

A SANDBOX IN WHICH TO LEARN AND DEVELOP SOAR AGENTS

THESIS

Daniel Lugo, Captain, USAF

AFIT-ENG-MS-17-M-047

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the United

States Government. This material is declared a work of the U.S. Government and is not

subject to copyright protection in the United States.

AFIT-ENG-MS-17-M-047

A SANDBOX IN WHICH TO LEARN AND DEVELOP SOAR AGENTS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

Daniel Lugo, BS

Captain, USAF

March 2017

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-17-M-047

A SANDBOX IN WHICH TO LEARN AND DEVELOP SOAR AGENTS

Daniel Lugo, BS

Captain, USAF

Committee Membership:

Douglas D. Hodson, PhD

Chair

Maj Logan O. Mailloux, PhD

Member

Maj Alan C. Lin, PhD

Member

iv

AFIT-ENG-MS-17-M-047

Abstract

It is common for military personnel to leverage simulations (and simulators) as

cost-effective tools to train and become proficient at various tasks (e.g., flying an aircraft

and/or performing a mission, among thers). These training simulations often need to

represent humans within the simulated world in a realistic manner. ‘Realistic’ implies

creating simulated humans that exhibit behaviors which mimic real-world decision

making and actions. Typically, to create the decision-making logic, techniques

developed from the domain of artificial intelligence are used. Although there are several

approaches to developing intelligent agents; we focus on leveraging and open source

project called Soar, to define agent behavior.

Learning how to create agents with Soar is a bit challenging; its language,

program syntax, and execution flow is quite different from typical computer

programming languages. It can be viewed as a Domain Specific Language (DSL) for

agent creation. Soar itself, is a C++ software-based decision making component that is

interfaced to an existing system; it’s not a complete solution, it’s a tool to enhance and

ease the agent development process. The software package itself includes examples

which define simple environments for agents to make decision against, but they are

intentionally simple and lack the richness of typical military simulations.

This research interfaced the off-the-shelf open-source software product that

facilitates the creation of 3D virtual worlds (called the AI sandbox) to the Soar package.

v

Because the world created by the sandbox is rich in features, easily configurable using a

simple scripting system, and visually engaging, it’s ideal as a learning platform to

develop Soar intelligent agents aligned with military simulations. In summary, this

research develops a platform (or learning environment) to learn how to develop Soar-

based agents.

vi

Acknowledgments

Foremost, I would like to express my sincere gratitude to my faculty advisor, Dr. Douglas

Hodson, for his support, patience, and knowledge. His guidance was invaluable in the

writing of this thesis.

Besides my advisor, I would like to thank the rest of my thesis committee: Maj. Logan

Mailloux and Maj. Alan Lin, for their encouragement, insightful comments, and

questions.

Last but not the least; I would like to thank my wife and kids for all their love.

 Daniel “Hocka” Lugo

vii

Table of Contents

Page

Abstract…………………………………………………………………………………...iv

Acknowledgements……………………………………………………………………….vi

Table of Contents...………………………………………………………………………vii

List of Figures ..x

List of Tables .. xii

I. Introduction ...1

Overview ..1

Intelligent Agents ...2

Cognitive Architectures ...3

Virtual Environment ..4

Problem ...5

Solution ...6

II. Background ...7

Chapter Overview ..7

The Soar Cognitive Architecture ...7

Soar Background ..7

Capabilities of Soar ..8

Soar Agents ..9

Knowledge, Memory and Learning ...10

Soar Processing Cycle..13

Integrating Soar with External Environments..15

Soar Debugger ...16

Understanding Soar in Relation to Other Cognitive Architectures18

Soar Applications ...19

Soar Learning Environments ...23

Potential Sandbox Environment ..25

Summary ..28

viii

III. Methodology ...30

Chapter Overview ..30

Interfacing with Soar using SML ...30

Sandbox Design ...33

Demo Framework ..34

Sandbox Initialization ..36

Sandbox Rendering a Frame ..37

Code Changes ..38

Summary ..40

IV. Results ..41

Chapter Overview ..41

Initial SML Testing ..41

Code Changes to Demo Framework ..45

Soar Agent Tests ..47

Seeking Agent ..47

Follower Agent ..49

Waypoint Agent ...52

Soar and Lua Agents ..53

Test Results ..55

Summary ..55

V. Conclusions and Recommendations ...56

Chapter Overview ..56

Conclusions of Research ..56

Significance of Research..56

Recommendations for Action ..57

Summary ..57

Appendix A: Sandbox Code ..58

MySandbox Class ..58

BaseAgent Class ..59

LuaAgent Class ..79

ix

SoarAgent Class ...82

SoarSeekingAgent Class ..83

SoarFollowerAgent Class ..87

SoarWaypointAgent Class ...92

Appendix B: Soar Agents ..97

Seeking Agent ..97

Follower Agent ..99

Waypoint Agent ...101

Appendix C: Lua Scripts ...103

Sandbox.lua ..103

Seeking Agent Script ...106

Follower Agent Script ..108

Waypoint Agent Script ..111

Bibliography ...114

x

List of Figures

Page

Figure 1. Simple agent interacting with environment [5]. .. 3

Figure 2. Soar Structure [12]. ... 9

Figure 3. Representation of State in Working Memory [13] .. 10

Figure 4. The Soar processing cycle [7]. .. 13

Figure 5. Sample communication diagram between external environment and Soar 15

Figure 6. Screenshot of Soar Debugger .. 17

Figure 7. Architecture of the Attack Helicopter Company (Soar-RWA) [25] 21

Figure 8. TacAir-Soar Example Operator Hierarchy Decomposition [10]....................... 22

Figure 9. Screenshot of SimpleEater environment. .. 23

Figure 10. Screenshot of sandbox with agent ... 25

Figure 11. Sandbox with soldier agents .. 26

Figure 12. Layout of Sandbox project [29] ... 33

Figure 13. Class diagram of the important classes in the sandbox 36

Figure 14. SML test, screenshot of Soar debugger .. 42

Figure 15. Fragment Soar agent code for hallway test ... 43

Figure 16. Soar debugger screenshot, simple environment test. 43

Figure 17. Soar Agent output .. 44

Figure 18. C++ SML client code to register for Soar event ... 45

Figure 19. Agent output screenshot from Soar debugger. .. 45

Figure 20. Diagram of Agent classes .. 46

xi

Figure 21. Screenshot of Soar Debugger (seeking agent) ... 48

Figure 22. Screenshot of seeking agent .. 49

Figure 23. Screenshot from Soar Debugger (Follower Agent) .. 50

Figure 24. Leader agent with follower agent ... 51

Figure 25. Leader agent with group of followers ... 51

Figure 26. Three types for Soar agents in the sandbox .. 53

Figure 27. Screenshot Lua follower agent .. 54

Figure 28. Screenshot Lua agent as leader.. 54

xii

List of Tables

Page

Table 1. Environments in which Soar has been integrated ... 4

Table 2. Soar memories and learning systems .. 11

Table 3. Newell’s Time Scale of Human Action .. 19

Table 4. Available agent properties in sandbox .. 27

1

A SANDBOX IN WHICH TO LEARN AND DEVELOP SOAR AGENTS

I. Introduction

 Chapter I explains why the Department of Defense needs intelligent agents and

how the Soar cognitive architecture fills this need. We define the need for a visual, virtual

environment to learn to develop intelligent agents. It concludes with a brief discussion

that suggests using an existing AI sandbox software package for learning how to program

Soar agents.

Overview

 Today’s military has a wide variety of weapon systems. These weapon systems

include the machines, and the humans that operate them. Because of the critical nature of

military missions to the country, it is important to be able to practice what we learn, test

what we use, and evaluate what we need [1]. Armed forces must train to develop and

maintain the proficiency necessary to effectually carry out the duties with which they are

entrusted by their nations [2]. Unfortunately, the very nature of military missions makes

it hard to set up real-world training. Mimicking a military mission in the real world

requires many people and resources [3]. Simulations can greatly help the military

perform test, evaluation and training. They also mitigate the cost of operating weapons

systems and the risk of equipment damage, injuries, or loss of life [4]. Simulations,

especially the ones used in training, need to provide the humans being trained a sense of

realism so that they can be effective in preparing trainees for real-world situations. One

way to make training simulations more realistic is to use human operators that can

2

perform different roles in the simulation. Human operators help create a more diverse

and realistic environment for training [3]; however using human operators might not be

the most viable solution because skilled manpower is limited and costly. An alternative

to train more effectively is to simulate the human operators that perform the various roles

in the simulated environment [3]. This can be accomplished by creating artificial

autonomous intelligent agents to perform the same tasks the human operators would in

the virtual world. If these intelligent agents are able to produce realistic behavior similar

to a real human operator, then the cost of having humans involved in training can be

mitigated and we solve the manpower issue of not having sufficient skilled operators to

make training successful.

Intelligent Agents

 An agent is anything that perceives an environment through sensors and acts upon

that environment through effectors [5]. The term agent is broad and can include agents

from living things to machines. This is why the terms artificial, autonomous and

intelligent are used to describe the agents of interest. In the case of the simulations

mentioned above, the intelligent agent is software that can make decisions with the

information it is given and has a certain degree of freedom to choose what and when to

perform the actions [5]. Figure 1 shows a diagram of a simple agent interacting with the

environment. It is the agent’s task to sense and process information from the

environment and utilize it to decide what to do. An intelligent agent might also use

previous knowledge of the environment to make decisions, or create knowledge through

3

experience. These capabilities make them useful in many applications; our interest

resides in military uses for training.

Figure 1. Simple agent interacting with environment [5].

Cognitive Architectures

One way to create an intelligent agent is to use a cognitive architecture. A

cognitive architecture specifies the underlying infrastructure for an intelligent system; it

provides us a definition of the computational structures required to store, retrieve, and

process knowledge [6], [7]. For this research, we decided to use the Soar cognitive

architecture. This architecture has a well defined mature framework, shown in Table 1.

Moreover, it has been integrated with several systems including Joint Semi-Automated

Forces (JSAF), which is a U.S. government owned and developed simulation system that

is widely used in training and experimentation [8]. Soar is open source and available for

Windows, iOS, Linux and Android operating systems. As an example, Soar has been

4

used to create intelligent agents that can model human behavior in military applications

in the TacAir-Soar Human Behavior Model (TacAir-Soar). TacAir-Soar was built to

determine if it was possible to replace human controllers with human behavior models for

large-scale distributed training exercises [7]. TacAir-Soar agents were used in the

Synthetic Theater of War-1997 (STOW-97) exercise to perform various missions flown

by the US military and have been used in large-scale exercises and in training systems for

pilots, ground controllers, and battlefield commanders [9], [10].

Table 1. Environments in which Soar has been integrated [7]

5

Virtual Environment

Intelligent agents need to gather information from an environment. Training in

virtual environments provide lower cost than training in the real world. Virtual

environments benefit from having a visual representation because it aids in understanding

why the agent performs certain tasks. Since we can see the agent moving, acting upon

the environment and responding to what other agents do, we are able to figure out how

our agent sees the world and make decisions on its actions. Another aspect of virtual

environments that is beneficial in testing intelligent agents, is the ability to be interactive.

The environment can react and respond to what the agent does; this will give us the

capability to create more complex agents that continually look at the world to decide

what to do next. The ideal environment to learn to create intelligent agents should have

various options for the agents to perform. These options can include how does the agent

move, perception of the environment, communication with other agents, etc. The

environment will dictate what the agent is able to do in the simulation.

Problem

 We are interested in using Soar to create intelligent agents, due to the

architecture’s ability to create agents that can learn and resolve various problems, called

impasses. But this is challenging, as Soar uses its own language to develop intelligent

agents that is very different from other widely used programing languages like Java, C,

C++, Python, C#, etc. Another issue with Soar is that the lack of example agents that

have the tactical goals used in military simulations. In order to learn to create intelligent

agents using Soar, we need to find a virtual, interactive and visual environment to test

6

agent behaviors. Having such an environment would help in learning how to program

Soar agents because the user can see what the agents are doing and the interaction

between the environment and the agents. During our research into Soar we encountered

several environments that were being used to learn the basics of Soar programming.

These environments consist of simple two-dimensional grid worlds where agents moved

within. They are useful for introducing users to Soar agent programming but are limited

to just simple behaviors. We would like to have more options on environments to aid in

learning Soar agent development. Specifically, a dynamic environment where agents are

capable of performing actions similar to military tactics would be beneficial. For

example, moving at different speeds, following a leader, engaging an enemy, traveling to

waypoints, and fleeing from danger are all actions that would make an environment more

desirable.

Solution

While researching intelligent agents, we found a sandbox environment used to

learn artificial intelligence game programming using a combination of C++ and Lua

scripts. At first glance this seems to be a very good candidate environment to learn to

program Soar agents because it has several of the characteristics mentioned above. We

extended this sandbox environment to use Soar agents.

7

II. Background

Chapter Overview

The purpose of this chapter is to provide a background of the relevant components

of the project. First, this chapter introduces Soar, its tools, and how it relates to

established cognitive architectures. Next, this chapter presents examples of Soar

applications including some used in military simulations and will discuss the current

learning environments available for Soar agents. Finally, this chapter ends with a

discussion of the potential sandbox to be extended so that users would be able to develop

and test Soar agents.

The Soar Cognitive Architecture

Soar is a cognitive architecture, created by John Laird, Allen Newell, and Paul

Rosenbloom at Carnegie Mellon University. It has been developed to be an architecture

for constructing general intelligent systems. Soar has been in use since 1983, and has

evolved through many diff erent versions [11].

Soar Background

As opposed to many artificial intelligence systems that have been designed to

excel at performing a single task, Soar was designed with a more general vision in mind

[11]. Humans are able to perform many different tasks in an ever changing environment;

we gather information and learn constantly. Because of this, creating an intelligent agent

that has similar abilities to humans is very different than designing a system that is able to

solve a certain type of problem very well. This is where cognitive architectures are

beneficial. In the early 80s, Allen Newell and John Laird created a general cognitive

8

architecture that could use different methods to gain knowledge about a problem to

complete a task. Soar was inspired by the human mind, its psychology and biology.

Their goal was to make it possible for knowledge about a problem to be decomposed to

smaller computational units that will then combine during problem solving phase, so that

algorithms would be created from the interactions between the task needed to be

completed and the knowledge of the problem [7]. This general approach to agent

development covers a diverse set of domains and it is one of the reasons that Soar was

found to be a good architecture for developing intelligent systems.

Capabilities of Soar

Figure 2 presents a structural view of the Soar cognitive architecture. First, Soar

has the ability to receive inputs from an external environment using what is called the

perception module. Changes to perception module are processed and sent to the working

memory, which is similar to short-term memory. Working memory also initiates retrieval

of long-term memories [7]. The different types of long-term memories are independent

of each other and they have their own learning mechanisms which are discussed later in

this chapter. With the input from the environment, and the knowledge that exist on

working and long-term memories Soar can then make decisions. These decisions are

then communicated to the environment through the action module. In summary, Soar can

perceive information, use and create knowledge, learn from experience, and make

decisions that in turn create behaviors to perform actions. With these fundamental

capabilities, Soar supports planning, decision making and problem solving.

9

Figure 2. Soar Structure [12].

Soar Agents

The design of Soar is based on the hypothesis that all deliberate goal-oriented

behavior can be cast as the selection and application of operators to a state [12]. When

Soar is running, it is trying to match operators to the situation (current state) until the goal

state is reached. This is why initially Soar was an acronym meaning, State, Operator and

Result. Today the acronym is no longer used. The state is represented in working

memory as a connected graph structure where the state is the root [13]. Figure 2 shows a

graph representation of a state where you have two white blocks one named A the other

named B.

10

Figure 3. Representation of State in Working Memory [13]

Operators on the other hand are defined by rules. Rules are made of conditions

and actions. An operator must have at least two rules, a proposal rule and an application

rule [13]. The proposal rule will tell us when the operator should be checked and the

application rule let us know what it does or how it changes the state. Operators are the

ones that perform actions in the environment or in the agent’s internal working memory.

