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Abstract

Celestial and inertial navigation systems have been used symbiotically within the

area of alternative navigation solutions to Global Positioning System. Celestial sys-

tems normally provide attitude updates only by tracking known stars from a catalog,

measuring their angular position with respect to the horizon and determining a de-

viation from the estimated vehicle attitude. However, by imaging reference objects

with known positions and velocities against a background field of stars, the celes-

tial system can triangulate its own position and velocity. With the ubiquitous use

of aircraft, cooperative vehicles can be a ready source of information from which to

make a reference. With a cooperative aircraft, it is assumed that the observer can

get continuous updates about the reference vehicle via secure communication links.

This thesis attempts to determine the navigation accuracy of a remotely piloted

aircraft using celestial and inertial sensors and a barometric altimeter to track a

second aircraft as the reference object. Simulations were performed of the navigating

vehicle with fixed star trackers pointed directly up taking observations of the stars and

the other aircraft to aid the inertial measurements, which is known to drift. Three

different navigating scenarios were studied: 1) using a star sensor to get attitude

updates only with just stellar observations, 2) using a star sensor to get position and

velocity updates with just reference aircraft observations, and 3) using the the star

sensors to get a complete navigation solution with both stellar and reference aircraft

observations. The position, velocity, and attitude accuracy are compared between

the three scenarios. Additionally, the frequency of celestial navigation measurements

is varied between scenarios to determine its effect on navigation accuracy.

The study makes use of an adaptive MATLAB script created by the Air Force
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Research Laboratory that simulates a navigating vehicle’s flight for which inertial

data is generated to provide a dead-reckoning estimate of the vehicle pose. The

barometric altimeter provides frequent vertical dimension updates, with additional

measurements given by the star trackers. The sensor measurements that are fed into

the simulation must be generated externally, which is accomplished as part of this

research. The script includes an extended Kalman filter that propagates and updates

the navigation state estimates based on the sensor measurements.

The results show that stellar observations alone show a slight improvement in

the position, velocity, and attitude estimates, but because the position and velocity

are not directly updated, the estimates are still subject to large drift. In the sec-

ond scenario, observations of the reference vehicle reduce the position error by over

99.9% from stellar observations only with a mean accuracy of 5.93 m. In the third

scenario, the combination of both processes provides minor improvement in average

position error, down to 5.67 m, but also improves the attitude error uncertainty by

87%. Additionally, the results show that the frequency of measurement updates has

little impact on the navigation accuracy due to the use of a navigation grade inertial

unit. No significant changes in the navigation estimates were seen from varying the

observation frequency from 1 s to 50 s. However at frequencies of 60 s and longer,

the measurements are so sparse that other factors interfere with the ability to track

the reference aircraft.
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CELESTIAL AIDED INERTIAL NAVIGATION

BY TRACKING HIGH ALTITUDE VEHICLES

I. Introduction

Celestial navigation has been shown to be a promising alternative navigation

method in the absence of the Global Positioning System (GPS) for autonomous navi-

gation [14]. Further research into celestial navigation technology is important for the

United States as the Department of Defense continues to seek non-GPS navigation

solutions. Celestial Navigation Systems (CNSs) can determine a complete navigation

solution (position, velocity, and attitude) with respect to an inertial reference frame.

Attitude is determined by observing stars whose positions are known [8] while posi-

tion and velocity is obtained by observing reference objects with known positions and

velocities against a background of stars [6]. Most research involving celestial navi-

gation involve space-based operations to determine only the attitude of spacecraft.

Research in CNS for a complete navigation solution within the Earth’s atmosphere

is sparse. This research focuses on the latter, evaluating the performance of using an

Inertial Navigation System (INS) aided by CNS on a remotely piloted aircraft (RPA)

to determine its position, velocity, and attitude.

Celestial navigation functions by imaging celestial objects of known positions in

an inertial reference frame. After pattern recognition and identification, the CNS can

determine where it’s pointing in the inertial reference frame and therefore it knows

its attitude. Because stars are at such great distances away from the Earth, they are

considered to be stationary in the inertial frame and their positions treated as fixed

reference points for navigating purposes. As a consequence, the location of the stars
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are commonly described in an inertial reference frame in angular coordinates rather

than Cartesian coordinates. Directly analogous to the Earth’s geodetic longitude (λ)

and latitude (φ), the angular coordinates of the stars in the inertial frame are given

in terms of right ascension (α) and declination (δ) relative to the vernal equinox and

the equatorial plane [18]. Due to the long history of astronomy, many of the visible

star’s coordinates are precisely known. As long as a CNS can identify and recognize

stars within its field of view (FOV), it can determine its pointing direction.

Calculating accurate attitude requires tracking the stars at sub-pixel level accu-

racy. To get sub-pixel accuracy on point sources, star trackers are typically defocused

to spread the point source’s intensity over multiple pixels instead of focusing all of the

light onto one pixel [8]. This spread of intensity over multiple pixels allows the star

tracker to get a better estimate of the point source image’s center through a process

known as centroiding. Once the image center is calculated, the star tracker generates

a pointing vector to the point source in the camera’s reference frame, which can then

be transformed to a more readable navigation solution position vector (i.e., to an in-

ertial, Earth-fixed, or a local navigation reference frame), assuming that the rotation

from the camera to the observer’s body frame is known. Centroid accuracy directly

contributes to the star tracker’s overall performance accuracy, commonly described in

terms of boresight and cross-boresight accuracy, so it is important to get the centroid

as accurate as possible.

Unfortunately, position is unobtainable from imaging stars only because the stars

are treated as being an infinite distance away. To solve this problem, the CNS must

observe a reference object moving against a background object to update its own

position, known as angles-only navigation [6]. The caveat is that the observer must

know the positions of both reference and background objects at the time of the

observation. Since most CNSs point skyward to track the stars and the stars’ positions
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are known precisely, the stars make for great background objects. After observing

the reference object in its FOV against a starry background, the CNS can triangulate

its position and velocity [6]. In this research, a secondary aircraft, referred to a

high altitude vehicle (HAV), will be used as the reference object moving against a

background field of stars to determine the RPAs position and velocity.

Research using celestial navigation has been dominated by space-born applica-

tions, as star trackers are widely used for attitude determination on spacecrafts.

However in space-based missions, position is commonly determined by Earth horizon

sensing. This is possible at the orbital altitudes of spacecraft. Ning and Fang used

both direct and indirect horizon sensing combined with CNS on low Earth orbit satel-

lites and compared the results of fusing the measurements with an extended Kalman

filter (EKF) versus an unscented Kalman filter (UKF) [12]. Their results showed

position accuracies of <150 m and <70 m with the EKF and the UKF, respectively.

In contrast, this research simulates a trajectory near the Earth’s surface and used the

CNS to triangulate the navigating vehicle’s position and velocity by observing the

reference HAV.

Some work has been done with celestial navigation for ballistic missile or launch

vehicle navigation, which is more relatable to this research than spacecraft navigation.

However the altitudes reached are still very high and horizon sensors may still be used.

Rad et al. combined INS, CNS, and horizon sensing for ballistic missile navigation,

resulting in altitude errors of <300 m [16]. However due to the trajectory of the flight,

the missile changed its sensor configurations at different altitude phases. The CNS

stayed on the entire time but the INS and horizon sensors were altitude dependent.

In this research, the RPA flies at a constant altitude and does not change sensor

configurations mid-flight.

Ali and Fang used an unscented particle filter to combine INS and CNS measure-
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ments for ballistic missile navigation, but relied solely on inertial measurement unit

(IMU) integration to get position and velocity measurements [1]. While they were

able to reduce the errors by introducing a new axes misalignment error modeling tech-

nique, the navigation solution was still subject to drift with an attitude error of >600

m after a 30 min simulation. Similarly, Nobahari et al. integrated IMU measurements

to get position and velocity updates with CNS for attitude aiding only, but they used

back-propagation and smoothing techniques with a UKF which stopped the position

error drift [13]. However as in [16], both [1] and [13] also changed sensor configurations

based on flight altitudes. In their research, the CNS was the altitude-dependent sen-

sor, turning on only at high altitudes. The sensors used in this research are altitude

independent and does not require advanced filtering techniques like back-propagation

or smoothing.

While directly similar research is sparse, there has been some work with CNS

aiding on aircraft or terrestrial navigation. Alkhaldi simulated a flight with GPS,

INS, and CNS sensors, combining the measurements with a Linear Kalman Filter [2].

The GPS sensor was cut time time after the simulation began and relied on INS and

CNS for the rest of the flight. Alkhaldi simulated various grade INS and showed the

position and tilt error covariance with and without CNS. The commercial grade INS

had tremendous improvements in navigation performance with the benefit of the CNS

while the navigation grade INS had marginal improvements. However regardless of

the INS grade, the position errors were still subject to grow without bound due to drift

due to not having direct position updates. This research will have position, velocity,

and attitude measurement updates with the CNS using the angles-only triangulation

algorithm.

In his dissertation, Pierce developed an EKF model of a stationary CNS-INS sys-

tem, which includes the CNS angles-only triangulation algorithm by tracking satellites
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as the reference object [15]. His model allowed various tunable parameters such as

the grade of IMU, the orbital altitudes of the satellites imaged, the frequency between

observations, etc. Diaz extended Pierce’s work in his thesis to extensively evaluate

differential ephemeris correction within Pierce’s model [3]. Diaz modified the distance

between the remote and reference observation sites as well as adding a time delay to

the correction and showed its effects on the navigation solution. This research is sim-

ilar to the work Pierce and Diaz performed; however, instead of a stationary model

fixed on the ground, this research uses a mobile observer taking measurements of an

HAV instead of satellites.

A MATLAB simulation tool, Celestial Aided Inertial Navigation Subsystem (CAINS),

that was provided by the sponsor, Air Force Research Laboratory, was used for all

simulations performed. Several simulations of an RPA equipped with an INS, CNS,

and barometer were run to determine the navigation accuracy in multiple scenarios.

