
APPLICATION OF RF-DNA
FINGERPRINTING TECHNIQUES TO ICOM

RADIO SATELLITE COMMUNICATION

THESIS

Patrick N. Dunkel, 2d Lt, USAF

AFIT-ENY-MS-17-M-258

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.



AFIT-ENY-MS-17-M-258

APPLICATION OF RF-DNA FINGERPRINTING TECHNIQUES TO ICOM

RADIO SATELLITE COMMUNICATION

THESIS

Presented to the Faculty

Department of Aeronautical and Astronautical Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Astronautical Engineering

Patrick N. Dunkel, B.S.A.E.

2d Lt, USAF

March 3, 2017

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



AFIT-ENY-MS-17-M-258

APPLICATION OF RF-DNA FINGERPRINTING TECHNIQUES TO ICOM

RADIO SATELLITE COMMUNICATION

THESIS

Patrick N. Dunkel, B.S.A.E.
2d Lt, USAF

Committee Membership:

Dr. Eric. D. Swenson, AFIT
Chair

Maj Addison Betances, AFIT
Member

Dr. Michael. A. Temple, AFIT
Member



AFIT-ENY-MS-17-M-258

Abstract

Device discrimination and identification using RF-DNA (Radio Frequency - Dis-

tinct Native Attribute) Fingerprinting techniques have been used by many researchers

at AFIT (Air Force Institute of Technology), and RF-DNA techniques are well de-

veloped as an effective tool for a multitude of environments and signal types. The

purpose of this research is threefold: 1) perform an analysis of the feasibility and

reliability RF-DNA techniques on satellite communication through classification and

identification of signals sent by satellite ground stations, 2) investigate the perfor-

mance of CTSD (Combined Time and Spectral Domain) fingerprints compared to

TD (Time Domain) and SD (Spectral Domain) fingerprints in an attempt to improve

overall classification performance, and 3) analyze relationship between classification

performance and sampling rate relative to the Nyquist sampling rate. Data was col-

lected from six configurations of a ground station. Fingerprints for each device were

generated in the spectral domain and time domain. The author had four hypoth-

esis for the research result: 1) that there would be poor classification performance

at low SNRs (Signal-to-Noise Ratio), but that performance would increase with in-

creasing SNR; 2) Two devices would be more easily classified due to their age and

use; 3) CTSD fingerprints would perform better than TD and SD fingerprints; and

4) Sampling rate would impact classification performance for TD fingerprints more

than SD fingerprints. The initial device classification went against the hypothesis

by having < 90% Average Correct Classification at low SNRs. The research uti-

lizes a RndF (Random Forest) Classifier as well as MDA/ML (Multiple Discriminant

Analysis/Maximum Likelihood) qualitative DRA (Dimensional Reduction Analysis)

to determine the underlying cause of the higher than expected classification perfor-
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mance. The cause identified is the distinguishable differences in fingerprint feature

values that is dependent on signal power, leading to easy classification between de-

vices. This research investigates several solutions to correcting power dependency, as

well as makes an overall recommendation to perform total power normalization, nor-

malizing each pulse in the spectral domain based on the total power of the region of

interest. Total power normalization decreases overall performance while eliminating

the power dependency. The utilization of classification techniques that do not rely on

power dependency is more applicable to satellite communications. CTSD fingerprints

results in improved classification performance at lower SNRs by as much as 15% when

compared to TD and SD fingerprints. However, classification performance comparison

between CTSD, TD, and SD fingerprints may vary based on signal characteristics,

and therefore should be analyzed more in-depth for future research. The research

identified the susceptibility of time domain fingerprint performance to lower sam-

pling rates while noting the consistency of spectral domain fingerprint performance

across all sampling rates considered above the Nyquist rate. RF-DNA Fingerprint-

ing techniques are effective at device discrimination in a laboratory environment for

satellite communications, but more work needs to be done to investigate performance

in a real-world satellite communications environment.
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APPLICATION OF RF-DNA FINGERPRINTING TECHNIQUES TO ICOM

RADIO SATELLITE COMMUNICATION

I. Introduction

1.1 Research Motivation

Cyber Warfare is a field of growing concern to the United States Air Force. Re-

cently, the Cyber Resiliency Steering Group released the Air Force Cyber Campaign

Plan which identifies potential threats and measures the Air Force should take in

order to secure our assets from those threats [1]. Two of the focus areas are: 1)

Making weapons systems capable of cyber resiliency and 2) Protecting current re-

sources [2]. Bit level protection and encryption are a means of protecting the in-

formation and preventing unauthorized access to assets. However, encryption codes

can be learned and authentication messages spoofed [3]. Having a means of provid-

ing for device discrimination and classification utilizing physical characteristics of the

signal is useful for accomplishing the tasks outlined in the Air Force Cyber Cam-

paign Plan. Radio Frequency Distinct Native Attribute (RF-DNA) Fingerprinting

techniques have been used on terrestrial systems to classify and identify the source

of transmissions [14, 33, 34, 35, 40]. Research has also been done on devices and com-

ponents similar or identical to portable satellite hardware in an attempt to apply

RF-DNA Fingerprinting techniques to satellite communication [4, 5, 6]. However, it

is necessary to perform similar experiments done with previous research on a ground

station for an orbiting satellite to determine if the same conclusions to the effective-

ness of RF-DNA techniques can be drawn from a feasibility test of a satellite ground

1



station.

1.2 Research Objectives

This research will focus on addressing three objectives:

1. Can RF-DNA Fingerprinting techniques be utilized to correctly identify and

classify the signals coming from six different communication ground-stations,

and what is the potential effectiveness of applying the process to a larger scale

satellite communication (SATCOM) system?

2. Can classification performance improve through the use of combined time and

spectral domain fingerprints when compared to classifying the two domains

separately?

3. What is the relationship between the proportion of oversampling and classifica-

tion performance?

1.3 Research Approach

The research approach will focus on accomplishing four main steps:

1. Collect satellite communication signals from a ground station.

2. Perform pulse detection and post-processing on the collected signals.

3. Fingerprint pulses in spectral domain and time domain.

4. Perform Device Classification and Verification.

The current Air Force Institute of Technology (AFIT) RF-DNA process is sum-

marized in Fig. 1.
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Emission Collection and Characterization.

A valid signal from a satellite communication ground station needs to be collected

as a first step in the research process. The signal can then be characterized and

examined to determine what the makeup of the signal is. The objective in this

section of the research is to find a source of collected data that had a large collection

size for valid conclusions to be drawn from the RF-DNA process.

Signal Processing and Pulse Detection.

Once bursts of specific duration have been collected from each device, pulse detec-

tion needs to be done in order to fingerprint the signal of interest. This is accomplished

by first processing the burst with filtering, down-conversion, and decimation. Then,

pulse detection is done to identify and extract the individual pulses from the bursts.

Fingerprint Generation.

Once the signal is characterized, the next step will be to generate fingerprints that

summarize and characterize the physical characteristics of the RF signal. Depending

on the specific RF-DNA technique utilized, either a region of interest or the entire

signal will be selected in order to create the fingerprints.

Device Classification and Verification.

Once the device fingerprints are generated, a classifier such as Multiple Discim-

inant Analysis/Maximum Likelihood (MDA/ML) or Random Forest (RndF) can be

utilized to perform classification. Both methods take a set of training fingerprints and

train the classifier on differences between device fingerprints. Then, a separate set of

testing fingerprints is used to determine classifier accuracy. An in-depth explanation

of MDA/ML and Random Forest classifiers will be provided in Chapter 2. Device ID
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Verification is a process that is used after a classification model has been trained and

determines how similar a “rogue” input fingerprint is to the device it is claiming to

be from.

1.4 Document Organization

The document is organized as follows:

� Chapter II - Background: This chapter provides background information

and related research on the techniques and concepts utilized, specifically signal

generation and collection, fingerprint generation, and classification.

� Chapter III - Methodology: This chapter describes experimental methods

and procedures used during the research process.

� Chapter IV - Results And Analysis: This chapter presents the results

of the experimental process, as well as an analysis of the effectiveness of the

process.

� Chapter V - Conclusion: This chapter summarizes the research process and

results, and gives recommendations for future work.