Once operators are selected, additional rules can match and apply the operator. This

gives Soar a flexible representation of operators that makes it possible to have

conditional, disjoint sets of preconditions and actions [7]. For a Soar agent to be able to

work on a variety of problems it would have to include a lot of operators but if the

problem was a simple one like deciding to go left or right then the number of operators

would be less.

Knowledge, Memory and Learning

 The various types of memories and learning mechanisms are discussed in more

detail in this section. Working memory represents the current situation. For Soar agents

11

working memory consists of the perception of its world, results of intermediate

calculations, active goals, and operators [12]. Working memory contains elements called

working memory elements (WMEs), and each WME represents a specific piece of

information [11]. An example of a WME would be “A1 is an agent” or “A1 is facing

North”. Each WME is an identifier-attribute-value triple, and all WMEs with the same

identifier are part of the same object [11]. In the example “A1 is facing North”, “A1” is

the identifier, “facing” is the attribute and “North” is the value. Table 2 has an overview

of memories and learning systems.

Table 2. Soar memories [7].

Soar has three types of long-term memories: procedural, semantic and episodic.

Procedural memory represents knowledge as production rules or numeric preferences in

rules. These rules match a condition to an action. Production rules can modify working

memory and generate preferences, which are used by the decision procedure to select an

12

operator [7]. Operators are where decisions are made and therefore where actions are

chosen. Procedural memory has two learning mechanisms, chunking and reinforcement

learning. Chunking is the process by which individual pieces of information are bound

together into a meaningful whole [14]. It is an automatic process and is used to learn new

production rules. Reinforcement learning utilizes a numerical reward signal to decide

how to act in the world. The goal is to learn an action-selection policy such as to

maximize expected receipt of future reward [15]. Reinforcement learning changes rules

in procedural memory. These rules are then used to select the appropriate operator.

Reinforcement learning is optional in Soar.

 The second type of long-term memory is semantic memory. Soar’s semantic

memory is a repository for long-term declarative knowledge that supplements what is

contained in short-term working memory and production memory [7]. It is beneficial in

the case where there is a large amount of declarative knowledge because it does not have

to be stored as rules like in procedural memory. It is also possible to preload knowledge

from another source.

 The last type of long-term memory is episodic memory. From Table 2 we can see

that episodic memory is knowledge stored as episodes which are snapshots of working

memory. In a biological sense, episodic memory represents our memory of experiences

and specific events in time in a serial form, from which we can reconstruct the actual

events that took place at any given point in our lives [16]. It includes all the information

about these events. The difference between semantic and episodic memory can be

13

summarized as, semantic memory would only contain the facts that the intelligent system

knows, and episodic would have all the information required to get to the facts.

 Soar Processing Cycle (i.e. Execution)

 The Soar processing cycle has five phases: input, proposal, decision, application

and output. The Soar program will go through these cycles until Soar halts or the user

interrupts the processing cycle [12]. Figure 4 shows the processing cycle: the normal

rectangles are the processes that are performed by production rules and the rounded

rectangles represent the task-independent processes [7]. The input phase is where new

data comes into working memory. To get data from the environment and transfer it to

working memory, a perception module (see Figure1) must be developed in a computer

language that can interface with Soar. The interface to the perception module is via

working memory through what is called the input-link [7]. This link is where the new

structures are created for working memory.

Figure 4. The Soar processing cycle [7].

 The proposal state has several roles. This is where state elaboration, proposal of

operators, and evaluation of operators occur. Soar combines these together so that rules

for all of them fire in parallel as a wave [7]. In the elaboration state the production rules

14

fire and retract to interpret the new data from the perception module. During operator

proposal, operators are proposed for the current situation and an acceptable preference is

created. This means that the operator is a candidate for selection. After the operator is

proposed it can be evaluated and compared to the other proposed operators in a process

called operator evaluation. Evaluation rules match state structures and proposed

operators, and create preferences for the proposed operators [7]. These preferences are

then used in the decision procedure.

 The decision procedure will use the preferences created earlier to select an

operator. If there is not enough knowledge or conflicting preferences, then an impasse is

detected and a new state is created [12]. When impasses are resolved Soar has the ability

to learn what it did to solve it. If the decision procedure is possible then the current

operator is changed in working memory. Decision making in Soar has several properties:

they are made when there is knowledge, they are biased to the current operator, they are

based on run-time integration of knowledge, agent can add more preferences to affect

future decisions, and the computational complexity of the decision procedure is linear in

the number of preferences [7].

 After decision we have the application phase. Production rules will fire to apply

the operator and they will fire and retract in parallel like in the proposal phase.

Application phase has two sub phases, elaboration and application. Elaboration only

happens if there are new rules that match the selected operator. Application is where

progress is made, rules can change the state and create commands in the output-link. In

15

the output phase the commands created before are processed and sent to the external

environment.

 Integrating Soar with External Environments

 Many of the people interested in Soar want their current environment, either real

or simulated, to be able to interact with Soar. For Soar to be able to interact with external

environments it uses a mechanism that lets it receive inputs and send outputs to make

changes to the external environment. This mechanism is defined by the Soar Markup

Language (SML) interface. From within Soar, input and output are done by functions

produced in the input and output phases of the Soar processing cycle. The structures for

manipulating input and output in Soar are linked to a predefined attribute of the top-level

state, called the io attribute [12]. These structures are called the input and output links

and they either create WMEs or respond to WMEs that appear in the output structure.

SML provides us with the interface to the outside so that the input and output data

structures can be sent back and forth from the Soar Kernel to the external tool or

environment. SML is based around sending and receiving commands packaged as XML

packets [17].

Figure 5. Sample communication diagram between external environment and Soar

16

 The SML application programing interface (API) is implemented in C++ and is

exported to Java and Python using SWIG. This gives the users some options to develop

the client that communicates with Soar. In Figure 5 we have an example communication

block diagram using SML between Soar and an external environment. In this example

the environment creates an XML object that has information for Soar. That object is then

converted into an XML stream (a sequence of characters) and it is sent in to Soar where it

is converted back into an XML object and used by the Soar Kernel. The communication

will work the same way from Soar to the environment. This is only one way of

communication between Soar and an external tool or environment, if Soar and the tool or

environment exist in a single process they will communicate back and forth using XML

elements without converting them to streams. If Soar and the external tool or

environment each run on a different machine they will communicate via sockets to send

and receive an XML stream [18].

 The SML API is only one part of integrating Soar with an external environment.

Code needs to be written on both sides of the communication, the environment and the

Soar agent. On the environment side the incoming XML object needs to be translated in

something useful for the environment to process and in the Soar agent rules need to be

created to work with the input from the environment.

 Soar Debugger

 The Soar Debugger is a Java based tool created using SML API to aid in the

development and debugging of Soar agents. It is very useful because it has the capability

of stepping through the Soar processing cycle and display information about working

17

memory, the operators that are selected, the rules that have been matched, and what is in

the input and output links. The Soar Debugger can be used to run Soar agents locally or

it could be connected to an external Soar kernel. Figure 6 shows a screenshot of the Soar

Debugger.

Figure 6. Screenshot of Soar Debugger

The tool is divided into multiple windows with various functions. The large

window on the left is the Interaction window where the debugging information and print

statements are displayed [12]. Bellow it is the command box where the user can either

enter commands manually in the text box, or use the buttons below. These buttons are

the common used commands and act as shortcuts. The right hand windows are used for

18

viewing and updating specific memory elements or mechanisms used in the Soar agent.

A helpful option is located in the figure of the Soar processing cycle, where the user has

the ability to add an artificial breakpoint between cycle phases. This aids in the

debugging process because the user can view working memory after the decision or

before the input phases.

Soar in Relation to Other Cognitive Architectures

 There are different goals of cognitive architecture research; these goals are better

explained by dividing them into three main categories [19]. The first category is research

focused on biological modeling. This group of cognitive architectures are based on what

we know about the brain: neurons, neural circuits, etc. These cognitive architectures are

used to predict neural activity and cognitive behavior. Some examples are LEABRA and

SPAUN. Next there are cognitive architectures that focus on psychological modeling,

which are based on modeling human performance in a wide range of cognitive tasks and

are used to predict human reaction time and error rates for psychological tasks. Some

examples are ACT-R, EPIC, CLARION, LIDA, CHREST and 4CAPS. And the last

category is cognitive architecture research geared toward AI functionality and is inspired

by psychology and biology. Architectures from the last category emphasize in more

complex cognitive processing and longer time scales. This is the category where Soar

fits in. Other cognitive architectures in this category are Companions, Sigma, ICARUS

and CogPrime [19].

 Allen Newell classified human activity by different levels of processing and

grouped them by time scales at twelve different orders of magnitude, starting with the

19

organelle level and extending through social activity measured in months [20]. Newell’s

Time Scale of Human Action can be used to distinguish between some of the cognitive

architectures mentioned above. Table 3 shows where Soar fits in the Time Scale of

Human Action compared to other architectures. Soar spans from the cognitive to the

rational band making it a good option for creating intelligent agents.

Table 3. Newell's Time Scale of Human Action [19]

Soar Applications

 There are a variety of Soar applications as seen by the different environments that

Soar has been interfaced to (Table 1). This demonstrates Soars ability to support the

development of many different types of agents. Soar applications are usually grouped

into four groups: expert systems, knowledge-intensive cognitive models, human behavior

models, and autonomous agents [7]. These groups give us an idea of the type of

problems Soar has been successfully used for. Expert systems use artificial-intelligence

20

methods to solve problems within a specialized domain that ordinarily requires human

expertise. They utilize knowledge acquired from human experts which makes these types

of systems excel at performing specific domain tasks. Soar has been used to develop

expert systems in medical diagnosis [21], algorithm design [22], and antibody

identification in immunohematology [23], [7]. In the cognitive models group of

applications models are developed to study human performance in real-world tasks, Soar

was used to develop a model to study human performance and learning in a simplified air

traffic control task [24].

 Human behavior models, like cognitive models are used to produce behavior

similar to humans but human behavior models express theories at a higher level of

abstraction and are usually used in simulated environments. They mostly focus on

behavior generation in a realistic task environment [7]. Soar was used to develop pilot

agents for a company of helicopters, a command agent that makes decisions and plans for

the helicopter company and an approach to teamwork between the pilots [25]. This effort

is called RWA-Soar. Other human behavior models have been used to model ground

forces, air-traffic controllers and combat pilots (TacAir-Soar).

 Tac-Air Soar is one of the largest applications of Soar, it has over 8000 rules. It

integrates a wide variety of intelligent capabilities, including real-time hierarchical

execution of complex goals and plans, communication and coordination with humans and

simulated entities, maintenance of situational awareness, and the ability to accept and

respond to new orders while in flight [10]. The successful use of TacAir-soar and RWA-

Soar in a synthetic battlefield environment to perform missions with a large number of

21

aircraft demonstrates the potential to create real-time computer models that have the

knowledge and tactics needed to be able to replace human operators in controlling these

aircraft in a simulation. Figure 7 has more detail about RWA-Soar’s architecture used in

the modeling of the attack helicopter company. It shows the use of RWA-Soar in a real-

time networked environment.

Figure 7. Architecture of the Attack Helicopter Company (Soar-RWA) [25]

Figure 8 is an example of TacAir-Soar operators, which correspond to the actions and

goals human pilots perform during a mission. Abstract operators, such as “intercept an

enemy”, act as goals, which are dynamically decomposed by rules proposing more

primitive operators to achieve the abstract actions. These rules test the current situation,

including the available sensors and mission parameters, avoiding fixed, scripted

responses [10].

22

Figure 8. TacAir-Soar Example Operator Hierarchy Decomposition [10]

 The last group of Soar applications that are mentioned above, are the autonomous

agents. Autonomous agents are sometimes used in research and applications where

building agents that communicate with external environments are desirable but they are

not meant to model human behavior. Applications like controlling a robot or controlling

a group of non-human characters in a first-person-shooter game are examples of

autonomous agents. An example system is TacAir-Soar, an autonomous agent for the

flight domain created to control a plane in a flight simulator that allows asynchronous

control of the plane’s throttle, ailerons, elevator and other control surfaces by an external

system. Air-Soar controls the plane and is able to take off , level off and then follow a

preset flight pattern including a series of turns and altitude changes, returning to land on

(or near) the runway [26].

23

Soar Learning Environments

 The main learning environment used to introduce users to the way Soar operators

and rules are written is SimpleEaters. SimpleEaters is a game similar to PACMAN in

which an agent represented as a yellow circle will consume food in a 2 dimensional grid

world. It implemented using Java and interfaced with Soar via SML. The world consists

of a square grid, 6 squares wide by 6 squares high. Figure 9 shows what SimpleEaters

looks like.

Figure 9. Screenshot of SimpleEater environment.

24

There are walls surrounding the playable area and the walls inside the playable area are

generated randomly. The food is depicted as different color circles with different

numbers that represent the amount of points the agent receives if that food is consumed.

The eater consumes the food when it moves onto the square where the food is. There are

2 available moves the eater can perform, forward and rotate. The goal of the game is to

consume all the food while getting the highest score. Score gets incremented by

consuming food and decremented by 1 point for each move the agent makes.

 Another learning environment available for Soar users is the Eaters game. Eaters

world is similar to the Simple Eaters, it is a two-dimensional grid 15 by 15 squares. The

goal in Eaters is the same but there are some expanded capabilities. The main difference

is that there can be more than one eater in the world competing to consume the food. An

eater can sense the contents of squares up to 2 squares away in all directions. On each

turn, an eater can move one square north, south, east, or west. An eater can also jump two

squares north, south, east, or west. An eater can jump over a wall or another eater.

Whenever two eaters try to occupy the same cell at the same time, they collide. As a

result of the collision, their scores are averaged and they are teleported to new, random

locations on the board.

 The two main learning environments are simple tools for learning the basics of

Soar programming. Their limitations are good when starting to program because it gives

the user the ability to create a simple agent that can complete a task. But once the user is

comfortable with Eaters there is a gap in available training or testing environments. This

25

is where the need for a general purpose sandbox/environment is beneficial to learn how to

develop Soar agents.

Potential Sandbox Environment

 A solution to the lack of an interesting, rich learning environment for Soar would

be to find an environment that would support all the graphics and physics needed while

leaving the decision making for the agents to Soar. We have encountered an environment

with high resolution graphics, a physics engine and a visual agent representation [29].

Figure 10 shows a screenshot of the sandbox environment with a simple agent.

Figure 10. Screenshot of sandbox with agent

This sandbox environment is implemented with C++ and uses open source

libraries. The code was packaged with a book named Learning Game AI Programing

with Lua as a resource for the readers to learn to use Lua to control the agents [29]. The

26

book starts by giving us an overview of the sandbox environment and how the application

is set up. The author then goes into creating agents and builds upon the agents by adding

movement, navigation, decision making, perception and tactics. In Figure 11 we can see

advanced agents in the sandbox environment. This book uses the sandbox environment

to learn AI programing with Lua in a similar way that we would like to use it with Soar

making this sandbox environment a natural choice to integrate Soar.

Figure 11. Sandbox with soldier agents

Lua is a scripting language that supports procedural programming, object-oriented

programming, functional programming, data-driven programming, and data description

[27]. It was created in the early 1990s in the Pontifical Catholic University of Rio de

27

Janeiro in Brazil and it is widely used in embedded systems, mobile devices, and games

[28]. The Lua scripts are utilized in the sandbox environment to set up the visuals of the

environment and to control the agents.

Some characteristics that make this sandbox environment an acceptable solution

to learn Soar agent development are the ability to have multiple agents working in a team,

having a three dimensional world, the agents have many movement options, and agents

have the ability to shoot a projectile. These are important characteristics if we are to use

Soar in military training applications. Table 4 shows the tools we have available to us

through the sandbox to manipulate agents.

