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Abstract

As researchers strive to achieve autonomy in systems, many believe the goal is

not that machines should attain full autonomy, but rather to obtain the right level of

autonomy for an appropriate man-machine interaction. A common phrase for this in-

teraction is manned-unmanned teaming (MUM-T), a subset of which, for unmanned

aerial vehicles, is the concept of the loyal wingman. This work demonstrates the

use of optimal control and stochastic estimation techniques as an autonomous near

real-time dynamic route planner for the DoD concept of the loyal wingman. First,

the optimal control problem is formulated for a static threat environment and a hy-

brid numerical method is demonstrated. The optimal control problem is transcribed

to a nonlinear program using direct orthogonal collocation, and a heuristic particle

swarm optimization algorithm is used to supply an initial guess to the gradient-based

nonlinear programming solver. Next, a dynamic and measurement update model and

Kalman filter estimating tool is used to solve the loyal wingman optimal control prob-

lem in the presence of moving, stochastic threats. Finally, an algorithm is written to

determin if and when the loyal wingman should dynamically re-plan the trajectory

based on a critical distance metric which uses speed and stochastics of the moving

threat as well as relative distance and angle of approach of the loyal wingman to the

threat. These techniques are demonstrated through simulation for computing the

global outer-loop optimal path for a minimum time rendezvous with a manned lead

while avoiding static as well as moving, non-deterministic threats, then updating the

global outer-loop optimal path based on changes in the threat mission environment.

Results demonstrate a methodology for rapidly computing an optimal solution to the

loyal wingman optimal control problem.
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To the great ‘I am’... ‘Here am I’
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OPTIMAL CONTROL OF AN UNINHABITED LOYAL WINGMAN

I. Introduction

“... sensors detect abnormal movements of vehicles from a key Weapons
of Mass Destruction (WMD) storage site [in an adversarial nation]. The
U.N. authorizes interception of the WMD because proliferation and po-
tential terrorist use of the WMD are greater risks than a likely response
from [the adversary nation]. Penetrating, high-altitude airborne systems
track the vehicle and provide cueing information to incoming strike air-
craft. Launched from the off-shore aircraft carrier, the strike package
comprises of manned tactical aircraft with numerous combat support Un-
manned Aerial Systems (UAS) providing tactical intelligence communica-
tion relay, jamming support, and strike support. The joint strike fighter
operates as a command ship and works in concert with its supporting
unmanned systems as a seamless network of strike and jamming aircraft.
The strike package penetrates [the adversarial nation’s] airspace and in-
tercepts, strikes, and stops the convoy...” [1]

The vignette above is quoted from the FY2013 Unmanned Systems Integrated

Roadmap [1] and illustrates a future combat environment in which a single manned

aircraft operates as a command ship working in concert with unmanned systems to

complete a mission that is vital to the security interests of the U.S. U.S. “deployed

forces have seen how effective unmanned systems can be in combat operations...”

which “has created expectations for expanding the roles for unmanned systems in

future combat scenarios [2].” The earlier published FY2011 Unmanned Systems In-

tegrated Roadmap [2] highlighted seven challenges facing all military service depart-

ments, one of which is Manned-Unmanned Teaming (MUM-T), stating “DoD must

continue to implement technologies and evolve Tactics, Techniques and Procedures

(TTP) that improve the teaming of unmanned systems with the manned force” [2].

MUM-T is a concept which describes manned and unmanned systems working to-
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gether to achieve a common operational mission objective, and includes the concept

of the ‘loyal wingman’. Much like manned aircraft of modern times that fly in for-

mation under the tactical command of their lead, the loyal wingman is a UAV that

flies under tactical command of a manned lead aircraft both while in and out of for-

mation. A review of DoD documents in Section 1.1 reveals a loyal wingman may be

involved in numerous mission applications, command and control architectures and

potential scenarios. Therefore, this chapter establishes a definition as well as a com-

mand and control structure and candidate scenario for the loyal wingman that drives

the research performed in this work. This chapter additionally establishes research

questions that, when answered throughout this work, provide a contribution to the

existing body of knowledge.

1.1 Requirement

Multiple DoD requirements documents are examined to ensure the defined com-

mand and control architecture and candidate scenario are applicable to real-world

user needs.

1.1.1 UAS Roadmap.

The 2011 Roadmap [2] lists capabilities that may be met by a loyal wingman such

as defeating ground explosives from standoff distances, assuring mobility to support

multiple points of entry, enabling movement and maneuver for projecting offensive

operations and protecting austere combat posts. When determining a research ob-

jective, these roadmaps provide a broad range of missions from which to establish a

loyal wingman command and control architecture and candidate mission scenarios.
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1.1.2 2013-2038 USAF RPA Vector.

The 2013-2038 United States Air Force (USAF) Remotely Piloted Aircraft (RPA)

Vector [3] distinguishes the loyal wingman concept from such topics as swarms of

unmanned vehicles. It is envisioned that a loyal wingman would be used to accom-

pany a manned lead aircraft to accomplish such missions as ISR, air interdiction,

attacks against adversary integrated air defenses, offensive counter air or act as a

weapons “mule” increasing the airborne weapons availability to the shooter. The

USAF RPA Vector [3] envisions a loyal wingman aiding in manned missions acting

fully autonomously by 2030.

1.1.3 Technology Horizons.

The US Air Force Technology Horizons, published by the chief scientist of the US

Air Force provides key science and technology focus areas for scientists and engineers

to pursue that will provide technologically achievable capabilities to enable the Air

Force to contribute to the US joint force effectiveness in 2030 and beyond [4]. This

document highlights one of three grand challenges for the Air Force in the science

and technology area as the need of creating fractionated, composable, survivable,

autonomous systems. A loyal wingman should address the following four attributes.

1.1.3.1 Fractionated.

Modern systems are composed of subsystems that are physically integrated to

form a full system, such as the current aircraft strike systems which integrate com-

munication, ISR, electronic warfare and strike capability into a single platform. The

integration of multiple subsystems into a single system may result in performance and

cost impacts such as limits on range and high production and operating costs. The

loss of any one subsystem may result in mission failure, decreasing the survivability
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of the system as a whole. Moving from integrated to fractionated, “the system is, in

effect, separated into fractional elements and physically dispersed [4].” If the frac-

tionation is done properly, the communication between the fractionated subsystems

remains small enough to avoid detection or to continue to operate in the presence

of jamming. There are multiple ways a loyal wingman could be used to realize the

fractionated system. One example is to establish a formation of UAVs whose capa-

bilities are the subsystems of a modern aircraft strike system. The manned lead acts

as the pilot controlling the various subsystems, and the subsystems themselves are

“fractionated” into physically dispersed elements of a formation. In order to perform

a strike, the various fractionated subsystems could fly to and orient themselves in a

way that is best suited for the mission as a whole. The ISR subsystem loyal wingman

flies to the area that needs to be surveyed, while the electronic warfare subsystem

wingman flies to a slightly different location and orients itself in a way to jam the

enemy’s awareness. Meanwhile, the ordnance-carrying wingman may fly to its as-

signed location and orient itself most appropriately for unloading the ordnance [4].

A candidate scenario should support the use of a single loyal wingman as a frac-

tionated subsystem supporting a large system as well as requiring a low amount of

communication to reduce risk of detection.

1.1.3.2 Composable.

The Technology Horizons [4] describes composable systems as the ability to quickly

assemble the appropriate capabilities into a package that may meet a specific mission

requirement. If one considers a fractionated system, then a mission that requires re-

connaissance may require only one loyal wingman. However, a mission that requires

first locating a target, then striking the target, may combine multiple fractionated

subsystems into a single passage in a rapid fashion. The loyal wingman concept
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supports composability because any number of loyal wingmen with varying capabil-

ities may be packaged together in near real-time to accomplish any set of proposed

missions. Depending on the mission, these loyal wingmen may work in close commu-

nication or may be able to handle their individual missions autonomously with little,

to no communication with other loyal wingmen or the manned lead.

1.1.3.3 Survivable.

The term survivable could pertain to either a machine or human subsystem. The

failure of a subsystem in a fully integrated system more likely results in full mission

failure. If, however, the system was composed of fractionated subsystems and one

of those subsystems fail, the mission may continue after the loss. Survivability may

also refer to the survivability of the human operator. An exceptional justification for

unmanned systems are they allow humans to operate or lead a mission from a safe

location. The loyal wingman may be sent into an austere and dangerous environment,

which may put the UAV at risk, but will increase the survivability of the human.

1.1.3.4 Autonomous.

Current systems already attain a certain level of autonomy, but the Technology

Horizons [4] suggests that an increase in the level of autonomy will produce a wider

range of Air Force functions in the future. Key attributes of autonomy include com-

plex decision making, autonomous mission planning, and the ability to self-adapt as

the environment changes. A loyal wingman may fulfill this need by autonomously

planning a mission that meets the manned leads commanded mission objectives and

dynamically re-plan the mission in the face of a changing mission environment with

a minimal amount of communication with the manned lead or other loyal wingman

subsystems.

5



1.1.4 Air Force Research Laboratory Autonomy Strategy.

Derived from the previously mentioned Technology Horizons [4], the Air Force

Research Laboratory (AFRL) established their autonomy science and technology

strategy with a vision of “Intelligent machines seamlessly integrated with humans

- maximizing mission performance in complex environments” [5]. The third of four

goals is to ensure continuation of the mission in environments with kinetic and non-

kinetic threats. In order to meet this goal, systems must be developed which are able

to protect themselves and adapt to the environment faster than an adversary. The

loyal wingman will support this vision by adjusting to a changing threat environment

and appropriately re-planning its mission.

1.2 Loyal Wingman Definition and Candidate Scenario

The documents discussed in Section 1.1 [1, 2, 3, 4] allow a broad framework for the

command and control architecture as well as the specific use of a loyal wingman. These

broad definitions allow scientists and engineers the freedom to research various tools

and techniques for realizing loyal wingman technology. In order to identify a specific

research objective, this section establishes a specific definition for the term loyal

wingman and a command and control framework. In addition, a candidate mission

scenario is established that when solved, answers the research questions produced

herein.

1.2.1 Loyal Wingman Definition.

Throughout this work the term loyal wingman refers to an uninhabited aerial ve-

hicle that flies autonomously under the tactical command of a manned lead air vehicle

and includes terms such as unmanned loyal wingman, uninhabited loyal wingman and

loyal wingman. The uninhabited loyal wingman is not a remotely piloted aircraft. In-
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stances that reference a vehicle controlled or piloted by a man will specify “manned”

as part of the description.

1.2.2 Loyal Wingman Research Framework.

Morales [6] provides an informal survey to address who is in control (man or

machine) of an uninhabited vehicle and under what conditions. The consensus is

that a manned lead pilot is already saturated with tasks and wishes to push as many

decisions as possible to their wingmen. Regarding an uninhabited loyal wingman,

this implies as much autonomy in the unmanned system as is practical. Therefore

a command and control framework consistent with modern manned operations is

defined in which a manned lead provides clear and concise direction with very little

need of communication bandwidth. The uninhabited loyal wingman must perform

the following tasks:

• Autonomously compute a mission plan based on communication from lead

• Dynamically re-plan mission in event of a changing threat environment or chang-

ing mission requirement

Other frameworks are possible areas of research, but are not pursued. These

other frameworks include the Unmanned Aerial Vehicle (UAV) acting as a central

planner for all other UAVs in the formation. Such a framework would consider a

conglomerate of tasks such that a computer onboard a single UAV computes mission

paths for all UAVs in formation and communicates these paths to other UAVs in

the formation to accomplish all mission tasks. An additional framework may be a

collaborative control environment similar to that of swarming behaviors in which all

UAVs in formation are in constant communication with each other canvassing which

vehicle is accomplishing which task and continually working together to determine

the optimal solution to accomplish all mission tasks.
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1.2.3 Candidate Scenario.

A formation of aerial vehicles, including a manned lead accompanied by four

unmanned loyal wingmen enter an austere environment. The manned lead receives

a multiple-objective tasking that includes dropping ordnance on multiple locations.

The manned lead distributes a task to a single loyal wingmen, which includes dropping

ordnance on a single location and meeting back in the formation. The mission and

several fixed- and variable-time and variable-location endpoint scenarios must be

accomplished.

The mission occurs in an austere environment in which threats exist, such as anti-

aircraft artillery. Many threats will be non-deterministic and dynamic, meaning the

threats are only approximately known and change with time. There also will exist

scenarios in which accomplishing the mission objectives while fully avoiding these

threats is infeasible due to a fortified target; therefore, the loyal wingman autonomous

mission planner must be able to receive the tasked mission plan and compute a mission

path that accomplishes the primary mission objectives while either fully avoiding or

minimizing exposure to threats, and if necessary, minimizing time to rendezvous.

Upon execution of the computed mission plan, intelligence may identify additional

static or dynamic “pop-up” threats that were not known when the original path was

computed. The loyal wingman must autonomously determine whether a change in

the mission environment warrants a change in the original path and, if necessary,

update the original path and continue the mission. As a means of realizing a more

autonomous system, communication will be limited to the manned lead providing the

mission objective as well as communication on the changing threat environment. The

loyal wingman will only communicate its ability to accomplish the mission and there

will be no communication between the loyal wingmen on their individual mission

plans.
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1.3 Research Objective and Contributions

Chapter II provides a summary review of literature relevant to solving the loyal

wingman problem. This includes a look at MUM-T technical works which focus on

cognitive systems engineering, defining where the man’s task should end and the

computer’s task begin, as well as proposed solution techniques for solving various

definitions of the loyal wingman problem. There is a vast amount of research avail-

able on techniques for controlling UAVs, in general, and a significant amount of that

research may be applied to various loyal wingman definitions. Chapter II addition-

ally reviews various methods for modeling static threats as well as modeling and

estimating threats that are moving and non-deterministic. As a result of the review,

it is proposed that the loyal wingman problem as defined herein can be formulated

and solved using optimal control and stochastic estimation techniques. The objective

of this research is to contribute to solving the DoD concept of the loyal wingman

with an assumed level of autonomy using optimal control and stochastic estimation

techniques. This will be shown by answering the following three research questions:

1. How do you formulate the uninhabited loyal wingman optimal control problem

in the presence of static, deterministic threats?

2. How do you formulate the uninhabited loyal wingman optimal control problem

with moving, non-deterministic threats?

3. How and when do you dynamically re-plan the uninhabited loyal wingman opti-

mal control problem in the presence of various deterministic and non-deterministic

pop up threats that may arise during execution of a pre-computed path?

By answering these three questions, several contributions are made that both add to

the existing body of knowledge as well as spawn additional areas of research. These

contributions include:
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1. a methodology for a rapid near optimal solution;

2. potential use in a near real-time environment;

3. a near optimal solution for comparison against other methods.

1.4 Assumptions and Limitations

Assumptions and limitations stated throughout the work are now summarized.

1.4.1 Mission Scenario Assumptions and Limitations.

Manned pilots view the main purpose of having a manned loyal wingman is to

look after and protect one-another in austere environments through ‘mutual support’;

however, the loyal wingman is unable to provide mutual support because there are

no suitable sensors on board and the capability does not exist for a UAV to engage

in autonomous aerial combat maneuvering against a manned or unmanned enemy.

Generally, the loyal wingman must avoid detection by enemy aircraft because it is

assumed the loyal wingman cannot survive an aerial combat situation.

Although a primary benefit of the use of UAVs is to reduce the risk of putting a

manned pilot in danger, the uninhabited loyal wingman is not considered attritable

and effort must be made to ensure the uninhabited loyal wingman’s safe return to

the formation.

Communication between a manned lead and the loyal wingman will generally be

established on pre-defined terms that a computer may interpret. The “dictionary”

in this research will be limited to intermediate waypoint and rendezvous times and

objectives. There is no communication between the individual unmanned vehicles in

the formation.

Computational resources on board the UAV are limited and allocated to many

10



subsystems; therefore, resource allocation for route planning is limited to initial com-

putation and in cases when the mission environment warrants a trajectory re-plan.

There will not be a high-frequency re-plan of the trajectory as this will consume

valuable resources.

The loyal wingman must be able to make online, near real-time calculations.

There is not a pre-defined mission or a library of pre-defined maneuvers or paths as

in Carter [7]. The loyal wingman computes the mission when the task is provided by

the manned lead. Although computational efficiency will be leveraged where it can be

found, the goal of this research is not to attain the computation time needed for real-

time implementation and it is expected that there may be other computational tools

and better programming techniques that can be used to achieve true near real-time

computation.

1.4.2 Loyal Wingman Model Assumptions and Limitations.

Due to the similarities with Smith [8], a modified version of the five-state, 3

degree of freedom model is used in which roll rate and normal acceleration rate

are the controls. Because the mission will be performed in a local environment, a

flat, non-rotating Earth is assumed. High frequency updates on the position of non-

deterministic threats are available from a sensor onboard the loyal wingman. Low

frequency updates on threat and mission environment are provided via a friendly ISR

asset operating in the vicinity of the mission.

The work herein seeks to obtain the optimal path for the loyal wingman to accom-

plish the established mission; this is often referred to as outer-loop control. Following

computation of the outer-loop optimal path, it is then necessary to utilize an inner-

loop controller in order to appropriately track that path. Additional information on

techniques such as sliding mode control [9] used by Harl [10] and the linear quadratic
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regulator used by Stankovic [11] and Venkataramanan [12, 13] are available, however

it is assumed these or any other inner-loop tracking techniques are capable of tracking

the computed optimal path and are not pursued as part of this research. Wind is

not modeled because the assumed inner-loop controller will be built with appropriate

models to account for disturbances due to wind.

1.4.3 Threat Assumptions and Limitations.

It is assumed that threats can be modeled analytically using superquadrics [14].

For simplicity, dynamic threats will travel along a straight road whose coordinates

are known a priori. The threat will remain on the road, but the location along the

road at any time is not known. A linear dynamic model is developed and estimates

may be assumed to have a Gaussian distribution.

1.5 Document Outline

Chapter I motivated the problem and established a definition and candidate sce-

nario in order to narrow the specific area of research. Chapter II provides a review of

literature supporting how this research contributes to the existing body of knowledge

as well as provides a set of techniques for enabling a solution. In Chapter III, the op-

timal control problem is formulated for various scenarios and initial results highlight

a challenge in the optimal control community with gradient-based numerical methods

getting ‘stuck’ in locally optimal solutions. Chapter IV discusses a hybrid gradient-

heuristic technique to ameliorate the challenge identified in Chapter III and results

for a 3-D model are presented in Chapter V to indicate a rapid technique to provide

an accurate locally optimal solution. Chapter VI answers research question two by

identifying a dynamic and measurement update model as well an estimation tool to

account for and model moving, non-deterministic threats. The final research question
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is answered in Chapter VII by developing a mission algorithm flow-chart that com-

putes and simulates a trajectory, and provides a formulation for determining if and

when a trajectory re-plan should occur. Finally, Chapter VIII provides a summary of

relevant contributions and recommendations for future work. The Appendices pro-

vide additional detail and support for various technical discussions throughout the

document.
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II. Literature Review

MUM-T and the loyal wingman are mission applications ripe for exploring various

tools and techniques that may be used to realize their concepts. This chapter begins

with a review of works in the open technical literature that attempt to solve various

aspects of the MUM-T problem. In order for the research herein to establish a

methodology that will contribute to the existing body of knowledge, a review is first

performed to examine the control techniques that are used across the four attributes

of UAV formation flying. Next, a discussion on nonconvex optimal control leads to a

hybrid technique, using a particle swarm optimization algorithm to seed a Nonlinear

Programming (NLP) solver. The remainder of the chapter provides a dynamic model

for the loyal wingman, a review of methods for modeling threats, as well as a discussion

on stochastic estimation techniques for dynamic trajectory re-planning.

2.1 MUM-T and Loyal Wingman Literature

The DoD established a roadmap for UAVs [1, 2] and established autonomy as a

grand challenge [4]. Clough [15] highlights challenges to achieving autonomy in UAVs,

while others such as Yang [16] provide a recommendation on the appropriate balance

in autonomy to achieve the ‘right’ level of interaction between man and machine.

Gangl [17] offers an experiment in the management of multiple UAVs from a single-

seat fighter, while Schmitt [18] provides a mission planner able to support a pilot

during MUM-T missions, and Jameson [19] recommends an approach for teams of ve-

hicles to coordinate their activities without human oversight. Potential applications

of such research was reviewed by Svenmarck [20]. Van Riper [21] and Durbin [22]

each provide an assessment of operator workload on a current operational application

of MUM-T: the Army Apache AH-64D. Additionally, the Navy successfully demon-
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strated the first-ever carrier launch and recovery of an unmanned aircraft [23].

The U.S. Air Force is developing its version of MUM-T in the concept of the loyal

wingman, technology that differs from swarming because the unmanned system will

work with and interact with the manned aircraft in various tactical missions [4]. The

loyal wingman serves a manned lead in two broad categories: mutual support and for-

mation flying. Mutual support stems from the Airman’s Creed and the idea that one

will “never leave an airman behind [24].” This gives rise to the idea of a loyal wing-

man supporting the manned lead through aerial combat. Carter [7] created a library

of time optimal maneuvers for use by a remote pilot. McGrew [25] used approximate

dynamic programming and Horie [7] used a two-sided optimization approach to solve

the highly dynamic minimax problem existent in the pursuer-evader control problem.

The computational complexity of the highly dynamic, non-deterministic mutual sup-

port mission makes it impractical to develop real-time, on-line optimal solutions and

is therefore not pursued in the research herein.

The second broad category for supporting a manned lead is formation flying.

