specified physical design against a basic mission as

outlined in an STK scenario that is run prior to the simulation. Given the inherent

simplicity of the LMMT framework, it could serve to help size major components for

initial design and a first-pass look at requirements. However, because the LMMT only

requires one run of STK and its reports, it cannot incorporate and propagate any changes

in the environmental model (as discussed in Section 1). This research seeks to evaluate if

this can be changed.

2.3.1 LMMT: High-level Operation

Loudermilk’s [6] LMMT ingests data reports generated by STK (with the reports

being run prior to the simulation) at the beginning of each simulation run and then

references the information at each time step along the simulation. This data remains static;

following the initial ingest nothing more is done with the environmental model data files.

The content of these data files includes the sun and moon vectors, ground station access,

target-in-view windows, and the attitude and ephemeris of the spacecraft. These files are

the only means by which the spacecraft model can ‘see’ the outside world. Once the initial

generation scenario has been run in STK and the requisite reports generated, the

16

environmental model data is treated as unchanging – referenced but never regenerated. The

focus of this research is to test the feasibility of a method that would allow this data to

remain relevant by providing the capability to repropagate (where needed) during the

simulation itself. Since the LMMT was initially two pieces of software that were integrated

together (the MMT 2015 [4] and the CSAT [5]), this thesis will refer to one portion or the

other as separate elements, even though they are fully integrated and work seamlessly

together to produce the outputs from LMMT. The former CSAT can be thought of as the

logical “brain” of LMMT, and will henceforth in this thesis be referred to as the logical

side or the state machine. The former MMT 2015 can be thought of as a series of

calculations that are run at each time step (which, for this research, is set to 60 seconds)

utilizing the environmental model data, preparing higher-level values such as battery depth

of discharge from said raw data and modeler inputs detailing the spacecraft’s physical

characteristics. Loudermilk, while integrating the MMT 2015 and CSAT, highlighted

modeler input locations in blue in the software (see Fig. 2 as an example), and this

convention continues to be utilized in this research.

17

Figure 2: Close-up of Blue Modeler-Input Block in EPS, DyLoMMT

(Simulink screenshot)

These modeler inputs are what allow the modification of the software to fit

new/different designs and provides a flexibility that greatly aids in the design and

development process. Also of note is that the LMMT software is designed to be opened,

values for the spacecraft entered, and then a simulation run of the model – in that order.

The environmental model creation and data report generation have to be accomplished

prior to running the MATLAB/Simulink simulation, in a related but unconnected process.

2.3.2 LMMT: Pre-Simulation Initialization Stage

Before any simulation run can be started in LMMT, the modeler first generates a

mission-representative environmental model. Loudermilk provided an excellent user’s

guide [22] describing how to use the STK graphical user interface (GUI) to generate

basic scenarios and, even more helpfully, how to produce the specific reports the LMMT

relies upon for its environmental model data. After the reports are generated correctly

(formatted to meet the specific guidelines described in the How to Use Manual [22]), the

18

modeler places them into the folder the LMMT is expecting, and processes them (by

means of provided code) into a format recognizable by the rest of the software. The

modeler then opens (as opposed to runs) the LMMT Simulink model and adjusts the

physical parameters of the spacecraft inside the model.

Once both the environmental model and physical model have been input into the

LMMT (the former through creation and processing of reports, the latter by direct entry

into the LMMT model in Simulink), the modeler can now actually run the LMMT

simulation – the logical state machine operations and concurrent data calculations.

2.3.3 LMMT: Logical Processing

The logical “brain” of the LMMT is a series of interconnected states diagrammed

in a Stateflow chart as seen in Fig. 3 and fed through the Simulink simulation in

accordance with the wiring as seen in Fig. 4. It is this state machine (Fig. 3) that decides

which mode the spacecraft should exist in at each time step, as defined by its logic (as it

evaluates the higher-level values provided for it by the ongoing calculations). The

calculations are generated by means of various Simulink block diagrams and the

occasional MATLAB function block when more complicated mathematical operations

are desired. These calculations are leveraged again in the DyLoMMT; mostly in their

original format, as discussed in the research limitations (Section 1.5.2).

19

Figure 3: Full State Machine Diagram, LMMT

(Stateflow screenshot)

20

Figure 4: Wiring Diagram of State Machine, LMMT

(Simulink screenshot)

21

2.4 AGI’s AMEOBA Plug-in

Haun [23] (of AGI) has conceptualized and then led the development of a plug-in

for STK that allows the environmental model to interface with a No Magic product called

Cameo Systems Modeler [24], running its Cameo Simulation Toolkit [25]. “Cameo

Systems Modeler ™ is an industry leading cross-platform collaborative Model-Based

Systems Engineering (MBSE) environment, which provides smart, robust, and intuitive

tools to define, track, and visualize all aspects of systems in the most standard-compliant

SysML models and diagrams.” The Cameo Simulation Toolkit plug-in plays a role in

allowing the models to be run within the Cameo Systems Modeler – all of which gives

AMEOBA the state machine functionality that Stateflow provides the LMMT.

The AMOEBA plug-in functions by means of a series of state machines built

inside Cameo Systems Modeler which control their respective agent’s behavior inside the

STK environmental simulation. This constant feedback system is accomplished with the

assistance of the AMOEBA plug-in’s Information Layer, which allows the Cameo state

machines to be built using a language such that environmental stimuli or triggers will be

read into Cameo from STK and commands from the various agent’s state machines will

be translated back into commands that STK can interpret and act upon. The Information

Layer serves as a library of terms that can be used to port information back and forth

between Cameo’s state machines and the STK environmental model simulation, allowing

modelers not fluent in Java programming to use the same interface without having to

code their own ‘translators’. This effort will allow Cameo and STK to communicate more

seamlessly, much like the methods already developed for the MATLAB/STK connection

[26] that are leveraged in this research.

22

2.5 Other State-Machine-Driven Software Suites

As of this writing, no other commercially-available satellite design suites that are

driven by state machines have been found. It is thought, however, that many major

satellite development programs utilize some level of state behavioral analysis during their

design and test phase, but due to the proprietary nature of many satellite designs, their

approaches are not openly advertised. What has been discovered is presented below.

Some university satellite design programs discuss using state machines to model

the behavior of their spacecraft or subsystems therein. For example, a NASA PowerPoint

presentation [27] describes a CubeSat systems engineering example (that of the

AubieSat-1 from Auburn University’s Student Space Program) where state machines are

suggested as a modeling technique to assist the designers in the down-selection and

optimization processes.

In their book Solar Tracking, Prinsloo and Dobson [28] suggest automating solar

tracking control systems with state machines, which would correspondingly be easily

modeled by the same. Furthermore, model checking methods work by representing the

software as state machines [29], and this task is made easier if the model is already

represented as such.

The presumption that state machines are indeed a useful tool for modeling

spacecraft is supported by Kaslow’s [30] work with the International Council of Systems

Engineering’s (INCOSE) Space Systems Working Group. The group has set out a path

toward providing a CubeSat reference model in which state diagrams are used to model

“behavior in response to internal and external events.” The trend is indeed toward

23

utilizing state machine modeling in conjunction with environmental models to replicate

on-orbit behaviors.

Given these examples, it is presumed that state machines will continue to be used

to model the behaviors of spacecraft in academia and industry. The next step is seen as

introducing the ability to dynamically model these states and any changes they may

introduce to the environmental model; this research seeks to identify when this new

approach should be considered.

2.6 Summary

This chapter discussed the foundational efforts that the research software

developed here was based upon in order to provide a background on the previous work in

the area of spacecraft modeling and simulation. Extra information was provided on the

immediate predecessor to the DyLoMMT (the LMMT) as it provides much of the

functionality of the new software and because its merits are reviewed in the conclusions

of this thesis. This chapter also summarized the findings of other software using state

machine modeling of spacecraft, most notably the AGI AMEOBA plug-in, whose fully-

dynamic approach to modeling provided the impetus to engage upon this research. With

ever-increasing options for dynamic modeling available, answering the question of when

or in what cases is dynamic modeling desired/required becomes ever more pertinent.

24

III Methodology

3.1 Chapter Overview

The purpose of this chapter is to discuss how the research objective from

Subsection 1.5.1 is addressed: identifying when a dynamic or static modeling approach

should be chosen. To achieve this objective, it is necessary to develop software which

will allow the capability of using either a dynamic or static approach to model spacecraft

behaviors, and this effort will be briefly discussed in this chapter. The chapter begins

with sections detailing the two commercial software programs (STK and MATLAB) that

this research utilizes to accomplish its goal (Fig. 6). Of note to the reader is that these

software programs are needed only in terms of their functionality (i.e. environmental

model propagation and state machine logic/calculations, respectively). Any other

software capable of performing these functions as defined within this research could be

used in their stead, and this idea is discussed further at the end of each of software

sections. When discussing the software in terms specific to the configuration used in this

research, the respective name (e.g. STK) is used. However, when relating to these

programs in their more general sense, state machine and environmental model are used

instead with the aim to further aid outside application of this research’s presented

information. Figure 5 is presented as a top-level visual depiction of the concept used to

conduct this research.

25

Figure 5: Top-Level Feedback Loop Flowchart

The ‘Data Reports’ seen in Fig. 5 are the environmental model data used to link

the two sides of the software together. In the case of the LMMT, this is the series of

reports generated by STK mentioned earlier and discussed again in Section 3.2.

Significant effort went into determining how (and in what ways) to modify the LMMT in

order to support the research objective, but that effort is not discussed in detail in this

thesis. The new software developed for this research is called the Dynamic Logical

Mission Modeling Tool (DyLoMMT), paying homage to the hard work of the other

students whose efforts it is built upon while delineating its signature difference. The

chapter concludes with a description of the representative mission and the series of use-

cases which are used to achieve the research objective.

26

Figure 6: Two Pieces of Software Integrated Together [31] [32]

3.2 STK

Analytical Graphics Inc.’s [33] general mission as a company is to provide

software to model, analyze and visualize space, defense, and intelligence systems. Their

Systems ToolKit (STK) [2] software serves as the environmental model for the LMMT

and plays an even bigger role in this research’s work. Billed in AGI’s STK flyer [31] as a

physics-based modeling, simulation and analysis tool that allows visualization through its

integrated 4D (X, Y, Z, and Time) interactive globe, STK is used in this research to

generate text-formatted reports about target and ground station access and directional

vectors to the Sun and the Moon. These reports are then used by the calculations side of

the LMMT to inform logical arguments such as “target in view of payload”, or the angle

the sun vector forms with the vector normal to the solar arrays for power generation

[31]

[32]

27

statistics. Again, the information these reports provide is the only way in which the

spacecraft model can ‘see’ what is happening in the environmental model. Finally, while

not useful to the simulation itself, the visualization capability of STK allows easier

evaluation of the mission scenario for obvious coding errors (e.g. missing spacecraft or

incorrectly located ground stations). While STK is the environmental model used by the

DyLoMMT and its progenitors, any software which produces the same information that

the DyLoMMT ingests and is capable of being autonomously controlled via scripting

could be utilized in this capacity. The concept remains the same, although the

connections and implementation may be completely different.