Within the tool, the sensor measurements are combined using an EKF to generate

a prediction based on the measurements available. This thesis is divided into five

chapters. Chapter II covers a background of the material, including an in-depth sum-

mary of the CNS absolute triangulation algorithm as well as a generic description of

EKF functionality. Chapter III walks through the research methodology, providing

a detailed description of the CAINS algorithm and the specific linearized models for

the EKF. Chapter IV presents an analysis of the results. Chapter V concludes the

paper with a summary of the research performed and potential future research.
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II. Background

This chapter includes background material on star trackers, CNS operation, and

Kalman filtering. Section 2.1 define the different frames of reference that will be

discussed in this paper. Section 2.2 describes typical star tracking attitude deter-

mination and accuracy. Section 2.3 explains how to acquire position and velocity

from a CNS using absolute triangulation and Section 2.4 shows how to ensure the

reference object used by the triangulation algorithm is detectable by the star tracker.

Section 2.5 closes this chapter with an overview of Kalman filters, specifically the

EKF.

2.1 Reference Frames

Before describing CNS operations in detail, it is necessary to define the different

frames of reference. Some reference frames are time dependent, such as inertial frames.

This paper will assume the J2000 epoch for such reference frames. J2000 is defined

as the epoch on the Julian date 1 January 2000, 12:000 terrestrial time [19].

• The Earth-centered inertial reference frame (i -frame) is a non-rotating terres-

trial frame of reference whose origin is at the Earth’s center [19]. The ii- and

ji-axes lie on the equatorial plane, where the ii-axis points to the vernal equinox

and the ji-axis points 90◦ East. The ki-axis points orthogonal to the equatorial

plane towards the North pole. See Figure 1.

• The Earth-centered Earth-fixed reference frame (e-frame) is a terrestrial frame

of reference whose origin is also at the Earth’s center and the axes lie on the

same planes as the i -frame (along the equatorial planes and towards the pole).

However the e-frame is a rotating frame of reference that moves with the Earth’s

rotation [19]. The ie-axis points to the intersection of the prime meridian and
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the equator, the je-axis points 90◦ East and the ke-axis points to the North

pole. See Figure 1.

• The Geodetic reference frame (g-frame) is a terrestrial frame of reference with

respect to the reference ellipsoid [18]. The g-frame uses latitude-longitude-

height (LLH) instead of absolute meters from the center of the Earth. The

latitude φ, measures the North-South angle from the equator while the longi-

tude λ, measures the East-West angle from the prime meridian, and the height

measures the distance from the surface of the ellipsoid at a given φ and λ. This

paper will use the World Geodetic System 84 as the reference ellipsoid. The

g-frame is also referred to as the LLH frame. See Figure 1.

• The navigation frame (n-frame) is a frame of reference with respect to the

observer, whose origin is the center of the observer [19]. The xn- and yn-axes

lie on the plane of the horizon, where the xn-axis points North and the yn-

axis points East. The zn-axis points down, orthogonal to the plane of horizon

towards the Earth’s center. This frame is also referred to as the North-East-

Down (NED) frame. See Figure 1.

• The body frame (b-frame) is a frame of reference with respect to the observer,

whose origin is the center of the observer. However, unlike the n-frame whose

axes are fixed, the b-frame rotates with the observer’s attitude [19]. The xb-axis

points in the observer’s facing direction, the yb-axis points 90◦ to the observer’s

right, and the zb-axis points 90◦ below the observer. This frame is also referred

to as the roll-pitch-yaw (RPY) frame, defining roll as a tilt about the xb-axis,

pitch about the yb-axis, and yaw about the zb-axis.

• The camera frame (c-frame) is similar to the b-frame in that it is a frame of

reference with respect to the camera [19]. The origin is at the camera’s center
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Figure 1. Coordinate frames, showing the i-frame, e-frame, g-frame and n-frame.
The ii-axis always points to the vernal equinox while the ie-axis always points to the
intersection of the equator and the prime meridian (highlighted). φ and λ show the
latitude and longitude, respectively, of the local n-frame origin. Note that the n-frame
shows a negative zn-axis pointing up from the local horizon for graphic purposes only.

and the axes move with the camera’s attitude. However, unlike the b-frame,

zc-axis points towards the direction the camera is facing, or the optical axis.

The xc-axis points to the top of the camera (aligned with the vertical pixels)

and the yc-axis points to the right of the camera (aligned with the horizontal

pixels).

• The pixel frame (p-frame) is a 2D frame of reference describing the location of

an image on the camera’s focal plane [5]. The origin of the p-frame is aligned

with the camera’s optical axis at the center of the focal plane.
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In this paper, vectors in a specific frame of reference have a superscript indicating

the appropriate frame, and a direction cosine matrix (DCM) transforming one frame

to another are formatted such that the original frame is indicated by a subscript and

the resulting frame is indicated by a superscript. For example, a position vector in the

e-frame will appear as xe, and a DCM from the e-frame to the n-frame will appear

as Cn
e .

2.2 Star Tracker Operation: Attitude Acquisition

The operation of a CNS begins by taking an image of the sky using a star tracking

camera. Stars appear as point sources and produce 2D Gaussian impulse responses

through optical systems known as a point spread function (PSF) [5]. Stars are gen-

erally very dim so a detection threshold must be set to separate the PSF from back-

ground noise. Because an image of the sky is mostly empty, processing is performed

within an n × n pixel window around each potential object location, known as the

region of interest (ROI). The detection limit is calculated from the raw image data,

d(xp, yp), at the p-frame coordinates (xp, yp), as a background removed signal to noise

ratio normalized by the noise standard deviation [20],

S/N(xp, yp) =
d(xp, yp)−B

σ
(1)

where B is the background noise value and σ is the standard deviation of B. The

background noise can be obtained by taking the median value of d(xp, yp) within an

empty ROI, and the standard deviation is calculated by

σ =

√√√√ n∑
w=1

n∑
z=1

d(w, z)2

n2
−B2 (2)
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where w and z are the ROI pixel locations and n is the number of pixels across

the ROI. By setting a detection limit, γ, which represents the number of standard

deviations above the background noise, then an object is detected if the signal to

noise ratio is greater than γ.

Once a star is detected, each star’s center must be precisely determined. Star

centroiding allows the center to be calculated with sub-pixel accuracy. The centroid

location is calculated from the background-removed image within the ROI,

xpcen =
n∑

w=1

n∑
z=1

w (d(w, z)−B)

DN

ypcen =
n∑

w=1

n∑
z=1

z (d(w, z)−B)

DN
(3)

where DN is the brightness of the background-removed ROI,

DN =
n∑

w=1

n∑
z=1

(d(w, z)−B). (4)

The result from Equation (3) gives the centroid position in the p-frame [8], which is

then transformed to a unit pointing vector in the c-frame by


xc

yc

zc

 =



cos

(
arctan

{
∆x

∆y

})
cos

π
2
− arctan


√(

∆x

f

)2

+

(
∆y

f

)2




sin

(
arctan

{
∆x

∆y

})
cos

π
2
− arctan

[

√(
∆x

f

)2

+

(
∆y

f

)2




sin

π
2
− arctan


√(

∆x

f

)2

+

(
∆y

f

)2





(5)

where ∆x and ∆y are the distances of the centroid coordinate from the optical axis

coordinate, (∆x,∆y) = (xpcen − xpo, y
p
cen − ypo), and f is the focal length. Figure 2

shows a diagram of a simple pinhole camera model, highlighting the ROI and the
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unit vector pointing to the star in the c-frame.

( , )
p p

o o
x y

cen cen
( , )

p p
x y

( , )α δ

( ), ,
c c c

x y z

Figure 2. Simple Camera Diagram. The star’s position is given in the i-frame in terms
of right ascension and declination. The star’s image is processed around a small ROI to
determine its centroid coordinates in the p-frame, leading to the unit pointing vector
in the c-frame.

It is necessary to convert the c-frame pointing vector to the appropriate frame of

reference to perform star matching. Star catalogs record star coordinates in inertial

reference frames in terms of angles of right ascension and declination, (α, δ), pointing

to their location [18]. Various methods exist to transform a vector from the c-frame

unit vector to the appropriate inertial frame [16]. Regardless of the method used, at

least three stars must be visible in the FOV for star matching and attitude determi-

nation [4]. The conversion from a rectangular vector, (i, j, k), to (α, δ) and back from

(α, δ) to (i, j, k) is given by Equations (6) and (7), [18]

α
δ

 =


arctan

(
j

i

)
arctan

(
k√
i2 + j2

)
 (6)


i

j

k

 =


cos(δ) cos(α)

cos(δ) sin(α)

sin(δ)

 . (7)

After measuring the attitude, it’s necessary to determine the accuracy of that
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measurement. Star tracker accuracy is commonly described by its boresight accuracy

(z-axis) and cross-boresight (x- and y-axis) accuracy, and is directly affected by the

accuracy of the centroid calculation from Equation (3). Given an average centroiding

accuracy, Ecen, the camera’s boresight and cross-boresight accuracy can be calculated

as [8]

Ebore = arctan

(
Ecen

0.3826Npixel

)
1√
Nstar

(8)

Ecross =
θFOVEcen

NpixelNstar

(9)

where Npixel is the total number of pixels across the focal plane in the respective

axis, Nstar is the average number of stars detected within the FOV, and θFOV is the

FOV angle in degrees. The value of 0.3826 in Equation (8) comes from the average

distance from the optical axis to the imaged PSF, assuming a square Npixel × Npixel

focal plane1. Generally, Ebore is about 10 times less accurate than Ecross [8].

2.3 Celestial Navigation for Position and Velocity

Using a star tracker to track just the stars stars solves for the observer’s attitude

only. To get position or velocity data, observations of foreground and background

elements with known positions must be taken, allowing the observer to triangulate

its position and velocity. Because the stars have known positions and are readily

available for observation, star trackers can be used in this application to observe any

foreground reference against background stars, a concept introduced by Kaplan [6].

This section will review his absolute triangulation method.

For a stationary observer and stationary references, the observer’s position, x, can

be determined by

x = P + rd (10)

1

∫ N/2

−N/2

∫ N/2

−N/2

√
x2 + y2dxdy ≈ 0.3826N
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where P is the reference object’s position, d is a measurement in the form of a

unit pointing vector from the observer to the reference object, and r is an arbitrary

scaling value. Due to the arbitrary value of r, Equation (10) results in a line of

position (LOP) in 3D space, going from the observer to the background object through

the reference object, on which the observer’s position can exist. To resolve this

ambiguity, measurements from at least two references must be taken such that the

observer’s position narrows down to the intersection of the LOPs. Given n position

and measurement vectors, the solution to the stationary observer’s position is [6]


x1

x2

x3

 =


n− [d2

i1
] −[di1di2 ] −[di1di3 ]

−[di1di2 ] n− [d2
i2

] −[di2di3 ]

−[di1di3 ] −[di2di3 ] n− [d2
i3

]


−1

[Pi1 − (di ·Pi)di1 ]

[Pi2 − (di ·Pi)di2 ]

[Pi3 − (di ·Pi)di3 ]

 (11)

where the bracketed terms [. . . ] represent the summation over the n measurements,
n∑
i=1

[. . . ], while (Pi1 , Pi2 , Pi3) and (di1 , di2 , di3) are the ith Pi and di vector elements.

