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Abstract 

The plenoptic camera collects samples of the 4D light field, which allows for the collection of 

imagery and depth information simultaneously.  The plenoptic camera differs from stereoscopic 

systems because the light field is captured by a single lens and sensor rather than two or more. 

This translates to less size, weight, and power (SWAP) which is ideal for space missions where 

imagery and depth information is needed such as proximity operations and docking 

missions.  The main objective of this research is to design and evaluate performance of a method 

to autonomously output the depth of key elements of a scene in real-time.  In this research, the 

depth is estimated using a gradient method and the key elements of the scene are selected using 

the Hough transform. A major finding of this research is that in order for this to run near real-

time, only a small portion of the light field can be analyzed due to size of the data set.  This 

results in the potential to miss important information that the light field has to offer.  The average 

error of the Lytro Illum was ~7% while the First Generation’s was ~17% error with a decrease in 

accuracy as the range increases. The average run time for the Illum and First Generation was 

approximately five seconds and three seconds respectively using the Hough transform to reduce 

the size of the light fields.  The Hough transform is the most significant portion of the run time, 

but it still reduced the run time by than it increased it.  This work lays the groundwork for using 

a plenoptic camera to autonomously output the depth information about a scene in real-time by 

developing a depth estimation method for specific features in light fields and concluding that the 

Hough transform is a good method for this, especially if multiple features are desired.  
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USING A PLENOPTIC CAMERA FOR REAL-TIME DEPTH ESTIMATION 

 
I.  Introduction 

1.1 Background 

The ability to rendezvous one satellite with another satellite offers the Air Force with a vast set of 

capabilities in space. Performing maneuvers near another satellite, known as proximity operations or 

prox-ops, allows for the collection of data and for interaction with the target satellite in many ways that 

are not possible with ground-based technology after the satellite has been launched. Numerous mission 

concepts, such as satellite inspection, maintenance and refueling, and debris removal, are dependent on 

proximity operations technologies.  The ability to accomplish these operations unmanned and 

autonomously further improves mission capabilities.  At a minimum, a satellite performing proximity 

operations with an object in space, especially an unknown or uncooperative one, must be able to estimate 

its own relative position with respect to the target and estimate the target’s orbit in order to effectively 

perform proximity operations.  In other works, accurate depth information of the target is needed for 

successful operations.   Additionally, knowledge of the target’s orientation and dimensions may be 

required if docking or other physical interaction is part of the mission.  In the early years of space 

exploration, spacecraft rendezvous were performed between two manned spacecraft under the command 

of an astronaut with very little to no automation [1].   

Recently, missions from the National Aeronautics and Space Administration (NASA), the Air 

Force Research Laboratory (AFRL), the Defense Advanced Research Projects Agency (DARPA), 

SpaceX, and Orbital Sciences Corporation aim to improve proximity operations technology and 

demonstrate the capability to rendezvous with numerous spacecraft that use different levels of 

autonomous operation and sensor data of the target satellite.  AFRL's Automated Rendezvous System 

used an active scanning time-of-flight LiDAR sensor on board XSS-11 (eXperimental Satellite System 
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11), which used a known model of the spacecraft to estimate the relative positions of the two spacecraft 

[2].  AFRL more recently launched the Automated Navigation and Guidance Experiment for Local Space 

(ANGELS) satellite which “hosts an SSA sensor payload to evaluate techniques for detecting, tracking, 

and characterizing of space objects, as well as, attribution of actions in space” [3].  In a separate DARPA 

experiment on-board their Orbital Express and Demonstration for Autonomous Rendezvous Technology 

(DART) spacecraft, DARPA used a system they developed called the Advanced Video Guidance Sensor 

(AVGS), which illuminates retro-reflectors at a known orientation on a target with a laser to determine 

relative position [4].   

1.2 Research Focus 

1.2.1 Motivation to Use Plenoptic Based Computer Vision for Proximity Operations. 

The proximity operations methods listed in Section 1.1 have limitations however. A LiDAR 

sensor that can be used for range finding requires an additional subsystem with additional hardware, 

which means more size, weight, and power required. Size, weight, and power each come at a very 

expensive premium in space. The AVGS system alone weighs approximately 8 kilograms, takes up more 

than 10 liters of volume, and requires 30 Watts of power during tracking mode [4].  Additionally, the 

Rendezvous LiDAR Sensor (RLS) and methods based on fiducial markings both require intimate 

knowledge about the target in order to be effective.  Stereoscopic or camera array systems require very 

precise calibration for relative location between cameras for accurate estimation, which could be 

compromised during launch and on orbit from effects such as body flex or thermal expansion.  This can 

result in inaccuracies in the data collected by these systems that make it significantly less valuable. 

Monocular systems require a satellite to take multiple images of a target while keeping track of its own 

location and the target’s or assuming that the target is stationary.  These methods may provide less 

uncertainty for views of cooperative known targets, but severely limit the capabilities of the proximity 

operations satellite if the mission requires approaching an unknown or uncooperative object.   
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A plenoptic, or light field, camera offers a solution to many of these problems.  Plenoptic cameras 

offer a passive form of depth estimation and requires significantly less SWAP than active systems such as 

LiDAR.  While plenoptic cameras do require calibration, the more rigid structure of the micolens array 

and main lens, as opposed to multiple cameras, means that it is less likely to be compromised during 

launch or on orbit from effects such as body flex of thermal expansion.  Also, only a single image is 

required to gather range information, so there is no need to keep track of its own position, the position of 

the target or make assumptions about the target’s movement.  Section 2.1.2 provides the theory of light 

field cameras but a brief overview is provided here.  Light field cameras use a single camera to capture an 

image set called a light field, which a collection of subimages that each show a slightly different 

perspective of a scene. An example light field is shown in Figure 1.   [5]. 

 

 

  

Figure 1: Example light field (left) and zoomed in to show lenslets (right) 

It does this by placing an array of micro lenses between the main lens and the sensor to separate the light 

into micro images.  Each of these micro images has a slightly different view and focus, and the light field 

as a whole holds a great deal of information, including depth information, that can be extracted in post 

processing. 
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Designing a plenoptic image-based computer vision (CV) method to perform the required tasks 

that only uses a single camera and a CPU with very specialized software would significantly minimize the 

additional subsystem requirements on the spacecraft. Most spacecraft already have star trackers, which 

use dedicated CPUs to perform stellar rectification with a catalog for attitude determination. Suddenly, 

with a dual purpose image processing subsystem that performs attitude determination and CV-based 

proximity operations navigation, the required SWAP to perform a proximity operations mission may be 

much smaller than previously imagined. 

Once within range to acquire resolved imagery, it may also be possible to construct a model of 

the target spacecraft using plenoptic image processing and multiple view geometry methods [6].  This 

type of method removes the requirement for a priori knowledge of the shape and structure of the target 

spacecraft in question. This method further expands the potential mission areas into operations near 

uncooperative targets, such as sequential rendezvous for removal of space debris, or operations with a 

damaged or unresponsive spacecraft for information gathering or repair purposes. 

1.2.2 Proximity Operations with a CubeSat. 

CubeSats are becoming more popular for many organizations as alternatives to much larger 

spacecraft.  CubeSats allow for flexible launch options with a smaller and lighter platform, which makes 

CubeSats a viable and affordable space platform for universities. Additionally, advances in technology 

are allowing CubeSat designers to fit an incredible amount of mission capability into very small volumes.  

One popular mission concept for proximity operations satellites is the inspector satellite.  An 

inspector satellite can gather valuable data from space about its target satellite, potentially providing the 

right information to extend the target satellite's time on-orbit and decrease its cost per year by determining 

if it needs to be repaired.  To make the inspector satellite a practical idea, it needs to be cheaper than 

replacing the original satellite a few years early. The flexible and affordable launch options that CubeSats 

provide offer a significant motivation behind implementing a plenoptic image-based CV proximity 

operations method on a CubeSat when developing satellite inspector missions. 
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Plenoptic imaging systems are ideally suited for prox ops because they allow for spatial 

information to be extracted from a single image through image processing.  This spatial information 

includes depth and position information that can be used to create a 3D model of the scene.  However, 

accuracy of the spatial information decreases as the distance from the target increases relative to the 

camera size. As the distance from the target continues to increase, eventually no additional information is 

provided, so the relatively close distances of prox ops are ideal [7].   

1.3 Goals 

 As discussed in Section 1.2.2, CubeSats are becoming increasingly adopted for space operations 

but there is a shortage of hardware systems that are suitable for flight in some areas such as proximity 

operations hardware.  Therefore, the goal of this research is to determine if light field cameras are suitable 

for use on spacecraft as real-time ranging devices for proximity operations and docking operations by 

answering the following investigative questions: 

- What is the availability of plenoptic camera (light field) commercial hardware? 

- What accuracy of range estimation (depth) is attainable from light field cameras? 

- What is the speed of computation of range estimation, and is it suitable for real-time range 

estimation? 

- Is custom processing needed, and if so, in what specific areas? 

1.4 Research approach 

This research was conducted using a combination of testing on both synthetic and lab images, 

processed using commercial software and custom routines.  This thesis analyzes the processing time 

required and the resulting performance of each and provides comparisons. 

1.5 Assumptions/Limitations 

The research was conducted in this thesis under the following assumptions and limitations.  The 

hardware used in this research was limited to the two currently available Lytro light field cameras, which 
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will be describe in greater detail in Section 2.2. These are assumed to have comparable results to the other 

commercially available light field cameras for the purpose of this research.  All experiments conducted 

during this research were limited to laboratory conditions.  The results collected from these experiments 

were assumed to be representative of real-world scenarios.  The effects of exoatmoshperic lighting 

conditions were not considered. 

Light fields come with a multitude of different file types between the different commercially 

available light field cameras and light field data sets available online, so for the course of this research, it 

was assumed that all source images used for the method developed were already in a format that was 

readable to Matlab because in real applications, all images used for a system will be in a single format and 

the system will be designed to that format.  Although the implementation of a light field camera on a 

satellite for proximity operations is the end goal, in this phase of the research relative motion has not been 

and does not need to be accounted for at this point in the research.  Relative motion does not need to be 

taken into account when using light field cameras because range is extracted from a single image as will 

be discussed in chapters II and III, and a discussion of why it may be useful to take into account in the 

future work section of chapter V.  The speed of calculation of this method is limited by the performance 

of the computer hardware used in this research and may not be representative of hardware that is suitable 

for use in space.  It is assumed that hardware with similar specifications will result in similar results in 

future testing.   

