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Abstract

The use of low-fidelity sensors of satellites in a constellation for accurate surface

target detection has the potential to lower costs while increasing flexibility, replace-

ment time, and fault tolerance. This thesis investigates the possibility of utilizing an

array of satellites with a heterogeneous mix of sensor types to optimize the validation

process of surface target detection. Generation of synthetic scenes allows identifica-

tion and extraction of optical features that are useful in remote sensing practices.

Features of interest are generated from specified resolutions, representing different

sensor types using Rochester Institute of Technology’s Digital Imaging Remote Sens-

ing Image Generation platform. Synthetic images are jittered to varying degrees to

represent the pointing stability, which is one measure of performance of low-fidelity

sensors.

These synthetic images are utilized to train an artificial intelligence platform to

automatically detect targets of interest on the earth’s surface. The Berkeley Caffe

Convolution-Based Deep Learning open source platform is trained and employed to

automatically detect features of interest. Berkeley Caffe is fast, powerful, and well-

supported with deployed projects by major corporations including Pinterest, Google,

and others, which makes it particularly valuable for our experiments. The main

contributions for this research effort are four-fold: (1) Generation of a dataset which

includes synthetic imagery, (2) Schematic of a Tip and Cue Communication Protocol,

(3) A satellite imagery classifier with 92.1% test set accuracy, and (4)Successfully

modeled uncorrelated jitter impact on classification performance. Through these

experiments, we demonstrate that remote sensing platforms can provide features of

interest to an artificial intelligence platform to increase overall feature identification

iv



effectiveness. This is useful for the verification and validation for targets of interest

in various applications.
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TOWARDS AUTOMATION OF TIPPING AND CUEING BETWEEN SMALL

SATELLITES IN A CONSTELLATION

I. Introduction

Presented is the investigation of the potential in utilization of Machine Learn-

ing in application to the space vehicle domain where a heterogeneous set of varied

fidelity sensor types in a constellation of small satellites enhances accurate surface

target detection in the case of an Emergency Weather scenario. Remote sensing tech-

niques are exercised in application of the remote sensing platform, DIRSIG[2]. This

remote sensing platform produces features of interest from specified degrees of clarity

to compose a database used to test and examine the classification accuracy of the

artificial intelligence platform, Berkeley Caffe[9]. This artificial intelligence platform

has been adapted into a single artificial neural network intended to model a heteroge-

neous set of varied fidelity sensor types. Variance in fidelity is demonstrated through

the collection of satellite imagery with varying ranges of pixel resolution and in the

generation of synthetic scenes with varying jitter levels. Data utilized emulates the

basic terrain in Emergency Weather scenarios. This chapter covers the background

information required to set the stage for this investigation. The Motivation, Prob-

lem Statement, Research Objectives, Contributions, Research Focus, Methodology,

Assumptions, Limitations, and Implications are described in the following sections.
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1.1 Background

Components that belong to the proposed framework stem from various sources

originating in diverse fields from differing domains. The details drawn from these

fields to provide for the framework makeup is described.

Convolutional Neural Networks.

A Convolutional Neural Network is a variant of the Artificial Neural Network field,

where layers inside the platform were intended to follow the design of the mammalian

cortex. Currently, there are several Convolutional Neural Networks in use in daily

life that power recommendations for various software applications. One such Convo-

lutional Neural Network of interest for the research investigation, Berkeley Caffe[9],

developed by the Berkeley Vision and Learning Center is applied as the core of the

proposed solution framework, which serves as a barrier to determine the classification

of imagery that is sent to it, by giving a probability percentage to measure classifica-

tion certainty.

Satellites in Constellation.

A single satellite is only able to cover a limited portion of the Earth’s surface, for

instance a Geo-stationary (GEO) satellite can only cover 30% of the Earth’s surface

[10]. For more complete coverage you need a number of satellites – a satellite con-

stellation. We can describe a satellite constellation as a number of similar satellites,

of a similar type and function, designed to be in similar, complementary, orbits for a

shared purpose, under shared control. Satellite constellations have been proposed and

implemented for use in communications, including networking [10]. Further, details

for the different levels of orbit relevant to this research is provided in the Literature

Review Chapter.
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Present day satellites in constellation serve multiple purposes. Disaster monitor-

ing, voice and data coverage for satellite phones, remote sensing are a few of the

practical uses that satellites in constellation provide. Satellites of varying mass class

are utilized in a constellation. The proposed solution framework consists of satellites

in the nano-satellites class. Satellites in this mass class range are typically utilized in

Low Earth Orbits(LEO), where the proximity to the Earth’s atmosphere intensifies

the angular velocity of the satellite and allows it to scan the earth’s surface for only a

brief amount of time. This serves as a point of provision for the proposed framework

where, satellites in a tight LEO orbit are tipped by satellites in a farther orbit to a

location to scan, and may be cued for the precise moment to scan the surface.

Tipping and Cueing.

The concept tipping and cueing is heavily utilized in Activity-Based Intelligence(ABI),

where information gathered is focused on transactions which connect entities and ob-

jects over space and time in real time[11]. The digital age has generated a vast

amount of data at an exponential rate. According to the Cisco Virtual Networking

Index, annual global IP traffic will reach 2.3 Zettabytes by year 2020[12]. The con-

tinual growth and influx of data poses a difficult challenge in the efficient discovery of

significant events or patterns of life. Tipping and cueing served as an efficient solution

to such a problem in [13] through the usage of highlighting key characteristics of a

target image in a high-volume database of images which can be utilized to tip off

an intelligence analyst or algorithm to circumvent needless searching efforts. Cueing

involves the creation of a list of key characteristics to look for in the image database.

This idea of persisting data collection of a target is under the umbrella of persistent

surveillance or persistent intelligence, surveillance and reconnaissance(ISR)[11] and

served as inspiration for developing the proposed solution framework.
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Remote Sensing.

Remote Sensing has been around since the early 1940’s where application included

image classification. Great strides have been made in progressing from the usage of air

balloons in the allied European theater for gathering intelligence on targets of interest.

The current use for remote sensing techniques is multi-fold from the prediction of

agriculture yields[14] to measuring the melting of ice in the polar ice caps[15] and

image detection of targets such as airports as demonstrated by the Chinese Navy

Department [16].

DIRSIG.

Digital Imaging and Remote Sensing Generation(DIRSIG), is a complex synthetic

image generation application which produces simulated imagery in the visible through

thermal infrared regions. The original intent of this model is to produce broad-band,

multi-spectral and hyper-spectral imagery through the integration of a suite of first

principles based radiation propagation sub-models. For the purpose of testing the

framework design, the application is utilized to generate a series of synthetic spectral

images which simulate the output of a low-fidelity sensor aboard a Geostationary

Earth Orbit Search and Rescue (GEOSAR) or Low Earth Orbit Search and Rescue

(LEOSAR) Satellite in a constellation formation.

1.2 Motivation

The main thread of this research effort is in the application of Machine Learning to

aid understanding in the Search and rescue domain. The motivation of this research

effort is threefold: (1) Proliferation of nanosatellites, (2) Tipping and Cueing between

small satellites in a constellation, (3) Application of the system to optimize the Search

and Rescue process.
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Nanosatellite Proliferation.

The development of small satellites such as nanosatellites indicate the potential

for tipping and cueing between small satellites in a constellation. Strides have been

made in the development of nanosatellites, specifically, nanosatellite of interest to

the research effort is the integration of a Google Nexus One Smartphone with a

STRAND-1 cubesat [17]. The Surrey Training Research and Nanosatellite Demon-

strator (STRAND) has been expanded to a second integration where the internals of

a cubesat were integrated with a Rhaspberry Pi [18]. Currently, there is development

in creation of a Convolutional Neural Network that can be run on a Rhaspberry Pi

[19]. This indicates the potential for a satellite to be equipped with a Convolutional

Neural Network in the future.

Tipping and Cueing.

The inspiration for creation of this framework stemmed from the concept of tipping

and cueing which is heavily utilized in the Activity Based Intelligence field. This is

where information is gathered with a focus on transactions which connect entities and

objects over space and time in real time. As we are currently in an era of continual

growth of data, a challenge is posed in the determination of what information is most

meaningful for analysis.

Optimization of the Search and Rescue Process.

The current search and rescue practices depend heavily on human interactions.

Several steps are involved in the process and the proposed solution framework can

provide a faster turn-around time in the event of an event of distress. Consider the

COSPAS-SARSAT system where users depend completely on distress beacons to emit

signals that are sent to Search and rescue satellites. These signals are reflected back
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to the surface for processing by 2 data centers. The distress signal is sent to a Local

User Terminal on the ground surface and is then sent to a Mission Control Center

to receive and process the data. Finally, a rescue Coordination center evaluates the

information and in the case of an actual emergency sends for help.

The application of the solution framework to the Search and Rescue domain re-

quires automated image understanding. The main motivators for this research effort

integrate with the overall problem statement described in the subsequent section.

1.3 Problem Statement

Defense satellites are traditionally large, powerful, and robust. The possibility

of replacing a single large satellite with many smaller and less capable satellites has

the potential to lower costs while increasing flexibility, replacement time, and fault-

tolerance. This is similar to the way that RAID systems have replaced expensive

robust hard disk drives with arrays of inexpensive alternatives. Through the exper-

imental design, results collected and conclusions drawn, Machine Learning demon-

strates it’s suitability in the space vehicle domain as a source of automation for the

tipping and cueing between small satellites in a constellation to increase surface target

detection effectiveness. The automation of image understanding towards the tipping

and cueing between small satellites in a constellation is investigated in the subsequent

section.

1.4 Research Objectives/Questions/Hypotheses

The thesis statement for this research effort is as follows: Machine learning plat-

forms can facilitate the tipping and cueing between heterogeneous constellation mem-

bers in order to increase its overall feature identification effectiveness. In order to

determine a means of support for the given thesis statement an investigation of the
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possibility of such a technological advance must be conducted. This thesis investiga-

tion concentrates on one specific surface target detection problem. Specifically, the

optical detection of targets of interest by an array of satellites with a heterogeneous

mix of sensor types. Synthetic data emulating the basic terrain where National Emer-

gency scenarios have been observed to occur for the experiments. This also provides

ground truth data. RIT’s Digital Imaging and Remote Sensing Image Generation

(DIRSIG) will accomplish the need to generate such synthetic data. The system

allows for synthetic ground images to be constructed and the application of filters

to simulate different resolutions and jitter/clutter/timing effects to emulate differ-

ent types of standard sensor types. The classification strength of Berkeley Caffe is

measured against a collection of images representing a set of images produced by a

constellation of heterogeneous satellite sensor types. Data representing each sensor

type’s output must be collected and given to the classifier in equal amounts to ensure

optimal classification accuracy. A large diverse dataset representing heterogeneous

sensor types has been produced in an effort to determine the classifier’s strength in

the proposed framework.

Research Questions.

The Research objectives are framed into three investigative questions to capture

the overall research process. First, the conceptual development of a tipping and cue-

ing system is executed to determine if it is possible to leverage the automation of

terrain classification for a tipping and cueing system across a constellation of satel-

lites with a mixture of heterogeneous sensor types. Secondly, the development of

a Convolutional Neural Network which performs terrain classification is developed.

The terrain selected for classification reflect the common areas of a search and rescue

event: Urban, Water, Farm and Forest where each area correlates to a specific classi-
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fication category. Thirdly, synthetic imagery is incorporated into the Convolutional

Neural Network to model satellite sensor capabilities. These investigative questions

are answered in the subsequent section.

1.5 Contributions

The main contributions for this research effort are four-fold: (1) Generation of

a dataset which includes synthetic imagery, (2) Schematic of a Tip and Cue Com-

munication Protocol, (3) A satellite imagery classifier with 92.1% test set accuracy,

and (4)Successfully modeled uncorrelated jitter impact on classification performance.

Each contribution described addresses each of the three investigative questions posed

in the previous section. Research question 1 is mainly addressed by the development

of the schematic of a Tip and Cue Communication Protocol and by the generation

of a dataset intended to represent a heterogenous mixture of satellite sensor types.

Research question 2 is addressed by the generation of a dataset with high resolution

satellite imagery and development of a satellite imagery classifier with 92.1% test

set accuracy. Research question 3 is addressed by the addition of synthetic imagery

into the dataset generated to answer research question 2 and the successful modeling

of uncorrelated jitter impact on classification performance. The subsequent section

describes each contribution.

Heterogeneous Sensor Framework Contribution.

A dataset intended to represent a heterogeneous mixture of satellite sensor types

is described in the Image Acquisition section of the Methodology chapter. Images

collected from the Image Acquisition section are grouped into different Tiers based off

of their approximate pixel resolutions, depicted in Figure 1. Imagery of approximately

1 to 0.5 meters pixel resolution are grouped together in Tier 2. While images with
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an approximate pixel resolution of 0.305 meters are grouped into Tier 3. Images in

Tier 2 and Tier 3 are sent into the HybridCaffe network for image classification. The

images from each Tier are randomized for training and testing purposes.
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Figure 1. Overview of Tier Levels in Solution Framework, courtesy USGS,
TOMNOD, University of California Merced[1], DigitalGlobe and Rochester Institute
of Technology[2].
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The general solution framework described in Figure 2, depicts images from Tier

2 and Tier 3 sent into HybridCaffe as inputs. It is important to note that the Con-

volutional Neural Network, named HybridCaffe is treated as a black box where the

Tier level organization does not affect the layers during the process of conducting a

forward pass. These images are processed in the Convolutional Neural Network layers

described in the basic CNN architecture Section. The steps of processing through the

layers are in the form of a forward pass. Once, the images are successfully processed

they are output as probability percentages. These probability percentages are viewed

as network activations.

Figure 2. Overview of Solution Framework, where Tier 2 and Tier 3 Level imagery is
sent as inputs into HybridCaffe, resulting in prediction probability for each respective
class.
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Tipping and Cueing Scheme Contribution.

The thesis opens with the the question, that investigates how to leverage the au-

tomation of terrain classification for a tipping and cueing system across a constellation

of satellites with a mixture of heterogeneous sensor types. Mainly, this question was

answered through the contribution of a satellite communication protocol described in

Figure 3 and corresponding algorithm depicted in Figure 4.

The tip and cue scheme in Figure 3, depicts a conceptual diagram for how the tip-

ping and cueing communication protocol would work between a selection of satellites

in a constellation. Each satellite in the constellation is attributed to a specific orbit

altitude. Satellites in a Geostationary Orbit (GEO) have a mean orbit altitude of

35,790 kilometers above the Earth’s surface. Satellites in a Low Earth Orbit (LEO)

have an orbit altitude from 200 to 1200 kilometers above the Earth’s surface. Each

of the orbit altitudes described are attributed to Tier levels where the GEO orbit

is associated with Outer Tier Level, and the two ranges specified in LEO orbit is

associated with Inner and Detail Tier Levels.

The process of the tip and cue communication protocol is initiated by a ground

station sending a set of GPS coordinates and a request for a GEO satellite to sense

the Earth’s surface for identification of a distress event. Requests depicted in Figure

3 are indicated by dashed lines and confirmations are indicated by solid lines. A color

specific to each satellite in the Tip and Cue Protocol is depicted in Figure 3 as well.

The GEO satellite will send the sensed image and GPS coordinates in the form of a

tip message to a LEO satellite in an orbit of 1200 kilometers. The LEO satellite will

receive the tip and send a confirmation to the GEO satellite. The LEO satellite has

sensors that allow it to have higher precision and spatial resolution as it is closer to

the Earth’s surface. However, the close proximity to the Earth’s surface causes the

angular velocity of the LEO satellite to be high enough for persistence to be lost. This
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loss of persistence is evident in the limitation a LEO satellite has in only being able

to cover a particular region on the ground at a given time. The high angular velocity

also limits their field of view. These limitations on the LEO satellite cause a need for

appropriate timing to ensure the satellite is able to sense the Earth’s surface at the

correct time. The GEO satellite sends a cue message indicating the appropriate time

for the LEO satellite to sense the Earth’s surface. The same process is repeated for

the Inner and Detail LEO satellites where the LEO satellite in inner orbit sends tip

information to Search and Rescue respondents nearest to the location of the distress

event. Further details describing the process is provided in the Future Work Chapter.