Equation (11) is a system of three equations and three unknowns, so the observer’s

position can be calculated exactly.

This algorithm can also be used for a mobile observer. Given an initial position

x0 and initial velocity v0, the observer’s position over time is modeled as

xi = x0

(
1 +

fi
x0

)
+ v0ti (12)

where xi is the observer’s position at time ti, fi is the curvature of the ellipsoid at

ti (assuming the observer’s trajectory is near the Earth’s surface), and x0 = |x0| [6].

Substituting Equation (12) into Equation (10) and with n position and measurements
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vectors, the solution to the observer’s position and velocity is



xi1

xi2

xi3

vi1

vi2

vi3


=



[(d2i1 − 1)β2
i ] [di1di2β

2
i ] [di1di3β

2
i ] [(d2i1 − 1)tiβi] [di1di2tiβi] [di1di3tiβi]

[di2di1β
2
i ] [(d2i2 − 1)β2

i ] [di2di3β
2
i ] [di2di2tiβi] [(d2i2 − 1)tiβi] [di2di3tiβi]

[di3di1β
2
i ] [di3di2β

2
i ] [(d2i3 − 1)β2

i ] [di3di1tiβi] [di3di2tiβi] [(d2i3 − 1)tiβi]

[(d2i1 − 1)tiβi] [di1di2tiβi] [di1di3tiβi] [(d2i1 − 1)t2i ] [di1di2t
2
i ] [di1di3t

2
i ]

[di2di1tiβi] [(d2i2 − 1)tiβi] [di2di3tiβi] [di2di1t
2
i ] [(d2i2 − 1)t2i ] [di2di3t

2
i ]

[di3di1tiβi] [di3di2tiβi] [(d2i3 − 1)tiβi] [di3di1t
2
i ] [di3di2t

2
i ] [(d2i3 − 1)t2i ]



−1

×



[−(Pi1 − (di ·Pi)di1)βi]

[−(Pi2 − (di ·Pi)di2)βi]

[−(Pi3 − (di ·Pi)di3)βi]

[−(Pi1 − (di ·Pi)di1)ti]

[−(Pi2 − (di ·Pi)di2)ti]

[−(Pi3 − (di ·Pi)di3)ti]


(13)

where the bracketed terms represent the same summation as in Equation (11) and β

is a shorthand expression for the curvature term, β =
(

1 + fi
x0

)
. The cross symbol

× in Equation (13) represents simple matrix multiplication and not a cross product

of matrices. As a point of clarification, while it was previously mentioned that n

measurements were necessary, a mobile observer could take n measurements of a

single reference object over a period of time rather than requiring n measurements at

each timestep.

With perfect predictions and measurements, the observer’s position should be

exactly on the LOPs. Accounting for errors in both P and d, however, generates

uncertainty around x, so the observer’s position will be some distance away from the

LOPs. The uncertainty around x is [6]

σ2
x = σ2

P + r2σ2
d (14)
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(a)

(b)

Figure 3. Uncertainty with absolute triangulation. Figures reproduced from [6].
(3a) Ambiguity in the direction of the LOPs due to multiple objects within the FOV.
(3b) Total volume of uncertainty around x (dotted) due to σP (ellipsoid) and σd (cone).
The error in observer’s position is δ.
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where each σ represents the uncertainties associated with their respective vectors,

and r is the distance to the reference object. σP is obtained externally as it is

simply the uncertainty around the reference object’s coordinate. However, σd must

be calculated. With multiple reference and background objects within the FOV, there

can be ambiguity with the pointing direction. Figure 3a shows this uncertainty of the

measurement, d. The uncertainty is limited by the camera’s imaging resolution, ∆θ,

and can be calculated based on the geometry of the observed objects as

σd = ∆θ

(
1

2
+

r

r′ − r

)
(15)

where r and r′ are the reference and background object distances, respectively. In

this case, r′ →∞ because the stars are so distant, so Equation (15) simplifies to

σd =
∆θ

2
. (16)

Plugging Equation(16) into Equation (14) results in the position uncertainty as

σ2
x = σ2

P + r2

(
∆θ

2

)2

. (17)

Thus, given σP and ∆θ, the accuracy of the observer’s position is known.

With a stationary observer, σx forms a spherical volume of uncertainty around the

intersection of the LOPs. However with a mobile observer, the LOPs don’t intersect

but rather converge around the observer’s trajectory, creating a volume around the

whole trajectory. Figure 3b depicts this volume of uncertainty around x. The position

error from the true observer’s position to each LOP at time ti

δi = |di × (Pi − xi)| (18)
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The solution provided by Equation (11) or Equation (13) is a least-squares method

that minimizes the sum of squares of the position errors, D =
n∑
i=1

δ2
i .

2.4 Object Size and Brightness

Since star trackers are designed to identify and track point source objects, it is

useful to assume that the reference object will also be a point-like object to avoid

extraneous image recognition and detection processing. However, reference objects,

due to their relative closeness, may not appear as a point source. To ensure that the

reference object is seen as a point source, the Rayleigh criterion can determine the

camera’s minimum resolution.

Given a single point source generates an Airy disk PSF, then two point sources

separated by a distance δz generates two PSFs offset by a distance δi. The Rayleigh

criterion states that an imaging system’s minimum resolution of two incoherent point

sources happens when the peaks of the Airy disks generated by each point source lies

on the first zero of the other’s disk [5]. This occurs when the PSF separation distance

is

δi ≥ 1.22
λzi
Da

(19)

where λ is the wavelength of light, zi is the distance from the aperture to the image

at the focal plane, and Da is the aperture diameter. Figure 4 graphically depicts the

Rayleigh criterion.

In other words, if δi is less than the Rayleigh criterion, then the two point sources

are unresolvable and will appear as a single point source by the optical system. While

Equation (19) is written in terms of δi and zi, it can also be used to solve for δz given z,

the distance from the objects to the aperture, due to the geometry of similar triangles.

Another factor to consider is the brightness of the object in order to be detected

by the star tracker. The brightness of any celestial object is typically given by its
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Figure 4. 2D cross sections of an Airy diffraction pattern PSF generated by two point
sources. The PSF of one point source is also shown for reference. The minimum
resolvable resolution occurs when the PSF peaks lie on each other’s first zero, indicated
by the vertical dotted lines.

apparent magnitude, which is its brightness compared to a reference point. The

apparent magnitude can be calculated as [7]

m = −2.5 log10

(
L

L0

)
(20)

where m is the apparent magnitude of the source object, L is the brightness of the

source observed by the camera, and L0 is the brightness of the reference point. L

and L0, can be determined as the number of photoelectrons that the objects generate

within the camera. Treating the object as an ideal black body, the radiated intensity

at a given frequency and temperature is [7]

I(ν, T ) =
2hν3

c2

(
exp

(
hν

kT

)
− 1

) (21)

where ν is the frequency of light, T is the temperature of the source, h is Planck’s
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constant, c is the speed of light, and k is Boltzmann’s constant.

The radiated intensity from Equation (21) is in units of watts per unit area per

frequency per steradian. This can be converted to photons per second per frequency

by dividing by the energy per photon2, integrating over the frequencies of the visible

spectrum, and multiplying by the surface area of the object, As.

K = 4π As

ν1∫
ν0

I(ν, T )

hν
dν (22)

where the 4π factor accounts for the steradians. Equation (22) then describes the

total number of photons per second that is generated by the black body model.

Given the camera’s quantum efficiency, QE, and the integration time, t, the number

of photoelectrons generated by the camera from the source object can be derived as

[17]

L = K QE t
Aa

Az
(23)

where Aa is the area of the aperture and Az is the surface area of the propagated light

from the object to the camera. Using Vega as the reference point for L0 and given the

star tracker’s minimum detectable apparent magnitude, the minimum number of pho-

toelectrons generated by the reference object can be solved for using Equation (20).

2.5 Extended Kalman Filter

This section presents an overview of how the Kalman filtering works. A Kalman

filter is an algorithm that estimates a system’s states and the state uncertainties over

time. It incorporates measurement data when available to make an optimal prediction

[9]. The basic Kalman filter is only appropriate for linear models however, so the EKF

is used to handle non-linear problems. The key behind the EKF is that it linearizes

2E = hν
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the non-linear models at each timestep by the first-order Taylor series approximation

[10]. One critical assumption with this linearization is that the higher order terms in

the Taylor series are negligible. If this is not true then the EKF is not an appropriate

method. The EKF derivation in this section is a general description of the algorithm.

The specific functions related to this research is presented in Chapter 3.

For the system state vector, x(t), and the system input vector, u(t), the continuous

dynamics model is [10]

ẋ(t) = f [x(t),u(t), t] + G(t)w(t) (24)

where f [...] describes the non-linear system model based on the current state and the

input vectors, w(t) is a zero-mean white Gaussian process noise of strength Q(t), and

G(t) controls which states are directly affected by the noise w(t). The noise strength

Q(t) describes the variance of w(t) and is defined as

E
{
w(t)w(t+ τ)T

}
= Q(t)δ(τ). (25)

The initial state, x(t0), is modeled as a Gaussian random vector whose mean and

covariance generates the initial state estimate and initial covariance, x̂(t0) and P(t0).

Along with the state model, the discrete-time measurements are modeled by [10]

z(ti) = h[x(ti), ti] + v(ti) (26)

where h[...] describes the non-linear observation model and v(ti) is a zero-mean white
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Gaussian measurement noise of strength R(ti) defined as

E
{
v(ti)v(tj)

T
}

=


R(ti) ti = tj

0 otherwise

. (27)

After a measurement z(ti) arrives, the measurement residual is calculated as the

difference between the true measurement and the expected measurement, ẑ(ti), along

with the residual covariance S(ti) [9],

r(ti) = z(ti)− ẑ(ti) (28)

= z(ti)− h[x̂(t−i ), ti]

S(ti) = H(ti)P(t−i )HT(ti) + R(ti) (29)

where P(t−i ) is the covariance of the current state estimates3.