1.6 Summary 

This thesis is divided into five chapters. This chapter provided a background on this research, the 

research focus and motivation behind the research, the goals, the approach used, and the assumptions and 

limitation that went into this research.  Chapter II provides a literature review that examines information 

that is relevant to this thesis to include: fundamentals of optics, plenoptic theory, the Hough transform, 

current hardware available, software packages, and related research in non plenoptic and plenoptic depth 

estimation. Chapter III describes the hardware used, the method of depth estimation, and the experimental 
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setup. Chapter IV presents the results of the analysis of the accuracy of depth estimation and the speed of 

computation.  Chapter V summarizes the conclusions and recommendations that resulted from the 

experiment and discusses recommendations for future applications and research. 
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II. Literature Review 

Chapter Overview 

 This chapter provides a summary of the fundamentals of optics, the relevant theory used in the 

design of the developed light field depth estimation method, current hardware available for light field 

cameras, software used, and related research.  First, Section 2.1 goes into the fundamentals of optics, 

plenoptic theory, and the Hough transform.   Next, Section 2.2 goes into the current light field camera 

hardware available and the specifications of that hardware.  Then, Section 2.3 gives an overview of the 

software used for this research.  Lastly, Section 2.4 discusses related research in depth estimation.   

2.1 Theory 

2.1.1 The Pinhole Camera Model 

The geometric relationship between a 3D scene and a 2D image is defined by the pinhole camera 

model.  The pinhole camera is an ideal camera with no lens and an aperture that is characterized as a 

single point.  This is shown in Figure 2, where the point C, is the camera aperture and light from the 3D 

scene is projected onto the image plane, the (𝑥𝑥, 𝑦𝑦) plane, as a 2D image that is a distance 𝑓𝑓, the camera’s 

focal length, from the camera center.  Each point visible to the image plane from the camera’s center is 

mapped onto the image plane where the line that originates at the point and travels through the camera 

center intersects with the image plane.  Figure 2 uses similar triangles to show that the 3D point at 

(𝑋𝑋, 𝑌𝑌, 𝑍𝑍) is mapped as a 2D image to the image plane at the coordinates (𝑓𝑓𝑓𝑓
𝑍𝑍

, 𝑓𝑓𝑓𝑓
𝑍𝑍

) [6].   From this basis, the 

theory of the plenoptic function and plenoptic cameras will be expanded upon. 
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Figure 2: The pinhole camera model [6] 

2.1.2 Plenoptic Theory 

The plenoptic function describes the information about the world that is contained in the light in a 

region of space.  The plenoptic function consists of 7 dimensions that are as follows: time (𝑡𝑡), viewing 

position (𝑥𝑥, 𝑦𝑦), wavelength (𝜆𝜆), and distribution across lens (𝑉𝑉𝑥𝑥, 𝑉𝑉𝑦𝑦, 𝑉𝑉𝑧𝑧), 𝑃𝑃(𝑥𝑥, 𝑦𝑦, 𝜆𝜆, 𝑡𝑡, 𝑉𝑉𝑥𝑥, 𝑉𝑉𝑦𝑦, 𝑉𝑉𝑍𝑍).  This 

describes a color holographic movie that would allow the “reconstruction of every possible view, at every 

moment, from every position, at every wavelength, within the bounds of the space-time-wavelength 

region under consideration” [5].  In a limited plenoptic function 𝑃𝑃(𝑥𝑥, 𝑦𝑦, 𝜆𝜆, 𝑉𝑉𝑥𝑥, 𝑉𝑉𝑌𝑌), which describes the 

Lytro plenoptic camera, where the images are observed in a distribution across the lens, wavelength, and 

viewing position in two dimensions. While this does not allow for a full reconstruction1 of the space-

time-wavelength region under consideration, it does allow for more reconstruction than a conventional 

camera.   

When Adelson and Wang first designed the plenoptic camera, they observed that its main feature 

was its ability to achieve stereo ranging using a single image.  Figure 3 shows a plenoptic camera where 

                                                 
1 Reconstruction refers to the process of recreating the 3D properties of an object from a 2D images 
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the sensor array is covered with an array of tiny pinhole cameras [8].  In 3(a), the object is in focus and in 

3(b) and 3(c), the object is near and far respectively, resulting in the image being displaced left or right 

depending on the object’s range.  If the pinhole array is replaced by a lenticular array, the light-gathering 

efficiency of the lens can be improved and aliasing artifacts can be reduced. Figure 4 shows a more 

complete plenoptic optical system where a field lens places the main lens at optical infinity from the 

lenticular array so that the image in the center of each micro image originates from the center of the main 

lens [8]. 

 

Figure 3: Array of pinhole cameras placed over sensor array [8] 
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Figure 4: Plenoptic camera with lenticular array [11] 

As already mentioned in Chapter I, the set of data that comes from a plenoptic image is a known 

as a 4D light field or light field [8].  It is based on a geometric optic formulation of light describing its 

propagation through space and is basically the distribution of radiance in the 2D plane.   

By setting some of the variables contained in the light field as constant, we can gain some 

information about the scene.  The coordinates 𝑢𝑢 and 𝑣𝑣 are used to specify the location of the subaperture, 

while the coordinates 𝑠𝑠 and 𝑡𝑡 specify the pixel location within each subaperture.  From this, if 𝑢𝑢 and 𝑣𝑣 are 

fixed at some value, we expect to get an image that is similar to an image taken with a conventional 

camera with comparable specifications. Ng calls this 2D light field slice a ‘subaperture image’.  Figure 5 

shows that this subaperture image will produce an image with less blur.  This is due to the higher f/#, a 

consequence of the smaller aperture size of the lenslet in the array that the subaperture image is associated 

with, which results in greater depth of field and more of the image being in focus.  Since more of the 

image is in focus, the final image will have less blur over a greater depth.  This means that a light field 

camera can be used for a wider range of image depths than a conventional camera at the same focus.  The 

top image shows an image from a conventional camera of two point sources that are not in focus while 
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the bottom image shows a subaperture image that was obtained by fixing 𝑢𝑢 and 𝑣𝑣 in the light field shown 

in the middle image [9]. 

 

Figure 5: Subaperture image formulation [7] 

By fixing only one coordinate, the 3D subspace of the light field is obtained, as shown in Figure 6 

where the 𝑣𝑣 coordinate is fixed. The representation of the subspace is created by stacking all the 

subaperture images that have the same value of v on top of each other to create an image cube. As 

expected from what has been shown previously, the top surface of the cube is similar to an image taken 

by a conventional camera. The front face of the structure, shown in Figure 6(b), is a 2D plane that is 

formed by fixing another coordinate, 𝑡𝑡, in addition to 𝑣𝑣, and this subspace is known as an epipolar plane 

image or EPI [10].  The sloped lines visible in the resulting image are a consequence of the difference in 

the apparent location of objects when viewed through different apertures of the camera, or as 𝑢𝑢 varies, 



13 

under the parallax effect. The slope of each of these lines, m, is given by Equation 1 and is related to the 

distance from the camera to the point that this line represents 

 𝑚𝑚 =
𝑑𝑑𝑑𝑑
Δ𝑠𝑠
𝑑𝑑𝑑𝑑
Δ𝑢𝑢

 [1] 

where 𝑑𝑑𝑑𝑑
Δs

 is the change in the s direction per pixel and 𝑑𝑑𝑑𝑑
Δ𝑢𝑢

 is the change in the u direction per pixel. 

        

 

Figure 6: (a) 3D subspace of a light field, and (b) an epipolar plane image (EPI) of the 

subspace [14] 
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The generation of an EPI representation from a sampled light field is simpler compared to camera 

arrays, where the projective transformations of the views of the individual cameras have to be rectified 

and unified into one epipolar coordinate system requiring a precise calibration of all cameras.  Due to the 

optical properties of the micro lenses, with the image plane of the main lens defining the epipolar 

coordinate system, these projective transformations are reduced to simple translations, which are given by 

an offset. Hence, one simply has to rearrange the viewpoint-dependent rendered views into the EPI 

representation. However, the necessarily small depth of field of the micro lenses causes other problems. 

For most algorithms, the EPI structure can only be effectively evaluated in areas with high-frequency 

textures, which is only possible for parts of a scene which are in focus. Additionally, plenoptic cameras 

suffer from imaging artifacts in out-of-focus areas. Hence, in order to generate EPIs which can be used to 

analyze the entire scene at once, we have to generate the EPIs from “all-in-focus” (i.e. full depth of field) 

views [11].   

Adelson and Wang developed an algorithm to determine from the parallax shift resulting from 

viewing an object through different subapertures of the main lens [8].  This shift manifests itself as a 

sloping of lines when neighboring subapertures are stacked on top of each other, shown in Figure 6 (b) 

[7].  As a result of this occurrence, they included the gradient of the image into their algorithm in order to 

estimate the slope. Each of these lines maps to a point on the image and its slope is related to the point’s 

range.  One method to estimate the slope is to shear the light field by different degrees of shearing and 

search for vertical lines that have low variance at each of the degrees of shearing. This results in a matrix 

of 𝑁𝑁𝑠𝑠 by 𝑁𝑁𝑚𝑚 variance values, where 𝑁𝑁𝑠𝑠 is the width of the slice and 𝑁𝑁𝑚𝑚 is the number of slopes used for 

shearing the EPI [7].  Another method to estimate depth is via refocusing. The ability to produce 

refocused imagery is one of the most striking capabilities latent in the light field captured by the plenoptic 

camera. When properly focused on an object within a scene, an image will be characterized by sharp 

edges, steep gradients, and comparatively large amounts of energy in high spatial frequencies. Thus, a 

natural approach to range finding is to search for refocused images containing these characteristics [11].  
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In the spatial domain, this means producing a stack of refocused images and determining in which frame 

the image gradient reaches a maximum at each pixel. Indeed, refocusing involves the same shearing 

operation used there to identify the slope in an EPI.  The depth-through-refocusing technique first 

performs this summation, and then looks for the high spatial gradients that are made possible when 

accurate refocusing minimizes the effective point spread function2 (PSF) of an object point. When the 

photo-consistency (variance) is low, which results when the samples associated with a single object point 

are gathered together under a single image pixel, or in focus, rather than spread across neighboring pixels, 

or out of focus, where they would reduce spatial image gradients.  In order to consider the effects of 

defocus on imagery, it is necessary to know the defocus-induced point spread function. Figure 7 

demonstrates the formation of the PSF for a two dimensional slice of the light field. A defocused point is 

represented by a sloped line within the light field, and the image formation operation projects the line 

down into one dimension. The projection of the line is then equal to the point spread function for an 

object at the distance giving a line of that slope. The projection operation consists of counting up the 

number of u samples associated with each s sample. This same approach can be utilized for the case of the 

2D PSF generated from the 4D light field, as illustrated in Figure 8.   The light field slope dictates the 

range of (u, v) samples over which each (s, t) sample is spread [7].  

 

                                                 
2 The point spread function is the impulse response of a focused optical system.   
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Figure 7: 1D point spread function [9] 

 

Figure 8: 2D point spread function [9] 

2.1.3 The Hough Transform 

 The Hough transform, named after Paul Hough who patented the method in 1962, detects shapes 

in an image by finding accumulated points in a parameter space.  A prominent shape will have many 
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values clustered around the parameter values that correspond to that particular shape.  The easiest shape 

to detect is the line, which is what is used in this method. This is because satellites in general have a lot of 

edges and it is less computationally intensive, and therefore faster, to detect lines rather than to detect 

other shapes.  The Hough transform uses point/line duality to detect lines.  A line in the image can be 

defined by Equation 2 as 

 𝑦𝑦 = 𝑘𝑘𝑘𝑘 + 𝑐𝑐 [2] 

 

where k is the slope of the line and c is the value where the line crosses the y axis.  Rearranging equation 

2, every line passing through a single point in the image can be defined by Equation 3 

 𝑐𝑐 = 𝑦𝑦 − 𝑘𝑘𝑘𝑘 [3] 

 

This leads to point/line duality shown in Figure 9 where point P corresponds to line 𝑝𝑝 and line L 

corresponds to point 𝑙𝑙.   