13



Figure 3. Tip and Cue Concept Diagram
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Algorithm Design Contribution.

The Tip and Cue Algorithm described in Figure 4 depicts a conceptual layout

of how a tip and cue would be executed between a selection of three satellites in a

constellation. The tip and cue exchange are executed according to the steps depicted

in Figure 3. Three Convolutional Neural Networks are assigned labels correlated to

each Tier Level. For the sake of simplicity, it is assumed that any classification above

0.80 is considered a positive classification. This then triggers the activation of the

TipSuccessor function followed by the CueSuccessor function. Each function must

complete the subroutines within their scope before progressing to the next function.

This convention of order is applied to each Tier Level until the final tier, Detail Tier

completes its process.
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Figure 4. Tipping and Cueing Algorithm
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HybridCaffe Satellite Imagery Classifier Contribution.

The Convolutional Neural Network designed for this research effort is called: Hy-

bridCaffe. HybridCaffe is a Convolutional Neural Network designed with the inten-

tion of classifying high resolution satellite imagery and synthetic satellite imagery

with the pixel resolution ranges specified in Figure 1. This CNN is based off of the

basic Alexnet [20] architecture provided in Berkeley Caffe Deep Learning Framework

[9]. Alexnet is a Convolutional Neural Network designed to classify 1.3 million high

resolution images in the LSVRC-2010 ImageNet training set [20]. Table 1, depicts

the hierarchy in naming convention where Alexnet, AfCaffe and HybridCaffe are all

derivatives of the Berkeley Caffe Deep Learning framework and each CNN builds

off of the previous one. For instance HiReSatCaffe was developed from the AfCaffe

CNN through fine-tuning practices described in the Fine-Tuning a CNN section of

the Methodology.

Table 1. Naming Convention Hierarchy

CNN Description

Berkeley Caffe type of CNN designed to be a ready-out-of-
the-box Deep Learning Framework for con-
venience

Alexnet derivative of Berkeley Caffe which classifies
high resolution imagery from the ImageNet
database

AfCaffe derivative of Alexnet which classifies aircraft

HiReSatCaffe derivative of AfCaffe which classifies high res-
olution satellite terrain imagery

HybridCaffe derivative of HybridCaffe which classifies
combination of synthetic imagery and high
resolution satellite terrain imagery

17



The reasoning behind the naming convention stems from the fact that synthetic

imagery is mixed with real satellite imagery. Figure 4 depicts examples from each

class category, including the synthetic images generated by DIRSIG. HybridCaffe

was generated through fine-tuning practices applied to AfCaffe [5]. Analysis of the

classification capacity of HybridCaffe is described in the Methodology and Results

Chapters.
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(a) Airport (b) Farm (c) Forest

(d) Urban (e) Water (f) Nepal Building

(g) Nepal Destruction (h) Nepal Shelter (i) DIRSIG Airport [2]

(j) DIRSIG Forest [2]

Figure 5. Heterogeneous Sensor Network Dataset, courtesy USGS, images (a) through
(e) and courtesy TOMNOD, images (f) through (h).
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Modeling Uncorrelated Jitter Impact Contribution.

The capability of a satellite sensor is assessed by performance measures, such as

spatial resolution, noise and jitter. In an effort to obtain a sense of realism in this

research effort the performance measure jitter will be analyzed. The rotating sensors

on board satellites in LEO orbits commonly encounter vibrations as they are propelled

at high angular velocities. The modeling of the impact uncorrelated jitter has on the

classification capacity of HybridCaffe indicates the classifier’s potential in the space

vehicle domain.

1.6 Research Focus

This will involve a machine learning based approach in optimizing the performance

of tipping and cueing between low resolution and high resolution sensors aboard

constellation satellites. The current system in place for responding to significant

sensor events depend heavily on human interaction for sensor cueing. Automation

in the communication between low resolution and high resolution sensors would be

beneficial.

1.7 Methodology

The Berkeley Caffe Convolution-Based Deep Learning system is utilized as the

basis for the machine learning aspect of the project. It is fast, powerful, and well-

supported with deployed projects by major corporations including Pinterest, Google,

and others [9]. The goal will be to train the system on examples of what are potential

targets of interest at different resolutions and use them to train the system. The

system will then be fed examples not used in training to see how effectively it can

correctly identify targets for further investigation by other satellites (true positives)

versus incorrect identifications. Once sweeps from different small satellite sensors are
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available, a confusion matrix and a True Positive Curve will be generated as a basis

for determining whether there is, in fact, a target present or not. The results can

then be compared to results emulating those from a larger more less-capable satellite

sensor with jittered images.

Experiments conducted will determine the classification strength of Berkeley Caffe.

The classifier will be sent jittered synthetic images, images of typical search and res-

cue terrain, and high resolution images of rural areas in Nepal after the earthquake

of April 2015 occurred.

1.8 Assumptions

For every significant aspect of this thesis, the following assumptions apply:

Remote Sensing.

The pixel resolution for imagery collected in the Image Acquisition Section of the

Methodology Chapter is described. Images collected from the United States Geolog-

ical Survey(USGS) High Resolution Orthoimagery(HRO) and National Agricultural

Imagery Program(NAIP) datasets are assumed to have pixel resolutions described in

their respective data sheets. Refer to the Image Acquisition Section for exact pixel

resolutions. Imagery collected from the Nepal Earthquake dataset is assumed to have

a pixel resolution between 1 meter and 0.5 meters. Synthetic imagery generated and

collected from DIRSIG has a pixel resolution range of approximately 0.305 meters.

Convolutional Neural Network.

Described is the size of images the Convolutional Neural Network (CNN) is trained

on. Every image sent into the CNN to train on is automatically snipped into 227 x

227 snapshots in the Data Layer of the CNN. The Data Layer in a CNN describes, the
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origin for where the data is retrieved for sending into the network for training along

with any protocol for normalizing the data to be sent into the neural network. The

process of snipping an image into a standardized format ensures that the network is

trained on data of an equal size, which is critical for optimal training performance.

All Berkeley Caffe CNN’s are fully functional in this capacity out of the box, where

the Data Layer dictates the size by which the images are sent into the neural network,

as 227 x 227 pixels.

Heterogeneous Sensor Framework.

Specifications for the inputs and outputs for the Heterogeneous Sensor Frame-

work are described. The USGS HRO, NAIP and Nepal Earthquake images collected

represent inputs for the CNN. DIRSIG-generated images come from the DIRSIG do-

main and represent inputs to the CNN. The DIRSIG domain represents the DIRSIG

Simulator Suite described in the Methodology chapter and will not be used as input

into the CNN. Classifications conducted by the CNN will be given in probability per-

centages. Classifications will be made with all classes described in the Heterogeneous

sensor dataset.

Tipping and Cueing Scheme.

All of the assumptions described in this subsection apply to the Tipping and

Cueing Scheme Section of the Future Work Chapter. The tipping and cueing scheme

is purely conceptual, backed with facts stated in the description. A small sample of

the satellite constellation is considered, where a single satellite from each tier in the

example is described in the tip and cue exchange. The pixel resolution range of each

satellite’s imagery will be specific to their corresponding Tier Level. For instance, a

satellite in Tier Level 3 will produce images with a pixel resolution of 0.305 meters.
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For every tip sent between each satellite, the tip will have GPS coordinates. Cues

sent between the sender satellite and the receiver satellite will have timing information

that specifies the exact moment to scan the Earth’s surface. Confirmation messages

are sent between satellites in receipt of each message received. Initiation of the Tip

and Cue exchange will be given by headquarters with an image and GPS coordinates

given.

1.9 Limitations

Experimentation and design is limited by several factors to be described.

Remote Sensing.

Scarcity of high resolution satellite imagery influenced all aspects of this research

effort. Limitation on abundance required resourceful approach to generate as many

images as possible for the CNN to train on. This involved the design of a python

script which snipped large 512 x 512 pixel images into equal sized tiles. This generated

a bizarre result, where the sliced images became slightly blurred. Similarly, the

DIRSIG software required an equally resourceful approach to generate as many images

as possible to satisfy the CNN’s training requirements. Two previously generated

scenes possessed characteristics in common with scenes collected from the USGS HRO

dataset. The capabilities of the DIRSIG software suite were used to generate multiple

sets of images. Refer to the Methodology chapter for specific number of images and

programmed flight line associated with each synthetic image set generated.

Convolutional Neural Network.

The strategies described in the Remote Sensing subsection resulted in limitations

characterized by questionable classifier performance. The main source of questionable
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classifier performance stems from test data originating from the same source as that

of training data. This indicates a possible false sense of true classification power when

applied to the real-world domain. Ground truth for this limitation is evaluated and

tested in the Results and Discussion chapter. Additionally, the CNN is limited to

training iterations of 10,000 and datasets of 1000 for each class where the images that

compose the training set and testing sets are randomly allocated. This limitation is

imposed to ensure proper adherence to the research scope. Where, the main research

focus is on application of Machine Learning in a small scale.

The CNN is limited to 10 different classes: Airport, Farm, Forest, Water, Urban,

DIRSIG Airport, DIRSIG Forest, Nepal damaged Buildings, Nepal total Destruction,

and Nepal Shelter. Again, the limitation described is one imposed by the author to

maintain a small scale scope. Each class possess limitations which influence the classi-

fication capacity of the CNN modeled. Airport images were collected from the USGS

HRO and DigitalGlobe datasets. A small percentage of original airport tiles were in-

cluded with sliced tiles. Farm images were collected from the USGS HRO and NAIP

datasets, where a majority of farm images stem from the NAIP dataset. Forest, Wa-

ter and Urban images were collected from the USGS HRO dataset and both training

and testing data are sourced from that dataset. DIRSIG Airport and DIRSIG For-

est images were generated from the same source, DIRSIG. Similarly, the testing and

training data originate from the same source. The Nepal damaged Buildings, Nepal

total Destruction and Nepal Shelter earthquake post-event imagery were collected

from the same TOMNOD data repository [3]. Further, explanation of the source

of Nepal Earthquake imagery, through the company TOMNOD, is provided in the

Literature Review Chapter. Additionally, each image in the three Nepal classes are

from the same geographic location which caused slight confusion in the classification
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process. Finally, the CNN is limited to the weights utilized in fine-tuning off of the

AfCaffe architecture[5] and the classic characteristics of the AlexNet framework[20].

Tipping and Cueing Scheme.

The pixel resolution associated with each Tier Level is limited by the pixel reso-

lutions associated with the dataset created from image collection.

Thesis Organization.

The remainder of the thesis is organized in a traditional thesis structure. Chapter

II, the Literature Review, describes related works which served as inspiration for

this research effort. Chapter III, the Methodology, describes the experimental design

used in the evaluation of this architecture’s performance when applied to the search

and rescue domain. Chapter IV, the Results and Discussion, details results obtained

during the experiments conducted. Chapter V, Conclusion, describes conclusions

and reflections on lessons learned. Chapter VI, Future Work, describes future work

to further develop the framework’s potential for upcoming research efforts.
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II. Literature Review

This chapter describes related works which served as inspiration for this research

effort. Innovations in small scale satellite development and usage in a constellation

are highlighted. A background on the history, strengths and fine-tuning practices

of Berkeley Caffe is given. Selected works highlight convolutional neural network

practices which applied remote sensing techniques to classification of high resolution

satellite imagery. In particular, software products in the search and rescue demon-

strate application of neural networks in the classification of imagery. Insights found

on all accounts given are described in the proceeding sections of this chapter.

2.1 Satellites in Constellation

Satellites in constellation provide many capabilities, such as distributed observa-

tions/measurements and an ability to be launched in large numbers[21]. These ca-

pabilities are advantageous for execution of remotely sensing the Earth’s surface for

real-time coverage in application to the Search and Rescue domain. The distributed

nature of the satellite constellation provides a sense of robustness, where the degrada-

tion of system performance is safely inhibited. According to author Sukumar Ghosh,

”A distributed system provides an excellent opportunity for incorporating fault toler-

ance and graceful degradation[22]”. The satellite constellation as itself a distributed

system, presents numerous benefits as a cost efficient and robust observation system

which fosters fault tolerance.

A diverse field of novel missions claim to benefit from the capabilities described,

such as meteorology, climate science, disaster detection, disaster warning, atmo-

spheric, magnetosphere, and ionospheric measurement/observation[21]. Strides have

been taken in the past decade as several successful small class satellite missions, in
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particular, nanosatellites have demonstrated the utility of this class of spacecraft

in independent operation through engineering/technology (e.g. STRaND-1[17]) and

military (e.g. SMDC-One[23]) capabilities. There have been cases of small less capa-

ble satellites being used for remote sensing projects as indicated in Surrey Training,

Research and Nanosatellite Demonstrator (STRaND-1[17]), which utilized a Google

Nexus One smart phone with an android operating system to provide for the com-

puting capabilities of the satellite[17]. Imagery of low resolution quality is generated

from the smart phone camera equipped with Google One Nexus. Continued expan-

sion of the android operating system’s capabilities offer great potential in the design

of a similar nanosatellite with a more powerful and capable sensor. Particularly, such

work has been done in adapting the embedded internals of a CubeSat computer with

a raspberry pi embedded system[18]. Opportunities of expansion from these satellite

project’s findings makes development of an automated tipping and cueing satellite

constellation framework highly possible.

2.2 Artificial Neural Networks

In the past fifty years, Artificial Neural Networks have gained a significant amount

of attention from researchers in the Deep Learning field. Development of this tech-

nology in the past decade produced services and products to meet the needs of the

fast paced, high resolution, high data driven demands of the 21st century. Artificial

Neural Networks are utilized by big-data heavyweights like Google, Pinterest and Net-

flix to power self-driving cars and recommendations for users. The following section

describes the origins of Artificial Neural Networks.
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History of ANN’s.

The roots of Artificial Neural Networks can be traced back to biological origins

and embryonic development challenges overcome by modern breakthroughs. An in-

vestigation conducted by Hubel et al, revealed a layer hierarchy in the mammalian

cortex, subsequently, this inspired researchers in the computer vision domain to de-

velop similar pattern recognition mechanisms in neural networks[24]. In particular,

their discovery was extended through Fukushima, who designed the Neocognitron[25].

However, his work was hindered by modest computational means in the late 1970’s as

Artificial Neural Networks require impressive computing hardware to produce ground

breaking results. Consequently, between the 1940’s and 1970’s interest in further de-

velopment of the potential in Artificial Neural Networks was sparse.

Renewed academic interest was spearheaded by CalTech Professor, John Hop-

field, who presented a paper which proposed the classic Neural Network architecture.

His work formed a basis for modern Neural Network development to draw insights

from[26]. Artificial Neural Networks train on data through Stochaistic Gradient De-

scent(SGD), to seek out approximately optimal neuron weights appropriate for pat-

tern recognition. SGD requires gradients of pattern recognition error with respect

to each network parameter. The back propagation chain derivative technique which

provides these gradients, was applied in the ANN research community in 1986 when

the backpropagation algorithm was proposed by Rumelhart[27]. As the early designs

of early neural networks began development in the footsteps of the realizations drawn

by these forefront predecessors[24, 26, 25] many challenges were encountered, as they

were incipient in design. The vast computing power required for the intricate layer

design was not yet available at the end of the 20th century. It was at the dawn of

the 21st century when an explosion of research and interest developed sophisticated

successors to the original ANN’s. In the late 90’s a new state of the art classifica-
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tion accuracy of 99.2% on MNIST dataset was recorded from the inception of LeNet

neural architecture for recognition of handwritten digits and words[28].

Convolutional Neural Networks, a variant of Artificial Neural Networks, best

suited for the image classification problem domain have been applied to image recog-

nition tasks in speech, biology, medicine, handwriting and scene classification. The

CNN is a variant of the Neocognitron, an early neural network built with a biologi-

cally inspired design[25]. There are many Convolutional Neural Networks in existence

today, the Convolutional Neural Network of interest, Berkeley Caffe developed by the

Berkeley Vision and Learning Center at Berkeley University California has been re-

leased to researchers for further development of its classification capacity[9].