3.3 MATLAB

While the LMMT uses the series of initial reports from STK (Sun and Moon

vectors, access to ground stations and targets, attitude and ephemeris, etc.) described in

the preceding section to feed (in one direction) the spacecraft model, the main analytical

computation of this modeling and simulation software is completed inside a software

suite programmed over the years by several prior students [4–6]. This software suite is

written in MATLAB and makes use of products from the Simulink family (both Simulink

main and Stateflow).

MathWorks is the developing company for both the MATLAB Product Family

[34] and the Simulink Product Family [32] (which includes Stateflow [35]), and both are

used in tandem to create the main analysis engine of the LMMT. Each of these continues

their functions as such in this research. Self-identified as “the Language of Technical

Computing,” MATLAB began as a large matrix manipulator and calculator (with

28

MATLAB initially standing for MATrix LABratory) and has since grown into its own

programming language with a variety of pre-coded capabilities that are provided by

MathWorks as add-ons, or toolboxes. While not the most efficient of programming

languages, MATLAB’s emphasis on data handling and more colloquial syntax make it a

favorite among engineers who do not possess other, more traditional, programming skills.

Simulink is a block diagram environment that runs inside MATLAB proper and is

designed specifically to run finite time step simulations. A feature of Simulink heavily

utilized by both the LMMT and the DyLoMMT is Stateflow, which is an environment

that allows modeling and simulation of combinatorial and sequential decision logic, all

based on state machines and flow charts. Stateflow forms the state machine model

portion of the LMMT and continues to play said role in this research.

3.4 Development of the DyLoMMT

As part of this research was the development of a feedback mechanism that would

allow dynamic repropagation of the environmental model, a brief discussion of the

modifications to the LMMT are included in the following subsections.

3.4.1 Adding Autonomy and the Feedback Mechanism

Under the LMMT framework, the STK-generated data reports are collected once

at the beginning of the simulation, and the STK scenario to generate them is

accomplished by means of STK’s graphical user interface. In order for the software to

dynamically regenerate the spacecraft’s perception of the environmental model data, this

process needed to be automated. Using the Connect [36] library of commands available

from AGI, a script was developed which created a full mission-representative scenario

29

and produced the necessary reports to initialize the LMMT. This code could then be

called from other script files to enable it to be run autonomously from within the

simulation. An example of this code is included in the Appendix. A visualization of the

DyLoMMT running a simulation is presented in Fig. 7.

Figure 7: DyLoMMT Simulation Flowchart

These automation scripts then allowed for the logical side of the DyLoMMT to be

modified to allow it to call for repropagations as necessary/defined by the state diagram’s

logic. Stateflow [37], in which the state machine runs, allows outside MATLAB

functions to be called by means of the aptly-named function-call block, which itself must

be called by one of the operational states (Fig. 8).

30

Figure 8: Function Call Block and Calling State, DyLoMMT

(Stateflow screenshots, combined with additions)

 Upon the spacecraft model entering a new state/mode, the DyLoMMT calls the

related function block and this starts a separate function script inside MATLAB. The

Simulink part of the simulation then pauses until the completion of this function call, and

then continues to step forward in time. This cycle continues as many times as

commanded by the state machine until the simulation reaches the end of the scenario.

Neither the details of these scripts, the mechanics of their function within the

DyLoMMT, nor their development is provided in this thesis.

3.4.2 The Processing Capabilities of the LMMT and the new DyLoMMT

In between pauses to change the environmental model data, the calculation side of

the simulation continues in its linear step fashion, determining higher-level values needed

by the state machine to evaluate its logic. As this research is focused on the relative

31

merits of static and dynamic approaches to modeling, the calculations side of the LMMT

has been modified only when necessary. The calculations, therefore, run as designed by

the previous coders working on the software, with the exception of unavoidable

alterations, such as when the initial date and time chosen for the scenario start was

required to be passed into the state machine, or when the Survival Overcharge modeler

input was added. The spacecraft model in the DyLoMMT is best visualized from the

‘dashboard’ view provided in Fig. 9, which is where the modeler interacts with the

subsystem mask they wish to edit (via double-clicking) and inputs his/her own values for

that subsystem. By editing each of the subsystems’ parameters in this fashion, the model

is ‘built’ according to those specifications. Currently, the configuration possibilities are

limited to those provided in these masks. Adding new possibilities requires further

alteration of the Simulink code/blocks underneath the mask. The other modeler-editable

values are those related to the state machine’s operation and presented via the state

diagram chart, as discussed previously. Of note are the ports leading into and out of the

dashboard view block (seen at the bottom of Fig. 9); these ports/tags are explained in

more detail in Loudermilk’s thesis [6]. Since the repropagation scripts edit the main

environmental model files and overwrite new data during a pause in the simulation, the

calculations proceed as they did in the LMMT, time step by time step, pausing as the

state machine pauses.

32

Figure 9: Dashboard view, DyLoMMT

(Simulink screenshot)

3.5 Additional Changes Made

The changes made to the LMMT described above, while of main import to this

research as they enable the dynamic modeling approach, are not the only changes made

to the LMMT. These next changes had to do with the operation of the model inside the

simulation, and were guided by lessons learned from discussions in the ASYS 632 [38]

satellite design course offered at AFIT. First of note is that the mode transition from

Mission to either SunSafe or Survival is now triggered by the Depth of Discharge of the

battery pack (as simulated) instead of by the Bus Voltage. This replaces the state

transition that used to be triggered by the bus voltage reaching a certain, modeler-defined

33

level. Now, instead of a critical bus voltage to reach, the modeler is asked to input a depth

of discharge at which SunSafe will be triggered as well as a recharge percentage required

before returning to Mission mode (the Overcharge value). Inside the SunSafe mode, the

Sun Soaking/Contacting Ground Station loop is added as the spacecraft should be able to

communicate with the ground station(s) even while in this fault mode. The TandC

configuration state was also modified to account for this change. Finally, the Payload

configuration state loop is updated in the following manner. The initial attempt of

modification now has the payload begin in the Off configuration, but transition to the

Standby state after a period of ten time steps has passed. The Payload then remains in

Standby until the spacecraft registers that it is in range of a target. Upon this triggering, it

proceeds to the On state. It remains in the On state (unless the spacecraft enters a fault

mode) until the spacecraft no longer has access to (a) target(s), at which time it returns to

Standby and remains powered. The Payload then remains in the Standby state until the

next imaging opportunity (or until a fault mode is entered), as is shown in Fig. 10. In

good practice, no subsystem should be powered down completely in normal operations

once it was successfully initialized [38], as sometimes components and/or entire

subsystems don’t come back on again if power is toggled. Further significant changes to

the state machine of the LMMT are discussed in their applicable use-cases.

34

Figure 10: Payload Configuration State, DyLoMMT
(Stateflow screenshot)

3.6 Concept of Operations for Representative Mission

To use the DyLoMMT, a mission representative scenario was chosen. It was

decided that a simple imaging mission where a single-payload imaging spacecraft would

be launched into Low Earth Orbit (LEO) to monitor a series of target locations scattered

around the world would provide opportunities to examine both static and dynamic

approaches. A notional orbit was defined, and the scenario was coded into the .m files

that control the initial and repropagation runs of the environmental model. These

parameters are hard-coded into the scripts the DyLoMMT uses to function, however, the

initial Scenario_Creation.m file is the model from which the other modes’ scripts are

35

generated, and would be the place to start when designing in a new mission to be

evaluated.

Figure 11: Notional LEOSat 1 Passing Over AFIT Ground Station

3.7 Use-Cases

A series of use-cases designed to help answer the question of when a static vs

dynamic approach is best applied is now presented to the reader. Each use-case is run

once with its designed repropagations, and then again with these repropagations disabled

to provide the comparison of static vs dynamic modeling. The scenario length remains set

at 10 days and the environmental model initial generation script are not modified from

use-case to use-case to provide more easily comparable results. However, the modeler-

input values and the state diagrams for each use-case do generally vary and the

differences are highlighted to the reader in each subsection.

36

3.7.1 Generalized Imaging Mission: Use-Case #1 (UC1)

Using the values derived from [39] and the CONOPS specified in the state

diagram as shown in Fig. 12, this case shows a baseline for the new software, reassuring

the reader that the same functionality exists in the DyLoMMT that was available in the

LMMT. These parameters are meant to be realistic values, and are not contrived for the

purposes of illustrating the software’s functionality.

Figure 12: UC1 State Diagram, DyLoMMT

(Stateflow screenshot)

37

Table 2: UC1 – CD&H and TT&C Parameters
CD&H

TT&C

Bus SoH Data Rate 10 bytes/sample time

Rx: Power On 0.7 W
Payload SoH Data Rate 10 bytes/sample time

Rx: Standby Power 0.7 W

Extra Data Rate 0 bytes/sample time

Tx: Power On 16 W
Memory Full Status 10 MB

Downlink Data Rate 8000 (kbps)

CDH On Power 3.5 W

Memory Initial Status 0 bytes

Table 3: UC1 – EPS and Payload Parameters
EPS

Payload(s)

Battery Initial Fill 70 Amp-Hours

Payload 1: Power On 27 W
Battery Capacity 80 Amp-Hours

P1: Operating Data Rate 20 kilobytes/sample time

Solar Panel Area 0.2 m^2

P1: Standby Power 9 W
Solar Panel Efficiency 0.23 (%/100)

P1: Standby Data Rate 0 bytes/sample time

Solar Panel Voltage 24 V

Payload 2: Power On 0 W
Depth of Discharge 50%

P2: Operating Data Rate 0 bytes/sample time

Overcharge 15%

P2: Standby Power 0 W
P2: Standby Data Rate 0 bytes/sample time

Table 4: UC1 – ADCS and Structures Parameters
ADCS

Structures

Magnetometer: Power On 1 W

Ixx MOI 0.188 kg-m^2
Star Tracker: Power On 1 W

Ixy MOI 0 kg-m^2

Sun Sensor: Power On 1 W

Ixz MOI 0 kg-m^2
Torque Coil X: Power On 2 W

Iyy 0.183 kg-m^2

Torque Coil Y: Power On 2 W

Iyz 0 kg-m^2
Torque Coil Z: Power On 2 W

Izz 0.009968 kg-m^2

Reaction Wheels: Max Power 5.5 W

Center of Mass X 0.122 m
RW: Zero-torque Power 1.12 W

Center of Mass Y 0.110 m

RW: Max Momentum 0.015 N-m-s

Center of Mass Z 0.183 m
RW: Moment of Inertia 2.1e-5 kg-m^2

Total Mass 10.9 kg

RW: Initial RPM 0 rpm

38

3.7.2 Straight into Fault: Use-Case #2 (UC2)

The next use-case demonstrates a spacecraft designed such that it cannot support

mission operations for the entirety of the representative scenario, and proceeds rapidly

from Mission mode, through SunSafe, and into Survival. This use-case shows the ability

of the DyLoMMT to cycle through different modes in simulation and generate additional

environmental model runs, as well as appending the main data files used by the

simulation with the newly-updated information specific to that mode. For ease of

comparison, the altered parameters have been highlighted in their respective tables. No

change has been made to the state diagram from UC1.

