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Abstract 

Military Entry Control Facilities (ECFs) are unique service queues that are 

constrained by space, receive high peak traffic flow, and have a customer base that must 

receive service.  Due to complexity of the interactions within the system, simulations 

provide input that would be impractical for quantitative experimentation.  Our research 

examines relationships within the ECF in order to develop insights that could lead to 

more efficient daily operations.  We focus the research on interactions that generate a 

queue length that would interfere with traffic flow surrounding the base.  Examining the 

interactions between multiple arrival rates and service times as well as the layout and 

model of the ECF we establish criterion for Officers in Charge (OICs) to make changes 

within the constraints of the ECF to their operations to better serve the customers and 

prevent ECF traffic from interfering with the community outside the military base.  
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ANALYSIS OF MILTARY ENTRY CONTROL POINT QUEUEING 
 

I.  Introduction 

Background 

The purpose and mission behind military Entry Control Facilities (ECFs) is to 

provide security to the instillation from unauthorized access and intercept contraband 

while maximizing traffic flow.  The design of an ECF should maximize traffic flow 

without compromising security, safety or causing undue delays that may affect off-

instillation public highway users or instillations operations (Department of Defense, 25 

May 2005).  Due to fluctuations within the processing times and the arrival rates of 

customers, the customers waiting for service from the ECF may exceed its capacity, 

resulting in traffic overflow into the surrounding community traffic.  Once instillation 

traffic begins to overflow the capacity of the ECF, the queue is no longer strictly 

instillation traffic.  Civilian traffic not desiring to enter the instillation may become part 

of the ECF queue simply because they are travelling on roadways that surround the 

instillation.  This additional traffic causes a faster growth in queue length, which leads to 

more traffic interference as the queue grows. 

Military Entry Control Points (ECPs) have unique characteristics that are different 

from other customer service queues.  One of those characteristics is that every customer 

must receive service in order to enter the military base.  This is similar to traffic tolls or 

amusement park entry points, as every customer on the highway or in line with a ticket 

needs to utilize the service queue.  However, there is a choice to not utilize the toll booth 

and take a different, possibly longer route to work, or an amusement park customer may 
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choose to sell off their tickets to another customer that hasn’t bought a ticket yet or come 

back a different day in order to avoid the congestion.  Customers that need to access the 

base for work or other services must utilize a Military ECP, there is no other alternative. 

Two other factors that Military ECPs face are receiving high peak traffic hours 

and being constrained by space.  High traffic flow during peak hours is not exclusive to 

Military ECPs, but combining this with the requirement that all customers must be served 

increases the overall queue length more than other customer service queues.  Other 

customer service queues constrained by space have the ability to rearrange their queues to 

better utilize the space, expand the amount of queues, or move the whole facility to a 

larger, better-designed location.  In addition, the majority of these customer service 

queues have a direct tie to profit.  When most people think of customer service lines, they 

think about fast-food restaurants and drive-thrus, bank tellers, tollbooths, amusement 

parks, and other cashiers.  For those queues, construction costs and other costs to change 

and improve the facility may be recuperated with higher customer throughput.  Military 

ECPs do not have a tie to profit, so costs to conduct changes to the facility will not be 

recuperated through higher ECP throughput. 

Although Military ECPs do not have a tie to profit, it does not mean that their 

processes should not be examined or improved.  We found three ways to profit, non-

financially, that would be significant to military bases and beneficial to military ECPs: 

reduce manpower required to work the ECP, increase customer satisfaction, and reduce 

the back up of vehicles (overall queue length) from the ECP interfering with traffic 

outside the base.  Reducing manpower to work ECPs saves the base money if the base is 

using contracted guards.  If a base utilizes active duty military members to work the 
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ECPs then there would be no significant cost savings, only man-hour savings.  While this 

could be of interest, each base is able to run their ECPs utilizing different manning 

requirements, so studying this savings may not be useful to all bases.  Increasing 

customer satisfaction could be a result of improvement to ECP throughput, which reduces 

the customer wait time or from improving the quality of service received from the ECP 

worker.  Although ECP workers are instructed to be professional and respectful, the 

service provided is for the security of the base, not the customer’s satisfaction.  Reducing 

the number of vehicles waiting in line for the ECP will reduce the interference with 

traffic outside the base.  Both customer satisfaction and overall queue length are affected 

by increasing the throughput of a given ECP.  This research examines some of the 

interactions that influence the throughput and overall queue length of vehicles waiting to 

be processed by the ECP.  