Murphey [26] identifies a number of challenges associated with integrating unmanned

systems into the joint force, to include formation flight for autonomous aerial refuel-

ing, which DARPA successfully demonstrated [27]. Waydo [28] specifically addressed

the concept of the loyal wingman which describes a flight test using inner-loop op-

timal control techniques to demonstrate safe formation flight of a loyal wingman in

the event of a loss of communication. The test objective was to maintain formation,

but in the event of a loss of communication, the loyal wingman departed to a safe

formation flying distance, then returned to normal formation distance once the com-

munication was re-established. Waydo demonstrated optimal control techniques for

maintaining formation, but did not indicate the loyal wingman’s ability to perform

splinter activities beginning and ending in formation, nor does it consider avoidance
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of threats.

Performed in support of the U.S. Army, Garcia’s [29] research goal was to introduce

a method to integrate UAS into a highly functional manned/unmanned team through

design and implementation of 3-D distributed formation/flight control algorithms

with the goal to act as wingmen for manned aircraft. Artificial potential functions

simulated the ability of a group of unmanned loyal wingmen to initialize formation

through a self-ordering algorithm, hold a standard formation, dynamically modify the

formation and perform a splinter activity, which are the four attributes of formation

flying. Additionally, non-deterministic threats were avoided using fuzzy reasoning.

Additional discussion on the methods used by Garcia is found in Section 2.2.

The definitions and scenarios that are solved vary greatly in each of the works of

this review, which indicates there is still a significant amount of research remaining for

solving MUM-T applications. Garcia’s [29] mission scenario most closely resembled

the loyal wingman as defined herein. However, additional research is necessary to

solve the loyal wingman problem as defined herein, because threats must be avoided

and exposure minimized while meeting optimization criteria. Additionally, the use of

fuzzy reasoning is not an optimal method for estimating the state of non-deterministic

threats. The research herein provides a contribution to the engineering community by

demonstrating an optimal control and stochastic estimation methodology for solving

the loyal wingman problem as defined herein. The methodology will be chosen from

a review of techniques used to control UAVs in the next section.

2.2 UAV and Formation Control Techniques

In order to address the research goals, this section reviews techniques that are

used throughout literature to control UAVs and groups of UAVs. The desire is to

determine a methodology that will aid in solving the loyal wingman candidate scenario
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as defined herein that is unique in relation to other works that have addressed the loyal

wingman. As a reminder, Section 1.4 established that inner-loop control will not be

addressed in the work herein. The methods discussed in the following four subsections

address outer-loop techniques to control UAVs and groups of UAVs throughout the

four attributes of formation flight. For the purposes of the ensuing discussion, outer-

loop control will be further parsed into two categories, one in which periodic tracking

updates provide for sequential control. The other category entails calculating the

vector of control inputs for a full outer-loop path trajectory.

2.2.1 Formation Rendezvous.

Formation rendezvous is where two or more vehicles join together from physically

separate locations into a formation that is intended to be held for some finite period of

time1. Techniques for controlling a vehicle to a successful rendezvous include graph

theory, the Dijkstra algorithm, proportional navigation, line of sight, sliding mode

terminal guidance, and artificial potential functions, all of which are of the category

of outer-loop control defined herein that include sequential path planning control.

Giuletti [30] discusses graph theory and the Dijkstra algorithm to define an optimal

formation configuration. The objective function is set to optimize the communication

and data transfer amongst the vehicles in the formation. Graph theory is utilized by

supposing the individual aircraft are nodes on a graph and the lines of communication

between them as the edges that connect the nodes. By establishing a set of assump-

tions, the problem is reduced to a shortest path problem and solved. The Dijkstra

algorithm is chosen because it has only polynomial complexity, guarantees optimality

and is deterministic. Graph theory and the Dijkstra algorithm are mentioned upfront

because their use is pervasive in the technical literature. However, their use here is

1Target rendezvous entails the problem of multiple vehicles from separate physical locations
coordinating on their arrival at a location. Although they may rendezvous in a close vicinity, in this
case, they are not joining together into a formation.
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in determining the optimal formation, not in determining how to maneuver a vehicle

or series of vehicles into formation.

Used by Smith [31] to guide a vehicle for aerial refueling, Proportional Navigation

(PN), “generates control accelerations proportional to the measured rate of rotation

of the interceptor-target line-of-sign and directs these forces so as to reduce or hold

constant the rotational rate of the line-of-sight [32].” The MIT Draper Laboratory [33]

developed and tested a flight control system to achieve mid-air rendezvous of two

UAVs. Tahk [34] proposes using only line-of-sight angles to other vehicles measured

by visual sensors or radars, which requires little to no communication, makes the

system more survivable to communication breakdowns, and aids in allowing a stealth

mission. Tahk uses two separate guidance laws that put the vehicles on the correct

path to formation rendezvous, using line-of-sight only.

Harl [10] uses Sliding Mode Terminal Guidance (SMTG) [35] to rendezvous air-

craft to a final formation location because communication is not needed when using

sliding mode. The sliding surfaces used are the terminal constraint, which is the final

formation position for each UAV. A vector of m sliding mode vectors are established

and they are “slid” to zero by defining a Lyaponov function and setting its derivative

to zero. This method does not guarantee the UAVs arrive at the same time, but it

does guarantee they will arrive in a finite time.

Stickney [36] describes the use of artificial potential functions may be used by

identifying an objective function as an attractive force and the constraint function

as a repulsive force. This allows the vehicle to be controlled in such a way that it is

attracted to objectives and repulsed from constraints.

Garcia [29] performs a formation rendezvous using artificial potential functions by

assigning a global variable to the manned lead vehicle which “tells” the unmanned

vehicle where it should go regardless of where it begins. The first unmanned UAV to
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arrive by way of an artificial potential field sink, assigns itself as the follower of the

manned leader and sets a search for a follower to join its lead. This eliminates the need

for the global variable and each subsequent unmanned UAV begins to join formation in

a self-ordering algorithm according to the identified desired formation. The algorithm

searches for a lead UAV which has a follower spot open and the algorithm continues

with each UAV assigning to itself a leader and a follower until all UAVs have a “spot”

in the formation. This self-ordering algorithm establishes a communication scheme

that becomes valuable during other attributes of formation flight: formation hold,

formation reconfiguration and splinter activities [37].

2.2.2 Formation Hold.

Following successful rendezvous at the appropriate location, the challenge then

turns to controlling the UAV for maintaining the formation. All of the methods

identified in this section are in the outer-loop control category defined herein for

sequential path planning.

Artificial potential functions are used as examples of control in both formation

rendezvous and maintaining the formation. Paul [38] provides a description on the

components of a potential field and how a 3-D potential field may be constructed.

After using a self-ordering algorithm for formation rendezvous, Garcia [29] uses ar-

tificial potential functions to maintain the formation. A challenge with maintaining

formation due to communication latiency was addressed with fuzzy logic. The work

herein will consider other optimal estimation techniques (Section 2.6).

Tanner [39] uses graph theory [40] to spatially relate components of a flock to one

another and then used artificial potential functions as the control law. Tanner [39] be-

gins by using a fixed topology, meaning the set of ‘neighbors’ surrounding the ‘agent’

is fixed with time. This flocking model superimposes three steering behaviors, sepa-
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ration, alignment and cohesion that result in all agents moving toward a formation

while avoiding collisions. Tanner [41] then uses the same methodology to maintain

formation with a dynamic neighbor topology.

‘Swarming’ is an attempt at extending what is observed in nature to swarms of

autonomous vehicles. Consider a flock of birds or school of fish. These animals are in

formation - though no one told them to get into formation. They fly together, swim

together, turn together, attain a goal together, yet there is no clear leader among

them. Each of the individual entities of the flock seem to naturally relate to the

members surrounding them in such a way that the group as a whole acts as one.

The engineering community has attempted to describe and repeat this behavior in

autonomous vehicles.

Kovacina defines emergent behavior as “the ability to accomplish complex objec-

tives through synergistic interactions of simple reactionary components [42].” Cucker

[43] uses the example of the study of emergent behavior in a flock of birds, and presents

a mathematical model on the tendency of the flock to converge to a common velocity.

Kovacina [42] develops a control algorithm and demonstrates the effectiveness via

simulation of a swarm of vehicles to search and map a chemical cloud. In this emer-

gent behavior control algorithm, individual agents gather information in their local

environment and share that information with the rest of the swarm. As information

increases, the swarm will flock to the area where help is needed to accomplish the

goal. With this behavior, it is claimed that a task that is not possible for any one

agent can be accomplished by a group of agents.

Often used as an inner-loop control technique, the Linear Quadratic Regulator

(LQR) uses feedback to adjust the control input in order to maintain a referenced

trajectory. Outside of the application to UAVs, Stankovic [11] creates a scenario of

a platoon of vehicles traveling in a straight line formation as part of an integrated
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vehicle highway system. LQR optimization is used to maintain a constant separation

distance between the vehicles.

Venkataramanan [12] uses the MATLAB/Simulink software to simulate the inner-

and outer-loop control structure for a group of UAVs flying in formation. The outer-

loop controller consisted of the virtual leader’s motion, the individual UAV, the indi-

vidual UAV reference trajectory, and the individual UAV’s controller. The inner-loop

controller consisted of UAV equations of motion, engine dynamics and vortex-effect

model. Results revealed robustness to swapping leader and follower and still main-

taining appropriate formation separation distances.

Without prediction, a controller provides control inputs that are based on present

and prior knowledge. By adding a guess or prediction on future desires, the Model

Predictive Controller (MPC) [44] provides inputs based on the prediction of future

states. Weihua [45] uses an MPC controller primarily to ensure collision avoidance

while a formation of UAVs attempts navigation to a goal location. However, the

nature of the decentralized leader/follower model may encourage the leader to avoid

an obstacle and cause the formation to fall apart. To combat this, Weihua establishes

a formation error term which assigned a cost to the value of maintaining the formation

while navigating between obstacles on route to the final destination.

Wang [46] controls a swarm of UAVs based on the presence of obstacles. Without

obstacles, the path is computed in safe mode using an outer-loop LQR path generator.

While in danger mode the outer-loop path is generated using a Grossberg Neural

Network [47]. Once the path has been computed, an inner-loop MPC is used for

tracking the path.

Chao [48] designs a collision-free UAV formation flight controller utilizing a de-

centralized MPC. A cost function is designed based on velocity orientation and a

distribution between UAV and obstacle avoidance to guarantee inter-vehicle collision
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avoidance.

Boskovic [49, 50, 51] designs a formation-hold autopilot such that errors converge

to zero asymptotically in the face of unknown leader maneuvers.

Weihua [52] applies Multiplexed Model Predictive Control (MMPC) [53] to de-

centralized formation flying. A typical MPC assumes all variables are updated si-

multaneously, which results in a high computational cost associated with multiple

subsystems that are part of the formation. Utilizing the MMPC scheme, the MPC

problem is solved for each subsystem (or elements of the formation) sequentially and

updates the other elements of the subsystem as soon as the solution is available. The

computational efficiency of using the MMPC approach allowed the UAVs to adjust

their trajectory sooner and thus converge more rapidly to the final target.

2.2.3 Formation Reconfiguration.

After joining formation and maintaining that formation, the mission may require

a formation reconfiguration. Events such as failure of one or more communication

channels, sensor failure, flight path restrictions or even full loss of aircraft are reasons

a formation may need to control itself into a new configuration [13]. In addition

to the control techniques reviewed in the previous sections, the artificial potential

function, particle swarm optimization, and direct collocation are methods used to

control formation reconfiguration.

Garcia [29] uses artificial potential functions to self-order into a new formation,

just as occurred in formation rendezvous. Duan [54] uses an “improved” Particle

Swarm Optimization (PSO) to find the optimal reconfiguration of multiple vehicles

flying in a formation. PSO is discussed further in Section 2.4. APF and PSO are

sequential outer-loop path planning techniques, but Ma [55] used an outer-loop control

method known as direct orthogonal collocation to determine the optimal path to
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reconfigure a formation of satellites. The direct collocation method will be discussed

in the next section.

2.2.4 Splinter Activities.

Perhaps one of the most interesting aspects of formation maneuvers are the splin-

ter activities, because they are the reason for the mission. Missions could include an

ordnance drop, a battle damage assessment, target tracking, or some form of intelli-

gence, surveillance or reconnaissance. Most of the methods discussed in this section

include the outer-loop category of sequential path planning control. However, the

last two methods discussed, direct and indirect methods are used to calculate a set of

control inputs that provide a full outer-loop path of the optimal mission trajectory.

Swarming and emergent behavior were mentioned in the section on formation

keeping, and they have relevance in performing splinter activities as well. Kovacina

[42] argues that traditional control techniques do not provide the “flexibility and

efficiency needed to meet the commercial and military demands placed upon UAV

swarms,” and as such develops a control algorithm and demonstrates the effectiveness

via simulation of a swarm of vehicles to search and map a chemical cloud. In this

emergent behavior control algorithm, individual agents gather information in their

local environment and share that information with the rest of the swarm. As infor-

mation increases, the swarm will flock to the area where help is needed to accomplish

the goal. With this behavior, a task that is not possible by any one agent can be

accomplished by a group of agents.

Examples of works using emergent behavior techinques include Russell’s use of a

Genetic Algorithm (GA) for UAV routing [56]. Duan [57] demonstrated the use of

a PSO to control a group of UAVs to a target in minimum time, then combined the

PSO and GA into a hybrid technique in which each method was run in parallel. On
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each iteration, the method that provided the best solution was used in the subsequent

iteration. Other biology inspired algorithms include Ant Colony Optimization [58]

and Bee Colony Optimization [59], inspired by the behavior of colonies of ants and

hives of bees, respectively.

The research herein led to the use of a hybrid optimization technique to include

the use of a PSO algorithm to supply an initial guess to gradient-based Nonlinear

Program (NLP). Additional discussion on what led to the use of a hybrid optimization

technique and the PSO algorithm are discussed in Sections 2.3 and 2.4, respectively.

When considering groups or swarms of vehicles, multi-vehicle collaborative control

is an area of interest in the technical community. Reynolds [60] developed three

naturally observed rules for simulating flocking behavior: (1) collision avoidance, (2)

velocity matching, and (3) flock centering. Various works have used these flocking

behavior rules as a baseline for controlling flocks or swarms of vehicles and have

varied the rules in order to solve assorted problems. Lambach [61] modifies Reynolds’

rules in order to determine a flight configuration that would reduce drag and fuel

consumption, which leads to increased system range and endurance. Kaiser [62]

performs ISR on a point target which added nine additional rules to the three basic

Reynolds’ rules.

Rabbath [63] offers a review of several papers covering the topic, including Chan-

dler [64] who rendezvoused three UAVs from physically separate locations to a final

location at the same time. Each vehicle plans its own path with an approximate op-

timal path that is refined according to maneuver constraints. A sensitivity function,

communicated from each UAV, is calculated by a coordinating agent. The coordinat-

ing agent broadcasts the optimal time of arrival for all UAVs. The UAVs then adjust

their own path according to the broadcast time [65].

Shima [66] establishes a scenario in which a group of micro-UAVs are released from
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a small UAV in order to investigate targets in an urban environment. The micro-

UAVs know the targets, but upon release have no coordination or collaboration on

how to attain this mission. Multi-vehicle collaborative control gathers information

on the targets and available micro-vehicles and assigns a target to each micro-UAV

according to a computed optimal path for each vehicle to accomplish the overall

mission.

Shima [66] and Chandler [64] utilize a centralized planner to gather information

and send out tasks to the individual UAVs. Ryan [67] utilizes a decentralized structure

to control a group of UAVs to patrol an area searching for intruders while avoiding

constraints in the grid space. These vehicles collaborate in real-time based on shared

information and their own local information.

Alighanbari [68] uses Robust Decentralized Task Assignment (RDTA) [69] in

which a solution is determined in two phases. In phase 1, each vehicle computes

a set of candidate scenarios for itself and sends the information out. This, in essence,

is an initial guess for the next phase. In phase 2, each vehicle computes its own

scenario based on the set of candidate scenarios. This cuts down the computation

time and high volume of communication data significantly. This method is reliant on

a good set of candidate scenarios computed in the first phase.

Garcia [29] uses artificial potential functions to control a splinter activity in which

three UAVs are commanded to ‘hover’ around a hot-spot until their manned lead is

deemed a safe distance from the hot-spot, then rejoin the formation.

The next set of techniques are gradient-based numerical methods for solving opti-

mal control problems (discussed further in Section 2.3). Furukawa [70] uses indirect

methods to minimize time to a final formation. In the indirect method, the cost,

constraints and boundary conditions are established. The cost function is then aug-

mented with the constraints and boundary conditions using Lagrange multipliers.
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Using the Calculus of Variations, a set of first-order necessary conditions for optimal-

ity are established [71]. These first-order necessary conditions can be discretized and

solved using a Nonlinear Program (NLP) solver such as MATLABs fmincon in order

to obtain costates, optimal control and the associated optimal states.

Jorris [72], Masternak [73], and Smith [8] used direct orthogonal collocation as

a method for transcribing an optimal control problem into an NLP. This method

approximates the states and controls with interpolating polynomials, where in order

to minimize the interpolation error between the points, the interpolation conditions

are enforced at the roots or extrema of orthogonal polynomials. These approximations

are substituted into the optimal control problem directly, rather than the necessary

conditions for optimality, resulting in an NLP. Using commercially available solvers

such as SNOPT [74] or IPOPT [75], the NLP is solved using a gradient-based search

method like sequential quadratic programming (SQP) or by using an interior point

method. More on the use of direct orthogonal collocation techniques for solving

optimal control problems can be found in Benson [76] and Huntington [77].

Jorris’ [72] candidate scenario for the global strike problem was similar to the loyal

wingman scenario in which a UAV begins with a fixed set of boundary conditions and

traverses intermediate waypoints on route to a final destination. No-fly zones or path

constraints were established which the vehicle must avoid and multiple cost functions

were evaluated, including minimize time and minimize control. Masternak [73] later

solved a modified version of the global strike scenario including multiple objectives,

no-fly or keep out zones, and he proposed direct collocation as a method for solving

the optimal control problem.

Smith’s [8] scenario proposed a UAV, operating in the National Airspace, flying a

precomputed mission path, when sensors detect an intruder aircraft. The UAV must

use the sensor information to estimate the intruder’s future state, model the future
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state as a keep-out zone and successfully avoid the aircraft while returning to the

original flight path, optimized with respect to various objective functions. Smith’s

scenario must account for dynamic, non-deterministic intruders that “pop-up” during

execution of the precomputed mission plan, similar to the loyal wingman candidate

scenario as defined herein.

2.2.5 Research Approach.

The previous four subsections established multiple methods for controlling UAVs

and groups of UAVs throughout the four attributes of formation flight. The loyal

wingman seeks an outer-loop control technique to compute an initial optimal mission

path as well as computing a trajectory re-plan due to changes in the mission environ-

ment. Therefore, outer-loop control techniques which continually define a path based

on high frequency tracking updates will not be utilized.

In distinguishing between direct and indirect methods for solving the optimal con-

trol problem, the use of direct orthogonal collocation in combination with the GPOPS

II [78] MATLABr [79] based software allows for rapid solutions to optimal control

problems, which addresses the near real-time optimal control that is necessary in the

loyal wingman candidate scenario. The similarities of the loyal wingman scenario to

works discussed in Section 2.2.4 reveal the usefulness of this method. Therefore, this

work proposes the use of the rapid and accurate direct orthogonal collocation method

to solve the loyal wingman optimal control problem as defined herein as a unique and

original contribution to the scientific and engineering body of knowledge.

2.3 Nonconvex Optimal Control

Kirk [71] provides a definition of a convex set and a method to check the convexity

of a function. If the function is convex, then a solution to the optimal control problem
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is guaranteed to be the globally optimal solution. Unfortunately, many optimal con-

trol problems of interest are nonlinear and the solution therefore is considered only

locally optimal.

Highly nonlinear, nonconvex problems have a large number of locally optimal

solutions. The challenge is to use a solution method that is most likely to converge on

the best locally optimal solution. The direct orthogonal collocation method chosen to

solve the loyal wingman problem uses a gradient-based numerical method for solving

the NLP, which requires a user supplied initial guess. Jodeh [80] used a straight line

trajectory as an initial guess with only a fraction of the desired discretized points,

then used the low-fidelity solution as an initial guess into a higher-fidelity model.

Smith [8] and Suplisson [81] have a continually updating solution where previous

solutions are used as an initial guess into the new update, but still required a method

to determine the first solution.

There is a tendency for NLP optimizers to converge in the region of the initial

guess [82], therefore, a method is desired for supplying an initial guess for the loyal

wingman solution that is in the region of the best locally optimal solution.

Rao [83] broadly categorized numerical methods for solving optimal control prob-

lems into gradient and heuristic methods. Gradient methods utilize derivative in-

formation provided in the problem formulation to search deterministically for the

optimal solution. Gradient methods are local optimization methods, meaning the

results converge to locally optimal solutions. Conversely, heuristic methods begin

with a set of possible solutions and use a stochastic search to continually update and

adapt the initial set of solutions until an optimal solution is found. Contrary to the

gradient-based methods which converge to locally optimal solutions, heuristic meth-

ods are a global technique. Throughout the work herein when using the phrase global

region or global nature of the PSO, this refers to the good possibility that the PSO
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provides to move toward the best locally optimal solution within the space that is

searched, without guarantee that the PSO will converge. Examples of heuristic meth-

ods include genetic algorithms, particle swarm optimization, ant colony optimization

[84], differential evolution [85] and simulated annealing [86].