� Appendix A: User’s Guide to RF-DNA

1.5 Resources

Table 1 provides a summary of past research work related to RF-DNA [7]. The

majority of the literature review came from the past research work, primarily from

AFIT researchers as part of the RF Exploitation Lab.
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Table 1. Resources

Technical Area Previous Work

Feature Creation

TD Features [8, 9, 10, 11,12,13,14,15,16,17,18,19,20,21,22]

SD Features [11,12,18,20,21,23,24,25]

WD Features [16,21]

GT Features [10,25,26,27]

CB Features [7, 14,28,29,30,31,32,33]

Correlation [34,35]

Emission Type

Intentional [8, 9, 10, 11,12,13,36]

Unintentional [7, 14,23,24,33,37,38,39,40,41]

Burst [8, 9, 10, 11,12,13,14,16,33,36,40]

Continuous [23,24,37,38,39,42,43]

Classification / Verification Process

MDA/ML [5,6, 8, 9, 10,12,13,14,20,21,22,23,24,25,33,36,37,44]

GRLVQI [6,9, 17, 20,22,25,26,41]

Random Forest [45]

Support Vector Machine [28,29,31]

k-Nearest Neighbor [28,29,33]

LDA/SDA [32]

Classification / Verification Devices

Wireless Devices [8, 9, 10, 12,13,15,17,21,25,36]

Wired Devices [14,33,34,35,40]

Device Operations [38,39]

Multi-Bandwidth, Multi-User [46]

SATCOM Devices [4, 5, 6]

Simulated Emissions [47]

Wired Emission Symbol Estimation

RF SSLP [33,40]

CB-Based [33]

Side Channel Analysis

Unintentional Emissions [14,33,40,48,49,50,51,52,53,54,55,56,57,58]

Process Enhancements

DRA [10,17,20,22,26,41,59]

Constellation Point Accumulation [28,32]
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II. Background

2.1 Overview

The purpose of this chapter is to provide background information and related

research on the techniques and concepts discussed in the following chapters. It covers

four main concepts:

1. Signal Modulation and Transmission.

2. Signal Detection, Collection, and Processing.

3. Fingerprint Generation.

4. Classification using MDA/ML and Random Forest Classifiers.

2.2 Kantronics KPC-9612+

The Kantronics KPC-9612+ Terminal Node Controller (TNC) is a “multi-port,

multi-speed radio modem/TNC/data controller designed to fill many roles” [60]. The

KPC-9612+ is part of the ground station setup used by AFIT, which will be dis-

cussed more in later chapters. The KPC-9612+ was configured into “KISS” mode

which specifies a simplified communication between the TNC and ground station

computer and is detailed and explained in more detail in the Kantronics User Man-

ual [61]. The TNC acts as a modem and packet assembler/disassembler and converts

the packets of a special asynchronous full duplex frame format spoken by the ground

station computer into synchronous format suitable for radio transmission [62]. The

packetization of the data used by the ground station and the interaction between

ground station components will be discussed in the following chapters as the primary

cause for the lack of an established preamble, midamble, or postamble.
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The ground station is configured to use port 2 on the TNC. Port 2 utilizes Gaussian

Filtered Differential Frequency Shift Keying (DFSK) with normal bandwidths (BT)

of 0.3 and 0.5 [61]. BT is shorthand used to refer to the relationship between the 3

dB bandwidth for a Gaussian filter (B) and bit time (T) [63]. BT is defined as

𝐵𝑇 =
𝑓3𝑑𝐵
𝑅𝑏

(1)

where 𝑓3𝑑𝐵 3 dB bandwidth of the signal and 𝑅𝑏 is the bit rate of the signal [64].

TNC Port 2 utilizes a bit rate of 9600 bits per second (bps), meaning that the 3 dB

bandwidth of the signal can be configured to be either 2880 or 4800 Hz.

FSK is a method of signal modulation in which the carrier frequency of the signal

is modified according to an alternating delta frequency according to the value of

the desired represented bit [65]. As the bit patterns are represented by different

frequencies, the signal requires more bandwidth and is less spectrally efficient (a

measure of bps/Hz) than other simple modulation schemes [66]. See Fig. 2 for a

visual example of FSK modulation [67].

Gaussian-filtered FSK is a variation of FSK that has one key difference: the digital

data stream is passed through a premodulation baseband filter using a Gaussian-

shaped frequency response. This helps avoid sharp changes in the phase slopes at the

end of each bit interval [68] .

2.3 Fingerprint Generation

Analysis Signal Signal-to-Noise Ratio Scaling.

For a given collected sample of pulses, the signal-to-noise ratio (SNR) is set and

based on the specific circumstances during the collection. A collected received pulse
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Figure 2. Example of FSK Modulation [67]
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𝑟𝑐(𝑡) can be expressed as

𝑟𝑐(𝑡) = 𝑠𝑏(𝑡) + 𝑛𝑏(𝑡) (2)

where 𝑠𝑏(𝑡) is the collected signal and 𝑛𝑏(𝑡) is the collected noise [4]. The SNR can

be expressed as

𝑆𝑁𝑅 =
𝑆𝑏

𝑁𝑏

(3)

where 𝑆𝑏 is the average signal power and 𝑁𝑏 is the average noise power. A desired

estimated SNR can be created with the addition of additive white Gaussian noise

(AWGN), creating an 𝑟𝑐est(𝑡):

𝑟𝑐est(𝑡) = 𝑠𝑏(𝑡) + 𝑛𝑏(𝑡) + 𝑛𝐴𝑊𝐺𝑁(𝑡) (4)

where 𝑛𝐴𝑊𝐺𝑁(𝑡) is zero mean noise with a Gaussian distribution. [5] This results in

an estimated SNR of

𝑆𝑁𝑅𝑒𝑠𝑡 =
𝑆𝑏

𝑁𝑒𝑠𝑡

(5)

where 𝑁𝑒𝑠𝑡 is the average power of 𝑛𝑏(𝑡) + 𝑛𝐴𝑊𝐺𝑁(𝑡).

An important note is that SNR’s can only be estimated that are lower than the

collected SNR because the addition of AWGN of smaller power than the collected

noise power does not change overall noise power due to the additive property of

AWGN.

For the purpose of Satellite Communications, desired SNR can be determined

utilizing the bit error rate 𝑃𝐵. Figure 3 shows that for a bit error rate of 𝑃𝐵 = 10−2,

the necessary 𝐸𝑏/𝑁0 is 4 dB (for BPSK modulation). A lower limit of bit error

needed to be assumed. A bit error rate of 𝑃𝐵 = 10−2 means that one percent of

all bits are incorrectly interpreted, and can be assumed to be an unacceptable error

ratefor satellite communications. Therefore, 𝑃𝐵 = 10−2 is used as a reference 𝑃𝐵 to

10



Figure 3. Bit Error Rate as a function of 𝐸𝑏/𝑁0 for different modulation schemes [69]

determine the minimum acceptable 𝐸𝑏/𝑁0. Equation (6) can be used to relate SNR

with 𝐸𝑏/𝑁0 and this is dependent on the specific bandwidth 𝐵 and bit rate 𝑅𝑏 of the

signal.

𝑆𝑁𝑅 =
𝐶

𝑁
=

𝐸𝑏𝑅𝑏

𝑁0𝐵
(6)

where 𝐶 is signal power and 𝑁 is noise power. For the satellite signal being inves-

tigated, the SNR that would be received by the satellite would range from 5 to 35

dB.

Fingerprint Region Generation.

1D Time Domain RF-DNA Fingerprinting.

The process of 1D Time Domain (TD) RF-DNA Fingerprinting can be imple-

mented using the following steps: [5]

1. Any final signal processing, such as decimation, down conversion, or filtering.

2. Determine TD ROI for the RF-DNA Fingerprinting process.
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3. Calculate instantaneous TD responses for amplitude 𝑎⃗ (𝑡), phase 𝜑⃗ (𝑡), and fre-

quency 𝑓 (𝑡).

4. Normalize each of the three TD responses separately to have a range of [-1 1].

5. Divide TD ROI into 𝑁𝑅 subregions of equal length.

6. For each single normalized response in a single subregion, calculate the desired

statistical features. For the purpose of this research, the variance 𝜎2, skewness

𝛾, and kurtosis 𝜅 are considered.

7. Repeat Step 6 for every subregion and each of the three instantaneous responses.

8. Repeat Step 6-7 for all noise realizations, all SNRs, and all devices.

Steps 1 and 2 are collection specific, and the details of the process will be covered

in Chapter 3. Step 3 of the process is to take the time domain signal and generate

the amplitude, phase, and frequency responses. The responses can be generated with

the collected complex signal 𝑆𝑇𝐷(𝑡) = 𝐼𝑇𝐷(𝑡) + 𝑗𝑄𝑇𝐷(𝑡) using Eq. (7), Eq. (8), and

Eq. (9) [5] [6].

The instantaneous Time Domain Amplitude Response is given by

𝑎⃗ (𝑡) =
√︀

𝐼𝑇𝐷(𝑡)2 +𝑄𝑇𝐷(𝑡)2. (7)

The instantaneous Time Domain Phase Response is given by

𝜑⃗ (𝑡) = tan−1

[︂
𝑄𝑇𝐷(𝑡)

𝐼𝑇𝐷(𝑡)

]︂
. (8)

The instantaneous Time Domain Frequency Response is given by

𝑓 (𝑡) =
1

2𝜋

[︃
d𝜑⃗ (𝑡)

d𝑡

]︃
. (9)
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The three instantaneous responses are then normalized with values from [-1 1]. Steps

5-8 will be discussed later on in the chapter in Fingerprint Subregion Generation and

Fingerprint Calculation.

1D Spectral Domain RF-DNA Fingerprinting.