 

Figure 9: Point/line duality [12] 

There is a singularity however, because when line L is vertical the value of k would be infinity.  To 

remove the singularity, the line is defined in polar coordinates shown by Equation 4, 
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 𝜌𝜌 = 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝜃𝜃) + 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝜃𝜃) [4] 

where 𝜌𝜌 is the distance from a line going through the origin that is parallel to line L and 𝜃𝜃 is the angle of 

inclination to the normal.  This results in point P corresponding to a curve, as shown in Figure 10, instead 

of a line [12]. 

 

Figure 10: Point/line duality in polar coordinates [12] 

When the curve of each point along line L is plotted on the rho/theta map, they all intersect at a 

single point that has become line L.  The height, or number of curves that intersect, at this point 

corresponds to the length of the line, the higher the point is, the longer the line is. Figure 11 shows an 

image, the top image, and its corresponding rho/theta map, the bottom image. In this rho/theta map the 

height of each point is indicated by the brightness of each point.  As shown, the brightest areas of the 

rho/theta map are near theta equals +- 90 degrees and you can see that this corresponds to the large 

number of horizontal lines in the image that are some of the dominant linear features [13]. 
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Figure 11: Sample image with rho/theta map [13] 

In the context of this research, the Hough transform will be used to find the most dominant linear 

feature(s) in the central subaperture image of a light field.  The light field is then cropped around the 

dominant feature(s) so that the size of the light field can be reduced, since the light field generated by the 

camera is too large to be quickly analyzed.  

2.2 Hardware  

Light field cameras are fairly new to the commercial market, first appearing in 2010 from Raytrix 

and shortly after Lytro. Currently these are the only 2 companies that manufacture light field cameras. 

Lytro caters to the consumer market, and Raytrix caters to the industrial and scientific market.  Lytro 

currently offers 2 cameras, the First Generation and the Illum, pictured in Figure 12, and whose 

specifications are shown in Table 1.  Since Lytro cameras cater to the consumer market, their main 
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application has been as a personal camera that can be refocused after the fact such as the examples shown 

in Figure 13. [14] 

 

Figure 12: The Lytro First Generation light field camera (left) and the Lytro Illum (right) 
[14] 

 

 

Figure 13: Lytro example images [15] 

Table 1: Lytro camera specifications [14] 

Product Name: First Generation Illum 
Megarays (Megapixels): 11 40 
Sensor Type CMOS CMOS 
Max Effective Resolution 
(MP) 

~1 ~4 

Processed Image Size  ~125 MB 
11 x 11 x 378 x 379 pixels 

~430 MB 
15 x 15 x 434 x 626 pixels 

Field of View (deg x deg) ~45 x 45 ~62 x 44  
 

Raytrix offers 6 different cameras specialized in 4 different industrial and scientific applications: 

automated optical inspection (AOI), plant phenotyping, particle image velocimetry (PIV), and 3D 
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microscopy.  Examples of the cameras and applications are shown in Figures 14 and 15 respectively. The 

technical specifications for these cameras are shown in Table 2 [16]. 

 

(a)    (b)    (c) 

Figure 14: (a) the R10 Series, (b) the R12 Series, (c) the R12 Micro Series [17] 

         

(a)        (b)         (c)                (d) 

Figure 15: (a) Automated optical inspection, (b) plant phenotyping, (c) particle image 
velocimetry, (d) 3D microcopy [16] 

Table 2: Raytrix camera specifications [17] 

Product Name: R42  R8 R10 R12 R29 R5  
Megarays 
(Megapixels): 

42 8 10 12 29 4 

Sensor Type CMOS CMOS CMOS CMOS CCD CMOS 
Pixel size (𝜇𝜇𝜇𝜇) 1.12 2.24 2.24 5.5 5.5 5.5 
Max Effective 
Resolution (MP) 

10  2 2.5 3 7 1 

Microscope 
variation 

No No Yes Yes No No 

Spectrum Color Color Mono Color, 
Mono 

Color, 
Mono, 
NIR 

Mono 

  



22 

Lytro was chosen due to the commercial availably and price, which is substantially less 

than Raytrix.  At this point in the research, all that was needed was to see if light field cameras 

would be feasible to use. As a result, Lytro cameras were sufficient even though they are not 

made for scientific use.  Higher fidelity cameras, such as Raytrix, may be utilized in future 

research and applications.  

2.3 Software packages 

The methods used in this thesis were written in MATLAB R2015B due to the ease and speed of 

quickly testing new ideas. The following toolboxes were also used: Image Processing Toolbox, 

Optimization Toolbox, DSP System Toolbox, Signal Processing Toolbox, and Computer Vision System 

Toolbox.  Also used Matlab Light Field Toolbox v0.4 for working with light field imagery created by 

Donald Dansereau [18].  Currently there is no standard file type for light fields as Raytrix and Lytro have 

their own formats for outputting light fields from their cameras, with different cameras having different 

output file types in some cases, and online archives have for an even greater variety of file types. This can 

make them difficult to work with from a processing and comparison standpoint, therefore before analysis, 

all light fields were converted into a .mat format for input into Matlab.  This creates a basis from which 

all of the light fields can be analyzed and compared to each other.  The Lytro files were converted from 

the standard Lytro format, .lfp, to a five dimensional matrix in the .mat format using Dansereau’s Light 

Field Toolbox v0.4, while the synthetic light field was already in a .mat format when downloaded and 

only needed to have the order of the dimensions rearranged for consistency.     

2.4 Related Research 

2.4.1 Non-plenoptic range estimation 

 Range estimation is achievable in a variety of ways using different hardware and 

methods.  Some use active systems that bombard a target with some sort of energy and gather 

information based on how that energy returns while some use passive systems that gather 
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information based on energy from other sources that is reflected off of or produced by a target.  

There are good and bad consequences from both that will be discussed. 

 Light detection and ranging (Lidar) is an active system that is frequently used to gather 

range information about a target.  At its most basic form, LIDAR ranging transmits a pulse of 

light at a target and detects how long it takes to reflect of the target and return to the sensor, as 

given in Equation 5, 

 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑐𝑐 ∗ 𝑡𝑡

2
 [5] 

where c is the speed of light and t is the time between the transmission of the pulse of light and 

when the reflected light is detected by the receiver [19].  Using this method, LIDAR can produce 

very accurate range estimates, dependent mainly on the timing system; if the timing system is 

accurate, the range estimate is accurate and if the timing system is inaccurate, the range estimate 

is inaccurate.  There are some drawbacks to LIDAR systems though, they require multiple 

components, such as some kind of light emitter and at least one detector, and because they are 

emitting energy, the range that they are effective over is proportional to the power emitted.  This 

means that to be effective in the space environment, where distances are generally measured in 

km or hundreds of km, a LIDAR system would require either a large amount of power, which 

takes up a lot of space in a spacecraft, or a very sensitive detector, which creates its own set of 

problems.  These reasons mean that employing a LIDAR system on a CubeSat sized spacecraft 

would not be an effective method for proximity operations as the system would likely be too 

small to be powerful enough to gather any useful information. Radar uses a similar concept as 

LIDAR but instead of light pulses, radio frequencies are used, and also has many of the same 

size and power requirements that LIDAR has and will not be discussed further [19].   
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Passive systems currently come in two main forms, multi-camera systems that employ 

two or more cameras, and monocular systems that employ single cameras.  Multi-camera 

systems generally use two or more cameras of known relative position and a phenomenon known 

as parallax to determine depth information.  Parallax is the apparent shift in the location of an 

object when viewed from different lines of sight.  This shift is relative to the objects depth and 

the relative positions of the cameras.  One of the problems that systems with only two cameras 

have that does not affect plenoptic cameras is that parallax can only be determined in one 

direction, horizontal or vertical.  With more cameras, calibration becomes more problematic and 

there is a greater chance of more errors that are less likely with plenoptic cameras due to the 

more rigid structure of the main lens and lenslet than that of a camera array.  Monocular methods 

generally involve a single camera taking multiple pictures of a target.  In this case either the 

camera is stationary and the target is moving, or the camera is moving and the target is 

stationary, or both are moving, and the camera must capture multiple views of the target [20].  

One monocular method is structure from motion in which a camera takes multiple pictures of a 

target from different views with its own location known. Then the change in the features of the 

target from each view are used to recreate the 3D structure of the scene [21]. One drawback of 

this method is that the location of the camera needs to be known in order to recreate the 3D 

structure, which is not the case for plenoptic cameras.  Another monocular method is 

simultaneous localization and mapping (SLAM) in which multiple views of a target are used to 

create a map of the environment while computing the cameras’ location at the same time. Since 

there are multiple images taken of the target at different times, it is usually assumed that the 

environment is relatively static, such as a stationary target or camera, which does not need to be 

assumed in a plenoptic camera because a light field is from a single instance in time [20].    



25 

 2.4.2 Plenoptic range estimation 

 Northrop Grumman is currently researching the acquisition of passive 3D imagery of Low Earth 

Orbit (LEO) objects from a ground-based single-aperture light field camera system.  Their method of 

range calculation involves using image refocusing and change detection.  Their camera system consists of 

a telescope and light field camera for image acquisition and a computer for image processing with 

technical specifications shown below [22]. 

- Telescope: 14” Meade LX600 advanced coma free catadioptric telescope  

o f/8 (2845 mm focal length) at prime focus  

o Effective f/5 with an f/6.3 focal reducer  

o Effective f/24 with a 15mm f.l. eyepiece  

o Effective f/15 with 15mm f.l. eyepiece and f/6.3 focal reducer  

- Light field camera  

o Raytrix R5 C2GigE camera  

o Frame rate: up to 30 frames per second  

o Depth resolution: up to 100 discrete layers  

o Microlens f/#: f/2.4  

- Image acquisition and processing  

o Windows computer with nVidia GPU; light field images acquired to disk  

o User can configure for automated camera triggering  

o Raytrix software and Northrop Grumman custom software developed for processing 

long-range 3D images  

 Image refocusing  

 Depth map/range finding  

 Optional processing modules (change detection; 3D reconstruction)  
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They have conducted testing on the ground at a range of 1.39 km with two targets and 0.7 km with one 

target shown in Figures 16, 17, and 18 below.   

 

Figure 16: Target 1, SUV with front passenger door and window open, Range =1.38 km [22] 

 

Figure 17: Target 2, scale model of notional Trinidad satellite, range 1.38 km [22] 

 

Figure 18: Target 3, 4.5 m ground station antenna, range 0.7 km [22] 
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 The first target was the SUV with the results shown in Figure 19.  They were able to accurately 

estimate the range of the target with and estimated resolution of 0.6-0.8 m.  The open window is apparent 

on the depth map compared to the rest of the vehicle.   