Table 5: UC2 – CD&H and TT&C Parameters
CD&H

TT&C

Bus SoH Data Rate 10 bytes/sample time

Rx: Power On 0.7 W
Payload SoH Data Rate 10 bytes/sample time

Rx: Standby Power 0.7 W

Extra Data Rate 0 bytes/sample time

Tx: Power On 16 W
Memory Full Status 10 MB

Downlink Data Rate 8000 (kbps)

CDH On Power 3.5 W

Memory Initial Status 0 bytes

Table 6: UC2 – EPS and Payload Parameters
EPS

Payload(s)

Battery Initial Fill 70 Amp-Hours

Payload 1: Power On 40 W
Battery Capacity 80 Amp-Hours

P1: Operating Data Rate 20 kilobytes/sample time

Solar Panel Area 0.2 m^2

P1: Standby Power 15 W
Solar Panel Efficiency 0.11 (%/100)

P1: Standby Data Rate 0 bytes/sample time

Solar Panel Voltage 24 V

Payload 2: Power On 0 W
Depth of Discharge 50%

P2: Operating Data Rate 0 bytes/sample time

Overcharge 15%

P2: Standby Power 0 W
P2: Standby Data Rate 0 bytes/sample time

39

Table 7: UC2 – ADCS and Structures Parameters
ADCS

Structures

Magnetometer: Power On 1 W

Ixx MOI 0.188 kg-m^2
Star Tracker: Power On 1 W

Ixy MOI 0 kg-m^2

Sun Sensor: Power On 1 W

Ixz MOI 0 kg-m^2
Torque Coil X: Power On 2 W

Iyy 0.183 kg-m^2

Torque Coil Y: Power On 2 W

Iyz 0 kg-m^2
Torque Coil Z: Power On 2 W

Izz 0.009968 kg-m^2

Reaction Wheels: Max Power 5.5 W

Center of Mass X 0.122 m
RW: Zero-torque Power 1.12 W

Center of Mass Y 0.110 m

RW: Max Momentum 0.015 N-m-s

Center of Mass Z 0.183 m
RW: Moment of Inertia 2.1e-5 kg-m^2

Total Mass 10.9 kg

RW: Initial RPM 0 rpm

3.7.3 Into and Out of SunSoak, Then Survival: Use-Case #3 (UC3)

This use-case examines the design of a spacecraft that, under these mission

parameters, slips into SunSafe mode, but is able to recharge its batteries to the point

where it returns to Mission mode. However, upon reenabling the payload (and associated

power draw) the spacecraft immediately drains its batteries past their fault depth of

discharge yet again, which this time sends the spacecraft into Survival. This immediate

move from Mission mode into Survival is brought about by a change in the state diagram,

changing the option to enter Sun Safe mode twice during the simulation before being

forced into Survival to only allowing one Sun Safe occurrence before the next depth of

discharge fault sends the spacecraft into Survival. Figure 13 gives a close-up of the

SunSafe mode and its triggers that send it to Survival. The faultcounter logic statement is

altered to trigger at 2, as opposed to 3 from the previous use-cases. The if statement found

in the entry conditions for SunSafe is necessary to avoid beginning a repropagation run

for SunSafe while conditions have been met to skip to triggering Survival (and its

associated repropagation run). Otherwise, the runs will conflict as the scripts attempt to

40

use the same information port to communicate with STK. Thus, the if statement skips

over any SunSafe repropagation when the conditions for Survival are met, and care must

be taken to ensure it remains in agreement with the entry to Survival condition. Finally, it

should be noted that this case does not allow for an autonomous recovery from Survival

mode, nor do the previous two cases. In the tables following, the values changed from the

immediately preceding use-case are again highlighted in their respective tables.

Figure 13: UC3 State Diagram, DyLoMMT

(Stateflow screenshot, with additions)

41

Table 8: UC3 – CD&H and TT&C Parameters
CD&H

TT&C

Bus SoH Data Rate 10 bytes/sample time

Rx: Power On 0.7 W
Payload SoH Data Rate 10 bytes/sample time

Rx: Standby Power 0.7 W

Extra Data Rate 0 bytes/sample time

Tx: Power On 16 W
Memory Full Status 10 MB

Downlink Data Rate 8000 (kbps)

CDH On Power 3.5 W

Memory Initial Status 0 bytes

Table 9: UC3 – EPS and Payload Parameters
EPS

Payload(s)

Battery Initial Fill 70 Amp-Hours

Payload 1: Power On 40 W
Battery Capacity 80 Amp-Hours

P1: Operating Data Rate 20 kilobytes/sample time

Solar Panel Area 0.2 m^2

P1: Standby Power 15 W
Solar Panel Efficiency 0.17 (%/100)

P1: Standby Data Rate 0 bytes/sample time

Solar Panel Voltage 24 V

Payload 2: Power On 0 W
Depth of Discharge 50%

P2: Operating Data Rate 0 bytes/sample time

Overcharge 15%

P2: Standby Power 0 W
P2: Standby Data Rate 0 bytes/sample time

Table 10: UC3 – ADCS and Structures Parameters
ADCS

Structures

Magnetometer: Power On 1 W

Ixx MOI 0.188 kg-m^2
Star Tracker: Power On 1 W

Ixy MOI 0 kg-m^2

Sun Sensor: Power On 1 W

Ixz MOI 0 kg-m^2
Torque Coil X: Power On 2 W

Iyy 0.183 kg-m^2

Torque Coil Y: Power On 2 W

Iyz 0 kg-m^2
Torque Coil Z: Power On 2 W

Izz 0.009968 kg-m^2

Reaction Wheels: Max Power 5.5 W

Center of Mass X 0.122 m
RW: Zero-torque Power 1.12 W

Center of Mass Y 0.110 m

RW: Max Momentum 0.015 N-m-s

Center of Mass Z 0.183 m
RW: Moment of Inertia 2.1e-5 kg-m^2

Total Mass 10.9 kg

RW: Initial RPM 0 rpm

42

3.7.4 Into and Out of SunSafe Multiple Times: Use-Case #4 (UC4)

 This case demonstrates a situation where the spacecraft oscillates between the

Mission and SunSafe modes, never settling into Survival. To accomplish this, the depth

of discharge recharge level required to reenter Mission mode is halved to 7% and the

state diagram is modified (as is illustrated in Fig. 14) to allow for repeated triggers of

SunSafe, without dropping into Survival. Note that in this case the trigger in question is

not removed entirely because the same result can be accomplished when the count of

needed cycles before heading straight to Survival is artificially placed at a level high

enough (arbitrarily chosen to be 20) to be out of reach for the simulation. Again, care is

needed to ensure the if statement’s conditions match up with the corresponding entry

conditions as boxed in red in Fig. 14. While this method is simpler, for a longer

simulation for which the same behavior is desired, it is recommended that this

counter/trigger be removed entirely (leaving only the time as the sole SunSafe trigger).

This will require the ‘if’ statement inside the SunSafe mode to be also altered

correspondingly to ensure the repropagation would run correctly.

43

Figure 14: UC4 State Diagram, DyLoMMT

(Stateflow screenshot, with additions)

Table 11: UC4 – CD&H and TT&C Parameters
CD&H

TT&C

Bus SoH Data Rate 10 bytes/sample
time

Rx: Power On 0.7 W

Payload SoH Data Rate 10 bytes/sample
time

Rx: Standby Power 0.7 W

Extra Data Rate 0 bytes/sample time

Tx: Power On 16 W
Memory Full Status 10 MB

Downlink Data Rate 8000 (kbps)

CDH On Power 3.5 W

Memory Initial Status 0 bytes

44

Table 12: UC4 – EPS and Payload Parameters
EPS

Payload(s)

Battery Initial Fill 70 Amp-Hours

Payload 1: Power On 40 W
Battery Capacity 80 Amp-Hours

P1: Operating Data Rate 20 kilobytes/sample time

Solar Panel Area 0.2 m^2

P1: Standby Power 15 W
Solar Panel Efficiency 0.17 (%/100)

P1: Standby Data Rate 0 bytes/sample time

Solar Panel Voltage 24 V

Payload 2: Power On 0 W
Depth of Discharge 50%

P2: Operating Data Rate 0 bytes/sample time

Overcharge 7%

P2: Standby Power 0 W

P2: Standby Data Rate 0 bytes/sample time

Table 13: UC4 – ADCS and Structures Parameters
ADCS

Structures

Magnetometer: Power On 1 W

Ixx MOI 0.188 kg-m^2
Star Tracker: Power On 1 W

Ixy MOI 0 kg-m^2

Sun Sensor: Power On 1 W

Ixz MOI 0 kg-m^2
Torque Coil X: Power On 2 W

Iyy 0.183 kg-m^2

Torque Coil Y: Power On 2 W

Iyz 0 kg-m^2
Torque Coil Z: Power On 2 W

Izz 0.009968 kg-m^2

Reaction Wheels: Max Power 5.5 W

Center of Mass X 0.122 m
RW: Zero-torque Power 1.12 W

Center of Mass Y 0.110 m

RW: Max Momentum 0.015 N-m-s

Center of Mass Z 0.183 m
RW: Moment of Inertia 2.1e-5 kg-m^2

Total Mass 10.9 kg

RW: Initial RPM 0 rpm

3.7.5 Power Positive in Survival: Use-Case #5 (UC5)

In this case, a spacecraft ends up in Survival mode, but the CONOPS allows for it

to recover to SunSafe if it meets certain criteria. This case is useful to determine if the

spacecraft is power positive in tumble; a key performance parameter of any spacecraft

design. Several modifications are needed to the state diagram to accomplish the desired

behavioral response, as can be seen in Fig. 15.