The process of 1D Spectral Domain (SD) RF-DNA Fingerprinting can be imple-

mented using the following steps:

1. Any final signal processing, such as decimation, down conversion, or filtering.

2. Determine TD region of interest (ROI) for the RF-DNA Fingerprinting process.

3. Calculate power spectral density (PSD) of TD ROI.

4. Determine ROI of PSD for the RF-DNA Fingerprinting process.

5. Divide SD ROI into 𝑁𝑅 subregions of equal length.

6. For each subregion, calculate the desired statistical features. For the purpose

of this research, the variance 𝜎2, skewness 𝛾, and kurtosis 𝜅 are considered.

7. Repeat Step 6 for every subregion and each of the three instantaneous responses.

Combine into one vector to create a single fingerprint, as illustrated in Fig. 4.

8. Repeat step 6-7 for all noise realizations, all SNRs, and all devices.

The PSD features can be calculated using a discrete Fourier transform given by

𝑋(𝑘) =
1

𝑁𝑥

𝑁𝑥∑︁
𝑡=1

𝑥(𝑡)𝑒−𝑗Φ(𝑁𝑥,𝑡,𝑘), (10)
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where 𝑥(𝑡) is the sequence of discrete complex time domain samples and 𝑁𝑥 is the

total number of time samples in the signal [12]. Φ is given by

Φ(𝑁𝑥, 𝑛, 𝑘) =

(︂
2𝜋

𝑁𝑥

)︂
(𝑛− 1)(𝑘 − 1). (11)

While previous research discussed power normalization of the spectral domain [11,

12, 25], Version 10 of the AFIT RF-DNA code no longer had the capability for this

process, which will be discussed later. Steps 5-8 will be discussed later on in the

chapter in Fingerprint Subregion Generation and Fingerprint Calculation.

Fingerprint Subregion Generation.

Regardless of whether the ROI is in the Time Domain or Spectral Domain, the

ROI is divided into 𝑁𝑅 contiguous, equal duration subregions. If the features across

the entire ROI is desired to be calculated, the total amount of regions will be (𝑁𝑅+1).

For each region, the statistical moments are calculated, as illustrated in Fig. 4.

Figure 4. Depiction of Subregion Fingerprint Generation [4]
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Fingerprint Feature Calculation.

The statistical moments of a signal are calculated using Eq. 12 - 17 [70].

Variance is the second statistical moment and can be calculated as

𝜎2 =
1

𝑛− 1

𝑛∑︁
𝑖−1

|𝑥𝑖 − 𝜇|2 (12)

where 𝜇 is defined as

𝜇 =
1

𝑛

𝑛∑︁
𝑖−1

𝑥𝑖. (13)

Skewness is the third statistical moment and is given by

𝛾1 =
1
𝑛

∑︀𝑛
𝑖=1 (𝑥𝑖 − 𝜇)3(︂√︁

1
𝑛

∑︀𝑛
𝑖=1 (𝑥𝑖 − 𝜇)2

)︂3 . (14)

Additionally, if bias-correction is desired, a bias-corrected skewness can be calculated

as

𝛾0 =

√︀
𝑛(𝑛− 1)

𝑛− 2
𝛾1. (15)

Kurtosis is the fourth statistical moment and is defined as

𝜅1 =
1
𝑛

∑︀𝑛
𝑖=1 (𝑥𝑖 − 𝜇)4(︂√︁

1
𝑛

∑︀𝑛
𝑖=1 (𝑥𝑖 − 𝜇)2

)︂2 . (16)

Additionally, if bias-correction is desired, a bias-corrected kurtosis can be calculated

as

𝜅0 =
𝑛− 1

(𝑛− 2)(𝑛− 3)
[(𝑛+ 1)𝜅1 − 3 (𝑛− 1)] + 3. (17)
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2.4 Classification

The statistical fingerprints generated previously can be classified in several ways.

There are many techniques and tools that have been employed by AFIT RF-DNA

research; however, the two classification models that will be discussed in this research

are MDA/ML and Random Forest Classifier.

Maximum Discriminant Analysis / Maximum Likelihood.

MDA/ML is actually two processes that are typically performed together. The

MDA/ML process can be summarized in the following list [4]:

1. Obtain projection matrix 𝑊 based on 𝑘-fold subset of training fingerprints.

2. Calculate the percent correct classification from remaining training fingerprints.

3. Repeat of Steps 1-2 for each 𝑘-fold, then select 𝑘-fold with lowest error rate.

4. Project all fingerprints into 𝑊𝑘, or the projection matrix corresponding to se-

lected 𝑘-fold which had the lowest error rate.

5. Calculate means and covariances for use in distribution models later.

6. Establish trained Maximum Likelihood model boundary lines between classes.

The projection matrix 𝑊 is formed using the eigenvectors of the cross-correlation and

inter-correlation. Multiple subsets of fingerprints are selected to create the projection

matrix 𝑊 . The projection matrix 𝑊 is created to maximizes the distance between

the means of classes fingerprints while minimizing the variance of a single classes

fingerprints [5]. 𝑘-fold cross validation is done to determine the best 𝑊 matrix. The

matrix with the smallest classification error is kept while all others are discarded and

not used, which is done at each SNR.
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Once the 𝑊 model for each SNR is selected, the fingerprints are projected into

the 𝑊 domain and the classifier creates decision boundaries between the class spaces,

as shown in Fig. 5. [5]

Figure 5. Representation of an RF-DNA model with decision boundaries for an arbi-
trary device model [5]

Device ID Verification.

Device ID Verification is a “1-to-1” comparison process that is referred to as a

“Looks how much like?” assessment. It is an assessment of how much an unknown

fingerprint compares to a current template of a known class of fingerprints. For a more

in depth explanation of the process, see previous AFIT research [37] [24] [71] [10] [72].

For each fingerprint that is put through the verification process, there is a binary

decision output of accept or reject. For a situation where there are valid device

fingerprints and rogue device fingerprints together, this leads to four outcomes as

shown in Table 2

A Receiver Operating Characteristic (ROC) curve is used to visualize the trade-

off between accepting more valid fingerprints (True Verification) at the expense of
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Table 2. Device ID Verification Outcomes

ID Verification Result
Accept Reject

Fingerprint Result
Authentic True Verification False Reject
Rogue False Verification True Reject

additional rogue fingerprints being accepted (False Verification) [73]. Figure 6 shows

an example ROC curve generated as true verification rate (TVR) vs. false verification

rate (FVR) For a real world system, a desired FVR and TVR is generally decided

upon and listed in communications or security requirements. The desired TVR and

FVR are shown by the dotted green lines. The equal error rate (EER) is the point on

the ROC curve that satisfies Eq. (18), and is typically seen as the desired operating

point [4].

𝐹𝑉 𝑅 = 1− 𝑇𝑉 𝑅. (18)

Figure 6. Representative ROC curves at three SNR values showing desired TVR and
FVR performances, EER points and three arbitrary threshold 𝑡𝑉 points [4]
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Random Forest Classifier.

The Random Forest Classifier used in this research is based off of the work of

Breiman [74]. A Random Forest Classifier expands on the capability of decision trees.

It performs a bootstrap aggregation (bag) on ensembles of decision trees. Within the

ensemble, every tree is grown on an independently drawn bootstrap replica of input

data [75]. This creates a series of independent classification trees that use a subset

of the data. The term “out of bag” refers to input data that is not included in the

bootstrap replica for the tree.

Once the forest is “grown” Fig. 7 shows a visualization of a random forest decision.

Each tree is given the unknown fingerprint and makes an independent decision, then

the random forest classifier makes a decision based of the outputs of each tree.

One of the most useful outputs of the RndF Classifier is outputted in the structure

with the name OOBPredictorImportance. OOBPredictorImportance is the out-of-bag

estimation of predictor importance [76]. The derivation of OOBPredictorImportance

is a complex process that is explained in detail in the original work of Breiman [77].

The RndF process looks at the importance of each specific variable by analyzing the

change in the error when a specific variable is varied while keeping others constant [78].

Regardless of dependencies and complex interactions between variables, the value of

OOBPredictorImportance is related to the increase in classification importance when

the variable is selected to be used.

2.5 Summary

This chapter covered the main concepts and techniques utilized by this research.

It summarized the information discovered during the research literary review, and

addressed the topics of transmission and collection of data, fingerprint generation, and

classification. This chapter attempted to adequately give the necessary background
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Figure 7. Random Forest Example Diagram [79]

needed to understand the concepts covered in future chapters. It is recommended to

the reader that anyone wishing to continue in similar research do an in depth study

of the literature contained in Table 1.
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III. Methodology

3.1 Overview

The purpose of this chapter is to provide a description of the experimental meth-

ods and procedures used during this research process. Additionally, this chapter

will provide clarification on the issues or concerns that were encountered along the

development process.

3.2 MATLAB Setup

AFIT has a years of experience with RF-DNA, as discussed in previous chapters

and Table 1. For the purpose of this research, Version 9 and 10 of the ENG RF-DNA

code was combined and reorganized. Both versions of the code had similar capabili-

ties, so the combinations of versions was done in order to increase understanding of

the code, discover and correct errors with the code, and create a more user-friendly

and consolidated program. The full User’s Guide to RF-DNA Version 11 can be found

in Appendix A.