With the residual covariance, the filter gain is computed as [10]

K(ti) = P(t−i )HT(ti)S(ti)
−1 (30)

where H(ti) is the Jacobian of the observation model,

H(ti) =
∂h[x, ti]

∂x

∣∣∣∣
x=x̂(t−i )

. (31)

The filter gain is used to update the current state estimates and covariance by incor-

porating the measurement,

x̂(t+i ) = x̂(t−i ) + K(ti)r(ti) (32)

3t−i represents the state estimates at time ti before incorporating the measurement at time ti,
and t+i represents the state estimates after incorporating the measurement.
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P(t+i ) = P(t−i )−K(ti)H(ti)P(t−i ) (33)

Finally, the updated states and covariance are propagated forward by integrating

[10]

˙̂x(ti+1) = f [x̂(t+i ), u(t), t] (34)

Ṗ(ti+1) = F(t)P(t+i ) + P(t+i )FT(t) + G(t)Q(t)GT(t) (35)

where F(t) is the Jacobian of the state model,

F(t) =
∂f [x,u(t), t]

∂x

∣∣∣∣
x=x̂(t+i )

. (36)

The solutions to Equations (34) and (35) can be written as

x̂(t−i+1) = x̂(t+i ) +

∫ ti+1

ti

f [x̂(t+i ),u(t), t]dt (37)

P(t−i+1) =Φ[ti+1, ti; x̂(t+i )]P(t+i )ΦT[ti+1, ti; x̂(t+i )] (38)

+

∫ ti+1

ti

Φ[ti+1, ti; x̂(t+i )]G(t)Q(t)GT(t)ΦT[ti+1, ti; x̂(t+i )]dt

where Φ(ti+1) is the state transition matrix calculated from the linearized state model

F(t) [9],

Φ[ti+1, ti; x̂(t+i )] = eF(t)∆t. (39)

These propagated state estimates then become the current state estimates, or x̂(t−i+1) =

x̂(t−i ), as the EKF algorithm continues to the next iteration.
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2.6 Chapter II Summary

This chapter covered the basic information necessary to understand how star track-

ers are used for position, velocity, and attitude. A basis for the various coordinate

frames used in this paper was defined in Section 2.1. Normal star tracker attitude

acquisition was described in Section 2.2 as well as position and velocity triangulation

in Section 2.3. Section (2.4) explained the necessary conditions required for the ref-

erence to be detected. Finally Section 2.5 described the process of a generic EKF.

The next chapter will walk through the specific simulation description.
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III. Methodology

This chapter describes the CAINS simulation tool which was used to generate all

the results in Chapter IV. Section 3.1 provides an overview of the tool itself and a de-

scription of the scenario that the tool simulates. Some key assumptions are discussed

in Section (3.2). Section 3.3 steps through the CAINS algorithm, describing how

measurements are read and processed. Section 3.4 describes the sensor parameters

and the linearized F and H models used by the EKF. Finally Section 3.5 describes

how new measurement data was generated.

3.1 CAINS Description

CAINS is a robust simulation tool developed in the MATLAB environment for

INS trade studies. It can combine measurements from various sensors into a Kalman

filter to generate a navigation solution. The tool simulates an RPA with an INS and

other sensors attempting to determine it’s navigation solution. The INS/IMU sensor

is always on while additional sensors can be toggled on for each new simulation run.

The suite of sensors include CNS, GPS, magnometer, and altimeter, amongst other

sensor modules.

When a sensor is selected for a simulation run, the tool generates a structure for

each sensor that contains all the necessary data required for the sensor to interact with

the simulation, such as the sensor-specific parameters, the truth and measurement file

locations, and common function handles. Having common function handles is what

gives the tool the flexibility to work with multiple sensors, allowing the user to toggle

any number of sensors without changing the simulation’s inner code. In this research,

only the altimeter and the star tracker were used as additional sensors. While the

altimeter aids the vertical measurement, the primary focus will be on the star tracker
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sensor.

The simulation models a 10 minute flight of an RPA flying directly North-West

with an initial geodetic position of (25◦, −90◦, 5486.4 m). The RPA maintains an

average velocity of 152 m/s and though it flies mostly level, it experiences attitude

fluctuations most heavily in the roll and pitch axes. The RPA has two fixed star

tracking sensors pointing directly up from the body with an 8◦ FOV. While both

star sensors have similar characteristics and are pointing in the same direction, one

is used to observe only the stars while the other is used to observe the HAV. In this

paper, to differentiate the two sensors one will be called the star tracker and the other

will be called the HAV tracker. The HAV follows a similar trajectory and velocity as

the RPA but flies at an average altitude of 20 km. With this setup, three different

scenarios were run using CAINS:

1. Processing only star measurements for attitude updates.

2. Processing only HAV measurements for position and velocity updates.

3. Combining both star and HAV measurements for position, velocity, and attitude

updates.

Based on the number of sensors in use, the size of the state vector is dynamically

generated. At a minimum, there are 21 states generated by the INS and IMU alone.

The INS generates 9 states: LLH position, NED velocity, and RPY attitude. The

IMU generates 12 states: accelerometer and gyro bias states plus accelerometer and

gyro scale factors in each of vehicle’s three rotation axes. In addition to the minimum

21 states, each star tracking sensor adds two states: the azimuth and elevation bias

for that sensor. The altimeter was modeled as unbiased but had white noise added

into the measurements so it does not add any states to the state vector. State data

is stored in a another structure that saves the state values every time the states are
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updated via the Kalman filter’s propagation or measurement update. The order of

the states in the state vector generated by CAINS is shown in Equation (40), where

pφλh are the geodetic positions for latitude, longitude, and altitude, vNED is the NED

velocity vector, ψ is the tilt vector, ba and bg are the IMU accelerometer and gyro

bias vectors, respectively, along the three rotation axes, sfa and sf g are the IMU

accelerometer and gyro scale factor vectors, respectively, along the three rotation

axes, and bST and bHT are the azimuth and elevation bias vectors for the star tracker

and HAV tracker, respectively.

x(ti) =

[
pφ pλ vNED ψ ph ba bg sfa sf g bST bHT

]
(40)

It should be mentioned that CAINS can do more than described in this paper.

However the full functionality of the tool goes beyond the scope of this research so

the algorithm’s description has been limited to it’s use here.

3.2 Algorithm Assumptions

There are some key assumptions that the model makes:

1. Atmospheric effects are ignored for a simplistic model.

2. Communication between the RPA and the HAV is instant.

3. Image processing and pattern recognition for stellar measurements is already

performed.

4. The HAV will appear as a point source to the RPAs star sensors.

The first and second assumptions are made to simplify the model, as this algo-

rithm was made to test the concept of HAV tracking. The third assumption is made

to limit the scope of this the research on the estimation aspect, as image processing of
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CNS can be its own research area by itself. However, while CAINS doesn’t simulate

the imaging aspect, it still generates the navigation state updates based on the input

measurements. The CNS measurement input only provides the location or the point-

ing vector to the stellar object; CAINS then processes that data to generate position,

velocity, and attitude updates. The fourth assumption however can be validated us-

ing optics theory. While the plane itself is unlikely to appear as a point source, it

can be assumed that the plane carries a beacon for the HAV tracker to track. From

the Rayleigh criterion described by Equation (19) in Section (2.4), using an average

wavelength of λ̄ = 500 nm, z = 15 km and Da = 7 cm, the beacon’s diameter must

be less than 13.07 cm to appear as a point source by the camera.

The minimum brightness necessary for the camera to detect the beacon can also

be determined. As described in Section (2.4), the minimum number of photoelectrons

that is generated by the beacon, L, can be determined using Equation (20). Then

the beacon’s total number of photons per second, K, can be calculated from Equa-

tion (23). This requires knowing Az, the surface area of the beam propagating from

the beacon to the camera. Modeling the propagation of light as a cone with a beam

divergence of θ = 60◦, Az will be the area of a circle of radius r = z tan(θ). Finally,

the minimum wattage required by the beacon is calculated as the product of K and

the energy per photon,

W = K hν. (41)

Due to the second assumption that the CAINS simulation skips the image process-

ing steps of acquiring its measurements, values for quantum efficiency and integration

time were unavailable and assumed as QE = 80% as the average QE over the visible

spectrum and t = 0.01 s. Given the HAV tracker’s minimum detectable magnitude

of m = 6 and with previous values of z, λ̄, and Da, the estimated minimum power

required by the beacon is 0.61 W, assuming 100% luminous efficiency. Even with
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realistic values for luminous efficiencies, the minimum wattage would still be fairly

small. Since the the maximum beacon size and the minimum beacon wattage are

reasonably small figures, the last assumption is valid.

3.3 CAINS Algorithm

The process flow for CAINS is described by Figures 5-7. Figure 5 outlines the

overall simulation loop while Figure 6 and Figure 7 show the Kalman filter’s specific

navigation and measurement updates. The INS and star tracker parameters that

were used in this simulation are listed in Table 1, where the subscripts a, g, b, sf, ST,

and HT represent the respective parameters for the accelerometer, gyro, bias, scale

factor, star tracker and HAV tracker.

Table 1. Key sensor parameters for the IMU and CNS used by the EKF.

IMU CNS

σa 2.38× 10−4 m/s/
√

s σST 6 arcsec

σg 5.82× 10−7 rad/
√

s σbST
100 arcsec

σba 2.45× 10−4 m/s σHT 8.49 arcsec

σbg 1.45× 10−8 rad/s σbHT
10 arcsec

σsfa 100 ppm τST 1000 s

σsfg 5 ppm τHT ∞

τba , τbg , τsfa , τsfg 1000 s FOV 8◦

After initializing the sensors and states, each sensor reads measurements from their

respective data files and stores the next measurement into the sensor’s buffer. The

measurement data files contain the time of the measurement, valid time or Tvalid, and

the measurement itself. The simulation performs a sensor peek where it looks at the

buffered data and selects the next earliest measurement, next measurement, defined

as the measurement with the lowest Tvalid. If the measurement queue is currently
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Figure 5. CAINS Process Diagram. See Figures 6 and 7 for more detail.
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Figure 6. CAINS IMU Measurement Process, expanded from the “Process IMU oldest
meas” block at the bottom of Figure 5.
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Figure 7. CAINS non-IMU Measurement Process, expanded from the “Process non-
IMU oldest meas” block at the bottom of Figure 5.
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empty then the next measurement is stored in the queue. Each time a measurement

is added to the queue, the queue is sorted by Tvalid and the queued measurement with

the lowest Tvalid is marked as the oldest measurement. Otherwise if the queue is not

empty, then the simulation compares the queue’s oldest measurement’s Tvalid to the

next measurement’s Tvalid. The next measurement gets queued if it’s valid time is

less than or equal to the oldest measurement’s time. After queueing, that simulation

performs a sensor pop in which the simulation loads the next measurement into the

sensor buffer for the sensor that provided the next measurement that just got queued.