Modern Convolutional Neural Networks.

There have been strides made in the utilization of the CNN’s classification power

in speech, biology[29], medicine[30], handwriting and scene classification[31, 32, 33,

16, 34, 35, 36]. Presently, it is used for large-scale image recognition by industry

heavy-weights like Facebook, Google and Baidu. It has since then been expanded to

DeCAF[37], an implementation of deep convolution activation features and the annual

ImageNet Largescale Visual Recognition Challenge[38], a benchmark for large-scale

object recognition. DeCAF demonstrated deep learning features can deliver general

improvements in visual recognition and can be fine-tuned to specific tasks[37]. The

ImageNet Largescale Visual Recognition Challenge[38] held every year has produced

a variety of impressive variants of Caffe, such as VGG[39] and GoogLeNet[40]. Con-

tributions involved evaluation and expansion of the depth and width of traditional

Convolutional Neural Network architecture[40, 39].
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Fine-Tuning.

The concept of fine-tuning was realized in the work of DeCAF, through an inves-

tigation of semi-supervised multitask learning of deep convolutional representations,

where representations are learned on a set of related problems but applied to new

tasks which have too few training examples to learn a full deep representation[37].

Grand scale deep learning models with the representational capacity of ImageNet[20]

have demonstrated superb computational abilities when applied to enormous amounts

of training data. However, when the same deep learning model is applied to training

data of limited size over-fitting occurs. When the ratio between the model’s complex-

ity and the magnitude of the training set is too high this phenomenon occurs.

Justification for choosing Berkeley Caffe.

The benefits of Caffe are clearly defined in Caffe: Convolutional Architecture for

Fast Feature Embedding. The modularity of Caffe allows for extension to different

data formats, layer modification and loss function expansion which are direct and

easy to access. There is a high number of layers and loss functions in use and a gener-

ous number of examples demonstrate how the layers and loss functions are ensemble

together to create trainable classifiers. The separation of the implementation of Caffe

and its representation is made clear. Model definitions are written as configuration

files in the Protocol Buffer language. Caffe’s network architecture is in the form of

arbitrary directed acyclic graphs. Once instantiated Caffe, abstracts from its under-

lying location in host or GPU and allocates the exact amount of memory required

for the network. A single function call serves to switch between a CPU and GPU

implementation.
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Strengths of Berkeley Caffe.

Strict testing coverage policies are in place to ensure rapid improvement and

refactoring of the codebase. Each module in Caffe is tested and no new code is allowed

on the project without the appropriate test. Caffe’s interface flexibility is optimal for

research capacity needs such as graph generation, trouble shooting and diagnostics.

Python and MATLAB bindings are made available to provide some flexibility in

the development and testing of the network. MATLAB and Python languages can

classify inputs and build networks. Pre-trained reference models are provided to

serve as ready-out-of-the-box examples for visual classification tasks. This includes

the famous “AlexNet” ImageNet model with some slight variations along with the

R-CNN detection model. These examples were made available and were intended by

the authors to foster quick progress in any research effort requiring a neural network.

Convolutional Neural Networks in Scene Classification.

Contributions have been made in utilizing CNN’s for classifying satellite imagery.

Some of the most popular, High resolution satellite imagery datasets have been gener-

ated like UC Merced[1] and DeepSat[31]. However, a CNN requires a large volume of

training images to draw out reliable classifications. These datasets are limited in size

and in pixel resolution. It is difficult to find a dataset that possesses high resolution

quality characteristics. Another limitation is the scope of scene type. Most other

datasets are focused on the sensing of a certain object type in a scene, for instance

detecting roads[34] and buildings[41] and detecting airports[16]. These are datasets

that are useful but do not possess enough features to allow for a global scope of

coverage.

In the case of [31], [36], [41] and [16] images are supplemented by use of straight

segments, and channel map patches to help the convolutional neural network label and
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detect the scenes of interest. In the case of the proposed framework, HybridCaffe,

the main contribution is a direct implementation of application of high resolution

satellite images to the CNN. A high percentage of accuracy is achieved. Categories

to test the CNN’s capacity to label airports, and three classes of images from a Nepal

Earthquake scenes have been selected. The set of images chosen represent the different

search and rescue objectives specified in training of areas of different terrain: Urban,

Farm, Forest, and water.

A supplemental pair of synthetic images have been added: DIRSIG Airport and

DIRSIG Forest. Comparisons are drawn to determine the CNN classifier’s power.

Synthetic imagery is jittered to varying ranges of radian intensity to determine the

drop off for when the CNN can no longer classify images. Experiments were performed

to determine what classes of scene served as points of confusion in the CNN.

Extraction of buildings and roads from aerial imagery has many applications in

a wide range of areas including automated map making, urban planning, change

detection for real-estate management, land use analysis, and disaster relief. However,

these tasks have been performed by human experts manually, which is a very costly

costly and time-consuming process. Because buildings and roads have much variation

in their shape and they may be occluded by other objects such as trees, accurate

labeling of large aerial imagery is a complex attentional task for human. Hence,

automatic extraction of buildings and roads is highly demanded, and many attempts

at automatic aerial imagery interpretation have been proposed in remote sensing

literature [41].

2.3 Remote Sensing

Remote sensing highly benefits from satellites in constellation. As satellite in

constellation provide many capabilities as mentioned in [21]. The capability for dis-
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tributed observations and measurements makes it possible to cover the globe in a

more real-time fashion. Remote sensing, the conducting of observations from afar,

uses remote sensors to collect data and reproduce output with spatial, temporal and

spectral sampled characteristics. The fundamentals, calculation of the Ground Sam-

pling Distance (GSD), and DIRSIG are described in the proceeding subsections of

this section.

Fundamentals.

Remote sensing is viewed as a multi-disciplinary science that includes a combina-

tion of various fields such as optics, spectroscopy, photography, computer, electronics

and telecommunication [42]. Remote sensing imagery has applications in mapping

land-use and cover, agriculture, soils mapping, forestry, city planning, archaeolog-

ical investigations, military observations , geomorphological surveying, land cover

changes, deforestation, vegetation dynamics, water quality dynamics, urban growth,

disaster monitoring, oil spill detection, mineral deposit extraction, air quality moni-

toring, ocean flow monitoring, ice sheet detection, disease prevention, etc [42]. The

process of remotely sensing an Earth-based object involves the collection of informa-

tion from the Earth’s surface without the human in direct contact of the detected

surface. Aspects of the Electro-Magnetic spectrum is used in the process of remotely

sensing an object on the Earth’s surface. The radiant flux or power received by a sur-

face per unit area W/cm2. Radiance is directional power per unit area W/sr − cm2,

where the radiant flux is emitted, reflected, transmitted or received by a surface.

Electromagnetic energy is either reflected or emitted by the Earth’s surface. Radia-

tion which leaves an object, is called radiant exitance, which includes both emitted

and reflected irradiance. While radiation that hits a surface is known as incident irra-

diance. Radiation which leaves the surface of an object is influenced by the physical
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properties of the object. Incident irradiance is dependent on the environment such

as solar conditions and the atmosphere but is independent of the object’s physical

properties.

According to [42] the steps involved in the process of remotely sensing an object

are six-fold: (1) Initially, the EMR source will emit energy in the form of the emission

of electromagnetic radiation, or EMR (sun/self-emission), (2) Thereafter, energy is

transmitted from the source to the surface of the Earth, (3) Consequently, the EMR

interacts with the Earth’s surface, resulting in reflection and emission, (4) Finally,

energy from the surface is transmitted to the remote sensor, (5) Followed by, Sensor

data output, (6) Concluding in, data transmission, processing and analysis of the

sensor data.

There are two forms of remote sensing: passive remote sensing and active remote

sensing. Energy provided by the remote sensing platform is known as active remote

sensing. Remote sensing measurements depend on the external energy source is known

as passive remote sensing.

EMR from the particles which pass between a target and a remote sensor carry

information that bears characteristics about the target’s identity and nature, called

the signature. In the case of this research particles of interest can be debris from

damaged building remains and dust plumes which lead back to sources which created

them. Targets possess spectral, spatial, and temporal characteristics which make

each class of a target unique. These features are developed and simulated in the

DIRSIG simulator suite. The replica that bears all the spatial, spectral, temporal

and radiometric characteristics of the target is called the image. Images generated

by remote sensors are far from perfect as the collection is conducted with the single

remote sensor looking at one direction at one time using only one small slice of the
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Electro-Magnetic spectrum. Furthermore, some information about the image is lost

before it is input to a remote sensor and the image can be formed.

Data collection with traditional satellites require perseverance through challenges

in order to reach a successful collection. The geometry of a satellite’s orbit usually

cannot be changed to satisfy specific tasking requirements, so the time of day and

frequency of revisit of a particular remote sensor to a tasked collection site may pre-

clude success. This difficulty can be alleviated by the Tipping and Cueing framework.

In particular, the cueing scheme will enable a satellite to know the time of day and

location on the Earth surface to conduct imagery collection.

Ground Sampling Distance.

The Ground Sampling Distance (GSD) is the distance between pixel centers mea-

sured on the ground. Typically, calculation of the ground sample distance requires

metrics such as the platform altitude, pixel size and focal length.

The Ground Sampling Distance (GSD) is calculated as a similar triangles problem:

GSD

Altitude
=

PixelSize

FocalLength
(1)

After algebraic manipulation becomes:

GSD =
PixelSize ∗ Altitude

FocalLength
(2)

DIRSIG.

Innovation of remote sensing in satellite imagery has been demonstrated by the

development of various Image Generation platforms such as DIRSIG, Digital Imaging

Remote Sensing Image Generation. This platform has the capability of modeling

sensors of aircraft and satellites orbiting the Earth’s atmosphere. This is very useful in
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propelling the capabilities in development of technology for target detection, scenario

simulation and related topics. DIRSIG also possesses the capability of generation of

various aircraft models through utilization of CAD software. Development of various

aspects of scenario building is essential for the formation of various strategies to be

put in place before practical application in the real world. Such a capability as this

saves resources such as time and money and demonstrates efficient planning in the

long run. The synthetic scenes and objects generated by DIRSIG possess potential

for application to an Berkeley Caffe that serves as the main backbone of the image

classification aspect for this proposed framework.

The DIRSIG model is a complex synthetic image generation application which

produces simulated imagery in the visible through thermal infrared regions [2]. As

indicated in Figure 6, the majority of the imagery generated for the test dataset is in

the visible spectrum.

Figure 6. The Electromagnetic Spectrum, DIRSIG imagery ranges from visible through
infrared (0.2 - 20.0) microns.[2]

The DIRSIG model address four important aspects of scene modeling: (i) geomet-

ric complexity, (ii) spatial-spectral diversity, (iii) directional reflectance and illumina-

tion loading and (iv) spectral mixing [43]. Fundamentally, the model is a ray-tracer

model, where surfaces along paths are determined within scenes to contribute to

radiance fluxes at specific points.
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2.4 Search and Rescue

There have been many efforts in utilizing the diverse remote sensing capabilities

of satellites in constellation for application to disaster detection. The Disaster Mon-

itoring Constellation provides daily global coverage at moderate resolution, as part

of a system to provide global disaster monitoring. Companies focused on using high

resolution satellite imagery for serving the public in catastrophic events, Tomnod,

Interra and Global Forest Fire Watch have emerged in recent years. A freshly minted

data science term, crowdsourcing, has leveraged the browsing appetite of the average

Internet user. Disastrous events calling for search and rescue capabilities, such as

the missing Malaysian Airline 407 was spearheaded by Digital Globe who partnered

with Tomnod to provide high resolution satellite imagery for users to classify. These

crowdsourcing efforts extended into a single tipping and cueing framework could pose

as a favorable solution in a catastrophic event requiring surface detection of sur-

vivors. A background on the crowdsourced intelligence pioneer, Tomnod, is given in

the subsequent subsection.

Tomnod.

The crowdsourcing platform, Tomnod, is a project owned by Colorado-based satel-

lite company Digital Globe that uses crowd-sourcing to identify objects and places

in satellite images. This company is at the forefront of innovation in the burgeoning

field of crowdourcing of Earth observation imagery, combined with advanced algo-

rithms and deep GIS and imagery knowledge. It was originally created as a research

project in the University of California. Their work involved the usage of Tomnod in

location of the tomb of Genghis Khan [44]. The company’s name, Tomnod, is coined

from the Mongolian word, ”big eye.” This is a crowd based solution to the satellite

imagery remote sensing challenge of both data volume and search target ambiguity
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[44]. Tomnod charged a group of volunteer participants the challenge of finding the

tomb of Genghis Khan, an archaeological enigma of unknown characteristics widely

believed to be hidden somewhere within the range of our satellite imagery.

Tomnod’s Purpose.

The purpose of Tomnod is similar to the vision which motivated this proposed

solution framework. In particular, the combination of imagery, geospatial analytics

and all-source analysts possess the potential to make a significant difference in evac-

uation planning, disaster response, recovery, and rebuilding in regions worldwide.

Commonly, it is assumed Digital Globe and other satellite providers have tools which

automate the process to search through the massive number of images taken each

day by satellites circling the Earth, but that’s not quite the case yet. Presently, this

automation boils down to the analysts to identify the most important targets and

events and to provide context and insight.

Crowdsourcing.

In recent years, crowdsourcing has emerged as a rapidly growing field in research

and online content creation, facilitated by the development of new technologies,

greater incentive for outreach among researchers, a growing public interest in applied

science and the desire to have a positive impact on the world [45]. Crowdsourcing

displays the powerful impact people serve as an excellent resource in disaster re-

sponse. The creators of Tomnod believe the power of crowdsourcing lies not only in

harnessing parallel networks for scalable analytics, but in forming the collaborative

frameworks necessary to cultivate collective reasoning [44] where the system depends

on the crowd to process large volumes of information and identify the unexpected

features of interest.

38



Nepal Earthquake.

High Resolution satellite imagery collected from the 7.8-magnitude earthquake

which heavily impacted central Nepal on April 25 2015 was utilized as training input

data. A brief background is described on the scenario in central Nepal and the

important role Tomnod played during this crisis. During this cataclysmic event,

thousands of homes and roads were destroyed resulting in a large-scale humanitarian

crisis. In response, Digital Globe collected thousands of square kilometers of high-

resolution satellite imagery and opened up access to the imagery for labeling through

their Cloud Services. Imagery provided by Digital Globe was also made available to

web-connected volunteers with Tomnod accounts. It has been estimated that more

than 58,000 people identified and tagged more than 21,000 damaged buildings and

roads and areas of major destruction in central Nepal.

In an effort, to serve ongoing response to the aftermath of the earthquake, Digital

Globe had released satellite imagery to the public domain. Tomnod instructed their

users to label images with the following features: damaged buildings, blocked roads,

tents/shelters and areas of major destruction. Quality control of input entered by

users is conducted by an intelligent algorithm, CrowdRank and experts in quality

control. Figure 7, displays a map of central Nepal with relevant feature points entered

by Tomnod users.
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Figure 7. Map of Tomnod user inputs, from the Nepal Earthquake Data Portal.[3]
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COSPAS-SARSAT.

The background of the current search and rescue satellite aided tracking sys-

tem used in present day is discussed. Search and Rescue Satellite Aided Tracking

(SARSAT) is a portion of the International COSPAS-SARSAT Program which con-

stitutes of 41 nations and two independent SAR organizations[4]. Where COSPAS

stands for Cosmicheskaya Sistema Poiska Avariynyh Sudov, that translates from Rus-

sian to English as: ”Space System for the Search of Vessels in Distress.” This utilizes

Geostationary Search and Rescue (GEOSAR) and Low Earth Orbit Search and Res-

cue (LEOSAR) satellites from the National Oceanic and Atmospheric Administration

(NOAA) to detect the location of stranded mariners, hikers and aviators[4]. Since,

the system’s inception great success has been achieved. From September 1982 to De-

cember 2015, the COSPAS-SARSAT System provided assistance in rescuing at least

41,750 persons in 11,788 SAR events [46]. Additionally, from January to December

2015, the COSPAS-SARSAT System provided assistance in rescuing 2,185 persons in

718 SAR events.

User Domain Restriction and Future Application.