Code Execution.

The three main portions of the code that will be discussed are

1. Pulse Detect.

2. Fingerprint Generation.

3. Classification.
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3.3 Signal Collection

Experiment Components and Setup.

The experimental setup consists of the following components:

1. Signal transmission (TX) Computer with Neptune Ground Station Software.

2. Kantronics KPC-9612+ Modem.

3. ICOM IC-9100 Radios.

4. NI-2922 Software Defined Radio (SDR) Collection Receiver.

5. Signal reception (RX) Collection Computer running MATLAB®.

Figure 8 shows the interfaces between devices. For the purpose of this research,

all connections were hard-wired. There were no intentional free-space collections

conducted under this research.

Table 3 provides a list of the specific ICOM Radio serial numbers used for the

experiment. The first two ICOM radios were purchased by AFIT several years ago,

as indicated by their serial numbers, and were used operationally. The last four

devices were purchased by AFIT in 2015, and have seen limited use in purely lab

environments. All 4 new radios have serial numbers within 13 of each other, therefore

it can be assumed they were built at the same time and with similar parts. The main

hypothesis of the classification results is that since Device 1 and 2 have more wear

through their use and were built at a separate time, they are expected to have the

largest difference in their signal characteristics, and therefore be easiest to classify.

The first step of the experiment was to set up the TX computer. Once the Neptune

ground software was started, the “per” file, or performance file, was ran. The file was

set up to send 4001 pulses of the same message through the ground station. There was
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Symbol Description

Legend

TX Computer

ICOM IC-9100 Radio

Kantronics KPC-9612+

NI-2922 SDR

Laptop computer

Note: All Connections are hard-
wired

Only one ICOM is 
configured at a time

Figure 8. Hardware Experiment Setup for all Collections

Table 3. ICOM Device Serial Numbers

ICOM Dev Number Serial Number

1 02001003
2 02001133
3 02002463
4 02002464
5 02002474
6 02002476
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supposed to be a one second pause between the pulses, but the actual time between

each pulse varied. This was most likely due to the TX ground station computer

and the use of a wait command as opposed to a set time interval to start sending a

message. The signal went through the TNC which does some data manipulation and

conversion before sending it to the ICOM radios. Each time the ICOM Radios were

used, they were first manually reset to ensure that all settings were the same between

devices. The settings that were configured on the ICOM after being reset were:

1. Set to FM modulation.

2. Set power level.

3. Set modulation center frequency at 450 megahertz (MHz).

Next, the NI-2922 SDR was set up. Initially LabView software was used to collect

and process the signal. However, the complexity of the LabView software made

it difficult to determine the location of errors that might be affecting the process.

Therefore, MATLAB and the USRP Software Defined Radio Toolbox was used to

communicate with the NI-2922. It is recommended that future experiments also use

MATLAB for collection instead of LabView. The settings configured for the NI-2922

are summarized in Table 4. One important point is that the NI-2922 collects data

at a sample rate of 100 MHz. The variable “DecimationFactor” set at 32 means that

the data is properly decimated in the NI-2922 by a factor of 32. This means that the

sample rate of data that is sent from the NI-2922 to the laptop computer is 3.125

MHz.

A burst took approximately 60 seconds to download from the SDR to the laptop

computer. Therefore, the SDR would collect for approximately 20 seconds, then send

the data over to the laptop before going back to collect another burst. For this reason,

there was missing data in between bursts. This is why 4000 pulses needed to be sent
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Table 4. Settings for NI-2922 Collection

Setting Value

CenterFrequency 449.95 MHz
Gain 38 dB

DecimationFactor 32
FrameLength 320,000

OverrunOutputPort 1
EnableBurstMode 1
NumFramesInBurst 50
OutputDataType ’double’

in order to collect 1600 pulses. An example burst is shown in Fig. 9, which contains

18 pulses. By analyzing the magnitude of the burst it can quickly be seen that the

pulse power is above the noise power even without any filtering.
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Figure 9. Representative Collection Showing Multiple Pulse Responses and DC Cali-
bration Signal

The next step of the experiment was collection post processing. At the beginning

of every burst, the NI-2922 USRP performed a DC Calibration offset that corrupted

the first portion of the burst, as can be seen in Fig. 10. Each DC Calibration offset

took approximately the same amount of time to complete and therefore a set amount

of samples could be removed from the beginning of every burst to remove the data
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Figure 10. Expanded Collection Response from Fig. 9

corruption. The first 45,000 samples were removed from each burst in order to remove

the DC calibration offset.

The collected bursts were then decimated by an additional factor of four before

being saved for use in the pulse detection section of the RF-DNA process. This means

that the sample rate of the data initially used for pulse detection was 781 kilohertz

(kHz). This was done in order for the remaining steps of the process to be less

memory intensive, as well as decreasing the computer processing time required. An

initial analysis of the proper decimation factor to use resulted in the development of

the third research objective, as will be discussed later in the chapter.

During post processing, the received data was analyzed to determine a possible

preamble to each pulse that was the same for each signal. While each pulse contained

the same command, there was no portion of the signal that was the same for each

pulse. This was true when comparing magnitude, frequency, and phase as a function

of time. This could be attributed to the Kantronics +9612 device that contains a

bit scrambler, as well as internal packetization that occurs in the transmit computer,

including sending current time, that changes with each message. It is a recommen-

dation that future work gain a more in-depth understanding of what is being sent to
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each device that is in the ground station. Therefore, it was assumed that each pulse

contained a random bit stream compared to one another. The implications of this

are discussed later in the chapter.

3.4 Pulse Detection

Pulse detection was accomplished using Version 11 of the RF-DNA Code. The first

two section of the code are the Flag and Parameter Selections sections. A complete list

of the flags and parameters selected at each step in the MATLAB RF-DNA process

can be found in Appendix D.

Each pulse was bandpass filtered using an 8th order Butterworth filter centered

at 54 kHz and with a bandwidth (BW) of 20 kHz to remove noise, as shown in

Fig. 11. A large filter bandwidth was used for the initial filter to ensure that the

desired signal was not degraded. Next, the signal was partially down-converted by

46 kHz, baseband filtered, and then decimated by a factor of four. The partial down-

conversion and decimation was to decrease time of computer calculations without

degrading the signal. All pulses from one device were plotted together, as shown in

Fig. 12 to verify that there were no partial pulses or corrupted signals.

The first 1600 pulses for each device were then kept because the current version

of the RF-DNA MATLAB code can not properly handle each device containing a

different number of fingerprints. The 1600 pulses from each device were combined

into one file that was then given to the Fingerprint Generation code.
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Figure 11. Pulse Detection Filter Centered at 54 kHz with a 20 kHz Bandwidth

Figure 12. Pulse Overlay Demonstrating an Absence of Preamble, Midamble, or
Postamble that is Common Amongst All Devices
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3.5 Fingerprint Generation

Fingerprint generation was accomplished in MATLAB using Version 11 of the RF-

DNA Code. The first two sections of the code are the Flag and Parameter Selections

sections. A complete list of the flags and parameters selected at each step in the

MATLAB RF-DNA process can be found in Appendix C.

Fingerprint generation was done in the time domain and the spectral domain. The

experimental results will first be presented separately, and then combined. However,

the first step of either process is the same and is to select the region of interest.

As discussed during the Signal Collection section, each pulse was assumed to have

a random bit stream. There was no preamble, mid-amble, or post-amble region of

interest that could be selected that was the same for every pulse. This led to the

conclusion of using essentially the entire signal as the region of interest, as shown in

Fig. 13.

The region of interest was then bandpass filtered, as shown in Fig. 14. Compared

to the bandpass filters performed during Pulse Detection, the filter was a smaller

bandwidth. Research has been done on side channel analysis as summarized in Table

1, but that was not addressed in this research. The bandwidth of the filter is most

directly tied to the location of the region of interest in the spectral domain, as will

be discussed later. Once the initial region of interest selection and filtering was

completed, the research process diverged based on the Spectral or Time Domain

fingerprinting.

Spectral Domain.

Once the signal is converted into the spectral domain, a new region of interest

has to be selected. The region of interest is determined by the -3 dB limit from the

bandpass filter. Twelve subregions were selected, as well as the inclusion of the total
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Figure 13. ROI Selection of the Majority of the Pulse Due to the Absence of an Amble
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region of interest as its own statistical region. This resulted in thirteen regions that

the fingerprints are calculated for in the spectral domain. The total region of interest,

as well as each of the twelve subregions, can be seen in Fig. 15. The length of each

subregion is equal.
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Figure 15. Fingerprint Generation Subregion Selection for SD Fingerprints, 𝑁𝑅 = 12

Time Domain.

In the time domain, the features in amplitude, phase, and frequency were all

calculated. Fig. 16 shows an example portion of the region of interest. The top

plot is the normalized amplitude response in the time domain. The middle plot is the

normalized phase response in the time domain, and the bottom plot is the normalized

frequency response in the time domain. The statistical moments were calculated for

each of the three signal spaces.
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Figure 16. Time Domain Normalized Response in Amplitude, Phase, and Frequency

3.6 Initial Classification

There are two classification methods that were used in the research, MDA/ML

and Random Forest.