Table 4. Available agent properties in sandbox [29]

Agent Properties Physics Knowledge Agent’s
Movement

Agent steering forces

Orientation Mass Target Mass Seeking

Location Max force Target Radius Speed Pursuit

Size Max Speed Path Velocity Fleeing

 Speed Acceleration Evasion

 Velocity Force Wandering

 Path following

 Avoid

28

 As mentioned before this sandbox uses several open source libraries, these

libraries provide debugging, graphics, input handling, physics, steering, and pathfinding.

This is a list of the libraries and their functionality [29]:

 Ogre3D – Procedural geometry library that provides easy creation of objects such

as spheres, planes, cylinders, and capsules

 OIS - Platform-agnostic library that is responsible for all the input handling and

input device management

 Bullet Physics – The physics engine library that drives the agent movement and

collision detection

 OpenSteer – Local steering library that is used to calculate the steering forces of

agents

 Recast – Provides the sandbox with runtime navigation mesh generation

 Detour – Provides pathfinding on top of generated navigation meshes

Summary

In this chapter we reviewed the Soar cognitive architecture. Some of its

capabilities include the ability to use knowledge to make decisions, the ability to learn

from solved problems, and the use of various types of memory. These are characteristics

that would make for robust and complex agents in simulations as we saw in the examples

mentioned. The issue is that Soar’s initial learning curve is steep and the learning

environments available for the users, which were discussed in this chapter, do not have

enough options to create and test agents that perform decisions similar to what they

would be in a military simulation. This is why we propose the use of another sandbox

29

environment that has more options for the agents. In order to be able to use Soar in the

sandbox we would need to extend the software’s capabilities and build the

communication between Soar and the sandbox environment.

30

III. Methodology

Chapter Overview

The purpose of this chapter is to describe the method used to extend an existing

virtual environment to be able to use Soar to control agents in this environment. The

chapter describes how to interface into Soar using SML. Next, it goes into detail on how

the current sandbox environment is laid out and how the code works. Finally, it describes

the work needed to extend the sandbox.

Interfacing with Soar using SML

 Our approach to solving the problem starts with learning to develop the interface

between Soar and the existing sandbox environment. First step is getting the Soar source

code which is available online on https://github.com/SoarGroup/Soar or on the University

of Michigan Soar page http://soar.eecs.umich.edu/Downloads. After Soar is built for the

development environment, the user needs to include the SML client code, link the Soar

libraries, and configure the environment for it to work properly. For C++, the user must

include the header file "sml_Client.h" and link to the Soar shared library, named

libSoar.so (Linux), libSoar.dylib (OSX), or Soar.dll(Windows). For Java the requirement

for compiling a Java SML client is that the file sml.jar be in your class path.

 For the client to communicate with Soar it first needs to create an instance of the

Soar kernel or connect remotely to an existing Soar kernel. After creating the instance of

the kernel the client can then create an agent. Once that is complete then there are several

ways the client can use the SML API. These can be generalized as Soar control, input-

output functions and registering for events. Examples of Soar control would be sending

https://github.com/SoarGroup/Soar
http://soar.eecs.umich.edu/Downloads

31

specific commands for Soar to execute, loading agents or production rules to Soar, and

synchronous run control of Soar. The client can ask Soar to run an agent for certain

number of steps, run indefinitely or run until output from Soar is ready. This is useful

especially for debuggers where synchronous run control aids in development and error

tracing.

 Basic input-output to Soar is achieved with the SML API and the input and output

links. The client can create or edit WMEs in Soar’s input-link. Graphs and trees of

WMEs can be created using various SML API commands [17]. When completed the

client can request the changes to be sent to Soar through the communication layer. The

client can also read the contents of the output-link WMEs. This is where the client can

evaluate what the agents’ response was to the input, and use it to perform any actions the

user deems necessary for that output.

 The SML API can also be used to create an event driven client in which the

program execution will be determined by events from Soar and the handling of those

events in the code. There are various events the user can register for in the client. Some

of the event handlers available for use are: production event handlers, system event

handlers, run event handlers, agent event handlers, print event handlers, XML event

handlers, and right hand side (RHS) event handlers [18]. This gives the developer

various options for interacting with Soar on various parts of the processing cycle.

 In interfacing Soar with an existing sandbox environment the SML API is used

extensively to send the environment information and to receive commands from Soar.

The code to extend the environment was written in C++ using Visual Studio. The Soar

32

Debugger, which is a SML client application, was used to look into the WMEs while

Soar is performing its processing cycle. With this tool the user can see what is currently

in the input link and what decisions the Soar agent proposed in the output link. The

debugger will be connected to the remote Soar kernel that is being used by the C++ client

for the Soar interface.

 Before starting to work on the sandbox code tests were performed to verify if Soar

SML would work in the sandbox environment. As a first step a small SML client

application was created to test the development environment. This first application tested

if the SML client would compile, create a kernel and be able to create a WME on the

input link. After the first test application was completed successfully then we proceeded

to create a second test application in which the communication to and from the kernel

was tested. Using the Java based SimpleEater application as a reference the C++ test

application was designed to have several components. These components were: a virtual

world, an agent, and a goal. The world consisted of a long hallway with a wall at the end.

The goal of the agent was to reach that wall. In this application the code needed to send

the world information to Soar and receive a command. The agent after receiving the

information about the world would decide to move or stop. This test was completed

successfully and another test was planned to study how to read the output link by

registering for Soar events using the SML code.

There are several ways the user can register for events using SML. These are

registering for agent specific events or update events in the kernel [18]. For this test it

was decided to register for the agent output event. By registering for this event we are

33

able to read the output phase after that phase is completed in the processing cycle. After

the successful test of the SML event handlers, the next step was to study the sandbox

environment to identify what parts need to change to extend it.

Sandbox Design

 The sandbox code is designed as a framework or integrated set of libraries that

share resources and functionality. One of the most important projects in the code is

demo_framework which has all the core code used in creating the environment (i.e, the

simulation or virtual world). The layout of the project as per the book, Learning Game

AI Programing with Lua [29], is presented in Figure 12.

Figure 12. Layout of Sandbox project [29]

34

 The src folder will be the one that needs to change, it contains the source code for the

open source libraries and the sandbox itself. Each application created will live in its own

folder in src. The applications will have its own header, src and script folders.

 Before extending the sandbox we go into some detail on how the sandbox works.

The sandbox uses C++ and Lua to create the environment and the agents. Lua scripts

help set up the sandbox environment and initialize the agents. There is communication

between the C++ code and the Lua scripts. C++ is able to call Lua functions and vice

versa. The C++ code hooks into the Lua script through three predefined global Lua

functions: Sandbox_Initialize, Sandbox_Cleanup, and Sandbox_Update [29]. Lua scripts

take advantage of C++ capabilities to do all the “heavy lifting” and simply call C++

functions that are exposed to Lua through function binding. This function binding is

created by defining a constant array that maps the function’s name within Lua to the C++

function that should be called.

 Demo Framework

 The demo framework project is the core of the sandbox and contains all the

important classes that make up the sandbox. It uses an update, initialize, and cleanup

design. From this code the classes being used on the initialization and the update were

identified and modified to extend the sandbox functionality. Figure 13 shows a class

diagram of some important classes used when running the sandbox application.

Following are a list of classes and their purpose:

1. BaseApplication – responsible of configuring the application window, process

input commands and interface with the Ogre3D library. It implements the

35

Ogre::FrameListener interface for updating and drawing in the sandbox. It also

implements Ogre::WindowEventListener to handle window events.

BaseApplication also interfaces with the Object-Oriented Input System (OIS)

library, which is responsible for all the keyboard and mouse handling events.

2. SandboxApplication – this is a child class of BaseApplication. When the user

creates an application they will be creating an instance of this class. This class

implements the Cleanup, Draw, Initialize and Update functions inherited from the

parent class. A function of interest that is implemented by this class is

CreateSandbox which creates an instance of the sandbox and connects the

sandbox with the Lua script that has the sandbox information.

3. Sandbox – this class handles the calls to the Lua script and has the sandbox data.

It utilizes the Ogre::SceneNode to place the sandbox in the world.

4. Agent – this class encapsulates the agent data and handles calls to the agent Lua

scripts.

5. The following utility classes are implementing the utility pattern which separates

the need for the agent and sandbox classes to know how to interact with the Lua

VM. All the data manipulation interacting with the Lua VM is performed by the

utility classes [29].

a. AgentUtilities – handles all actions performed on AI agents from Lua

b. SandboxUtilities – handles actions performed on the sandbox from Lua

c. LuaScriptBindings – describes the C++ functions that are exposed to the

Lua scripts.

36

Figure 13. Class diagram of the important classes in the sandbox

Sandbox Initialization

 The following is the process the application takes when initializing. It starts with

a call to the run method which is part of the BaseApplication class this starts the setup

process where Ogre plugins are initialized and the resource paths are configured. Then

the configuration of the rendering window is processed where scene managers and the

camera is set up. The instance of SandboxApplication is initialized. The Lua file

manager sets the paths for the scripts and the sandbox is created by pairing it with the

Lua script file that initializes some of the sandbox options. This is where the utility

classes perform the work that the Lua scripts demands. Some options set up by Lua in

37

the sandbox are sky, agents, floor, and lighting. The final step is to create the frame

listeners to start the update loop.

Sandbox Rendering a Frame

To begin the rendering of the application the method Root::startRendering is

called from the OgreRoot class. Here is part of that code:

void Root::startRendering(void)
 {
 assert(mActiveRenderer != 0);

 mActiveRenderer->_initRenderTargets();

 // Clear event times
 clearEventTimes();

 // Infinite loop, until broken out of by frame listeners
 // or break out by calling queueEndRendering()
 mQueuedEnd = false;

 while(!mQueuedEnd)
 {
 //Pump messages in all registered RenderWindow windows
 WindowEventUtilities::messagePump();

 if (!renderOneFrame())
 break;
 }

 }

Inside the while loop we see the call to render one frame, this is an infinite loop which

the user can exit by calling queueEndRendering(). This rendering process first updates

all the frame listeners inside the BaseApplication. The BaseApplication calls the update

for the SandboxApplication object which also calls the Sandbox object to update. The

Sandbox object goes through the list of agents and calls each of their update methods.

From the Agent class then the Lua agent’s update method is then called. With this

knowledge of the initialization and rendering process, a plan can be made to extend and

create classes to add the Soar agent functionality to the sandbox environment application.

38

Code Changes

To have Soar agents controlling the entities in the sandbox, changes had to be

made in the Agent class. The Agent class became a parent class for a Soar agent class. A

Lua agent class had to be created to make use of the Lua script functionality. This gave

us the ability to have both Lua and Soar agents in the same environment and kept the

current agents created for the sandbox working. We added the capability of having Soar

agents without affecting how the sandbox works.

A parent class named BaseAgent was created. It has all the base functionality that

the Agent class had. Child classes named LuaAgent and SoarAgent were also created so

that the communication with the Lua scripts and Soar kernel will be handled by dedicated

classes. From researching the code and looking at where is the Agent class was used,

several classes were identified as the ones that had to be modified. Here is a list of the

code files that were changed:

o Agent.h – This class was kept in the project but functionality was replaced with

BaseAgent, it includes some virtual methods for the SoarAgent class and

LuaAgent class to implement.

o Agent.cpp – Source code was replaced with BaseAgent.

o Sandbox.h – The Sandbox class keeps track of the agents by maintaining a list.

Code was added to be able to keep lists for BaseAgent, LuaAgent and SoarAgent

class instances.

o Sandbox.cpp – Source code was changed to keep lists for BaseAgent, LuaAgent

and SoarAgent.

39

o AgentGroup.h – This class handles agent groups, the methods that contain

instances of Agent class were changed to use the BaseAgent class.

o AgentGroup.cpp – Source code was modified replacing Agent instances with

BaseAgent.

o AgentPath.h – Derived from OpenSteer, the methods that contain instances of

Agent class were modfied to use the BaseAgent class.

o AgentPath.cpp – Source code modified to add BaseAgent functionality.

o AgentUtilities.h – Multiple methods to initialize, update and perform cleanup.

This class had methods created for the SoarAgent class and LuaAgent class. This

is the intermediary between Lua, Soar and the sandbox.

o AgentUtilities.cpp – Important class that has the functionality to communicate

with Lua. Source code was added so that LuaAgent and SoarAgent can

communicate with the Lua virtual machine.

o SandboxUtilities.h – This class has methods to create Lua and Soar agents in the

sandbox. New methods were written to perform these tasks.

o SandboxUtilities.cpp – Source code added for the creation of Soar and Lua agents

from the Lua script.

o LuaScriptBindings.h – This class has the list of methods that can be called from

the Lua script. Current methods involving the Agent class were changed to use

LuaAgent and SoarAgent classes.

o LuaScriptBindings.cpp – Source code modified to add the LuaAgent and

SoarAgent capabilities.

40

o SandboxObject.h – The Agent class is friend class to SandboxObject. The new

implementation uses BaseAgent as a friend class to SandboxObject.

o SandboxObject.cpp – Souce code changed BaseAgent for Agent as friend class.

o NavigationUtilities.cpp – The default configuration for the agent movement is set

up here. Code was modified to use BaseAgent class.

Summary

This chapter described the method used to extend an existing virtual environment

to use Soar to control the agents. It also described how to interface into Soar using SML.

Next, it went into detail on how the current sandbox environment is laid out and how the

code works. Finally, it discussed which code files were changed to extend the sandbox.

41

IV. Results

Chapter Overview

This chapter contains information about the initial tests performed with Soar SML

in the development environment. It presents the design and code changes implemented to

utilize Soar to control agents in the sandbox. Then, the chapter goes into the various

agents created to test the solution. It ends with the summary of the results of the Soar

agent tests.

Initial SML Testing

 This section details the tests completed to verify Soar and SML in the

development environment. The initial test was designed to create an instance of the Soar

kernel and to populate a WME in the input link. To set up the development environment

the header file "sml_Client.h" was included and the Soar shared library was linked. The

instance of the Soar kernel was created utilizing the command Kernel::

CreateKernelInNewThread(). After testing that the kernel was created successfully the

input link was created and information was committed to Soar’s working memory. To

verify if this was successful, we utilized the Soar debugger. By connecting the Soar

debugger to the kernel (created in the SML application), we were able to inspect the

contents of the input link. It was verified that the WME that was created in the initial test

existed in the Soar kernel in the input link. Figure 14 shows a screenshot of the input link

from the Soar debugger.

42

Figure 14. SML test, screenshot of Soar debugger

The second test was designed to check the communication between Soar and the

SML client while utilizing a Soar agent’s decision making capability. In this test the

agent needed to decide if it wanted to move or stop. The SML client sent the information

about the world to the Soar agent. The world consisted of a long hallway with a wall at

the end. This was represented in the code as an array. The array was populated with the

string “empty” representing empty cells and “wall” to represent the wall at the end of the

hall. The Soar agent receives from the SML client what is in front of it, and it decides if

it should move forwards or stop. While the agent makes the decisions we can use the

Soar debugger to verify that the Soar kernel was receiving input and producing output

decisions. The test also used a command prompt to display debugging output from the

C++ SML client. The test was successful and the agent was able to move to the end of

the hall and stop when it encountered a wall in front. Figure 15 shows part of the Soar

43

agent code utilized in the test. Figure 16 is a screenshot of the input link and figure 17

shows the output link, which is the communication from Soar to the client.

Figure 15. Fragment Soar agent code for hallway test

Figure 16. Soar debugger screenshot, simple environment test.

44

Figure 17. Soar agent output.

Once the major elements of the SML API were tested the next step was to

investigate other ways in which the SML client could manage the input and output link.

The SML API has the capability of utilizing an event model framework in which the

client can register for Soar events. There are many events you can register for and with

each version of Soar that list grows [17]. To test the SML client ability to register and

handle Soar events a test was conducted. The concept of the world as a long hallway was

utilized here. The C++ client code was modified by registering for the Soar run event

and the event handlers were created. Figure 15 shows part of the C++ code used to

register for events. A benefit of utilizing events was the ability to also control the

simulation with the Soar debugger. Figure 19 shows the output from the agent as seen on

the Soar debugger. Once these initial tests were complete it was time to study the

sandbox environment and work on extending that application.