45

Figure 15: UC5 Fault Mode State Diagram, DyLoMMT

(Stateflow screenshot, with additions)

First, the Survival state is modified to allow for autonomous spacecraft recovery

from Survival mode. This is designed to be an overcharge-based trigger, like the one that

allows recovery from SunSafe. However, a new value is added to allow the modeler to

set a different overcharge requirement to recover from Survival, as since Survival is a

more serious fault mode, extra recovery of the batteries should be allowed for. This

recovery from Survival does not return straight to Mission mode, but instead back to

SunSafe, from which the spacecraft can be in contact with its ground station(s) and then,

if the recovery trigger is met, the spacecraft will continue to recover to Mission mode.

Next, the criteria which thrusts the spacecraft into Survival is modified. The

faultcounter value, which previously kept a running tally of fault modes entered, is now

46

reset each time the spacecraft enters Mission mode or exits Survival. This allows the

faultcounter to serve as an indication of multiple fault states existing simultaneously

(SunSafe and RWALimit in this case). When the spacecraft is already in the SunSafe

fault mode, should the reaction wheels become saturated, the RWALimit fault mode will

be entered, only now the faultcounter value will not have been reset, triggering the

spacecraft to enter Survival. In Survival, the spacecraft cuts power to everything but the

CD&H and Receiver systems, which is reflected in its environmental model which sets

the spacecraft spinning about each body axis at 2 degrees per second to represent

tumbling.

The final changes made are those allowing the spacecraft to enter the RWALimit

mode from either Mission mode or SunSafe. Again, if entering from SunSafe, the

spacecraft will then proceed into Survival and will only recover once/if the recovery

conditions are met. To engage the extra cycling of the RAWLimit mode, the reaction

wheels’ moment of inertia is reduced by approximately 20%.

Table 14: UC5 – CD&H and TT&C Parameters
CD&H

TT&C

Bus SoH Data Rate 10 bytes/sample time

Rx: Power On 0.7 W
Payload SoH Data Rate 10 bytes/sample time

Rx: Standby Power 0.7 W

Extra Data Rate 0 bytes/sample time

Tx: Power On 16 W
Memory Full Status 10 MB

Downlink Data Rate 8000 (kbps)

CDH On Power 3.5 W

Memory Initial Status 0 bytes

47

Table 15: UC5 – EPS and Payload Parameters
EPS

Payload(s)

Battery Initial Fill 70 Amp-Hours

Payload 1: Power On 40 W
Battery Capacity 80 Amp-Hours

P1: Operating Data Rate 20 kilobytes/sample time

Solar Panel Area 0.2 m^2

P1: Standby Power 15 W
Solar Panel Efficiency 0.17 (%/100)

P1: Standby Data Rate 0 bytes/sample time

Solar Panel Voltage 24 V

Payload 2: Power On 0 W
Depth of Discharge 50%

P2: Operating Data Rate 0 bytes/sample time

Overcharge 15%

P2: Standby Power 0 W
Survival Overcharge 20%

P2: Standby Data Rate 0 bytes/sample time

Table 16: UC5 – ADCS and Structures Parameters
ADCS

Structures

Magnetometer: Power On 1 W

Ixx MOI 0.188 kg-m^2
Star Tracker: Power On 1 W

Ixy MOI 0 kg-m^2

Sun Sensor: Power On 1 W

Ixz MOI 0 kg-m^2
Torque Coil X: Power On 2 W

Iyy 0.183 kg-m^2

Torque Coil Y: Power On 2 W

Iyz 0 kg-m^2
Torque Coil Z: Power On 2 W

Izz 0.009968 kg-m^2

Reaction Wheels: Max Power 5.5 W

Center of Mass X 0.122 m
RW: Zero-torque Power 1.12 W

Center of Mass Y 0.110 m

RW: Max Momentum 0.015 N-m-s

Center of Mass Z 0.183 m
RW: Moment of Inertia 1.7e-5 kg-m^2

Total Mass 10.9 kg

RW: Initial RPM 0 rpm

3.7.6 Mission with Thruster Burn: Use-Case #6 (UC6)

This final use-case leverages the adjustments to the state machine developed for

UC5 with the initial parameters used in UC1 to evaluate a mission-capable spacecraft

design over a mission that now involves a thruster burn five days into the simulation.

This is intended to initiate a repropagation based on not a mode change, but a maneuver

completed by the spacecraft. To accomplish this new feature, the state machine was again

modified to include a time-triggered state called Thrusting (Fig. 16) to generate the

necessary repropagation script. To allow for easier visualization of the change to the data,

48

the change in velocity imparted via the burn is set to 150 m/s along each principle

direction, or a combined thrust magnitude of 260 m/s, which is a little large for a

spacecraft of this size.

Figure 16: UC6 State Diagram, DyLoMMT

(Stateflow screenshot)

Table 17: UC6 – CD&H and TT&C Parameters
CD&H

TT&C

Bus SoH Data Rate 10 bytes/sample time

Rx: Power On 0.7 W
Payload SoH Data Rate 10 bytes/sample time

Rx: Standby Power 0.7 W

Extra Data Rate 0 bytes/sample time

Tx: Power On 16 W
Memory Full Status 10 MB

Downlink Data Rate 8000 (kbps)

CDH On Power 3.5 W

Memory Initial Status 0 bytes

49

Table 18: UC6 – EPS and Payload Parameters
EPS

Payload(s)

Battery Initial Fill 70 Amp-Hours

Payload 1: Power On 27 W
Battery Capacity 80 Amp-Hours

P1: Operating Data Rate 20 kilobytes/sample time

Solar Panel Area 0.2 m^2

P1: Standby Power 9 W
Solar Panel Efficiency 0.23 (%/100)

P1: Standby Data Rate 0 bytes/sample time

Solar Panel Voltage 24 V

Payload 2: Power On 0 W
Depth of Discharge 50%

P2: Operating Data Rate 0 bytes/sample time

Overcharge 15%

P2: Standby Power 0 W
Survival Overcharge 20%

P2: Standby Data Rate 0 bytes/sample time

Table 19: UC6 – ADCS and Structures Parameters
ADCS

Structures

Magnetometer: Power On 1 W

Ixx MOI 0.188 kg-m^2
Star Tracker: Power On 1 W

Ixy MOI 0 kg-m^2

Sun Sensor: Power On 1 W

Ixz MOI 0 kg-m^2
Torque Coil X: Power On 2 W

Iyy 0.183 kg-m^2

Torque Coil Y: Power On 2 W

Iyz 0 kg-m^2
Torque Coil Z: Power On 2 W

Izz 0.009968 kg-m^2

Reaction Wheels: Max Power 5.5 W

Center of Mass X 0.122 m
RW: Zero-torque Power 1.12 W

Center of Mass Y 0.110 m

RW: Max Momentum 0.015 N-m-s

Center of Mass Z 0.183 m
RW: Moment of Inertia 2.1e-5 kg-m^2

Total Mass 10.9 kg

RW: Initial RPM 0 rpm

ThrusterON Power 20 W

3.8 Summary

This chapter described how this research intends to meet the objective of

identifying when a dynamic modeling approach should be chosen over a static approach.

The start of the chapter discussed the working details of the two main software programs

utilized by the LMMT (and therefore the DyLoMMT), followed by a brief overview of

the changes developed for the DyLoMMT. Finally, it described a mission representative

reference scenario chosen for this research and diagrammed the six use-cases developed

50

to evaluate the software with. Section 3.7 (which covered the use-cases chosen) provides

the structure by which Chapter 4: Analysis and Results is constructed. This list of use-

cases is not an exhaustive one, and several opportunities have arisen for future work in

this area. More details on applicable future work can be found in Sections 5.3 and 5.4.

51

IV Analysis and Results

4.1 Chapter Overview

This chapter details the results of the use-cases introduced in Chapter 3. Each

DyLoMMT simulation generates a full set of telemetry, but only certain values are

selected for display in figures. This was how the software preceding the DyLoMMT

output its figures via the makefigures.m file, and this file remains generally unchanged

(some formatting was altered to dock the figures instead of displaying them in a free-

floating manner, as it originally coded). Each section will discuss the respective use-

case’s results and then present the figures. It may be of note to the reader that each use-

case went through a series of iterations until arriving at the parameters and state diagrams

reported in Chapter 3. Therefore, while there are no ‘failed’ use-cases reported in this

chapter, this does not imply that these parameters/state diagrams were simply an

unbroken string of good guesses which happened to achieve their respective behavioral

goals, or that the software somehow guides the modeler into designing the correct

mission. Varying degrees of effort were required to construct and then tune each use-

case.

4.2 Generalized Imaging Mission: UC1

This use-case is a baseline whose results should be similar to something produced

with the LMMT, as no repropagation runs should be initiated. As can be seen in Fig. 17,

the only Fault Mode triggered was a brief RWALimit status as the reaction wheels

became saturated late in the simulation (~6.8e5 epoch seconds). The remaining figures

show exactly what one would expect for a fully mission-capable design: cyclic power

52

generation from the solar arrays, cyclic ground station downlink rates, cyclic imaging

data rates as the spacecraft passes over targets, cyclical reaction wheel rates, and good

charge on the batteries throughout the length of the simulation. Figures 17 – 20 make up

the full standard output produced by the LMMT’s makefigures.m file. In subsequent use-

cases in this thesis, only the relevant figures are included.

Figure 17: Fault Modes Triggered – UC1, DyLoMMT

Figure 18: EPS Telemetry – UC1, DyLoMMT

53

Figure 19: Data Usage – UC1, DyLoMMT

Figure 20: ADACS Readings – UC1, DyLoMMT

 The static variant of this use-case was also run, and a comparison plot of the X

vector magnitude is provided in Fig. 21. The two sets of data overlap each other

perfectly, indicating that a dynamic approach to this use-case would not provide extra

fidelity. This is to be expected, as there were no repropagations. There are many other

factors to be compared between the static and dynamic approaches environmental model

data, but they are left out from this thesis.