MDA/ML Classifier.

The original fingerprint generation process was done using estimated SNR’s rang-

ing from -25 to 55 dB in order to investigate a potential issue in the classification

process. When the MDA/ML classification process was done, the results were much

different from the hypothesis. The average percent correct classification is shown in

Fig. 17. The average percent correct classification at an SNR of -25 dB is 79%. At

-25 dB, the noise power should be over 300 times the signal power, meaning that the

signal is virtually indistinguishable. Therefore, the hypothesis was that there was

something that the classifier was picking up on in the noise addition.
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Figure 17. Initial Average Percent Correct Classification for Spectral Domain utiliz-
ing MDA/ML Classification, demonstrating higher than expected classification perfor-
mance at low SNRs

Before first looking at the classifier, first the possibility of incorrect noise addition

must be ruled out. Figure 18 shows the PSD of the filtered signal, filtered noise, and

the addition of the signal with the noise. The desired SNR as a result of this process

was -25 dB. The power of the noise being added is correct, meaning that the issue

of high classification at low SNR is not the result of improper noise power addition.

This leads to the necessity of gaining a better understanding of what the classifier is

discriminating at low SNR’s in an effort to gain some clarity. The Random Forest

Classifier can be used to provide an indication of the fingerprints that MDA/ML

might be using for the classification.
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Figure 18. PSD of Signal, Noise, and Noise Plus Signal; Demonstrating the Correct
Addition of Noise in the SNR Portion of the Process

Random Forest Classifier.

The Random Forest classifier shows in Fig. 19 that the fingerprint that is most

important in the Random Forest classifier process is the final fingerprint in the vari-

ance subset, which is the variance of the entire region of interest. This indicates

that at low SNR values, the MDA/ML classifier might be classifying based off of a

difference in the variance of the region of interest. However, the variance of each

subregion are also more effective at classifying than a random guess, indicating that
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every variance calculation is contributing. In AFIT RF-DNA research, random forest

classification does not have as much use as MDA/ML due to the speed and perfor-

mance of MDA/ML. Therefore, the indications from the random forest classifier are

taken to the MDA/ML classifier as a verification step.
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Figure 19. Random Forest Variable Feature Importance Output Divided into Features
Calculated from Separate Statistical Moments

3.7 Alternate Fingerprint Features Designed to Address Power Depen-

dency

Determination of Power Dependence.

Through Dimensional Reduction Analysis (DRA), the MDA/ML Classifier can

develop a model based only on a subset of the fingerprints. Figure 20 shows classifier

performance when only using variance, skewness, and kurtosis features as well using

the full dimensional fingerprint classifier. The dotted lines indicate DRA utilizing the

fingerprints associated with the entire region, while the solid lines utilized only the
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subregions without calculating statistics on the (𝑁𝑅 + 1) region. Figure 20 demon-

strates that the variance of the noise is what the classifier is using at low SNR levels.

The qualitative DRA done with MDA/ML supports the quantitative results of the

Random Forest Classifier.

Figure 20. Original Experiment Qualitative DRA Demonstrating High Classification
Permformance for Variance Features

The variance of a signal in the spectral domain is closely related to the power of

the signal. Therefore, the next step is to analyze the signal power for each device.

Figure 21 shows the estimated signal power of each pulse for each device. Each device

is within an average of 1.8 dB from each-other for signal noise. However, the small

difference between the average pulse SNR does not matter as much as the fact that

the signal powers in a specific device does not vary much between pulse, and there is

relatively little overlap between different devices in terms of signal power, with the

notable exception of Device 3 and 4. This means that the classifier might be able to

detect the subtle differences in the variance of the signal in the spectral domain. Table
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5 shows the average estimated SNR for each device, and Table 6 shows the minimum

and maximum variance of the spectral domain subregions. There is a correlation

between the device SNR and the variance of the added noise at low estimated SNR

levels.
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Figure 21. Estimated Collected Signal Power by Pulse for each Device

In order to generate valid classification results that are translatable to real-world

satellite communications with varying SNR during uplink and downlink, a method

has to be implemented for SD Fingerprinting that compensates for differences in pulse

signal power.

Table 5. Device Estimated Average SNR for 800 Pulses per Device

Ave Est SNR (dB) SNR Ranking
Dev 1 40.1 1
Dev 2 39.2 2
Dev 3 38.4 4
Dev 4 38.5 3
Dev 5 38.3 5
Dev 6 37.9 6
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Table 6. Minimum and Maximum Values of SD Subregion Variance by Device

Min Variance Max Variance
Dev 1 1.10E-11 8.42E-11
Dev 2 9.55E-12 5.61E-11
Dev 3 6.13E-12 4.74E-11
Dev 4 8.14E-12 4.95E-11
Dev 5 6.45E-12 3.70E-11
Dev 6 5.78E-12 3.39E-11

Methods for Addressing Power Dependence.

Four methods are proposed and described to correct for the power dependence:

1. Method 1: Normalize PSD Features by Peak Power.

2. Method 2: Normalize PSD Features by Total Power.

3. Method 3: Fingerprint Generation using SD dB Features.

4. Method 4: Adding Noise Normalized by Average Device Signal Power.

Method 1: Normalize PSD Features by Peak Power.

One possible method of correcting for a difference in signal power between devices

is to do a pulse-by-pulse SD normalization based on the peak power. This is done

prior to generating the fingerprints for each subregion. Equation (19) provides the

mathematical formula incorporated into the MATLAB code to allow for this func-

tionality

𝐹NORM(𝜔) =
𝐹 (𝜔)

max (𝐹 (𝜔))
. (19)

There is one main downside to this method, and that is frequency-specific noise

dependency. The max signal power is determined in the spectral domain utilizing the

maximum value for a specific frequency. Noise at the specific frequency can affect the
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value of the maximum signal power. This results in a calculated max signal power

that is noise-susceptible.

Method 2: Normalize PSD Features by Total Power.

The second method of correcting for a difference in signal power between devices is

similar to the first method. Pulse-by-pulse normalization is still done in the Spectral

Domain with the exception of the pulse being normalized based off of total power

instead of peak power. Equation (20) provides the mathematical formula used in

MATLAB to calculate PSD.

𝐹NORM(𝜔) =
𝐹 (𝜔)∑︀
[𝐹 (𝜔)]

. (20)

The main advantage of this method compared to the previous method is that, with

the assumption that the noise is AWGN, the summation of noise for each frequency

will average out the effects of the noise on the total signal power.

Method 3: Fingerprint Generation using SD dB Features.

This method was created through the examination and modification of the RF-

DNA code, and was not expected to have the outcome it did. The mathematical

comparison between calculating SD fingerprints in base-10 with calculating SD fin-

gerprints in base-10 logarithmic is not trivial. At initial glance, this method was the

most promising because it resolved low SNR incorrect classification without a loss of

any information. However, further analysis revealed that this method did not correct

the issue. Figure 22 highlights the comparison between SD fingerprint features in

base 10 and base 10 logarithmic. The difference between the variance values are not

as simple as scalar (or logarithmic) differences of each other.

An example can help to illustrate the complexity. Calculation of the first statistical
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Figure 22. Feature Value for Feature=37 (Variance of entire Region of Interest in
Spectral Domain)

moment of an example vector 𝑥 = [34 21 3] can be found with

𝑥 =

∑︀𝑛
𝑖=1 𝑥𝑖

𝑛
= 19.33. (21)

The same vector converted to base 10 logarithmic is

𝑥 dB = 10 log10 (𝑥) = [15.31 13.22 4.77] dB. (22)

The mean of this vector using Eq. (21) is 11.10 dB. Neither this value nor the base

10 conversion of 11.10 dB (12.89) equals the mean of the original vector.

The actual comparison to the mean of a base 10 logarithmic vector to a base 10

vector is given by

𝑥 dB =
10 log10 (

∏︀𝑛
𝑖=1 𝑥𝑖)

𝑛
. (23)
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This example serves to highlight the fact that comparisons to statistical moments

between base 10 and base 10 logarithmic is not a simple process. The second, third,

or fourth statistical moment are more complicated and will not be explained. For this

reason, a more in depth analysis of the underlying reason of the base 10 logarithmic

not being power dependent was not undertaken. Instead, the process was considered

to be a completely separate technique, and evaluated based on its performance.

Method 4: Adding Noise Normalized by Average Device Signal

Power.