Conway’s [87] survey suggested the best method for solving optimal control prob-

lems was either heuristic algorithms alone or heuristic algorithms in combination with

transcription techniques which utilize the gradient-based NLP. Englander [88] and

Chilan [89] used a heuristic technique to generate the outer-loop solution. Englander

continued to use a heuristic technique to generate the inner-loop solution, while Chi-

lan used a gradient-based technique for the inner-loop solution. Showalter [90] and

Vinko [91] used hybrid heuristic optimal control techniques for space-based applica-

tions. Modares [92] performed an experiment comparing various hybrid techniques

and concluded that a modified heuristic particle swarm optimization combined with a

gradient-based sequential quadratic program is robust and accurate when compared

with other methods. Additional works [82, 93, 94, 95, 96] have used a hybrid PSO

with gradient-based NLP.

The work herein applies a hybrid optimization technique that exploits the speed

and global nature of a heuristic PSO to generate an initial guess to a gradient-based

NLP, which exploits the speed and accuracy of direct orthogonal collocation (DOC)

to provide a rapid, feasible solution to the loyal wingman intermediate-target optimal

control problem.

2.4 The Particle Swarm Optimization

2.4.1 Particle Swarm Optimization Background.

The Particle Swarm Optimization (PSO) was introduced by Kennedy and Eber-

hart [97]. Based on the behavior of flocks (or swarms) of birds, each particle, which
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is in general any scalar or vector quantity the user desires, is flown through space

in search of the optimal solution with respect to a defined fitness or cost function.

The basic PSO algorithm is two lines of code which first updates its velocity (the

rate at which a solution changes) based on its previous velocity (often termed the

‘inertial’ component) and the behavior of the flock (or swarm); and then uses the

updated velocity to update the particle’s position2. The algorithm is seeded with an

initial particle position and velocity and iterates through the following two formulas

to update the particle’s velocity, v(i), and position, x(i),

v(i+ 1) = a1v(i+ 1) + b1r1(x(i)− pL) + b2r2(x(i)− pG) (2.1a)

x(i+ 1) = x(i) + v(i+ 1). (2.1b)

The updated velocity, Equation 2.1a, of an individual particle is achieved through a

three-part formula. The inertial component provides the weighting, a1 for the parti-

cle’s previously computed velocity. The first ‘social’ component provides weighting,

b1, on the best solution found so far for each individual particle. On any given iter-

ation, if the cost with v(i) and x(i) is better than that for pL, then that particle’s

‘local best’ is updated. The second social component, b2, provides a weighting on the

best solution found for the entire ‘swarm’ (all particles). On any given iteration, if a

better solution is found for the swarm, then the global best is updated. Each of the

social components have a deterministic parameter weighting (b1 and b2) as well as a

nondeterministic evenly distributed parameter weighting, r1, r2 ∈ [0, 1].

The basic PSO algorithm is only two lines of code, but a review of literature reveals

there are many methods for varying the PSO algorithm for individual applications.

2‘position’ and ‘velocity’ when referenced to discussion on PSO refer to the current value of the
particle’s position and the rate the the particle’s position is changing
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2.4.2 PSO Parameters.

Convergence characteristics of the PSO algorithm are dependent both on the

application as well as the choice of parameters. Based on a mathematically complex

work done by Clerc and Kennedy [98], Trelea performed an experiment revealing these

convergence tendencies [99]. Clerc [100] suggested scaling the update to velocity by a

constriction factor, K, as necessary to ensure convergence. The use of a constriction

factor weights the inertial component, eliminating the need to identify a weighting (a1)

for the inertial component. Equations 2.1a and 2.1b are updated with a constriction

in Equation 2.2.

v(i+ 1) = K[v(i) + b1r1(x(i)− pl) + b2r2(x(i)− pg)] (2.2)

The formula for the constriction factor can be mathematically complex such as the

one proposed by Lu [101] which allows trigonometric variation of the constriction

factor such that a higher constriction during early iterations allows for a more global

search, while a smaller constriction value in later iterations focused search in the local

regions. Clerc [100] recommended a simplified version and will be used in the loyal

wingman application,

K =
2

φ−
√
φ2 − 4φ

, (2.3)

with φ = b1+b2, φ > 4. Eberhart and Shi [102] determined that the constriction factor

should be used in combination with a max value assigned to velocity, vmax = xmax,

so v is bound by xmax at each iteration.

2.4.3 PSO Seeds.

All works studied used random methods for producing the initial particles [54, 57,

93, 94, 103, 104, 105, 106, 107, 108] to seed the algorithm.
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2.4.4 PSO Constraints.

Hu and Eberhart [109] suggest initializing the algorithm with a set of seeds that

meet constraints, then at each iteration only keeping particles that continue to meet

constraints. Pontani [105] suggests that any particle that does not meet constraints

at each iteration should have its velocity component set to 0, essentially throwing

out that iteration. Mazhoud [107] provides a review of methods for handling con-

straints, including penalty functions [110], self-adaptive velocity [111] and stagnation

determination [112].

2.4.5 PSO Model Order.

Duan [54, 106, 57] used the PSO to choose the elements of a vector that provide

the optimal solution with respect to the established cost function. Others, such

as Conway suggest computation time efficiency by modeling the control input as a

polynomial and using the PSO to solve for the polynomial coefficients. Zhuang [93]

shows that his problem has a property of differential flatness which allows a reduction

in the number of variables.

2.4.6 PSO Conclusion.

The work herein will use these ideas to tailor a PSO algorithm to the loyal wingman

scenario.

2.5 Models

The literature review to this point has focused on determining a method for solving

the optimal control problem. The purpose of this section is to present various aspects

of the problem that must be modeled, covering threats, UAV dynamics, and multiple-

target (waypoint) missions.
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2.5.1 Loyal Wingman.

A state model must be determined for the loyal wingman that will be used as

dynamic constraints in the optimal control problem. Carter [7] chose a high-fidelity

12-state, 6 Degree-of-Freedom (DOF) model because of the highly dynamic and crit-

ical maneuvering capabilities necessary in high performance fighter air vehicles. This

high-fidelity model is computationally expensive, but is critical to obtaining accurate

results. If the fidelity were not necessary, then it would be resourceful to utilize a

reduced-order model to increase computational efficiency. Smith chose a 5-sate, 3-D,

2-control model consistent with the AFRL program document [113] where the con-

trols are vertical acceleration, Nz, and bank angle, µ. The work herein uses the same

model, but in order to avoid ‘bang-bang’ control, Smith’s controls are made states

and their rates are made the controls,

ẋ(t) = V cos γ(t) cosχ(t)

ẏ(t) = V cos γ(t) sinχ(t)

ż(t) = V sin γ(t)

γ̇(t) =
Nzg cosµ(t)− g cos γ(t)

V

χ̇(t) =
Nzg sinµ(t)

V cos γ(t)

Ṅz(t) = u1(t)

µ̇(t) = u2(t),

(2.4)

where x, y, z represent position coordinates, γ is flight path angle, χ is heading, Nz is

vertical acceleration, µ is bank angle, controls are vertical acceleration rate, u1 = Ṅz

and bank angle rate, u2 = µ̇. Velocity, V is assumed constant and g is the gravitational

constant.
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2.5.2 Threats.

The loyal wingman will operate in a hostile environment where, if the loyal wing-

man is detected, the chances are high that the mission will not be completed. This

section reviews how other literary works model threats.

2.5.2.1 Static Threat Models.

Garcia [29] uses artificial potential functions as a means of controlling the UAVs.

The obstacles were similarly modeled using vector fields with weighted sigmoid func-

tions, which works well for static and predictably slow-moving obstacles. Jorris mod-

els two no-fly zones as cylinders that extended infinitely high [72]. Weihua [45, 114]

uses simple circles to model small obstacles, but if the obstacle is determined large,

then Weihua uses polytopes [115] to model the obstacles, because of the variety of

shapes that can be generated. Given a chosen shape, a hexagon for example, each

of the 6 edges are assigned a 1 for its safe side and a 0 for its unsafe side. Each

discretized point of the full trajectory is evaluated against each edge line of the shape

to determine whether the trajectory is on the “safe” or “unsafe” side of the line.

For an individual discretized point of the trajectory, its binary “safe” and “unsafe”

values are summed and if the value is greater than or equal to 1, then the threat is

successfully avoided at that point in the trajectory.

2.5.2.2 Modeling a Changing Threat Region.

Campbell [116] models dynamic, non-deterministic threats by first modeling a

constraint as an ellipsoid then adapting the ellipsoid by developing an extended set

membership filter. This filter linearizes the nonlinear model at each discrete time

step, then adds the remainder as uncertainty, delivering an ellipsoid set. Campbell

further tightens the estimate and approximates the intersection of the two ellipsoid
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estimates as a polyhedron. A final ellipsoid bounds the polyhedron and is used as the

obstacle that must be avoided.

Smith [8] uses a particle filter to estimate future location of a dynamic intruder ve-

hicle for avoidance. The obstacle’s particle distribution is modeled using a Minimum

Volume Enclosing Ellipsoid (MVEE) [117, 118] and projected along a trajectory. The

set of ellipsoids created by the particle filter and MVEE algorithm are then interpo-

lated into a single keep-out region using the SLIMVEE [8] algorithm, adapted from

Schoemake’s Slerp [119] algorithm.

Smith additionally used superquadrics as described by Barr [14]. The product of

a half ellipsoid in the (x, y) plane with the full ellipsoid in the plane orthogonal to

the (x, y) plane can be written as


a1 cosε1(η) cosε2(ω)

a2 cosε1(η) sinε2(ω)

a3 sinε1(η)

 , (2.5)

where

−π/2 < η < π/2 (2.6a)

−π < ω < π. (2.6b)

An implicit equation can be derived from the above Equation 2.5

F (x, y, z, a1, a2, a3, ε1, ε2) = ((
x

a1

)
2
ε2 + (

y

a2

)
2
ε2 )

ε2
ε1 + (

z

a3

)
2
ε1 (2.7)

where ai is a principal axis, ε1 determines the shape of the superellipsoid cross sec-

tion in a plane perpendicular to the (x, y) plane and ε2 determines the shape of the

superellipsoid cross section parallel to the (x, y) plane. Equation 2.7 is the general
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formula for modeling a class of superquadrics, called the inside-outside function. For

a given point (x, y, z), if F < 1, the point is in the interior of the geometric shape,

if F > 1, the point is exterior to the geometric shape and if F = 1, the point is

on the surface of the geometric shape. By varying the principal axes values ai as

well as the εi values, various superquadric shapes may be generated such as spheres,

superellipsoids, and cylinders [120]. Smith varied the equation slightly to use only a

single shaping parameter to model spheres, ellipsoids and cylindrical superquadrics,

F (x, y, z, a1, a2, a3, ε) =

(
x

a1

)ε
+

(
y

a2

)2

+

(
z

a3

)2

. (2.8)

2.5.2.3 Minimize Threat Exposure.

The desire is not always a strict keep-out region, but rather to minimize expo-

sure. Gaunt [121] calculated the Signal to Noise Ratio (SNR) and then developed

a formulation that can be used inside a cost functional to minimize exposure. His

formulation forces the cost functional to equal 1 when the aircraft is at the radar

detection limit and then grow quickly as the vehicle traverses deeper into the threat

area. This method allows the threat areas to be modeled in the cost function as a

continuous, differentiable, conditional constraint. Jodeh [80] uses a similar technique,

modeling a conditional constraint in the cost function with the use of a sigmoid or

barrier function. Smith [8] used a sigmoid function as well to establish an inequal-

ity constraint in his Sense and Avoid (SAA) optimal control problem. The keep-out

zone for two aircraft approaching one another is the Federal Aviation Administra-

tion (FAA) required minimum vertical and horizontal separation distances specified

for the National Air Space (NAS). The need to avoid both a vertical and horizontal

separation distance translates to the need to avoid multiple threats. Smith evaluated

the difference between summing the sigmoid of multiple threat zones and taking the
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product of the sigmoid of multiple threat zones and determines the sigmoid product

method as superior [8].

2.5.2.4 Dynamic, Non-Deterministic Threat Models.

Threats may include air or ground threats. Li and Jilkov [122] survey various dy-

namics by which to model maneuvering intruder aircraft. By determining the appro-

priate assumptions, such as whether the vehicle is maneuvering or non-maneuvering,

aggressive or non-aggressive, a 2-D or a 3-D dynamics model, and the way noise

is modeled in the system, there are various dynamic models from which to choose.

Smith [8] chose a Singer [123] acceleration model, which assumes non-aggressive, un-

coordinated, maneuvering aircraft with time auto-correlation, α.

ẋ =


0 1 0

0 0 1

0 0 −α

 (2.9)

Stankovic [11] develops a single axis model to control a platoon of vehicles. Assump-

tions in the loyal wingman problem will result in a simple linear model that combines

these works.

2.5.2.5 Sensor Measurement Updates.

Maroney [124] investigates the concept that there may be a variety of sensor

combinations that are appropriate for various UAVs according to their capability.

Chen [125] integrates the most appropriate set of sensors for the sense and avoid

mission application. The work herein assumes that the appropriate sensor and mea-

surement integration techniques are available for the loyal wingman to appropriately

track and avoid threats in the air and on the ground.
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2.5.2.6 Possible Threats.

The research sponsor provided a list of threats that may be applicable to the loyal

wingman problem. Table 2.5.2.6 lists threats and information necessary to model

them as superquadrics. In addition, the 3-D contour of the superquadric threat keep-

out regions are represented in Figure 2.1. These images are provided here because

graphical results of threats modeled in 3-D in subsequent chapters are displayed on

a 2-D image where it may be difficult to see a loyal wingman trajectory that avoids

the threat using the altitude dimension.

Table 2.1. Possible Loyal Wingman Threats

Type Range (km) Altitude (km) 3D Shape

Surface to Air Missile (SAM) 25 25 Sphere
Anti-Aircraft Artillery (AAA) 18 15 Ellipsoid

Networked Radar 180 15 Ellipsoid
Manpad 6 3 Ellipsoid

Electro-Optical Sensor 25 15 Ellipsoid
Weather 20 15 Cylinder

Threat on Road 100x20 20 Cylinder

2.5.3 Multiple-Target Mission.

The loyal wingman candidate scenario identifies the requirement to rendezvous

at multiple mission targets on route to a fixed final time and location. Beard [126]

models threats as Voronoi polygons which must be avoided, then identifies waypoints

at the corners of the polygons. The path planner then traverses the edges of the

polygon from one waypoint to another. Lee [127] similarly has a UAV track a ground

vehicle using waypoint path planning by establishing different algorithms based on

the relative speed of the UAV and ground vehicle.

Benson specifies that there are a number of conditions for which the direct or-

thogonal collocation method is best solved using multiple phases, one of which is an
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Figure 2.1. 3-D Threat Keep-Out Regions Using Superquadrics
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interior point constraint such as a waypoint [128]. Jorris [72], using direct orthogonal

collocation, showed the need to put a phase break at the constraint.

2.6 Stochastic Estimation

The current chapter proposed both optimal control and stochastic estimation tech-

niques to solve the loyal wingman problem as defined herein. This section examines

techniques from the literature that may be used to estimate moving, non-deterministic

threats. The choice of estimation tool will be dependent on assumptions and user

desires, including linearity of the model, estimation probability distribution, and com-

putational efficiency.

2.6.1 Kalman Filter.

The Kalman filter was first introduced in a paper by R.E. Kalman in 1960 [129].

Around the same time of the introduction of this discrete-data linear filter technique,

advances in digital computer technology made it possible to implement real-time

recursive estimating solutions. Brown and Hwang provide an example Kalman filter

algorithm [130]. The key attributes of the Kalman filter are the use of a linear model

for propagating states and the assumption that the probability distribution of the

estimate is Gaussian. Additionally, the simplicity of the Kalman filter means the

computational complexity is low when compared to particle based methods such as

the unscented Kalman filter and the particle filter.

Shima and Rasmussen [131] demonstrate a control technique for multiple vehicle

collaborative control using the Kalman filter. In their paper, each UAV runs multiple

filters in parallel estimating its own states as well as running filters on its own states

as viewed by other members of the group. Singer [123] demonstrates the use of the

Kalman filter for the specific purpose of tracking maneuvering targets. This method
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allows rapid, a priori estimates of tracking performance by sensors providing any

combination of range, bearing, and elevation measurements.

2.6.2 Extended Kalman Filter.

The Extended Kalman Filter (EKF) is a variation of the Kalman filter that allows

for recursive estimation of measurement and state propagation functions that are

nonlinear. The EKF linearizes the measurement and state propagation functions

about the estimated trajectory by taking the partial derivatives of the measurement

and state propagation functions, which can then be used in the recursive Kalman

filter equations. Although this may seem convenient, there are risks. First, large

values in the original covariance matrix combined with low-noise measurements at

the first step will cause the covariance matrix to jump from the original large value

to a very small value. Roundoff errors associated with computation of the covariance

matrix can cause numerical computing issues that must be dealt with appropriately.

A potential solution is to ensure symmetry and positive definiteness of the covariance

matrix on the first step [130].

The second issue is the error associated with the linearization of a nonlinear

function, which takes the first two terms of the Taylor series expansion. In some

cases, the linearized matrix is not an accurate representation of the original function,

which means there is an error from the beginning that is then propagated indefinitely

through the model, causing the error to continually grow and in some cases causes

divergence. In choosing the EKF as an estimating tool, care must be taken to en-

sure these potential problems don’t cause inaccurate estimates for the problem one

is trying to solve [130]. Smith [8] compared the various filters for a collision avoid-

ance estimation problem. His results showed an example where reduced observability

magnified the linearization error of the EKF.
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2.6.3 Unscented Kalman Filter.

Wan [132] introduces the Unscented Kalman Filter (UKF) as an alternative to the

EKF which addresses the suboptimal performance associated with the linearization

of the state propagation and measurement update functions. The UKF is accurate to

the third order for Gaussian inputs for all nonlinearities and accurate to the second

order for non-Gaussian inputs. Additionally, the UKF computational complexity is

of the same order as the EKF. For this reason, Wan [132] describes the UKF as

clearly superior to the EKF. Ross [133] simultaneously solved the optimal control

problem and the optimal estimation problem for a bearing-only sensor using the

UKF. Smith [8] also performed a comparison of various models and showed results

where a UKF clearly outperformed the EKF. For instances where the state model is

nonlinear and posterior distribution estimates can be assumed a Gaussian and Normal

distribution, it is clear the appropriate estimation technique is the UKF.

2.6.4 Particle Filter.

The UKF and EKF were presented as options for estimation when measurement or

state propagation functions are nonlinear. These techniques still assume a Gaussian

posterior probability distribution. In cases where the posterior probability distri-

bution cannot be assumed Gaussian, another estimation technique is needed. The

particle filter operates by first creating a set of particles, χ. These particles are then

propagated through the state transition function. Because there is a non-deterministic

input value associated with the state transition matrix, the particles that propagate

through the state transition matrix all have varying values. This propagation contin-

ues until there is a measurement update. Each of the particles are then assigned a

weighting based on a likelihood function. This function allows each particle to eval-

uate its likelihood of being true based on the value obtained from the measurement.

42



The probability distribution function is then found by normalizing the weights of the

particles. An algorithm for the particle filter provided by Kim [134] and examples

of variations of the particle filter and methods and algorithms for re-sampling are

provided by Arulampalam [135].

The benefit of particle filters is they are robust to handle nonlinear models and

there need not be Gaussian assumptions on the posterior probability distribution.

However, the expense is typically a high computation cost based on the number of

particles that are used in the filter. There are a number of examples of use of particle

filters for the control of UAVs in literature. Conde [136] uses a particle filter to predict

the trajectory of a UAV and in particular highlights the importance of re-sampling

in the results of the work. Gustafsson [137] demonstrates a technique known as Rao-

Blackwellization by using a combination of a particle filter and a Kalman filter for

estimation. He showed that for a high-dimensioned, 27-state problem, 24 of the states

were linear and could be estimated using the Kalman filter. The particle filter was

then used to estimate the three remaining position states. Combining the use of the

filters assured no loss of fidelity while significantly reducing the computational cost.

2.7 Trajectory Re-Planning

The final aspect of the loyal wingman optimal control problem requires a re-

view of techniques that allow for dynamic, near-real-time trajectory re-planning. In

Smith’s [8] SAA scenario, a UAV operating in the NAS is flying a precomputed

path. A suite of sensors provide information on other potential aircraft that must

be avoided. A receding horizon model predictive controller continually projects an

image of the airspace a given time in the future, th. If necessary, a path is created

which optimally avoids intruder aircraft and returns to the previously identified path.

The aircraft then flies the newly computed path for a portion of the horizon tp and

43



sequentially updates the collision avoidance trajectory every tp. An inner-loop con-

troller such as an LQR is used to ‘fly’ each tp. There are challenges with using an

LQR [138] and so Jiang [139] uses Neighboring Optimal Control (NOC) to obtain a

solution to return to a nominal path. Described further by Yan [138], NOC establishes

a set of perturbation equations linearized around the nominal trajectory, assumes the

solution in the form of polynomials discretized at the roots of an orthogonal basis set

and may then quickly find the solution to a set of algebraic equations. NOC uses the

same direct orthogonal collocation transcription technique used in the loyal wingman

optimal control problem described herein and therefore may be a convenient tool for

dynamically re-planning a mission.

Ground-based entities include input from manned operators as well as the use

of computer subsystems such as the Operations Research Planning and Utility Sys-

tem (OPUS) [140], described as an A-star heuristic search algorithm for very fast

computation [140]. The Mission Reconfigurable Cockpit (MRC) Real-time In-flight

Planner [141] is an onboard dynamical re-planning tool which utilizes digital terrain

elevation data (DTED) to create a small set of potential solutions and chooses the

optimal of the small set as its solution. The benefit of this method is it develops

plausible new trajectories in near real-time.