54

Figure 21: Static vs Dynamic Plot, X Magnitude – UC1, DyLoMMT

4.3 Straight into Fault: UC2

As this use-case was to demonstrate the spacecraft’s mode state moving

downward into the fault modes, a new payload power requirement was levied on the

design (40 Watts while operating, 15 Watts while in standby), and the solar panel

efficiency was dropped to a much lower/more conservative value (11%). The latter could

represent cheaper solar cells, faults in manufacturing, on-orbit degradation, or perhaps

some combination of the set. With these new parameters input to the model, Fig. 22

reports the spacecraft’s mode state moving from normal ops (no Fault Status) into

SunSafe (~1.0e5 epoch seconds) and then into Survival mode (~4.4e5 epoch seconds). It

is important to remember that the spacecraft cannot exist in two of these states

simultaneously, though Fig. 22 may appear to suggest otherwise. Both the transition into

SunSafe as well as that into Survival triggered repropagations as per the state machine

logic.

55

Figure 22: Fault Modes Triggered – UC2, DyLoMMT

Figure 23 clearly shows the effects of the mode changes on the rate of the Battery

Depth of Discharge. At ~1.0e5 seconds, the rate of discharge noticeably decreases, and at

~4.4e5 seconds the batteries begin to recharge in Survival. This syncs with the Total

Component Power graph detailing the power being used by the spacecraft.

Figure 23: EPS Telemetry – UC2, DyLoMMT

56

Figure 24: Static vs Dynamic Plot, X Magnitude – UC2, DyLoMMT

 While the data in Fig. 24 overlaps perfectly as in UC1, there were repropagations

run during this use-case’s simulation, and so another environmental model data metric is

checked for differences. This metric is the q1 quaternion of the spacecraft’s attitude

throughout the simulation. Figure 25 clearly shows that after the first repropagation at

~1e5 seconds, the dynamic model’s q1 differs completely from its static counterpart. It

also clearly shows the different state’s attitude requirements (e.g. SunSafe: sun-pointing,

Survival: tumble, etc.) as the spacecraft cycles through them. Therefore, if attitude is of

interest to the modeler, a dynamic approach must be used in this case.

57

Figure 25: Static vs Dynamic Plot, q1 Quaternion – UC2, DyLoMMT

4.4 Into and Out of SunSafe, Then Survival: UC3

The purpose of this use-case is to demonstrate the capability of the DyLoMMT to

cycle between normal operation and fault modes. The Survival mode has still not been

modified to allow for autonomous recovery of the spacecraft, so the simulation moves

between the SunSafe and Mission modes until Survival is triggered, which the spacecraft

then remains in until the end of the simulation, as depicted in Fig. 26.

58

Figure 26: Fault Modes Triggered – UC3, DyLoMMT

Figure 27 details how the batteries sink to below the chosen DoD cutoff (50%),

recharge in the SunSafe mode, and then dip back below the cutoff upon resumption of

Mission mode power draw. Of note is the spacecraft’s total power consumption as shown

by the Total Component Power graph in Fig. 27; it is clear to see that, even in Survival

mode, the spacecraft does not shut down all subsystems, instead attempting to keep the

CD&H and receiving capability of the TT&C alive while there is power.

Figure 27: EPS Telemetry – UC3, DyLoMMT

59

Figure 28 shows how the payload data rate, the download rate, and the memory

fill are all effected by the different modes. The memory storage needed climbs during

orbits where no contact is made with the ground stations and decreases rapidly as soon as

communication with the ground is reestablished.

Figure 28: Data Usage – UC3, DyLoMMT

 Figure 29 shows that once again the spacecraft’s orbit remains virtually

unchanged, with the only variation being a single time step lag introduced into the data

by means of the time step used to initiate the repropagation. However, as in UC2, if the

attitude of the spacecraft is of interest to the modeler, the static and dynamic approaches

provide very different results (Fig. 30), and the dynamic approach may be more useful. If

attitude is of no consequence to the modeler, then the repropagation triggers should

reflect this and only be called if a spacecraft’s action will have an impact on other

environmental model metrics.

60

Figure 29: Static vs Dynamic Plot, X Magnitude – UC3, DyLoMMT

Figure 30: Static vs Dynamic Plot, q1 Quaternion – UC3, DyLoMMT

4.5 Into and Out of SunSafe Multiple Times: UC4

This next use-case demonstrates the ability to program the spacecraft CONOPS

such that SunSafe can be entered as many times as triggered, with Survival only being

triggered if other issues arise. This allows the repeated generation of Mission and

61

SunSafe environmental model repropagations that are spliced into the main data files as

the simulation continues. UC4 clearly shows that the DyLoMMT can handle a repeated

set of mode switches. The results are consistent with a spacecraft which has undersized

solar arrays – when it operates in Mission mode, it drains its batteries, but upon

assumption of SunSafe orientation and functionality, it recharges them and returns to

Mission mode. However, it is easy to see in Fig. 31 that the spacecraft spends

considerably more time in the SunSafe mode than it does accomplishing its mission,

which suggests that while the spacecraft bus operations require less electrical power than

the payload, they still use a large amount of the power generated via the solar arrays,

causing a slow recharge rate. Or, this may be a limitation of the battery packs themselves,

as the DyLoMMT will only allow them to charge at the rate specified by the modeler (in

this case, 5.2 Amps per time step). This sort of analysis is what the DyLoMMT is well-

suited to assist with.

Figure 31: Fault Modes Triggered – UC4, DyLoMMT

62

Figure 32: EPS Telemetry – UC4, DyLoMMT

Figure 33: Static vs Dynamic Plot, X Magnitude – UC4, DyLoMMT

 Figures 33 and 34 show the same trend as in the preceding use-case, the physical

orbit of the spacecraft does not change, even with repropagations, but the spacecraft’s

attitude very much does.

63

Figure 34: Static vs Dynamic Plot, q1 Quaternion – UC4, DyLoMMT

4.6 Power Positive in Survival: UC5

This next use-case demonstrates what is the most complicated state machine

diagram designed for the DyLoMMT yet, as well as the capacity for the spacecraft to

autonomously switch from Mission, SunSafe, RWALimit, and Survival modes. The state

machine operates with the logic that the spacecraft would not be able to maintain SunSafe

attitude if its reaction wheels were saturated.

Many of the improvements needed to the state machine of the DyLoMMT were

discovered while iterating this use-case. For example, this use-case’s set of iterations are

where the issues with the payload configuration state loop were identified and fixed. The

10 time steps delay on wakeup for the payload (designed with only initial startup in

mind) led to the payload repeatedly returning to the Standby state after being powered

down, even during a fault mode, draining the spacecraft’s batteries and sending it rapidly

into Survival mode with no chance of return due to the continuous heavy power draw.

64

For detail on the solution, compare the initial attempt shown in Fig. 10 with the fully-

updated version in Fig. 35. Figures 36 and 37 show the cycling of the spacecraft’s mode

states as SunSafe is triggered, the wheels saturate (which triggers Survival), then the

batteries are allowed to recharge to the point where the spacecraft climbs back up to

Mission mode, only to again cycle back down through to Survival.

Figure 35: Payload Configuration State, DyLoMMT

(Stateflow screenshot)

 An interesting result is produced by UC5 – the spacecraft logically is triggered

from SunSafe to Survival mode if its reaction wheels saturate, but once set into a sun-

pointing attitude, very minor corrections should be needed from the wheels to keep this

orientation, unless there is an outside torque present. There is no such torque coded into

this use-case, so something else is causing the wheels to spin up and saturate. It appears

65

this is because the DyLoMMT’s calculation side views the attitude passed in from the

environmental model as a series of discrete positions to be moved between. So when

faced with a constant motion orientation, the software still calculates that the wheels are

required to continually update this orientation, when physically this is not the case.

Figure 36: Fault Modes Triggered – UC5, DyLoMMT

Figure 37: EPS Telemetry – UC5, DyLoMMT

 As for a dynamic or static approach, the previous trend continues, with nothing

perturbing the orbit of the spacecraft over the repropagations (Fig. 38) but dramatic

66

differences recorded in the spacecraft’s attitude (Fig. 39). This use-case’s q1 quaternion

graph also provides a good example of the attitude requirements of each fault mode, with

the SunSafe mode introducing a slow change in attitude, followed by the quick, cyclical

changes seen in Survival mode as the spacecraft tumbles. This information is only seen in

the Dynamic data of these use-cases.

Figure 38: Static vs Dynamic Plot, X Magnitude – UC5, DyLoMMT

Figure 39: Static vs Dynamic Plot, q1 Quaternion – UC5, DyLoMMT

67

4.7 Mission with Thruster Burn: UC6

This final use-case introduces a repropagation not related to a fault mode, but

instead to an action by the spacecraft, namely, firing a thruster five days into the mission.

As Fig. 40 shows, only the occasional RWALimit fault was encountered, and therefore

no mode change repropagations occurred. However, the day five thruster burn did occur

and is seen in the power drop during the burn, when the payload was powered off and

remained off until the next imaging opportunity (Fig. 41).

Figure 40: Fault Modes Triggered – UC6, DyLoMMT

Figure 41: EPS Telemetry – UC6, DyLoMMT

68

 This final case also demonstrates the first utility of the X coordinates metric.

Clearly seen in Fig. 42 is the thruster burn’s resulting change in the spacecraft’s orbit.

Again, while this change in velocity may be a little high for a spacecraft weighing in at

just over 10kg, it serves to illustrate the utility of the repropagation. Of interest is the

unexpected result of different attitudes between the static and dynamic simulations

displayed in Fig. 43. This is understandable, as a new orbit would induce new pointing

requirements for the various targets, but it is an interesting result as the repropagation did

not induce an attitude change directly as in UC2–UC5, but it still appeared as an

emergent response to the change in orbit.

Figure 42: Static vs Dynamic Plot, X Magnitude – UC6, DyLoMMT

69

Figure 43: Static vs Dynamic Plot, q1 Quaternion – UC6, DyLoMMT

4.8 Research Objective Revisited/Impact of Results

This research sought to develop a method of identifying when a dynamic

modeling approach would be more appropriate than a static modeling approach. The use-

cases presented in this chapter illustrate that how a modeler defines the triggers for

repropagation will often inform when a dynamic model should be utilized for added

fidelity. For instance, if the modeler is only interested in coming up with a design that

experiences no fault modes, then a simple static model will suffice, as the model will be

iterated until no repropagation runs are exhibited and the data following a repropagation

is of no interest. However, if it is the behaviors of the spacecraft in all modes of operation

(some of which require repropagation runs) that is of interest to the modeler, then a

dynamic approach will provide a more complete picture of how the spacecraft is

interacting with its environment on-orbit. This also applies to simulations including

spacecraft actions that may alter their spacecraft’s interactions with the environmental

70

model data, such as the thruster burn in UC6. The DyLoMMT offers an improved

CONOPS evaluation capability as compared to the static LMMT, as changes in mode

hierarchy and triggers for modes are now reflected in updates to the environmental

model.