Purpose of Research 

In order to prevent military base ECP traffic from interfering with the civilian 

population outside the base, an analysis of the interactions between the controllable 

factors within the ECP provides valuable insight to the ECP OICs on how to increase 

throughput.  Our research shows the effects of changing operations strategies within the 

ECP to increase throughput and prevent traffic overflow into the surrounding base traffic. 

The factors that we focus on are the arrival rate of the vehicles, the processing 

time of the ECP guards, deploying tandem servers on one lane or multiple parallel service 

gates. 
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Overview 

This chapter discusses the overview of Military ECPs and how they are unique 

customer service queues.  Chapter II outlines a review of previous studies and research 

that study customer service, general queueing theory, and queueing theory specifically 

related to traffic.  Chapter III concentrates on the methodology used to analytically solve 

and build an appropriate simulations model to study the interactions that occur at Military 

ECPs.  Chapter IV presents the results of simulations that could provide input to the OICs 

running each ECP to improve their throughput. Chapter V discusses the results of the 

simulations models, limitations of the current model, and recommendations for future 

research.  
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II. Literature Review 

Overview 

This chapter begins with the overview of queueing theory and the queue model 

system design.  Next, we discuss the characteristics of queue models focusing on the 

important processes that assist in describing the overall system.  Looking into more detail 

of the system, we show the actions the customers may take during the wait process that 

disrupt or change the queueing process as well as show different designs of a queue.  We 

then cover mitigation techniques used to better serve the customer and allow for more 

efficient processing in the queueing system.  Then we focus on traffic flow literature 

provides historical overview on the study of traffic that restrict the flow of traffic.  We 

also cover the Military ECP specific characteristics that may differ from normal queues.  

Finally, we compare analytical and simulation techniques used to solve and provide 

insight to service queue issues. 

Queueing Theory 

In a simple explanation, queueing theory is considered the mathematical study of 

waiting lines with respect to length and time.  A queueing theory model is constructed in 

order to predict queue length, service times, and waiting times (Allen, 2014).  A queueing 

theory model is normally defined using Kendall’s notation, which is a triplet, A/S/c that 

consist of a set of letters describing the overall model.  The model notation has expanded 

since Kendall’s research to six descriptors for the model, A/S/c/K/N/D (Banks et al., 

2000) (Allen, 2014).  Each of the letters represents a different characteristic of the 

queueing model: 
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• A: The arrival process (or distribution) of the customers to the systems. 

• S: The distribution of time of the service of the customer in the system. 

• c: The number of separate servers or service channels within the system 

• K: The capacity of customer the system can hold. 

• N: The size of population where the customers come. 

• D: The service discipline within the queue system. 

In order to shorten notation for most queue model descriptions, when the three last 

parameters (K/N/D) are not utilized in the model description, it is assumed that K = ∞, N 

= ∞, and D = first in, first out (FIFO) (Pinto, 2011). 

Queue Model System Design 

The queue system design has many aspects to consider when looking at the 

overall system processing.  The simplest design to consider is a single-channel, single-

phase queueing system commonly seen at older fast food drive-thru facilities or a single-

family dentist office.  Adding a second (or multiple) service facility in tandem would 

change the system to a single-channel, multiphase system found in dual-window fast food 

drive-through facilities (Heizer & Render, 2010). 

The previous systems focused on single servers in one or multiple phases.  

Adding a second (or multiple) server to a one-phase system is changed to a multichannel, 

single-phase system that is found at most banks, barbershops, or post office service 

facilities.  Finally, adding a second (or multiple) server to any or all of the service phases 

is transformed to a multichannel, multiphase system such as college registration systems 

or a military recruits physical in which recruits need blood draw, eye exam, speak with a 
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psychiatrist, and receive a physical exam from a medical doctor that has multiple 

technicians or medical providers at each phase (Heizer & Render, 2010).  Figure 1 

illustrates the different queue system designs previously discussed. 

 

Figure 1: Queue System Design 

Characteristics of a Queueing Model 

Arrival Process 

 The arrival process for a queueing model is normally characterized in terms of the 

interarrival times between consecutive customers.  Interarrival times occur on set 

schedule, occur at constant time intervals, or at random times intervals.  When the times 
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are random, the interarrival time is normally characterized with a probability distribution 

(Banks et al., 2000). 