The user domain restriction and future applications for the COSPAS-SARSAT sys-

tem is described. The COSPAS-SARSAT program is applicable only to individuals

who possess a distress beacon that operates in the 406.0 - 406.1 MHz frequency band.

A total of approximately 1,513,000 beacons are registered in the COSPAS-SARSAT

program [46]. This is a high price item that is not readily accessible by individuals

from less fortunate demographics. As global weather continues to change in vary-

ing extremes[47], it is possible that search and rescue (SAR) efforts may increase

throughout the world. In an effort to be best equipped for facing such a challenge

it is beneficial to possess the ability to select events of interest to optimize time in
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response to a weather event. Such an example is evident in Hurricane Matthew. It

is possible to equip first response personnel with training and equipment for mass

rescue efforts.

Response to Beacon Activation.

The process of response to beacon activation is described, as indicated in Figure 8.

First, an Emergency Position Indicating Radio Beacon (EPIRB) or Personal Locater

Beacon (PLB) is activated. This transmits a distress signal in the form of digitally

coded short bursts to search and rescue satellites. Location information, beacon

identification information, and aircraft/vessel information are included in each burst.

Next, search and rescue satellites from the space segment of the COSPAS-SARSAT

system receive the signal and relay the signal to the ground segment. Next, The

signal is sent to a Local User Terminal (LUT) on land, to analyze the signal and

determine the approximate geographic location. At this point the beacon activation

site location has been estimated and the appropriate rescue authorities must be routed

to the beacon activation site. Next, the LUT transmits all information included in the

beacon’s distress message to the Mission Control Center, who receives and processes

the data. Next, the Rescue Coordination Center (RCC) evaluates the information to

determine if the emergency is legitimate. If it is the beacon distress message is sent to

a national-government Search-and-Rescue Point of Contact (SPOC). These points of

contact are responsible for reacting to distress alerts within their local area. Finally,

rescuers are deployed to the location of the EPRIB or PLB.

The process described requires several steps until the deployment of rescuers to

the beacon activation site. Usage of satellites with optical sensors poses as a favorable

solution. The process would at a minimum involve recording the GPS coordinates for

each survivor then sending them to first response personnel closest to the coordinate’s
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exact location. This system would be highly beneficial in future emergency weather

scenarios where sending first responders to an approximated location sacrifices time.

The main objective of the proposed solution framework is to optimize time in an

effort to direct first response personnel to precise locations in an emergency weather

scenario.

Figure 8. System overview of COSPAS-SARSAT system [4]
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III. Methodology

This chapter describes the process of data preparation, Convolutional Neural Net-

work preparation, and the general experimental design. These methods of preparation

described investigate the research questions posed in the introduction where the au-

tomation of terrain imagery classification is investigated followed by incorporation of

synthetic imagery to model satellite sensor capabilities. Before such an investigation

is to be conducted in the form of an experiment set, a series of necessary preparations

are to be made. The Convolutional Neural Network model, HybridCaffe, required a

large dataset to render valuable classifications. The process involved in the creation

of an extensive dataset is described in the Image Acquisition section. The basic ar-

chitecture requirements for the successful completion of experimentation is described

in the Convolutional Neural Network Development Section. Additionally, the process

of fine-tuning a Convolutional Neural Network in preparation for experimentation

is described in this section. Finally, the experiments section describes the general

experiment design for the Classification Factor Investigation Experiment Set and the

HyridCaffe Classification Evaluation Experiment Set. Insights found on all accounts

given are described in subsequent sections of this chapter.

3.1 Image Acquisition

This section describes the methods of data collection from the High Resolution

Orthoimagery (HRO) and National Agricultural Imagery Program (NAIP) datasets

residing in the United States Geological Survey (USGS). Imagery obtained from these

datasets possesses a high pixel resolution quality range of 1 meter to 0.305 meters

and 0.5 to 1 meter, respectively. These images were collected for the sole purpose of

training the Convolutional Neural Network, Hybrid Caffe.
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High Resolution Orthoimagery.

Initial attempts at acquiring HRO were drawn from pools of images organized by

feature and geographic location found in the United States Geological Survey (USGS).

Specifications set for the features of interest were drawn out by interfacing with the

USGS data pool with EarthExplorer. The selected features of interest were Airports,

All, Beach, Sea, Lake, Forest, Plain, Woods and Swamp intended to correlate with the

five categories of data used to train and test the Convolutional Neural Network model,

HybridCaffe. Correlations between the USGS EarthExplorer features, geographic

locations and HybridCaffe categories are described in Table 1.

Table 2. HybridCaffe Categories with associated USGS Features, courtesy USGS

HybridCaffe Category USGS Feature Geographic Location

Airport Airports Arizona, Virginia, Texas

Farm Plains Kansas

Forest Forest, Woods, Swamp Montana, Oregon, Washington

Water Sea, Beach, Lake American Samoa, Louisiana, Florida

Urban All Arizona, Louisiana, Alabama

Image Scarcity.

Image scarcity of features with Airport, Farm, Forest and Water characteristics

required pulling imagery from multiple feature pools with similar traits. Abundance

of imagery with urban characteristics required a search through specification of ”All”

in the USGS EarthExplorer Feature list. The majority of the images pulled from the

feature pools described in Table 1 were from the HRO dataset where a fairly high

pixel resolution from approximately 1 meter to 0.305 meters was evident in each of

the images. The pixel area of the images acquired from the HRO dataset was ap-

proximately 1028 x 1028 pixels. The Caffe model, HybridCaffe is required to train
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on an enormous amount of imagery to ensure an effective classification capability is

obtained. In particular, the training data given to the Caffe model must be main-

tained at an optimal pixel range of approximately 227 x 227 pixels as the model is

programmed to take input as 227 square images from larger sized images. Images

that are under the pixel size described are zoomed in to expand to the tile snippet

size. This presents a risk of deteriorating the Caffe model’s classification capacity

as any further decrease in the pixel dimensions may cause the features of interest to

become obstructed. This provided an opportunity for image parsing of the large pixel

area images.

Advantages of Differing Spatial Scale and Mitigation.

The Convolutional Neural Network, HybridCaffe is trained on multiple images

with different spatial scales. When working with Convolutional Neural Networks the

ability to learn at one spatial scale is not useful as training at multiple spatial scales

allows for the Convolutional Neural Network to learn how to view a target image

from all possible perspectives. Thus, training HybridCaffe on images with different

spatial resolutions is ideal.

A form of mitigation against training on images with a single similar spatial scale

is through the custom data augmentation where the scale is randomly adjusted for

each training image. This random adjustment consists of random zooming in and out

of training images. This form of mitigation gives the Convolutional Neural Network

more experience with a broader set of ways a target image can look. The more variety

of representations of a particular class, the higher the likelihood the Convolutional

Neural Network has in obtaining a well-rounded perspective of the target image it is

trained on.
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(a) Airport (b) Farm (c) Forest

(d) Water (e) Urban

Figure 9. USGS High Resolution Orthoimagery dataset samples, courtesy USGS

Image Parsing.

The method for image parsing of the HRO dataset imagery will be described. A

python script was written to slice the large pixel area images into four equal sized

tiles of approximately 257 x 257 pixels. The original tiles were removed in an effort to

prevent unnecessary parsing of the original 1028 x 1028 pixel sized images. The same

python script, modified to slice two equal sized tiles, was applied to each of the four

257 x 257 sliced images which generated two equal sized tiles of approximately 128 x

128 pixels from each of the four 257 x 257 pixel sized images. This process generated

eight equal sized tile images of approximately 128 x 128 pixels. The python script

utilizes the function image slicer which appeared to magnify images with dimensions

that do not render even numbers when divided. For instance the number 257 divided
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by 2 renders the value 128.5, however, in an effort to maintain whole numbers in the

pixel dimensions the decimal value is dropped resulting in a magnified image. The

slight magnification did not cause any noticeable impact in the performance of any

of the Convolutional Neural Networks developed during this research effort.

National Agriculture Imagery Program.

A large portion of imagery making up the Farm category were drawn from the

National Agricultural Imagery Program where a fairly high pixel resolution of ap-

proximately 1 meter was evident in each of the images. The pixel area of the images

acquired from the NAIP dataset was approximately 772 x 1028 pixels. As stated pre-

viously in the HRO subsection, a Caffe model requires an enormous amount of data

in order to obtain an efficient classification capability. In particular, HybridCaffe was

given input imagery with a pixel resolution of approximately 96 x 128 pixels. This

is intended match with the dimensions established in the parsing of images gathered

from the HRO dataset.

Figure 10. Sample from National Agricultural Imagery Program, courtesy USGS
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Image Parsing.

The method for image parsing of the NAIP dataset imagery will be described. A

python script was written to slice the large pixel area images into four equal sized tiles

of approximately 192 x 256 pixels in size. The original tiles were removed in an effort

to prevent unnecessary parsing of the original 770 x 1026 pixel sized images. The

same python script, modified to slice two equal sized tiles was applied to each of the

four 192 x 257 sliced images which generated two equal sized tiles of approximately

96 x 128 pixels from each of the four 192 x 256 pixel sized images. This process

generated eight equal sized tile images of approximately 96 x 128 pixels in size. As

in the parsing of the HRO imagery dataset, the function utilized in the python script

magnifies images with dimensions that do not render even numbers. For instance the

number 770 divided by 4 renders the value 192.5, however, in an effort to maintain

whole numbers in the pixel dimensions the decimal value is dropped resulting in an

image that appears magnified. This process of slight image fuzzing is a result of

the magnification which reflects the loss of pixels during the parsing process. Again,

as described in the image parsing process applied the HRO dataset, no noticeable

impact was observed in the performance of any of the Convolutional Neural Networks

developed during this research effort.

Supplementary Data Additions.

Scarcity of certain scene categories called for a search of additional imagery

sources. In addition to the data acquired in from the HRO and NAIP datasets,

acquisition of supplementary data for the Forest and Airport category is described.

Supplementary Forest category imagery obtained from the UC Merced dataset[1]

provided very high resolution imagery with a pixel resolution of 12 inches. Forest

images possessed ideal dimensions of 256 x 256 pixels. Origins of the data source
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stems from the National Map of the High Resolution Orthoimagery dataset from the

United States Geological Survey. Supplemental Airport imagery obtained from the

DigitalGlobe provided high resolution imagery of Airports with a pixel resolution of

0.305 meters. Airport images snipped with Microsoft Snipping tool generated varying

pixel dimensions in size, from 350 x 350 pixels to 128 x 128 pixels.

Figure 11. Samples from the Forest Class of the UCMerced Dataset [1], courtesy USGS
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Figure 12. Sample from DigitalGlobe Collection

3.2 Synthetic Image Generation

The process of synthetic image generation utilizing the remote sensing platform,

DIRSIG, is described in subsequent section.

DIRSIG Simulator Suite.

The synthetic image generation tool, DIRSIG, was utilized to generate two addi-

tional categories, DIRSIG Airport and DIRSIG Forest, to be included in the Hybrid-

Caffe training dataset. Methods for generating the set of images will be described.

Generation of both categories involved appropriate utilization of the imaging plat-

form, platform motion and data collection settings of the DIRSIG simulator suite.
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(a) DIRSIG Airport (b) DIRSIG Forest

Figure 13. Samples from DIRSIG [2]

Imaging Platform.

The imaging platform required specification of the clockrate of the RGB Focal

Plane to be set at a low rate of 1 Hertz. Additionally, the focal length was specified

at 1000 millimeters.

Platform Motion.

The intention of the platform motion editor is to model four unique passes over

each of the DIRSIG Airport and DIRSIG Forest scenes. Each pass generated set of

Ground Sample Distance (GSD) values that contributed to the generation of a unique

set of synthetic images. For all flight passes a GSD of 1 meter/scan was recorded.

This low GSD was recorded to account for the small size of each of the scenes.

Straight Flight Path.

The first pass, an altitude of 5,000 meters, a velocity of 1.00 m/s, time delta of

1.00 and a duration of 250 seconds was specified. These settings in combination with
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the Imaging Platform settings previously described allowed for the platform to pass

across the scene in a straight flight pattern without any heading variations. Imagery

was collected every second during the flight line and stored into a single capture file.

This generated a total of 250 unique scenes.

45◦ Flight Path.

The second pass possessed all of the settings described in the first pass with a

change to a heading specified at 45 degrees. These settings, in combination with

the Imaging Platform settings previously described, allowed for the platform to pass

across the scene in a diagonal flight path where the heading of 45 degrees is specified.

Imagery was collected every second during the flight line and stored into a single

capture file.

135◦ Flight Path.

The third pass possessed all of the settings described in the first pass with an

addition of a heading specified at 135 degrees. These settings in combination with

the Imaging Platform settings previously described, allowed for the platform to pass

across the scene in a diagonal flight path where the heading of 135 degrees is specified.

Imagery was collected every second during the flight line and stored into a single

capture file.

Racetrack Flight Path.

The fourth pass, involved the creation of a racetrack flight path. The specifica-

tions for this flight path required an altitude of 5,000 meters, a velocity of 1.00 m/s,

time delta of 1.00 and a duration of 250 seconds was specified. These settings in

combination with the Imaging Platform settings previously described allowed for the
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platform to pass across the scene in a straight flight pattern without any heading

variations. Imagery was collected every second during the flight line and stored into

a single capture file.

Each of the passes generated a total of 250 unique images, where in summation

all of the passes generated a total of 1,000 unique images. In Figure 14, a sample

from each of the flight paths described applied to the DIRSIG Airport scene shows

the variance in direction of each of the sensor platforms.

(a) Straight Flight Path (b) 45 Degree Flight Path

(c) 135 Degree Flight Path (d) Racetrack Flight Path

Figure 14. DIRSIG Flight Path Samples [2]
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Data Collection.

A continuous capture window was specified with a capture time of 250 seconds

was applied to each of the Straight Flight Path, 45◦ Flight Path, 135◦ Flight Path

and the Racetrack Flight Path previously described. This in conjunction with the

clock pattern specified, ensured an amount of 250 images were collected from each

flight path.

Summary.

Each of the Flight Paths described were utilized within a single simulation file.

This indicates that there were a total of 4 simulations for the generation of 1000

unique DIRSIG Airport and DIRSIG Forest scenes. This is further described in Table

2, where the number of unique scenes generated are associated with their respective

flight path and simulator file.

Table 3. Simulation files applied to DIRSIG Airport and DIRSIG Forest scenes, where
each simulation generated 250 images based off of the flight path specifications de-
scribed.

Flight Paths Generated Image Counts Simulation Title

Straight 250 Straight.sim

45◦ 250 45.sim

135◦ 250 135.sim

Racetrack 250 Racetrack.sim

3.3 Search and Rescue Imagery Acquisition

This section describes the methods of data collection from the Nepal Earthquake

Portal provided by the company Tomnod. The company Tomnod, leverages the

utilization of crowd-sourcing to identify features of interest in thousands of high res-
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olution satellite images. The categories that developed from features extracted by

users served as points of confirmation to aid response strategies for blocked roads,

tents/shelters, damaged buildings and areas of mass destruction. Imagery selected for

training the Caffe model, HybridCaffe were from the categories of damaged buildings,

areas of mass destruction and tents/shelters.

(a) Nepal Damaged Buildings (b) Nepal Total Destruction

(c) Nepal Shelters

Figure 15. Samples from Nepal Earthquake Post-Event, courtesy TOMNOD

3.4 Convolutional Neural Network Development

This section describes the background required for setting the stage of designing a

Convolutional Neural Network (CNN) with the purpose of application to experimental

design. The CNN designed was made in part with fine-tuning. This is the process
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by which the lower layers of a pre-trained CNN are interchanged with a new set of

weights similar to the weights that originally trained the pre-trained CNN.

Basic Architecture.

The basic architecture of HybridCaffe is a derivative of the AlexNet network[20].