Both NOC and the receding horizon model predictive controller are a few of

the many tools available for inner-loop trajectory tracking or sequential trajectory

creation as described in the literature [142]. These tools, however assume an outer-

loop solution has already been created and solves the problem of either maintaining

that path or avoiding disturbances/threats that may traverse the path and require

continual use of computation resources that are assumed not continuously available

throughout the mission. OPUS and the MRC planner both provide full outer-loop

path re-plans, however the ground-based OPUS requires a human in the loop and
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a high communication bandwidth which is not suitable for the low-communication

bandwidth requirement of the loyal wingman optimal control problem, whereas the

MRC planner is suboptimal.

The work herein assumes inner-loop control and sequential path-planning tech-

niques such as the ones mentioned previously are available. The changes in the loyal

wingman mission environment are significant enough to require a full mission re-plan

in near real-time. This research focuses on the use of optimal control techniques to

rapidly create both an initial optimal outer-loop mission path as well as to re-plan

the path in a changing mission environment.

2.8 Literature Review Conclusion

Chapter II began with a review of literature related to MUM-T and loyal wing-

man applications and concluded that solving the loyal wingman problem as defined

in Chapter I with optimal control and stochastic estimation techniques will provide

valuable contributions to the scientific and engineering community. A review was con-

ducted across the four attributes of formation flight and determined direct orthogonal

collocation as a rapid and accurate optimal solution technique. A discussion then en-

sued on the locally optimal nature of gradient-based methods and suggested the use

of a hybrid optimization technique in which a particle swarm optimization algorithm

generates a solution in the correct global region and is then provided as an initial

guess to the gradient-based NLP optimizer. Having determined the appropriate hy-

brid optimal control methodology, a review was then conducted on various models

that are used throughout literature for modeling UAV dynamics as well as various

ways to model threats. The literature review concluded with a discussion on stochas-

tic estimation techniques and methods used for near real-time trajectory re-planning.

The next two chapters will define the optimal control methodology.
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III. Formulate the Optimal Control Problem

The purpose of this chapter is to answer research question one by formulating the

optimal control problem and demonstrating the direct orthogonal collocation tech-

nique using a reduced-order 3-state, 2-D model. After formulating the components

of the optimal control problem in Section 3.2, Section 3.3 provides a concise problem

formulation summary. Results in this chapter highlight the importance of providing

a good initial guess to the gradient-based NLP and the conclusion highlights contri-

butions that result from formulating the optimal control problem. The usefulness of

a hybrid optimal control methodology, which utilizes the PSO to provide an initial

guess to the NLP, is demonstrated in the next chapter.

3.1 The Optimal Control Problem

The goal in an optimal control problem is to find an admissible control,

u(x(t), t) (3.1)

that minimizes an identified objective or cost functional

J(x(t)) = h(x(tf ), tf ) +

∫ tf

t0

g(x(t),u(t), t)dt (3.2)

where

h(x(tf ), tf ) (3.3)

is a term relating to the cost at the final state (terminal cost) and

∫ tf

t0

g(x(t),u(t), t)dt (3.4)
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is a term relating to the cost along the path (running cost). The solution must also

satisfy dynamic path constraints of the form,

ẋ(t) = f(x(t),u(t), t), (3.5)

inequality and equality constraints along the path (no-fly zones) of the form,

c(x(t),u(t), t) ≤ 0, (3.6)

and boundary conditions of the form,

x(t0) = x0 (3.7a)

x(tf ) = xf . (3.7b)

The components of the optimal control problem formulation will now be described

for the loyal wingman problem.

3.2 Components of the Loyal Wingman Problem Formulation

The loyal wingman candidate scenario involves a UAV that must autonomously

compute and fly to an intermediate target (waypoint) on route to a final rendezvous,

while either completely avoiding threats or minimizing the risk of exposure when

threats are not avoidable. The purpose of this section is to formulate the optimal

control problem in a way that will account for the various threat and boundary

conditions scenarios.
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3.2.1 Dynamic Constraints.

The 3-state, 2-D, point-mass model, which does not change throughout the mission

is

ẋ = V cosψ (3.8a)

ẏ = V sinψ (3.8b)

ψ̇ = u, (3.8c)

where x and y are the UAV’s x- and y- positions, ψ is heading, u is the control, heading

rate in rad/s and V is the velocity, held constant. The 3-state vector, {x, y, ψ}, will

be represented as x.

3.2.2 Boundary Conditions.

The boundary conditions include three final condition scenarios:

1. Fixed final time, tfc, to fixed final point, xfc,

2. Minimize time to fixed final point, xfc, and

3. Minimize time to rendezvous with the manned lead,

where the subscript fc indicates the final condition. Two assumptions are established

for rendezvous with the manned lead. First, the time-dependent path of the manned

lead is known a priori. Future work may consider stochastics in the manned lead’s

trajectory and the techniques discussed in Chapter VI may be extended for use in

that scenario. Second, it is assumed the loyal wingman needs to arrive within a safe

distance of the manned lead and other systems or algorithms will ensure a collision-

free final formation rendezvous. For simplicity, the optimal control problem is feasible

for a subset of the general problem when the states at the final time, tf , of the loyal
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wingman, subscript W , are equivalent to the states at the final time of the manned

lead, subscript L, such that

xW (tf ) = xL(tf ). (3.9)

In order to satisfy intermediate target constraints, the problem is broken into

multiple phases, one break for each waypoint, a common technique when using direct

orthogonal collocation to solve optimal control problems. The loyal wingman begins

at the established initial conditions.

Phase 1 initial condition (superscripts indicate phase number):

x1
W (t0) = x0, (3.10)

where in the case of the manned rendezvous x0 = xL(t0).

Phase 1 final condition:

x1
W (t1f ) = x1

y1
W (t1f ) = y1.

(3.11)

Phase 2 initial condition is at the intermediate target location (the superscript 2

indicates phase number):

x2
W (t20) = x1

y2
W (t20) = y1.

(3.12)

Phase 2 final condition is different for each scenario

1. Fixed final time to fixed final point, x2
W (t2f ) = xfc, t

2
f = tfc

2. Minimize time to fixed final point, x2
W (t2f ) = xfc

3. Minimize time to rendezvous with the manned lead, x2
W (t2f ) = xL(t2f )

Finally, in a multiple-phase problem, a linkage constraint must be established that

ensures the final time and states of phase 1 are exactly equal to the starting time and
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states of phase 2,

x1
W (t1f ) = x2

W (t20) (3.13a)

t1f = t20. (3.13b)

3.2.3 Modified Inside-Outside Threat Product Function.

Two threat scenarios are considered: one in which the mission may be accom-

plished without risk of exposure and another in which risk of exposure is unavoidable

due to a fortified intermediate target. Figures 3.1 and 3.2 indicate course layouts,

where the small circle indicates the starting position, the ‘x’ indicates the intermedi-

ate target, the blue dot indicates final rendezvous, and the shaded regions indicate

the threats which must be avoided.
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Figure 3.1. Course Layout with Avoidable Threats

Chapter II highlighted superquadrics as a method for modeling threats, which

are convenient for the loyal wingman application because of the small number of

parameters necessary for representing 2-D and 3-D regions, and thus threat constraint

violation can be easily computed using the 2-D version of the inside-outside function,

F (h) =

(
xW − xT

ax

)p
+

(
yW − yT

ay

)2

, (3.14)

50



−200 −150 −100 −50 0 50 100 150 200 250
0

50

100

150

200

250

300

East, x−axis (km)

N
or

th
, y

−
ax

is
 (

km
)

 

 
Start
Intermediate Target
Final Rendezvous
Threat

Figure 3.2. Course Layout with Unavoidable Threats

where h = [xW , yW , xT , yT , ax, ay, p]; xW and yW indicate the position of the loyal

wingman along its trajectory; xT and yT indicate the center point of the threat; ax

and ay are the principal axes of the shape modeling the threat; and p is a parameter

utilized to form the shape of the superquadric, where p = 2 forms a circle or ellipse.

A given point, (xW , yW ), on the loyal wingman trajectory is outside the threat when

F > 1, therefore the inequality path constraint is

1− F (h) ≤ 0. (3.15)

For scenarios where threats are unavoidable because the target lies inside a threat

region, as in Figure 3.2, feasible solutions require that threats not be accounted for as

constraints, but rather as part of the cost function. Two challenges arise associated

with modeling the inside-outside function as a running cost. First, Equation 3.14

may grow without bound which provides a tendency for the NLP to converge on a

trajectory as far away from the threat region as possible, which is not the desire. This

challenge can be addressed through a boolean transformation in which all values of F

greater than 1 are set to 1 and all values of F less than 1 are set to 0. This, however,

creates a challenge associated with a gradient-based numerical method for solving the
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optimal control problem [83], which requires continuous and differentiable functions.

Therefore a modified inside-outside function is developed via a sigmoid function which

emulates boolean-like behavior, but provides a continuous and differentiable function

between the inside and outside of the threat. Represented through Equation 3.16

and graphically in Figure 3.3, values inside the threat approach zero, values outside

the threat approach one and there is a smooth transition from zero to one at the

border region of the threat. The stiffness of the transition is represented by s in

Equation 3.16. Its value is a user-defined choice which balances threat exposure

modeling error with smooth gradient information required for solving optimal control

problems with gradient-based NLP solvers. As an example, referring to Figure 3.3,

with s = 30 in an avoidable threat layout, it is likely that the optimizer will converge

on trajectories, that when evaluated with Equation 3.14, values of F will be larger

slightly larger than 1.

ε(F (h)) =
1

1 + e

(
s(F (h)−1)

) (3.16)
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This modified inside-outside function may now be used as a running component of

the cost formulation to minimize threat exposure. Multiple threats (n) are accounted

for by taking the product of the modified inside-outside function for each threat [8].
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Using the modified inside-outside threat product function, a value of 1 indicates a path

in which all threats are avoided. In order to formulate this cost as a minimization,

the modified inside-outside threat product function is subtracted from 1 in a running

cost, indicated in Equation 3.17,

JMinExposure =

∫ tf

t0

(
1−

n∏
i=1

εi(Fi(h)
)
dt. (3.17)

Establishing the modified inside-outside threat product function as a part of the cost

formulation eliminates the need to establish threats as inequality constraints, while

simultaneously avoiding threats, and minimizing exposure when threats are unavoid-

able. Additionally, when using direct orthogonal collocation to transcribe the optimal

control problem to a nonlinear programming problem, inequality constraints increase

the size and complexity of the Jacobian, generally increasing computation time and

decreasing likelihood of generating a feasible solution. Thus, it is recommended that

threats in the loyal wingman application are always formulated as part of the cost

function and not as inequality constraints.

Threat exposure is the primary component of a fixed-time cost formulation, how-

ever a second component, minimize control, is added to ensure a smooth control

output:

JControl =

∫ tf

t0

u(t)2dt. (3.18)

By adding the minimize exposure and minimize control components and applying

a convex weighting β ∈ [0, 1], the cost function formulation of a fixed time scenario is

JFixedT ime = (1− β)Jcontrol + (β)JMinExposure.

Next, a formulation is required for scenarios in which minimizing mission time

is a priority. A minimum time formulation is developed with a final condition cost
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component, tf . Because minimizing threat exposure and control output are still

desirable, the minimize time scenarios are formulated by adding the final condition

component to the JFixedT ime component and applying convex weighting α ∈ [0, 1],

resulting in Equation 3.19.

JMinTime = αtf + (1− α)JFixedT ime (3.19)

These components of the optimal control problem formulation represents the six

scenarios that will be evaluated in the research herein:

1. Fixed time to fixed location with avoidable threats, JFixedT ime

2. Fixed time to fixed location with unavoidable threats, JFixedT ime

3. Minimize time to fixed location with avoidable threats, JMinTime

4. Minimize time to fixed location with unavoidable threats, JMinTime

5. Minimize time to lead rendezvous with avoidable threats, JMinTime

6. Minimize time to lead rendezvous with unavoidable threats, JMinTime

3.3 Loyal Wingman Problem Formulation Summary

The optimal control problem formulation for scenarios 5 and 6 is to minimize the

cost

J = αtf + (1− α)

∫ tf

t0

[
(1− β)u(t)2 + β

(
1−

n∏
i=1

εi(Fi(h))
)]
dt (3.20)

54



where ε and F are defined in Equations 3.16 and Equation 3.14, respectively, subject

to dynamic constraints,

ẋ = V cosψ (3.21a)

ẏ = V sinψ (3.21b)

ψ̇ = u, (3.21c)

boundary conditions,

x1
W (t0) = x0 (3.22a)

xgW (tgf ) = xg (3.22b)

ygW (tgf ) = yg (3.22c)

xGW (tGf ) = xL(tGf ), (3.22d)

and linkage constraints,

xgW (tgf ) = xg+1
W (tg+1

0 ) (3.23a)

tgf = tg+1
0 , (3.23b)

∀g = 1, 2, ...G−1, G representing the number of phases. When the final state location

is fixed, such as in scenarios 1, 2, 3, and 4, Equation 3.22d must be updated,

xGW (tGf ) = xG. (3.24)

Finally, if the final time is fixed, as in scenarios 1 and 2, the cost function to minimize

is

J =

∫ tf

t0

[
(1− β)u(t)2 + β

(
1−

n∏
i=1

εi(Fi(h))
)]
dt (3.25)
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and an additional final boundary condition constraint is enforced,

tGf = tG. (3.26)

3.4 Initial Guess Results

The work herein used the Gauss Pseudospectral Optimization Software (GPOPS

II)[143] which is a multi-purpose MATLABr -based [79] transcription software.

GPOPS II uses the roots of the Legendre polynomial as discretization points as

well as choosing the Radau Pseudospectral Method (RPM) which places collocation

nodes at the initial condition and in the interior, but not at the final condition. The

intermediate-target optimal control problem includes an intermediate target, which is

modeled using multiple phases such that the final conditions for phase 1 are the initial

conditions for phase 2 and so on between each phase. A challenge with gradient-based

NLPs, especially with nonlinear, nonconvex problems is that an initial guess is nec-

essary and the choice for the initial guess impacts computation time as well as which

locally optimal solution the NLP converges upon. In order to demonstrate this chal-

lenge, a single scenario, fixed time to fixed location through unavoidable threats, is

formulated and solved by supplying various initial guesses to the NLP. Nine ‘simple’

initial guesses are developed by a method that can be visualized in Figure 3.4. In

phase one, three paths are created that connect the initial condition to the interme-

diate target: an arc to the left, an arc to the right, and a straight path, labeled 1

through 3. The same is done for phase two and each segment labeled 4 through 6.

This represents 9 potential initial guesses. Each of these initial guesses is supplied

to the NLP and the resulting cost and computation time for each initial guess is

documented in Table 3.1 and plotted in Figure 3.5. In this particular scenario, each

initial guess supplied to the NLP converged to a different locally optimal solution.
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Figure 3.4. Initial Guess Segments Supplied to the NLP

Table 3.1. Cost and Computation Time of 9 Initial Guesses

Segment Cost Computation Time

1-4 16.49 1.76
1-5 14.94 1.99
1-6 11.19 2.46
2-4 15.03 2.36
2-5 14.17 2.24
2-6 15.51 4.26
3-4 20.33 2.12
3-5 15.65 4.38
3-6 23.83 3.64
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The best cost from these nine results was from the initial guess segment 1-6, plotted

in black in Figure 3.5. NLP optimization tolerance, number and location of nodes,

the convex weighting, as well as the initial guess are all factors that contribute to

which locally optimal solution the NLP ultimately converges upon. Additional work

may be applied to determining the right combination of NLP optimization tolerance,

node placement, convex weighting and initial guess. This work, however, chooses

to ameliorate this challenge using a hybrid optimization methodology for achieving

rapid and autonomous solutions, which is demonstrated in the next chapter.

3.5 Optimal Control Problem Formulation Conclusions

Research question one was answered by formulating the optimal control problem

in a static threat environment using a 3-state, 2-D model. The intermediate target

conditions were introduced by breaking the problem into multiple phases and link-

ing initial and final conditions for each phase. Threat regions were modeled using
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superquadrics and the inside-outside function. To ensure threat avoidance and when

necessary minimize exposure, a modified inside-outside threat product function was

developed and employed as a component of the running cost. Two cost functions were

established, one for a fixed time scenario and the other for a minimize time scenario.

This chapter utilized a single scenario to highlight challenges with a highly nonlinear,

nonconvex optimal control problems. Multiple initial guesses were provided to the

NLP, resulting in convergence to multiple locally optimal solutions. This challenge

will be ameliorated through the use of a hybrid optimization technique demonstrated

in the next chapter.
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IV. Hybrid Optimization Methodology

The purpose of this chapter is to demonstrate the hybrid optimization methodol-

ogy in which a heuristic-based Particle Swarm Optimization (PSO) algorithm is used

to supply an initial guess to the gradient-based nonlinear programming (NLP) solver.

The previous chapter formulated the optimal control problem which was then tran-

scribed to an NLP problem using direct orthogonal collocation (DOC). This chapter

exploits the myriad of variations of the PSO method to produce a PSO algorithm tai-

lored to the loyal wingman optimal control problem with the specific task of rapidly

providing an initial guess to the NLP. The hybrid technique as applied to the loyal

wingman optimal control problem is considered successful because it produces a rapid

and feasible, converged NLP solution. The chapter begins by describing a PSO al-

gorithm written for the loyal wingman optimal control problem, which highlights

methods for producing seeds, handling constraints, and calculating costs. Then, a

simulation is run and a metric is established to compare the speed and accuracy

of the hybrid technique to using DOC alone and concludes that the loyal wingman

optimal control problem may be solved effectively using the hybrid optimal control

methodology.

4.1 The Loyal Wingman PSO Algorithm

A flowchart of the loyal wingman PSO algorithm is shown in Figure 4.1, which

is broken into two major sections: algorithm initialization and algorithm iterations.

There are many factors in considering how a PSO algorithm should be varied for a

particular application. Section 4.2 will show the PSO algorithm written for the loyal

wingman application as effective for achieving rapid, accurate results.
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4.1.1 PSO Seeds and Initialization.

Referring to Figure 4.1, the first section is the production of seeds and initialization

of the components of the basic two-line PSO algorithm used in the loyal wingman

PSO algorithm,

~v(k + 1)j = K[~v(k)j + bL~r1 ⊗ (~u(k)j − ~Lj) + bG~r2 ⊗ (~u(k)j − ~G)] (4.1a)

~u(k + 1)j = ~u(k)j + ~v(k + 1)j, (4.1b)

∀j = 1, 2, ...,M particles, ∀k = 1, 2, ..., R iterations, where ⊗ represents element-wise

multiplication of vector components and ~r1, ~r2 represent vectors of nondeterministic

evenly distributed parameter weighting in [0, 1]. The remaining components, ~v, ~u, ~L,

~G, bL, bG, and K, are described next.

There are various ways to define a particle and a recommendation of this research

is to explore other methods for increased efficiency. However, the work herein defines

a particle as a vector of discrete control inputs, ~u = [u1, u2, ...uN ]T , where N is the

number of discrete control inputs. Simulation of Equation 3.21 with the heading rate

control vector, ~u, produces a trajectory for use in evaluating the cost and constraints.

A deterministic method, described in Appendix A, was developed for producing par-

ticle seeds based on the following criteria: satisfy target and endpoint constraints as

recommended by Hu and Ebert [109], create a broad range of possible trajectories

to aid in the PSO stochastic search, and produce in a computationally efficient man-

ner. Using this deterministic method, an initial set of M control vectors is produced

~u(0)1×M = [~u(0)1, ~u(0)2, ...~u(0)M ], which when simulated produce an initial set of M

discrete vectors for each of the 3-states, {~x(0)1×M , ~y(0)1×M , ~ψ(0)1×M}

The PSO algorithm is initialized by assigning each initially produced seed as its

own current local best, ~Lj = ~u(0)j, ∀j = 1, 2, ...,M . The cost associated with each
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seed, as described later in this chapter, is determined and the index of the particle

with the best cost is assigned j?, such that the global best is ~G = ~Lj? .

The first component of Equation 4.1 is the constriction factor

K =
2

φ−
√
φ2 − 4φ

(4.2)

with φ = bL+bG, φ > 4, suggested by Clerc [100], where bL and bG represent the local

(L) and global (G) weighting factors. The choice of these parameters effect the local

and global nature of the search as well as convergence tendencies [99]. These values

were chosen for use in the loyal wingman PSO algorithm through an experiment as

described in Appendix C.

Finally, the velocity component ~v(0)j is initialized to ~0, ∀j = 1, 2, ...,M . There are

many ways to initialize a PSO algorithm and additional work could be done to tune

the various parameters for a given set of scenarios. This work does not claim to have

found the perfect combination for optimal performance, however, the initialization

described in this section is sufficient to accomplish the desired task, which is to

rapidly provide an initial guess to the gradient-based NLP that results in an accurate

and feasible solution. Additional work in determining the right seeds and parameters

may further improve the quality and efficiency of the results.

4.1.2 PSO Iterations.

After the PSO is initialized, a series of steps occur which allows the ‘flock’ of

control vectors, or ‘particles’, to change values through a stochastic search of the

space, moving toward the currently assigned global best solution. Beginning with the

first iteration, k = 1, a single particle, ~uj, is updated through Equation 4.1. The
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updated particle is simulated using the discrete equations of motion

xj(i+ 1) = V cos(ψj(i))∆t+ xj(i) (4.3a)

yj(i+ 1) = V sin(ψj(i))∆t+ yj(i) (4.3b)

ψj(i+ 1) = u(i)∆t+ ψj(i) (4.3c)

∀i = 1, 2, ..., N − 1, where V is the velocity, held constant, and ∆t remains fixed for

all particle and iterations.