The Poisson arrival process, denoted as M in Kendall’s Notation, is typically used 

to model a large population from which customers make independent decisions about 

when to arrive for a service.  The process has been successfully employed to model the 

arrival of customers to banks, restaurants, and telephone calls to call centers (Banks et al., 

2000).  Two other common arrival processes used in Kendall’s notation include G, which 

represents a general distribution with known mean and variance, and D, which represents 

a deterministic or constant arrival rate (Render, Stair, & Hanna, 2012). 

Service Time Distribution 

Services time to complete a service for a customer that enters the system may be 

either constant or random.  If the service time for a customer is considered constant or 

deterministic, it is represented by D in Kendall’s notation.  Constant service time is 

typically found in machine-performed services such as automatic carwashes or 

rollercoasters.  Regularly most queue systems service times are randomly distributed, and 

in many cases, the assumed random service time is described by the negative exponential 

probability distribution, represented by M in Kendall’s notion. (Heizer & Render, 2010). 

Although the exponential distribution is most commonly used, two other 

distributions may be more valid: normal and Erlang distributions.  The Erlang 

distribution is common when a process has a series of stations that must be passed 

through before the next customer may enter the process (Banks et al., 2000) while 

normally distributed service times are found in automobile repair shops (Render, Stair, & 

Hanna, 2012). 
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Queue Discipline 

Many queue models use a queue discipline known as the FIFO rule.  These 

systems operate so that the first customer in line received the first service (Heizer & 

Render, 2010).  Examples of the FIFO system include banks tellers, tollbooths, and super 

markets.  Although customers may not view the overall check out system at a super 

market that has multiple checkouts each with their own individual queue as a FIFO 

process, each checkout operates under the discipline of FIFO (Heizer & Render, 2010).  

A hospital emergency room is an example of a system that primarily operates on a FIFO 

discipline but also has separate priorities that preempt the queue due to severity of injury 

or illness (Connelly & Bair, 2004).  However, upon closer inspection, each sub-category 

of severity operates under the FIFO discipline. 

Two alternate queue disciplines that are considered are last-in, first-out (LIFO) 

and priority scheduling.  LIFO is common in inventory management when shelf life is a 

negligible factor and it is easiest to grab the last item in stock, which is typically the first 

item on the shelf or in line.  Priority scheduling is common in computer programs and 

server bandwidth when one system is more significant than the others.  An example is a 

company wants to prioritize the payroll computer once paychecks are due to employees 

(Heizer & Render, 2010). 

Waiting-Line Characteristics 

Queue Constraints 

As customers wait in line or in a queue for a service they are normally staged in a 

facility or line that has limited area or capacity that would prevent a queue from going 
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beyond a certain limit.  Exceeding the capacity of the queue area causes congestion and 

disruption beyond the designated queue area (Buckley & Yagar, 1974) or it causes 

dissatisfied customers within the queueing system (Larson, Cahn, & Shell, 1993).  In 

some situations, a system exceeds the designated queue capacity giving the idea of an 

infinite queue.  Even if a system has a finite queue, most models follow the assumption of 

an infinite queue and then the probability of the infinite queue going beyond the finite 

queue length is calculated to find the number of customers that would not have been 

served (Huebner, 1998), (Ishizaki & Takine, 1999). 

Customer Actions 

When a customer arrives to a queue and is dissatisfied with the length of the 

queue they have the option of choosing not to enter the system or queue which is 

considered balking (Ancker Jr. & Gafarian, 1963), (Heizer & Render, 2010), (Rue & 

Rosenshine, 1981).  There is also the option for a customer to enter the queue and wait 

for a period of time in the queue but exit the system before the service is conducted 

which is considered reneging (Ancker Jr. & Gafarian, 1963), (Heizer & Render, 2010).  

These actions are not considered in our study, as all customers must receive service in 

order to enter the base. 

A concept that relies less on the customer’s satisfaction with the queue, but relies 

more on the actions that occur with the service is called either a re-service or a second 

(nth) service for the system (Madan, 2000), (Madan, Al-Nasser, & Al-Masri, 2004).  The 

re-servicing of a customer may be needed if the service failed or was not satisfactory.  

For Military ECPs, there is not a re-service option; either the identity of the driver and 

passengers is verified before the vehicle enters the base or it’s not.  In order to maintain 
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security for the base, the service must be provided at the ECP correctly the first time.  

There are occasions when the customer does not provide proper identification at the gate.  

In this instance, the driver is still processed through the queue but is escorted out an exit 

of the base to retrieve proper identification and re-enter the queue.  This would not be 

considered a re-service or an nth service because the customer does not directly re-enter 

the queue or move to a different queue to be service again.  The customer re-enters the 

queue at a later time, performing as a new customer. 