45

Figure 18. C++ SML client code to register for Soar event

Figure 19. Agent output screenshot from Soar debugger.

Code Changes to Demo Framework

 Chapter III introduced a list of code files that needed to be changed in the demo

framework application of the sandbox. The new implementation of the Agent class is

called BaseAgent and it has a child class named LuaAgent. The LuaAgent class works

with the Lua scripts and the sandbox. The SoarAgent class is a child of LuaAgent and

inherits all the functionality that helps with the communication of the Lua scripts and the

46

sandbox. The SoarAgent class serves as the parent class for Soar agent classes. Figure

16 shows the diagram of the new implementation of the agent classes. Users that want to

create Soar agents will need to inherit from SoarAgent class. Users can also have Lua

agents and Soar agents in the sandbox at the same time. This design uses the Lua scripts

to set up the sandbox and handle the physics and animation of the agents. The Soar agent

code will be the decision maker part of the agent. Each Soar agent has a Lua script

associated with it.

Figure 20. Diagram of Agent classes

47

Soar Agent Tests

 After the completion of the code changes necessary to be able to use the new

agent classes, the next step was to create agents in the sandbox controlled by Soar. First,

we create the sandbox project for the agents to exist on. The project my_sandbox was

created for this purpose. This sandbox project includes the MySandbox class and the Lua

scripts necessary to set up the sandbox. These Lua scripts generate the floor, light the

sky, and initialize the agents in the sandbox. The Soar agents created for the tests are

based on Lua agents available in the sandbox project code [29]. Creating Soar agents that

mimic existing agents was a way to test the new functionality without having to design

agents from the ground up.

 Seeking Agent

 The Soar seeking agent moves to a target point in the environment and once it

reaches that point it randomly selects another point in the environment to set as its target.

To create a Soar seeking agent a SoarSeekingAgent class was created. This includes a

header file and a source file. This new class is a child of SoarAgent class and becomes

part of the demo framework project. The SoarSeekingAgent class creates an instance of

the Soar kernel; it also sends the environment information to the Soar agent and receives

the output from Soar. In the case of the seeking agent the code utilizes the current

agent’s position and the position of the agent’s target to calculate a distance. This

distance is then sent to the Soar kernel for the decision making process. Since the Lua

scripts are responsible for the initialization of the sandbox, code needed to be added to

the LuaScriptBindings and LuaScriptUtilities classes. This code makes it possible for the

48

Lua script to create a SoarSeekingAgent instance. After the C++ code is complete the

agent needs a Soar file with the decision making code which runs on the Soar kernel, and

a Lua script that handles the agent representation and movement. The Soar agent code

will receive the distance parameter calculated by the SoarSekingAgent code and decide

whether to continue heading towards the target point or choose a new target point.

Having all the components ready the test was ran. The Soar Debugger was used to view

the input and output on the Soar kernel side. Figure 17 shows a screenshot of the output

from the Soar agent from the debugger, line 1711 shows the output “newtarget” which

was used by the SoarSeekingAgent code to initiate the new target process. Figure 18 is a

screenshot of the sandbox with the agent and the target point.

Figure 21. Screenshot of Soar Debugger (seeking agent)

49

Figure 22. Screenshot of seeking agent

 Follower Agent

 The follower agent is similar to the seeking agent in because it needs to travel to a

target point. In the case of the follower agent the target is another agent. This agent can

be used to follow a leader or to pursue an enemy. The SoarFollowerAgent class was

created as a child class of SoarAgent. This class adds a member named pLeader. The

pLeader is a pointer to a BaseAgent element. Since Soar agents and Lua agents inherit

from BaseAgent, this gives us the capability to have any type of agent as the leader. The

utility classes and binding classes used by Lua scripts to call C++ functions were changed

to add the capability of Lua to initialize follower agents. After updating the utility clases

50

the MySandbox class has to be updated to initialize the different types of agents. For this

test a Soar seeking agent was utilized as the leader.

 Each frame rendered on the sandbox environment calls the update method of the

agents. The update code in SoarFollowerAgent gets the current position of the leader

from the pointer and compares it with the agent’s position. This distance between the

follower and the leader is then sent to the Soar kernel and it is used by the Soar agent to

decide to stop following or to continue to follow. Figure 19 shows the output from the

Soar agent as seen from the Soar Debugger. Once the follower agent gets to a predefined

distance from the leader, the follower agent stops and waits until that distance increases

to continue following. Figure 20 shows a Soar seeking agent with one Soar follower

agent. By creating more than one follower agent we can have a group of follower agents.

When performing this test we can see how the group steering behaves by keeping the

agents within the group a minimum distance from each other. Figure 21 shows a Soar

seeking agents and a group of Soar follower agents.

Figure 23. Screenshot from Soar Debugger (Follower Agent)

51

Figure 24. Leader agent with follower agent

Figure 25. Leader agent with group of followers

52

 Waypoint Agent

 The purpose of the waypoint agent is to go through a list of predetermined points.

Waypoints are used to aid in navigation. This test replicates a multi-waypoint mission

where an agent needs to travel a certain path. Similar to the previous Soar agents a new

class had to be created, named SoarWaypointAgent. The Lua utility classes were

updated to be able to initialize these types of agents from the Lua script. The Lua script

in the my_sandbox project was updated so that a Soar waypoint agent is initialized. The

Lua script agent file that acts as the helper for the Soar agent will have the list of points.

This gives us the ability to change the amount of waypoints and modify the list without

having to compile the project. The SoarWaypointAgent gets the position of the current

target and the position of the agent and calculates the distance between them. This

distance is sent to the Soar agent’s input link as a working memory element. The Soar

agent goes through its decision cycle and outputs “samewaypoint” to keep it current

heading or “nextwaypoint” if the distance from the agent and its target reaches a certain

value. The SoarWaypointAgent code will take the output from the Soar agent and

communicate it to the Lua script. The Lua script uses this to update the agent’s target to

the new waypoint if needed. This agent was tested by itself in the sandbox and later it

was tested by initializing the 3 different types of Soar agents that had been developed so

far. The screen shot of the test with all agents can be seen in Figure 22.

53

Figure 26. Soar agents in the sandbox, Waypoint Agent (top), Follower Agents (group of 4) and

Seeking Agent (center right)

 Soar and Lua agents

 Two tests were used to verify the ability to have Lua agents and Soar agents

working in the same sandbox environment. The first test added a Lua agent as a follower

agent in a group. This group consisted of the Lua agent and three Soar follower agents.

They were all following a Soar seeking agent. To create this test the sandbox Lua script

was modified to initialize the Soar seeking agent and then to create the different types of

follower agents. To be able to identify the Lua agent in the group the AgentUtilities Lua

script was modified so that the Lua agent was visually recognizable. Figure 23 shows the

result of the test. The Lua agent behaved as expected as part of the follower group. The

second test added a Lua agent as the leader of the group. A script named Seeking-

54

LuaAgent was created based on the agent in the Lua book [29]. Figure 24 shows a

screenshot of the test where the Lua agent is the leader.

Figure 27. Screenshot Lua follower agent

Figure 28. Screenshot Lua agent as leader

55

Agent Test Result Summary

 Testing was performed throughout the development process. The first changes in

the code were not to create Soar agents but to give the user the capability to do so by

extending the software. After these changes, we performed regression testing by running

the agents provided in the book Learning Game AI Programing with Lua [29]. By

running these agents we verified that the code that was previously working still

performed correctly. After regression testing, the Soar agent classes were created. These

include the SoarSeekingAgent, SoarFollowerAgent, and the SoarWaypoint agent classes.

All the Soar agents were tested visually and functionally with the Soar Debugger. The

Soar agents were able to communicate with the sandbox successfully. The decision

making capability of Soar combined with the Lua scripts was capable of controling the

agents in the sandbox.

Summary

 This chapter discussed the tests performed with Soar SML in the development

environment. It presented the changes in the agent clases implemented to utilize Soar to

control agents. This chapter also showed the different Soar agents that were created and

some screenshots of the agents in the sandbox. Finally we have a brief discussion of the

agent tests.

56

V. Conclusions and Recommendations

Chapter Overview

This chapter presents the conclusions and significance of the research performed.

Additionally, recommendations for future work in extending the sandbox environment

and some lessons learned about Soar are provided.

Conclusions of Research

This research successfully extended the sandbox, an off-the-shelf open-source

software product, and developed a learning environment for creating Soar agents. The

results of the tests performed with the Soar agents show that it is possible to extend the

sandbox environment and give it the capability of using Soar and Lua to control

intelligent agents. The Soar cognitive architecture requires effort to learn and time to

practice in order to become proficient. If your goal is to create simple intelligent agents

or you have a limited time to develop your system, Soar may not be the right tool to use.

However, if your system needs to integrate learning with problem solving, have parallel

reasoning, or capable of complex intelligent agents Soar could be an appropriate tool.

Significance of Research

By extending the sandbox environment and enabling it to use the Soar cognitive

architecture to create intelligent agents, the Soar community and interested parties now

have a customizable environment that is rich in features to learn and practice the Soar

agent development process. This sandbox being similar to military simulations gives

users chances to not only learn to create Soar agents, but also determine if Soar is the

57

right choice for their modelling needs. This reaserch also presents a blueprint on how to

create Soar agents using the sandbox environment so that future research and more

advanced agents can be developed.

Recommendations for Action

The next step in the process of extending the environment would be to update the

visualization of the current Soar agents. This will give the ability of the Soar agents to

have the appearance of human beings. Additionally, the sandbox environment has

features that were not able to be used by the agents that were tested. These features, like

having agents in different teams and communicate with each other, would be beneficial in

creating advanced agents that perform simulated military engagements. It is

recommended to utilize the sandbox environment to build Soar agents that could later be

used as intelligent entities in military simulations.

Summary

This chapter presents the successful outcome of extending the sandbox

environment to use the Soar cognitive architecture. It also talks about the significance of

the research and how the environment bridges the gap between what was available for

learning Soar and military simulations. It ends with the recommendations of utilizing this

sandbox to bould advanced Soar agents that could be used in future simulations.

58

Appendix A: Sandbox Code

Project: my_sandbox

MySandbox Class

/**

* Author: Daniel Lugo

*

* Software written as part of Master's Thesis

*/

#include "my_sandbox/include/MySandbox.h"

#include <iostream>

#include "sml_Client.h"

MySandbox::MySandbox()

 : SandboxApplication("My Sandbox") {}

MySandbox::~MySandbox() {

}

void MySandbox::Cleanup()

{

 SandboxApplication::Cleanup();

}

void MySandbox::Draw()

{

 SandboxApplication::Draw();

}

void MySandbox::Update()

{

 SandboxApplication::Update();

}

void MySandbox::Initialize() {

 SandboxApplication::Initialize();

 AddResourceLocation("../../../src/my_sandbox/script");

 CreateSandbox("Sandbox.lua");

}

59

Project: demo_framework

BaseAgent Class

/**

*

* Author: Daniel Lugo

*

* Based on Agent class written by David Young

*

* Copyright (c) 2013 David Young dayoung@goliathdesigns.com

*

* This software is provided 'as-is', without any express or implied

* warranty. In no event will the authors be held liable for any damages

* arising from the use of this software.

*

* Permission is granted to anyone to use this software for any purpose,

* including commercial applications, and to alter it and redistribute it

* freely, subject to the following restrictions:

*

* 1. The origin of this software must not be misrepresented; you must not

* claim that you wrote the original software. If you use this software

* in a product, an acknowledgment in the product documentation would be

* appreciated but is not required.

*

* 2. Altered source versions must be plainly marked as such, and must not be

* misrepresented as being the original software.

*

* 3. This notice may not be removed or altered from any source

* distribution.

*/

#include "PrecompiledHeaders.h"

#include "demo_framework/include/BaseAgent.h"

#include "demo_framework/include/AgentGroup.h"

#include "demo_framework/include/AgentUtilities.h"

#include "demo_framework/include/AnimationUtilities.h"

#include "demo_framework/include/LuaScriptUtilities.h"

#include "demo_framework/include/PhysicsUtilities.h"

#include "demo_framework/include/SandboxObject.h"

#include "demo_framework/include/SandboxUtilities.h"

namespace

{

60

 inline Ogre::Quaternion BtQuaterionToQuaternion(const btQuaternion&

quaternion)

 {

 return Ogre::Quaternion(

 quaternion.w(), quaternion.x(), quaternion.y(), quaternion.z());

 }

 inline btQuaternion QuaternionToBtQuaternion(

 const Ogre::Quaternion& quaternion)

 {

 return btQuaternion(quaternion.x, quaternion.y, quaternion.z,

quaternion.w);

 }

 inline OpenSteer::Vec3 Vector3ToVec3(const Ogre::Vector3& vector)

 {

 return OpenSteer::Vec3(

 static_cast<float>(vector.x),

 static_cast<float>(vector.y),

 static_cast<float>(vector.z));

 }

 inline Ogre::Vector3 Vec3ToVector3(const OpenSteer::Vec3& vector)

 {

 return Ogre::Vector3(

 Ogre::Real(vector.x), Ogre::Real(vector.y), Ogre::Real(vector.z));

 }

 inline btVector3 Vector3ToBtVector3(const Ogre::Vector3& vector)

 {

 return btVector3(

 btScalar(vector.x), btScalar(vector.y), btScalar(vector.z));

 }

} // anonymous namespace

// Some default humanistic values.

const float BaseAgent::DEFAULT_AGENT_HEALTH = 100.0f;

const float BaseAgent::DEFAULT_AGENT_HEIGHT = 1.6f; // meters (5.2 feet)

const float BaseAgent::DEFAULT_AGENT_MASS = 90.7f; // kilograms (200 lbs)

const float BaseAgent::DEFAULT_AGENT_MAX_FORCE = 1000.0f; // newtons

(kg*m/s^2)

const float BaseAgent::DEFAULT_AGENT_MAX_SPEED = 7.0f; // m/s (23.0 ft/s)

const float BaseAgent::DEFAULT_AGENT_RADIUS = 0.3f; // meters (1.97 feet)

const float BaseAgent::DEFAULT_AGENT_SPEED = 0.0f; // m/s (0 ft/s)

61

const float BaseAgent::DEFAULT_AGENT_TARGET_RADIUS = 0.5f; // meters (1.64

feet)

const float BaseAgent::DEFAULT_AGENT_WALKABLE_CLIMB =

DEFAULT_AGENT_RADIUS / 2.0f;

const float BaseAgent::DEFAULT_AGENT_WALKABLE_SLOPE = 45.0f;

const Ogre::String BaseAgent::DEFAULT_AGENT_TEAM = "team1";

BaseAgent::BaseAgent(

 const unsigned int agentId,

 Ogre::SceneNode* const sceneNode,

 btRigidBody* const rigidBody)

 : Object(agentId, Object::AGENT),

 sandbox_(NULL),

 health_(DEFAULT_AGENT_HEALTH),

 height_(DEFAULT_AGENT_HEIGHT),

 hasPath_(false),

 sceneNode_(sceneNode),

 maxForce_(DEFAULT_AGENT_MAX_FORCE),

 maxSpeed_(DEFAULT_AGENT_MAX_SPEED),

 mass_(DEFAULT_AGENT_MASS),

 radius_(DEFAULT_AGENT_RADIUS),

 speed_(DEFAULT_AGENT_SPEED),

 rigidBody_(rigidBody),

 targetRadius_(DEFAULT_AGENT_TARGET_RADIUS),

 team_(DEFAULT_AGENT_TEAM),

 target_(Ogre::Vector3::ZERO)

{

 assert(sceneNode_);

 // SceneNode shouldn't have attached entities already.

 assert(!sceneNode_->numAttachedObjects());

 // SceneNode shouldn't have attached children.

 assert(!sceneNode_->numChildren());

 if (rigidBody_)

 {

 PhysicsUtilities::SetRigidBodyMass(rigidBody_,

DEFAULT_AGENT_MASS);

 rigidBody->setUserPointer(this);

 }

62

 SetForward(Ogre::Vector3::UNIT_Z);

}

BaseAgent::~BaseAgent()

{

 sandbox_ = NULL;

 sceneNode_ = NULL;

 if (rigidBody_)

 {

 PhysicsUtilities::DeleteRigidBody(rigidBody_);

 }

 rigidBody_ = NULL;

}

void BaseAgent::ClearPath()

{

 hasPath_ = false;

}

Ogre::Vector3 BaseAgent::ForceToAlign(

 const Ogre::Real maxDistance,

 const Ogre::Degree maxAngle,

 const AgentGroup& group)

{

 const float maxCosAngle = cosf(maxAngle.valueRadians());

 return Vec3ToVector3(steerForAlignment(maxDistance, maxCosAngle, group));

}

Ogre::Vector3 BaseAgent::ForceToAvoidAgents(

 const std::vector<BaseAgent*>& agents, const float predictionTime)

{

 const static float MIN_PREDICTION_TIME = 0.1f;

 OpenSteer::AVGroup group;

 std::vector<BaseAgent*>::const_iterator it;

 // TODO(David Young): Avoid copying into the AVGroup.