The basic architecture of a CNN is characterized by alternatively stacked convolu-

tional layers and spatial pooling layers often followed by one or more fully connected

layers as in multi-layer perceptron [41]. Similarly, the basic architecture of AfCaffe

follows the same architectural pattern. Figure 16, depicts the basic architecture of

AfCaffe where the first five main layers of the architecture constitute of convolutional

layers and the last three layers comprise of three fully connected layers. The subse-

quent subsections briefly describe the theory behind the layers involved in each of the

main layers which constitute the main architecture of HybridCaffe.

Figure 16. Architecture of HybridCaffe, similar to that of AfCaffe [5]
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The Artificial Neuron.

The artificial neuron represents the biological neuron in the human brain. The

artificial neuron is also known as the ”perceptron.” Figure 17 indicates an artificial

neuron with it’s respective inputs represented as I and connection weights represented

by W. This figure is used to describe equations (3) through (5).

Figure 17. Artificial neuron diagram. Inputs on the left are multiplied by their as-
sociated weights (learned values). The sum of these weighted inputs is applied to an
activation function which computes the neuron’s output[5].

Consider, the input activation function for a given neuron:

a(I) = b +
i∑

k=1

IkWk (3)

Where b represents the neuron bias, I represents the input and W represents their

associated connection weights, respectively. The kth instance of the input and weight

vectors are multiplied together inside the summation over all instances within the

vector. The connection weights represent the strength of the connection between the

input neurons and neighboring neuron.

a(I) = b + IW (4)
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The pre-activation and output activation processes are depicted in Figure 17 where

the inputs are multiplied by their respective weights and outputted. Inputs of an ar-

tificial neuron are described by the phrase, ”pre-activations” and inputs are described

by the phrase ”output activations”. The output activation function is described in

Equation (5).

h(I) = g(a(I)) = g(b +
i∑

k=1

IkWk) (5)

Convolutional Layer.

Initial convolutional layers extract low-level features such as edges, lines and cor-

ners within input imagery. Higher-level layers extract higher-level features. Typically,

images which are input into the convolutional layer are of dimensions height x width

x depth. Where, depth relates to the third dimension of the input volume. Typically,

for input images the third dimension is represented by the value 3, indicating the

three color channels of the image where the three color channels are represented by

Red(R), Green(G), and Blue(B).

Pooling Layer.

Typically, in the architecture of a Convolutional Neural Network, pooling layers

are inserted between successive Convolutional layers. The main purpose of this layer

is three-fold: (1) reduce the spatial size of the representation, (2) reduce the amount

of parameters and computation in a network, (3) control over-fitting [6].

This layer is responsible for filtering sites of the convolutional layer and performs

spatial pooling on them. Spatial pooling goes also by the terms sub-sampling and

down-sampling. Essentially, this layer performs the reduction of resolution in the

features of the images. This makes the features robust against noise and distortion.
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There are several types of spatial pooling: max pooling, average pooling, sum pooling,

etc. In all cases, the input is divided into non-overlapping two-dimensional spaces.

These two dimensional spaces can be viewed as spatial neighborhoods, known as filters

which house features of interest. Conceptually, features of interest are represented as

numbers as described in Figure 18.

Figure 18. An illustrated example of max pooling with a 2x2 filter and a stride of 2.
The maximum values are input into a two dimensional space[6].

Max Pooling.

Max pooling is a type of spatial pooling where the maximum value of each filter

is taken. This concept is defined in Figure 18, where the features of interest are

represented by numbers where a 2x2 window takes the largest element from the

feature map within that window. Max pooling is advantageous as it produces fast

convergence during training.

60



ReLU Layer.

The Rectified Linear Unit (ReLU) Layer is a layer of neurons that applies the

non-saturating activation function, indicated in equation 6.

f(x) = max(0, x) (6)

This increases the nonlinear properties of the decision function and the overall

network without affecting the receptive fields of the convolution layer. Deep convolu-

tional neural networks with ReLU’s train several times faster than their equivalents

with tanh units[20]. Unfortunately, ReLU units tend to be fragile and output the

same value for any input during training when the learning rate is set too high. This

results in the ReLU unit no longer engaging in its role of discerning the differences

between inputs. Typically, a ReLU unit that enters this state is unable to recover

into a normal state. In some cases, recovery requires several trial and error attempts

to determine the appropriate learning rate for the network.

Fully Connected Layer.

The fully connected layer, is a portion of the architecture that high-level reasoning

in the neural network is executed through fully connected layers. All units in a fully-

connected layer are connected to all units in the next lower layer. Information that is

output from the pooling and convolutional layers hold high-level features of the input

image. The main purpose of the fully connected layer is to use the high level features

to classify the input image into various classes based off of the training dataset. The

sum of the output probabilities from the fully-connected layer is 1. This is indicated

in Figure 19. Where the sum of all the Output Predictions equate to 1, with the

highest Output Prediction as boat with an output prediction of 0.94.

61



Figure 19. An illustration of the basic Convolutional Nueral Network with the four
main operations indicated. [7].

Utilization of the softmax as the activation function in the output layer of the

fully-connected layer ensures production of the appropriate Output Predictions. In

other words, the convolutional and pooling layers serve to extract features from the

input image, while the fully connected layer acts as the classifier.

Fine-Tuning a CNN.

The process of fine-tuning a CNN network with the purpose of rapid and efficient

CNN model development is described. Designing a Caffe network from the ground-

up can be a rather challenging and time-consuming task as several hundred lines

of code will be required to build the network. An appropriate work around to this

is the utilization of the weights of a Caffe network that has already been trained.

Advantageous results can be obtained from fine-tuning a network as demonstrated

by works in [16] and [48] in the Literature Review Section.

Fine-Tuning HybridCaffe.

Fine-tuning will be described from a practical standpoint in terms of the two

CNN models developed during this research effort, HybridCaffe and HiReSatCaffe.

HybridCaffe was originally HiReSatCaffe where the five categories; Airport, Farm,
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Forest, Water and Urban imagery drawn from the HRO and NAIP datasets were

used for training purposes. HiReSatCaffe was developed by fine-tuning off of the

AfCaffe network [5]. This was done by executing the appropriate edits in the AfCaffe

train validation file, namely, replacing the lower layers of the CNN, specifically, fully

connected layers seven and eight with weights from the HiReSatCaffe dataset. The

inner product layer required specification of the output layers to correlate to the

number of categories which the CNN model trained on. For the case of HiReSatCaffe

the output layers were specified to be five to correlate with each of the categories:

Airport, Farm, Forest, Water, and Urban. HybridCaffe was developed when the

two categories of synthetic imagery from DIRSIG was generated and added along

with the imagery from Tomnod’s open source Nepal Earthquake dataset. These two

major additions to the training image categories constituted for a new total of 10

categories: Airport, Farm, Forest, Water, Urban, DIRSIG Airport, DIRSIG Forest,

Nepal Buildings, Nepal Destruction and Nepal Shelter. The appropriate adjustments

were executed in the inner product layer to ensure the new number of categories

correlated to the correct number of output layers.

3.5 Research Question 2 Experiments

Further investigation was realized after the development of the Tipping and Cueing

framework consisting of a Tip and Cue Exchange Protocol and Tier Organization

based off of the differing pixel resolutions. This development indicated the need

for further exploration in the reliability of a Convolutional Neural Network in the

space vehicle domain. The investigation conducted centered on automation of terrain

classification with Machine Learning.
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First CNN Iteration.

The approach taken is an investigation of the possibility to automate terrain

classification with a Machine Learning framework. In order to effectively train a

Convolutional Neural Network a large dataset must be generated. This approach

followed the steps established in the Data Acquisition Section where understanding

the Remote Sensing domain, followed by parsing images, and building a dataset

is conducted. Once the appropriate dataset is generated, a Convolutional Neural

Network must be developed. The process of building the first CNN is described by

understanding basic CNN architecture, and by fine-tuning a CNN as described in the

fine-tuning section. The first CNN iteration utilized image classes depicted in Figure

9. A total of 3,198 images were used in the network where 10% of the images were

randomly allocated to a testing set and 90% of the images were randomly allocated

to a training set. The training set consisted of 2,875 images and the validation set

consisted of 323 images. All observations and insights found during the training phase

is described in the Results Chapter.

3.6 Research Question 3 Experiments

In this section the experimental design of Research Question 3 is described where

incorporation of synthetic imagery to model satellite sensor capabilities is investi-

gated. HiReSatCaffe is a CNN trained on terrain specific imagery, a combination of

synthetic imagery and Nepal Earthquake Post-Event imagery is incorporated for the

creation of a new CNN called: HybridCaffe. A sequential approach is executed in an

effort to achieve the general objective for this set of experiments. As stated in the

Assumptions section, experiments will be executed in appropriate sequential order

where no experiment can be started until the previous one is finished. The overall

purpose of the series of experiments is to determine if it is possible to incorporate
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synthetic imagery to model satellite sensor capabilities and determine what the most

important factors are in influencing the performance of HybridCaffe.

3.7 HybridCaffe Classification Evaluation

The purpose of this experiment set is to determine whether or not the classification

accuracy of HybridCaffe is truly genuine when synthetic imagery is incorporated.

The Experiment Design.

The CNN model, HybridCaffe is trained on a large training dataset of 9,000 images

for a span of 10,000 iterations. Once the classifier is trained on the appropriate number

of iterations a confusion matrix and a True Positive Percentage curve is generated to

determine the genuine accuracy of the classifier.

3.8 Assumptions

All experiments are run in sequential order with recorded data reflecting that.

Only 1 unique DIRSIG synthetic scene will be applied to each Jitter Class, as indicated

in Figure 20. Each Jitter Class will generate a jittered replicate of the original unique

image.

Response Variable.

The table below indicates the response variables from the HybridCaffe Classifica-

tion Evaluation experiment sets.

True Positive Threshold Values.

True Positive values indicate decision points where images sent into HybridCaffe

are confirmed as an airport or not based on the probability percentage. Refer to the
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Results Chapter for the exact Probability Percentage values utilized in the calculation

of the True Positive Percentages. The True Positive Percentage (TP%) is the percent

of images classified as airports out of the total number of images that are airports.

Threshold values between 0 and 1 are specified to determine the percentage of True

Positive (TP) results. For instance, a threshold of 0.80 indicates that any score above

0.80 will be recorded as a True Positive result. In the case of a threshold of 0, a total

of 100% will be recorded, as all of the probability percentages recorded are greater

than 0. A true positive vs threshold graph illustrating this behavior is provided in

the Results Chapter.

3.9 Classification Factor Investigation

The purpose of this experiment set is to determine what the important factors of

influence are in HyrbridCaffe’s ability to accurately classify an image. In particular,

the relationship between stochastic gradient descent and HybridCaffe’s classification

sensitivity is analyzed. The main factor evaluated is image clarity represented by

”Probability Percentage”, as evident in the Experiment Test Matrix.

The relationship between stochastic gradient descent and Caffe’s classification

sensitivity exists for a number of reasons. Initially, it is evident that the classifier is

heavily influenced by the inconsistent drop and rise in rendered probability percent-

ages when performing classifications. The sensitivity of the classification capability

is drawn out from the certainty and failure thresholds which are calculated from the

Probability percentages that are influenced by stochastic gradient descent.

Jitter Definition.

In an effort to set the stage for the description of the experiment design and

control variables utilized the sensor performance measure is defined. The definition
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of jitter in a synthetic image model depends on what distribution the synthetic model

of interest utilizes when it generates the jitter. In the case of the DIRSIG model, jitter

is modeled according to a Gaussian distribution where it is assumed that the jitter is

characterized by variation in standard deviation. Therefore, in this research domain

jitter is defined as a deviation in the sensor’s pointing with a Gaussian distribution.

Again, this is based off of the distribution modeled by the synthetic tool used to

generate the synthetic images.

Jitter Classes and Jitter Variance Ranges.

In the Classification Factor experiment set each experiment utilizes an image

generated from DIRSIG that is intended to simulate a jittered satellite image. A

specified amount of uncorrelated jitter variance is applied to an image. Each step

of increase in uncorrelated jitter variance will constitute its own respective Jitter

Class. A series of Jitter Classes will constitute a single Jitter Variance Range. Table

4 summarizes the amount of uncorrelated jitter variance applied to a single image

with each respective jitter class label. The single table can be viewed as a single

jitter variance range. In this case the controllable noise factor is the Jitter Class, or

uncorrelated jitter variance.
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Table 4. Visual of each Jitter Class and their respective jitter variances

Jitter Class Jitter Increase

Jitter Class 1 0.0001

Jitter Class 2 0.0002

Jitter Class 3 0.0003

Jitter Class 4 0.0004

Jitter Class 5 0.0005

Jitter Class 6 0.0006

Jitter Class 7 0.0007

Jitter Class 8 0.0008

Jitter Class 9 0.0009

Jitter Class 10 0.0010

The Experiment Design.

A single set of synthetic DIRSIG images are sent as inputs into HybridCaffe one

time for each Jitter Variance Range. The probability percentage for each Jitter Class

image is recorded in the Test Matrix. After the final run is executed and the data

is recorded, the average for all Probability Percentages recorded from each run is

calculated and provided in Table 10.

Probability Percentage Averages.

The table below indicates the averages recorded for the probability percentage

averages of Jitter Variance Range A, Jitter Variance Range B, Jitter Variance Range

C and Jitter Variance Range D. These averages are correlated with error bars in

Figure 29 provided in the Results Chapter.
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Table 5. Jitter Matrices Averages

Jitter Matrix Probability Average

Jitter Matrix A 0.16995

Jitter Matrix B 0.77534

Jitter Matrix C 0.29183

Jitter Matrix D 0.91066

Control Variables.

The control variables utilized in the Classification Factor Investigation Experiment

set are described. In an effort to obtain a sense of realism, each experiment utilizes

an image generated from DIRSIG which is intended to simulate a jittered satellite

image. A step of uncorrelated jitter variance in radians is applied to an image. Each

step size of increase in jitter variance will constitute it’s own respective Jitter Class.

Where for instance Jitter Class 1 has a jitter step of 0.0001 radians, rendering the

Jitter Class value of 1. The subsequent Jitter Class will be applied the same jitter step

size rendering 0.0002, correlating to Jitter Class 2. Table 3 summarizes the amount

jitter variance applied to a single image with each respective jitter class label. The

controllable noise factor will be the Jitter Class.

Constant Factors.

For each experiment certain factors are held constant for the sake of simplicity.

This ensures the necessary limit of scope in each experiment. Figure 20 depicts the

constant factors applied in the Classifier Factor experiment set. For each experiment

the same DIRSIG scene will be applied to each Jitter Class to observe effects. Effects

are recorded in test matrices included in this section and curves are generated to

indicate trends for further analysis in the Results Chapter.
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Figure 20. Screen shot of a synthetic DIRSIG scene, generated by a simulated Hyper-
Spectral Imaging Pushbroom Sensor. [2]

Modeling the Hyper-Spectral Imaging Sensor.

This subsection of the Constant Factor subsection describes the process of mod-

eling the Hyper-Spectral Imaging (HSI) Sensor using the DIRSIG simulator suite.

Generation of the image indicated in Figure 20, involved appropriate utilization of

Imaging Platform to appropriately model the pushbroom spectrometer. As added

background, this spectrometer type is a 1D linear array that instantaneously cap-

tures the across-track dimension and consecutive read-outs are combined to form an

image. The radiance image generated contains 30 spectral channels, where for this

research the radiance image associated with channel 26 is utilized.