Queue Characteristics 

Bulk-Service Queues 

Not all service queues are limited to serving one customer at a time.  Service 

queues that service more than one customer at a time are considered bulk-service queues.  

A frequently studied problem studied as a bulk service queue is the Fixed-Cycle Traffic-

Light (FCTL) where multiple vehicles are able to be service at a time when the traffic 

light turns green. (Van Den Broek, Van Leeuwaarden, Adan, & Boxma, 2006).  Another 

example of a bulk service queue is an amusement park ride where multiple guests are 

able to board the ride at a time. 

Virtual Queues 

Virtual queues are becoming more frequently as technology continues to provide 

us with new means of tracking our customers.  Utilizing a virtual queue frees a customer 

from physically standing in a line to wait for a service (Dickson, Ford, & Laval, 2005).  

Doing this allows a customer to conduct other activities that decreases the perceived wait 

time for a service.  Virtual queues are prevalent in amusement parks as guest have the 
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ability to check-in to a ride and then return at given time window to go directly to the 

front of the line as if they were physically waiting in line for the ride (Dickson, Ford, & 

Laval, 2005), (Disney Parks & Travel), (Lemaster, 2015). 

Queue Mitigation Techniques 

There are multiple ways that the throughput of a system may be changed making 

simple adjustments to the overall system.  The queueing system may be altered by 

dynamically adjusting the service rate during the process (George & Harrison, 2001).  

This method is utilized to keep customers from balking or reneging from the system if the 

queue begins to get to large.  A technique used when the server is underutilized is to 

allow the queue to grow to ca certain point before a server is added to the system 

(Balachandran, 1973).  This is executed based on three different policies: an N-policy, 

when the queue size reaches N customers; a D-policy, when the total work to be done 

reaches a value of D; or a T-policy, when a time of T units has passed after the end of the 

last busy period. (Balachandran, 1973), (Heyman, 1977). 

Focusing specifically with the customer service industry there have been 

numerous studies that involve the perception of the wait time (Jones & Peppiatt, 

Managing perceptions of waiting times in service queues, 1996), (Jones & Dent, 1994), 

(Dickson, Ford, & Laval, 2005).  In one study, it found that in service operations with a 

wait time of less than five minutes, the perceived wait time is up to 40 percent greater 

than actual wait time (Jones & Peppiatt, 1996).  This difference in perceived versus actual 

wait time is reduced in combination with customer by occupying the customers wait time 

with menus, television, or readings to take their mind off the wait (Jones & Peppiatt, 
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1996) (Dickson, Ford, & Laval, 2005).  Another technique to remove the hardship of 

waiting for a service is known as virtual waits.  This technique allows customers to 

check-in to a service which has a queue, and receive a new time to come back to receive 

the service.  This is most recognizable at amusement parks such as Walt Disney World 

Resort with the utilization of FastPass+ to wait for rides outside of the standard queue 

occupying themselves somewhere else within the park (Disney Parks & Travel) 

(Dickson, Ford, & Laval, 2005), but it is also found at restaurants that utilize long range 

buzzers or texting to recall customers to let them know their table is ready or cruise lines 

and all-inclusive resorts with certain long wait on-board activities (Dickson, Ford, & 

Laval, 2005). 

Another technique utilized by Walt Disney World known as the “Magic 

Kingdom’s E Rides Night” used a technique known as demand shifting.  Customers 

could purchase tickets to stay three hours after the park closed and ride the nine most 

popular attractions.  Not only did this benefit the customers who purchased the tickets 

allowing them to better budget their time during the day elsewhere in the park, it also 

benefited the other customers in the park bring the queues on the most popular rides 

down during the peak hours (Dickson, Ford, & Laval, 2005). 

Traffic Congestion 

Vehicle traffic issues concerning either flow or congestion have been studied for 

many years.  Traffic congestion is broken into simpler types of situations that are 

combined in combination to cause most traffic issues.  William Vickery from Columbia 

University distinguished six types of congestion that included simple interaction, multiple 
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interaction, bottleneck, triggerneck, network and control, and general density (Vickrey, 

1969).  While all six interactions are investigated in various studies, bottleneck and 

triggerneck are the main types of congestion when considering restricted traffic flow.  

The pure bottleneck occurs when a short segment of a route has a fixed capacity smaller 

relative to traffic demand than preceding or succeeding segments (Vickrey, 1969).  A 

triggerneck situation occurs because of a bottleneck when the queue from the bottleneck 

interferes with traffic flow where not intended to interfere (Vickrey, 1969). 