 

Figure 19: Digitally refocused LF camera image (left), and depth map, telescope at f/8 (right) [22] 

 During the testing of the next target, they discovered that there were better results when 

the f/# of the main aperture matched the f/# of the lenslet array.  An example of this is shown in 

Figure 19.  As the f/# mismatch increases, each lenslet is illuminated less, resulting in a 

reduction in the achievable angular and depth resolution.   

-  

Figure 20: Calibration images of lenslet pattern on sensor array show that an increasing f/# 

mismatch leads to a loss of angular and depth resolution [22] 

 



28 

The results of the depth estimation for target 2 are shown in Figure 21 at two different 

f/#s.  The results for f/5 were better than those for f/15 but an estimated range resolution was 

unable to be determined due to the low total depth of the target.  

 

Figure 21: Results of satellite model imaging, with telescope at different f/#s (top) f/15 and (bottom) 
f/5 [22] 

 The results of the testing of the final target, the ground station antenna, are shown in Figure 22 

below.  With this test they were able to achieve an estimated range resolution of approximately 0.36 m.   

 

Figure 22: Results of ground station antenna imaging with telescope at f/5 [22] 

 The results of this research are promising from an accuracy standpoint but very little is said about 

how the data is processed or the speed of that processing.  The processing algorithm that is stated is to 

generate an image stack of 2D images that are focused at different focused depths and then determine the 

distance to objects on a pixel by pixel basis using this refocused image stack with some additional 

processing options including change detection, face detection, and 3D reconstruction.  There are no 

details on how the images are refocused, how distance is determined, or how long this process takes.  This 
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research may be of use in the future for extending the accurate range of depth estimation by combining 

light field cameras with telescopes and should be examined [22]. 

2.5 Summary 

This chapter provided a summary of the fundamentals of optics, the relevant theory of plenoptic 

cameras and the Hough transform that were used in the design of this light field depth estimation method, 

current hardware in the field of light field cameras, software used, and related research.  This research 

will use the plenoptic theory along with the Hough transform to develop a real-time depth estimation 

method using the software discussed with data collected from Lytro light field cameras.    



30 

III. Methodology 

Chapter Overview 

 This chapter provides a description of the method developed during the course of this research.  

First, Section 3.1 gives the specifics of the hardware and software systems used for development.  Section 

3.2 gives an overview of the depth estimation method used. Section 3.3 gives the experimental setup and 

finally, Section 3.4 summarizes this chapter. 

3.1 Research Platform, Devices and Software 

3.1.1   Hardware Description 

 The Lytro First Generation and Illum cameras, described in Section 2.2, were used for image 

acquisition.  An Apple Mac Mini desktop was used for development and prototyping. Table 3 shows the 

computer specifications. 

Table 3: Computer specifications used in current research 

Manufacturer Apple 
Model Mac Mini  
Processor Intel Core i5 @2.8 GHz 
Installed Memory (RAM) 8.0 GB 
Graphics Card Intel Iris 
Dedicated Graphics Memory 1536 MB VRAM 
Processor Cores 2 
System Type 64-bit 

 

 3.1.2   Software 

 The method used in this thesis was written in MATLAB R2015B and uses the software packages 

described in Section 2.3 along with five unique routines developed to calculate the depth of the dominate 

linear feature(s) of a light field.  There is one main script routine that calls four subroutines that load the 

light field, perform the Hough transform on it, take the gradient of it, and fill in areas of low confidence.  
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Table 4 gives an overview of the routines developed.  There is a more in-depth explanation of each 

routine in Section 3.3 and the full code is shown in Appendix B. 

Table 4: Developed Matlab routines 

Routine Description Toolboxes Required Equations 
real_time_depth Main script that calls 

other functions, sets 
constants, crops light 
field, and displays final 
results 

Matlab, Statistics and 
Machine Learning 
Toolbox, and Light 
Field Toolbox v0.4 

12, 13, 14, 15 

load_LF_File Loads light field into a 
single variable 

Matlab and Light Field 
Toolbox v0.4 

N/A 

Hough_Transform Performs Hough 
transform, described in 
Section 2.1.3, on central 
image of light field to 
detect most prominent 
linear feature and 
outputs its location in 
the image 

Matlab and Image 
Processing Toolbox 

4 

Take_Gradient Computes the gradient, 
described in Section 3.2, 
of the cropped light field 
and outputs the depth 
map 

Matlab and Light Field 
Toolbox v0.4 

9, 10,  

fill_nan Fills holes in depth map 
where thresholding 
removed values 

Matlab, Statistics and 
Machine Learning 
Toolbox 

N/A 

 

3.2 Depth Estimation 

 Depth, or range, estimation is one of the key advantages that the light field gives, but accurately 

estimating depth for a whole light field is a computationally intensive process. In order for real time depth 

estimation, the time to calculate depth must be reduced either by reducing the size of the light field, or by 

reducing the accuracy of the depth estimation.  Reducing the size of a light field can be done a couple of 

different ways; by cropping the s,t direction or in the u,v direction.  Cropping in the s,t direction is 
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essentially the same as cropping a normal image, it’s just done to every sub image in the light field.  As 

long as the image isn’t cropped too small, this reduces the size with minimal to no reduction in accuracy.  

Cropping in the u,v direction is essentially reducing the number of sub images, i.e. from a 81 sub images 

in a 9x9 square to 49 in a 7x7 square. While this can significantly reduce the size, it also results in a 

reduction in accuracy with each sub image that is removed.  Reducing the accuracy of the gradient-based 

depth estimation can also be done a couple of different ways; by not using all three color channels, not 

using both vertical and horizontal directions, or by not thresholding.  With three color channels in two 

different directions, there are a total of six gradient calculations that happen and are averaged to produce 

the final gradient values. Reducing the number of gradient calculation could increase the speed of the 

total gradient calculation by up to 83% if only one color channel in a single direction is used, but this 

could significantly affect the accuracy depending on what colors the image is primarily composed of and 

which direction the most significant gradients exist in.  Since the depth information of the main object in 

the scene is the desired output, reducing the size of the light field by cropping in the s,t direction was 

implemented to decrease computation time without significantly affecting accuracy.  This was done by 

using the Hough transform described in Section 2.1.3 to select the most prominent linear features in a 

scene and crop the light field around that line. This can be done for each linear feature with an increase in 

computation time to crop the image again and calculate the additional gradients. 

The gradient-based estimation method begins with the Lambertian surface, a surface with ideal 

reflectance.  A Lambertian surface can be considered an omnidirectional point light source in an infinitely 

small area, and exists in a light field as a plane of constant value.  An example of this is shown in Figure 

23 below in two dimensions.  



33 

 

Figure 23: 2D slice of point source of light with two reference planes (a) and a 2d slice of 

the corresponding light field [23] 

The orientation of these planes is dependent only on the depth of each point light source.  

Although two 4D vectors would normally be required to estimate the orientation of the plane in 4D, the 

orientation in light fields are the same in the (s,u) direction and the (t,v) direction.  This allows for the use 

of a 2D gradient operator in both the (s,u) and (t,v) planes3 and results in redundancy to help validate the 

results.  Further redundancy is introduced because this is done in each color channel, increasing the total 

redundancy to a factor of 6. Observing an (s,u) slice of a simple light field, it is clear that a 2D gradient 

operator, applied at some point in the slice, will yield a gradient vector which points orthogonal to the 

plane passing through that point.  When applied to a single color channel in the s and u directions, the 2D 

gradient operator is defined in Equation 6 as 

 
∇𝑠𝑠𝑠𝑠𝐿𝐿(𝑛𝑛) = [

𝜕𝜕𝜕𝜕(𝑛𝑛)
𝜕𝜕𝜕𝜕

,
𝜕𝜕𝜕𝜕(𝑛𝑛)
𝜕𝜕𝜕𝜕

] [6] 

where L(n) is the discrete sampled light field, n is an index of the dimensions on the light field, (s,t,u,v),  

𝜕𝜕𝜕𝜕(𝑛𝑛)
𝜕𝜕𝜕𝜕

 is the gradient in the s direction, and 𝜕𝜕𝜕𝜕(𝑛𝑛)
𝜕𝜕𝜕𝜕

 is the gradient in the u direction.  Given the gradient 

vector, the slope of the plane passing through each sample in the light field can be found, and from this 

slope the depth of the corresponding point in the scene can be found. From the point-plane 

                                                 
3 Refer to Figures 6 through 8 for plane definitions. 



34 

correspondence, the slope of the plane corresponding to a point in the scene is given, in the s and u 

directions, by Equation 7 

 
𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1 −

𝑑𝑑
𝑃𝑃𝑧𝑧

 [7] 

where d is the separation of the reference planes, shown in Figure 24, which is determined during 

calibration, and Pz is the range at that point.   

 

Figure 24: Reference plane separation in two-plane parameterization of light rays [23] 

The direction of the gradient vector at the same point in the scene can also be expressed as a slope, as in 

Equation 8.  This slope is the same slope as expressed in Equation 1, just defined using a different 

equation.  

 
𝑚𝑚∇(𝑛𝑛) =

∇𝑢𝑢𝑠𝑠𝑠𝑠𝐿𝐿(𝑛𝑛)
∇𝑠𝑠𝑠𝑠𝑠𝑠𝐿𝐿(𝑛𝑛) =

𝜕𝜕𝜕𝜕(𝑛𝑛)
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕(𝑛𝑛)
𝜕𝜕𝜕𝜕

 [8] 

Assuming no regions of constant value, for which the magnitude of the gradient vector is zero, the 

gradient vector will always point orthogonal to the plane. This means that the relationship between the 

slope of the plane and the slope of the gradient vector can be expressed as 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = −𝑚𝑚𝛻𝛻
−1 . Rearranging 

to solve for the range at the point, Pz, yields Equation 9 
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𝑃𝑃𝑧𝑧(𝑛𝑛) =

𝑑𝑑

1 +
𝜕𝜕𝜕𝜕(𝑛𝑛)
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕(𝑛𝑛)
𝜕𝜕𝜕𝜕

 
[9] 

which is easily generalized to the t and v dimensions. By applying Equation 9 throughout the light field, 

the depth of the scene that it models is estimated. 

Because of the redundancy associated with having three independent color channels, with two 

independent depth estimates per channel, some method of optimally combining the estimates is in order. 

One way of doing this is to take the weighted sum of the six depth estimates, where the weight is taken as 

some measure of confidence. Given that the Euclidean norm of the gradient vector,||∇𝐿𝐿(𝑛𝑛)||, is 

essentially an indication of the contrast of the light field at each sample, it is a good indicator of 

confidence. Areas of low contrast, which yield little information about a scene’s depth, will have small 

gradient norms, while areas of high contrast will have large gradient norms. The weighted sum can be 

expressed in Equation 10 as 

 
𝑃𝑃�𝑧𝑧(𝑛𝑛) =

∑ 𝑃𝑃𝑧𝑧,𝑖𝑖�|∇𝑖𝑖𝐿𝐿(𝑛𝑛)|�6
𝑖𝑖=1

∑ ||∇𝑖𝑖𝐿𝐿(𝑛𝑛)||6
𝑖𝑖=1

 [10] 

where the ith gradient and depth estimate correspond to one of the six unique combinations of color 

channel and direction. Because the denominator of this expression is an indication of overall confidence, 

it can be used in a thresholding operation, which allows inadequate depth estimates to be ignored 

altogether, and become equal to the threshold when surpassed [23].  