63

 for (it = agents.begin(); it != agents.end(); ++it)

 {

 BaseAgent* const agent = *it;

 group.push_back(agent);

 }

 return Vec3ToVector3(steerToAvoidNeighbors(

 std::max(MIN_PREDICTION_TIME, predictionTime), group));

}

Ogre::Vector3 BaseAgent::ForceToAvoidObjects(

 const std::map<unsigned int, SandboxObject*>& objects,

 const float predictionTime)

{

 const static float MIN_PREDICTION_TIME = 0.1f;

 const float timeToCollision = std::max(MIN_PREDICTION_TIME,

predictionTime);

 OpenSteer::ObstacleGroup group;

 std::map<unsigned int, SandboxObject*>::const_iterator it;

 OpenSteer::Vec3 avoidForce = OpenSteer::Vec3::zero;

 // TODO(David Young): Avoid copying into the ObstacleGroup.

 for (it = objects.begin(); it != objects.end(); ++it)

 {

 SandboxObject* const object = it->second;

 // Only avoid objects that aren't fixed.

 if (object->GetMass() > 0)

 {

 avoidForce += object->steerToAvoid(*this, timeToCollision);

 }

 }

 return Vec3ToVector3(avoidForce);

}

Ogre::Vector3 BaseAgent::ForceToCombine(

 const Ogre::Real maxDistance,

 const Ogre::Degree maxAngle,

 const AgentGroup& group)

{

 const float maxCosAngle = cosf(maxAngle.valueRadians());

64

 return Vec3ToVector3(steerForCohesion(maxDistance, maxCosAngle, group));

}

Ogre::Vector3 BaseAgent::ForceToFleePosition(const Ogre::Vector3& position)

{

 return Vec3ToVector3(steerForFlee(Vector3ToVec3(position)));

}

Ogre::Vector3 BaseAgent::ForceToFollowPath(const float predicitionTime)

{

 return ForceToFollowPath(path_, predicitionTime);

}

Ogre::Vector3 BaseAgent::ForceToFollowPath(

 AgentPath& path, const float predictionTime)

{

 const static int FORWARD_DIRECTION = 1;

 const static float MIN_PREDICTION_TIME = 0.1f;

 if (path.GetNumberOfPathPoints())

 {

 return Vec3ToVector3(steerToFollowPath(

 FORWARD_DIRECTION,

 std::max(MIN_PREDICTION_TIME, predictionTime),

 path));

 }

 return Ogre::Vector3(0.0f);

}

Ogre::Vector3 BaseAgent::ForceToPosition(const Ogre::Vector3& position)

{

 return Vec3ToVector3(steerForSeek(Vector3ToVec3(position)));

}

Ogre::Vector3 BaseAgent::ForceToStayOnPath(const float predictionTime)

{

 return ForceToStayOnPath(path_, predictionTime);

}

Ogre::Vector3 BaseAgent::ForceToSeparate(

 const Ogre::Real maxDistance,

 const Ogre::Degree maxAngle,

 const AgentGroup& group)

{

65

 const float maxCosAngle = cosf(maxAngle.valueRadians());

 return Vec3ToVector3(steerForSeparation(maxDistance, maxCosAngle, group));

}

Ogre::Vector3 BaseAgent::ForceToStayOnPath(

 AgentPath& path, const float predictionTime)

{

 const static float MIN_PREDICTION_TIME = 0.1f;

 if (path.GetNumberOfPathPoints())

 {

 return Vec3ToVector3(steerToStayOnPath(

 std::max(MIN_PREDICTION_TIME, predictionTime), path));

 }

 return Ogre::Vector3(0.0f);

}

Ogre::Vector3 BaseAgent::ForceToTargetSpeed(const Ogre::Real speed)

{

 return Vec3ToVector3(steerForTargetSpeed(float(speed)));

}

Ogre::Vector3 BaseAgent::ForceToWander(const Ogre::Real deltaMilliseconds)

{

 return Vec3ToVector3(steerForWander(deltaMilliseconds));

}

OpenSteer::Vec3 BaseAgent::forward() const

{

 return Vector3ToVec3(GetForward());

}

Ogre::Vector3 BaseAgent::GetForward() const

{

 if (rigidBody_)

 {

 const btQuaternion quaterion = rigidBody_->getOrientation();

 return Ogre::Quaternion(

 quaterion.w(), quaterion.x(), quaterion.y(), quaterion.z()).zAxis();

 }

 else if (sceneNode_)

 {

 return sceneNode_->getOrientation().zAxis();

66

 }

 return Ogre::Vector3::UNIT_Z;

}

Ogre::Real BaseAgent::GetHealth() const

{

 return health_;

}

Ogre::Real BaseAgent::GetHeight() const

{

 return height_;

}

Ogre::Vector3 BaseAgent::GetLeft() const

{

 if (rigidBody_)

 {

 const btQuaternion quaterion = rigidBody_->getOrientation();

 return Ogre::Quaternion(

 quaterion.w(), quaterion.x(), quaterion.y(), quaterion.z()).xAxis();

 }

 else if (sceneNode_)

 {

 return sceneNode_->getOrientation().xAxis();

 }

 return Ogre::Vector3::UNIT_X;

}

Ogre::Real BaseAgent::GetMass() const

{

 if (rigidBody_)

 {

 return Ogre::Real(PhysicsUtilities::GetRigidBodyMass(rigidBody_));

 }

 else

 {

 return mass_;

 }

}

67

Ogre::Real BaseAgent::GetMaxForce() const

{

 return maxForce_;

}

Ogre::Real BaseAgent::GetMaxSpeed() const

{

 return maxSpeed_;

}

Ogre::Quaternion BaseAgent::GetOrientation() const

{

 if (rigidBody_)

 {

 return BtQuaterionToQuaternion(rigidBody_->getOrientation());

 }

 else if (sceneNode_)

 {

 return sceneNode_->_getDerivedOrientation();

 }

 return Ogre::Quaternion::ZERO;

}

AgentPath BaseAgent::GetPath()

{

 return path_;

}

const AgentPath& BaseAgent::GetPath() const

{

 return path_;

}

Ogre::Vector3 BaseAgent::GetPosition() const

{

 if (rigidBody_)

 {

 return PhysicsUtilities::BtVector3ToVector3(

 rigidBody_->getCenterOfMassPosition());

 }

 else if (sceneNode_)

 {

68

 return sceneNode_->_getDerivedPosition();

 }

 return Ogre::Vector3::ZERO;

}

Ogre::Real BaseAgent::GetRadius() const

{

 return radius_;

}

btRigidBody* BaseAgent::GetRigidBody()

{

 return rigidBody_;

}

Sandbox* BaseAgent::GetSandbox()

{

 return sandbox_;

}

Ogre::SceneNode* BaseAgent::GetSceneNode()

{

 return sceneNode_;

}

Ogre::Real BaseAgent::GetSpeed() const

{

 if (rigidBody_)

 {

 const btVector3 velocity = rigidBody_->getLinearVelocity();

 // Ignore movement along the y axis.

 // Gravity does not contribute to the speed of the Agent.

 return Ogre::Real(

 Ogre::Vector3(velocity.x(), 0, velocity.z()).length());

 }

 else

 {

 return speed_;

 }

}

Ogre::Vector3 BaseAgent::GetTarget() const

{

69

 return target_;

}

Ogre::Real BaseAgent::GetTargetRadius() const

{

 return targetRadius_;

}

const Ogre::String& BaseAgent::GetTeam() const

{

 return team_;

}

Ogre::Vector3 BaseAgent::GetUp() const

{

 if (rigidBody_)

 {

 const btQuaternion quaterion = rigidBody_->getOrientation();

 return Ogre::Quaternion(

 quaterion.w(), quaterion.x(), quaterion.y(), quaterion.z()).yAxis();

 }

 else if (sceneNode_)

 {

 return sceneNode_->getOrientation().yAxis();

 }

 return Ogre::Vector3::UNIT_Y;

}

Ogre::Vector3 BaseAgent::GetVelocity() const

{

 if (rigidBody_)

 {

 const btVector3 velocity = rigidBody_->getLinearVelocity();

 return Ogre::Vector3(velocity.x(), velocity.y(), velocity.z());

 }

 return GetForward() * speed_;

}

OpenSteer::Vec3 BaseAgent::globalizeDirection(

 const OpenSteer::Vec3& localDirection) const

{

 (void)localDirection;

70

 // not implemented

 assert(false);

 return OpenSteer::Vec3();

}

OpenSteer::Vec3 BaseAgent::globalizePosition(

 const OpenSteer::Vec3& localPosition) const

{

 (void)localPosition;

 // not implemented

 assert(false);

 return OpenSteer::Vec3();

}

OpenSteer::Vec3 BaseAgent::globalRotateForwardToSide(

 const OpenSteer::Vec3& globalForward) const

{

 (void)globalForward;

 // not implemented

 assert(false);

 return OpenSteer::Vec3();

}

bool BaseAgent::HasPath() const

{

 return hasPath_;

}

void BaseAgent::Initialize()

{

 //AgentUtilities::CreateRigidBodyCapsule(this);

 //AgentUtilities::CallLuaAgentInitialize(this);

}

OpenSteer::Vec3 BaseAgent::localizeDirection(

 const OpenSteer::Vec3& globalDirection) const

{

 // TODO(David Young): This is very slow, convert to native Ogre math.

 return OpenSteer::Vec3(

71

 globalDirection.dot(Vector3ToVec3(GetLeft())),

 globalDirection.dot(Vector3ToVec3(GetUp())),

 globalDirection.dot(Vector3ToVec3(GetForward())));

}

OpenSteer::Vec3 BaseAgent::localizePosition(

 const OpenSteer::Vec3& globalPosition) const

{

 OpenSteer::Vec3 globalOffset =

 globalPosition - Vector3ToVec3(GetPosition());

 return localizeDirection(globalOffset);

}

OpenSteer::Vec3 BaseAgent::localRotateForwardToSide(

 const OpenSteer::Vec3& side) const

{

 (void)side;

 // not implemented

 assert(false);

 return OpenSteer::Vec3();

}

float BaseAgent::mass() const

{

 return static_cast<float>(GetMass());

}

float BaseAgent::maxForce() const

{

 return static_cast<float>(GetMaxForce());

}

float BaseAgent::maxSpeed() const

{

 return static_cast<float>(GetMaxSpeed());

}

OpenSteer::Vec3 BaseAgent::position() const

{

 return Vector3ToVec3(GetPosition());

}

72

OpenSteer::Vec3 BaseAgent::predictFuturePosition(

 const float predictionTime) const

{

 return Vector3ToVec3(PredictFuturePosition(Ogre::Real(predictionTime)));

}

Ogre::Vector3 BaseAgent::PredictFuturePosition(

 const Ogre::Real predictionTime) const

{

 return GetPosition() + GetVelocity() * std::max(Ogre::Real(0), predictionTime);

}

float BaseAgent::radius() const

{

 return static_cast<float>(GetRadius());

}

void BaseAgent::regenerateOrthonormalBasisUF(

 const OpenSteer::Vec3& newUnitForward)

{

 (void)newUnitForward;

 // not implemented

 assert(false);

}

void BaseAgent::regenerateOrthonormalBasis(const OpenSteer::Vec3& newForward)

{

 (void)newForward;

 // not implemented

 assert(false);

}

void BaseAgent::regenerateOrthonormalBasis(

 const OpenSteer::Vec3& newForward, const OpenSteer::Vec3& newUp)

{

 (void)newForward;

 (void)newUp;

 // not implemented

 assert(false);

}

void BaseAgent::RemovePath()

{

73

 hasPath_ = false;

}

void BaseAgent::resetLocalSpace()

{

 // not implemented

 assert(false);

}

bool BaseAgent::rightHanded() const

{

 return true;

}

void BaseAgent::SetForward(const Ogre::Quaternion& orientation)

{

 if (rigidBody_)

 {

 PhysicsUtilities::SetRigidBodyOrientation(

 rigidBody_, QuaternionToBtQuaternion(orientation));

 }

 if (sceneNode_)

 {

 sceneNode_->setOrientation(orientation);

 }

}

void BaseAgent::SetForward(const Ogre::Vector3& forward)

{

 Ogre::Vector3 up = Ogre::Vector3::UNIT_Y;

 const Ogre::Vector3 zAxis = forward.normalisedCopy();

 const Ogre::Vector3 xAxis = up.crossProduct(zAxis);

 const Ogre::Vector3 yAxis = zAxis.crossProduct(xAxis);

 Ogre::Quaternion orientation(xAxis, yAxis, zAxis);

 // Update both the rigid body and scene node.

 if (rigidBody_)

 {

 PhysicsUtilities::SetRigidBodyOrientation(

 rigidBody_, QuaternionToBtQuaternion(orientation));

 }

74

 if (sceneNode_)

 {

 sceneNode_->setOrientation(orientation);

 }

}

OpenSteer::Vec3 BaseAgent::setForward(OpenSteer::Vec3 forward)

{

 (void)forward;

 // not implemented

 assert(false);

 return OpenSteer::Vec3();

}

void BaseAgent::SetHealth(const Ogre::Real health)

{

 health_ = health;

}

void BaseAgent::SetHeight(const Ogre::Real height)

{

 height_ = std::max(Ogre::Real(0), height);

 if (rigidBody_)

 {

 //AgentUtilities::UpdateRigidBodyCapsule(this);

 }

}

float BaseAgent::setMass(float mass)

{

 SetMass(Ogre::Real(mass));

 return this->mass();

}

void BaseAgent::SetMass(const Ogre::Real mass)

{

 if (rigidBody_)

 {

 PhysicsUtilities::SetRigidBodyMass(

 rigidBody_, std::max(Ogre::Real(0), mass));

 }

75

 mass_ = mass;

}

float BaseAgent::setMaxForce(float force)

{

 SetMaxForce(Ogre::Real(force));

 return maxForce();

}

void BaseAgent::SetMaxForce(const Ogre::Real force)

{

 maxForce_ = std::max(Ogre::Real(0), force);

}

float BaseAgent::setMaxSpeed(float speed)

{

 SetMaxSpeed(Ogre::Real(speed));

 return maxSpeed();

}

void BaseAgent::SetMaxSpeed(const Ogre::Real speed)

{

 maxSpeed_ = std::max(Ogre::Real(0), speed);

}

void BaseAgent::SetPath(const AgentPath& path)

{

 path_ = path;

 hasPath_ = true;

}

OpenSteer::Vec3 BaseAgent::setPosition(OpenSteer::Vec3 position)

{

 SetPosition(Vec3ToVector3(position));

 return this->position();

}

void BaseAgent::SetPosition(const Ogre::Vector3 position)

{

 if (rigidBody_)