With this new software, the model is capably of autonomously triggering

repropagations of the environmental model using new mode conditions (as necessary)

throughout the simulation. This in turn provides a closer match of spacecraft behavior to

on-orbit conditions. In essence, the DyLoMMT adds the ability to model any

environmental model consequences of actions taken by the spacecraft during the

simulation. This research shows that mode-based CONOPS logic can drive

repropagations in the DyLoMMT without limiting the decision-making autonomy of the

state machine. The model (once constructed) can autonomously decide which mode it

should exist in as well as decide if/when to repropagate if something has changed that

makes the spacecraft’s current perception of the environmental model data no longer

current/relevant to the simulation. This capability should give modelers more confidence

in the predictions of the spacecraft’s behavior produced, particularly when simulating a

model of a system which will trigger repropagations. If not intending to leverage

repropagations, the generally quicker-running static model should be used.

4.9 Summary

This chapter provided the DyLoMMT-generated predictions of spacecraft

performance and behaviors over the course of a 10-day mission-representative

simulation. Full telemetry and figures were generated for each use-case, but only the

71

relevant were presented in this thesis, and changes to the state machine logic were

discussed for each relevant use-case. A presentation of both static and dynamic variants

of each use-case informed the chapter’s conclusions.

72

V Conclusions and Recommendations

5.1 Chapter Overview

This final chapter speaks briefly to the significance of the research presented in

this thesis and continues on to describe recommendations for future action to improve the

software as well as future areas of research related to the DyLoMMT. The

Recommendations for Action section covers ideas that are more concrete and not

considered to be research opportunities in of themselves, whereas the Recommendations

for Future Research section covers ideas which are more abstract and could serve to be

their own research opportunities.

5.2 Conclusion and Significance of Research

The products of this research, the figures and data presented, are the result of an

iterative effort (described in Chapter 3) which partially explains the lack of “failed” use-

cases. With this research, either the concept was going to be feasible, in which case it

would be implemented and produce results, or it was not. Once a general use-case could

be simulated, it was only a matter of tuning the physical parameters of the model or the

state machine logic to simulate other use-cases. The results presented in this thesis show

that this research’s objective was achieved, and the six use-cases serve to illustrate

different behaviors that can be simulated with the finished modifications. As discussed in

Section 4.8, the creation of the DyLoMMT allows dynamic spacecraft modeling which

considers the consequences of the spacecraft’s actions within the context of the

environment it is operating in. This concept adds fidelity to and confidence in the

predictions produced by the simulation. “All models are wrong, some are useful” is an

73

aphorism generally attributed to the statistician George E.P. Box [40] and gives some

context to the significance of this research. The DyLoMMT does not a perfectly model a

spacecraft’s on-orbit behavior. No model will. So, in place of trying to convince the

reader of that which is not, this research illustrates a feasible modeling tool which aims to

be more useful by modeling the action-consequence pairing discussed above and

discusses when this tool should be leveraged for higher-fidelity results. Moreover, this

research shows that even with single-agent software such as the DyLoMMT, there is a

wealth of information that can be ascertained from a dynamic modeling approach. This

result should generalize to more complete dynamic modeling approaches such as AGI’s

AMOEBA plug-in. This is significant to any modeler wishing to model a mission whose

spacecraft has modes which change how the spacecraft interacts with its environment or

whose spacecraft regularly alters its perception of the environmental data.

5.3 Recommendations for Action

In Section 1.5.2 the scope and limitations of this research effort were set out, and

a few provide good starting points for future action in the vein of this research that may

not quite make future research foci in of themselves.

The calculations performed inside the DyLoMMT to produce the higher-level

values which the state machine uses to operate have now undergone two iterations of

students modifying and integrating them with other code. It may be prudent to audit the

equations/blocks used and update them as necessary to ensure they accurately perform

their functions. In particular, the several algebraic loops found in the ADACS subsystem

should be given a closer look. These Simulink loops caused errors until augmented with a

74

unit step delay block, which circumvented Simulink throwing an error and quitting the

simulation. Unfortunately, this also leaves a zero for the initial value, which is logged in

their respective column in the telemetry file. This may or may not also delay each value

one time step, which might concern some modelers. Finally, the cyclic nature of the

power generated by the solar arrays suggests something in either the spacecraft’s

designed orbit in the environmental model or the method by which the attitude and sun

vector are combined to produce a measure of the power generated have some bug that

may be worth investigating. It may be that this is a seasonal or physically-valid effect,

and the operation of the interaction between the environmental model and the state

machine has been checked out and shown to be functioning as designed. This sort of

software verification and validation is not research in of itself, but may be worth further

action.

Further action also may be warranted to convert the DyLoMMT from what was

designed and built as predominately research code into a more user-friendly tool.

Although an effort has been made to responsibly document the scripting and coding done,

there is much work that can be done to streamline the modeler’s experience. The STK

generation scripts are well-documented in terms of the purpose of each segment of code,

but AGI’s Connect has a syntax that is not intuitive nor exhaustively well-documented,

which means there would be a learning curve should a modeler wish to alter the

parameters of the scenarios in substantial ways (e.g. changing pointing vectors or adding

components to the scenario that aren’t currently modeled). The MATLAB code, in

contrast, was directly modified from Loudermilk [6], and the documentation and modeler

guidelines provided no longer always apply. Furthermore, given the nature of the glue-

75

coding techniques applied, not all code is efficiently written. A modeler who is more

fluent in good coding practice may find themselves wondering why certain areas are

coded as they are, and generally the reason is because it required the least amount of

rewriting of previous, fully-functional code while still accomplishing the new purpose.

The attempt was made to change only the pieces it was necessary to, and this no doubt

has introduced inefficiencies in the software.

Another good example of work needed is how, in the DyLoMMT, STK opens and

closes during each propagation run (initial or otherwise), presumably due to the

interaction of the COM port connecting to STK and the function calls inside MATLAB.

While each start-and-stop cycle costs mere seconds in terms of CPU time, this could

become costly if long-duration simulations or those with significant amounts of

repropagation runs are desired. It is possible that this delay is unavoidable, but this

research has not collected enough information to make such a judgment. Another good

example of cleaner coding is that (by virtue of converting the STK generation scripts into

functions which receive a structure) the opportunity arises to convert much of what is

currently hard-coded into each script into a structure which could be passed through from

the Master.m file (such as the scenario’s end time). This would allow the modeler the

option to set these variables once, removing the need to carefully construct each

repropagation script to ensure accuracy. Finally, adjusting the repropagation scripts to

avoid the current time step slip in orbital data would give further clarity to an issue which

will only get worse as more repropagations are added into the simulation.

76

5.4 Recommendations for Future Research

This research opens several opportunities for future research into the area of

spacecraft modeling and simulation. The suggestions that follow are not an exhaustive

list but should serve to give the reader some indication of ways to move forward from

where this research left off.

One of the first and most directly-applicable efforts is to design more use-cases to

simulate to test spacecraft designs and/or logic. This could relate to changing CONOPS

to evaluate how a physical design reacts when different logic is presented to it, or it could

relate to running the same CONOPS with differing physical designs against a common

mission scenario to determine the ideal hardware parameters for the mission. One use-

case in particular that should bear relevance to most spacecraft missions is a loss-of-

comms event, and how the spacecraft would react to this. This use-case could be

developed by altering the environmental model to reflect a temporary loss of ground

station or by an inject into the state machine removing power to the subsystem in

question. Either of these techniques (altering the environmental model and/or injects into

the state machine) should prove useful to expanding the range of use-cases available to

test. Manual injects into the software may be accomplished by introducing a series of

breaks triggered at certain time or activity points in the state machine which call for

operator input. The operator could then specify some sort of flag that would alter the

model in some manner (as with the example of the loss-of-comms event) and then the

simulation would proceed with the new configuration, reacting accordingly.

Another good area of research would be a sensitivity analysis of how much of a

difference in predictions is made between the LMMT and the DyLoMMT. Are certain

77

styles/durations/complexities of missions more easily and as-accurately modeled using

the less-complicated LMMT? How close is close enough for various metrics? Along with

this line of reasoning comes the question: how much more fidelity should be added to the

STK scenarios for optimal return on investment? Currently, there are slew-limiting

factors built into the STK scenarios; are things of this nature worth the extra effort

needed by the modeler to interpret and use correctly? What if the spacecraft has a

directional antenna, how much of an effect does adding its slewing maneuvers into STK

have on the reaction wheel assembly?

This development of this software provides many different avenues to approach,

and research of this nature will continue to be of interest and value to the space

community.

78

Appendix

A1. Scenario_Creation.m STK Generation Connect/MATLAB Code

function [outputSTK] = Scenario_Creation(inputSTK)
dbstop if error

Script for Creating and Populating New STK Scenario
app = actxserver('STK11.application');
root = app.Personality2;
%Create new scenario, second string part is scenario name
scenario = root.Children.New('eScenario','STKScenario');
% Maximize the window STK opens in and set Step Size for all scenario
reports and animations
root.ExecuteCommand('Application / Maximize');
step = inputSTK.step;
%Set the time period desired for the scenario, and reset graphics
scenario.SetTimePeriod(inputSTK.InitializeDT,'3 Oct 2016
12:00:00.000')
root.ExecuteCommand(sprintf('SetAnimation * TimeStep %d',step));
root.ExecuteCommand('Animate * Reset');
% Set correct units for ConnectReports
root.ExecuteCommand('Units_set * ConnectReportUnitsFlag on');
root.ExecuteCommand('Units_Set * ConnectReport Date "EpochSeconds"')
Not enough input arguments.
Error in Scenario_Creation (line 15)
step = inputSTK.step;