3.3 Experimental Setup 

 The first step in setting up the experiment was to calibrate the cameras.   The Light Field 

Toolbox V0.4 calibration tool was used to determine the reference plane separation and other 

plenoptic intrinsic parameters, used in Equations 9 as d, in the horizontal, du with s and u, and 

vertical, dv with t and v, directions, shown in Table 5 [18, 24].  The calibration tool uses a 
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procedure that has some similarities to calibrating a standard camera, such as collecting images 

of a calibration grid like the one shown in Figure 25 from different poses.  According to 

Dansereau, ten different poses is sufficient for calibration. This is a 24 x 24 grid with 7.4 mm x 

7.4 mm squares and 15 poses were used in calibration to ensure the accuracy of calibration.  The 

algorithm for this procedure is: process the images to form an initial pose and plenoptic intrinsic 

parameters, optimize it without using distortion parameters, and fully optimize it using distortion 

parameters. 

 

Figure 25: Calibration image example 
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Table 5: Reference Plane Separation 

 Illum First Generation 

du (cm) 14.2827 10.0032 

dv  (cm) 12.2713 8.6651 

 

After the camera calibration has been completed, the next step is to employ the depth estimation 

method developed in this thesis. The algorithm flow used in this method is shown in Figure 26 and an 

overview of the routines used was given in Table 4.  First, a set of constants such as the light field name 

and thresholding parameters are set in the main routine, real_time_depth.  Then, the load_LF_File routine 

is called to load the specified light field, such as the one shown below in the top image of Figure 27, and 

camera parameters into Matlab to be analyzed.  The Hough_Transform routine is then called to perform 

the Hough transform on the light field locate the most prominent linear feature(s) in the central image of 

the light field and output the endpoints of the line that defines the linear feature.  Before the Hough 

transform is performed the center subaperture image of the light field is converted to a black and white 

image using the edge function.  This is because the transform can only be applied to two dimensional 

array and color images are three dimensional.  The edge function was selected because some linear 

features may not be the same color and therefore may have been missed in other functions such as the 

image gradient function.  The linear features are selected using a rho/theta map, such as the one in the 

bottom left image of Figure 27, and are shown as a red line for the most prominent linear feature and 

green lines for other prominent features in the top image of Figure 27.  As stated above, this can be done 

for multiple linear features with an increase in computation time to crop the image again and calculate the 

additional gradients.  The main routine will then use these points to create a rectangular area that the light 

field will be cropped to, such as in the bottom middle image of Figure 27.  A small buffer zone is created 

outside this rectangular area so that the gradient can actually be calculated in the event that the linear 
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feature is nearly vertical or horizontal. The orientation and size of this area depends on the orientation and 

length of the linear feature located.  The cropped light field and camera parameters are loaded into the 

routine Take_Gradient to compute the gradient map which is converted to a depth map using the specific 

camera parameters.  Finally, the depth map is inputted into fill_nan to fill holes created by thresholding 

with the average values of the surrounding pixel and the depth map, such as in the bottom right image of 

Figure 27, is averaged to give an average scene depth.  The bottom right image of Figure 27 only includes 

the depth for the bottom of the screwdriver shaft show in the middle image, not the entire depth map. 

Each cropped light field gives only one value of depth, but there can be multiple prominent linear features 

that are used to create cropped light fields so there are multiple cropped light fields. The depth value from 

a given cropped light field assumes that the background of the image has been sufficiently removed by 

thresholding, feature detection and cropping so that only the target data remains in the depth map giving 

an accurate approximation of the actual depth of the target. 

 

Figure 26: Flow Diagram 
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Figure 27: Hough transform example, Initial image with linear features shown with green 

lines and most prominent in red (Top), Rho/Theta map (Bottom Left), image cropped 

around most prominent linear feature (Bottom Middle), depth map of bottom of 

screwdriver shaft and scale (Bottom Right) 
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There are two qualities analyzed for this research, the accuracy of depth estimation and the speed 

of computation.  The first analysis, the accuracy of depth estimation, analyzes three types of light fields, 

synthetic light fields from a data set shared by Wanner, Meister and Goldluecke and real light fields that 

were generated with two different Lytro light field cameras, whose specifications are shown in Table 6.  

Each of the color channels will be analyzed individually in each direction and as a whole. 

Table 6: Light field specifications 

Light Field Number of Subaperture Images Subaperture Image Size (pixels) 
Synthetic 81 (9 x 9)  768 x 768 
Illum 225 (15 x 15) 434 x 626 
First Generation 121 (11 x 11) 378 x 379 

 

The synthetic light field, called Buddha, was taken from a data set shared by Wanner, Meister and 

Goldluecke, and includes a ground truth depth map [25].  The Lytro Illum and First Generation light 

fields, called ‘screwdrivers’ with an identifier for range and camera, were generated in a laboratory 

setting with the Lytro Illum and First Generation cameras respectively.  The ground truth for the Lytro 

light fields was generated by using a tape measure, with a half centimeter uncertainty, to measure the 

distance from center of each target in the scene to the lens of the camera and then added to the principal 

plane.  The center of the target refers to the middle of the shaft of each screwdriver as shown in Figure 28.  

The location of the principal plane, x, is determined by Equation 11  

 𝑥𝑥 =
𝐷𝐷𝐷𝐷

𝑓𝑓 + 𝐹𝐹 − 𝐷𝐷
 [11] 

 

where D is the distance from the main lens to the microlens array, F is the focal length of the main lens, 

and f is the focal length of the microlens [26]. 
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Figure 28: Center of target diagram 

The percent of error instead of root mean square error is used to show if there is a trend towards 

over estimation or under estimation.  The synthetic ground truth will be compared to the depth map 

generated from this depth estimation method and the error for each pixel will be calculated using 

Equation 12 

 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝑖𝑖 =
𝑇𝑇𝑖𝑖 − 𝐸𝐸𝑖𝑖
𝑇𝑇𝑖𝑖

∗ 100% [12] 

where T is the ground truth depth, E is the generated depth, and i is the pixel.  An example of this is 

shown in 29 where the top left is the truth, the top right is the estimate, and the bottom is the error 

between them.  This is then used to generate a depth error map and to calculate the average error 

magnitude of the entire depth map using Equation 13 

 
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =

1
𝑠𝑠 ∗ 𝑡𝑡

� ||𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝑖𝑖||
𝑖𝑖=𝑠𝑠∗𝑡𝑡

𝑖𝑖=1

 [13] 

Center of target 
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where s and t are the dimensions of the depth map in pixels.  For the Lytro light fields, the depth of each 

target, or linear feature identified in the light field, was calculated by averaging the depth at the point 

where the ground truth depth was measured using Equation 14 

 
𝐷𝐷 =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ =

1
𝑥𝑥 ∗ 𝑦𝑦

��𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑖𝑖𝑖𝑖

𝑗𝑗=𝑦𝑦

𝑗𝑗=1

𝑖𝑖=𝑥𝑥

𝑖𝑖=1

 [14] 

where depth is the depth value for each pixel and x and y are the dimensions of the target area.  The pixels 

for this target area were differentiated from the background pixels by only selecting a small sample 

around the center of the target.  If the selected sample is too large, background pixels could skew the 

results.  This average depth is then used to calculate the error with Equation 15 

 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
𝑇𝑇 − 𝐷𝐷
𝑇𝑇

∗ 100 % [15] 

where T is the measured ground truth depth and D is the calculated average depth.  

 

 

Figure 29: Synthetic error example 

 The second analysis was on the speed of computation.  In any real-time system, calculation speed 

is a major consideration because if calculations take too long, then it is of no use in real-time systems.  All 
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speed analysis was generated on the computer whose specifications are shown in Section 3.1.1.  The first 

analysis was the calculation times of the gradient vs. the size of the light field.  The gradient calculation 

gives the depth information so it is an essential part of the method.  For each of the light field sizes, First 

Generation and Illum, four different light fields were analyzed; an actual light field taken with the camera, 

matrix of zeros the same size as each light field, a matrix of ones the same size as each light field, and a 

matrix of randomly generated numbers the same size as each light field.  These light fields were selected 

to discover if the composition of the light field had any effect on the gradient computation time.  The 

gradient was taken a total of 500 times for each of these light fields, with a different set of random 

number each time for the randomly generated numbers light field.  Each light field was reduced in size by 

a factor of 1/50 until it was empty resulting in 50 different sizes for each light field. At each of these sizes 

the gradient computation time was calculated 10 times and averaged over those 10 times.   

 The requirements for these metrics were generated using similar real-time operations and the 

International Docking System Standard Interface Definition Document (IDSS IDD).  Similar light field 

depth estimation techniques using different methods that are discussed in Dansereau’s doctoral thesis 

approach real-time operation with run times of 0.5-2.6 seconds [27].  Using the lower end of these times, 

a threshold of 0.5 sec was established as the threshold for the computation run time. Since proximity 

operations in space are relatively “slow events,” these real-time metrics may not need to be better define 

and may in fact be too strict for proposed applications. For the depth estimation accuracy, the IDSS IDD 

gives a maximum misalignment of 0.11 m for the docking system which is approximately 1.1 m in 

diameter [28].  This results in an allowable percent error of 10%.  This requirement comes from a NASA 

standard addressing size, not range so real requirements will still need to be established in the future.  A 

summary of the test metrics and tests are shown in Table 7. 
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Table 7: Test metrics 

Test Light Field Metric Threshold Algorithm 
Depth Estimation 

Accuracy 
Buddha Percent Error 10% Entire Routine 

Depth Estimation 
Accuracy 

Screwdrivers 
– Close - 

Illum 
Percent Error 10% Entire Routine 

Depth Estimation 
Accuracy 

Screwdrivers 
– Mid - Illum Percent Error 10% Entire Routine 

Depth Estimation 
Accuracy 

Screwdrivers 
– Far - Illum 

Percent Error 10% Entire Routine 

Depth Estimation 
Accuracy 

Screwdrivers 
– Close – F01 Percent Error 10% Entire Routine 

Depth Estimation 
Accuracy 

Screwdrivers 
– Mid – F01 

Percent Error 10% Entire Routine 

Depth Estimation 
Accuracy 

Screwdrivers 
– Far – F01 

Percent Error 10% Entire Routine 

Computation time 
Multiple light 

fields of 
different sizes 

Run time 0.5 seconds Entire Routine 

Computation time 
Multiple light 

fields of 
different sizes 

Run time 0.5 seconds Take_Gradient 

Computation time 
Multiple light 

fields of 
different sizes 

Run time 0.5 seconds Load_LF_File 

  

 The hardware setup included the Lytro cameras and a screwdriver set, an example of which is 

shown in Figure 30.  Natural light, the afternoon sun shining through the window, along with an overhead 

light were the lighting conditions for this experiment.   
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Figure 30: Camera arrangement for sample image (screwdriver set) 

3.4 Summary 

This chapter provided a description of the method developed during the course of this research.  