The updated particle is then evaluated in Figure 4.1, Box 6, to check constraint

criteria. Intermediate and final conditions constraint criteria are relaxed in the PSO

to improve the PSO search capability for a reasonable computation time. The loss

of fidelity through this relaxation is overcome by speed and accuracy of the direct

orthogonal collocation methodology. The Euclidean distance from all points in the

trajectory to the intermediate target (x1, y1) are calculated

Dj(i) =
√

[xj(i)− x1]2 + [yj(i)− y1]2 (4.4)

∀i = 1, 2, ..., N . If the minimum D(i), ∀D(i), 1, 2, ..., N is less than the D? threshold

for meeting the intermediate target constraint, then the same formulation is used to

check the final condition constraint, (xfc, yfc). If either constraint threshold is not

met, the PSO velocity component is set to 0, ~vj = ~0 [105] and the next particle is

evaluated ∀j = 1, 2, ...,M . D? is set to 5 km, much higher than the criteria for the

primary problem formulation. This is done to increase the number of particles on

each iteration satisfying boundary conditions and not being ‘thrown out’, improving

computation time and subsequently relying on the speed and accuracy of the DOC

method to regain lost fidelity.

When a particle meets both intermediate and final condition constraints, the cost
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is then evaluated (Figure 4.1, Box 7). A separate cost function is established for each

boundary condition scenario:

1. Minimize time to fixed location, Equation 4.5

2. Fixed time to fixed location, Equation 4.6

3. Minimize time to lead rendezvous, Equation 4.7

The minimize time to fixed location, scenario 1, is

JMinTimePSO = αtf + (1− α)

∫ tf

t0

[
(1− β)u(t)2 + β

(
1−

n∏
i=1

εi(Fi(h))
)]
dt. (4.5)

A fixed time, tfc, scenario contains an additional constraint. Instead of checking

to ensure the constraint is met on each iteration (Box 6), the fixed time constraint

is formulated as an additional component in the cost function [110], J∆t = tf − tfc,

such that,

JFixedT imePSO = αFTJ∆t+(1−αFT )

∫ tf

t0

[
(1−β)u(t)2 +β

(
1−

n∏
i=1

εi(Fi(h))
)]
dt. (4.6)

The convex weighting αFT ∈ [0, 1] is adjusted to put increased emphasis on the fixed

final time, such that as the particle’s variation from the desired final time increases,

the cost increases and when there is no variation from the desired final time, this

component goes to zero and only the running cost remains.

The scenario, minimize time to rendezvous with the lead, JRendezvousPSO, has an

additional constraint that the states, x, of the loyal wingman (subscript W ) and lead

(subscript L) match at the final time, xW (tf ) = xL(tf ). The cost function to minimize

time to rendezvous while minimizing threat exposure is

JRendezvousPSO = (1− αRend)JMinTimePSO + αRendDRend, (4.7)
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where DRend is the minimum Euclidean distance between the loyal wingman and lead

trajectory at each time-step, from the index of the intermediate waypoint, i?, forward,

DRend = min{
√[

xW (i)− xL(i)
]2

+
[
yW (i)− yL(i)

]2} (4.8)

∀i = i?, i? + 1, ..., N and αRend ∈ [0, 1] is weighted such that as DRend increases, the

cost increases and when DRend goes to 0, this component goes to zero.

The cost of the current particle is then evaluated according to the appropriate

cost for the scenario using Gaussian quadrature and then compared to the cost of the

particle’s current local best, ~Lj (Figure 4.1, Box 8). If the updated particle’s cost is

lower, then the particle’s local best is updated, ~Lj = ~uj (Figure 4.1, Box 9). The

process for a single iteration, k, is repeated for all particles j = 1, 2, ...,M , which

is: update particle through Equation 4.1 (Box 4), simulate using Equation 4.3 (Box

5), check constraint criteria (Box 6), evaluate cost (Box 7), and update local best

(Boxes 8 and 9). After all particles have been updated and evaluated (Box 10), if any

local bests have been reassigned, then the costs of the new local bests are compared

to the current global best. If a particle’s local best cost is lower, the global best is

updated, ~G = ~Lj? (Box 11). This completes one iteration of the PSO algorithm. The

iterations continue ∀k = 1, 2, ..., R until the iteration limit has been reached. The

global best, ~G at the final iteration is the solution used as the initial guess to supply

to the gradient-based NLP.

4.2 Results

The loyal wingman optimal control problem is solved using three methods, direct

orthogonal collocation (DOC) using a gradient-based NLP, a heuristic particle swarm

optimization (PSO) and a hybrid technique in which the output from the PSO algo-
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rithm is used as an initial guess for DOC. The DOC method was run nine times using

nine different initial guesses, and repeated for each scenario. Using the GPOPS II

software, anywhere from 4 to 9 different locally optimal feasible solutions were pro-

duced by the NLP solver. The costs of these different solutions were compared and

the lowest cost output was identified as the ‘best’ solution from the DOC method.

Computation time for the DOC method is measured as the total time it takes to run

GPOPS II and the NLP solver for all nine initial guesses. An example scenario, fixed

time to fixed point through unavoidable threats, was discussed in Chapter III and

the results captured in Table 3.1 and Figures 3.4 and 3.5.

Next, the PSO algorithm was run for each scenario for a pre-determined 100

iterations. The cost and computation time were captured along with a graphical rep-

resentation of the currently assigned global best solution when the 100 max iteration

limit was achieved.

Finally, a hybrid technique is tested by taking the output of the previously men-

tioned PSO algorithm and supplying it as the initial guess into the DOC’s gradient-

based NLP. The cost output is captured and the computation time is computed as

the combined time to run the PSO, and the DOC with the PSO output as the initial

guess. The following six figures are provided which overlays the trajectory results from

the DOC method alone (dotted line), the PSO method alone (dashed line) and the

hybrid method (solid line). A table in each figure identifies the cost and computation

time associated with each method.

In order to achieve an accurate solution, it is expected that when threat regions

are avoidable, each method should find trajectories that successfully avoids the threat

regions. In cases were threat regions are unavoidable, it should be expected that the

best way to minimize time of exposure for a constant velocity vehicle and equally

weighted threat regions is to traverse the threats by way of a perpendicular bisector
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Figure 4.2. Comparison of Fixed Time Through Unavoidable Threats

of the threat intersection points. Minimum time scenarios should result in trajectories

which are direct, while fixed final time scenarios should produce additional turns that

allow for idle time in order to meet the fixed final time constraint.

Figure 4.2 represents scenario one in which the vehicle must overfly an intermediate

target in a layout in which threats are not avoidable, and conclude with rendezvous

at the fixed final time and specified location. All three methods find trajectories

that minimize exposure through unavoidable threat regions with a perpendicular

bisector and the DOC method produces a trajectory with a lower cost than does

the PSO alone. However, the hybrid method produces the lowest cost solution at a

computation time that is faster than the DOC method alone.

Figure 4.3 represents the results of scenario two in which the vehicle must overfly

an intermediate target in a layout in which threat regions are unavoidable and must

conclude at the final rendezvous in minimum time. The DOC solution produces a

lower cost solution than the PSO method but takes nearly twice the computation

time. The hybrid method produces the exact same solution as the DOC method

alone, but does so in a more computationally efficient manner. The time it takes to
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Figure 4.3. Comparison of Minimize Time Through Unavoidable Threats

run the hybrid method is nearly 30% faster than the DOC method alone.

Figure 4.4 represents the results of scenario three in which the vehicle must overfly

an intermediate target prior to a fixed final time and fixed final location rendezvous.

This mission can be accomplished without exposure to any threat regions and all

methods do so successfully. The results are similar to the scenario previously discussed

where the cost of the DOC solution is lower than the cost of the PSO solution, but

to run the DOC solution nine times, once again takes twice the computation time.

In this case, the hybrid method outputs the same trajectory and cost associated with

the DOC method alone, but does so 12 seconds faster, in approximately 40% of the

time it takes to run the DOC method alone.

Figure 4.5 is scenario four, representing a vehicle that must overfly an intermedi-

ate target prior to rendezvous at a final location. The mission may be accomplished

without exposure to threats, which all methods obtain successfully. What is interest-

ing about this scenario is the DOC method by itself, which was run with nine different

initial guesses, returns a best-cost trajectory that flies North (positive y-direction) of

the isolated threat on its way to the final rendezvous. This trajectory adds unnec-
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essary cost in a minimum time problem and its result is an example of one of the

challenges faced by the gradient-based search methods. As the NLP takes small steps

in a direction to minimize the time, the trajectory is exposed to the threat region

and bounces back above, effectively being caught in a local minimum. The global

and stochastic nature of the PSO results in a more direct, time-saving route. When

this PSO result is supplied as the initial guess into the NLP in a hybrid approach, a

lower cost solution is found in less than half the computation time to run the DOC

method alone.

Figures 4.6 and 4.7 are the results for scenarios five and six which both entail a

minimum time to rendezvous with the manned lead. The threat layout is the same

as was provided in previous figures with the addition of the manned lead’s trajectory.

In Figure 4.6, the trajectory must minimize exposure through unavoidable threat

regions. In this scenario, neither the PSO nor DOC method alone produce a desired

trajectory passing through the threat perpendicular bisector. The PSO solution,

however, is sufficient to supply as an initial guess to the NLP, demonstrating the

desired behavior of the hybrid methodology. Additionally, each of the DOC runs alone
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took an average of 12 seconds, totaling almost 110 seconds when running nine times

and the end result is a trajectory that does not find the perpendicular bisector. When

using the hybrid method, the PSO took about 16 seconds, but the NLP only took

4 additional seconds to converge on a lower cost solution that minimizes exposure.

The hybrid method took less than 20% of the time to run as the DOC method and

produced a lower cost solution.

Scenario six results are shown in Figure 4.7, where all methods return trajectories

that successfully avoids threat regions. When running the DOC method alone nine

times, a good solution is found at the expense of 124 seconds in computation time.

The hybrid method found the same cost solution in 21 seconds - 17% of the time it

takes to run the DOC method alone.

Table 4.1 provides a comparison of cost and computation time for all three meth-

ods for each of the six scenarios and these results are summarized in the next section.
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Table 4.1. Cost and Computation Time Comparison for All Scenarios

Scen 1 Scen 2 Scen 3

Cost Time Cost Time Cost Time
PSO 17.588 14.981 2.806 17.680 2.797 14.323
DOC 11.194 25.242 2.251 29.159 2.139 28.159
Hybrid 9.243 17.410 2.251 20.193 2.139 16.867

Scen 4 Scen 5 Scen 6

Cost Time Cost Time Cost Time
PSO 1.560 17.745 3.030 15.950 2.790 17.530
DOC 1.539 52.948 2.590 107.150 1.540 124.780
Hybrid 1.421 20.320 2.360 20.400 1.540 21.380

4.3 Hybrid Methodology Conclusions and Recommendations

A PSO algorithm was developed for use in the loyal wingman application with the

goal of rapidly providing a feasible solution to supply to the gradient-based NLP. PSO

seeds were developed deterministically in order to decrease PSO computation time

and methods of handling constraints recommended by other authors were applied.

A simulation was run and a metric established for comparing DOC alone to the

hybrid technique, which used the PSO result as its initial guess. In general, all three

methods provided feasible results, but the hybrid method was superior. The DOC

solution was dependent upon the initial guess as was suggested, producing multiple

locally optimal solutions. One run of the DOC method is fast, but if the user doesn’t

have a good initial guess and therefore needs to run the method multiple times to

find a good initial guess, then the computation time is high. The PSO algorithm

used for this application was rapid and found the best cost solution within the space

that was searched. The hybrid method consistently resulted in a lower cost than the

PSO alone and either was even with or lower than the results from the DOC method

alone. In all cases, the hybrid method produced results faster than the DOC method

alone. Although the hybrid method consistently provided rapid, accurate solutions,
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the method remains imperfect. There is no way to guarantee a full global search and

even though the NLP tends to converge on the locally optimal solution in the region

of the initial guess, NLP step-size may cause the optimizer to ‘jump’ out of the region

of the initial guess.

There are many factors to consider when tailoring the PSO to a particular ap-

plication such as, definition of particles, production of particle seeds, the use of a

constriction factor and its value, local and global parameter weighting values, and

the various ways of handling constraints as utilized in this work. These factors were

tailored for the loyal wingman application and there are potentially more factors to

consider. A recommendation for future work should consider continuing to adjust the

PSO to increase the stochastic search region as well as decreasing the computation

time. A second recommendation for future work is to study the definition of a particle

in this application as the coefficients to a polynomial, discretized at the roots of an

orthogonal basis set. There is potential for synergy by using the DOC transcription

of the optimal control problem and applying it for use in the PSO.

Overall, this chapter has demonstrated a methodology for solving the loyal wing-

man optimal control problem, and between Chapters III and IV, answered research

question one by formulating and solving the optimal control problem in a static threat

environment.
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V. 3-D Results

The purpose of this chapter is to add real-world fidelity to the results of the

previous chapter by answering question one using a 3-D model. First, the optimal

control problem that was formulated in Chapter III is updated and summarized for a

3-D model, then there is a discussion on the required updates to the PSO algorithm.

Results are provided along with a discussion for the six identified scenarios, followed

by a conclusion and recommendations for future work.

5.1 Update Optimal Control Problem Formulation

A 7-state, 3-DOF model suitable for the loyal wingman problem was provided in

Chapter II and will be used to provide 3-D results. The initial and final conditions

for scenarios identified in Chapter III remain unchanged, however the intermediate

target constraint is updated to include the altitude state, z, such that

x1
W (tf ) = x2

W (t0) = x1

y1
W (tf ) = y2

W (t0) = y1

z1
W (tf ) = z2

W (t0) = z1,

(5.1)

where the superscripts indicate phases. Finally, the 2-D inside-outside function, Equa-

tion 3.14, is updated for a 3-D threat,

F (h) =

(
xW − xT

ax

)p
+

(
yW − yT

ay

)2

+

(
zW − zT

az

)2

, (5.2)

where h = [xW , yW , zW , xT , yT , zT , ax, ay, az, p]; xW , yW , and zW indicate the position

of the loyal wingman along its trajectory; xT , yT , and zT indicate the center point of

the threat; ax, ay, and az are the principal axes of the shape modeling the threat; and
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p is a parameter utilized to form the shape of the superquadric, where p = 2 forms

a circle or ellipse. The same six scenarios identified in Chapter III are applicable for

the 3-D model

1. Fixed time to fixed location with avoidable threats, JFixedT ime

2. Fixed time to fixed location with unavoidable threats, JFixedT ime

3. Minimize time to fixed location with avoidable threats, JMinTime

4. Minimize time to fixed location with unavoidable threats, JMinTime

5. Minimize time to lead rendezvous with avoidable threats, JMinTime

6. Minimize time to lead rendezvous with unavoidable threats, JMinTime

5.2 3D Loyal Wingman Problem Formulation Summary

The optimal control problem formulation for scenarios 5 and 6 is to minimize the

cost,

J = αtf + (1− α)

∫ tf

t0

[
(1− β)[u1(t)2 + u2(t)2] + β

(
1−

n∏
i=1

εi(Fi(h))
)]
dt, (5.3)

where,

ε(F (h)) =
εmax

1 + e−s(F (h)−1)
, (5.4)

s is a user defined stiffness balancing threat border region accuracy with computa-

tional efficiency, and F is identified in Equation 5.2. The cost is subject to dynamic
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constraints,

ẋ(t) = V cos γ(t) cosχ(t) (5.5a)

ẏ(t) = V cos γ(t) sinχ(t) (5.5b)

ż(t) = V sin γ(t) (5.5c)

γ̇(t) =
Nzg cosµ(t)− g cos γ(t)

V
(5.5d)

χ̇(t) =
Nzg sinµ(t)

V cos γ(t)
(5.5e)

Ṅz(t) = u1(t) (5.5f)

µ̇(t) = u2(t), (5.5g)

(5.5h)

boundary conditions

x1
W (t0) = x0 (5.6a)

xgW (tgf ) = xg (5.6b)

ygW (tgf ) = yg (5.6c)

zgW (tgf ) = zg (5.6d)

xGW (tGf ) = xL(tGf ), (5.6e)

and linkage constraints,

xgW (tgf ) = xg+1
W (tg+1

0 ) (5.7a)

tgf = tg+1
0 , (5.7b)

∀g = 1, 2, ..., G − 1, where G represents the number of phases and x now represents

the 7 states {x, y, z, γ, χ,Nz, µ}. When the final state location is fixed, such as in
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scenarios 1, 2, 3, and 4, Equation 5.7a is replaced with

xGW (tGf ) = xG (5.8)

Finally, if the final time is fixed, as in scenarios 1 and 2, the cost function to minimize

is

J =

∫ tf

t0

[
(1− β)[u1(t)2 + u1(t)2] + β

(
1−

n∏
i=1

εi(Fi(h))
)]
dt (5.9)

and an additional final boundary condition constraint is enforced,

tGf = tG. (5.10)

5.3 Update Loyal Wingman PSO Algorithm

There are two updates to the loyal wingman PSO algorithm. One is the use of a

reduced-order dynamics model and the other is the method of producing PSO seeds.

5.3.1 The Reduced Order PSO Dynamic Model.

A positive characteristic of a full-state model is the accuracy of results, which

when provided to the NLP as an initial guess, improves NLP computation time. Use

of the full-state model in the loyal wingman PSO was more challenging, however,

because it has a significant negative impact on the speed and convergence of the

PSO. A recommendation of the work herein is to continue to improve the PSO,

including choice of the PSO parameters; however, this work chose to improve the

convergence and computation time of the PSO by using a reduced-order dynamics

model. The sacrifice of accuracy from a reduced-order PSO is deemed acceptable due

to the increased computational efficiency of the reduced-order PSO as well as reliance

upon the accuracy achieved by use of the DOC method.
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The reduced-order PSO is a 3-state, 2-control model, taken from Equations 5.5a, 5.5b,

and 5.5c

ẋ(t) = V cos γ(t) cosχ(t) (5.11a)

ẏ(t) = V cos γ(t) sinχ(t) (5.11b)

ż(t) = V sin γ(t), (5.11c)

where x, y, z represent position coordinates, and the controls are heading, χ, and

flight path angle, γ.

5.3.2 PSO Seeds in Three Dimensions.

Chapter IV established a deterministic method of producing seeds to initiate the

PSO algorithm. This prescriptive method, described in Appendix A, is useful for all

loyal wingman scenarios which included identifying points and spline-fitting trajecto-

ries through those points. Identification of those points must be updated for use in

three dimensions and is described in Appendix B.

Loyal Wingman PSO Algorithm in 3-D.

Each particle on each iteration is simulated using the discrete version of Equa-

tion 5.11a, 5.11b, and 5.11c,

x(i+ 1) = V cos γ(i) cosχ(i)∆t+ x(i) (5.12a)

y(i+ 1) = V cos γ(i) sinχ(i)∆t+ y(i) (5.12b)

z(i+ 1) = V sin γ(i)∆t+ z(i). (5.12c)

After reaching the iteration limit of the loyal wingman PSO algorithm identified in

the previous chapter, the result is a vector, length N , of evenly-spaced state elements
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{x, y, z, γ, χ}. The NLP still requires an initial guess in the form of a vector, length

N , for two additional states, {Nz, µ} and controls, {u1, u2}. This can be done by first

algebraically rearranging Equations 5.5d, 5.5e, and 5.5f to

µ(t) = tan−1

[
χ̇(t) cos γ(t)

γ̇(t) + g
V

cos γ(t)

]
(5.13a)

Nz(t) =

[
1

cosµ(t)

][
γ̇(t)V

g
+ cos γ(t)

]
, (5.13b)

then discretizing Equations 5.13a, and 5.13b, and solving with a backward difference

formulation,

µ(i− 1) = tan−1

[
χ(i)−χ(i−1)

∆t
cos γ(i− 1)

γ(i)−γ(i−1)
∆t

+ g
V

cos γ(i− 1)

]
(5.14a)

Nz(i− 1) =

[
1

cosµ(i− 1)

][
γ(i)− γ(i− 1)V

∆tg
+ cos γ(i− 1)

]
, (5.14b)

∀i = N,N − 1, ..., 2. This provides a vector length N − 1 for vertical acceleration, Nz

and roll, µ. Equations 5.5f, and 5.5g are also discretized and solved using a backwards

differencing formulation,

u1(i− 1) =
Nz(i)−Nz(i− 1)

∆t
(5.15a)

u2(i− 1) =
µ(i)− µ(i− 1)

∆t
, (5.15b)

∀i = N−1, N−2, ..., 2 to produce a vector, length N−2 of control inputs, u1 and u2.

A discrete, evenly spaced vector for each state and control is now available to supply

as an initial guess to the NLP.
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Intermediate Target
Lead Planned Path
Lead Flown Path
Loyal Wingman Planned Path
Loyal Wingman Flown Path
Known Threat Location
Propagated Threat

Figure 5.1. Plot Legend for Figures 5.2, 5.3, 5.4, and 5.5

5.4 Results

The six identified scenarios, repeated here for convenience, were run to present

results for each of the three boundary conditions through both an avoidable and

unavoidable threat layout.