On-ramps and off-ramps are high probability locations for a triggerneck situation 

to cause many issues with traffic flow (Buckley & Yagar, 1974) (Wu, Jin, & Horowitz, 

2008).  This concern is not only for the immediate area, but for other portions of the 

freeway that adversely affected as the freeways overall productivity is reduced, the level 

of service and passenger satisfaction is reduced, and accidents, pollution, and fuel 

consumption are increased due to the congestion (Oviaci & May, 1974). 

Some studies have looked into the effect of tollbooths on traffic flow which is a 

specific source of bottlenecking common in many countries around the world (Chau, Xu, 

& Liu, 2002), (Huang & Huang, 2002), (Wu, Jin, & Horowitz, 2008).  Although traffic 

jams occur more frequently near tollbooths than any other part of the highway (Huang & 

Huang, 2002), they are needed for two main purposes: collect tolls and regulate traffic.  

This may seem strange at first, but in addition to increased revenue for governments, 

tollbooths (or road pricing) “is also considered to be one of the most efficient approaches 

to reducing congestion and has been investigated currently by both economists and 

transportation researchers” (Huang & Huang, 2002), (Yan & Lam, 1996), (Ferrari, 1995) 

(Small, 1992). 
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Military Entry Control Facility 

Prior to 2001 military entry control facilities varied by instillation.  Most 

instillations had ECFs, but they lacked the features and functionality that is mandated for 

the current force protection standards.  Other instillations had limited or no entry control 

in place (Surface Deployment, 2008).  The events on September 11, 2001 made it a 

necessity for immediate entry control.  The focus of entry control was to address security 

that met anti-terrorism and force protection needs, but lacked the infrastructure to address 

traffic flow and safety for motorists as well as guards (Surface Deployment, 2008). 

The traffic flow through military instillation ECFs directly depends on the number 

of lanes available for traffic, the number of guards working each lane, the method of 

identification inspection (visual or handheld device), the traffic allowed access through 

the specific gate, and the Force Protection Condition (FPCON) category.  The number of 

lanes available at each ECF as well as the workforce at each ECF is determined by the 

instillation and is not consistent between instillations.  Currently there is not a mandate 

on what method of identification must be used at instillation ECFs (visual or handheld).  

There is also no mandate of what equipment is being utilized at each base for handheld 

checks.  Across the United States, there are 23 military installations and 16 U.S. ports 

that utilize the handheld device, Defense ID, produced by Intellicheck Mobilisa, Inc., 

which is only a fraction of military bases across the United States (Intellicheck Mobillisa, 

Inc., 2015). 

UFC 4-022-01 classifies ECFs into four “use” classifications: primary, secondary, 

limited use, and pedestrian access (Department of Defense, 25 May 2005).  The Surface 

Deployment and Distribution Command Transportation Engineering Agency 
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(SDDCTEA) have added three more categories to the four classifications for a total of 

seven classifications seen in Table 1. 

Table 1: ECP Classifications (Surface Deployment, 2008) 

 

 The classification of each ECF varies due to the inspection process that occurs for 

each form of traffic.  Primary, Secondary, and Low-Volume ECF traffic can be viewed in 

the same manner due to the traffic through each ECF consisting of the similar vehicles. 

The instillation FPCON level dictates the level of identification and inspection 

requirements at each ECF at the instillation.  Currently the military operates under five 

main levels with one sub-level for six total FPCON levels: Normal, Alpha, Bravo, 

Bravo+, Charlie, and Delta.  SDDCTEA Pamphlet 55-15 describes the typical processing 

characteristics for each ECF using Table 2. 
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Table 2: Force Protection Conditions (Surface Deployment, 2008) 

 

 “In accordance with DOD O-2000.12-H [DoD Antiterrorism Handbook], the 

security measures employed during FPCON Bravo must be capable of being maintained 

for weeks without causing undue hardship, affecting operational capability, or 

aggravating relations with local authorities” (Department of Defense, 25 May 2005) .  In 

order to adhere to this mandate ECFs need to be able to process vehicles into the 

instillation in timely manner when FPCON is BRAVO+ or below. 

Analytical Solutions 

The use of analytical solutions is a great tool when then system is straightforward 

with few processes interacting with each other.  If the problem can be solved analytically, 

then there is no need to use simulation (Banks et al., 2000).  In steady state queueing 
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processes, Little’s Law tells us that there is a strict relationship between the expected 

(long-term average) number of customers in the system (L), the expected time spent by a 

customer in the system (W), and the expect arrival rate (λ) within the system (Little, 

1961) seen in Equation 1. 