 {

 PhysicsUtilities::SetRigidBodyPosition(

 rigidBody_, Vector3ToBtVector3(position));

76

 }

 if (sceneNode_)

 {

 sceneNode_->setPosition(position);

 }

}

float BaseAgent::setRadius(float radius)

{

 SetRadius(Ogre::Real(radius));

 return this->radius();

}

void BaseAgent::SetRadius(const Ogre::Real radius)

{

 if (sceneNode_)

 {

 radius_ = std::max(Ogre::Real(0), radius);

 }

 if (rigidBody_)

 {

 //AgentUtilities::UpdateRigidBodyCapsule(this);

 }

}

void BaseAgent::SetRigidBody(btRigidBody* const rigidBody)

{

 rigidBody_ = rigidBody;

 if (rigidBody_)

 {

 rigidBody_->setUserPointer(this);

 }

}

void BaseAgent::SetSandbox(Sandbox* const sandbox)

{

 sandbox_ = sandbox;

}

OpenSteer::Vec3 BaseAgent::setSide(OpenSteer::Vec3 side)

{

77

 (void)side;

 // not implemented

 assert(false);

 return OpenSteer::Vec3();

}

float BaseAgent::setSpeed(float speed)

{

 SetSpeed(Ogre::Real(speed));

 return this->speed();

}

void BaseAgent::SetSpeed(const Ogre::Real speed)

{

 // TODO(David Young): Need to update rigidbody's velocity based on input.

 speed_ = speed;

}

void BaseAgent::SetTarget(const Ogre::Vector3& target)

{

 target_ = target;

}

void BaseAgent::SetTargetRadius(const Ogre::Real radius)

{

 targetRadius_ = std::max(Ogre::Real(0), radius);

}

void BaseAgent::SetTeam(const Ogre::String& team)

{

 team_ = team;

}

void BaseAgent::setUnitSideFromForwardAndUp()

{

 // not implemented

 assert(false);

}

OpenSteer::Vec3 BaseAgent::setUp(OpenSteer::Vec3 up)

{

 (void)up;

 // not implemented

78

 assert(false);

 return OpenSteer::Vec3();

}

void BaseAgent::SetVelocity(const Ogre::Vector3& velocity)

{

 if (rigidBody_)

 {

 PhysicsUtilities::SetRigidBodyVelocity(

 rigidBody_, Vector3ToBtVector3(velocity));

 }

 SetSpeed(Ogre::Vector3(velocity.x, 0, velocity.z).length());

}

OpenSteer::Vec3 BaseAgent::side() const

{

 return Vector3ToVec3(GetLeft());

}

float BaseAgent::speed() const

{

 return static_cast<float>(GetSpeed());

}

OpenSteer::Vec3 BaseAgent::up() const

{

 return Vector3ToVec3(GetUp());

}

void BaseAgent::update(const float currentTime, const float elapsedTime)

{

 (void)currentTime;

 (void)elapsedTime;

 // not implemented

 assert(false);

}

OpenSteer::Vec3 BaseAgent::velocity() const

{

 return Vector3ToVec3(GetVelocity());

}

79

LuaAgent Class

/**

*

* Author: Daniel Lugo

*

* Based on code written by David Young

*

* Copyright (c) 2013 David Young dayoung@goliathdesigns.com

*

*/

#include "PrecompiledHeaders.h"

#include "demo_framework/include/LuaAgent.h"

#include "demo_framework/include/AgentUtilities.h"

#include "demo_framework/include/AnimationUtilities.h"

#include "demo_framework/include/LuaScriptUtilities.h"

#include "demo_framework/include/PhysicsUtilities.h"

#include "demo_framework/include/SandboxObject.h"

#include "demo_framework/include/SandboxUtilities.h"

LuaAgent::LuaAgent(

 const unsigned int agentId,

 Ogre::SceneNode* const sceneNode,

 btRigidBody* const rigidBody)

 :BaseAgent(agentId, sceneNode,rigidBody)

{

 luaVM_ = LuaScriptUtilities::CreateVM();

 // Add general C functions.

 LuaScriptUtilities::BindVMFunctions(luaVM_);

 // Add Agent specific functions.

 AgentUtilities::BindVMFunctions(luaVM_);

 // Add Sandbox specific functions.

 SandboxUtilities::BindVMFunctions(luaVM_);

 // Add Animation specific functions.

 AnimationUtilities::BindVMFunctions(luaVM_);

80

}

LuaAgent::~LuaAgent() //how do I clear the memory of the base class

{

 LuaScriptUtilities::DestroyVM(luaVM_);

}

void LuaAgent::Cleanup()

{

 AgentUtilities::CallLuaAgentCleanup(this);

}

lua_State* LuaAgent::GetLuaVM()

{

 return luaVM_;

}

void LuaAgent::Initialize()

{

 AgentUtilities::CreateRigidBodyCapsule(this);

 AgentUtilities::CallLuaAgentInitialize(this);

}

void LuaAgent::LoadScript(

 const char* const luaScript,

 const size_t bufferSize,

 const char* const fileName)

{

 AgentUtilities::LoadScript(this, luaScript, bufferSize, fileName);

}

81

bool LuaAgent::ReloadScript(

 const char* const luaScript,

 const size_t bufferSize,

 const char* const fileName)

{

 (void)luaScript;

 (void)bufferSize;

 (void)fileName;

 return false;

}

void LuaAgent::Update(const int deltaMilliseconds)

{

 AgentUtilities::CallLuaAgentUpdate(this, deltaMilliseconds);

 AgentUtilities::UpdateWorldTransform(this);

 if (this->GetRigidBody())

 {

 const btVector3 velocity = this->GetRigidBody()->getLinearVelocity();

 SetSpeed(Ogre::Vector3(velocity.x(), 0, velocity.z()).length());

 }

}

int LuaAgent::AgentType(){

 return 1;

}

82

SoarAgent Class

/**

*

* Author: Daniel Lugo

*

*

*/

#include "PrecompiledHeaders.h"

#include "demo_framework/include/SoarAgent.h"

#include "demo_framework/include/AgentUtilities.h"

#include "demo_framework/include/AnimationUtilities.h"

#include "demo_framework/include/LuaScriptUtilities.h"

#include "demo_framework/include/PhysicsUtilities.h"

#include "demo_framework/include/SandboxObject.h"

#include "demo_framework/include/SandboxUtilities.h"

SoarAgent::SoarAgent(

 const unsigned int agentId,

 Ogre::SceneNode* const sceneNode,

 btRigidBody* const rigidBody)

 :LuaAgent(agentId, sceneNode, rigidBody)

{

}

SoarAgent::~SoarAgent()

{

}

void SoarAgent::Cleanup()

{

 AgentUtilities::CallSoarAgentCleanup(this);

}

83

SoarSeekingAgent Class
/**

*

* Author: Daniel Lugo

*

*

*/

#include "PrecompiledHeaders.h"

#include "demo_framework/include/SoarSeekingAgent.h"

#include "demo_framework/include/AgentUtilities.h"

#include "demo_framework/include/AnimationUtilities.h"

#include "demo_framework/include/LuaScriptUtilities.h"

#include "demo_framework/include/PhysicsUtilities.h"

#include "demo_framework/include/SandboxObject.h"

#include "demo_framework/include/SandboxUtilities.h"

#include <string>

SoarSeekingAgent::SoarSeekingAgent(

 const unsigned int agentId,

 Ogre::SceneNode* const sceneNode,

 btRigidBody* const rigidBody)

 :SoarAgent(agentId, sceneNode, rigidBody)

{

 luaVM_ = LuaScriptUtilities::CreateVM();

 // Add general C functions.

 LuaScriptUtilities::BindVMFunctions(luaVM_);

 // Add Agent specific functions.

 AgentUtilities::BindVMFunctions(luaVM_);

 // Add Sandbox specific functions.

 SandboxUtilities::BindVMFunctions(luaVM_);

 // Add Animation specific functions.

 AnimationUtilities::BindVMFunctions(luaVM_);

 pAgent = nullptr;

84

 pKernel = nullptr;

 pWME1 = nullptr;

 pWME2 = nullptr;

 pWME3 = nullptr;

}

SoarSeekingAgent::~SoarSeekingAgent()

{

 LuaScriptUtilities::DestroyVM(luaVM_);

}

lua_State* SoarSeekingAgent::GetLuaVM()

{

 return luaVM_;

}

void SoarSeekingAgent::Initialize()

{

 this->SetTarget(Ogre::Vector3(0, 0, 10));

 AgentUtilities::CreateRigidBodyCapsule(this);

 AgentUtilities::CallLuaAgentInitialize(this);

 pKernel = sml::Kernel::CreateKernelInNewThread(12121);

 // Check that nothing went wrong. We will always get back a kernel object

 // even if something went wrong and we have to abort.

 if (pKernel->HadError())

 {

 //Error handling

85

 }

 pAgent = pKernel->CreateAgent("agent");

 pAgent->LoadProductions("C:/Learning-Game-AI-Prog-w-Lua-

Code/1336OS_Code/src/my_sandbox/src/seekingAgent.soar");

 pAgent->SetBlinkIfNoChange(TRUE);

 if (pKernel->HadError())

 {

 //Error handling

 }

 pInputLink = pAgent->GetInputLink();

 //Here I am creating a WME on the input link, it is based on the eaters example

 pWME1 = pAgent->CreateFloatWME(pInputLink, "distance", 0);

}

void SoarSeekingAgent::LoadScript(

 const char* const luaScript,

 const size_t bufferSize,

 const char* const fileName)

{

 AgentUtilities::LoadScript(this, luaScript, bufferSize, fileName);

}

bool SoarSeekingAgent::ReloadScript(

 const char* const luaScript,

 const size_t bufferSize,

 const char* const fileName)

{

 (void)luaScript;

 (void)bufferSize;

 (void)fileName;

86

 return false;

}

void SoarSeekingAgent::Update(const int deltaMilliseconds)

{

 Ogre::Real distance = this->GetPosition().squaredDistance(this->GetTarget());

 pAgent->Update(pWME1, distance);

 pAgent->RunSelfTilOutput();

 int numberCommands = pAgent->GetNumberCommands();

 //Ogre::Vector3 target;

 //target.x = 50; target.y = 0; target.z = 50;

 //this->SetTarget(target);

 for (int i = 0; i < numberCommands; i++)

 {

 sml::Identifier* pCommand = pAgent->GetCommand(i);

 std::string name = pCommand->GetCommandName();

 AgentUtilities::CallLuaAgentUpdate(this, deltaMilliseconds, name);

 AgentUtilities::UpdateWorldTransform(this);

 // Then mark the command as completed

 pCommand->AddStatusComplete();

 }

 if (this->GetRigidBody())

 {

 const btVector3 velocity = this->GetRigidBody()->getLinearVelocity();

 SetSpeed(Ogre::Vector3(velocity.x(), 0, velocity.z()).length());

87

 }

}

int SoarSeekingAgent::AgentType(){

 return 2;

}

SoarFollwerAgent Class

/**

*

* Author: Daniel Lugo

*

*

*/

#include "PrecompiledHeaders.h"

#include "demo_framework/include/SoarFollowerAgent.h"

#include "demo_framework/include/AgentUtilities.h"

#include "demo_framework/include/AnimationUtilities.h"

#include "demo_framework/include/LuaScriptUtilities.h"

#include "demo_framework/include/PhysicsUtilities.h"

#include "demo_framework/include/SandboxObject.h"

#include "demo_framework/include/SandboxUtilities.h"

#include <string>

SoarFollowerAgent::SoarFollowerAgent(

 const unsigned int agentId,

 Ogre::SceneNode* const sceneNode,

 btRigidBody* const rigidBody)

 :SoarAgent(agentId, sceneNode, rigidBody)

{

 luaVM_ = LuaScriptUtilities::CreateVM();

 // Add general C functions.

 LuaScriptUtilities::BindVMFunctions(luaVM_);

 // Add Agent specific functions.

 AgentUtilities::BindVMFunctions(luaVM_);

 // Add Sandbox specific functions.

88

 SandboxUtilities::BindVMFunctions(luaVM_);

 // Add Animation specific functions.

 AnimationUtilities::BindVMFunctions(luaVM_);

 pAgent = nullptr;

 pLeader = nullptr;

 pKernel = nullptr;

 pWME1 = nullptr;

 pWME2 = nullptr;

 pWME3 = nullptr;

}

SoarFollowerAgent::~SoarFollowerAgent()

{

 LuaScriptUtilities::DestroyVM(luaVM_);

}

lua_State* SoarFollowerAgent::GetLuaVM()

{

 return luaVM_;

}

void SoarFollowerAgent::Initialize()

{

 this->SetTarget(Ogre::Vector3(0, 0, 10));

 AgentUtilities::CreateRigidBodyCapsule(this);

89

 AgentUtilities::CallLuaAgentInitialize(this);

 pKernel = sml::Kernel::CreateKernelInNewThread(12122);

 // Check that nothing went wrong. We will always get back a kernel object

 // even if something went wrong and we have to abort.

 if (pKernel->HadError())

 {

 //Error handling

 }

 pAgent = pKernel->CreateAgent("agent");

 pAgent->LoadProductions("C:/Learning-Game-AI-Prog-w-Lua-

Code/1336OS_Code/src/my_sandbox/src/followerAgent.soar");

 pAgent->SetBlinkIfNoChange(TRUE);

 if (pKernel->HadError())

 {

 //Error handling

 }

 pInputLink = pAgent->GetInputLink();

 //Here I am creating a WME on the input link, it is based on the eaters example

 pWME1 = pAgent->CreateFloatWME(pInputLink, "distance", 0);

}

void SoarFollowerAgent::LoadScript(

 const char* const luaScript,

 const size_t bufferSize,

 const char* const fileName)

{

 AgentUtilities::LoadScript(this, luaScript, bufferSize, fileName);

}

void SoarFollowerAgent::SetLeader(BaseAgent* leader){

 this->pLeader = leader;

}

90

bool SoarFollowerAgent::ReloadScript(

 const char* const luaScript,

 const size_t bufferSize,

 const char* const fileName)

{

 (void)luaScript;

 (void)bufferSize;

 (void)fileName;

 return false;

}

void SoarFollowerAgent::Update(const int deltaMilliseconds)

{

 Ogre::Real distance = this->GetPosition().squaredDistance(this->pLeader-

>GetPosition());

 pAgent->Update(pWME1, distance);

 pAgent->RunSelfTilOutput();

 int numberCommands = pAgent->GetNumberCommands();

 for (int i = 0; i < numberCommands; i++)

 {

 sml::Identifier* pCommand = pAgent->GetCommand(i);

91

 std::string name = pCommand->GetCommandName();

 AgentUtilities::CallLuaAgentUpdate(this, deltaMilliseconds, name);

 AgentUtilities::UpdateWorldTransform(this);

 // Then mark the command as completed

 pCommand->AddStatusComplete();

 }

 if (this->GetRigidBody())

 {

 const btVector3 velocity = this->GetRigidBody()->getLinearVelocity();

 SetSpeed(Ogre::Vector3(velocity.x(), 0, velocity.z()).length());

 }

}

int SoarFollowerAgent::AgentType(){

 return 3;

}

92

SoarWaypointAgent

/**

*

* Author: Daniel Lugo

*

*

*/

#include "PrecompiledHeaders.h"

#include "demo_framework/include/SoarWaypointAgent.h"

#include "demo_framework/include/AgentUtilities.h"

#include "demo_framework/include/AnimationUtilities.h"

#include "demo_framework/include/LuaScriptUtilities.h"

#include "demo_framework/include/PhysicsUtilities.h"

#include "demo_framework/include/SandboxObject.h"

#include "demo_framework/include/SandboxUtilities.h"

#include <string>

SoarWaypointAgent::SoarWaypointAgent(

 const unsigned int agentId,

 Ogre::SceneNode* const sceneNode,

 btRigidBody* const rigidBody)

 :SoarAgent(agentId, sceneNode, rigidBody)

{

 luaVM_ = LuaScriptUtilities::CreateVM();

 // Add general C functions.