1. Fixed time to fixed location with avoidable threats, JFixedT ime

2. Fixed time to fixed location with unavoidable threats, JFixedT ime

3. Minimize time to fixed location with avoidable threats, JMinTime

4. Minimize time to fixed location with unavoidable threats, JMinTime

5. Minimize time to lead rendezvous with avoidable threats, JMinTime

6. Minimize time to lead rendezvous with unavoidable threats, JMinTime

A legend is provided in Figure 5.1 and is used to describe the plots found in the

upcoming results. The starting and intermediate conditions are the red ‘circle’ and

black ‘x’, respectively. The loyal wingman’s path is indicated in blue and the lead’s

path is marked in red. A dashed line indicates a planned path and a solid line

indicates a flown path. Known static threats are indicated as dark shaded regions.
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(a) Avoidable Threats

(b) Unavoidable Threats

Figure 5.2. Fixed Time to Fixed Point
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Referring to Figure 5.2, additional quantities are included in two sub-axes. The first

axis indicates the loyal wingman’s flown path exposure, calculated using the logarithm

of Equation 5.21. Values less than zero indicate increased risk of exposure from being

inside the threat region. The second axis is a plot of the altitude of the loyal wingman.

All altitude plots indicate a starting position of 15km, intermediate target of 2km and

final altitude of 15km. In many cases, it may appear from a 2-D display that loyal

wingman trajectory is going through a threat, when in reality, the trajectory passes

at an altitude higher than the threat’s altitude. Figure 2.1 provides an image of the

3-D contour of the superquadric threat keep-out region.

Figure 5.2 includes two results from a fixed-time, fixed-location boundary con-

dition scenario. Subplot (a) is the trajectory through avoidable threats. The loyal

wingman trajectory as well as the exposure plot indicate that all threats were suc-

cessfully avoided. The trajectory also indicates a minimize control idle flight time in

order to meet the fixed final time requirement. The computation time for the hybrid

method was 25.33 seconds, where the PSO took 18.73 of those seconds. Subplot (b)

is the same boundary condition scenario, but there is an unavoidable threat layout

due to a fortified target. In order to minimize exposure, the optimizer produces a

solution which is the perpendicular bisector of the overlapping threats. A study of the

altitude plot indicates that the optimizer additionally took advantage of the altitude

to minimize exposure by climbing high and diving into the threat exposure region,

where the intermediate target is located. The loyal wingman trajectory then climbs

out of the exposure region and flies a serpentine route to meet the fixed final time

requirement. The computation time for the hybrid method was 21.83 seconds, where

the PSO took 16.58 of those seconds.

1Equation 5.2 may grow without bound, so the logarithm is used to scale results for readability.
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Figure 5.3 includes two results from the minimize time to a fixed location scenario.

Subplot (a) provides the results through an avoidable threat layout. A first glance

(a) Avoidable Threats

(b) Unavoidable Threats

Figure 5.3. Minimize Time to Fixed Point

may lead one to believe the trajectory will be exposed to the threat, but a closer look

at the exposure and altitude sub-axes shows that the trajectory successfully avoids all

84



threats by flying at an altitude higher than the threat’s altitude. A second property

of the resulting trajectory is a direct route to the intermediate and final points in

order to minimize time while avoiding threats. The computation time for the hybrid

method was 42.68 seconds, where the PSO took 33.68 of those seconds. Subplot (b)

is the same minimize time to fixed point boundary condition as above, however this

scenario includes an unavoidable threat layout, due to a fortified target. Just as the

previous scenario, at first glance it appears the trajectory unnecessarily flies through

an exposure region. However, a look at the two sub-axes indicate that the trajectory

flies to a high altitude, then dives through the center of the overlapping threats to

meet the intermediate target condition. The trajectory then quickly climbs out of

the threat exposure region and flies direct to the final position in order to minimize

time. The computation time for the hybrid method was 37.66 seconds, where the

PSO took 32.87 of those seconds. Figure 5.4 provides the results of minimize time

to rendezvous with the manned lead through an avoidable threat layout. In order

to highlight the time-dependent final condition associated with lead rendezvous, the

scenario is presented in three static subplots (a-c). The trajectory successfully avoids

all threats by flying at an altitude above one of the threats. The loyal wingman dives

to meet the intermediate target requirement, then climbs directly toward the manned

lead’s path. The final subplot indicates a trajectory approaching final rendezvous with

the manned lead. The computation time for the hybrid method was 34.83 seconds,

where the PSO took 22.99 of those seconds.

The results of the final scenario, Figure 5.5 are presented in a fashion similar to

the previous scenario, as three static subplots (a-c). The results are similar to the

minimize time to a fixed location scenario, Figure 5.3, in which the trajectory flies

at an altitude higher than the threat, then dives through a perpendicular bisector

towards the intermediate waypoint in order to minimize exposure. There is then a
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(a) Time = 5.25 minutes

(b) Time = 11.25 minutes

(c) Time = 24 minutes

Figure 5.4. Minimum Time to Rendezvous with Lead Through Avoidable Threats
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(a) Time = 5.5 minutes

(b) Time = 12.5 minutes

(c) Time = 24 minutes

Figure 5.5. Minimum Time to Rendezvous with Lead Through Unavoidable Threats
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swift exit from the exposure region, followed by a direct route to rendezvous with the

manned lead. The computation time for the hybrid method was 28.54 seconds, where

the PSO took 18.66 of those seconds. Table 5.4 provides a quick look and comparison

of computation times for each scenario.

Table 5.1. Computation Time for Each Scenario

Scenario PSO Hybrid

Fixed Time to Fixed Point Avoidable Threats 18.73 25.33
Fixed Time to Fixed Point Unavoidable Threats 16.58 21.83
Minimize Time to Fixed Point Avoidable Threats 33.68 42.68
Minimize Time to Fixed Point Unavoidable Threats 32.87 37.66
Minimize Time to Lead Rendezvous Avoidable Threats 22.99 34.83
Minimize Time to Lead Rendezvous Unavoidable Threats 18.66 24.54

5.5 3-D Model Conclusions and Recommendations

In this chapter, the loyal wingman problem formulation was updated for a 3-D

model, adding real-world fidelity to research question one. The loyal wingman PSO

was modified in order to produce seeds in three dimensions as well as to compute

results using a reduced-order dynamics model. For all scenarios, the NLP optimizer

returned feasible solutions meeting the optimality criteria in computation times rang-

ing between 20 and 45 seconds. Overall, the computation time increased from the 2-D

model to the 3-D model due to the increase in state variables for both the PSO and

the NLP. The computation time of the PSO was offset by the use of the reduced-order

model.

As discussed in Chapter IV, additional research should consider continued im-

provement on the PSO algorithm in order to increase the stochastic search region

while at the same time decreasing the overall computation time.
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VI. Dynamic, Non-Deterministic Threats

The purpose of this chapter is to answer research question two by developing the

model and solving the optimal control problem for moving, stochastic threats. This

is done by first establishing assumptions and limitations which drive the development

of a dynamics model and a measurement update model. A Kalman filter is used to

estimate the threat location and its standard deviation; information which is used to

model the threat-keep out region. Finally, a simulation is run which shows a trajectory

that successfully avoids the moving, stochastic threat throughout the mission.

6.1 Assumptions and Limitations

There are numerous aspects of the problem which may be considered moving and

stochastic. It is assumed the loyal wingman itself will have an accurate navigation

system and inner-loop controller to maintain the computed trajectory. It is addition-

ally possible that threats as well as the intermediate targets and rendezvous points

are moving and stochastic. The work herein will focus on the moving, stochastic

threat and suggests the same approach may be applied to intermediate targets and

rendezvous points in future research. For simplicity it is assumed the discrete coordi-

nates of a straight road are known a priori and that the dynamic threat remains on

that road. Variations of this assumption are discussed as topics for future research.

6.2 Dynamic Threat Model

Referring to Figure 6.1, the coordinates along a straight road (xR(j), yR(j), zR(j)),

∀j = 1, 2, ...,M are known a priori and the dynamic threat, driving along the road,

remains on the road. This allows for the position, (xT , yT , zT ), of the moving, stochas-

tic threat to be estimated using a 1-D distance-only model. Prior to any estimation,
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Figure 6.1. Coordinates and Distance Along a Known Road

the azimuth of the road may be computed as

θR = θT = tan−1
[y(M)− y(1)

x(M)− x(1)

]
(6.1)

and the distance along the road, dR(j), is computed as

dR(j) =

j∑
k=1

√
(dx(k)2 + dy(k)2 + dz(k)2), (6.2)

∀j = 1, 2, ...,M − 1, where dx(k) = xR(k + 1) − xR(k), dy(k) = yR(k + 1) − yR(k),

and dz(k) = zR(k + 1)− zR(k), ∀k = 1, 2, ...,M − 1.

Referring to Figure 6.2, the dynamic, non-deterministic distance of the threat

along the road is modeled using a stationary first-order Gauss-Markov acceleration

with zero-mean, white Gaussian noise strength E[w(t)w(t + τa)] = Qδ(τa), where δ
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Figure 6.2. Block Diagram of Threat Dynamics Model

is the Kronecker delta function and τa is the autocorrelation coefficient. In order to

achieve the process noise strength σ2, Q is set to the desired value using 2σ2

τa
[144].

Modified from Stankovic [11] and Smith [8] to meet the assumptions of the loyal

wingman problem, the discrete linear state-space model is shown in Equation 6.3,

~xi+1 = φ~x(i) + w(i) =


1 ∆t (α∆t−1+e−α∆t)

α2

0 1 (1−e−α∆t)
α

0 0 e−α∆t

 ~xi + wi, (6.3)

where α = 1
τa

and Q is discretized to Qd through the vanLoan method [130] and the

three states represent distance, velocity and acceleration of the threat. Because this

is a linear model and Gaussian probability assumptions can be made on the estimate,

a Kalman filter is used, as in Brown [130],

x̂(i+ 1) = φx̂(i) (6.4a)

P (i+ 1) = φP (i)φT +Qd, (6.4b)

∀i = 1, 2, ..., N time-steps to estimate the distance the threat has traveled dT (i) and
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a standard deviation, σT (i). A limitation of the practical application of this model

is that velocity may grow beyond possible speeds of the threat. Future work should

test the model to see if an unbound velocity growth is an issue. If it is an issue, then

a recommended variation of the model is to place a limit on velocity growth and,

due to the nonlinearity imposed by the limit, utilize an EKF as an estimating tool.

All information necessary for modeling the threat and evaluating threat exposure at

any given time is now available and when interpoloated ensures a continuous and

differentiable function: Given a discrete time t(i) in the loyal wingman’s trajectory,

the estimated distance the threat has traveled dT (i) and standard deviation σT (i)

may be evaluated. Once the estimated distance traveled is evaluated, it may then

be used to compute the distance-parameterized position (xT (i), yT (i), zT (i)), of the

threat along the road.

6.3 Modeling Dynamic Threat Avoidance Region

Using superquadrics, the parameters necessary to model the threat region are

the global coordinates of the threat center location, (xT , yT , zT ), the principal axes

of the threat, (ax, ay, az), where ax is a local coordinate aligned with the road, ay

is perpendicular to the road and az is vertical, the shape-forming parameter p and

a rotation matrix M3x3(θT ) used to rotate between the local and global coordinate

frames.

In the global coordinate frame, the estimated threat position (xT (i), yT (i), zT (i)) at

any time t(i) are determined consistent with the discussion in the previous subsection.

There are two parameters necessary for modeling the size and shape of the threat

keep-out region. The size of a deterministic, static threat is established using the

principal axes lengths, ax, ay, az. The size of the stochastic, moving threat is adjusted

by extending length along the axis which the threat is traveling by the standard
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deviation, σT (i), such that the x-axis length is

ax(i) = ax(0) + σT (i), (6.5)

∀i = 1, 2, ..., N . The shape of a deterministic static threat is formed based on an

initial shaping parameter, p(0) = 2, to form an ellipsoid. The shaping parameter

varies for stochastic, moving threats by

p(i) = p(0) +
σT (i)

ax(0)
, (6.6)

∀i = 1, 2, ..., N to form a cylindrical-like shape whose long axis is extended along the

road by Equation 6.5. Additional details on this choice to model the threat keep-out

region of moving, stochastic threats is discussed in Appendix D.

6.3.1 Computing Threat Exposure.

The purpose of establishing a dynamic threat model is to evaluate discrete points

along the loyal wingman trajectory to evaluate threat exposure. A homogeneous

transformation matrix may be calculated at discrete time-steps t(i), ∀i = 1, 2, ..., N ,

R4x4(i) =

M3x3 xT3x1(i)

01x3 1

 , (6.7)

where

xT (i) =


xT (i)

yT (i)

zT (i)

 , (6.8)
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to transform the loyal wingman’s global coordinates to a threat-centric local coordi-

nate frame by 

xeval(i)

yeval(i)

zeval(i)

∼


= R4x4(i)



xW (i)

yW (i)

zW (i)

1


, (6.9)

through which the exposure at each discrete point in the loyal wingman’s trajectory

may be evaluated using Equation 6.10,

F (i) =

(
xeval(i)

ax(i)

)p(i)
+

(
yeval(i)

ay

)2

+

(
zeval(i)

az

)2

. (6.10)

The special form of Equation 6.10 represents a ‘growing’ threat region along the

x-axis.

6.3.2 Measurement Update Model.

It is expected that when the optimal path is computed, the initial condition of

the non-deterministic, dynamic threats will be known and the propagate portion of

the Kalman filter will be run. The loyal wingman will compute the optimal path to

complete the mission while avoiding or minimizing exposure to the threats throughout

the mission, recognizing that the threat keep-out region changes at each time step.

After the original path is planned, the loyal wingman begins its flight along the

computed path, however an assumed on-board sensor provides updated Cartesian

coordinates of the threat location with a known margin of error at each discrete

time-step. The distance along the road associated with the sensor’s measurement is

determined by table lookup from the road coordinates known a priori. The measure-

ment model is then

z(i) = h(x(i)) + ν(i) (6.11)
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where ν(i) is zero-mean white Gaussian noise with strength E[ν(t)ν(t)] = Rδ, where

R indicates the uncertainty associated with the sensor. With the values H = h = 1

and R = r = σ2
e , the Kalman filter measurement update equations are calculated in

combination with Equation 6.4 found in Brown [130],

K(i) = P−(i)HT
[
HP−(i)HT +R

]−1
(6.12a)

x̂(i) = x̂−(i) +K(i)
[
z(i)−Hx̂−(i)

]
(6.12b)

P (i) =
[
I −K(i)H

]
P−(i). (6.12c)

Measurement updates may be provided at an identified desired rate which, when

used with the Kalman filter, will provide a better estimate of the distance a threat

may have traveled. As measurement update rates increase, the estimation accuracy

improves.

6.4 Results

Two scenarios are simulated whose results demonstrate the tools discussed in this

chapter. Figures 6.3 and 6.4 show the results of two scenarios, 1.) minimize time to

fixed location, and 2.) minimize time to rendezvous with manned lead. Both scenarios

include a moving, dynamic threat that must be avoided. Plot properties are the same

as discussed in Chapter V. The starting, intermediate and final condition points are

the red ‘circle’, black ‘x’, and blue ‘star’, respectively. The loyal wingman’s path is

indicated in blue and the lead path in the appropriate scenario is marked in red. A

dashed line indicates a planned path and a solid line indicates a flown path. Known

static threats are indicated as dark shaded regions. In subsequent subplots, the

red shaded region indicates the propagated threat keep-out region, which changes in

both size and shape, according to Equations 6.5 and 6.6 at each time-step. Referring
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to Figure 5.2, additional plot properties include two sub-axes. The first inset plot

indicates the loyal wingman’s flown path exposure, calculated using the logarithm

of Equation 5.21. Values less than zero indicate increased risk of exposure. The

second inset of subplots indicates the altitude of the loyal wingman. All altitude plots

indicate a starting position of 15km, intermediate waypoint of 2km and final altitude

of 15km, matching the specified constraints. In many cases, it may appear from a 2-D

display that the loyal wingman trajectory is going through a threat, when in reality,

the trajectory passes at an altitude higher than the threat altitude (as shown in the

exposure inset subplot remaining greater than zero). Figure 2.1 provides an image

of the 3-D contour of the superquadric threat keep-out region. The DOC method

(a) Trajectory Based on Propagated Threat (b) Trajectory Avoiding Propagated Threat

(c) Point of Closest Approach to Propagated
Threat

(d) End of Mission

Figure 6.3. Trajectory Simulation to Avoid Moving, Stochastic Threat with Fixed
Point Rendezvous

used 40 nodes in each of two phases, for a total of 80 nodes. Figure 6.3 represents

1Equation 5.2 may grow without bound, so the logarithm is used to scale results for readability.
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the minimize time to fixed location scenario. Subplot (a) indicates the trajectory

prior to beginning the simulation. The computed trajectory is based on avoiding the

threat throughout the mission. Subplot (b) provides a view of the threat situation

after the loyal wingman has flown approximately half of the mission. As can be seen,

the propagated threat keep-out region is much larger than the threat keep-out region

indicated by the measurement update at that time-step. This subplot also reveals

that a dynamic re-plan of the trajectory may improve the current planned route,

which is a motivation for the dynamic re-plan research discussion in the next chapter.

Subplot (c) displays the point of closest approach to the propagated threat region. In

the final subplot (d), the loyal wingman has surpassed the threat and rendezvoused

at the specified fixed final position in minimum time. The computation time for this

scenario included 25.6 seconds for the PSO and 6.9 seconds for DOC method, for a

total of 32.5 seconds. Figure 6.4 represents minimize time to rendezvous with the

lead. Here, the trajectory of the manned lead is known, and the loyal wingman must

overfly the target, avoid the threat and rendezvous (match position and heading)

in minimum time. The four subplots are similar to the discussion above only the

final boundary condition is changed to reflect rendezvous with the manned lead in

minimum time. The computation time for this scenario included 21.9 seconds for the

PSO and 6.1 seconds for DOC method, for a total of 28 seconds.

As a final point of discussion for this section, this work uses the GPOPS II Matlab-

based software to transcribe the optimal control problem into an NLP, which includes

establishing a first and second derivative matrix. Patterson and Rao [145] discuss the

creation of these matrices and describe a method to exploit their sparseness for im-

proved computation time. The method is provided as an option in the GPOPS II

software, which worked well for a static threat environment. However, there were

challenges with convergence when using this option in a dynamic threat environment.
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(a) Trajectory Based on Propagated Threat (b) Trajectory Avoiding Propagated Threat

(c) Point of Closest Approach to Propagated
Threat

(d) End of Mission

Figure 6.4. Trajectory Simulation to Avoid Moving, Stochastic Threat with Lead Ren-
dezvous
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A review of Patterson and Rao [146] may provide insight on the cause of this chal-

lenge. The sparsity exploitation tool was therefore not utilized in the loyal wingman

optimal control problem, resulting in no noticeable difference in computation time in

a static threat environment, while achieving feasible solutions in the dynamic threat

environment. Additional information on the sparsity of matrices can be found in Pat-

terson and Rao [145] and the method used by the GPOPS II software for exploiting

the sparsity is described in Patterson and Rao [146].

6.5 Non-Deterministic Threat Conclusions and Recommendations

This chapter answered research question two by developing a dynamic and mea-

surement update model as well as the use of a Kalman filter to estimate the location of

a moving, stochastic threat. The keep-out region of the stochastic threat is modeled

using two parameters. The first is a time-dependent superquadric shaping parameter

to shape the threat keep-out region as a cylinder. The second defines the size of the

cylindrical shape by extending its long axis along the axis of the road according to the

estimated threat speed. A homogeneous transformation matrix is used to transform

the loyal wingman’s current location in global coordinates to a local coordinate frame

for evaluating the trajectory exposure. A simulation was run and results plotted which

show the growth of the threat keep-out region as well as the generated path which

successfully avoids the expanded threat keep-out region throughout the mission. The

next chapter will introduce a time to re-plan formulation that will re-compute the

trajectory during mission flight, based on updated threat information.

The objective was to model the moving, stochastic threat keep-out region and

provide results showing the hybrid methodology can provide a rapid, feasible solution.

In order to do so a number of simplifying assumptions were made. Future research

should consider variations to the assumptions of this chapter. First, the road may
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be considered non-straight, suggesting a threat region may be modeled using Smith’s

SLIMVEE algorithm to create non-straight threat avoidance corridors [8]. Second,

the linear 1-D model may be extended to two or three dimensions and as long as the

model is linear and Gaussian probability assumptions are made, the Kalman filter

may be utilized to estimate location. In addition to increasing the dimension of the

threat stochastics model, the current model allows for a velocity estimate that may

grow beyond possible speeds of the threat. Future work should test the impact of the

current velocity model and test the use of a nonlinear limit-imposed velocity model.

Because dynamic threat estimation is computed outside of the NLP, changes in the

model have minor impacts on the gradient-based NLP solver. Changes in the dynamic

model can be addressed by using other available and proven estimating tools such as

the extended Kalman, unscented Kalman and particle filter.
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VII. Dynamic Re-Plan

The purpose of this chapter is to answer research question three by determining if

and/or when a dynamic re-plan of the loyal wingman trajectory is necessary. There

are two scenarios that will be considered. The first scenario assumes an original

trajectory has been computed, and the mission is being flown, when an intelligence

source provides updated information indicating a change in the mission environment

such as a ‘pop-up’ threat or a change in rendezvous criteria. A trajectory re-planning

algorithm must determine whether this change in the mission environment warrants a

re-plan and generally will result in an immediate re-plan of the loyal wingman trajec-

tory to meet the updated mission requirements. The second scenario for trajectory

re-planning considers the presence of a moving, stochastic threat. For such a sce-

nario, the work herein develops an algorithm to determine if a re-plan is necessary,

and subsequently, a time to re-plan, tr, based on a critical distance metric, ρ, that

uses the assumed speed and stochastics of the threat, as well as relative distance and

angle of approach to the threat.