Create new facilities for GS contact
AFIT = scenario.Children.New('eFacility','AFIT');
SDL = scenario.Children.New('eFacility', 'SDL');
NPS = scenario.Children.New('eFacility', 'NPS');
UHi = scenario.Children.New('eFacility', 'UHawaii');
% Update the geodetic location so all facilities aren't at AGI HQ
%AFIT IAgFacility facility: Facility Object
AFIT.Position.AssignGeodetic(39.7819,-84.0822,0) % Latitude,
Longitude, Altitude
% Set altitude to height of terrain
AFIT.UseTerrain = true;
% Add sensor for coverage
AFIT_S = AFIT.Children.New('eSensor', 'Sensor1');
root.ExecuteCommand('Define */Facility/AFIT/Sensor/Sensor1 SimpleCone
80');
%SDL IAgFacility facility: Facility Object
SDL.Position.AssignGeodetic(41.7607,-111.819,0) % Latitude, Longitude,
Altitude
% Set altitude to height of terrain
SDL.UseTerrain = true;
% Add sensor for coverage
SDL_S = SDL.Children.New('eSensor', 'Sensor2');
root.ExecuteCommand('Define */Facility/SDL/Sensor/Sensor2 SimpleCone
80');
%NPS IAgFacility facility: Facility Object
NPS.Position.AssignGeodetic(36.5944,-121.875,0) % Latitude, Longitude,
Altitude
% Set altitude to height of terrain
NPS.UseTerrain = true;
% Add sensor for coverage
NPS_S = NPS.Children.New('eSensor', 'Sensor3');
root.ExecuteCommand('Define */Facility/NPS/Sensor/Sensor3 SimpleCone
80');

79

%UoHawaii IAgFacility facility: Facility Object
UHi.Position.AssignGeodetic(21.3161,-157.886,0) % Latitude, Longitude,
Altitude
% Set altitude to height of terrain
UHi.UseTerrain = true;
% Add sensor for coverage
UHi_S = UHi.Children.New('eSensor', 'Sensor4');
root.ExecuteCommand('Define */Facility/UHawaii/Sensor/Sensor4
SimpleCone 80');

Create a new satellite
LEOsat = scenario.Children.New('eSatellite', 'LEOsat');
%Generate command to set up orbital elements for satellite
%Following sat name: Coord_Type Propogator Start_time Stop_time
Step_Size(s) Coord_Sys Orbital_epoch Semi-major_axis(m) eccentricity
inclination arg_perigee RAAN true_anomaly'
%cmd = ['SetState */Satellite/LEOsat Classical J4Perturbation
"',scenario.StartTime,'" "',scenario.StopTime,'" 60 ICRF
"',scenario.StartTime,'" 6828140 0 45 0 0 0'];
% Better plan: Use the ephem data type to intialize the state vector.
% Following sat name: Coord_Type Propogator Start_time Stop_time
Step_Size(s) Coord_Sys Orbital_epoch X Y Z Xdot Ydot Zdot [all in m
or m/s]
cmd = ['SetState */Satellite/LEOsat Cartesian J4Perturbation
"',scenario.StartTime,'" "',scenario.StopTime,'" %d J2000
"',scenario.StartTime,'" 6828139.99999986 0.000488948476255031
-1.40040938458241 0.00110765265001805 5402.59868433944
5402.59801312843'];
cmdstr=sprintf(cmd,step);
%Run that command
root.ExecuteCommand(cmdstr);
%Propogate said satellite
LEOsat.Propagator.Propagate;
% Set the attitude of said satellite
root.ExecuteCommand('SetAttitude */Satellite/LEOsat Profile
XPOPInertial 0');
root.ExecuteCommand('AddAttitude */Satellite/LEOsat Quat "26 Sep 2016
12:00:00.00" 0.0 0.0 0.0 1.0');
% Add a sensor for payload and the TT&C
LEOsat_Pay = LEOsat.Children.New('eSensor', 'Payload');
root.ExecuteCommand('Define */Satellite/LEOsat/Sensor/Payload
SimpleCone 22.5');
LEOsat_TTC = LEOsat.Children.New('eSensor', 'TTC');
root.ExecuteCommand('Define */Satellite/LEOsat/Sensor/TTC SimpleCone
22.5');
root.ExecuteCommand('Point */Satellite/LEOSat/Sensor/TTC Fixed
Quaternion 0.0 0.7071 0.0 0.7071')
% Use a model to make it look pretty
root.ExecuteCommand('VO */Satellite/LEOsat Model File "C:\Users
\GhostStalker\Documents\MATLAB\DyLoMMot\12U AFIT Bus.dae"');
root.ExecuteCommand('VO */Satellite/LEOsat ScaleLog 3.7');

Calculate Access to MC3 Network and Export
root.ExecuteCommand('Access */Satellite/LEOsat/Sensor/TTC */Facility/
AFIT/Sensor/Sensor1 TimePeriod UseScenarioInterval')
root.ExecuteCommand('Access */Satellite/LEOsat/Sensor/TTC */Facility/
SDL/Sensor/Sensor2 TimePeriod UseScenarioInterval')
root.ExecuteCommand('Access */Satellite/LEOsat/Sensor/TTC */Facility/
NPS/Sensor/Sensor3 TimePeriod UseScenarioInterval')
root.ExecuteCommand('Access */Satellite/LEOsat/Sensor/TTC */Facility/
UHawaii/Sensor/Sensor4 TimePeriod UseScenarioInterval')

Generate target list
for i = 1:13

80

T{i} = scenario.Children.New('eTarget',['T' num2str(i)]);
end
%Spread the targets out (for a real mission, you'd want to put them in
real places)
setpos1 = ['SetPosition */Target/T1 Geodetic 20 -10 Terrain'];
setpos2 = ['SetPosition */Target/T2 Geodetic 11 0 Terrain'];
setpos3 = ['SetPosition */Target/T3 Geodetic 13 17 Terrain'];
setpos4 = ['SetPosition */Target/T4 Geodetic 25 15 Terrain'];
setpos5 = ['SetPosition */Target/T5 Geodetic 30 35 Terrain'];
setpos6 = ['SetPosition */Target/T6 Geodetic 33 40 Terrain'];
setpos7 = ['SetPosition */Target/T7 Geodetic 31 42 Terrain'];
setpos8 = ['SetPosition */Target/T8 Geodetic 33 44 Terrain'];
setpos9 = ['SetPosition */Target/T9 Geodetic 32 49 Terrain'];
setpos10 = ['SetPosition */Target/T10 Geodetic 35 53 Terrain'];
setpos11 = ['SetPosition */Target/T11 Geodetic 38 57 Terrain'];
setpos12 = ['SetPosition */Target/T12 Geodetic 40 59 Terrain'];
setpos13 = ['SetPosition */Target/T13 Geodetic 45 75 Terrain'];
%Run those set pos commands
root.ExecuteCommand(setpos1);
root.ExecuteCommand(setpos2);
root.ExecuteCommand(setpos3);
root.ExecuteCommand(setpos4);
root.ExecuteCommand(setpos5);
root.ExecuteCommand(setpos6);
root.ExecuteCommand(setpos7);
root.ExecuteCommand(setpos8);
root.ExecuteCommand(setpos9);
root.ExecuteCommand(setpos10);
root.ExecuteCommand(setpos11);
root.ExecuteCommand(setpos12);
root.ExecuteCommand(setpos13);
toc

Create and run command to generate LMMTfriendly .csv file of
ground station access
rep_access = sprintf('ReportCreate */Satellite/LEOsat Type Export
Style "Access" File "C:\\Users\\GhostStalker\\Documents\\MATLAB
\\DyLoMMot\\AccessReportGS.csv" AccessObject */Facility/AFIT
AccessObject */Facility/NPS AccessObject */Facility/SDL AccessObject
*/Facility/UHawaii TimeStep %d', step);
root.ExecuteCommand(rep_access);

Set satellite payload to track targets when in view, then create
target access report
point_targets = ['Point */Satellite/LEOsat/Sensor/Payload
Targeted File "C:\Users\GhostStalker\Documents\MATLAB\DyLoMMot
\Targetlist.txt"'];
root.ExecuteCommand(point_targets);
% Set the attitude to slew to targets (sensor will move independently
of body of spacecraft unless this is specified)
root.ExecuteCommand('SetAttitude */Satellite/LEOsat Target On');
for i = 1:13
root.ExecuteCommand(strcat('SetAttitude */Satellite/LEOsat Target ADD
Target/T',num2str(i)));
end
root.ExecuteCommand('SetAttitude */Satellite/LEOsat Target Slew Mode
FixedRate RateMagnitude 5 SlewTimingBetweenTgts Optimal');
tar_access = sprintf('ReportCreate */Satellite/LEOsat/Sensor/Payload
Type Export Style "Access" File "C:\\Users\\GhostStalker\\Documents
\\MATLAB\\DyLoMMot\\AccessReportTarget.csv" AccessObject */Target/
T1 AccessObject */Target/T2 AccessObject */Target/T3 AccessObject
*/Target/T4 AccessObject */Target/T5 AccessObject */Target/T6

81

AccessObject */Target/T7 AccessObject */Target/T8 AccessObject
*/Target/T9 AccessObject */Target/T10 AccessObject */Target/T11
AccessObject */Target/T12 AccessObject */Target/T13 TimeStep %d',
step);
%Propogate said satellite
LEOsat.Propagator.Propagate;
root.ExecuteCommand(tar_access);

Run the Moon and Sun reports LMMT requires
root.ExecuteCommand(sprintf('ReportCreate */Satellite/LEOsat Type Save
Style "Lunar Vector J2000" File "C:\\Users\\GhostStalker\\Documents\
\MATLAB\\DyLoMMot\\moon.txt" TimeStep %d', step));
root.ExecuteCommand(sprintf('ReportCreate */Satellite/LEOsat Type Save
Style "Sun Vector J2000" File "C:\\Users\\GhostStalker\\Documents\
\MATLAB\\DyLoMMot\\sun.txt" TimeStep %d', step));

Run the attitude and ephemeris output bits that LMMT requires
root.ExecuteCommand(sprintf('ExportDataFile */Satellite/LEOsat
Ephemeris "C:\\Users\\GhostStalker\\Documents\\MATLAB\\DyLoMMot\
\Satellite1_Mission.e" Type STK CoordSys J2000 TimeSteps %d', step));
root.ExecuteCommand(sprintf('ExportDataFile */Satellite/LEOsat
Attitude "C:\\Users\\GhostStalker\\Documents\\MATLAB\\DyLoMMot\
\Satellite1_Mission.a" Details Quaternions CoordAxes J2000 TimeSteps
%d', step));
disp('Reports generated for Mission Scenario');
toc
Published with MATLAB® R2016b

82

Bibliography

[1] C. A. Chung, Simulation modeling handbook : a practical approach. CRC Press,
2004.

[2] “AGI - software to model, analyze and visualize space, defense and intelligence
systems.” [Online]. Available: https://www.agi.com/products/stk/. [Accessed: 02-
Dec-2016].

[3] D. Y. Stodden and G. D. Galasso, “Space system visualization and analysis using
the Satellite Orbit Analysis Program (SOAP),” 1995 IEEE Aerosp. Appl. Conf.
Proc., pp. 369–387.

[4] H. M. Udell, “A CubeSat Mission Modeling Tool,” Air Force Institute of
Technology, Master's Thesis, 2015.