Test Matrix.
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Table 6. Jitter Variance Range A: High Uncorrelated Jitter(Step of 0.0001 radians)

Jitter Class Jitter Step Size [radians] Jitter Variation [radians]

Jitter Class 1 0.0001 0.0001

Jitter Class 2 0.0001 0.0002

Jitter Class 3 0.0001 0.0003

Jitter Class 4 0.0001 0.0004

Jitter Class 5 0.0001 0.0005

Jitter Class 6 0.0001 0.0006

Jitter Class 7 0.0001 0.0007

Jitter Class 8 0.0001 0.0008

Jitter Class 9 0.0001 0.0009

Jitter Class 10 0.0001 0.0010

Table 7. Jitter Variance Range B: Medium-Low End Uncorrelated Jitter(Step of
0.00001 radians)

Jitter Class Jitter Step Size [radians] Jitter Variation [radians]

Jitter Class 1 0.00001 0.00011

Jitter Class 2 0.00001 0.00012

Jitter Class 3 0.00001 0.00013

Jitter Class 4 0.00001 0.00014

Jitter Class 5 0.00001 0.00015

Jitter Class 6 0.00001 0.00016

Jitter Class 7 0.00001 0.00017

Jitter Class 8 0.00001 0.00018

Jitter Class 9 0.00001 0.00019

Jitter Class 10 0.00001 0.00020
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Table 8. Jitter Variance Range C: Medium-Higher End Uncorrelated Jitter(Step of
0.00001 radians)

Jitter Class Jitter Step Size [radians] Jitter Variation [radians]

Jitter Class 1 0.00001 0.00021

Jitter Class 2 0.00001 0.00022

Jitter Class 3 0.00001 0.00023

Jitter Class 4 0.00001 0.00024

Jitter Class 5 0.00001 0.00025

Jitter Class 6 0.00001 0.00026

Jitter Class 7 0.00001 0.00027

Jitter Class 8 0.00001 0.00028

Jitter Class 9 0.00001 0.00029

Jitter Class 10 0.00001 0.00030
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Table 9. Jitter Variance Range D: Low Uncorrelated Jitter(Step of 0.00001 radians)

Jitter Class Jitter Step Size [radians] Jitter Variation [radians]

Jitter Class 1 0.00001 0.00001

Jitter Class 2 0.00001 0.00002

Jitter Class 3 0.00001 0.00003

Jitter Class 4 0.00001 0.00004

Jitter Class 5 0.00001 0.00005

Jitter Class 6 0.00001 0.00006

Jitter Class 7 0.00001 0.00007

Jitter Class 8 0.00001 0.00008

Jitter Class 9 0.00001 0.00009

Jitter Class 10 0.00001 0.00010
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IV. Results and Discussion

This chapter describes the process of executing a set of experiments to address

each of the research questions posed in the introduction. The investigation of the

automation of terrain imagery is covered in the appropriate application of training

HiReSatCaffe. Followed by the investigation of the incorporation of synthetic im-

agery which created a new CNN called HybridCaffe. A larger number of experiments

were applied in an effort to determine how synthetic imagery influences the CNN’s

classification capacity where factors that influence classification are investigated. Ob-

servations drawn from the Classification Factor Investigation and the HybridCaffe

Classification Evaluation Experiment Sets. The results from each experiment in the

Classification Factor Investigation experiment set indicate key factors of influence

in the classification capacity of HybridCaffe. The HybridCaffe Accuracy Evaluation

experiment set results indicate the true strength of HybridCaffe’s classification accu-

racy. Insights found on all accounts given are described in subsequent sections of this

chapter.

4.1 Research Question 2 Experiments

The number of experiments are less verbose compared to the set of experiments de-

veloped to investigate research question 3. As described in the Methodology Chapter,

much of the investigation of research question 2 focused on understanding the problem

domain, generating a dataset and developing the appropriate Convolutional Neural

Network to apply classifications. A total of 5 classes were utilized in the training of

HiReSatCaffe to represent terrain typical for a search and rescue event. As stated

in the Methodology chapter, a total of 3,198 images were used in the network where
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the training set consisted of 2,875 images and the testing set consisted of 323 images.

Observations of the CNN’s performance is described in the next subsection.

HiReSatCaffe Performance.

As the purpose of the first CNN iteration involved development of a basic CNN

a small dataset was used along with a short training time. HiReSatCaffe was set to

train for a total of 1,000 iterations where every 10 iterations the CNN applied im-

ages from the testing set to assess HiReSatCaffe’s classification performance. During

training HiReSatCaffe demonstrated a high network accuracy of 98%, which served

as a indicator that over-fitting possibly occurred within the CNN. Creation of the

CNN, HybridCaffe mitigated over-fitting by adding five categories to increase the

volume of the training dataset. As over-fitting occurs when the ratio between the

CNN complexity and the training set is too high. In the case of HiReSatCaffe over-

fitting occurred since it was fine-tuned off of Imagenet a vastly complex CNN model

and was trained on a small training set, with only 323 images in the testing set.

4.2 Jitter Variance Range Results

This section describes results rendered from experiments that investigate impacts

synthetic imagery has on HybridCaffe’s classification capacity. As stated in the

Methodology chapter, the purpose of this experiment set is to unveil characteristics

and features that influence classifications. Gradient descent, image edge sharpness

and image contrast appeared to be the major sources of influences in classification

performance. Four sets of 10 synthetic DIRSIG images were applied a percentage of

jitter and sent to the classifier. Every image was applied a unique amount of jitter,

in radian step size.
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Jitter Variance Range A.

Jitter Variance Range A constitutes of DIRSIG synthetic images jittered to a step

of 0.0001 micro radians. The control variable for this experiment is a single synthetic

DIRSIG image A sequential step increase of 0.0001 applied to each synthetic image

produced a drastic drop in classification ability as indicated in Table 10.

Table 10. Jitter Variance Range A: Percentage Probabilities

Jitter Class Probability Percentage

Jitter Class 1 0.9304

Jitter Class 2 0.7143

Jitter Class 3 0.0516

Jitter Class 4 0.0012

Jitter Class 5 0.0015

Jitter Class 6 0.0003

Jitter Class 7 0.0002

Jitter Class 8 0

Jitter Class 9 0

Jitter Class 10 0
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(a) 0.0001 radians (b) 0.0002 radians (c) 0.0003 radians (d) 0.0004 radians (e) 0.0005 radians

(f) 0.0006 radians (g) 0.0007 radians (h) 0.0008 radians (i) 0.0009 radians (j) 0.0010 radians

Figure 21. Jitter Variance Range A: High Uncorrelated Jitter(Step of 0.0001 radians)

Jitter Curve Discussion and Observations.

Observations of Jitter Curve A, indicated in Figure 22, is described. The char-

acteristics of the curve were as expected, a pronounced drop was evident after the

third Jitter Class image was applied. This drop in probability percentage indicated

that scrambling of the clean edges within the image caused the classifier severe con-

fusion. An interesting parallel is drawn where synthetic images applied jitter above

0.0003 micro radians were classified as images from the Nepal Earthquake Class. Of

the three Nepal Earthquake Classes, Nepal Total Destruction denoted by (ND), pos-

sessed the highest degree of destruction in comparison to Nepal Damaged Buildings

(NB) and Nepal Shelter (NS). This behavior is evident in Figure 22, as the increase

of uncorrelated jitter decreases HybridCaffe’s sensitivity to airport images.
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Confidence Interval Interpretation.

The wide confidence interval indicated in Figure 22, is typical for a small sample

set. As an inverse square root relationship exists between the confidence interval

and the sample size, the small sample size of 10 values generated a wide confidence

interval. A non-parametric regression method, local regression is applied to the data

set to draw out key characteristics. The LOESS method in R is utilized to generate

the dark blue trend line, to highlight key characteristic behavior indicated in the data

points. As the data points indicate there is a substantial drop between Jitter Class

2 and Jitter Class 3 where the synthetic airport images are mistakenly classified as

Nepal Destruction Class images. This is an example of a False Negative, where the

true condition is not met.
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Figure 22. Jitter curve for Jitter Variance Range A: High Uncorrelated Jitter(Step of
0.0001 radians)
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Further Exploration.

Based off of the behavior of the curve it was hypothesized that the certainty

threshold resided between probability percentages 0.9304 and 0.7143 and the failure

threshold resided between probability percentages of 0.7143 and 0.0516. The thresh-

old for certainty will constitute for a positive classification and the failure threshold

will constitute for a negative classification. In other words, any classifications drawn

with a percentage below the positive classification threshold is not to be counted as

a positive classification. The purpose behind generation of Jitter Curves B, C and

D is described. Investigation of the exact positive classification threshold is con-

ducted in the analysis of Jitter Variance Range B. Investigation of the exact negative

classification threshold is conducted in Jitter Variance Range C. For added measure,

determination of a high positive classification threshold is investigated in Jitter Vari-

ance Range D.

Jitter Jitter Variance Range B.

Jitter Variance Range B constitutes of DIRSIG synthetic images jittered to a step

of 0.00001 micro radians. The step of micro radians were chosen to determine a clas-

sification threshold. A sequential step increase of 0.00001 applied to each synthetic

image produced a curve with consistent True Positive results as indicated in Jitter

Curve B. The threshold was calculated by taking the average of the probability per-

centages in Jitter Variance Range B. The confirmation threshold was calculated to

be 0.7753, this indicates that for the purposes of this investigation the confirmation

threshold was found to be the probability percentage of 0.7753.
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Table 11. Jitter Variance Range B: Percentage Probabilities

Jitter Class Probability Percentage

Jitter Class 1 0.9304

Jitter Class 2 0.8222

Jitter Class 3 0.7783

Jitter Class 4 0.7578

Jitter Class 5 0.8106

Jitter Class 6 0.8086

Jitter Class 7 0.8352

Jitter Class 8 0.5652

Jitter Class 9 0.7869

Jitter Class 10 0.6582

(a) 0.00011 radians (b) 0.00012 radians (c) 0.00013 radians (d) 0.00014 radians (e) 0.00015 radians

(f) 0.00016 radians (g) 0.00017 radians (h) 0.00018 radians (i) 0.00019 radians (j) 0.00020 radians

Figure 23. Jitter Variance Range B: Medium-Low-End Uncorrelated Jitter(Step of
0.00001 radians)
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Jitter Curve Discussion and Observations.

Observations of Jitter Curve B, shown in Figure 24, are described. The character-

istics of the curve were as expected, a slow drop was evident after the first Jitter Class

image was applied. This slow drop in accuracy indicated that HybridCaffe possessed

a form of resiliency against the lighter amount of uncorrelated jitter applied. The

characteristics of stochastic gradient descent were evident in the inconsistent trend

indicated in the slow drop. This includes a small peak in Jitter Class six and a small

drop indicated in Jitter Class eight. This behavior is evident in Figure 24, as the in-

crease of low-end uncorrelated jitter appears to have minimal effect on HybridCaffe’s

sensitivity to airport images.

Confidence Interval Interpretation.

Jitter Variance B shows a wide confidence interval, similar to Jitter Variance

Range A, again due to a small sample size. As the data points indicate there is a slow

drop between Jitter Class 1 and Jitter Class 10, where the synthetic airport images

are correctly classified as Airport Class images. This is an example of a True Positive,

where the true condition is met.

82



Figure 24. Jitter Curve for Jitter Variance Range B: Medium-Low-End Uncorrelated
Jitter(Step of 0.00001 radians)
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Jitter Variance Range C.

Jitter Variance Range C constitutes of DIRSIG synthetic images jittered to a step

of 0.00001 radians where each step of jitter variation were between 0.00021 radians and

0.00030 radians. The step of micro radians were chosen to determine a classification

threshold. A sequential step increase of 0.00001 applied to each synthetic image

produced a gradual drop in classification accuracy as indicated in Jitter Curve C. A

small peak was indicated in the fifth Jitter Class. As indicated in Figure 26 Jitter

Variance Range C, the amount of jitter is very pronounced after Jitter Class six.

The threshold was calculated by taking the average of the probability percentages in

Jitter Variance Range B. The threshold was calculated to be 0.2918. This indicates

that for the purposes of this investigation the failure threshold was found to be the

probability percentage of 0.2918.

Table 12. Jitter Variance Range C: Percentage Probabilities

Jitter Class Probability Percentage

Jitter Class 1 0.7143

Jitter Class 2 0.6481

Jitter Class 3 0.4074

Jitter Class 4 0.4037

Jitter Class 5 0.1861

Jitter Class 6 0.8086

Jitter Class 7 0.1089

Jitter Class 8 0.1551

Jitter Class 9 0.0145

Jitter Class 10 0.0516
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(a) 0.00021 radians (b) 0.00022 radians (c) 0.00023 radians (d) 0.00024 radians (e) 0.00025 radians

(f) 0.00026 radians (g) 0.00027 radians (h) 0.00028 radians (i) 0.00029 radians (j) 0.00030 radians

Figure 25. Jitter Variance Range C: Medium-High-End Uncorrelated Jitter(Step of
0.00001 radians)

85



Figure 26. Jitter Curve for Jitter Variance Range C: Medium-High-End Uncorrelated
Jitter(Step of 0.00001 radians)
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Jitter Curve Discussion and Observations.

Observations of Jitter Curve C, indicated in Figure 26, is described. The charac-

teristics of the curve were as expected, a pronounced drop was evident after the fourth

Jitter Class image was applied. This drop in accuracy indicated that scrambling of

the clean edges within the image caused the classifier severe confusion. Again, an

interesting parallel is drawn where synthetic images applied jitter above 0.00024 mi-

cro radians were classified as images from the Nepal Earthquake Class. Of the three

Nepal Earthquake Classes, Nepal Total Destruction denoted by (ND), possessed the

highest degree of destruction in comparison to Nepal Damaged Buildings (NB) and

Nepal Shelter (NS). The increase in uncorrelated jitter decreased features that would

make the image recognizable as an airport image. Consequently, a trade-off between

uncorrelated jitter and HybridCaffe’s sensitivity emerged where increases of uncorre-

lated jitter increased HybridCaffe’s sensitivity to images from the Nepal Earthquake

dataset and decreases of uncorrelated jitter increased HybridCaffe’s sensitivity to air-

port images. This trade-off is evident in Figure 26, as the increase in Jitter Class

shows evidence of HybridCaffe’s sensitivity to Nepal Earthquake images increasing.

Confidence Interval Interpretation.

Again, the wide confidence interval indicated in Figure 26, is typical for a small

sample set. As the data points indicate there is a steady drop in sensitivity to airport

images between Jitter Class 3 and Jitter Class 10 where the synthetic airport images

are mistakenly classified as Nepal Destruction Class images. This is an example of a

False Negative, where the true condition is not met even though the image is in fact

a positive (i.e. airport).
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Jitter Variance Range D.

Jitter Variance Range D constitutes of DIRSIG synthetic images jittered to a step

of 0.00001 micro radians between probability percentages 0.9261 and 0.9304 where

each step of jitter variation were between 0.00001 radians and 0.00010 radians. A se-

quential step increase of 0.00001 applied to each synthetic image produced a consistent

curve in classification accuracy as indicated in Jitter Curve D. The upper confirma-

tion threshold was calculated by taking the average of the probability percentages in

Jitter Variance Range D. The threshold was calculated to be 0.91066.

Table 13. Jitter Variance Range D: Percentage Probabilities

Jitter Class Probability Percentage

Jitter Class 1 0.9261

Jitter Class 2 0.9664

Jitter Class 3 0.9707

Jitter Class 4 0.8498

Jitter Class 5 0.9014

Jitter Class 6 0.9682

Jitter Class 7 0.8873

Jitter Class 8 0.9018

Jitter Class 9 0.8045

Jitter Class 10 0.9304
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(a) 0.00001 radians (b) 0.00002 radians (c) 0.00003 radians (d) 0.00004 radians (e) 0.00005 radians

(f) 0.00006 radians (g) 0.00007 radians (h) 0.00008 radians (i) 0.00009 radians (j) 0.00010 radians

Figure 27. Jitter Variance Range D: Low Uncorrelated Jitter(Step of 0.000001 radians)

Jitter Curve Discussion and Observations.

Observations of Jitter Curve D, indicated in Figure 28, is described. The char-

acteristics of the curve were as expected, an inconsistent positive curve was evident

between all the Jitter Classes. The positive trend indicates HybridCaffe’s robustness

against low amounts of uncorrelated jitter. The characteristics of stochastic gradi-

ent descent were evident in the inconsistent trend indicated in the slow drop. This

includes a small peak in Jitter Class six and a small drop indicated in Jitter Class

eight. This behavior is evident in Figure 28, as the increase of low-end uncorrelated

jitter appears to have minimal effect on the inhibition of HybridCaffe’s sensitivity to

airport images.