7.1 Mission Flow and Changes in Mission Environment

The overall mission re-planning flowchart is shown in Figure 7.1. The left side

represents computation of the loyal wingman trajectory, and in the presence of mov-

ing, stochastic threats, recommends a time to re-plan the loyal wingman trajectory,

tR. The right side represents a mission flight, which steps through the trajectory at

discrete time-steps, evaluating whether a mission re-plan is necessary based on ‘pop-

up’ threats or mission changes. Each step in the flowchart is numbered to facilitate

discussion.

The algorithm is initialized (box 2) with parameters passed from the manned lead
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Figure 7.1. Dynamic Re-Planning Flowchart
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or other intelligence sources. With parameters initialized, bounds are established and

if there is a dynamic threat, the distance traveled by the threat dT and a standard

deviation σT are estimated through a Kalman filter propagation (box 3), as discussed

in Chapter VI. This information is passed into a Particle Swarm Optimization (PSO)

(box 4) algorithm [147] and the optimal control problem is transcribed into a nonlin-

ear program (NLP). The output from the PSO is provided as an initial guess into the

NLP solver and an initial outer-loop trajectory is computed (box 5). If a dynamic

threat is present (box 6), then an algorithm (boxes 9 and 10), described in the next

section, determines if and subsequently when (tR, time to re-plan) the loyal wing-

man’s trajectory should be re-planned. The mission flow then moves from trajectory

computation on the left side of Figure 7.1 to mission flight on the right side.

At each discrete time-step, there is a check to see if there is a change in the mission

environment. If a new threat has ‘popped-up’ (box 12), then the loyal wingman’s dis-

cretized trajectory from the current time forward is evaluated, via Equations 6.5, 6.6,

and 6.10, to determine if the new threat will cause exposure. If at any discrete point

in the trajectory, the value of the inside-outside function, F, is less than one, indicat-

ing a point in the interior of the threat region, then the loyal wingman risks exposure

and the current path should be re-planned (box 13). If any F is greater than one, then

no trajectory update is needed. In addition to pop-up threats, there is a check to see

if there is a change in the mission requirements (box 16), such as a new intermediate

target or new final rendezvous, as well as a check to see if the current time t(i) has

reached the previously determined time to re-plan tr (box 17).

If any of the checks (boxes 13, 16, 17) indicate that a re-plan of the loyal wingman

trajectory is necessary, a sensor measurement update on the current location of the

threat is taken (box 14), new initial conditions are established (box 15), and the pro-

cess flows back to the left side of Figure 7.1 (box 3). The entire process of computing
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and flying the trajectory is repeated until the mission (or simulation) is complete.

7.2 Moving, Non-Deterministic Threats: Time to Re-Plan, tr

This section describes Figure 7.1, boxes 9 and 10 to determine if and/or when

a time to re-plan, tr, should occur in the presence of a moving, non-deterministic

threat.

Determine IF a Re-Plan is Necessary.

Just because there is a threat present (stationary or moving), does not mean the

computed trajectory is impacted by the presence of the threat. As an example, if the

loyal wingman’s mission is to the east and the threat is in the west (and in the case

of a dynamic threat, moving west), then the presence of a threat would not impact

the computed trajectory. Therefore, the algorithm must first determine whether the

originally computed trajectory is impacted by the presence of the threat. This is

done by evaluating Equations 6.5, 6.6, and 6.10 at all time-steps of the loyal wing-

man’s trajectory. If the threat exposure at any discrete point is below an established

threshold F (i) < F ∗, evaluated ∀i = 1, 2, ..., N then the loyal wingman’s trajectory

is in the vicinity of the threat. As described in Chapter III, depending on the user

choice of the stiffness value s, it is likely the optimizer will converge on a trajectory

in which F > 1.

Determining a Time to Re-Plan, tR.

After determining that the computed loyal wingman trajectory was influenced by

the presence of a threat, a time to re-plan must be computed. If a loyal wingman

trajectory re-plan occurs too early, then little has changed in the threat scenario and

the newly computed trajectory will have changed an insignificant amount from the
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1

Figure 7.2. Angle of Approach (α) to Threat Vector Normal

previous trajectory. However, if the suggested time to re-plan is much later it could

place the loyal wingman very close to or past the threat, in which case there is no

longer a need to update the trajectory. It is therefore imperative to determine a time

to re-plan that considers the speed and stochastics of the moving threat as well as

the relative distance and angle of approach of the loyal wingman to the threat.

Referring to Figure 7.2, this work develops the critical distance metric, ρ (defined

in Equation 7.4), suggesting a re-plan should occur when the loyal wingman’s relative

distance to the threat, H(i),

H(i) = ‖xW (i)− xT (i)‖2, (7.1)

is less than ρ. The time to re-plan, tr, can then be determined by

tr = imin∆t (7.2)
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where

imin = min{i : H(i) ≤ ρ(i)} (7.3)

evaluated ∀i = 1, 2, ..., N . The critical distance metric, ρ, is developed using Equa-

tion 6.5, which models the size of the threat keep-out region at each time-step by

extending the axis along the road by the standard deviation at that time-step. Us-

ing Equation 6.5 alone, the time to re-plan would occur when the loyal wingman’s

trajectory coincides with the threat keep-out region in a direct, ‘head-on’ approach.

Because the loyal wingman’s trajectory was calculated based on minimizing expo-

sure, it is unlikely this distance will be achieved in a direct approach. Therefore, the

minimum length of the principal axis of the threat region, Equation 6.5, is extended

by a scaled standard deviation, ξ(i)σ(i) leading to the critical distance metric, ρ(i),

defined as:

ρ(i) = ax(0) + σT (i)[1 + ξ(i)], (7.4)

where ξ(i) represents a speed, distance, and angle of approach ratio, defined as:

ξ(i) =

[
‖xT (i)− xT (0)‖2

H(i)

]∣∣∣ cosα(i))
∣∣∣. (7.5)

There are three factors used to develop ξ(i) in Equation 7.5, which are now dis-

cussed. ‖xT (i) − xT (0)‖2 represents the distance the threat has traveled from the

start of the mission or the last re-plan. A fast threat will trend ξ to a higher value,

whereas a slow threat will tend to keep ξ small, which has a direct relationship to the

increase or decrease of ρ in Equation 7.4.

The second factor in Equation 7.5 is the relative distance from the loyal wingman

to the estimated threat position, H, defined in Equation 7.1. Using an inverse rela-

tionship, if the relative distance decreases, then the likelihood of triggering a re-plan

increases. If, on the other hand, H increases, the likelihood of triggering a re-plan
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decreases.

The third factor in Equation 7.5 is the relative angle of approach, calculated as

the dot product of the velocity vectors between the wingman and the center of the

threat region,

cosα(i) =
~W (i)T ~T (i)

|| ~W (i)||||~T (i)||
. (7.6)

Equation 7.6 produces values on the interval [−1, 1]. A value of either −1 or 1

indicates a ‘head-on’ approach. It does not, however, indicate whether the vehicles are

traveling toward each other (decreasing H) or away from each other (increasing H).

Therefore Equation 7.5 takes the absolute value such that the interval is [0, 1]. With

this formulation, a ‘head-on’ approach scales ξ to 1 and a perpendicular approach

scales ξ to 0.

It is assumed the speed of the loyal wingman is much greater than the speed of the

threat. As a result, after the loyal wingman has overcome the threat, the distance,

H, increases at a rate fast enough that Equation 7.2 is not satisfied and no re-plan is

triggered.

Appendix E provides a simulation that demonstrates the effects relative distance

(Equation 7.1), the critical distance metric (Equation 7.4), relative speed and distance

ratio (Equation 7.5), and angle of approach (Equation 7.6) have on determining a time

to re-plan.

7.3 Results

A scenario was established which included using the hybrid optimization tech-

nique to solve the optimal control problem as well as using the techniques discussed

throughout this work to dynamically re-plan the optimal control problem when a non-

deterministic, moving threat ‘pops-up’. Referring to Figure 7.3, the plotting proper-

ties are identical to the description of Chapter VI. Subplot (a) provides an initially
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(a) T=2.25: Original Trajectory (b) T=3: Pop-up Dynamic Threat

(c) Future, T=17: Trajectory Exposed (d) Future T=18, Re-plan 1 at PCA

(e) T=14: Time to Update (f) T=17: Re-plan 2 at PCA

(g) T=18.5: Pop-up Static Threat, No Re-plan (h) T=26: Approach Lead Rendezvous

Figure 7.3. Demonstration of Re-Plan in Changing Mission Environment
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computed trajectory for the loyal wingman to break from formation, accomplish the

intermediate target and rendezvous with the manned lead. In subplot (b), a dynamic

threat ‘pops-up’ and although it may appear the trajectory will not be exposed, once

the threat keep-out region has been propagated, a future look in subplot (c) reveals,

there is a risk of exposure. Therefore, a re-plan must occur. A new trajectory is

calculated and subplot (d) provides a future look of the newly computed trajectory,

revealing the risk of exposure is low at the point of closest approach (PCA) to the

propagated threat. When the re-plan occurs at T = 3, the algorithm additionally

computes a time to re-plan, tr = 14. The loyal wingman flies until T = tr, subplot

(e), and a second re-plan occurs. The new trajectory is shown in subplot (f) at the

point of closest approach to the propagated threat. In subplot (g), a static threat

‘pops-up’, but because it does not pose a threat to the loyal wingman’s trajectory, no

re-plan occurs. Finally, in subplot (h), the loyal wingman is in its final approach for

rendezvous with the manned lead.

7.4 Dynamic Re-Plan Conclusions

A mission re-planning flowchart was provided in Figure 7.1 and fully described,

which includes a formulation to determine if a re-plan is necessary as well as an ap-

propriate time to update the loyal wingman’s trajectory when the mission scenario

includes moving, non-deterministic threats. The time to re-plan is computed after

the loyal wingman’s trajectory has been established, prior to flight, and is deter-

mined by the critical distance metric developed herein, which used assumed threat

speed and stochastics as well as the loyal wingman’s relative distance and angle of

approach to the threat. The work is demonstrated through simulation and shows a

successful minimum time rendezvous with the manned lead. The simulation addi-

tionally demonstrates the ability to adjust the original trajectory when a dynamic
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threat pops-up, as well as update the trajectory according to the critical distance

metric. A natural extension of this work may consider re-planning in the midst of

multiple dynamic threats as well as additional intermediate targets. Additionally,

the time to re-plan, tr, is computed with no consideration to computation time. A

more accurate representation of the computation time will be known after flight test

hardware has been determined and the system flown. Future work should reduce the

time to re-plan, tr, by the estimated computation time of the algorithm.
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VIII. Conclusions and Recommendations

This work sought to contribute to the scientific and engineering community by

developing a methodology and set of research questions that, when answered, would

aid in developing the DoD concept of MUM-T, a subset of which is the loyal wingman.

A specific definition and candidate scenarios for the loyal wingman were established to

appropriately scope the research. It was suggested that optimal control and stochastic

estimation techniques could be used to solve the loyal wingman problem as defined

herein. A methodology was proposed and a set of research questions generated,

which, when answered, successfully demonstrated the methodology and provided a

contribution to the body of knowledge. The research also led to key findings and

recommendations highlighted in this chapter.

8.1 Research Questions

1. The optimal control problem was formulated and solved for a static

threat environment. The optimal control problem was formulated using both

2-D and 3-D models. The problem was divided into two phases and solved us-

ing direct orthogonal collocation. Multiple boundary condition scenarios were

established, including fixed time to fixed location, minimize time to fixed lo-

cation, and minimize time to rendezvous with time-dependent manned lead’s

path. Threats were modeled as superquadrics due to the low number of parame-

ters necessary for generating various sizes and shapes which aids in maintaining

a low communication bandwidth as well as computational efficiency. In order

to account for both avoidable and unavoidable (target within threat region)

threat scenarios, the threats were included in the cost functional to minimize

time of exposure using a modified inside-outside product function in addition to
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time and control. To ameliorate the issue of convergence to local minimums, a

hybrid optimal control methodology was demonstrated which used a heuristic-

based optimization technique to generate an initial guess. The guess was then

supplied to the direct orthogonal collocation (DOC)-transcribed gradient-based

nonlinear programing (NLP) solver to provide a rapid, accurate solution.

2. The optimal control problem was formulated and solved for a moving,

stochastic threat environment. A 1-D linear dynamic and measurement

update model was developed to mimic a threat traveling along a straight road

whose location and standard deviation were estimated using a Kalman filter and

modeled using a superquadric. The size and shape of the threat region is formed

based on the time-dependent standard deviation. The size is varied by extending

the axis along which the threat is traveling by the standard deviation and

the shape is varied from ellipsoidal to cylindrical by varying the superquadric

shaping parameter by the standard deviation as well. Using these models, the

optimal control problem was solved to ensure the loyal wingman trajectory

minimized threat exposure throughout the mission when the location of the

threat at all time-steps is not known.

3. A method was developed for determining if and when the trajec-

tory should be re-planned in a changing mission or dynamic threat

environment. A mission-flow diagram was generated which includes 1.) gen-

eration of flight trajectory using methods resulting from research questions one

and two, and 2.) mission flight (or simulation). After a trajectory is computed,

if a dynamic threat is present and its presence impacts the computed trajectory,

a time to re-plan is generated based on the critical distance metric which uses

threat speed, direction, and stochastics as well as the loyal wingman’s relative

distance and angle of approach to the threat. After the trajectory is computed,
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the mission is flown. Changes in the mission environment, such as pop-up

threats are evaluated for exposure and if necessary the trajectory is re-planned

immediately. When the mission flight time coincides with the time to re-plan,

a measurement update is taken, initial conditions are re-established and a new

trajectory is computed. The cycle of computing a trajectory and then flying

the trajectory is repeated until the mission is complete.

Collectively, this work demonstrated a methodology for solving the loyal wing-

man optimal control problem as defined herein in a near real-time environment. This

optimal control methodology may also be used as a comparison to evaluate the per-

formance of other methods.

8.2 Contributions

In the course of answering the research questions, several specific research contri-

butions have been identified.

1. A method was developed to formulate and solve the optimal control problem

for multiple scenarios, including avoidable and unavoidable threats as well as

multiple boundary condition scenarios, including fixed time to fixed location,

minimize time to fixed location, and minimize time to rendezvous with the

manned lead.

2. A method was developed to model threats which is useful for both avoidable

and unavoidable threat scenarios. Threats were modeled and formulated in the

cost function using the modified inside-outside product function necessary for

use in the gradient-based nonlinear programming solver.

3. A method was developed for estimating the location of a moving, stochastic

threat. A 1-D model was established and estimation was then used to model
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the changing size and shape of the threat keep-out region at all time-steps.

4. A method was developed for determining a time to re-plan formulation in the

presence of a moving, stochastic threat. The time to re-plan is generated based

on the critical distance metric which uses threat velocity and stochastics as well

as the loyal wingman’s relative distance and angle of approach to the threat.

5. A hybrid optimal control methodology was developed and demonstrated to

provide rapid and accurate optimal solutions for the loyal wingman application

which may be applied to other applications as well.

8.3 Future Research Recommendations

In addition to identifying contributions, the research uncovered a number of key

findings relevant for future research.

8.3.1 Improve the Particle Swarm Optimization Algorithm.

1. The research herein showed that the hybrid methodology could provide a rapid,

accurate solution. Given that the PSO has numerous ‘knobs’ and many varia-

tions suggested in literature, future research should focus solely on developing

a PSO algorithm that simultaneously increases the search region and converges

toward a global region in a more timely fashion. Determining a good initial

guess for a gradient-based solver continues to be an elusive challenge for the

optimal control community and the PSO could be an answer to that challenge.

2. The work herein defined the PSO particles as a vector of discrete control inputs.

Future work should consider defining the PSO particles differently. Many works

in literature define the PSO particles as the coefficients to a polynomial. If this

were done in the loyal wingman PSO, a correct polynomial basis set that aligned
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itself with the GPOPS II DOC transcription could create synergy between the

two methods that may aid in a more rapid solution.

8.3.2 Extend the Moving, Stochastic Threat Model.

1. The work herein established a simplifying assumption that the road was straight.

Future research should consider a road that curves. The threat modeling in this

case would remain 1-D, but consideration would be given to modeling a threat

keep-out regions with a curved primary axis. This can be done by parameteriz-

ing the trajectory and extending the shape based on the tangent to the curve or

through the use of Smith’s SLIMVEE algorithm [8] to establish no-fly corridors.

2. The assumption of a single dimension may be extended to 2-D or 3-D. The

threat model would simply extend additional superquadric axes by the standard

deviation in the appropriate dimension. As long as the dynamic model remains

linear, the Kalman filter may be used. If the dynamic, stochastic model becomes

nonlinear or Gaussian assumptions cannot be made, there are other estimation

filters which may be utilized.

8.3.3 Improve Robustness.

1. Specific threat and boundary condition scenarios were chosen and demonstrated

in order to highlight the results of the methodology for avoiding threat, minimiz-

ing exposure, avoiding propagated moving threats, and re-planning to improve

optimization objectives. Although the method presented here is prescriptive

and was designed to work in multiple threat and boundary condition layouts, it

has not been fully tested. Future work should test the robustness of the method

to random placement of threat and boundary condition scenarios.

2. The work herein developed a methodology for planning and dynamically re-
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planning a trajectory. Many assumptions were made on other technologies

which provide inputs to and accept outputs from the loyal wingman route-

planning algorithm. The algorithm used for the research herein which provided a

method for solving the optimal control problem should be re-built, hosted on an

appropriate system interface, and flown in a system flight test. A more accurate

representation of the computation time will be known after flight test hardware

has been determined and the system flown. A flight test will additionally allow

for evaluation of the performance of the method chosen for this work and allow

for identification of areas for additional research.

8.4 Summary

The DoD is moving forward to produce appropriate autonomy in systems that

work effectively and synergistically with manned counterparts. This research has

demonstrated a methodology that provides optimal, rapid solutions to the loyal wing-

man optimal control problem as defined herein with an assumed level of autonomy.

Regardless of which method is ultimately chosen, the methodology herein is an op-

timal solution that can aid in evaluating other dynamic route-planning algorithms.

The body of work presented here is a foundation upon which to continue integrating

the manned-unmanned team.
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Appendix A. 2D Deterministic Method to Produce Seeds

For an optimal control problem, a particle of a PSO algorithm is a vector of

discrete-time control inputs that produce an optimal mission path with respect to the

identified cost function. The loyal wingman PSO was seeded using a deterministic

algorithm with a goal of meeting the following criteria: meet target and endpoint

constraints, represent a broad range of possible trajectories to aid the PSO’s stochastic

search, and achievable in a computationally efficient manner.

The first step is to produce a set of possible two-dimensional curves using a spline

interpolation. Initial, intermediate target, and final conditions, denoted p1, p2, and

p3, are criteria established in the problem scenarios and provide a means to ensure

the spline fit data meets constraint criteria. For purposes of this discussion, consider

phase 1 between p1 and p2, and phase 2 as between p2 and p3. In order to allow for

a broad range of trajectories, intermediate points are chosen in each of the phases.

The Euclidean distance connecting p1 to p2 and p2 and p3 is computed as d1 and d2,

respectively. Beginning with phase 1, a perpendicular bisector L1, the length of d1

is constructed at the midpoint between p1 and p2. Points are now chosen on this

perpendicular bisector to add curvature to the splines. If for example, α points are

chosen on L1, then there are α curves which can now connect p1 to p2. Using the

same method, sample points are also chosen in phase 2, such that if β points are

chosen there are β curves which can now connect p2 to p3. When the two phases

are combined there are now M = α ∗ β possible splines that can be constructed that

meet initial, intermediate target, and endpoint location criteria. The constructed

points can be seen visually in Figure A.1. After the points through which a spline

interpolation is desired have been identified, curves are parameterized using Eugene

Lee’s centripetal scheme, [148] through a convenient MATLAB function cscvn, which

is the accumulated square root of the chord length. The MATLAB function spline can
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Figure A.1. Data Points Used to Fit Spline

then be used which allows for specification of derivative conditions at the boundaries.

In the case of the loyal wingman, the derivative boundary condition is heading, ψ,

computed as dy
dx

. Any initial heading can be supplied in the construction of the spline

by specifying the initial condition boundary as y=sin(ψ), x = cos(ψ). Specification

of the boundary condition is very important in the loyal wingman PSO because the

algorithm will simulate the controls with an identified initial heading. If the spline

fit does not return an initial dy
dx

equivalent to the initial condition specified by the

loyal wingman problem, then the simulation will not produce a trajectory that meets

constraints. Choosing α = β = 7 and ψ1 = π
2
, ψfc = 0, the returned 49 spline

fit curves can be seen in Figure A.2. No consideration is given to avoiding threats

when producing these trajectories. This allows for the deterministic production of

seeds as a general algorithm that can be used as the loyal wingman optimal control
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problem scenarios are varied. At this point, a specified set of points (in this case 100
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Figure A.2. 49 Trajectories Representing 49 Control Vector ‘Particles’

evenly spaced points for each spline) have been identified through a parameterized

spline interpolation, but the goal is to achieve a set of controls as particles in the

PSO algorithm. This is achieved by using the data output from the spline function

to derive heading and heading rate. Before this can be done, the data must be re-

parameterized to time. The arc length between each data point is computed using

Equation A.1

arc(i) =

√
1 +

(
y(i+ 1)− y(i)

x(i+ 1)− x(i)

)2(
x(i+ 1)− x(i)

)
(A.1)

then divided by the loyal wingman’s constant velocity to achieve a time parameter-

ization of the data points. The data points are then re-discretized using a spline

interpolation to evenly spaced time units. There are now 49 trajectories composed of

evenly spaced data points parameterized to time. From this, heading can be derived
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at each time step i using

ψ(i) = tan−1 y(i+ 1)− y(i)

x(i+ 1)− x(i)
, (A.2)

and finally the heading rate control can be derived at each time step through the

discrete equation of motion

u(i) =
ψ(i+ 1)− ψ(i)

∆t
. (A.3)

The desired particles, heading rate control vectors, have now been achieved. However,

the time step for each trajectory is slightly different and in order to fit into the loyal

wingman’s PSO architecture, the time steps must be equivalent for all trajectories.