The peek-queue-pop process continues until the next measurement’s Tvalid is greater

than the oldest measurement’s Tvalid. This happens when all the sensor’s current mea-

surements are queued and the next set of sensor measurements within the buffer are

at future times. The simulation time, T, is updated and the measurement queue is

almost ready for processing. There is one other check made before the queued mea-

surements are processed. Because CAINS always has the IMU on, the IMU roughly

acts as the simulation’s timer. As such, CAINS only processes measurements when

the Tvalid of a non-IMU measurement falls within the current simulation time, given

by the current IMU measurement’s 1 time window. If a non-IMU oldest measure-

ment is outside of the IMU measurement’s time window, then it means the oldest

measurement is a future measurement that the simulation hasn’t caught up to yet, so

it queues the next measurement, pops the next IMU measurement and continues the

loop. The IMU pop acts to progress the IMU forward until a new IMU measurement

is assigned as the current IMU measurement which captures the oldest measurement’s

1Note that the simulation tracks two IMU measurements: the next measurement from the mea-
surement queue (the oldest measurement) which could potentially be from the IMU, and the simu-
lation’s current IMU measurement referred to as IMU measurement. On the first iteration through
the simulation loop, the current IMU measurement is initialized with no data so the first oldest
measurement that comes from the IMU is then assigned as the current IMU measurement and the
simulation returns to the top of the loop. Once the current IMU measurement has been assigned,
the algorithm runs normally.
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Tvalid. One key assumption for this algorithm is that the IMU provides measurements

at a much greater frequency than the other sensors.

When all the checks are done, the oldest measurement is finally ready for pro-

cessing. First, the state structure saves the current simulation time, T. Then CAINS

handles the oldest measurement slightly differently depending on whether the old-

est measurement is an IMU measurement or not. IMU measurements only trigger

a Kalman filter time propagation of the states whereas non-IMU measurements do

both time propagation and measurement update. Regardless of which path it takes,

the algorithm checks if any simulation time actually passed before propagating the

states. It calculates a ∆t, which is the difference between the oldest measurement’s

time and the current simulation time, T. State propagation does not happen if ∆t is

zero, which means multiple measurements at the same time are being processed. In

this case no changes are made to the states but the states are saved into the state

structure anyway. Otherwise, the simulation propagates each state by ∆t based on

the time constant τ and calculates the linearized dynamics model, F, and the state

uncertainty from the updated covariance matrix, P. The updated states and uncer-

tainty values are saved in the state structure and the algorithm returns to the top of

the loop.

For non-IMU measurements, the simulation attempts a time propagation the same

way as described for IMU measurements, but it also performs a measurement update

even if ∆t = 0 and the time propagation step was skipped. The simulation calculates

a measurement prediction, the measurement noise covariance, R, and the linearized

measurement model, H. With the actual measurement and the measurement predic-

tion, the measurement residual, v, can be calculated. The residual and its covariance,

S, as described by Equation (29), is monitored for measurement anomaly detection.

A measurement is anomalous if the residual is greater than n × σ, where σ is the
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standard deviation based on S and n is a user-defined value. CAINS uses n = 6 stan-

dard deviations for its anomaly detection algorithm. For measurements that pass the

anomaly check, the Kalman filter uses the measurement to calculate the state esti-

mate, x̂(ti+1), and the updated covariance matrix, P. If the measurement fails the

anomaly check, the measurement is discarded and no measurement update occurs.

Whether or not the measurement was anomalous, the algorithm saves the state values

and uncertainty into the state structure and continues the loop.

3.4 State and Observation Models

The linearized F model used by the EKF is primarily made of the individual

sensor’s F matrices with few cross-sensor terms.

F =



FINS FIMU×INS 09×2 09×2

012×9 FIMU 012×2 012×2

02×9 02×12 FST 02×2

02×9 02×12 02×2 FHT


(42)

Before describing each submatrix, Table 2 defines Earth ellipsoid parameters neces-

sary for the calculations.

FINS is given by Equation (43), where the subscripts θ, v, ψ, and h represent the

partial derivatives with respect to each state. Note that the order of states described

by the state vector in Equation (40) has the position state elements broken up, such

that the geodetic angles, φ and λ, are the first two states while the height h is last.

The resulting F matrices describing the partial derivatives follow this state order. As
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Table 2. Earth Parameters

Symbol Parameter (Units) Value

r Ellipsoid semi-major radius (m) 6.378× 106

e Eccentricity 0.0818

Ω Rotation rate (rad/s) 7.292× 10−5

RE Prime vertical radius of curvature (m)
r√

1− e2 sin2(φ)

RN Meridian radius of curvature (m)
r(1− e)√

1− e2 sin2(φ)
3

GM Standard gravitational parameter (m3/s2) 3.986× 1014

J2 Second degree zonal harmonic 1.083× 10−3

such, φ and λ are grouped together and represented by as a single unit, θ.

FINS =



Fθθ Fvθ 02×3 02×1

Fθv Fvv Fψv Fhv

Fθψ Fvψ Fψψ 03×1

01×3 Fvh 01×3 0


(43)

The non-zero partial derivatives with respect to the θ states are

Fθθ =

vN tan(φ)

γN

−vE tan(φ)

γE

0 0

 (44)

Fvθ =

 0
1

γE
0

−1

γN
0 0

 (45)

where γN and γE are shorthand representations of RN + h and RE + h, respectively.
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The partial derivatives with respect to the velocity states are

Fθv =


2ΩvD (sin(φ)− cos(φ) tan(φ))− [gn]3 2ΩvE cos(φ)

− [gn]3 2Ω (vD sin(φ− vN cos(φ))

−2ΩvN (sin(φ)− cos(φ) tan(φ))− [gn]3 −2ΩvE sin(φ)

 (46)

Fvv =


vD
γN

−2

(
Ω sin(φ) +

vE tan(φ)

γE

)
vN
γN

2Ω sin(φ) +
vE tan(φ)

γE

vD + vN tan(φ)

γE
2Ω cos(φ) +

vE
γE

−2vN
γN

−2

(
Ω cos(φ) +

vE
γE

)
0

 (47)

Fψv =

[
Cn
b

∆v

∆t

]
×

(48)

Fhv =

[
0 0 −2 [gn]3

1

γN

]T

(49)

where the [· · · ]n operator represents the nth column vector of a matrix, the [· · · ]×

operator represents the skew-symmetric matrix of a vector, Cn
b is the DCM from the

b-frame to n-frame, ∆v is from the IMU measurement, and gn is the gravitational

mass attraction model rotated from the e-frame to the n-frame using the DCM Cn
e ,

gn = Cn
eg

e

= Cn
e


−pe

GM

r3
.×



1 + 1.5J2

(
RE

r

)2
(

1− 5

(
pez
r

)2
)

+ Ω2pex

1 + 1.5J2

(
RE

r

)2
(

1− 5

(
pez
r

)2
)

+ Ω2pey

1 + 1.5J2

(
RE

r

)2
(

3− 5

(
pez
r

)2
)




(50)

where pe is the e-frame position vector and the .× operator represents element-wise
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matrix multiplication. The non-zero partial derivatives with respect to the tilt states

are

Fθψ =


0 Ω sin(φ)

−Ω (sin(φ)− 2 cos(φ) tan(φ)) 0

0 Ω cos(φ)

 (51)

Fvψ =


0

1

γE
0

−1

γN
0 0

0
− tan(φ)

γE
0

 (52)

Fψψ =


0 −Ω sin(φ)− vE tan(φ)

γE

vN
γN

Ω sin(φ) +
vE tan(φ)

γE
0 Ω cos(φ) +

vE
γE

−vN
γN

Ω cos(φ)− vE
γE

0

 (53)

Finally, the only non-zero partial derivative with respect to the altitude is the down

velocity.

Fvh =

[
0 0 −1

]
(54)

The other sensor models, FIMU , FST, and FHT, are based on the first order Gauss

Markov biases,

FIMU =

[−1

τba

I3×3
−1

τbg

I3×3
−1

τsfa

I3×3
−1

τsfg

I3×3

]
D

(55)

FST =
−1

τST

I2×2 (56)

FHT =
−1

τHT

I2×2 (57)

where the [· · · ]D operator indicates a diagonal matrix and the τ time constants are
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given in Table 1. The only cross-sensor terms exist between the INS and the IMU.

FIMU×INS =



02×3 02×3 02×3 02×3

Fbav 03×3 Fsfav 03×3

03×3 Fbgψ 03×3 Fsfgψ

01×3 01×3 01×3 01×3



=



02×3 02×3 02×3 02×3

Cn
b 03×3 Cn

b

[
∆v

∆t

]
D

03×3

03×3 −Cn
b 03×3 −Cn

b

[
∆v

∆t

]
D

01×3 01×3 01×3 01×3


(58)

There are two linearized H models used by the EKF, one for the star tracker and

the other for the HAV tracker. While both are similar sensors, they use different mea-

surements, which lead to different models for both. The star tracker’s measurement

is the image coordinates in the p-frame, yp,

hST = yp =

ypx
ypy

 (59)

The linearized model for the star tracker is then

HST =

[
HθST 02×7 02×12 HbSTST 02×2

]
(60)

where HθST and HbSTST are

HθST =


uny
ucz

(tan(φ)− ypx)
ypxu

n
x + unz
ucz

−unx tan(φ)− ypyuny − unz
ucz

ypyu
n
x

ucz

 (61)
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HbSTST =

 1 + ypx
2 −ypy sin(ba) + ypxy

p
y cos(ba)

1 + ypxy
p
y ypx sin(ba) + cos(ba) + ypy

2 cos(ba)

 (62)

where un and uc are the star tracker’s unit pointing vectors in the n-frame and

c-frame, respectively, and ba is the star tracker’s azimuth bias.