Confidence Interval Interpretation.

Again, the wide confidence interval indicated in Figure 28, is typical for a small

sample set. The data points indicate there is a slow drop between Jitter Class 1 and
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Jitter Class 10 where the synthetic airport images are correctly classified as Airport

Class images. This is an example of a True Positive, where the true condition is met.

Figure 28. Jitter Curve for Jitter Variance Range D: Low Uncorrelated Jitter(Step of
0.000001 radians)

Jitter Variance Range Averages.

The average of each Jitter Variance Range was calculated and measured for data

point variation in Figure 29. Observations drawn from the Jitter Variance Range

Averages indicated in Figure 29, are described in the subsequent subsections.
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Jitter Variance Range Threshold Interpretation.

The thresholds for each Jitter Variance Range were calculated by calculating the

average of each Jitter Variance Range’s set of values. Jitter Variance Range B had a

confirmation threshold of 0.7753. This calculated value indicates that any classifica-

tion which renders a probability percentage above 0.7753 is confirmed as a positive

classification. Jitter Variance Range C had a failure threshold of 0.2918. This calcu-

lated value indicated that any classification which renders a probability percentage

below 0.2918, is a failed classification. Jitter Variance Range D had an upper con-

firmation threshold of 0.9106. This calculated value indicated that any classification

which renders a probability percentage above 0.9106 is considered an absolute positive

classification.

General Interpretation.

The standard deviation error bars generated are based off of the variation of

the spread in numerical value between the data points. Longer standard deviation

error bars indicate a pronounced variation between the recorded predicted probability

averages. Jitter Variance Range A possessed values with a pronounced range in data

point variation where the highest values were between 0.90 and 0.71 and the rest of

the values were fairly close to 0. Jitter Variance Range B possessed data values which

were more closely linked together. Consequently, a shorter standard deviation error

bar was evident. Jitter Variance Range C, possessed values that were closer to 0 but

with a greater range of variance. This resulted in a longer standard deviation error

bar. Jitter Variance Range D possessed values that were close together with a smaller

variation in data values; this is reflected in the smaller error bar. In general, Jitter

Variance Range D had the lowest amount of data point variation while Jitter Variance

Range A possessed the highest amount of data point variation. This is attributed
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to the jitter jitter variance range being higher in Jitter Variance Range A and being

lower in Jitter Variance Range D. Conclusively, this confirms the fact that increase

in uncorrelated jitter significantly degrades classification performance.

Interpretation of Standard Deviation Error Bar Overlap.

Conclusions drawn from interpretation of the overlap of the standard deviation

error bars between each Jitter Variance Range’s bar graph is described. It is a common

practice in the Data Science field to view overlaps in standard deviation error bars

as indicators of non-significance between the means of two populations of data. The

standard deviation error bars of Jitter Variance Range A and Jitter Variance Range C

appear to overlap. This indicates that the means of the two different populations are

not statistically significant. However, the population means of Jitter Variance Ranges

A,B and D are all statistically significant as their standard deviation error bars appear

to not overlap. Consequently, this lines up with the low p-value of 2.53x109, which

indicates statistical significance between the 3 population means of Jitter Variance

Ranges A, B and D.
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Figure 29. The average for Jitter Variance Range A through D is displayed, including
standard deviation error bars indicating the general variation of the data point spread
and the positive classification threshold of 0.77.

4.3 Hypothesis Test

A Hypothesis test was generated to check for the general statistical significance of

the 4 sets of data generated from Jitter Variance Range A, Jitter Variance Range B,

Jitter Variance Range C, and Jitter Variance Range D. The Null Hypothesis states

that the confirmation threshold for HybridCaffe to execute a positive classification of

the Hyper-spectral Airport image, indicated in Figure 29, is 0.80 percent. The Alter-

native Hypothesis states that the confirmation threshold for HybridCaffe to execute

a positive classification of the Hyper-spectral Airport image, indicated in Figure 29,

is 0.70 percent. Measurement of the statistical significance of the population means

are drawn out from observations conducted in the previous subsections regarding the

standard deviation error bar interpretations and through performance of Analysis of

Variance by generating an ANOVA table in the RStudio suite. Conclusively, the re-

sults are strongly significant, as a p-value <0.05 indicates the results are statistically
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significant. The p-value in Figure 30 also indicates that the Null Hypothesis is to

be rejected. Therefore, the Alternative Hypothesis, the confirmation threshold for

HybridCaffe to execute a positive classification of the Hyper-spectral Airport image,

is accepted. This conclusion lines up with the experimental results recorded in this

experiment set in Figure 29.

Figure 30. Analysis of Variance (ANOVA) Table produced in RStudio Suite

4.4 CNN Training Results Interpretation

Evaluation of Confusion Matrix.

This section describes results rendered from the confusion matrix. Overall, the

raw counts for the classification of each class were high with an exception to the Nepal

Earthquake Classes, Nepal Building (NB) and Nepal Destruction (ND). This is due

to the similarities between the classes as indicated in Figure 31.
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(a) Nepal Building Damage Class (b) Nepal Total Destruction Class

Figure 31. Selections from Tomnod Nepal Earthquake Dataset, courtesy TOMNOD

Both of the classes possessed similarities that were strong enough to cause the

classifier to mistakenly classify one for the other. There are 23 instances of Nepal

Damaged Building Class images classified as Nepal total Destruction. In addition,

there are 12 instances of Nepal Damaged Building Class images classified as Nepal

total Destruction. Both of these classes have the lowest counts for True Positive results

in the confusion matrix. Nepal Earthquake Class Nepal Shelter possessed 4 counts

of being classified as Nepal Damaged Buildings. The resultant points of confusion

in the confusion matrix described in Figure 32, are as expected. This resulted in

the Nepal Building class rendering low precision and recall values of 0.630 and 0.797

respectively.

DIRSIG Airport (DA) and DIRSIG Forest (DF) are the two categories with the

highest number of True Positive counts. Both classes were not erroneously classified

as other classes. This is presumably due to the synthetic features that makeup the

images. When compared with classes in the set of scenes with realistic high resolution
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satellite imagery characteristics there are few similarities that may cause confusion.

This resulted in both classes rendering high precision and recall values of 1.

Figure 32. Confusion Matrix, where values on the diagonal line are True Positive (TP)
classifications.
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True Positive Results.

As described in the Methodology Chapter, the data in Figure 33 consist of Thresh-

olds with the percentage of True Positive values associated with each threshold. The

threshold indicates the decision point where images sent into HybridCaffe are con-

firmed as an airport based on their respective probability percentages. The probability

percentages utilized in the calculation of the True Positive Percentage calculations are

provided in Table 14. The values provided in Table 14 depict the Percent Probabili-

ties produced by HybridCaffe when a single class of high resolution satellite imagery

is applied, specifically, airport images.

Table 14. Raw Values Rendered from Initial Experiment

Instance 

Number

Probability 

Percentage

Instance 

Number

Probability 

Percentage

Instance 

Number

Probability 

Percentage

1 1.000 17 1.000 33 1.000

2 0.667 18 0.999 34 1.000

3 0.951 19 1.000 35 0.999

4 1.000 20 1.000 36 0.867

5 0.994 21 1.000 37 1.000

6 1.000 22 1.000 38 1.000

7 0.978 23 1.000 39 0.956

8 0.664 24 0.965 40 1.000

9 0.544 25 0.999 41 0.825

10 1.000 26 0.581 42 0.993

11 0.998 27 0.984 43 0.993

12 1.000 28 1.000 44 1.000

13 1.000 29 0.993 45 1.000

14 0.983 30 0.998 46 0.976

15 1.000 31 0.589 47 0.979

16 0.999 32 0.927 48 0.992
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Table 14. Continuation

Instance 

Number

Probability 

Percentage

Instance 

Number

Probability 

Percentage

Instance 

Number

Probability 

Percentage

49 1.000 65 1.000 81 0.599

50 0.981 66 1.000 82 0.999

51 1.000 67 0.997 83 0.859

52 0.995 68 1.000 84 0.762

53 0.979 69 0.995 85 1.000

54 0.999 70 0.997 86 1.000

55 0.997 71 0.725 87 0.979

56 0.999 72 0.993 88 1.000

57 0.989 73 0.658

58 1.000 74 1.000

59 0.826 75 0.999

60 0.626 76 0.999

61 1.000 77 1.000

62 1.000 78 0.991

63 0.963 79 1.000

64 1.000 80 1.000

The True Positive Percentage (TP%) is the percent of images successfully classified

as airports out of the total number of images that were successfully classified as

airports. Threshold values between 0 and 1 are specified to determine the percentage

of True Positive (TP) results. In the case of a threshold of 0, a total of 100% will

be recorded, as all of the probability percentages recorded are greater than 0. A low

threshold is not ideal for practical testing but is valuable for the small scale evaluation

of this research effort. A True Positive vs Threshold graph illustrating this behavior,

is provided in Figure 30.
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Table 15. True Positive Percentages with correlated Thresholds

Threshold
TP 
Percentage Threshold

TP 
Percentage Threshold

TP 
Percentage

0.000 0.909 0.300 0.909 0.460 0.909
0.050 0.909 0.310 0.909 0.470 0.909
0.080 0.909 0.320 0.909 0.480 0.909
0.100 0.909 0.330 0.909 0.490 0.909
0.150 0.909 0.340 0.909 0.500 0.909
0.180 0.909 0.350 0.909 0.510 0.909
0.200 0.909 0.360 0.909 0.520 0.909
0.210 0.909 0.370 0.909 0.530 0.909
0.220 0.909 0.380 0.909 0.540 0.909
0.230 0.909 0.390 0.909 0.550 0.898
0.240 0.909 0.400 0.909 0.560 0.898
0.250 0.909 0.410 0.909 0.570 0.898
0.260 0.909 0.420 0.909 0.580 0.898
0.270 0.909 0.430 0.909 0.590 0.886
0.280 0.909 0.440 0.909 0.600 0.875
0.290 0.909 0.450 0.909 0.610 0.875
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Table 15. Continuation

Threshold
TP 
Percentage Threshold

TP 
Percentage Threshold

TP 
Percentage

0.620 0.875 0.780 0.818 0.940 0.784
0.630 0.875 0.790 0.818 0.950 0.784
0.640 0.875 0.800 0.818 0.960 0.761
0.650 0.875 0.810 0.818 0.970 0.750
0.660 0.864 0.820 0.818 0.980 0.705
0.670 0.841 0.830 0.807 0.990 0.659
0.680 0.841 0.840 0.807 1.000 0.227
0.690 0.841 0.850 0.807
0.700 0.841 0.860 0.795
0.710 0.841 0.870 0.784
0.720 0.841 0.880 0.784
0.730 0.830 0.890 0.784
0.740 0.830 0.900 0.784
0.750 0.830 0.910 0.784
0.760 0.830 0.920 0.784
0.770 0.818 0.930 0.784
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Figure 33. True Positive Percentage vs Threshold
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A total of 88 airport images were sent into HybridCaffe for classification. A total

of 79 images were correctly classified as airport images. There were 9 images that were

mistakenly classified as Farm, Urban, Water Class images. These unsuccessful Airport

Class classifications were categorized as False Negatives (FN) where the classifier

failed to correctly classify an image according to the established true condition. In the

case of the experiment, the true condition for a correct classification was classification

of an Airport Class image, as all the images sent into HybridCaffe were Airport Class

images.

The True Positive Percentage curve is useful in indicating how well HybridCaffe

is in it’s ability to sense high resolution satellite imagery of airports with differing

spatial scale qualities. Again, the data indicated in Table 15 shows only True Positive

values. A consideration for future work would entail calculation of a False Positive

rate to determine how sensitive HybridCaffe is to high resolution satellite imagery of

non-airport classes with differing spatial scale qualities. The combination of both the

True Positive results and False Positive results have the potential of being combined

together as a ROC curve as discussed in the Future Work Chapter.

Relationship between Training Accuracy and Loss.

Observations drawn from the Training vs Loss Curve, indicated in Figure 34 are

described. The loss represents any misses rendered by the network during the training

process. The testing accuracy represents any hits rendered by the network during the

training process. An illustration of the inverse relationship between Training Accu-

racy and Training Loss is evident in Figure 34. Specifically, as the number of training

iterations increased the testing accuracy of the network increased. HybridCaffe was

programmed to test the network’s accuracy every 10 iterations.
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Figure 34. Training vs Loss Curve
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4.5 Training Berkeley Caffe

In an effort to maintain a sense of realism, HybridCaffe, was trained on a non-

homogeneous spread of training data. Where the number of testing and training

images for each category were randomly allocated. Specifically, there was a total of

9,013 images in the training set and a total of 987 images in the testing set. This

makes for a ratio of 90% of the total number of images assorted to training and 10% of

the total number of images assorted to testing. The uneven numbers are attributed

to the random allocation of images into the training and testing folders. Refer to

Table 16 for the exact number of testing and training images per category.

Table 16. HybridCaffe Training and Testing Statistics Summary, where images in Train
Set accounts for 90% and Test set accounts for 10% of the total amount of imagery.

Category Train Set Count Test Set Count

Airport 911 89

Farm 907 93

Forest 896 104

Water 901 99

Urban 897 103

DIRSIG Airport 894 106

DIRSIG Forest 898 102

Nepal Destruction 900 100

Nepal Building 909 91

Nepal Shelter 900 100
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V. Future Work

This chapter describes multiple avenues of future extension to this research effort.

The concept of the tip and cue process between three satellites in three unique orbits

is described in the Tipping and Cueing Scheme section. The continued expansion

of small scale satellite development from smart phones[17], raspberry pi[18] and de-

velopment of Berkeley Caffe on raspberry pi [19] hardware indicates the potential of

an extension of Berkeley Caffe into space. Details of this proposition is described

in the Expansion to Rasberry Pi section. The expansion of Berkeley Caffe into the

International Space Station to accommodate the limited memory capacity on board

satellites in space and cyber-security measures are described in the Expansion to ISS

section. The processing mechanisms in Convolutional Neural Networks are biolog-

ically inspired, the potential in modeling a traumatized neuron is described in the

Post Traumatic Stress Disorder Study through Application of Convolutional Neural

Networks section. Finally, potential for further evaluation of the true robustness of

HybridCaffe is described in the robustness evaluation section.

5.1 Tipping and Cueing Scheme

The framework is divided into sections called ”Resolution Tier Levels” intended

to correlate with the Geostationary Orbits (GEO) and Low Earth(LEO) of each

satellite in the framework. Each Tier Level represents the specific resolution quality

of an image that has been sensed by a satellite within that respective orbit. For

instance, an image with a pixel resolution of approximately 1 meter would be sensed

by a satellite in a LEO orbit. This is due to the fact that LEO satellites reside at a

close distance to the Earth’s upper atmosphere.
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Orbit Specifications.

Each satellite in this domain is at the mercy of the physics of space and their

unique spacecraft design. Specifications in the functionality of such satellites will

be described. Satellites in Geostationary Orbit have a mean orbit altitude of 35,790

kilometers above the Earth’s surface. It is typical for imagery sensed by satellites at

this orbit to have a pixel resolution from 1 to 30 kilometers. This produces imagery

that is of a grainy quality where finer details required for surface target detection can

be abstracted within the immense scale produced. Satellites in Low Earth Orbit have

an orbit altitude from 200 to 1200 km above the Earth’s surface. It is common for

imagery sensed by satellites within this orbit range to have a pixel resolution from 0.5

to 1 meter. This produces imagery of a much cleaner quality where small details such

as roads and cars are evident. Nevertheless, a more sensitive sensor would be required

to extract finer features from surface targets (i.e. license plate numbers, runway strip

names). A LEO satellite with a tighter orbit at 200 km above the Earth’s surface is

capable of sensing the surface for the tiny details required of a LEO satellite to sense

but is otherwise abstracted. Attributing the pixel resolution of a remotely sensed

image to the orbit from which the satellite resides served as a basis in the design of

the tier framework described in Table 16.

Table 17. Tier Framework Summary, where GEO, LEO-inner, LEO-outer orbits are
specified with their respective ranges.