In the original RF-DNA code, the noise power 𝑁Pow was determined pulse by

pulse:

𝑁Pow =
𝑆EstPow

(𝑁EstPow × 𝑆𝑁𝑅desired)
. (24)

The code was modified to add noise based on the average pulse power for every device

and every pulse:

𝑁Pow =

∑︀𝑛dev

𝑖=1

(︀∑︀𝑛pulse

𝑗=1 𝑆𝑖𝑗EstPow

)︀
𝑛dev𝑛pulse (𝑁EstPow × 𝑆𝑁𝑅desired)

. (25)

Initially, this process had promising results as it led to the correction of classification

performance at low SNR’s while still giving a high average correct classification at

higher SNR’s. However, while the issue of power dependent classification is easier to

identify at lower SNR’s, the issue still occurs at higher SNR’s. This method does not

resolve different signal powers between devices once the noise power is lower than the

signal.
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Comparison of Methods on Performance.

Figure 23 shows the average percent correct classification for each of the meth-

ods discussed when compared with the original. Method 4 appears to have the best

results, however for the reasons discussed in the previous section, it is not recom-

mended. Method 3 had the lowest performance, and therefore is not recommended

for this signal. However, it is recommended that future research look into a better

understanding of the process, and determine if the method would be more useful to

other signals. Method 1 and 2 have similar results, with Method 2 having slightly

better performance. This is most likely due to the previously mentioned noise sus-

ceptibility of Method 1. Therefore, it is recommended that Method 2 be utilized for

correcting power dependency of signals.
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Figure 23. Average Percent Correct Classification for MDA/ML using Alternate Fin-
gerprint Features

3.8 Sampling Rate

The RF-DNA process takes a fair amount of computational power in order to

complete, meaning that depending on the signal characteristics a typical computer

might struggle with the memory and computing required. Additionally, the majority
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of information about the signal needs to be stored if the fingerprinting process is

not completed right away. For satellite ground stations, such a capability could be

added to existing hardware through the use of additional computational machines as

well as storage devices. While there is a cost associated with this, it can typically

be implemented. However, satellite subsystems are typically much more constrained

and have less ability to add capacity during the design phase. Additionally, existing

satellites can not be upgraded with new hardware as easily as their ground station

counterparts. For this reason, in order for RF-DNA techniques to most easily be

applied to satellite communications systems, the needed computational ability and

storage space should be conserved.

An experiment was performed to determine what change in classification perfor-

mance occurred when modifying the sample rate. The hypothesis is that while SD

fingerprints have poorer initial correct classification, they would be better able to

handle signals at lower sample rates. TD fingerprints will benefit from higher sample

rates as more samples will help in averaging out noise.

Additional decimation factors of two to sixty were performed in increments of

two, leading to an effective sampling rate ranging from 13 to 390 kHz. The range

of sampling rates are still above the Nyquist rate of twice the signal bandwidth (4.8

kHz).

The same parameters were used for this experiment as the previous experiments,

with the three notable exceptions.

1. The pulses were down-converted to baseband based on their center frequency

as opposed to only being partially down-converted. The advantage of a full

down-conversion is that pulses can be decimated by a higher factor while still

preserving the frequencies the signal message is contained in.

2. Only four devices were used, which were Devices 2-6. These devices were chosen
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because they were shown to have the highest amount of cross-class confusion,

as will be discussed in Chapter 4.

3. Only 400 pulses (200 for training and 200 for testing) were used from each device

in order to allow for efficient computation at higher sample rates.

All parameters and flags are constant across devices. The results are discussed in

Chapter 4.

3.9 Summary

Chapter 3 discussed the methodology and experimental steps used during the

research. Specifically, it addressed and summarized the initial collection, pulse de-

tection, and fingerprint generation. Additionally, it detailed the main experimental

problem encountered during the initial classification: the power dependency resulting

in misleading correct classification results. Four methods were discussed to correct

for the power dependency, with the method that was ultimately recommended being

to normalize PSD features by total power.
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IV. Results and Analysis

4.1 Overview

The purpose of this chapter is to present the results of the experimental process,

as well as an analysis of the effectiveness of the process.

4.2 Classification

MDA/ML.

Figure 24 shows the 3D Fisher Plot of the six class MDA/ML classification in the

Time Domain. The 3D distribution of Class 4 and 5 can be seen to intersect. The

3D distribution of Class 3 and 6 can also be seen to intersect. Device 1 and 2 are

most easily classified. This supports the hypothesis of Device 1 and 2 having physical

differences in the signal due to the age and use of the devices.
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Figure 24. 3D View of Fisher Space for M=6 Class Time Domain Fingerprints, SNR
= 35 dB

Figure 25 shows the 3D Fisher Plot of the six class MDA/ML classification in the

Spectral Domain. Device 1, 4, and 5 have similar distributions. Device 2 is easily

classifiable. The distributions of Device 3 and 6 also intersect. This finding again
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supports the hypothesis that device 2 will be easily distinguishable likely due to its

age, however the hypothesis was not supported for Device 1.
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Figure 25. 3D View of Fisher Space for M=6 Class Spectral Domain Fingerprints, SNR
= 35 dB

Verification of MDAML Model.

For Device ID Verification, the MDA/ML process was run for the fingerprints

of every device except for Device 3. This created a five class model that was never

trained on Device 3 characteristics. Then the Device ID verification process was

completed using fingerprints from all six devices, meaning that Device 3 was treated

as the “rogue” device. Figure 26 shows the rogue accept rate (RAR) vs TVR for the

spectral domain. Varying the SNR has little effect of the results due to relatively

small change in classification performance, as was demonstrated in Fig. 28.
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Figure 26. Rogue Accept Rate vs True Verification Rate for Spectral Domain Finger-
prints, Device 3 Simulated Rogue Device

Figure 27 shows the RAR vs TVR for the Time domain. The verification process

reveals good performance at high SNR’s, however as SNR decreases, the performance

decreases to where the EER is [.3 .7], meaning that 70% of valid fingerprints have to

be rejected in order for only 30% of rogue fingerprints to accepted. In the case of the

experiment, this means that 8% of all accepted fingerprints are from a rogue device.
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Figure 27. Rogue Accept Rate vs True Verification Rate for Time Domain Fingerprints,
Device 3 Simulated Rogue Device
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CTSD Fingerprint Performance.

Figure 28 shows the average percent correct classification of MDA/ML utilizing

the fingerprints created in TD, SD, and CTSD. Of note is that when the fingerprints

are combined together, the overall performance increases. While the SD has overall

poorer performance at higher SNR’s, it performs better at lower SNR’s. The CTSD

fingerprints results in a better average percent correct classification, with a ≈ 15%

increase at an SNR of 5 dB.
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Figure 28. Average Percent Correct Classification for TD, SD, and CTSD Fingerprints

Figure 29 shows the 3D Fisher Plot of the six class MDA/ML classification when

the Time and Spectral Domain fingerprints are applied. The Fisher Plot looks similar

to the Time Domain plot because as the SNR increases, TD fingerprints are able to

more effectively distinguish between devices.

Figure 30 shows the RAR vs TVR for the Time and Spectral Domain. The

process performance is similar at SNR’s to that of the Time Domain, however it

performs better at low SNR than than either the Spectral or Time domain process.

For example, at 10 dB, the percentage of accepted fingerprints that are from a rogue

device is ≈ 4.5%, compared to ≈ 5% for spectral domain and ≈ 8% for time domain.
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Figure 30. Rogue Accept Rate vs True Verification Rate for CTSD Fingerprints, Device
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Table 7 shows the confusion matrix for SD fingerprints, and demonstrates the

highest confusion between devices. The diagonal element is highlighted for easier

reference. Device 4 and 5 have the highest level of confusion between classes, fol-

lowed by Device 3 and 6. The high confusion is evident by the large off-diagonal

components. In the experiment, Device 2 had 100% correct classification, and Device

1 was an outlier with the poorest classification performance. Table 8 shows the

confusion matrix output for the TD Fingerprinting process, and performs better than

the SD Fingerprinting process. The highest confusion was still between Devices 4

and 5 as well as between Devices 3 and 6. The main difference between TD and SD

Fingerprinting was the large difference in classification performance for Device 1. The

classifier increased classification performance for Device 1 by over 80% when using

TD fingerprints.

Table 9 shows the confusion matrix output for the CTSD Fingerprinting pro-

cess. The classification performance of CTSD fingerprints was comparable to TD

fingerprints with a slight increase in performance when classifying Device 4 and 5.

Table 7. Spectral Domain Confusion Matrix for SNR=35, 800 Fingerprints

Called Class
1 2 3 4 5 6

1 15.75 3.25 2.25 34 44.75 0
2 0 100 0 0 0 0

Input Class 3 1.75 0 71.75 5 2.25 19.25
4 6.5 0 5.25 57.5 30.75 0
5 9 0 2.25 27.5 61.25 0
6 0 0 15.75 0 0 84.25
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Table 8. Time Domain Confusion Matrix for SNR=35, 800 Fingerprints

Called Class
1 2 3 4 5 6

1 96 0.5 0 3 0.5 0
2 0 99.75 0 0.25 0 0

Input Class 3 0 0 88.25 0 0 11.75
4 0.25 0.25 0 82 17.5 0
5 0 0 0.25 18.25 81.5 0
6 0 0.25 7.75 1 0 91

Table 9. CTSD Confusion Matrix for SNR=35, 800 Fingerprints

Called Class
1 2 3 4 5 6

1 96 0.5 0 2.75 0.75 0
2 0 100 0 0 0 0

Input Class 3 0 0 89.25 0 0 10.75
4 0.25 0 0 84.75 15 0
5 0 0 0 17.75 82.25 0
6 0 0 8.5 1.25 0 90.25
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4.3 Sampling Rate

Figure 31 summarizes the results of the sampling rate experiment. It depicts

the average percent correct classification across all four devices as a function of the

decimation factor applied at the bursts at the beginning of the process. A decimation

factor of two corresponds to a sampling frequency of 390 kHz, while the decimation

factor of 60 corresponds to a sampling frequency of 13 kHz. All sampling rates are

above the Nyquist rate.