The HAV tracker outputs azimuth and elevation angles in the c-frame defined by

the position vector from the RPA to HAV, pc,

hHT =

az
el

 =

 arctan

(
pcx
pcz

)
arcsin

(
pcy
|pc|

)
 . (63)

The linearized model for HAV tracker is

HHT =

[
HθHT 02×3 HψHT HhHT 02×12 02×2 HbHTHT

]
(64)

where HθHT, HψHT, HhHT, and HbHTHT are

HθHT = A(Cc
n)bias(B + Cn

eD) (65)

HψHT = A(Cc
n)bias[p

n]× (66)

HhHT = −A(Cc
e)bias[C

n
e ]Tz [] (67)

HbHTHT =

1
pcxp

c
y

pcx
2 + pcy

2
(cos(ba)− sin(ba))

0
pcx sin(ba) + pcz cos(ba)√

pcx
2 + pcz

2

 (68)

where pn is the RPY to HAV position vector in the n-frame, ba is the HAV tracker’s

azimuth bias, Cc
n is the n-frame to c-frame DCM, Cc

e is the e-frame to c-frame
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DCM, and (Cc
n)bias and (Cc

e)bias are the c-frame DCMs with the bias-correction. The

matrices A, B, and D are defined as

A =


pcz

pcx
2 + pcz

2
0

−pcx
pcx

2 + pcz
2

−pcxpcy
|p|2
√
pcx

2 + pcz
2

pcx
2 + pcz

2

|p|2
√
pcx

2 + pcz
2

−pcypcz
|p|2
√
pcx

2 + pcz
2

 (69)

B =


pny tan(φ) pnz

−pnx tan(φ)− pnz 0

pny −pnx

 (70)

D =


(RE + h)[Cn

e ]2,1 (RE + h)[Cn
e ]1,1 +

REe
2 sin(φ) cos(φ)

1− e2 sin2(φ)
[Cn

e ]3,1

(RE + h)[Cn
e ]2,2 (RE + h)[Cn

e ]1,2 +
REe

2 sin(φ) cos(φ)

1− e2 sin2(φ)
[Cn

e ]3,2

(RE(1− e2) + h)[Cn
e ]2,3 (RE(1− e2) + h)[Cn

e ]1,3 +
REe

2 sin(φ) cos(φ)

1− e2 sin2(φ)
[Cn

e ]3,3


(71)

where [· · · ]i,j is the i, j element of a matrix.

3.5 Generating New Data for CAINS

For this research, new star tracker and HAV tracker measurement data had to

be generated. For the star tracker data, the star catalog that was provided by the

sponsor was used, which included 12443 stars. For the HAV data, an HAVs trajectory

was generated similar to the RPAs true flight path but at an altitude of about 20

km. With the star table and the HAV trajectory, 20 measurement data files were

generated using the RPAs FOV and differing measurement frequencies. Besides the

changing measurement frequency of the CNS sensors, all other parameters were fixed.

Table 3 captures the 20 different measurement frequencies tested. These intervals were

selected to capture a wide variety and to determine their effects on the navigation

solution.
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Table 3. Sensor measurement frequencies between simulations. Only the CNS sensors
had varying measurement intervals while the IMU and altimeter stayed constant.

Sensor Measurement Interval ∆t (s)
IMU 0.01

Altimeter 30
CNS 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 30, 40, 50

Additional simulations were tested with CNS measurements beyond 50 s intervals.

However the true attitude of the RPA fluctuates throughout the simulation so the

fixed CNS sensors miss the HAV measurements about 60% of the time. When the

CNS measurement frequency was set over 50 s apart, the RPA missed practically all

the HAV measurements so the navigation estimates drifted. As such, those results

were excluded from this paper.

This effort only required new star and HAV measurements. The IMU and altime-

ter measurements were left untouched as they were provided by the sponsor. The

IMU provided measurements every ∆t = 0.01 s and the altimeter every ∆t = 30 s.

3.6 Chapter III Summary

This chapter provided a description of the scenarios simulated and the tool used

to simulate the scenarios. The general simulation of the RPA making stellar and

HAV observations was described in Section 3.1 as well as the specific scenarios to be

compared in the results. The process flow for CAINS was explained in Section 3.3,

which was used to run the simulations. The EKF models for the sensors were shown

in Section 3.4. Finally, new sensor data generation for the scenarios was discussed

in Section 3.5. The next chapter will show the simulation results and analyze the

differences between scenarios.
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IV. Results

This chapter discusses the results of the CAINS tool in estimating the navigation

accuracies in the three different scenarios: star tracking only, HAV tracking only, and

then star and HAV tracking. Each scenario will be discussed individually first, with

the results of Scenario 1 in Section 4.1, Scenario 2 in Section 4.2, and Scenario 3 in

Section 4.3. The 20 different simulations per scenario are analyzed to determine the

effect of increasing the time between observations on navigation accuracy. Finally

Section 4.4 compares the results between scenarios to determine the effect of the

different sensor configurations on navigation accuracy.

4.1 Scenario 1: Star Tracking Only

In Scenario 1, only the star tracker and altimeter were used to aid the INS1. Fig-

ures 8 through 13 show the navigation state position, velocity, and attitude estimates

of one sample run. The sample taken is the first simulation run in this scenario where

the star tracker measurements are observed every ∆t = 1 s. From Figure 8 which

shows the the truth vs estimated LLH position, it can be seen that the latitude and

longitude drifts over the 10 minute simulation while the altitude stays within a rea-

sonable level of accuracy. This is expected since position updates are unavailable with

star tracking, so the estimate will drift with the IMU, while the altimeter provides

updates for the altitude. Even with the drift, the errors stay within the 3σ bounds

as shown in Figure 9.

Similarly, Figure 10 shows the truth vs estimated NED velocities and Figure 11

shows the velocity estimate errors. The results are interesting because the velocities

1For the simulation results, the INS’s initial conditions for the position, velocity, and attitude
uncertainty was set fairly high, using 1σ values of 200 m, 20 m/s, and 1 mrad, respectively. This
resulted in heavy drift errors even for a navigation grade IMU.
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Figure 8. Sample plot from Scenario 1, truth vs estimate of the LLH position of the
first simulation (dt = 1).

Figure 9. Sample plot from Scenario 1, position estimate errors of the first simulation
(dt = 1) with 3σ uncertainty.
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Figure 10. Sample plot from Scenario 1, truth vs estimate of the NED velocity of the
first simulation (dt = 1).

Figure 11. Sample plot from Scenario 1, velocity estimate errors of the first simulation
(dt = 1) with 3σ uncertainty.
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do not drift without bound as expected. The 3σ uncertainty for the North and

East velocities taper inward over the simulation. This might be due to the altimeter

keeping track of the down position.

Lastly, Figure 12 shows the truth vs estimated RPY attitude and Figure 13 shows

the attitude estimate errors. These attitude errors described are the errors from the

true Euler angles of the RPA. As expected, the attitude is tracked quite accurately

since the purpose of the star tracker is to provide attitude updates. While the attitude

error uncertainties still drift, the scale is small even at the end of the 10 minute

simulation.
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Figure 12. Sample plot from Scenario 1, truth vs estimate of the RPY attitude of the
first simulation (dt = 1).

The sample plots presented show a single case of the twenty simulations run in this

scenario. To effectively compare the twenty simulations, the results are summarized

in more efficient measures. One such statistical measure is the root sum square (RSS)

as shown in Equation (72), where xi, yi, and zi are the ith navigation state estimate
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Figure 13. Sample plot from Scenario 1, attitude estimate errors of the first simulation
(dt = 1) with 3σ uncertainty.

errors.

RSS =
√
x2
i + y2

i + z2
i (72)

The RSS of the errors combine the navigation state errors for position, velocity, or

attitude in each of their three axis into a single value that describes the absolute

distance of the error from zero [15]. Figure 14 shows a sample plot of the RSS of the

position error from the first simulation run. The first 90 s are ignored as the EKF

stabilizes to its steady state. The position error drift is also apparent in the RSS

error.

It would still be inconvenient to show every RSS plot per simulation because it’s

time dependent. This time dependency can be removed by generating a cumulative

distribution function (CDF) from the RSSs by determining how many measurements

fall below a specific error value verses the total number of measurements in that run.
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The CDF shows the probability of the state estimate error being equal to or less

than a given value. Figure 15 shows a sample CDF of the RSS position error from

Figure 14.

Figure 14. Sample RSS of the position estimate errors for Scenario 1 from the first
simulation (dt = 1). The RSS is calculated after 90 s to allow the EKF to initialize.
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Figure 15. Sample CDF from Scenario 1 of the first simulation (dt = 1). The CDF was
generated based on the RSS of the position estimate errors from Figure 14.

Finally by transforming the CDF into a single error bar, multiple simulations can

be displayed side-by-side for a proper comparison and analysis of the data between

runs. Figures 16 through 18 show exactly that, by generating a CDF per simulation

for the position, velocity, and attitude RSS errors and transforming the CDFs into

error bars. The error bars encapsulate an 80% confidence interval, from 10% prob-

ability at the bottom of the bar to 90% at the top. It also shows the 50% median

point, which is useful to show how much of that specific run’s results are above or

below the median.

Now the filter estimates among different runs can be easily compared. Based on

the CDF error bars in Figures 16 through 18, there doesn’t appear to be a strong re-
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lationship between the navigation accuracy and measurement observation frequency.

The position, velocity, and attitude estimate errors vary widely among all the runs.

There is a slight increase in the size of the error bars in the position and attitude

errors for some of the runs as the measurement ∆t’s increase, but it’s not consistent.
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Figure 16. CDF error bars of the RSS position errors from Scenario 1.
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Figure 17. CDF error bars of the RSS velocity errors from Scenario 1.
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Figure 18. CDF error bars of the RSS attitude errors from Scenario 1.

Another useful statistical measure of accuracy, specifically for position, is 3-D root
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mean square (3DRMS) as given by Equation (73),

3DRMS =

√√√√ 1

n

n∑
i=1

x2
i + y2

i + z2
i (73)

where xi, yi, and zi are the ith navigation state estimate error and n is the total

number of measurements throughout the run. The 3DRMS value describes the overall

3-D position accuracy, combining the mean and standard deviations of the estimate

errors from all three directional axes [11]. What’s most useful about 3DRMS is that

it summarizes the positional accuracy of an entire simulation run into a single point.