First, Section 3.1 gave the specifics of the hardware and software systems used for development.  Then, 

Section 3.2 gave an overview of the depth estimation method used in the thesis. Finally, Section 3.3 gave 

the calibration method, experimental setup, metrics analyzed, and hardware setup in this thesis.   
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IV. Analysis and Results 

Chapter Overview 

This chapter provides the analysis and results of the experimentation using the method developed 

during the course of this research.  First, Section 4.1 presents results of the analysis of the accuracy of the 

depth estimation method developed.  Then, Section 4.2 presents the results of the analysis of the speed of 

computation of the depth estimates are presented. Section 4.3 summarizes the analysis and results 

presented in this chapter. 

4.1 Accuracy of Depth Estimation 

 The first analysis was of the accuracy of the depth estimation of this method.  The first light field 

analyzed was the synthetic light field scene, called Buddha4, shown in Figure 31 with the associated 

ground truth and generated depth maps shown in Figure 32 [25].  The units used in the synthetic images 

are an arbitrary unit called blender units.  Using Equation 12 and 13, the average error magnitude for the 

depth estimation of this light field was calculated to be 2.84% which meets the minimum accuracy 

requirement of <10% set in Section 3.3.  Figure 33 shows this error on a pixel by pixel basis. There are 

areas in the generated depth map where it appears to be more accurate than the ground truth map on the 

dice.  This is a result of the sharp contrast between the black and the white in the black circles on the dice 

where there isn’t actually any depth difference here.  The smooth areas around it are of low confidence 

while this area is of high confidence because of the sharp color difference so there appears to be a change 

in depth here when it is really only a more confident depth estimation here.  These areas of sharp contrast 

seem to have greater depth accuracy than most other areas in the image, however, there seems to be a 

specific depth that has less error as well.  In the Lytro camera images, difference in depth accuracy for the 

areas of sharp contrast was even more apparent, but there did not seem to be any indication that was a 

specific depth that was more accurate.  This may be a consequence of the synthetic image.  Figure 34 

                                                 
4 This file is spelled Buhhda by Wanner and Golduecke 
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shows a confidence map for the synthetic image.  Most of the image seems to be of low confidence unlike 

the generated light fields confidence maps, shown in Figures 37 and 39, where there are areas of very 

high confidence, and there does not seem to be much relation between confidence and error for the 

synthetic light field while it does appear to be related in the generated light fields.  Figure 35 shows that 

there is however a relationship between contrast and error and also between range and error for the 

synthetic light field. The left plot of Figure 35 shows that as contrast increase there is a trend towards less 

error but there appears to be trend towards a -10% error that is unexplained and may be related to range.  

The right plot of Figure 35 shows that range is also related to error, with closer ranges having a positive 

percent error and farther having a negative percent error with the least error at around the mean depth of 

the image.  

 

Figure 31: Synthetic Buddha light field analyzed in accuracy analysis [25] 
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Figure 32: Provided ground truth (left), and generated depth map for Buddha light field [25] 

 

Figure 33: Percent error for generated depth map from ground truth 
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Figure 34: Confidence map for Buddha light field 

 

        

 

Figure 35: Contrast vs Error plot (left) and Range vs Error plot (right) for the Buddha 

light field 
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 The next accuracy analysis will be for the Illum camera. Three cases are presented, one at a range 

of 20-30 cm, one at a range of 140-150 cm, and one at a range of 250-260 cm. The truth data for this was 

measured from the middle of the shaft of each screwdriver to the lens of the camera with a tape measure.  

Then the distance to the principal plane was added to get the true distance.  The results were measured by 

averaging the depth of the middle of the shaft of each screwdriver and are shown, along with the truth 

data and percent error, which was calculated using Equations 14 and 15, in Table 8.  The depth of each 

screwdriver was determined by cropping to the middle of the shaft of each screwdriver and averaging to 

find the value of depth at the middle of the shaft of each screwdriver.  As the range increased, the amount 

of targets decreased because the resolution was not sufficient to support more.  As shown, all the targets’ 

ranges are estimated to within the minimum requirement of <10% error from Section 3.3 except for one 

target, the green screwdriver in the close range, that is significantly different than the others.  The other 

target’s ranges are all slightly underestimated.  Figure 36 shows an example of the close range image and 

corresponding depth map and Figure 37 shows the corresponding confidence map.  From the confidence 

map and depth map it is apparent that the areas of low confidence have been removed from the depth map 

using confidence as a threshold.   
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Table 8: Results using Illum Camera 

Close-Range 
Target Screwdriver True Range +-0.5 (cm) Estimated Range (cm) Percent Error (%) 
White 23.9 23.7 -2.8 to 1.3 
Orange 22.1 20.5 -9.3 to -5.1 
Black 29.1 28.8 -2.7 to 0.70 
Blue 21.8 21.5 -3.6 to 0.94 
Red 29.6 27.2 -9.6 to -6.5 
Green 22.5 25.9 13 to 18 
Average Error 
Magnitude 

N/A N/A 5.4 to 6.8 

Mid-Range 
Green 142.6 130.3 -9.0 to -8.3 
Yellow 149.9 132.8 -12 to -11 
Pink 143.3 130.5 -9.2 to -8.6 
Gray 144.9 133.6 -8.1 to -7.5 
Blue 143.9 131.8 -8.7 to -8.1 
Average Error 
Magnitude 

N/A N/A  8.7 to 9.4  

Long-Range 
Gray 256.4 235.9 7.8 to 8.2 
Blue 255.5 238.8 6.4 to 6.7 
Average Error 
Magnitude 

N/A N/A  8.7 to 9.4  

Total Average 
Error Magnitude  

N/A N/A 6.9 to 7.9 

 

        

Figure 36: Illum image to be analyzed (left), and resulting depth map (right)      
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Figure 37: Confidence map for Illum light field 

 The next accuracy analysis will be for the First Generation camera at the same ranges and 

procedure as the Illum.  The results of the accuracy analysis of each of the light fields are shown in Table 

9.  As shown, although a couple of the targets meet the error requirement individually, overall the average 

error is greater than the minimum requirement of <10% error from Section 3.3.  Figure 38 shows an 

example of the close range image and corresponding depth map and Figure 39 shows the corresponding 

confidence map.  From the confidence map and depth map it is apparent that the areas of low confidence 

have been removed from the depth map using confidence as a threshold.  Some of the areas of medium 

confidence, such as the tops of the screwdrivers have not been removed but it is apparent that the depths 

displayed for them are of lower confidence that the screwdriver shafts and therefore less accurate. 

C
onfidence 
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Table 9: Results using the First Generation Camera 

Closer-Range 
Target Screwdriver True Distance +-0.5 (cm) Calculated Distance (cm) Percent Error Range 

White 20.7 27.1 27 to 34 
Orange 19.0 20.7 6.2 to 12 
Black 26.0 29.7 12 to 16 
Blue 18.9 15.6 -19 to -15 
Red 26.5 28.2 4.4 to 8.5 

Green 19.4 16.8 -15 to -11 
Average Error 

Magnitude N/A N/A 14 to 16 

Mid-Range 
Green 145.1 118.5 18 to 19 
Yellow 152.4 115.2 24 to 25 

Pink 145.8 1123 22 to 23 
Gray 147.4 119.8 18 to 19 
Blue 146.4 121.9 16 to 17 

Average Error 
Magnitude 

N/A N/A 20 to 21 

Long-Range 
Gray 259.0 220.0 14 to 15 
Blue 258.0 212.5 17 to 18 

Average Error 
Magnitude 

N/A N/A 16 to 17 

Total Average 
Error Magnitude 

N/A N/A 17 to 18 

 
  

 

 

 

   

Figure 38: First Generation image to be analyzed (left), and resulting depth map (right) 
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Figure 39: Confidence map for First Generation light field 

Table 10 gives a summary of the results of this accuracy analysis.  The Illum and First 

Generation average error is given in a range due to measurement uncertainty in the truth 

measurement from the three tests. It was apparent from the test that as range increased, accuracy 

generally decreased.  The Illum was much more accurate than the First Generation.  This can 

possibly be attributed to the larger lens and aperture of the Illum that allow for a greater 

perspective change across the light field.  The difference may also be attributed to different 

sensors.  

Table 10: Depth accuracy analysis results 

 Light Field 
 Buddha Illum First Generation 

Average Error Magnitude 
(percent error 2.84 

5.4 to 6.8 for close range 
8.7 to 9.4 for mid-range 
8.7 to 9.4 for far range 

14 to 16 for close range 
20 to 21 for mid-range 
16 to 17 for far range 

Meets Minimum 
Requirement? Yes Yes No 

C
onfidence 
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During the course of this analysis, each color channel was analyzed separately to see if 

one had better performance.  The result was greatly reduced accuracy with no significant 

difference in performance between the different colors overall.  There was some variation on 

each light field, however, there was not one color that was best for each light field.  The large 

decrease in performance of the accuracy estimation when only one color channel was used 

confirmed that choosing only one color channel would not be a suitable method for decreasing 

computation time. 

 

4.2 Speed of Computation  

The other analysis completed was measuring the speed of computation for the gradient 

calculation.  The run time for the Take_Gradient routine, which calculates the gradient for a given light 

field using Equations 9 and 10, was found for the First Generation and Illum light fields.  Figure 40 below 

shows the results of this analysis.   
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Figure 40: Gradient calculation time vs light field size 

From Figure 39, it is apparent that as the size of the light field increases, the time required to compute the 

gradient increases at an exponential rate.  There is a time difference of nearly 3 seconds between the 

randomly generated light field, taking approximately 19 seconds, and the constant light fields of ones and 

zeros, taking approximately 16 seconds with the actual light field falling in the middle, taking 

approximately 17 seconds on average.  This is because the sparse nature of the gradient of the ones and 

zeros light fields leads to quicker calculations in the conversion from gradient to slope and depth while 

none of the random light field is sparse. There are areas of constant, or near constant value in the actual 

light field though that cause it to run faster than the random light field.  The size of the First Generation 

light fields is considerably smaller than that of the Illum light fields, by approximately a factor of 5, and 

begins at the arrow in Figure 33.  This leads to a calculation time for the whole of the light field being 

considerably less than the Illum light field as well, approximately 2.4 seconds.   The Hough transform 

significantly reduces the size of each of these light fields and as a result leads to a much faster gradient 

First Generation light field size 
Target Screwdriver light field size and  
Average size of Hough Transform 
Light Field 

Illum light field size 

Randomly generated light field 
average time 

Constant light field average time 
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calculation time of approximately 0.2 seconds on average.  This is a significant improvement from the 

multiple seconds needed for whole light fields however, the Hough transform takes approximately 1.5 

seconds to calculate and reduce the light field’s size so the true decrease in time is not as great.  It is still a 

significant improvement though, especially for the Illum light fields. 

 Loading the light field was another area that took a significant amount of time, as shown in Table 

11, it can take up to 15 seconds for larger synthetic light fields. This is unavoidable for this current 

research because the light field cannot be processed, cropped, without being loaded into the computer.  