Tier Level Tier No. Orbit Level Resolution Range (in meters)

OUTER 1 Geostationary Orbit 1000

INNER 2 Low Earth Orbit 1

DETAIL 3 Low Earth Orbit 0.305
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Inspiration for Tipping and Cueing Algorithm.

The organization scheme described in Table 16 also served as inspiration for the

proposed tipping and cueing scheme. The requirements binding the tipping and

cueing exchange between selected satellites in a constellation is described, under the

use case of the target image being an airport. The description follows a chronological

sequence moving from the outermost orbit satellite to the innermost orbit satellite.

Exchanging information between satellites of different tiers will be in pairs. Tipping of

a satellite from one tier to the other only involves two satellites, completing a one-to-

one mapping of one satellite communicating with the subsequent one. Overlaps of the

one-to-one mapping is illegal to the bounds described in the requirements outlined for

the tipping and cueing scheme described in Tipping and Cueing Algorithm depicted

in Figure 4.

Tipping and Cueing Sequence.

The tipping and cueing scheme is described in sequence, starting with Tier 1:

Outer Tier, followed by Tier 2: Inner Tier and concluded by Tier 3: Detail Tier.

A geostationary satellite sends a tip to a low earth orbit satellite. A geostationary

satellite receives a set of coordinates from various airports from the Head Quarters

ground station. Once the geostationary satellite is able to successfully sense and

collect images with the specific coordinates, it sends them to it’s respective Convo-

lutional Neural Network (CNN). Classifications conducted by the CNN is under the

assumption that the CNN has been trained on the target image of interest, in this

case, an airport. The imagery collected by the GEO satellite possess a pixel resolution

of about 30 kilometers. When the classifier reaches a probability percentage greater

than or equal to 0.80, a tip request is sent to the successor. A satellite in a LEO

orbit of 1200 km receives the tip request and responds to the GEO satellite with a
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confirmation of receiving the tip request. Once the confirmation has been received

the GEO satellite sends a tip information request to the LEO satellite. The LEO

satellite responds to the GEO satellite with a confirmation of receiving the tip info

request. Once the confirmation has been received the GEO satellite sends the tip

information to the LEO satellite. After the LEO satellite successfully processed the

tip information, a tip information confirmation is sent to the GEO satellite.

Advantages of Tip and Cue Scheme.

As stated previously, LEO satellites reside at an orbit fairly close to the Earth’s

surface. This causes their orbital velocity to be at a high value that creates a no-

ticeable deterioration in it’s capability to remotely sense the Earth’s surface with

absolute precision. The sun is a source of radiance required to successfully remotely

sense the Earth’s surface to conduct a collection. It is at this point in the sequence of

the tipping and cueing scheme that the LEO satellite has information for the exact

location to sense. Nevertheless, it requires information detailing when to remotely

sense the surface and collect high pixel resolution quality imagery. Otherwise, pre-

cious resources may be wasted, as the LEO satellite is at high risk of inadvertently

sensing the target area at an inopportune time (i.e the sun is on the opposing side of

the earth’s surface).

Initiation of Tip and Cue Exchange.

A tip detailing where to sense followed by a cue describing when to sense is

highly valuable in this domain. In continuation of the airport use case, the GEO

satellite sends a cue request to the LEO satellite. The LEO satellite receives the

cue request and responds to the GEO satellite with a confirmation of receiving the

cue request. Once the confirmation has been received the GEO satellite sends a cue
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information request to the LEO satellite. The LEO satellite responds to the GEO

satellite with a confirmation of receiving the cue info request. Once the confirmation

has been received the GEO satellite sends the cue information to the LEO satellite.

After the LEO satellite successfully processed the cue information, a cue information

confirmation is sent to the GEO satellite.

LEO Outer Orbit Data Collection.

Then, the LEO satellite remotely senses and collects the appropriate amount of

images for it’s CNN to train on. The imagery collected are airport images with a pixel

resolution of about 1 kilometer. Once the LEO satellite’s CNN reaches a probability

percentage greater than or equal to 0.80, it sends a tip to a satellite in a tighter LEO

orbit at 200 kilometers above the Earth’s surface.

The successor satellite receives the tip request and responds to the LEO satellite

with a confirmation of receiving the tip request. Once the confirmation has been

received the LEO satellite sends a tip information request to the successor satellite.

The successor satellite responds to the LEO satellite with a confirmation of receiving

the tip information request. Once the confirmation has been received the LEO satel-

lite sends the tip information to the successor satellite. After the successor satellite

successfully processed the tip information, a tip information confirmation is sent to

the LEO satellite.

LEO Outer Orbit to LEO Inner Orbit Exchange.

Once the LEO satellite receives this information, it sends a cue request to the

successor satellite. The successor satellite receives the cue request and responds

to the LEO satellite with a confirmation of receiving the cue request. Once the

confirmation has been received the LEO satellite sends a cue information request
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to the LEO satellite. The successor satellite responds to the LEO satellite with

a confirmation of receiving the cue info request. Once the confirmation has been

received the LEO satellite sends the cue information to the successor satellite. After

the successor satellite successfully processed the cue information, a cue information

confirmation is sent to the LEO satellite. Then, the successor satellite remotely senses

and collects the appropriate amount of images for it’s CNN to train on. The imagery

collected are airport images with a pixel resolution of about 0.305 meters. Once the

LEO satellite’s CNN reaches a probability percentage greater than or equal 0.80, it

sends a tip to Head Quarters.

5.2 Expansion to Raspberry Pi

Description.

Work has been conducted in developing ”smart phone satellites”, where the guts

of the satellite runs off of the main operating system of a smart phone. An example of

this is work done on the STRAND-1 satellite, where the satellite exterior houses the

internal guts of the android smart phone[17]. Such work has inspired other researchers

to conduct similar research on creating the internals of a cubesat out of a Rhaspberry

Pi’s embedded system[18]

Potential of Berkeley Caffe in Space.

Furthermore, development has been done on creating a version of Berkeley Caffe

that is capable of fully operating on a Rhaspberry Pi[19]. Finally, it has been proven

that Rhaspberry Pi’s are completely operational in the vacuum of space[18]. This

presents an interesting extension for the proposed framework of this thesis to be

applied in the embedded systems domain with another possible future extension to

application in the space domain. This would make a rather interesting thesis topic
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as it utilizes multiple domains at once similar to the nature of this thesis only a bit

more specific. Specific in regards to the way the materials are orchestrated. The

evaluation domain would be confined to the testing of Berkeley Caffe’s performance

on the Rhaspberry Pi and comparing the embedded classifier’s performance to a Caffe

model on a laptop with the CPU option specified and to a Caffe model on a GPU

computer with the GPU option specified. Further analysis of the results would be

fair indicators of how feasible sending a satellite equipped with a classifier into space

would be.

5.3 Moving Tiers to Caffe Networks

In the event that more time was made available to the author, multiple Caffe

models would be created. Where a single Caffe model would be attributed to each

Tier Level in Table 1, creating an ensemble of Caffe models.

Association between Caffe Models and Tier Levels.

The association between each Tier Level and their respective Caffe model will be

described. Tier 1: Outer Tier would be represented by a single Caffe model trained

only on remotely sensed images with a pixel resolution of approximately 30 km. Tier

2: Inner Tier would be represented by a single Caffe model trained only on remotely

sensed images with a pixel resolution of approximately 1 meter. Tier 3: Detail Tier

would be represented by a single Caffe model trained only on remotely sensed images

with a pixel resolution of approximately 12 centimeters. The evaluation between the

three Caffe models would generate conclusions as to how these Caffe models can be

interlinked together to ”tip and cue” each other based off of imagery with similarities

in certain characteristics such as target size or shape. It would be interesting also to

see if there is way for a Caffe model to process GPS coordinates and find a way to map
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the GPS coordinates to a certain image. This can also serve as another characteristic

to perform the tip and cue scheme from.

5.4 Expansion to the International Space Station

The description in this section is based solely off of the assumption that Berke-

ley Caffe, has been successfully deployed in space. Additionally, this section is an

extension of the tipping and cueing framework scheme proposed in the Tipping and

Cueing Scheme section. Furthermore, majority of the content in this section is purely

speculation.

ISS hosts Virtual Machine Association between Caffe models.

In an effort to accommodate the limited memory capacity on board satellites

in space, the satellites in constellation will each possess their own respective Caffe

model which will run off of a distributed system, where each node represents a single

instance of Caffe. The Caffe distribution will run off of a CPU based on the Earth’s

surface. The International Space Station(ISS) will house a single laptop that will

have a series of Virtual Machines(VM’s). Where each VM will represent a single

node from the Caffe distribution. Astronauts on mission to conduct experiments on

the ISS will be able to view the VM for each Caffe model attributed to each satellite

in the constellation. This is ideal as the ISS is in a LEO orbit, and majority of the

satellites in the constellation of the framework proposed will be in the LEO orbit.

Additionally, this shared orbit ensures quick and efficient imagery processing, as the

ISS may serve as a source of computational power in the constellation.
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Proposed Cyber-Security Measures.

The VM’s can be guarded against cyber-intrusions through appropriate utilization

of firewall protocols in the Caffe distribution. It is also expected that each VM

will be monitored by a human operator to ensure there are no cyber-intrusions. A

future iteration of this effort will have an autonomous mechanism in place where

cyber-intrusions will set off an alarm alerting human operators. The autonomous

mechanism is intended to fulfill the original intention of this proposed tipping and

cueing framework, removing the human from the loop and allowing the machine to

take full control and reign of the system.

5.5 Post Traumatic Stress Disorder Study through Application of Con-

volutional Neural Networks

The description in this section is based solely off of the assumption that ensembles

of Berkeley Caffe, have been successfully utilized in modeling clusters of neurons in

the human brain. Additionally, this section is an extension of the tipping and cueing

framework scheme proposed in the Tipping and Cueing Scheme section. Where, a tip

and cue occurs between neurons, in the place of satellites. Furthermore, majority of

the content in this section is based purely on speculation.

Modeling a Traumatized Neuron.

A single CNN can represent a traumatized neuron inside the brain of a PTSD

survivor. The image content of the traumatized neuron would be filled with screen-

shots taken from violent action films such as Saving Private Ryan and Enemy at the

Gates. Screenshots can be taken using a python script reading in movie film through

the SciPy software suite.
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Modeling a Non-Traumatized Neuron.

Another single CNN can represent daily images in the household. The researcher

can wear a Gopro in and around the house for approximately 1 day. All the mo-

tion imagery will be read into the SciPy software that will record screenshots. The

researcher will wear the Gopro to a shooting range, or during a hunting excursion

with friends and/or family. These action-oriented images will be randomly shuffled

with the training images of the daily activities neuron. A third party CNN can have

a hybrid dataset of the two neurons and serve as a bridge that will complete the

connection between the two neurons.

Speculation for the Cause of Flashbacks of Traumatic Events in a

Survivor.

It is hypothesized that when a PTSD survivor experiences a flashback from a

traumatic event, the traumatic neuron is triggered by a third party neuron which

causes the traumatic neuron to fire to a neuron filled with daily household images.

When the traumatic neuron fires to a neuron filled with daily images it fills the

household neuron with traumatic images. Conversely, it is possible that the trigger

neuron will activate a household neuron with a hybrid mixture of traumatic images

and household images, where the household neuron refuses to train on household

images and will only train on traumatic images.

5.6 Further Evaluations

Potential for expansion of the True Positive Percentage curve in Figure 33 into

a Receiver Operator Curve (ROC) is described. Where the ROC curve would indi-

cate the true classification capacity of HybridCaffe, when faced with the challenge of

proper classification of Airport Class images. Further exploration of the robustness
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of HybridCaffe can be conducted by sending images of areas impacted by National

Weather Scenarios, such as images obtained from NOAA’s Emergency Response Im-

agery National Geodetic Survey. Selections from [8] for robustness evaluation are

indicated in the Figure 35.

Figure 35. Images from Tornado Joplin, courtesy NOAA [8]
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VI. Conclusions

Conclusions drawn during the investigation of the potential in utilization of Ma-

chine Learning in application to the space vehicle domain where a heterogeneous set

of varied fidelity sensor types in a constellation of small satellites enhances accurate

surface target detection in the case of an Emergency Weather Scenario is presented.

Application of the remote sensing platform, DIRSIG demonstrated remote sensing

techniques crucial in the investigation conducted in the research effort. Features of

interest were generated from specified degrees of clarity to aid in the generation of

a database utilized to test and examine the classification accuracy of the artificial

intelligence platform Berkeley Caffe. The artificial intelligence platform was adapted

into a single artificial neural network called HybridCaffe to model a heterogeneous

set of varied fidelity sensor types. Variation in fidelity was demonstrated through the

collection of satellite imagery with varying jitter levels. The data utilized emulates

the basic terrain in Emergency Weather scenarios.

6.1 General Conclusion

Through the experimental design, results collected and conclusions drawn, Ma-

chine Learning demonstrates its suitability in the space vehicle domain as a source

of automation for the tipping and cueing between small satellites in a constellation

to increase surface target detection effectiveness. In spite of the limitations faced

through image paucity the Machine Learning platform, Berkeley Caffe exhibited it’s

capability through the platform’s modular design. The Tier Level design implemented

in the Heterogeneous Sensor Framework exhibited the basic concept of three differ-

ent satellites, in three unique orbits, in a constellation tipping and cueing each other

according to the description in the Contribution Section of the Introduction Chapter.
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6.2 Conclusions to Research Questions posed in Introduction

The leveraging of the automation of terrain classification for a tipping and cueing

system across a constellation of satellites with a mixture of heterogeneous sensor types

was realized in the building of the Tip and Cue Exchange Protocol, Tier Organization

and Image Classifier described in the Contribution section of the Introduction. Once

a Tipping and Cueing system was designed two research questions were investigated

in parallel to determine the suitability a Machine Learning platform has in the space

vehicle domain. A Convolutional Neural Network was designed with the intent of

classifying terrain common in search and rescue events. Automation of terrain clas-

sification with Machine Learning was realized in the creation of the Convolutional

Neural Network, HiReSatCaffe where terrain imagery was successfully classified. Af-

ter a Convolutional Neural Network was successfully developed and tested synthetic

imagery was incorporated to model and test satellite sensor capabilities. The incorpo-

ration of synthetic imagery into a Convolutional Neural Network paired with positive

experimental results has successfully modeled satellite sensor capabilities. Overall,

through the investigation of the 3 research questions the overall conclusion is realized

that Machine Learning platforms can facilitate the tipping and cueing between het-

erogeneous constellation members in order to increase its overall feature identification

effectiveness.

6.3 Research Effort Contributions

As stated in the Introduction Chapter, the main contributions for this research

effort are four-fold: (1) Generation of a dataset which includes synthetic imagery, (2)

Schematic of a Tip and Cue communication Protocol, (3) A satellite imagery classifier

with 92.1% test set accuracy, and (4)Successfully modeled uncorrelated jitter impact

on classification performance. The contributions are significant as they provide a
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glimpse into the future development of optimizing current Air Force satellite systems

with application of a communication protocol. In general, this indicates that a Convo-

lutional Neural Network is able to classify images of different pixel resolutions which

represent imagery produced by a constellation of satellites with a heterogeneous mix-

ture of sensors. This proposed framework can be applied to problem domains outside

of the search and rescue domain, such as the intelligence field where surface targets

of interest can be detected and identified.

6.4 Significance of Methodology

Varying the amount of uncorrelated jitter between different intensity ranges demon-

strates Berkeley Caffe’s capability to learn a class of imagery and commit to correct

classifications. The appropriate failure and confirmation thresholds indicate Berkeley

Caffe’s capability for strong classification power in spite of increase in light amounts of

uncorrelated jitter. Berkeley Caffe has been utilized in many domains for image classi-

fication. The continued development of small satellites in constellation demonstrates

the capability for satellite’s embedded circuitry to host a Berkeley Caffe classifier.

The fact that Berkeley Caffe is capable of learning multiple classes of images and

is able to classify a high rate of True Positive (TP) results indicates potential for

Berkeley Caffe has to be extended into additional research ventures described in the

Future Work chapter.
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