It’s similar to the error bars but even more compact by showing one point rather than

a confidence interval.
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Figure 19. 3DRMS position accuracy for Scenario 1. Note the log-scale y-axis.

Figure 19 shows the 3DRMS values of the position accuracy of all the simula-

tions in Scenario 1. Again, there is seemingly no correlation between measurement

observation frequencies and position accuracy. The figure’s legend depicts different

markers for “good” simulations marked by ◦’s versus “bad” simulations marked by

×’s. This threshold was arbitrarily set at 10 m of 3DRMS accuracy. In Scenario 1,

due to the position estimate drift, all the 3DRMS values are over this threshold. The

rest of this paper will only be discussed in terms of the CDF error bars and 3DRMS

position estimates.

The last thing to note are the anomalous measurements flagged by the EKF.
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Figure 20 shows the percentage of anomalous measurements per run flagged by the

residual monitoring anomaly detector for each sensor. Similar to the good vs bad

markers made for the 3DRMS plot, an arbitrary threshold was set at 20%. In this

scenario, none of the sensor measurements were anomalous so this figure is not worth

much discussion, but it will be important for the other two scenarios.
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Figure 20. Measurement anomalies for each sensor in Scenario 1. No measurements
were flagged as anomalous.

4.2 Scenario 2: HAV Tracking Only

In Scenario 2, only the HAV tracker and altimeter were used to aid the INS.

Figures 21 through 23 show the sample plots of the first simulation run of this scenario.

The truth vs estimate navigation states weren’t shown as in Scenario 1 due to the

small scales of the error, so those figures weren’t worthwhile. These sample plots are

only shown for reference. Most of the analysis will be spent on the RSS and 3DRMS

plots.

Before showing the results, it’s necessary to review the anomalies that the algo-

rithm detected first. Figure 24 shows that the HAV tracker’s measurements were
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Figure 21. Sample plot from Scenario 2, position estimate errors of the first simulation
(dt = 1) with 3σ uncertainty.

Figure 22. Sample plot from Scenario 2, velocity estimate errors of the first simulation
(dt = 1) with 3σ uncertainty.
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Figure 23. Sample plot from Scenario 2, attitude estimate errors of the first simulation
(dt = 1) with 3σ uncertainty.

bad for simulation runs 10, 17 and 20 (corresponding with measurement ∆t’s of 10,

20 and 50 s) and the altimeter’s measurements were bad for simulation runs 10 and

14. It’s uncertain why the anomaly detection algorithm does this. As described in

Section 3.5, each HAV measurement file is generated from the same HAV flight tra-

jectory. The only difference between the measurement files is the different observation

times. The anomalies with the altimeter is even more confusing since the exact same

measurement file is read for all the simulation runs.

Figure 25 shows the 3DRMS accuracies of all the simulation runs in Scenario 2.

The top subplot captures all the 3DRMS accuracies, including the bad ones. There

is a direct correlation between the anomalous runs found in Figure 24 and the runs

with large errors. This is because so many of the measurements in those runs are

discarded so the IMU drifts with few updates.
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Figure 24. Measurement anomalies for each sensor in Scenario 2. The HAV tracker
had bad measurements for simulations 10, 17, and 20 and the altimeter had bad mea-
surements for simulations 10 and 14.
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Figure 25. 3DRMS for Scenario 2. Both subfigures show the same data, but the top
subfigure includes all simulation results whereas the bottom subfigure is scaled to just
the “good” simulations with a 3DRMS under 10 m.

The bottom subplot of Figure 25 shows a closer view of only the good simulations.

Except for the last two points, there is basically no relationship between 3DRMS

accuracies and measurement observation times as with Scenario 1. The last two

simulations are the only indication that the accuracies fall, but instead of trending
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up to to those levels of accuracy, they suddenly jump from a steady average. These

results may be outliers.

Figures 26 through 28 show the CDF error bars of the RSS position, velocity,

and attitude estimate errors, respectively. The simulations with bad 3DRMS values

are ignored. The position and velocity plots don’t show any effect of increasing

measurement observation times, but the attitude error RSS does show a slight drop

in attitude accuracy towards the later simulation runs. The last two simulations with

outlying 3DRMS results are also apparent in the position and velocity RSS plots, yet

counterintuitively those same two runs have very accurate attitude error bars.
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Figure 26. CDF error bars of the RSS position errors from Scenario 2. Note that only
the simulations with a 3DRMS below 10 m are shown.
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Figure 27. CDF error bars of the RSS velocity errors from Scenario 2. Note that only
the simulations with a 3DRMS below 10 m are shown.

4.3 Scenario 3: Combined Star and HAV Tracking

In Scenario 3, both the star tracker and HAV tracker are used with the altimeter

for aiding the INS. As in the previous scenarios, the sample plots of the error estimates
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Figure 28. CDF error bars of the RSS attitude errors from Scenario 2. Note that only
the simulations with a 3DRMS below 10 m are shown.

are shown in Figures 29 through 31 and are shown for reference.

Figure 29. Sample plot from Scenario 3, position estimate errors of the first simulation
(dt = 1) with 3σ uncertainty.

As with Scenario 2, the anomalies will be looked at first. Figure 32 shows which

runs had bad data per sensor. In this scenario, none of the star tracker measurements

were bad. There were 4 bad simulations for the HAV tracker: simulations 15, 16,

17, and 19, corresponding to observation measurement ∆t’s of 15, 16, 20, and 40. Of

those, simulation 17 was also a bad simulation from Scenario 2. There were 2 bad
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Figure 30. Sample plot from Scenario 3, velocity estimate errors of the first simulation
(dt = 1) with 3σ uncertainty.

Figure 31. Sample plot from Scenario 3, attitude estimate errors of the first simulation
(dt = 1) with 3σ uncertainty.
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simulations for the altimeter: simulations 10 and 13. Of those, simulation 10 was also

a bad simulation from Scenario 2. There may be a correlation between measurement

time ∆t’s and anomalies found, as most of the bad runs are around the middle runs.
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Figure 32. Measurement anomalies for each sensor in Scenario 3. The HAV tracker
had bad measurements for simulations 15, 16, 17, and 19. The altimeter had bad
measurements for simulation 10 and 13.

Figure 33 plots all the 3DRMS accuracies of this scenario. As with Scenario 2,

the navigation estimates associated with the anomalous simulations experience large

drift errors. These simulations are ignored in later results. Taking a closer look at

the good simulations also shows no trend in accuracy due to measurement frequency.

Figures 34 through 36 show the RSS error bars of the position, velocity, and

attitude estimates, respectively. There is no visible relationship between measurement

observation ∆t’s and estimate accuracies except the last two attitude error results

57



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 20 30 40 50

CNS Measurement ∆t (s)

5

5.5

6

6.5

3
D

R
M

S
, 

lin
e

a
r 

(m
)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 20 30 40 50

101

102

103

104

3
D

R
M

S
, 

lo
g

s
c
a

le
 (

m
)

≥10m Error

<10m Error

Figure 33. 3DRMS for Scenario 3. Both subfigures show the same data, but the top
subfigure includes all simulation results whereas the bottom subfigure is scaled to just
the “good” simulations with a 3DRMS under 10 m.

which seem to show slightly worse attitude estimates.
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Figure 34. CDF error bars of the RSS position errors from Scenario 3. Note that only
the simulations with a 3DRMS below 10 m are shown.
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Figure 35. CDF error bars of the RSS velocity errors from Scenario 3. Note that only
the simulations with a 3DRMS below 10 m are shown.
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Figure 36. CDF error bars of the RSS attitude errors from Scenario 3. Note that only
the simulations with a 3DRMS below 10 m are shown.

4.4 Comparisons of Results

The previous sections analyzed the results within each scenario to understand

how observation times affected the navigation estimates, which for the most part

were uncorrelated. This section compares the results between scenarios to show what

kind of improvements are seen using different sensor configurations. Most of the

comparisons will be between Scenarios 2 and 3 due to the large drift errors seen in

Scenario 1, which would make the plots difficult to read if included in the comparison.

The results of Scenario 1 can still be compared with the other scenarios in Table 4.

Figure 37 overlays the 3DRMS accuracies from Scenario 2 and Scenario 3. The

position accuracy between the two are nearly identical except for the two outlying

results from Scenario 2. It’s clear that the position estimates are nearly identical

between the two scenarios.
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Figure 37. Comparison of 3DRMS accuracy between Scenario 2 and Scenario 3.

Another measure of overall accuracy is by taking the RSS of the standard deviation
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of the errors in each component. Figure 38 shows the RSS of error σ for position,

velocity, and attitude between Scenario 2 and 3. The position and velocity accuracies

are nearly the same with the exception of the outlying runs for Scenario 2, and would

be identical without those two outliers in Scenario 2. The only noticeable difference

between the two scenarios is in the attitude, in which Scenario 3 is about 8 times

more accurate than Scenario 2.
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Figure 38. Comparison of the RSS of the navigation error standard deviations between
Scenario 2 and Scenario 3.

Given the conclusion that CNS measurement frequency doesn’t affect the results

much at all, the results of all 20 simulations per scenario is no different than running 20

simulations of the same scenario. As such, the mean of the results can be compared

for a singular value to rate the entire scenario. Table 4 summarizes the results of

Figures (37) and (38) by taking the means of the results. In addition to the results

of the scenarios, a control scenario was run to show the results of the simulation
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without any CNS, in which the altimeter was the only sensor used to aid the INS.

Because there were no parameters to change in the control, only 10 simulation runs

were generated instead of 20 to determine the mean and standard deviation values

between runs.

Table 4. Comparison of 3DRMS and RSS of error σ in position, velocity, and attitude
between all three scenarios. Row C represents the control simulation in which the INS
was allowed to drift with only the altimeter available for updates.