However, this may not be an issue in a practical application as it will be integrated into the system but 

will likely have some effect so it will be discussed briefly here. The Illum light fields take between 2.5-6 

seconds to load, as shown in Table 11 where it takes approximately 2.7 second, while the First Generation 

light field takes approximately 1 second.  

Table 11: Load time results 

 Light Field 

 First Generation Illum Synthetic 

Load time (sec) 1 2.7 15 

Size (pixels) 2.5 *10^7 1.5*10^8 6*10^8 

 

Between the loading the light field and taking the gradient, estimating depth can take anywhere 

between approximately 3 seconds and nearly a minute to calculate.  The lower end of that spectrum is 

near real-time but with a larger light field, that is not possible even if only a small portion of the light field 

is analyzed for depth because of loading time.  The average run time for the Illum light fields was 

approximately 6 seconds after reducing its size considerably by selecting significant regions with the 

Hough transform for the gradient calculation. As with the previous camera, the majority of this is time is 
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spent loading, which averages just under 3 seconds for the Illum light fields, and calculating the Hough 

transform, which averages approximately 1.5 seconds.  There is a significant reduction in time for the 

gradient calculation though, from nearly 16 seconds to less than 0.25 seconds on average which reduces 

the total time considerably. In the example shown in Table 12, the gradient calculation was reduced to 

0.149 seconds using the Hough transform but the Hough transform took 1.76 seconds to run.  The average 

run time for the First Generation light fields was approximately 3 seconds after reducing its size with the 

Hough transform, which is a little more than half of its average run time of approximately 7 seconds for 

the entire light field.  The majority of this time is spent loading, which averages about 1 seconds for the 

First Generation light fields, and calculating the Hough transform which averages approximately 1.5 

seconds. This decreases the gradient calculation time from approximately 2.4 seconds on average to less 

than 0.2 seconds on average, which does not reduce the total time considerably when the Hough 

transform time is taken into account.  Neither the Illum nor the First Generation meet the minimum 

computation time requirement of 0.5 seconds.  Table 12 shows an example profile summary from an 

Illum light field.  It shows the time that each function takes to run and how much of that time is that 

function running and how much it is calling another function. For example, real_time_depth is the main 

function and it takes a total of 5.705 seconds to run but most of that time, 5.476 seconds, is taken up by 

other functions that were called in real_time_depth. The function load_LF_File takes nearly the entire 

2.711 seconds of its run time to load the light field however and only 0.004 seconds calling other 

functions.  An expanded profile summary is shown in Appendix A. 
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Table 12: Profile summary from Illum light field 

 

 

 

 

4.3 Summary 

This chapter provided the analysis and results of the experimentation done on the method 

developed during the course of this research.  First, Section 4.1 presented the results of the analysis of the 

accuracy of the depth estimation method developed.  Then, Section 4.2 presented the results of the 

analysis of the speed of computation of the depth estimates are presented.  



60 

V. Conclusions and Recommendations 

Chapter Overview 

This chapter provides a summary of the research and analysis completed for this thesis.  It gives 

the conclusions and significance of the research and recommendations for future work.   

5.1 Conclusions of Research 

During the course of this research the following investigative questions, given in Section 

1.3, were answered: 

- What is the availability of commercial light field hardware? 

o Currently there are two companies commercially offering plenoptic cameras.  In its 

current state with the proposed depth estimation method, Lytro offers reasonable 

depth estimation and is readily available.  Using Raytrix may also need to be 

explored because they are designed for industrial and scientific use and require a 

greater depth confidence than the average consumer, so they may offer better results.   

- What accuracy of range estimation is attainable from light field cameras? 

o The average range error from the Lytro Illum and First Generation was 6.9-7.8% and 

17-18% respectively.  At close range the error war approximately 1% better for both 

cameras.  The Illum was within the minimum accuracy requirement of 10% from 

Section 3.3 while the First Generation was not but once a the requirements are better 

defined, it may.   

- What is the speed of computation of range estimation/ is it suitable for real-time range 

estimation? 

o The speed of computation of range estimation ranges between approximately two 

seconds and nearly 30 seconds. At the current time, the Lytro First Generation and 

Illum are suitable for near real-time operations by using the Hough transform to 
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reduce the size of each light field.  This brings the run time down to approximately 2 

seconds, which approaches real-time but is in the upper portion of Dansereau’s range.  

Therefore, the speed of computation is not currently suitable for the real-time 

operational requirements established here with this computer hardware, but once 

better requirements are defined, different hardware used, and the method is 

optimized, this may become suitable.   

- Is custom processing needed and if so, in what specific areas? 

o Custom processing is needed for real-time application to reduce the size of a light 

field by selecting specific features before analyzing for depth. This is because the 

gradient calculation to determine depth for the entire light field takes too long so the 

size of the light field needs to be reduced and depth determined only for specific 

features within the light field.  

Based upon the answers to these questions, this research concludes that Lytro light field cameras 

may be suitable for use on spacecraft for proximity operations with optimization of processing.  The 

accuracy of depth estimation for the Illum light fields were within the minimum requirement and it is 

possible to output an estimate of depth for a small portion of the light field in real-time.  The Hough 

transform is a good way to select features in a light field, especially if multiple features are desirable, 

because it only needs to be performed once in to detect all of the linear features in the image.  Also, the 

Hough transform can significantly reduce the processing time, especially for larger light fields such as the 

Illum light fields.  During the course of this research there were some other notable conclusions that were 

able to be drawn.  First, using single color channel instead of all three in order to reduce the gradient 

calculation time is not a practical because it greatly reduces the accuracy of the depth estimation.  Second, 

when cropping, a buffer zone needs to be established around the end points for the linear feature so that in 

the event of a vertical or horizontal linear feature, the cropped light field is large enough to generate a 

meaningful gradient.  Thirdly, lighting was found to have a significant effect on the quality of the depth 
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estimation.  This was not investigated, but it was noted that images taken with better lighting conditions 

of the same target generated better results than those taken in lower quality lighting conditions. Lastly, as 

range increases, there is a decrease in the accuracy of the depth estimation, and this should be investigated 

in greater detail in future work. 

5.2 Significance of Research 

This research contributes to the research into implementing a plenoptic camera for real-time 

depth estimation for proximity operations and docking.  It showed that a full light field cannot be 

analyzed using this method in real-time without considerable computing power.  It also showed a small 

portion of a light field can be analyzed using this method in near real-time and provide usable depth 

information.   

5.3 Recommendations for Future Research 

 There is much that can be done in the future regarding this research.  First, light field cameras by 

Raytrix should be investigated as they are tailored more for industrial and scientific purposed and may 

provide increased depth accuracy and speed.  Raytrix cameras are already used in industry for very close 

depth map generation for detecting defects in different types of components.  Since it is being used by 

industry, Raytrix may have smaller file sizes and/or already customized software that would lead to faster 

processing.   

Testing for depth accuracy at a greater distance using both Lytro and Raytrix cameras is also 

recommended to determine the range at which commercially available light field cameras would be 

suitable for depth estimation and to see what the max distance that usable depth information can be 

gathered. This would also be an opportunity to see how adding additional lenses, such as a telescope, 

would impact depth accuracy.  There is already research on using a telescope lens on the end of a Raytrix 

camera that can be expanded on [22]. 
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Optimization of this method, such as reducing extraneous display functions that have no value in 

real world applications, should be accomplished to determine if run time can be reduced along with 

implementing method on computer hardware that is comparable to space certified hardware to give a 

more accurate view of how suitable this method is for real world applications.  In addition to 

optimization, additional depth estimation methods and methods to select features beyond gradient based 

methods and the Hough transform respectively should be explored and compared to determine if another 

method is more suitable for real-time operations. 

The use of relative motion could lead to improvements in depth estimation.  Although relative 

motion does not need to be accounted for, accounting for it could lead to high fidelity depth estimation 

and opens doors for multiple ways to analyze and validate data.   

The effect of lighting should be studied more to determine how much of an affect it has on depth 

estimation and to use exoatmoshperic lighting conditions to imitate real applications.  

5.4 Summary 

The depth estimation method presented in this research accomplished the goals of this research.  

There are currently 2 companies that offer commercially available light field cameras, with the Lytro 

Illum and First Generation cameras having an accuracy of approximately 7% and 18 % respectively.  The 

depth estimation method developed in this thesis took approximately two seconds to run after custom 

processing by using the Hough transform to reduce the size of the light field.  Without the Hough 

transform run time increased by at least 100% depending on the size of the light field.  This confirmed the 

need for custom processing to reduce the size of a light field before it is analyzed.  This work is a step in 

the right direction toward putting a light field camera in space for to use for proximity operations and 

docking.  
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Appendix A 

An example of the Profile Summary from the running of the real-time depth code.  It shows the time that 

each function takes to run and how much of that time is that function running and how much it is calling 

another function. For example, real_time_depth is the main function and it takes a total of 5.705 seconds 

to run but most of that time, 5.476 seconds, is taken up by other functions that were called in 

real_time_depth. The function load_LF_File takes nearly the entire 2.711 seconds of its run time to load 

the light field however and only 0.004 seconds calling other functions. 

Function Name Calls Total Time Self-Time* Total Time Plot 
(dark band = self-time) 

real_time_depth 1 5.705 s 0.218 s  

load_LF_File 1 2.711 s 2.707 s  

Hough_Transform 1 1.730 s 0.236 s  

imshow 2 0.614 s 0.066 s  

colorbar 3 0.546 s 0.013 s        
initSize 1 0.418 s 0.024 s  

movegui 1 0.378 s 0.326 s  

edge 1 0.335 s 0.152 s  

ColorBar.ColorBar>ColorBar.ColorBar 3 0.300 s 0.060 s  

ColorBar.doSetup 3 0.180 s 0.018 s  

ColorBar.ColorBar>ColorBar.set.Axes 3 0.164 s 0.001 s  

imfilter 2 0.164 s 0.004 s  

ColorBar.ColorBar>ColorBar.set.Axes_I 3 0.161 s 0.002 s  

ColorBar.ColorBar>ColorBar.setAxesImpl 3 0.159 s 0.002 s  

imadjust 1 0.156 s 0.003 s  

Take_Gradient 1 0.149 s 0.061 s  

imadjust>parseInputs 1 0.148 s 0.005 s  

stretchlim 1 0.142 s 0.013 s  

imfilter>filterPartOrWhole 2 0.141 s 0.125 s  
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LFDisp 3 0.140 s 0.066 s  

hough 1 0.138 s 0.128 s  

mat2gray 1 0.135 s 0.006 s  

legendcolorbarlayout 3 0.132 s 0.047 s  

imlincomb 1 0.129 s 0.124 s  

imhist 1 0.128 s 0.124 s  

ColorBar.doMethod 3 0.117 s 0.002 s  

ColorBar.doMethod>set_contextmenu 3 0.116 s 0.044 s  
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Appendix B 

The code developed in this research is shown in this appendix including the following routines: 
Real_Time_Depth, load_LF_File, Hough_Transform, Take_Gradient, and Fill_nan. 
Real_Time_Depth routine 
 