 LuaScriptUtilities::BindVMFunctions(luaVM_);

 // Add Agent specific functions.

 AgentUtilities::BindVMFunctions(luaVM_);

 // Add Sandbox specific functions.

 SandboxUtilities::BindVMFunctions(luaVM_);

 // Add Animation specific functions.

 AnimationUtilities::BindVMFunctions(luaVM_);

93

 pAgent = nullptr;

 pKernel = nullptr;

 pWME1 = nullptr;

 pWME2 = nullptr;

 pWME3 = nullptr;

}

SoarWaypointAgent::~SoarWaypointAgent()

{

 LuaScriptUtilities::DestroyVM(luaVM_);

}

lua_State* SoarWaypointAgent::GetLuaVM()

{

 return luaVM_;

}

void SoarWaypointAgent::Initialize()

{

 this->SetTarget(Ogre::Vector3(0, 0, 10));

 AgentUtilities::CreateRigidBodyCapsule(this);

 AgentUtilities::CallLuaAgentInitialize(this);

 pKernel = sml::Kernel::CreateKernelInNewThread(12123);

 // Check that nothing went wrong. We will always get back a kernel object

94

 // even if something went wrong and we have to abort.

 if (pKernel->HadError())

 {

 //Error handling

 }

 pAgent = pKernel->CreateAgent("agent");

 pAgent->LoadProductions("C:/Learning-Game-AI-Prog-w-Lua-

Code/1336OS_Code/src/my_sandbox/src/waypointAgent.soar");

 pAgent->SetBlinkIfNoChange(TRUE);

 if (pKernel->HadError())

 {

 //Error handling

 }

 pInputLink = pAgent->GetInputLink();

 //Here I am creating a WME on the input link, it is based on the eaters example

 pWME1 = pAgent->CreateFloatWME(pInputLink, "distance", 0);

}

void SoarWaypointAgent::LoadScript(

 const char* const luaScript,

 const size_t bufferSize,

 const char* const fileName)

{

 AgentUtilities::LoadScript(this, luaScript, bufferSize, fileName);

}

bool SoarWaypointAgent::ReloadScript(

 const char* const luaScript,

 const size_t bufferSize,

 const char* const fileName)

{

95

 (void)luaScript;

 (void)bufferSize;

 (void)fileName;

 return false;

}

void SoarWaypointAgent::Update(const int deltaMilliseconds)

{

 Ogre::Real distance = this->GetPosition().squaredDistance(this->GetTarget());

 pAgent->Update(pWME1, distance);

 pAgent->RunSelfTilOutput();

 int numberCommands = pAgent->GetNumberCommands();

 for (int i = 0; i < numberCommands; i++)

 {

 sml::Identifier* pCommand = pAgent->GetCommand(i);

 std::string name = pCommand->GetCommandName();

 AgentUtilities::CallLuaAgentUpdate(this, deltaMilliseconds, name);

 AgentUtilities::UpdateWorldTransform(this);

 // Then mark the command as completed

 pCommand->AddStatusComplete();

 }

 if (this->GetRigidBody())

96

 {

 const btVector3 velocity = this->GetRigidBody()->getLinearVelocity();

 SetSpeed(Ogre::Vector3(velocity.x(), 0, velocity.z()).length());

 }

}

int SoarWaypointAgent::AgentType(){

 return 4;

}

97

Appendix B: Soar Agents

Seeking Agent

Initialization operator

sp {propose*initialize-seekingagent

 (state <s> ^superstate nil

 -^name)

-->

 (<s> ^operator <o> +)

 (<o> ^name seekingagent)

}

sp {apply*initialize-mover

 (state <s> ^operator <op>)

 (<op> ^name seekingagent)

-->

 (<s> ^name seekingagent)

}

cleans the output-link once commands complete

sp {apply*cleanup*output-link

 (state <s> ^operator <op>

 ^superstate nil

 ^io.output-link <out>)

 (<out> ^<cmd> <id>)

 (<id> ^status)

-->

 (<out> ^<cmd> <id> -)

}

misc useful elaboration rules

sp {elaborate*state*name

 (state <s> ^superstate.operator.name <name>)

-->

 (<s> ^name <name>)

}

sp {elaborate*state*top-state

 (state <s> ^superstate.top-state <ts>)

-->

 (<s> ^top-state <ts>)

}

98

sp {elaborate*top-state*top-state

 (state <s> ^superstate nil)

-->

 (<s> ^top-state <s>)

}

sp {elaborate*state*io

 (state <s> ^superstate.io <io>)

-->

 (<s> ^io <io>)

}

Rule fires if target is near

sp {if-close*propose*newtarget

 (state <s> ^name seekingagent

 ^io.input-link.distance < 3)

-->

 (<s> ^operator <op> +)

 (<op> ^name newtarget)}

sp {apply*newtarget

 (state <s> ^operator <op>

 ^io.output-link <out>)

 (<op> ^name newtarget)

-->

 (<out> ^newtarget <f>)}

Rule fires if target is not near

sp {if-far*propose*sametarget

 (state <s> ^name seekingagent

 ^io.input-link.distance > 3)

-->

 (<s> ^operator <op> +)

 (<op> ^name sametarget)}

sp {apply*sametarget

 (state <s> ^operator <op>

 ^io.output-link <out>)

 (<op> ^name sametarget)

-->

 (<out> ^sametarget <f>)}

99

Follower Agent

Initialization operator

sp {propose*initialize-followeragent

 (state <s> ^superstate nil

 -^name)

-->

 (<s> ^operator <o> +)

 (<o> ^name followeragent)

}

sp {apply*initialize-mover

 (state <s> ^operator <op>)

 (<op> ^name followeragent)

-->

 (<s> ^name followeragent)

}

cleans the output-link once commands complete

sp {apply*cleanup*output-link

 (state <s> ^operator <op>

 ^superstate nil

 ^io.output-link <out>)

 (<out> ^<cmd> <id>)

 (<id> ^status)

-->

 (<out> ^<cmd> <id> -)

}

misc useful elaboration rules

sp {elaborate*state*name

 (state <s> ^superstate.operator.name <name>)

-->

 (<s> ^name <name>)

}

sp {elaborate*state*top-state

 (state <s> ^superstate.top-state <ts>)

-->

 (<s> ^top-state <ts>)

}

sp {elaborate*top-state*top-state

 (state <s> ^superstate nil)

100

-->

 (<s> ^top-state <s>)

}

sp {elaborate*state*io

 (state <s> ^superstate.io <io>)

-->

 (<s> ^io <io>)

}

sp {if-close*propose*follow

 (state <s> ^name followeragent

 ^io.input-link.distance > 5)

-->

 (<s> ^operator <op> +)

 (<op> ^name follow)}

sp {apply*follow

 (state <s> ^operator <op>

 ^io.output-link <out>)

 (<op> ^name follow)

-->

 (<out> ^follow <f>)}

sp {if-far*propose*stop

 (state <s> ^name followeragent

 ^io.input-link.distance < 5)

-->

 (<s> ^operator <op> +)

 (<op> ^name stop)}

sp {apply*stop

 (state <s> ^operator <op>

 ^io.output-link <out>)

 (<op> ^name stop)

-->

 (<out> ^stop <f>)}

101

Waypoint Agent

Initialization operator

sp {propose*initialize-waypointagent

 (state <s> ^superstate nil

 -^name)

-->

 (<s> ^operator <o> +)

 (<o> ^name waypointagent)

}

sp {apply*initialize-mover

 (state <s> ^operator <op>)

 (<op> ^name waypointagent)

-->

 (<s> ^name waypointagent)

}

cleans the output-link once commands complete

sp {apply*cleanup*output-link

 (state <s> ^operator <op>

 ^superstate nil

 ^io.output-link <out>)

 (<out> ^<cmd> <id>)

 (<id> ^status)

-->

 (<out> ^<cmd> <id> -)

}

misc useful elaboration rules

sp {elaborate*state*name

 (state <s> ^superstate.operator.name <name>)

-->

 (<s> ^name <name>)

}

sp {elaborate*state*top-state

 (state <s> ^superstate.top-state <ts>)

-->

 (<s> ^top-state <ts>)

}

sp {elaborate*top-state*top-state

 (state <s> ^superstate nil)

102

-->

 (<s> ^top-state <s>)

}

sp {elaborate*state*io

 (state <s> ^superstate.io <io>)

-->

 (<s> ^io <io>)

}

Rule fires if target is near

sp {if-close*propose*nextwaypoint

 (state <s> ^name waypointagent

 ^io.input-link.distance < 3)

-->

 (<s> ^operator <op> +)

 (<op> ^name nextwaypoint)}

sp {apply*nextwaypoint

 (state <s> ^operator <op>

 ^io.output-link <out>)

 (<op> ^name nextwaypoint)

-->

 (<out> ^nextwaypoint <f>)}

Rule fires if target is not near

sp {if-far*propose*samewaypoint

 (state <s> ^name waypointagent

 ^io.input-link.distance > 3)

-->

 (<s> ^operator <op> +)

 (<op> ^name samewaypoint)}

sp {apply*samewaypoint

 (state <s> ^operator <op>

 ^io.output-link <out>)

 (<op> ^name samewaypoint)

-->

 (<out> ^samewaypoint <f>)}

103

Appendix C: Lua Scripts

Sandbox.lua – Sets up the environment

--[[

 Author: Daniel Lugo

 Based on Sandbox script created by David Young

]]

require "DebugUtilities";

require "GUI";

local ui;

local displaySkeleton;

local function CreateSandboxText(sandbox)

 -- Create a UI component to display text on.

 ui = Sandbox.CreateUIComponent(sandbox, 1);

 local width = Sandbox.GetScreenWidth(sandbox);

 local height = Sandbox.GetScreenHeight(sandbox);

 local uiWidth = 300;

 local uiHeight = 180;

 UI.SetPosition(ui, width - uiWidth - 20, height - uiHeight - 35);

 UI.SetDimensions(ui, uiWidth, uiHeight);

 UI.SetTextMargin(ui, 10, 10);

 GUI_SetGradientColor(ui);

 UI.SetMarkupText(

 ui,

 GUI.MarkupColor.White .. GUI.Markup.SmallMono ..

 "W/A/S/D: to move" .. GUI.MarkupNewline ..

 "Hold Shift: to accelerate movement" .. GUI.MarkupNewline ..

 "Hold RMB: to look" .. GUI.MarkupNewline ..

 GUI.MarkupNewline ..

 "Space: shoot block" .. GUI.MarkupNewline ..

 GUI.MarkupNewline ..

 "F1: to reset the camera" .. GUI.MarkupNewline ..

 "F2: toggle the menu" .. GUI.MarkupNewline ..

 "F5: toggle performance information" .. GUI.MarkupNewline ..

 "F6: toggle camera information" .. GUI.MarkupNewline ..

 "F7: toggle physics debug");

end

function Sandbox_Cleanup(sandbox)

104

end

function Sandbox_HandleEvent(sandbox, event)

 -- Pass events into the UI system.

 GUI_HandleEvent(sandbox, event);

 if (event.source == "keyboard" and event.pressed) then

 if (event.key == "f1_key") then

 Sandbox.SetCameraPosition(sandbox, Vector.new(-30, 5, 7));

 Sandbox.SetCameraOrientation(sandbox, Vector.new(-131, -68, -133));

 elseif (event.key == "f2_key") then

 UI.SetVisible(ui, not UI.IsVisible(ui));

 elseif (event.key == "space_key") then

 local block = Sandbox.CreateObject(

 sandbox,

 "models/nobiax_modular/modular_block.mesh");

 local cameraPosition = Sandbox.GetCameraPosition(sandbox);

 -- Normalized forward camera vector.

 local cameraForward = Sandbox.GetCameraForward(sandbox);

 -- Offset the block’s position in front of the camera.

 local blockPosition = cameraPosition + cameraForward * 2;

 local rotation = Sandbox.GetCameraOrientation(sandbox);

 Core.SetMass(block, 15);

 Core.SetRotation(block, rotation);

 Core.SetPosition(block, blockPosition);

 -- Applies instantaneous force for only one update tick.

 Core.ApplyImpulse(

 block, Vector.new(cameraForward * 15000));

 -- Applies instantaneous angular force for one update

 -- tick. In this case blocks will always spin forwards

 -- regardless where the camera is looking.

 Core.ApplyAngularImpulse(

 block, Sandbox.GetCameraLeft(sandbox) * 10);

 end

 end

end

105

function Sandbox_Initialize(sandbox)

 -- Caching a resource prevents a slowdown when the mesh/material/etc is

 -- first encountered.

 Core.CacheResource("models/nobiax_modular/modular_block.mesh");

 -- Create the demo specific UI, and default UI.

 GUI_CreateUI(sandbox);

 CreateSandboxText(sandbox);

 -- Set an initial camera position and orientation.

 Sandbox.SetCameraPosition(sandbox, Vector.new(-30, 5, 7));

 Sandbox.SetCameraOrientation(sandbox, Vector.new(-131, -68, -133));

 Sandbox.CreateSkyBox(

 sandbox, "ThickCloudsWaterSkyBox", Vector.new(0, 180, 0));

 -- When creating a plane from the Sandbox module this will attach a physics

 -- representation to the graphics representation.

 -- NOTE: A plane in the physics world is infinite in all directions.

 local plane = Sandbox.CreatePlane(sandbox, 200, 200);

 Core.SetMaterial(plane, "Ground2");

 -- Set the ambient light color.

 Sandbox.SetAmbientLight(sandbox, Vector.new(0.3));

 -- Create a Directional light for the sun.

 local directional =

 Core.CreateDirectionalLight(sandbox, Vector.new(1, -1, 1));

 -- Color is represented by a red, green, and blue vector.

 Core.SetLightDiffuse(directional, Vector.new(1.8, 1.4, 0.9));

 Core.SetLightSpecular(directional, Vector.new(1.8, 1.4, 0.9));

 --Sandbox.CreateSoarSeekingAgent(sandbox, "SeekingAgent.lua");

 Sandbox.CreateAgent(sandbox, "SeekingLuaAgent.lua");

 for i=1, 4 do

 Sandbox.CreateSoarFollowerAgent(sandbox, "FollowerAgent.lua");

 end

 --Sandbox.CreateAgent(sandbox, "FollowerLuaAgent.lua");

106

 Sandbox.CreateSoarWaypointAgent(sandbox, "WaypointsAgent.lua");

end

function Sandbox_Update(sandbox, deltaTimeInMillis)

 -- Update the default UI.

 GUI_UpdateUI(sandbox);

 -- Grab all Sandbox objects, not including agents.

 local objects = Sandbox.GetObjects(sandbox);

 -- Draw debug bounding sphere representations for objects with mass.

 DebugUtilities_DrawDynamicBoundingSpheres(objects);

End

Seeking Agent Script

--[[

 Author: Daniel Lugo

 Based on Lua agents created by David Young

 Copyright (c) 2013 David Young dayoung@goliathdesigns.com

 This software is provided 'as-is', without any express or implied

 warranty. In no event will the authors be held liable for any damages

 arising from the use of this software.

 Permission is granted to anyone to use this software for any purpose,

 including commercial applications, and to alter it and redistribute it

 freely, subject to the following restrictions:

 1. The origin of this software must not be misrepresented; you must not

 claim that you wrote the original software. If you use this software

 in a product, an acknowledgment in the product documentation would be

 appreciated but is not required.

 2. Altered source versions must be plainly marked as such, and must not be

 misrepresented as being the original software.

 3. This notice may not be removed or altered from any source

 distribution.