3DRMS RSS of Error σ

Mean (m) σ (m) Position (m) Velocity (m/s) Attitude (mrad)

C 10,751.41 4722.42 4176.23 6.31 0.77

S1 7715.34 3556.15 3286.06 4.73 0.57

S2 5.93 0.81 5.80 0.085 0.27

S3 5.67 0.19 5.53 0.066 0.034

The star tracker shows a slight improvement in 3DRMS by 28% compared to no

CNS, as well as small improvements in velocity and attitude. However it’s clear that

by itself the star tracker is not a reliable method of navigation as the position errors are

still in the thousands of meters. Introducing HAV tracker provides more than 99.9%

improvement in 3DRMS position accuracy. Surprisingly, the HAV tracker also shows

better attitude accuracy than the star tracking, with a 50% improvement in attitude.

Scenarios 2 and 3 have comparable results, but the main performance benefit of the

combined star and HAV tracker configuration is the significant attitude accuracy it

provides over all the other sensor configuration, with an 87% improvement.

4.5 Chapter IV Summary

The most surprising result from these simulations is that the time between mea-

surements had no significant impact to the navigation accuracy in all three scenarios.

Based on the results from all three scenarios, there is little navigational performance

benefits, if any, from having very frequent stellar or HAV measurements. This is
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most likely due to the fact that a navigation grade IMU was used, limiting the drift

between measurements even up to 50 s. As for the configuration comparison, it was

expected that star tracking only provided poor position estimates compared to HAV

tracking but it was unexpected that HAV tracking provided better attitude certainty

than star tracking. Introducing the HAV tracker provides a tremendous boost in

position and velocity estimate accuracy. The last configuration of using both sensors

provides minimal position and velocity improvements, but attitude accuracy is an

order of magnitude greater than either sensor individually.
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V. Conclusion

This chapter concludes this paper with a summary of the work presented, high-

lighting the contributions of the results in the field celestial navigation as well as

some difficulties that were encountered. Additionally, some potential future work is

discussed, growing from unanswered questions from this research and other potential

avenues for improvement.

5.1 Summary of the Document

Chapter I provided an introduction as to why celestial navigation is relevant in

the field of alternative navigation solutions. A brief overview of how CNS works was

given, with the traditional use of star sensing for attitude determination as well as

position and velocity determination from observations of a known reference object.

It provided relevant research in similar areas of celestial navigation, describing the

works and results of others in both space-born applications of CNS and CNS within

the Earth’s atmosphere. Chapter I concluded with the organization of the remainder

of the paper and an introduction to the MATLAB simulation tool, CAINS.

Chapter II provided a deeper understanding of celestial navigation. It described

how the star tracker determines the star’s PSF center through a process known as

centroiding with sub-pixel level accuracy, and how that affects the overall attitude

accuracy. A description of CNS absolute triangulation was provided, allowing the

determination of position and velocity by observing known reference and background

objects. Assuming that the foreground object needs to be a point source, the optics

theory for getting the reference to appear as a point source was discussed. Chapter

II concluded with a general description of EKF propagation and update equations.

Chapter III described the research methodology. It described the different sce-
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narios that were simulated to show the effects of observation measurement frequency

and multiple sensor configurations on total navigation accuracy. Key assumptions

were laid out and discussed. The process flow for CAINS showed how the sensor

measurements are incorporated into the EKF state estimates, and the specific lin-

earized models were shown. Finally, the generation of the measurement data files was

discussed.

The results of the simulations were shown in Chapter IV. From the analysis, it

turns out that there is no significant performance improvement by increasing the

observation frequencies from 1 s to 50 s in all three scenarios. The performance in

position and velocity estimation improves dramatically with the addition of the HAV

tracker, providing over 99.9% position and velocity estimates. If accurate attitude

is required though, the combined star and HAV tracker configuration is necessary as

that is the only way to reach arcsecond level attitude accuracies. The results also

showed some confusing behavior from the EKFs anomaly detection algorithm, though

it may be an issue with the actual simulation setup rather than the filter. Fortunately

the number of anomalous simulations were few enough to allow them to be discarded

and still generate good data from the remainder.

5.2 Future Work

This research may be continued in a number of avenues. The first is the removal

of the simplifications due to the first two assumptions. Turbulence is a non-negligible

factor that will decrease the navigation aiding estimates. Additionally, there will be

a time delay between the visual HAV measurement and receiving communication of

the HAV position. This will introduce error based on the length of the time lag. This

can be mitigated in two ways: by estimating the time lag through the EKF, which

will require adding additional states to the filter, or by delaying the update algorithm
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until the HAV’s location is received and propagate the solution to the current time

after the fact.

Another area of future research would be to simulate a gimbaled CNS rather than

a fixed CNS. This will allow this simulation to overcome certain limitations of the

current setup. The first is that it will allow the HAV to have more realistic flight

trajectories rather than being forced to fly directly above the RPY to stay within its

FOV. This allows multiple RPAs to view one HAV, or one RPA to get measurements

from multiple HAVs. It can also overcome the fact that certain attitude fluctuations

will impede taking measurements of the HAV. This will allow more rigorous work to

be performed on measurement frequency to determine if ∆t’s greater than 50 s will

affect navigation aiding.

The issue with the anomaly detection algorithm is left unanswered in this research.

Further investigation should be done to explain why the EKF flags certain measure-

ments as anomalous, even though the input measurements were identical. While it

didn’t have much of an impact in the results of this research, it could be an issue if

left unresolved for future work.

65



Bibliography

1. Jamshaid Ali and Jiancheng Fang. Realization of an autonomous integrated suite

of strapdown astro-inertial navigation systems using unscented particle filtering.

Computers and Mathematics with Applications, 57(2):169–183, 2009.

2. Humood Alkhaldi. Integration of a Star Tracker and Inertial Sensors Using an

Attitude Update. Master’s thesis, Air Force Institute of Technology, 2014.

3. Jorge E. Diaz. Satellite Ephemeris Correction via Remote Site Observation for

Star Tracker Navigation Performance Improvement. Master’s thesis, Air Force

Institute of Technology, 2016.

4. Tom Dzamba and John Enright. Optical trades for evolving a small arcsecond

star tracker. IEEE Aerospace Conference Proceedings, 2013.

5. Joseph W. Goodman. Introduction to Fourier Optics. Roberts & Company,

Colorado, 3 edition, 2005.

6. George H. Kaplan. Angles-Only Navigation: Position and Velocity Solution from

Absolute Triangulation. Journal of The Institute of Navigation, 58(3):187–201,

2011.

7. John D. Kraus. Radio Astronomy. McGraw-Hill Book Company, New York, 1966.

8. Carl Christian Liebe. Accuracy Performance of Star Trackers - A Tutorial. IEEE

Transactions on Aerospace and Electronic Systems, 38(2):578–599, 2002.

9. Peter S. Maybeck. Stochastic Models, Estimation, and Control: Volume 1. Aca-

demic Press, New York, 1 edition, 1979.

66



10. Peter S. Maybeck. Stochastic Models, Estimation, and Control: Volume 2. Aca-

demic Press, New York, 1 edition, 1982.

11. Pratap Misra and Per Enge. Global Positioning System: Signals, Measurements,

and Performance. Ganga-Jamuna Press, Massachusetts, 2 edition, 2012.

12. Xiaolin Ning and Jiancheng Fang. An autonomous celestial navigation method for

LEO satellite based on unscented Kalman filter and information fusion. Aerospace

Science and Technology, 11(2-3):222–228, mar 2007.

13. H. Nobahari, H. Ghanbarpour Asl, and S. F. Abtahi. A back-propagation ap-

proach to compensate velocity and position errors in an integrated inertial/ce-

lestial navigation system using unscented Kalman filter. Proceedings of the In-

stitution of Mechanical Engineers, Part G: Journal of Aerospace Engineering,

228(10):1702–1712, 2014.

14. F. Pappalardi, S.J. Dunham, M.E. LeBlang, T.E. Jones, J. Bangert, and G. Ka-

plan. Alternatives to GPS. MTS/IEEE Oceans 2001. An Ocean Odyssey. Con-

ference Proceedings, 3:1452–1459, 2001.

15. Scott J. Pierce. Modeling Navigation System Performance of a Satellite-Orbiting

Star Tracker Tightly Integrated with an Inertial Measurement Unit. PhD thesis,

Air Force Institute of Technology, 2015.

16. Amir Moghtadaei Rad, Jafar Heyrani Nobari, and Amir Ali Nikkhah. Optimal

Attitude and Position Determination by Integration of INS, Star Tracker, and

Horizon Sensor. IEEE Aerospace and Electronic Systems Magazine, 29(4):20–33,

2014.

17. Richard D. Richmond and Stephen C. Cain. Direct-Detection LADAR Systems.

SPIE, Washington, 1 edition, 2010.

67



18. Sean E. Urban and Kenneth P. Seidelmann. Explanatory Supplement to the As-

tronomical Almanac. University Science Books, California, 3 edition, 2013.

19. David A. Vallado. Fundamentals of Astrodynamics and Applications. Microcosm

Press and Kluwer Academic Publishers, California and Dordrecht, 2 edition, 2004.

20. J. Chris Zingarelli, Eric Pearce, Richard Lambour, Travis Blake, Curtis J. R.

Peterson, and Stephen Cain. Improving the Space Surveillance Telescope’S Per-

formance Using Multi-Hypothesis Testing. The Astronomical Journal, 147(5),

2014.

68



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

23–03–2017 Master’s Thesis Sept 2015 — Mar 2017

Celestial Aided Inertial Navigation by Tracking High Altitude Vehicles

17G743

Kim, Mark, S., Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-17-M-040

Air Force Research Laboratory, Munition’s Directorate
Attn: Kevin M. Brink
101 West Eglin Blvd
Eglin AFB, FL 32542
850-872-4600
Email: kevin.brink@us.af.mil

AFRL/RW

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Celestial and inertial navigation systems work well together as an alternative to Global Positioning System. Inertial
systems provide constant dead reckoning updates but is subject to drift. Celestial systems provide updates with its
passive stellar measurements to correct the inertial drift. Stellar measurements normally update attitude only by tracking
the angular positions of known stars. However, by tracking reference objects with known positions against a background
of stars, the observers position and velocity can be updated as well. Using a MATLAB tool developed by the Air Force
Research Laboratory, this research simulates the navigation performance of a low flying aircraft tracking a higher flying
aircraft as the reference object. Three different scenarios are studied: 1) stellar observations providing attitude updates
only, 2) aircraft observations providing bearing measurements to known position and velocities, and 3) both stellar and
aircraft observations. Additionally, the observation frequency will be a variable parameter to determine its effect on
navigation accuracies. The sensor measurements are combined using an extended Kalman filter.
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