A common vector length, chosen based on the longest trajectory and even time step

is chosen to which all control vectors are re-fit. In cases where the common vector

length is beyond what is needed to simulate the trajectory, the remaining elements

are filled with 0. This allows the length of the trajectory to grow and shrink to the

tune of the PSO algorithm’s iterations.
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Appendix B. 3D Deterministic Method to Produce Seeds

Appendix A described a deterministic method for producing seeds for a two-

dimensional model. The purpose of this index is to update a portion of Appendix A

for the production of seeds in a three-dimensional model.

The first step is to produce a set of possible three-dimensional trajectories with

Euclidean state space (x, y, z) data alone, using a spline interpolation. Refering to

Figure A.1, initial, intermediate target, and final conditions, denoted p1, p2, and p3,

respectively, are criteria established in the problem scenarios and provide a means to

ensure the spline fit data meets constraint criteria. For purposes of this discussion,

consider phase 1 between p1 and p2, and phase 2 as between p2 and p3. In order to

allow for a broad range of trajectories, intermediate points are chosen in each of the

phases. Considering only phase one, the Euclidean distance connecting p1 to p2 is

computed as,

d1 =
√

(dx2 + dy2 + dz2), (B.1)

where dx = x1 − x0, dy = y1 − y0, and dz = z1 − z0.

The elevation and azimuth in global coordinates are computed as

ψ = tan−1 dy

dx
(B.2a)

γ = sin−1 dz

d1

(B.2b)

In order to construct a set of candidate points, consider a set of equally dis-

tributed distances, ~r1xL ∈ [0, d1], representing the radii of various circles, and ~ψ1xM ,

evenly distributed ∈ [0, 2π], representing an angular position on each of the circles.

Algorithm 1 may then be used to construct a set of candidate phase one intermediate

points through which a set of candidate splines may be fit.

Figure B.1 indicates the production of intermediate spline points. The top subplot
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Figure B.1. Points Generated in 3D for Spline Interpolation
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Algorithm 1 Algorithm to Produce Candidate Points Through Which to Fit a Spline

1: for i = 1 : L do
2: for j = 1 : M do
3: for k = 1 : L ∗M do
4: x(k) = x0 + r(i) · cos(−γ + β(j)) · cos(−ψ + π

2
)

5: y(k) = y0 + r(i) · cos(−γ + β(j)) · sin(−ψ + π
2
)

6: z(k) = z0 + r(i) · sin(−γ + β(j))
7: end for
8: end for
9: end for

is a ‘top-view’ orientation, intended to highlight the radial distance for generating

points. The bottom subplot is orientated in a view through a soda straw that connects

p1 and p2 to indicate angular positions in concentric circles.

Finally, the derivative boundary conditions are used in the spline fit.


dx0

dy0

dz0

 = V


cos(γ0 · cos(ψ0))

sin(γ0 · cos(ψ0))

sin(γ0)

 (B.3)

Once the points are created, the process continues as was indicated in Appendix A.
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Appendix C. Experiment to Choose PSO Parameters

The PSO algorithm, Equation C.1, contains various parameters such as social

weightings, b1, b2 [97] and a constriction factor, K [100],

~v(k + 1) = K[~v(k) + b1~r1 ⊗ (~u(k)− ~L) + b2~r2 ⊗ (~u(k)− ~G)] (C.1a)

~u(k + 1) = ~u(k) + ~v(k + 1). (C.1b)

Chapter IV highlighted convergence tendencies associated with the choice of param-

eters. An experiment was performed to determine the most appropriate value for the

constriction factor as well as the choice of b1 and b2 for use in the loyal wingman

optimal control problem.

The value φ was varied from 4.1 to 7 along with the associated constriction factor

as determined from Equation 4.2. The PSO algorithm was run 10 times for each

value of φ and the average cost, calculated using Gaussian quadrature, and time to

converge were recorded. The results can be seen in Table C.1. The best cost in this

experiment was with a φ of 4.2 and constriction factor of .6417. φ is a sum of the two

Table C.1. Average Cost of Various Constriction Factors

φ K Cost Iterations

7.0 .2087 2.4670 102
6.2 .2534 2.4587 124
5.8 .2845 2.4371 140
5.0 .3820 2.4130 180
4.2 .6417 2.3194 452
4.1 .7298 2.3402 454

social weighting factors so a separate experiment was run, where φ and K are fixed

at 4.2 and .6417, respectively, but the individual social components, b1 and b2, are

varied. Each scenario is run 10 times and the average cost is calculated and captured

in Table C.2. The best cost was found when b1 was at 1 or less. This result is because
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a high local weighting causes the search to stay in the local area, never moving its

search toward the global best. When global best, b2 is weighted high, the particles

search outside their local area in a movement toward the globally best particle.

Table C.2. Average Cost of Various Social Weighting Factors

b1 b2 Cost

4.0 0.2 2.4114
3.5 0.7 2.3468
3.0 1.2 2.3420
2.5 1.7 2.3127
1.5 2.7 2.2817
1.0 3.2 2.2688
0.2 4.0 2.2751
0.1 4.1 2.2715
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Appendix D. Dynamic, Stochastic Threat Size and Shape

Chapter VI established two parameters to form the size and shape of a moving,

stochastic threat. The purpose of this appendix is to discuss the rationale behind the

choice of Equations 6.5 and 6.6.

Referring to Figure D.1, the first circle represents a known threat location with

known shaping parameter, p(i) = p(0) = 2 to form an ellipse whose semi-minor x-axis,

ax(0), is aligned with the road. When the threat is moving and is non-deterministic,

this work estimates the location with a standard deviation using a Kalman filter.

Referring to the bottom set of circles in Figure D.1, when estimating the threat

location, it is not known if the threat is at the filter estimated position (center circle)

or if it is a standard deviation away (two end circles) or somewhere in between. This

work proposes avoidance of the entire region of a threat’s possible location at each

time-step. Two parameters are used to model the stochastic threat avoidance region.

The first is the size parameter

a(i) = ax(0) + σ(i) (D.1)

∀i = 1 : N timesteps, which extends the axis along the road by the standard deviation

σ(i) at each timestep. The shaping parameter is chosen to keep constant the axis

distance perpendicular to the road, ay, and vertical, az, while extending the axis

along the road as a cylindrical shape according to

p(i) = p(0) +
σ(i)

a(0)
. (D.2)

∀i = 1 : N timesteps. When the standard deviation is small in relation to the

original length of the axis along the road, ax(0), the shaping parameter p ∼= 2 and

the superquadric takes on the appearance of an ellipse. However, as the standard
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Figure D.1. Known and Unknown Threat Locations

deviation increases, the shaping parameter forms a cylindrical shape whose curvature

flattens along the distance-increasing axis of the road as well as the bases of the

cylinder on each end. Results in Chapter VI show the changing size and shape of the

superquadric as the threat stochastics are propagated.
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Appendix E. Distance to Re-Plan Formulation

Chapter VII provided set of equations to determine a time to replan, tr, based

on assumed threat speed and stochastics as well as the relative distance and angle of

approach of the loyal wingman to the threat. This appendix demonstrates through

simulation, the effect Equations 7.1, 7.4, 7.5, and 7.6 have on determining a time to

re-plan. Referring to the first subplot of Figure E.1 , a grid layout shows the loyal

wingman and threat time-dependent trajectories.

The location of the loyal wingman and the threat are indicated at time-steps T1

through T4. T1 is where the simulation begins. Between T1 and T2, the center

subplot indicates an angle of approach that is oblique, close to head-on and does not

change. The value of ξ increases slowly due to the moving threat, while the bottom

subplot indicates the distance between the two bodies is slowly increasing.

Between time-steps T2 and T3, the loyal wingman maneuvers and at T3, the angle

of approach to the threat vector is perpendicular. This can be seen in the center

subplot where the value of the angle of approach and ξ drop to zero. This angle of

approach is only temporary, though and between T3 and T4, the angle of approach

steadies. The bottom subplot indicates a slow decrease in the distance between the

two bodies, causing ξ and ρ to increase. This continues until Equation 7.2 is satisfied

at T4 and a re-plan occurs.

Referring to Figure E.2, a new trajectory has been produced at T4 and ξ is reset

to 0 because the distance the threat has traveled is reset to 0. Between T4 and T5,

the distance between the two bodies decreases, causing ξ and ρ to increase. This

time, however, Equation 7.2 is not satisfied and at T5, the loyal wingman and threat

begin to move away from each other. Because the loyal wingman is traveling at a

speed that is much greater than the threat, H and ρ diverge and Equation 7.2 is

never satisfied, i.e., there is no re-plan.
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planning using particle swarm optimization of ferguson splines. In IEEE Confer-
ence on Emerging Technologies and Factory Automation, pages 833–839. IEEE,
2006. doi: 10.1109/ETFA.2006.355416.

109. Xiaohui Hu and Russell Eberhart. Solving constrained nonlinear optimization
problems with particle swarm optimization. In Proceedings of the Sixth World
Multiconference on Systemics, Cybernetics and Informatics, volume 5, pages
203–206. Citeseer, 2002.

110. Peter Eberhart and Kai Sedlaczek. Using augmented lagrangian particle swarm
optimization for constrained problems in engineering. In Advanced Design of
Mechanical Systems: From Analysis to Optimization, pages 253–271. Springer,
2009. doi:10.1007/978-3-211-99461-0-12.

111. Haiyan Lu and Weiqi Chen. Self-adaptive velocity particle swarm optimization
for solving constrained optimization problems. Journal of Global Optimization,
41(3):427–445, 2008. doi:10.1007/s10898-007-9255-9.

112. Chukiat Worasucheep. A particle swarm optimization with stagnation detection
and dispersion. In IEEE World Congress on Computational Intelligence, pages
424–429. IEEE, 2008. doi:10.1109/CEC.2008/4630832.

113. Northrop Aerospace Systems. Design description document (ddd) for multi-
sensor integrated conflict avoidance (musica), 2010. Contracting Agency: Air
Force Research Laboratory, AFRL, RQQC, Wright-Patterson Air Force Base.

114. Zhao Weihua and Tiauw Hiong Go. 3-d formulation of formation flight based
on model predictive control with collision avoidance scheme. In Proceedings of
the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum
and Aerospace Exposition, 2010.

115. Branko Grunbaum, Victor Klee, Micha A Perles, and Geoffrey Colin Shephard.
Convex Polytopes. Springer, 1967.

116. Jarurat Ousingsawat and Mark E Campbell. On-line estimation and path plan-
ning for multiple vehicles in an uncertain environment. International Journal of
Robust and Nonlinear Control, 14(8):741–766, 2004. DOI: 10.1002/rnc.933.

117. Michael J Todd and E Alper Yıldırım. On khachiyan’s algorithm for the compu-
tation of minimum-volume enclosing ellipsoids. Discrete Applied Mathematics,
155(13):1731–1744, 2007. doi:10.1016/j.dam.2007.02.013.

139



118. Nima Moshtagh. Minimum volume enclosing ellipsoid. Convex Optimization,
111:112, 2005.

119. Ken Shoemake. Animating rotation with quaternion curves. In ACM SIG-
GRAPH computer graphics, volume 19, pages 245–254. ACM, 1985. doi:
10.1145/325165.325242.

120. Ales Jaklic, Ales Leonardis, and Franc Solina. Segmentation and Recovery of
Superquadrics, volume 20. Springer, 2000. ISBN-10: 0792366018.

121. Ryan D Gauntt. Aircraft course optimization tool using gpops matlab code.
Master’s thesis, Air Force Institute of Technology (AU), Wright-Patterson AFB
OH, 2012. AFIT/GSE/ENV/12-M03, dtic accession # ADA557164.

122. X Rong Li and Vesselin P Jilkov. Survey of maneuvering target tracking. part
i. dynamic models. Aerospace and Electronic Systems, IEEE Transactions on,
39(4):1333–1364, 2003.

123. Robert A Singer. Estimating optimal tracking filter performance for manned
maneuvering targets. Aerospace and Electronic Systems, IEEE Transactions
on, (4):473–483, 1970.

124. David R Maroney1 Robert H Bolling, Ravindra Athale, and Alan D Chris-
tiansen. Experimentally scoping the range of uas sense and avoid capability.
2007.

125. Robert H Chen, Arthur Gevorkian, Alex Fung, Won-Zon Chen, and Vincent
Raska. Multi-sensor data integration for autonomous sense and avoid. In AIAA
Infotech at Aerospace Technical Conference, 2011.

126. Randal W Beard, Derek Kingston, Morgan Quigley, Deryl Snyder, Reed Chris-
tiansen, Walt Johnson, Timothy McLain, and Michael Goodrich. Autonomous
vehicle technologies for small fixed-wing uavs. Journal of Aerospace Computing,
Information, and Communication, 2(1):92–108, 2005.

127. Jusuk Lee, Rosemary Huang, Andrew Vaughn, Xiao Xiao, J Karl Hedrick, Marco
Zennaro, and Raja Sengupta. Strategies of path-planning for a uav to track a
ground vehicle. In Autonomous Intelligent Networks and Systems, Proceedings
of the Second Annual Symposium on, volume 2003, 2003.

128. David Benson. A Gauss Pseudospectral Transcription for Optimal Control. PhD
thesis, Massachusetts Institute of Technology, 2005.

129. Rudolph Emil Kalman. A new approach to linear filtering and prediction prob-
lems. Journal of Fluids Engineering, 82(1):35–45, 1960.

130. Robert G. Brown and Patrick Y.C. Hwang. Introduction to Random Signals and
Applied Kalman Filtering. Wiley, 2012.

140



131. Tal Shima, Steven J Rasmussen, and Phillip Chandler. Uav team decision and
control using efficient collaborative estimation. Journal of Dynamic Systems,
Measurement, and Control, 129(5):609–619, 2007. doi:10.1115/1.2764504.

132. Eric A Wan and Rudolph Van Der Merwe. The unscented kalman filter for non-
linear estimation. In Adaptive Systems for Signal Processing, Communications,
and Control, The IEEE Symposium on, pages 153–158. IEEE, 2000.

133. Steven M Ross, Richard G Cobb, and William P Baker. Stochastic real-time
optimal control for bearing-only trajectory planning. International Journal of
Micro Air Vehicles, 6(1):1–28, 2014.

134. Jinwhan Kim, SS Vaddi, PK Menon, and EJ Ohlmeyer. Comparison between
three spiraling ballistic missile state estimators. In AIAA Guidance, Navigation
and Control Conference, Proceedings of the, 2008.

135. M Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A
tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking.
Signal Processing, IEEE Transactions on, 50(2):174–188, 2002.

136. Roberto Conde, A Ollero, and JA Cobano. Method based on a particle filter for
uav trajectory prediction under uncertainties. In 40th International Symposium
of Robotics, Barcelona, Spain, 2009.

137. Fredrik Gustafsson, Fredrik Gunnarsson, Niclas Bergman, Urban Forssell, Jonas
Jansson, Rickard Karlsson, and P-J Nordlund. Particle filters for positioning,
navigation, and tracking. Signal Processing, IEEE Transactions on, 50(2):425–
437, 2002.

138. Hui Yan, Fariba Fahroo, and I Michael Ross. Real-time computation of neigh-
boring optimal control laws. AIAA Paper, 4657, 2002.

139. Zhesheng Jiang and Raul Ordonez. Trajectory generation on approach and
landing for rlvs using motion primitives and neighboring optimal control. In
American Control Conference, pages 1091–1096. IEEE, 2007.

140. William K McQuay. Distributed collaborative environments for 21st century
modeling and simulation. In Aerospace/Defense Sensing, Simulation, and Con-
trols, pages 164–173. International Society for Optics and Photonics, 2001.

141. Charles A Leavitt. Real-time in-flight planning. In Aerospace and Electronics
Conference, Proceedings of the IEEE 1996 National, volume 1, pages 83–89.
IEEE, 1996.

142. Clay J Humphreys, Richard G Cobb, David R Jacques, and Jonah A Reeger. Op-
timal mission paths for the uninhabited loyal wingman. 16th AIAA/ISSMO Mul-
tidisciplinary Analysis and Optimization Conference, 2015. doi: 10.2514/6.2015-
2792.

141



143. Anil V Rao, David A Benson, Christopher Darby, Michael A Patterson, Camila
Francolin, Ilyssa Sanders, and Geoffrey T Huntington. Algorithm 902: Gpops,
a matlab software for solving multiple-phase optimal control problems using the
gauss pseudospectral method. ACM Transactions on Mathematical Software
(TOMS), 37(2):22, 2010.

144. Peter S Maybeck and George M Siouris. Stochastic models, estimation, and con-
trol, volume i. IEEE Transactions on Systems, Man, and Cybernetics, 5(10):282,
1980.

145. Michael A Patterson and Anil Rao. Exploiting sparsity in direct collocation
pseudospectral methods for solving optimal control problems. Journal of Space-
craft and Rockets, 49(2):354–377, 2012. doi: 10.2514/1.A32071.

146. Michael A Patterson and Anil V Rao. Gpops-ii: A matlab software for solving
multiple-phase optimal control problems using hp-adaptive gaussian quadrature
collocation methods and sparse nonlinear programming. ACM Transactions on
Mathematical Software (TOMS), 41(1):1, 2014. doi: 10.1145/2558904.

147. Clay J Humphreys, Richard G Cobb, David R Jacques, and Jonah A Reeger. A
hybrid technique to rapidly solve the intermediate-target optimal control prob-
lem. Global Journal of Technology and Optimization, submitted for publication,
July 2016.

148. Eugene TY Lee. Choosing nodes in parametric curve interpolation. Computer-
Aided Design, 21(6):363–370, 1989. doi: 10.1016/0010-4485(89)90003-1.

142



Vita

Major Clay J Humphreys is a PhD student studying aircraft control systems and
optimization in the Department of Aeronautics and Astronautics at the Air Force In-
stitute of Technology (AFIT), WPAFB, OH. Major Humphreys was born and raised
in Grand Prairie Texas, a suberb of Dallas and after graduating from Lamar High
School in 1997, he attended Texas A & M University. He graduated in 2001 with
a bachelor’s degree in Aerospace Engineering and soon after commenced Air Force
Officer Training School.

In 2001, after initial training, Clay was assigned as a modifications engineer to the
82d Aerial Targets Squadron at Tyndall AFB in Panama City, FL. In this role, he
oversaw the modification of the QF-4 in support of various operational missile testing
efforts. After three years at Tyndall, Clay was assigned as the Launch Verification
Engineer for the Evolved Expendable Launch Vehicle Program Office at Los Angeles
AFB in California. He managed a 2000 item checklist which ensured each rocket had
been appropriately verified and validated and was ready for launch, including the
launch of the first ever Delta IV Heavy rocket.

In 2006, he was accepted to the Air Force Institute of Technology at Wright
Patterson AFB, in Dayton, Ohio. There, he began a Master of Science in Systems
Engineering, specializing in Space Systems and Command, Control, Communication,
Computers, Intelligence, Surveillance, Reconnaissance (C4ISR).

Upon graduation from the Air Force Institute of Technology in 2008 he was as-
signed to the Air Vehicles Structures Division at the Air Force Research Laboratory
at Wright Patterson AFB. He was the program lead for development of technolo-
gies for autonomous reusable first stage booster systems. Clay was then chosen to
be the executive officer for the Vice Commander of the Air Force Research Laboratory.

In 2010, Clay moved to his new assignment at the National Reconnaissance Office
(NRO). He began his role there as the program manager for a $ 500 million engineer-
ing support contract, then was the program manager for an airborne LIDAR asset
providing support for real world operational requirements.

He moved back to Wright Patterson in 2013 to begin his PhD at AFIT.

143



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

15-10-2016 Doctoral Dissertation Sept 2013 — Sep 2016

Optimal Control of an Uninhabited Loyal Wingman

Humphreys, Clay J., Major, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENY-DS-16-S-063

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory, 
Aerospace Systems Directorate (AFRL/RQ)
Mrs. Amy Burns
2130 Eighth Street, Building 45, Room 190
WPAFB, OH 45433-7765

AFRL/RQQC

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This work demonstrates the use of optimal control and stochastic estimation techniques as an autonomous near real-time
dynamic route planner for the DoD concept of the loyal wingman. First, the optimal control problem is formulated for a
static threat environment and a hybrid numerical method is demonstrated. The optimal control problem is transcribed to
a nonlinear program using direct orthogonal collocation, and a heuristic particle swarm optimization algorithm is used to
supply an initial guess to the gradient-based nonlinear programming solver. Next, a dynamic and measurement update
model and Kalman filter estimating tool is used to solve the loyal wingman optimal control problem in the presence of
moving, stochastic threats. Finally, an algorithm is written to determine if and when the loyal wingman should
dynamically re-plan the trajectory based on a modified distance to re-plan formulation which uses speed and stochastics
of the moving threat as well as relative distance and angle of approach of the loyal wingman to the threat. Results
demonstrate a methodology for rapidly computing an optimal solution to the loyal wingman optimal control problem.

Optimal Control, Loyal Wingman, Unmanned Wingman, Pseudospectral Method, Direct Orthogonal Collocation,
Particle Swarm Optimization, Dynamic Re-planning, Hybrid Optimal Control

U U U U 159

Dr. Richard G. Cobb, AFIT/ENY

(937) 255-3636, x4559; richard.cobb@afit.edu