[5] B. A. Jewell, “Applying Model-Based Systems Engineering to CubeSats: A
Tailored Approach for a Reusable State Analysis Tool,” Air Force Institue of
Technology, Master's Thesis, 2015.

[6] J. R. Loudermilk, “A Logic-Based Missiong Modeling Tool for Designing
CubeSats,” Air Force Institute of Technology, Master's Thesis, 2016.

[7] J. R. Wertz, D. F. Everett, and J. J. Puschell, Eds., Space Mission Engineering:
The New SMAD. Hawthorne: Microcosm Press, 2011.

[8] “Capabilities & Services | SpaceX.” [Online]. Available:
http://www.spacex.com/about/capabilities. [Accessed: 14-Jan-2017].

[9] “RocketBuilder.” [Online]. Available:
https://www.rocketbuilder.com/start/configure. [Accessed: 14-Jan-2017].

[10] G. Richardson, K. Schmitt, M. Covert, and C. Rogers, “Small Satellite Trends
2009-2013,” Proc. AIAA/USU Conf. Small Satell., p. SSC15-VII-3, 2015.

[11] “Commerical Space Launch Schedule and Pricing.” [Online]. Available:
http://www.spaceflight.com/schedule-pricing/. [Accessed: 02-Feb-2017].

[12] R. Cobb, “No Title.” Dayton, OH, 2017.

[13] Y. A. Feldman, “FINITE-STATE MACHINES,” Encyclopedia of Computer

83

Science and Technology. Marcel Dekker, Inc., pp. 73–104, 1992.

[14] “File:Automata theory.svg - Wikipedia.” [Online]. Available:
https://en.wikipedia.org/wiki/File:Automata_theory.svg. [Accessed: 15-Jan-2017].

[15] R. M. Bond, “Project Insight: Threat Modeling And Assessment For Earth-
Orbiting Satellites,” Air Force Institute of Technology, Master's Thesis, 2006.

[16] J. E. McCarty, “A Simulink Based Tool for Designing Reference Mission
Modeling,” Air Force Institute of Technology, Master's Thesis, 2010.

[17] B. Andrews, “A Colony II CubeSat Mission Modeling Tool,” Air Force Insitute of
Technology, Master's Thesis, 2012.

[18] A. Hatch, “Electrospray Propulsion Interface and Mission Modeling for
CubeSats,” Air Force Insitute of Technology, Master's Thesis, 2012.

[19] “STK SOLIS - Advanced Solutions, Inc.,” 2015. [Online]. Available:
http://www.go-asi.com/solutions/stk-solis/. [Accessed: 02-Jan-2017].

[20] “New STK/SOLIS Software Delivers Mission, Trajectory and Spacecraft
Simulation in One Commercial Product.” [Online]. Available:
http://vegas.digitalmedianet.com/article/New-STK/SOLIS-Software-Delivers-
Mission-Trajectory-and-Spacecraft-Simulation-in-One-Commercial-Product--
1723814. [Accessed: 02-Feb-2017].

[21] M. Swartwout, “The First One Hundred CubeSats: A Statistical Look,” J. Small
Satell.

[22] J. Loudermilk, “LMMT - How to Use Manual.” 2016.

[23] G. Haun, W. Boudo, E. Swenson, D. Meyer, and J. Sadowski, “16 November 2016
Discussion between AFIT and AGI Personnel,” 2016.

[24] “Cameo Systems Modeler.” [Online]. Available:
https://www.nomagic.com/products/cameo-systems-modeler. [Accessed: 17-Jan-
2017].

[25] “Cameo Simulation Toolkit.” [Online]. Available:
https://www.nomagic.com/product-addons/magicdraw-addons/cameo-simulation-
toolkit. [Accessed: 17-Jan-2017].

84

[26] “STK - MATLAB Interface.” [Online]. Available:
http://help.agi.com/stk/index.htm#matlab/matlab.htm. [Accessed: 02-Feb-2017].

[27] “Chapter 3: CubeSat SE Example.” NASA, 2008.

[28] G. Prinsloo and R. Dobson, Solar Tracking. Stellenbosch: SolarBooks, 2015.

[29] S. A. Jacklin, “Survey of Verification and Validation Techniques for Small
Satellite Software Development,” pp. 1–20, 2015.

[30] D. Kaslow, “CubeSat Model-Based Systems Engineering (MBSE) Reference
Model.”

[31] “Systems Tool Kit (STK) Free.” [Online]. Available:
http://www.agi.com/downloads/products/product-
literature/120213_STK_Free_Flyer_Missiles.pdf. [Accessed: 06-Jan-2017].

[32] “Simulink - Simulation and Model-Based Design.” [Online]. Available:
https://www.mathworks.com/products/simulink.html. [Accessed: 06-Jan-2017].

[33] “AGI - software to model, analyze and visualize space, defense and intelligence
systems.” [Online]. Available: https://www.agi.com/. [Accessed: 06-Jan-2017].

[34] “MATLAB - MathWorks - MATLAB.” [Online]. Available:
https://www.mathworks.com/products/matlab.html. [Accessed: 06-Jan-2017].

[35] “State Machine - Stateflow - Simulink.” [Online]. Available:
https://www.mathworks.com/products/stateflow/. [Accessed: 02-Dec-2016].

[36] “STK - Connect: Command Listings.” [Online]. Available:
http://help.agi.com/stk/11.0/Subsystems/connectCmds/connectCmds.htm.
[Accessed: 19-Jan-2017].

[37] “MATLAB/Simulink - State Action Types.” [Online]. Available:
https://www.mathworks.com/help/stateflow/ug/state-action-types.html. [Accessed:
19-Jan-2017].

[38] E. Swenson, “ASYS 632 Good Satellite Practices.” Dayton, OH, 2016.

[39] C. Alf et al., “CubeSat Satellite Design,” Wright-Patterson AFB, 2016.

85

[40] G. E. P. Box, “Robustness in the strategy of scientific model building,” Army Res.
Off. Work. Robustness Stat., pp. 201–236, 1979.

86

VII Vita

Graduating from the University of Kansas in 2012, Capt Sadowski earned a

Bachelor’s of Science in Aerospace Engineering and a commission through the Air Force

Reserve Officer Training Corps program. Alongside this research, he is pursuing an in-

residence master’s degree in Space Systems from the Department of Aeronautics and

Astronautics at AFIT. He is scheduled to continue his career in the United States Air

Force by working at the National Reconnaissance Office following the successful

completion of his degree.

87

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense,
Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

23-03-2017
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From – To)

August 2015 – March 2017

TITLE AND SUBTITLE

Dynamic Logical Mission Modeling Tool

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Sadowski, Justin A., Captain, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/ENY)
 2950 Hobson Way, Building 640
 WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GSS/ENY/17-290

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S
ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This thesis research evaluates the usefulness of dynamic modeling as compared with static modeling
(such as that which is already possible with the LMMT). When changes occur which make the
spacecraft’s method of interacting with the environmental model no longer relevant, due to either
spacecraft mode changes or other agents in the simulation, the model should be dynamically updated to
include these changes by means of repropagating the environmental model.
This research’s focus is to ideate and then evaluate a subset of use-cases that would create changes in
the environmental model. Through this research, it is hoped to develop a method for identifying when a
static model such as the LMMT should be utilized versus a dynamic model such as that developed
specifically for this research.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION
OF:

17. LIMITATION
OF
 ABSTRACT

UU

18.
NUMBER
OF PAGES

98

19a. NAME OF RESPONSIBLE PERSON
Dr. Eric Swenson, PhD, AFIT/ENY ADVISOR

a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

19b. TELEPHONE NUMBER (Include area code)
(937) 255-3636, ext 7479
(eric.swenson@afit.edu)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	AIR FORCE INSTITUTE OF TECHNOLOGY
	I Introduction
	1.1 Overview
	1.2 Definitions
	1.3 Background
	[1]
	1.1
	1.2
	1.3
	1.3.1 Modeling and Simulation
	1.3.2 AFIT Student Efforts Overview
	1.3.3 Finite State Machine

	1
	1.1
	1.2
	1.3
	1.4 Problem Statement
	1.5 Methodology
	1.4
	1.5
	1.4
	1.5
	1.5.1 Research Objective
	1.5.2 Scope, Assumptions, and Limitations

	1.6 Thesis Overview

	II Literature Review
	1
	2
	2.1 Chapter Overview
	2.2 Foundational Software
	2.2.1 The Mission Modeling Tool 2015
	2.2.2 CubeSat State Analysis Tool (CSAT)

	2.3 The Logic-based Mission Modeling Tool
	2.3.1 LMMT: High-level Operation
	2.3.2 LMMT: Pre-Simulation Initialization Stage
	2.3.3 LMMT: Logical Processing
	2.4 AGI’s AMEOBA Plug-in
	2.5 Other State-Machine-Driven Software Suites
	2.6 Summary

	III Methodology
	3
	3.1 Chapter Overview
	3.2 STK
	3.3 MATLAB
	3.4 Development of the DyLoMMT
	3.4.1 Adding Autonomy and the Feedback Mechanism
	3.4.2 The Processing Capabilities of the LMMT and the new DyLoMMT

	3.5 Additional Changes Made
	3.6 Concept of Operations for Representative Mission
	3.7 Use-Cases
	3.7.1 Generalized Imaging Mission: Use-Case #1 (UC1)
	3.7.2 Straight into Fault: Use-Case #2 (UC2)
	3.7.3 Into and Out of SunSoak, Then Survival: Use-Case #3 (UC3)
	3.7.4 Into and Out of SunSafe Multiple Times: Use-Case #4 (UC4)
	3.7.5 Power Positive in Survival: Use-Case #5 (UC5)
	3.7.6 Mission with Thruster Burn: Use-Case #6 (UC6)

	3.8 Summary

	IV Analysis and Results
	4
	4.1 Chapter Overview
	4.2 Generalized Imaging Mission: UC1
	4.3 Straight into Fault: UC2
	4.4 Into and Out of SunSafe, Then Survival: UC3
	4.5 Into and Out of SunSafe Multiple Times: UC4
	4.6 Power Positive in Survival: UC5
	4.7 Mission with Thruster Burn: UC6
	4.8 Research Objective Revisited/Impact of Results
	4.9 Summary

	V Conclusions and Recommendations
	5
	5.1 Chapter Overview
	5.2 Conclusion and Significance of Research
	5.3 Recommendations for Action
	5.4 Recommendations for Future Research
	A1. Scenario_Creation.m STK Generation Connect/MATLAB Code

	VI
	VII Vita