]]

107

require "AgentUtilities";

function Agent_Cleanup(agent)

end

function Agent_HandleEvent(agent, event)

end

function Agent_Initialize(agent)

 AgentUtilities_CreateAgentRepresentation(

 agent, agent:GetHeight(), agent:GetRadius());

 -- Assign a default target and acceptable target radius.

 agent:SetTargetRadius(2.5);

end

function Agent_Update(agent, deltaTimeInMillis, soarCommand)

 local destination = agent:GetTarget();

 local deltaTimeInSeconds = deltaTimeInMillis / 1000;

 local avoidAgentForce = agent:ForceToAvoidAgents(1.5);

 local avoidObjectForce = agent:ForceToAvoidObjects(1.5);

 local seekForce = agent:ForceToPosition(destination);

 local targetRadius = agent:GetTargetRadius();

 local radius = agent:GetRadius();

 local position = agent:GetPosition();

 local avoidanceMultiplier = 3;

 -- Sum all forces and apply higher priorty to avoidance forces.

 local steeringForces =

 seekForce +

 avoidAgentForce * avoidanceMultiplier +

 avoidObjectForce * avoidanceMultiplier;

 -- Apply all steering forces.

 AgentUtilities_ApplyPhysicsSteeringForce(

 agent, steeringForces, deltaTimeInSeconds);

 AgentUtilities_ClampHorizontalSpeed(agent);

 local targetRadiusSquared =

 (targetRadius + radius) * (targetRadius + radius);

108

 -- Calculate the position where the Agent touches the ground.

 local adjustedPosition =

 agent:GetPosition() -

 Vector.new(0, agent:GetHeight()/2, 0);

 if (soarCommand == "newtarget") then

 -- New target is within the 100 meter squared movement space.

 local target = agent:GetTarget();

 target.x = math.random(-50, 50);

 target.z = math.random(-50, 50);

 agent:SetTarget(target);

 end

 -- Draw debug information for target and target radius.

 Core.DrawCircle(

 destination, targetRadius, Vector.new(1, 0, 0));

 Core.DrawLine(position, destination, Vector.new(0, 1, 0));

 -- Debug outline representing the space the Agent can move

 -- within.

 Core.DrawSquare(Vector.new(), 100, Vector.new(1, 0, 0));

End

Follower Agent Script

--[[

 Author: Daniel Lugo

 Based on Lua agents created by David Young

 Copyright (c) 2013 David Young dayoung@goliathdesigns.com

 This software is provided 'as-is', without any express or implied

 warranty. In no event will the authors be held liable for any damages

 arising from the use of this software.

 Permission is granted to anyone to use this software for any purpose,

 including commercial applications, and to alter it and redistribute it

 freely, subject to the following restrictions:

 1. The origin of this software must not be misrepresented; you must not

 claim that you wrote the original software. If you use this software

109

 in a product, an acknowledgment in the product documentation would be

 appreciated but is not required.

 2. Altered source versions must be plainly marked as such, and must not be

 misrepresented as being the original software.

 3. This notice may not be removed or altered from any source

 distribution.

]]

require "AgentUtilities";

local leader;

function Agent_Cleanup(agent)

end

function Agent_HandleEvent(agent, event)

end

function Agent_Initialize(agent)

 AgentUtilities_CreateAgentRepresentation(

 agent, agent:GetHeight(), agent:GetRadius());

 -- Randomly assign a position to the agent.

 agent:SetPosition(

 Vector.new(math.random(-50, 50), 0, math.random(-50, 50)));

 -- Assign the first valid agent as the leader to follow.

 local agents = Sandbox.GetAgents(agent:GetSandbox());

 for index = 1, #agents do

 if (agents[index] ~= agent) then

 leader = agents[index];

 Agent.SetLeader(agent, leader);

 break;

 end

 end

end

function Agent_Update(agent, deltaTimeInMillis, soarCommand)

 local deltaTimeInSeconds = deltaTimeInMillis / 1000;

 local sandboxAgents = Sandbox.GetAgents(agent:GetSandbox());

110

 if (soarCommand == "follow") then

 -- Calculate a combining force so long as the leader stays

 -- within a 100 meter range from the agent, and has less than

 -- 180 degree difference in forward direction.

 local forceToCombine =

 Agent.ForceToCombine(agent, 100, 180, { leader });

 -- Force to stay away from other agents that are closer than

 -- 2 meters and have less than 180 degree difference in forward

 -- direction.

 local forceToSeparate =

 Agent.ForceToSeparate(agent, 2, 180, sandboxAgents);

 -- Force to stay away from getting too close to the leader if

 -- within 3 meters of the leader and having a maximum forward

 -- degree difference of less than 45 degrees.

 local forceToAlign =

 Agent.ForceToSeparate(agent, 3, 45, { leader });

 -- Summation of all separation and cohension forces.

 local totalForces =

 forceToCombine + forceToSeparate * 1.15 + forceToAlign;

 -- Apply all steering forces.

 AgentUtilities_ApplyPhysicsSteeringForce(

 agent, totalForces, deltaTimeInSeconds);

 AgentUtilities_ClampHorizontalSpeed(agent);

 end

 if (soarCommand == "stop") then

 local forcestay =

 Agent.ForceToSeparate(agent, 3, 45, { leader });

 AgentUtilities_ApplyPhysicsSteeringForce(

 agent, forcestay, deltaTimeInSeconds);

 AgentUtilities_ClampHorizontalSpeed(agent);

 end

 local targetRadius = agent:GetTargetRadius();

 local position = agent:GetPosition();

111

 local destination = leader:GetPosition();

 -- Draw debug information for target and target radius.

 Core.DrawCircle(

 position, 1, Vector.new(1, 1, 0));

 Core.DrawCircle(

 destination, targetRadius, Vector.new(1, 0, 0));

 Core.DrawLine(position, destination, Vector.new(0, 1, 0));

End

Waypoint Agent script

--[[

 Author: Daniel Lugo

 Based on Lua agents created by David Young

 Copyright (c) 2013 David Young dayoung@goliathdesigns.com

 This software is provided 'as-is', without any express or implied

 warranty. In no event will the authors be held liable for any damages

 arising from the use of this software.

 Permission is granted to anyone to use this software for any purpose,

 including commercial applications, and to alter it and redistribute it

 freely, subject to the following restrictions:

 1. The origin of this software must not be misrepresented; you must not

 claim that you wrote the original software. If you use this software

 in a product, an acknowledgment in the product documentation would be

 appreciated but is not required.

 2. Altered source versions must be plainly marked as such, and must not be

 misrepresented as being the original software.

 3. This notice may not be removed or altered from any source

 distribution.

]]

require "AgentUtilities";

-- Waypoint list for agents.

local waypoints = {

 Vector.new(0, 0, 0),

 Vector.new(20, 0, 0),

112

 Vector.new(20, 0, 30),

 Vector.new(-20, 0, 0),

 Vector.new(-20, 0, 10)};

local index = 0;

local number_waypoints = 5;

function Agent_Cleanup(agent)

end

function Agent_HandleEvent(agent, event)

end

function Agent_Initialize(agent)

 AgentUtilities_CreateAgentRepresentation(

 agent, agent:GetHeight(), agent:GetRadius());

 -- Assign a default target and acceptable target radius.

 agent:SetTargetRadius(2.5);

end

function Agent_Update(agent, deltaTimeInMillis, soarCommand)

 local destination = agent:GetTarget();

 local deltaTimeInSeconds = deltaTimeInMillis / 1000;

 local avoidAgentForce = agent:ForceToAvoidAgents(1.5);

 local avoidObjectForce = agent:ForceToAvoidObjects(1.5);

 local seekForce = agent:ForceToPosition(destination);

 local targetRadius = agent:GetTargetRadius();

 local radius = agent:GetRadius();

 local position = agent:GetPosition();

 local avoidanceMultiplier = 3;

 -- Sum all forces and apply higher priorty to avoidance forces.

 local steeringForces =

 seekForce +

 avoidAgentForce * avoidanceMultiplier +

 avoidObjectForce * avoidanceMultiplier;

 -- Apply all steering forces.

 AgentUtilities_ApplyPhysicsSteeringForce(

 agent, steeringForces, deltaTimeInSeconds);

113

 AgentUtilities_ClampHorizontalSpeed(agent);

 local targetRadiusSquared =

 (targetRadius + radius) * (targetRadius + radius);

 -- Calculate the position where the Agent touches the ground.

 local adjustedPosition =

 agent:GetPosition() -

 Vector.new(0, agent:GetHeight()/2, 0);

 if (soarCommand == "nextwaypoint") then

 -- Next waypoint code

 index = index +1;

 if (index > number_waypoints) then

 index = 1;

 end

 agent:SetTarget(waypoints[index]);

 end

 -- Draw debug information for target and target radius.

 Core.DrawCircle(

 destination, targetRadius, Vector.new(1, 0, 0));

 Core.DrawLine(position, destination, Vector.new(0, 1, 0));

 -- Debug outline representing the space the Agent can move

 -- within.

 Core.DrawSquare(Vector.new(), 100, Vector.new(1, 0, 0));

end

114

Bibliography

[1] Office of the Deputy Under Secretary of Defense for Acquisition and Technology,

Systems and Software Engineering, Developmental Test and Evaluation

(ODUSD(A&T)SSE/DTE). Modeling and Simulation Guidance for the Acquisition

Workforce, Version 1.0. Washington, DC, 2008.

[2] J. E. Summers. Simulation-based Military Training: An Engineering Approach to

Better Addressing Competing Environmental, Fiscal, and Security Concerns.

Washington Academy of Sciences, 2012.

[3] A. Heuvelink et al. “Intelligent Agent Supported Training in Virtual Simulations”.

TNO Defense, Security, and Safety. Soesterberg, Netherlands, 2009.

[4] Army and Marine Corps Training. Better Performance and Cost Data Needed to

More Fully Assess Simulation-Based Efforts(GAO-13-698). United States

Government Accountability Office. 2013.

[5] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Prentice-Hall,

Inc., 1995.

[6] P. Langley et al. “Cognitive architectures: Research issues and challenges”, Cognitive

Systems Research., 2008.

[7] J. E. Laird, The Soar Cognitive Architecture, The MIT Press, 2012.

[8] Acquisition Community Connection. (2012, Feb. 24). Joint Semi-Automated Forces

(JSAF) [Online]. Available: https://acc.dau.mil/ CommunityBrowser.aspx?

id=500289&lang=en-US

[9] J. E. Laird et al. Integrating Intelligent Computer Generated Forces in Distributed

Simulations: TacAir-Soar in STOW-97[Online]. Available: http://ai.eecs.umich.edu/

people/laird/papers/siw.html

[10] R. M. Jones et al. “Automated intelligent pilots for combat flight simulation”. AI

Magazine, vol. 20, pp. 27–41, 1999.

[11] J. E. Laird, “The Soar User’s Manual Version 9.5.0”. The Regents of the University

of Michigan, 2015.

https://acc.dau.mil/%20CommunityBrowser.aspx?%20id=500289&lang=en-US
https://acc.dau.mil/%20CommunityBrowser.aspx?%20id=500289&lang=en-US
http://ai.eecs.umich.edu/%20people/laird/papers/siw.html
http://ai.eecs.umich.edu/%20people/laird/papers/siw.html

115

[12] J. E. Laird. “The Soar 9 Tutorial” (Updated for Soar 9.5.0), 2015.

[13] J. E. Laird et al. (2016, Jun. 7). Soar Basics [Online]. Available:

https://web.eecs.umich.edu/ ~soar/tutorial16/Tutorial-2016-SW-basic.pdf

[14] I. Neath and A. M. Surprenant, Human Memory: An Introduction to Research, Data,

and Theory, Thomson/Wadsworth, 2003

[15] R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction, The MIT Press,

1998

 [16] L. Mastin. (2010). Episodic & Semantic Memory [Online]. Available:

http://www.human-memory.net/types_episodic.html

 [17] "SML Quick Start Guide - Soar Cognitive Architecture", Soar.eecs.umich.edu,

2017. [Online]. Available: http://soar.eecs.umich.edu/articles/articles/soar-markup-

language-sml/78-sml-quick-start-guide.

[18] D. Pearson. XML Interface to Soar (SML) Software Specification. ThreePeny

Software LLC., 2005.

[19] J. E. Laird et al. (2016, Jun. 7). Soar Tutorial – Introduction [Online]. Available:

https://web.eecs.umich.edu/~soar/tutorial16/Tutorial-2016-SW-intro.pdf.

[20] A. Newell. United Theories of Cognition. Harvard University Press, Cambridge,

MA, 1990.

[21] R. Washington and P. S. Rosenbloom. “Applying Problem Solving and Learning to

Diagnosis”. The Soar Papers: Research on Integrated Intelligence, vol. 1, pp. 674-

687. Cambridge, MA: MIT Press, 1993.

[22] D. Steier and A. Newell. “Integrating Multiple Sources of Knowledge into Designer-

Soar, an Automatic Algorithm Designer” AAAI-88 Proceedings. AAAI Press, 1988.

[23] K. A. Johnson el al. “RedSoar: A system for red blood cell antibody identification”.

Fifteenth Annual Symposium on Computer Applications in Medical Care, pp.664-668.

McGraw Hill, 1991.

[24] R.S. Chong and R.E .Wray. “Inheriting constraint in hybrid cognitive architectures:

Appyling the EASE architecture to performance and learning in a simplified air

traffic control task”. Modeling Human Behavior with Integrated Cognitive

http://www.human-memory.net/types_episodic.html

116

Architectures: Comparison, Evaluation, and Validation, pp. 237-304. Lawrence

Erlbaum Associates, 2005.

[25] R. Hill et al. "Intelligent Agents for the Synthetic Battlefield: A Company of Rotary

Wing Aircraft" Proceedings of Innovative Applications of Artificial Intelligence

(IAAI-97). Providence, RI, July 1997.

[26] D. J. Pearson et al. “AIR-SOAR: Intelligent Multi-Level Control”. Artificial

Intelligence Laboratory. The University of Michigan, 2004.

[27] "Lua: about", Lua.org, 2017. [Online]. Available: http://www.lua.org/about.html.

[28] R. Ierusalimschy Programming in Lua (Third Edition). PUC-Rio de Janeiro, Brazil,

2013.

[29] D. Young. Learning Game AI Programming with Lua. Packt Publishing Ltd., 2014.

117

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense,
Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

23-03-2017
2. REPORT TYPE

Master’s Thesis

3. DATES COVERED (From – To)

Sep 2015 – March 2017

TITLE AND SUBTITLE

A Sandbox in Which to Learn and Develop Soar Agents

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Lugo, Daniel, Captain, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

Air Force Institute of Technology

Graduate School of Engineering and Management (AFIT/ENY)

2950 Hobson Way, Building 640

WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
REPORT NUMBER

 AFIT-ENG-MS-17-M-047

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S
ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
DISTRUBTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.

14. ABSTRACT

It is common for military personnel to leverage simulations (and simulators) as cost-effective tools to train
and become proficient at various tasks (e.g., flying an aircraft and/or performing a mission, among thers).
These training simulations often need to represent humans within the simulated world in a realistic
manner. ‘Realistic’ implies creating simulated humans that exhibit behaviors that mimic real-world
decision making and actions. Typically, to create the decision-making logic, techniques developed from
the domain of artificial intelligence are used. Although there are several approaches to developing
intelligent agents; we focus on leveraging and open source project called Soar, to define agent behavior.
This research took an off-the-shelf open-source software product (called the AI sandbox) that facilitates
the creation of 3D virtual worlds and interfaced it to the Soar package. Because the world created by the
sandbox is rich in features, easily configurable using a simple scripting system, and visually engaging, it’s
ideal as a learning platform to develop Soar agents more aligned with military simulations. In summary,
this research develops a platform (or learning environment) to learn how to develop Soar-based agents.

15. SUBJECT TERMS

Intelligent Agents, Soar Cognitive Architectre, Training Simulation, Artificial Inteligence

16. SECURITY CLASSIFICATION
OF: UNCLASSIFIED

17. LIMITATION
OF
 ABSTRACT

UU

18.
NUMBER
OF PAGES

130

19a. NAME OF RESPONSIBLE PERSON

Dr. Douglas Hodson, AFIT/ENG
a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

19b. TELEPHONE NUMBER (Include area code)

(937) 255-3636, ext 4719

(douglas.hodson@afit.edu)
Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

Intentionally Left Blank