SD fingerprints show no large difference in classification performance due to a

change in the decimation factor. However, the performance of the TD fingerprints

decrease by 20%. CTSD fingerprints decrease by ≈ 7%, however the performance

still exceeds that of TD and SD.
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Figure 31. Proper Decimation Factor vs. Average % Correct Classification

4.4 Summary

RF-DNA Fingerprinting techniques are effective at device classification and dis-

crimination for satellite systems, and has the potential to complement existing secu-

rity measures. From the research work done, an average percent correct classification
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could be achieved that adds to security without negatively impacting by a large

amount the ability for authorized users to communicate with the satellite.

Time Domain and Spectral Domain Fingerprinting are both valid methods to use

for classification of signals, however CTSD fingerprints allows for the classifier to have

more information at its disposal in order to create the best classification model to

discriminate between devices.

The research results indicate sampling rate seems to affect the performance of

TD fingerprints more than SD fingerprints, and CTSD fingerprints outperforms both

original methods.
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V. Conclusions and Future Work

5.1 Overview

The purpose of this chapter is to summarize the research objectives, approach,

and results, as well as to list recommendations for future research.

5.2 Conclusions

Research Objectives.

The research objectives fit into three categories:

1. Can RF-DNA Fingerprinting techniques be utilized to correctly identify and

classify the signals coming from six different communication ground-stations,

and what is the potential effectiveness of applying the process to a larger scale

SATCOM communication system?

2. Can classification performance improve through the use of combined time and

spectral domain fingerprints when compared to classifying the two domains

separately?

3. What is the relationship between the proportion of oversampling and classifica-

tion performance?

Methodology.

The research analyzed the research objectives through a process summarized in

four essential steps:

1. Collect satellite communication signals from a ground station.

2. Perform pulse detection and post-processing on the collected signals.
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3. Fingerprint pulses in spectral domain and time domain.

4. Perform Device Classification and Verification.

Results.

The initial device classification went against the hypothesis by having < 90% Av-

erage Correct Classification at low SNRs (Signal-to-Noise Ratio). This research inves-

tigated several solutions, however normalizing each pulse in the spectral domain based

on the total power of the region of interest is ultimately recommended. While this

approach decreases overall performance, it eliminates the power dependency yielding

a process which is more applicable to satellite communications. RF-DNA is an ef-

fective at performing signal classification and verification for the six ground station

configurations.

The combination of Time and Spectral Domain fingerprints results in improved

classification performance at lower SNRs by as much as 15%, and should be analyzed

more in-depth for future research.

Sampling rate affects the classification performance of the time domain more ap-

parently than the spectral domain. The susceptibility of Time Domain fingerprint

performance to lower sampling rates compared to the consistency of Spectral Domain

fingerprint performance across all sampling rates above the Nyquist rate indicates

that spectral domain might yield high classification performance.

5.3 Recommendations for Future Research

1. Significant modification has been performed to the RF-DNA code in order to im-

prove usability. However, further streamlining of code should occur. Additional

clarification and improvement of the code will allow for future AFIT research

to focus more time on new research with RF-DNA, and not on attempting to
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understand code put together from multiple thesis.

2. While lessons can be learned from lab experiments, many variables might not

be properly considered until collections occur outside of a lab environments.

Real world SATCOM collections, especially of satellite down link data, should

occur in order to enhance understanding of RF-DNA applicability to satellite

systems.

3. While this research introduced the concept of CTSD fingerprints, further analy-

sis of the combination of the time domain and spectral domain. Specifically, an

evaluation of CTSD fingerprinting effectiveness across a broad range of signals

should be performed. Some applications might reveal a lower performance with

CTSD than with TD or SD fingerprints.

4. Similar to further analysis needing to be done with CTSD fingerprints, the

impact of classification performance due to sampling rate should be further

analyzed.
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VI. Appendix A: User’s Guide to RF-DNA

File Organization.

The MATLAB® and data files are organized according to the folders shown in

Fig 32.

Figure 32. MATLAB File Organization
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1. 0-Common Matlab contains MATLAB® .m files that are used by multiple other

files in the other folders.

2. 1.1-Burst Detect contains the .m file for Burst Detection.

3. 1-Burst Detect Input contains the raw .mat files used for Burst Detection, sep-

arated into sub-folders.

4. 2.1-FingerPrint Gen contains the .m file for Fingerprint Gen using Time Do-

main, Spectral Domain, or Gabor Transform analysis.

5. 2.2-FSK DNA contains the .m file for Fingerprint Generation using slope-based

FSK analysis.

6. 2-FingerPrint Gen Input contains the raw .mat files outputted by Burst Detec-

tion and used for Fingerprint Generation, separated into sub-folders.

7. 3.1-MDAML contains the .m file for classification using MDA/ML techniques.

8. 3.2-GRLVQI contains the .m file for classification using (Generalized Relevance

Learning Vector Quantized Improved) GRLVQI. This has not been revised or

updated since V9.

9. 3.3-Random Forest

10. 3-Classification Input contains the raw .mat files outputted by Fingerprint Gen-

eration and used by the Classifiers, separated into sub-folders.

11. 4-Classification Output contains the raw .mat files outputted by the Classifiers,

separated into sub-folders.

Each portion of the code has three main sections within it:

1. Flag Declaration.
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2. Parameter Declaration.

3. Main Code.

Version 11 of the RF-DNA is written to be used in three different ways.

1. If a user is unfamiliar with coding with MATLAB, or is getting an introduction

to the RF-DNA process, the programs are designed to be run completely from

GUI interfaces.

2. Once a user has become more familiar with how to use the program, the user

can start to modify the first two sections of the code, Flag Declaration and

Parameter Declaration. The values can be modified in the actual .m code. The

main RFDNA.m file can be used to efficiently run multiple iterations of the

code.

3. An experienced MATLAB programmer who spends a fair amount of time un-

derstanding the code might need to modify the main code section. This is

especially applicable when adding new features or capabilities. Care should be

taken to keep with the same code format when adding/modifying code.

Flags and Parameters.

The Burst Detection Flags are: The Burst Detection Parameters are:

Table 11. Burst Detect Parameters

Parameter Name Parameter Explanation
LoadFileName File name of desired load file
SaveFileName Desired save file name
LoadExperimentSubfolder Subfolder that load files reside in
SaveExperimentSubfolder Subfolder that files are desired to be saved in
SaveFileName Desired save file name
MaxDetPulses Maximum Pulses to calculate before stopping

59



Parameter Name Parameter Explanation
BurstMin Minimum Number of Samples for a Single Pulse
BurstMax Maximum Number of Samples for a Single Pulse
PulseSize Size of First Pulse, only used if MultiplePulsesInBurst Flag

is selected
AddSampLead Amount of Samples to add to leading of pulse
AddSampTrail Amount of Samples to add to trailing edge of pulse
NSmth Number of samples to smooth
TrailThresh Trailing threshhold for pulse detection
LeadThresh Leading threshhold for pulse detection
DetFlrDb Desired Floor of Detection in dB
PSDFlr Floor of PSD (all lower values are not plotted)
FrqEstLowDex Minimum Value in range of estimated frequency
FrqEstHghDex Maximum Value in range of estimated frequency
ChSpace Channel Seperation in Hz
EstBrstFrqHz Estimated Burst Frequency
PreDetFiltBWHz Bandwidth of baseband Filter in Hz
PreDetFiltOrd Baseband Filter Order
PreDetFiltCntrFrqHz Baseband Filter Center Frequency
PostDetFiltBWHz Bandwidth of bandpass Filter in Hz
PostDetFiltOrd Bandpass Filter Order
XDelta Time between samples
DecFactVec Vector of Desired Decimation Factors
PercentOfSignalToView Percent of initial file to view when selecting filter character-

istics
FiltImplseRespLngth Impulse Response Length for Baseband and Bandpass Fil-

ters
FiltPercPad Percent Padding of Filter
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Table 10. Pulse Detection Flags

DisplayPlotsDuringPulseDetect
No
Yes - Only Currently Detected Burst Plot
Yes - Summary Plots

DisplayPlotsAtEnd
Do not plot at End
Plot at End

SNREstimation
No SNR Estimation
SNR Estimated

DetectBurstSelection
No Pulse Detection
Run Pulse Detection

LeadingorTrailingEdgAlgn
Trailing Edge
Leading Edge

TypeOfBurstFineAln

No Fine Burst Alignment
Correlation-Based Fine Burst Alignment
Peak-Based Fine Burst Alignment
Correlation-Based and Peak-Based Fine Burst Alignment