 %% Depth Estimation 
clear all 
close all 
clc;format short 
profile on 
n=100; 
M=magic(n); 
 
%% Set thresholding parameters 
MinGradient = 0.0; 
MaxSlope=5; 
MinSlope=-5; 
MaxRange=40; 
MinRange=0; 
%% Set Camera Intrinsics 
%F01 
Q=3 
G=1; 
if Q==1 
    H =[0.0004427694605,0,-0.0003784125047,0,0.06924175913;... 
        0,0.0003725917669,0,-0.0003957133815,0.07275213519;... 
        -0.0008919267621,0,0.00182734436,0,-0.3418438678;... 
        0,-0.0007489869818,0,0.001858191519,-0.347633371;... 
        0.1455    0.1497   -0.3428   -0.3454    1.0000].*G;  
    dh=10.0032*G; 
    dv=8.6651*G; 
    h=[0.0065 4.9532 6.0749].*G; 
%Illum 
elseif Q==2 
    H=[0.000321768942,0,-0.0004386720945,0,0.1349495501;... 
  0,0.0003127771329,0,-0.0004404492897,0.09329550344;... 
  -0.000314804311,0,0.001655464672,0,-0.5164697402;... 
  0,-0.0003172672541,0,0.001659341736,-0.3583686896;... 
  0,0,0,0,1].*G; 
    dh=14.2827*G; 
    dv=12.2713*G; 
    h=[0.0096 0.1680 9.8520].*G; 
elseif Q==3 
    H=[9.375 22.4999 22.4999]; 
    h=0; 
    dh=48; 
    dv=48; 
    MinGradient = 0.00; 
    MaxSlope=10; 
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    MinSlope=-10; 
 
%     MaxRange=20.7812; 
%     MinRange=18.7188; 
end 
%% Load file and display image 
 
% LF=load_LF_File('Images/ScrewDrivers/IMG_0110__Decoded.mat'); 
LF=load('Images/LF_HCI_Budda.mat'); 
LF=LF.LF_HCI; 
gt=load('Images/GT_Depth.mat'); 
gt=gt.gt; 
% LF=load_LF_File('Images/F01/IMG_0001__Decoded.mat'); 
% LF=load_LF_File('Images/Illum/IMG_0029__Decoded.mat'); 
% LF=load_LF_File('BUNNY.mat'); 
 
 
LFDisp(LF); 
%% Hough Transform  
% select Hough, 1 
select=1 
if select==1 
    xy_long=Hough_Transform(LF); 
end 
 
%% Crop light field to longest line 
%define crop boundry 
LF_size=size(LF); 
ymax=LF_size(4); 
xmax=LF_size(3); 
if exist('xy_long','var') 
    ad=5; 
    mins=min(xy_long); 
    maxes=max(xy_long); 
    y1=mins(1)-ad; 
    y2=maxes(1)+ad; 
    x1=mins(2)-ad; 
    x2=maxes(2)+ad; 
elseif exist('boundary','var') 
    y1=boundary(3); 
    y2=boundary(4); 
    x1=boundary(1); 
    x2=boundary(2); 
else 
    x1=1;y1=1;x2=xmax;y2=ymax; 
end 
%make sure is in bounds of image 
if y1<1 
    y1=1; 
end 
if y2>ymax 
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    y2=ymax; 
end 
if x1<1 
    x1=1; 
end 
if x2>xmax 
    x2=xmax; 
end 
% x1=140;x2=255;y1=50;y2=190; 
LF_crop=squeeze(LF(:,:,x1:x2,y1:y2,:)); 
% [LFcrop,rect2]=imcrop(squeeze(LF(5,5,:,:,1:3))); 
% figure 
%% 
% y1=ceil(rect2(1)); 
% y2=ceil(rect2(1)+rect2(3)); 
% x1=ceil(rect2(2)); 
% x2=ceil(rect2(2)+rect2(4)); 
% LF_crop=squeeze(LF(:,:,x1:x2,y1:y2,:)); 
% show cropped image 
LFFigure; 
LFDisp(LF_crop); 
axis image 
title('In'); 
%% Take the gradient 
slope=Take_Gradient(LF_crop,MinGradient,MaxSlope,MinSlope,H,dh,dv,MaxR
ange,MinRange,h); 
 
 
 
%% Fill and display final 
figure; 
F=size(slope); 
[X,Y]=meshgrid(1:F(2),1:F(1)); 
waterfall(X,Y,slope) 
colormap jet 
colorbar 
axis image 
title('Slope not filled') 
 
Slope=fill_nan(slope); 
 
% figure;LFDisp(Slope); 
figure; 
waterfall(X,Y,Slope) 
colormap jet 
colorbar 
axis image 
title('Slope') 
Depth=nanmean(Slope(:)) 
% display ground truth 
if exist('gt','var') 
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    caxis([18.7188,20.7812]); 
    figure;LFDisp(gt) 
    colormap jet 
    colorbar 
    G=squeeze(gt(5,5,:,:)); 
    er=sqrt(((G-Slope).^2)/length(G)); 
     
    figure;LFDisp(er); 
    colormap jet 
    colorbar 
    axis image 
    title('Error') 
    er=abs(er); 
    error=nanmean(er(:)) 
end 
 
profile viewer 
 
 
load_LF_File routine 
 
function LF=load_LF_File(file_location) 
 
load(fullfile(file_location),'LF'); 
LF=LF; 
end 
 
 
Hough_Transform routine 
 
function xy_long=Hough_Transform(LF) 
S=size(LF); 
x=floor(S(1)/2); 
y=floor(S(2)/2); 
f=S(3); 
q=S(4); 
LFrot=imrotate(squeeze(LF(x,y,5:(f-5),5:(q-5),1)),0,'crop'); 
LFrot=imcrop(LFrot,[0,0,626,250]); 
% figure(1),imshow(LFrot) 
BW=im2bw(LFrot,0.2); 
BW=edge(LFrot); 
figure(2), imshow(BW) 
% Compute Hough Transform 
[H,theta,rho]=hough(BW); 
% Display 
figure(3), 
imshow(imadjust(mat2gray(H)),[],'XData',theta,'YData',rho,'InitialMagn
ification','fit'); 
xlabel('/theta (degrees)'),ylabel('/rho'); 
colormap(hot) 
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% Find peaks of Hough tranform and display 
P=houghpeaks(H,5,'threshold',ceil(0.3*max(H(:)))); 
x=theta(P(:,2)); 
y=rho(P(:,1)); 
hold on 
plot(x,y,'s','color','black'); 
% Find lines in images 
 
lines=houghlines(BW,theta,rho,P,'FillGap',5,'MinLength',5); 
% Plot lines on original image 
figure(1),hold on 
max_len=0; 
X=zeros(length(lines),2); 
Y=zeros(length(lines),2); 
for k=1:length(lines) 
    X(k,:)=lines(k).point1; 
    Y(k,:)=lines(k).point2; 
    xy=[lines(k).point1;lines(k).point2]; 
%     plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green'); 
    % Determine endpoint of longest lines segment 
    len=norm(lines(k).point1-lines(k).point2); 
    if (len>max_len) 
        max_len=len; 
        xy_long=xy; 
    end 
end 
% highlight the longest line segment 
plot(xy_long(:,1),xy_long(:,2),'LineWidth',2,'Color','red') 
hold off 
end 
 
 
Take_Gradient routine 
 
function 
Pz=Take_Gradient(LF,MinGradient,MaxSlope,MinSlope,H,dh,dv,MaxRange,Min
Range,h) 
PzEst=zeros(size(LF,3),size(LF,4)); 
% take gradient for each color channel 
for ctr=1:3 
 
    LF_temp=squeeze(LF(:,:,:,:,ctr));  
    LF_temp=LFConvertToFloat(LF_temp,'double'); 
    [Ls,Lt,Lu,Lv]=gradient(LF_temp); %careful of the ordering of 
outputs from the  
     
    % gradient function 
    % Reduce size 
    S=size(Ls); 
    x=floor(S(1)/2); 
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    y=floor(S(2)/2); 
    Ls=squeeze(Ls(x,y,:,:));Lt=squeeze(Lt(x,y,:,:)); 
    Lv=squeeze(Lv(x,y,:,:));Lu=squeeze(Lu(x,y,:,:)); 
 
    Mag1=abs(Lu); 
    Mag2=abs(Lv); 
    TotMag=Mag1+Mag2; 
    Slope1=Ls./Lu; 
    Slope2=Lt./Lv; 
    Slope1(TotMag<MinGradient)=NaN; % Threshold to remove invalid 
values  
    Slope2(TotMag<MinGradient)=NaN; 
    SlopeEstTemp1=(Mag1.*Slope1+Mag2.*Slope2)./TotMag; 
    InvalidMask=isnan(SlopeEstTemp1); 
    Slope1=max(MinSlope,min(MaxSlope,Slope1));% Threshold to saturate 
to in range values 
    Slope2=max(MinSlope,min(MaxSlope,Slope2)); 
    S=size(H); 
    if min(S)==5 
        1 
        duds1 = ((H(3,1) + H(3,3)) .* -Slope1) ./  ((H(1,1) + H(1,3) 
).* -Slope1); % the negative is due to an axis direction mismatch 
        duds2 = ((H(4,2) + H(4,4)) .* -Slope2) ./  ((H(2,2) + H(2,4)) 
.* -Slope2); % the negative is due to an axis direction mismatch 
        Pz1=(dh./(1+duds1)); %Convert Slope to distance 
        Pz2=(dv./(1+duds2)); 
    else 
        2 
        Pz1=(dh*H(1)/H(2))-Slope1; 
        Pz2=(dv*H(1)/H(2))+Slope2; 
    end 
     
    PzTemp=(Mag1.*Pz1+Mag2.*Pz2)./TotMag; 
    PzTemp=max(MinRange,min(MaxRange,PzTemp)); 
 
    
    
 
 
 
    PzTemp(InvalidMask)=NaN; 
%     S=size(PzTemp); 
%     x=floor(S(1)/2); 
%     y=floor(S(2)/2); 
%     PzTemp=squeeze(PzTemp(x,y,:,:)); 
    PzEst=PzEst+PzTemp; 
end 
 
 
Pz=(PzEst./3.); 
end 
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Fill_nan routine 
 
function Filled_pic=fill_nan(spic) 
s=size(spic); 
% for Q=1:3 
for I=2:s(1)-1 
    for J=2:s(2)-1 
        if isnan(spic(I,J)) 
            around=[spic(I-1,J-1),spic(I,J-1),spic(I+1,J-1),spic(I-
1,J),... 
                      spic(I+1,J),spic(I-
1,J+1),spic(I,J+1),spic(I+1,J+1)]; 
            ctr=0; 
            for x=1:max(size(around)) 
                if isnan(around(x)) 
                else 
                    ctr=ctr+1; 
                end 
            end 
            if ctr>=4 
                average=nanmean(around); 
                spic(I,J)=average; 
%             elseif ctr>=1 
%                 spic(I,J)=NaN; 
            end 
        end 
    end 
end 
% end 
Filled_pic=spic; 
end 
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