PreDetectFilter
No PreDet Filter Applied
PreDet Filter Applied, No User Validation needed
PreDet Filter Applied, User Validation Needed

PostDetectFilter
No PostDet Filter Applied
PostDet Filter Applied, No User Validation needed
PostDet Filter Applied, User Validation Needed

DownConversion

No Down-Conversion
DC EACH Burst Using an inputted Freq
DC EACH Burst Using Its Own IntraBurstAveFrq
D/C EACH Burst Using Channel InterBurstAveFrq

DisplayWaitBars
Do not display Wait Bars
Display Wait Bars

MultiplePulsesInBurst
No Seperate Pulses in Burst
Seperate Pulses in Burst

NPsdPlt
No Plotting
Plot during SigPSD

LoadAllFilesInSubfolder
No, Input specific Files
Yes, All Files Contained In LoadExperiment Subfolder

UserValidationofParameters
No Validation, figure will not appear
Figure with all parameters will show up for user to change
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The Fingerprint Generation Flags are:

Table 12. FingerPrint Generation Flags

Flag Name Possible Flag Values

PrntRgn
Preamble Rgn
SigID Rgn

BBFilt
Do NOT Apply BB Filter
Apply BB Filter and Params
Apply BB Filter and Params and Request User Validation

BPFilt
Do NOT Apply BP Filter
Apply BP Filter and Params
Apply BP Filter and Params and Request User Validation

DnConv

No Down-Conversion
Apply Down-Conversion: All Puls by SAME Input/Set Frq
- Fixed D/C
Apply Down-Conversion: All Puls by SAME EST Frq - Est
“Channel” D/C
Apply Down-Conversion: All Puls by OWN EST Frq - Ext
Puls-by-Puls D/C

ValidateROI
Do not validate ROI
User Input, Validate ROI

ToTSig
Do Not Include Total Signal Region
Include Total Signal Region

NPsdPlt
No Plotting
Plot during SigPSD

UserValidationofParameters
No Validation, figure will not appear
Figure with all parameters will show up for user to change

CalculateNoiseBasedOffAverage
Calculate Noise Based on each pulses Signal Power
Calculate Noise Based on Average Signal Power

SetRandomStream
Do not reset random stream every SNR loop
Reset Random Stream for experiment repeatibility. (should
not be done if the data is put through code in subsets)

Std
Do not include Std Dev Metric
Include Std Dev Metric

Var
Do not include Variance Dev Metric
Include Variance Dev Metric

Skw
Do not include Skewness Dev Metric
Include Skewness Dev Metric

Kur
Do not include Kurtosis Dev Metric
Include Kurtosis Dev Metric

PntPlot
StatDNAPrints Plots off
StatDNAPrints Plots on
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Flag Name Possible Flag Values

NormalizeFeat
Features Un-Normalized
Features Normalized

PSDPlot
PSDFeatures Plots off
PSDFeatures Plots on

SpecDomROI
Do not validate ROI
User Input, Validate ROI

SDFingerprintsIndB
Calculate Fingerprints while not in dB
Calculate Fingerprints in dB

IncludeInstAmp
Do not Include Inst Amplitude
Include Inst Amplitude

IncludeInstPhz
Do not Include Inst Phase
Include Inst Phase

IncludeInstFrq
Do not Include Inst Frequency
Include Inst Frequency

FtrPlot
InstFeatures Plots off
InstFeatures Plots on

FreqCntlrType
DO NOT REMOVE: This effectively simulates the effect of
a receiver architecture that uses a FIXED local oscillator
frequency for down-converting ALL collected pulses.
REMOVE: This effectively simulates the effect of a receiver
architecture that uses a VARIABLE local oscillator fre-
quency (determined on a pulse-by-pulse basis) for down-
converting EACH individual pulse.
REMOVE: This is intended to remove the effects of CROSS-
COLLECTION biases, i.e., signals collected using a differ-
ent oscillator frequency.

GaborPrintFeatPlot
GaborPrintFeat Plots off
GaborPrintFeat Plots on

GaborWaitBar
GaborPrintFeat Waitbar off
GaborPrintFeat Waitbar on

GTNorm
No Normalization
MAth
Math (Reising ICC) (MISSING IN CODE?)

GaborXDisplay
GaborXForm Display Output off
GaborXForm Display Output on

The Fingerprint Generation Parameters are:
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Table 13. FingerPrint Generation Parameters

Parameter Name Possible Parameter Explanation
LoadFileName File name of desired load file
SaveFileName Desired save file name
LoadExperimentSubfolder Subfolder that load files reside in
SaveExperimentSubfolder Subfolder that files are desired to be saved in
GTParamsFileName File Name of Gabor Transform Parameters
PtchParamsFileName File name where Gabor Transform Patch Parameters are

saved
TstDevSel Device desired for visualization
TstSigSel Signal to use for plotting and verification
SNRin Values for each desired SNR
DecFactVec Vector of Desired Decimation Factors
MaxBurstsToCalculate Maximum Pulses to calculate before stopping
NumParallelPools Number of Parallel Pools to Start
TimeParallelPools Time until Parallel Pool closes
MinRoiSampNum Minimum Sample Value for ROI Selection
MaxRoiSampNum Maximum Sample Value for ROI Selection
SubRgnsNum Number of Subregions desired
MonteCarloNoiseRealizations Number of Monte Carlo Noise Realizations
RoiLbl Label to attach to region of interest selected
SubRgnsNum Number of Subregions desired
MonteCarloNoiseRealizations Number of Monte Carlo Noise Realizations
ProcAppLbl Label to attach to the save file, typically filled in by the

process
PSDFlr Floor of PSD (all lower values are not plotted)
BPFilterBWHz Bandwidth of bandpass Filter in Hz
BPFiltOrd Bandpass Filter Order
BPCntrFrqHz Baseband Filter Center Frequency
InitialDnCnvFrq Frequency for user inputted down conversion
BBFilterBWHz Bandwidth of baseband Filter in Hz
BBFilterOrd Baseband Filter Order
NumImpZer Length of Impulse Response
FiltPercPad Percent Padding of Filter
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The Classify Flags are:

Table 14. Classification Flags

Flag Name Possible Flag Values

UserValidationofParameters
No Validation, figure will not appear
Figure with all parameters will show up for user to change

ClfyType
Linear
Quadratic

KeepPosteriors
Posterior probability models generated during classification
for subsequent verification not kept
Keep the posterior probability models generated during
classification for subsequent verification

PrntAssgn
Contiguous Fingerprint Order
Interleaved Fingerprint Order
Scrambled RandPerm Fingerprint Order

TestOnlyClassification
No, divide single file into training and testing
Yes, have all Input Fingerprints go to testing

DisplayPlots
No
Yes - Plots Generated

FisherPlotDimensions
Do not plot Fisher Plane Projection
Plot 2D Fisher Plane Projection
Plot 3D Fisher Plane Projection

SelectiveModDevIndx
Use All Available Input Cls/Devs
Select Specific Devs/Cls Indexes for Model Dev

SelectiveNz
Use all Monte Carlo Noise Realizations
Select Monte Carlo Noise Realizations Subset

SelectiveSNR
Use all SNRs
Select specific SNRs

NDRA
Run Full-Dimensional Fingerprints
Run DRA Selected Fingerprints

DRASubRgn
No
Yes - SubRegion Selection
Yes - Load From File

SNRDependentWMatrix
Use SNR Dependent Models for TESTING
Use a Single SNR Model to Select Proj Matrix W

The Classify Parameters are:
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Table 15. Classification Parameters

Parameter Name Possible Parameter Explanation
InputFileName Input File Name
LoadExperimentSubfolder Subfolder that load files reside in
PreviousResultsFileName File name where previous results are saved
SaveFileName Desired save file name
SaveExperimentSubfolder Subfolder that files are desired to be saved in
ModDevIndx Device Indexes for selective model development
TstModSel SNR model to use for testing
KFold Value of number of folds in the K-fold loop
NNzUsed Number of noise realizations to use for classification
SNRDex Specific Indexes of desired SNR’s
DRAFileName File Name if loading a DRA file
NDRASubRgns Subregion Indexes for DRA
NDRADex Fingerprint Indexes for DRA
NSubRgns Number of Subregions in fingerprints
NTotRgn Inclusion of Total Region as a subregion
NResp Applicable only to TD fingerprints, number of responses

used in fingerprint generation (Amp, Phz, Frq)
NStats Number of statistics in fingerprints

Figure 33 shows an example of the graphical user interface for flag selection, while

Fig. 34 shows the example parameter selection graphical user interface. Due to the

complexity of the Fingerprint Generation process, an additional prompt needed to be

added for the user determining what fingerprinting method is desired, as shown in

Fig. 35.
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Figure 33. Flag Selection

Figure 34. Parameter Selection

Figure 35. Method Selection
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