 L Wλ=  

Equation 1: Little's Law 

This method is useful in order to find a baseline of service for our problem; when one 

worker is servicing a queue with an open queue for traffic to enter. 

 Some frequently used queues such as M/M/1 and M/M/c have certain properties 

that we are able to utilize for some analytical solutions regarding steady state operations, 

stability, average number in queue, and average response time (Allen, 2014).  We will go 

into more detail of the specific equations we utilize in Chapter III. 

Analytic methods employ deductive reasoning of mathematics using limits, 

differential equations, and expected values to solve the model, which is useful and easier 

to follow because it follows a collection of mathematical equations to find a specific 

answer (Banks et al., 2000).  This is limiting because each component of the system 

would require a new set of equations, consequently the number of equations used to 

examine a large complex system grows fast and becomes computationally difficult.  Once 

computational results become too difficult, simulations are very useful. 

Simulations 

Overview 

Processes that contain infinite queues are frequently amendable to be able to find 

exact analytical solutions while processes containing finite queues are not and may be 
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more suitable for simulations (Huebner, 1998).  Simulation are the appropriate tool to use 

for many reasons to include: verification of analytic solutions, animation to assist in 

visualizing the process or issues within the process, comparing multiple models from 

changes in inputs, and enables the study of and experimentation with, the internal 

interactions of a complex system or of subsystems (Banks et al., 2000). 

Discrete and Continuous Simulation 

Now that we have explored the use of simulations, we compare discrete and 

continuous simulations to find which method would be more useful.  “A discrete system 

is one in which the state variable(s) change only at a discrete set of points in time” 

(Banks et al., 2000).  While “a continuous system in one in which the state variables 

change continuously over time” (Banks et al., 2000). 

Examples of a continuous system would be to examine the water level against a 

dam after a large rainfall which is continuously changing (Banks et al., 2000), finding the 

power produced by an engine when depressing the gas pedal, or the size of a polar ice cap 

as it melts into the ocean.  Those examples show a response that is continuously changing 

throughout the simulation.  An example of a discrete system to consider is a bank, which 

has state variables that change a discrete point: the number of customers in the bank 

changes only when a new customer walks into the bank or a service is complete and the 

customer no longer is in the system (Banks et al., 2000).  Other examples that we 

previously discussed include: fast-food restaurant drive-thrus and traffic lights which 

follow the same concept of variables changing at certain times when services are 

complete or a new customer enters the queue.  Our ECP problem aligns with the discrete 

system changing at set points in time. 



20 

Summary 

This chapter covered the overview of the characteristics of service queues and 

service systems characteristics that are used to explain the overall queueing system.  Then 

we also discussed mitigation techniques used to serve customers better allowing for 

processes that are more efficient.  We covered the Military ECP specific characteristics 

that may differ from normal queues.  Finally, we compared analytical and simulation 

techniques used to solve and provide insight to service queue issues.  
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III. Methodology 

Chapter Overview 

This chapter discusses the methodology we utilize to build the simulations to 

analyze military ECP operations and we compare them to analytical solutions of a similar 

queueing system to see if those equations are a good approximation in the future.  First, 

we cover some of the notation and characteristics of our queueing system.  Next, we 

discuss the assumptions that our models follow.  Later, we discuss the creation of the 

model in SIMIO utilizing specific processes that lead to decisions made with the system.  

We then discuss the ranges for testing our experiment followed by the technique we use 

to verify the model comparing testing data to the current processing numbers utilized in 

the SDDC handbook.  Finally, we discuss a few of the analytical solution methods from a 

similar queue system to compare to the simulations runs in order to verify if those 

equations are good approximations in the future to provide insights into the ECP 

operations. 

Notation and Characteristics of our Queueing Systems 

Throughout this chapter we use common notation when discussing our queueing 

system.  The following notation is used: 

• λ : mean arrival rate     [ ]
1

E Inter-arrival time
l =   

• µ : mean service rate   [ ]
1

E Service time
m =   
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• λρ
µ

=  utilization for a single server system which is equal to the probability 

that the server is busy 

• c : number of servers 

• c c c
ρ λρ

µ
= =  utilization for a multi-server system which is equal to the 

probability that all servers are busy 

• nP : probability that there are n customers in the system 

• L : mean number of customers in the system 

• qL : mean number of customers in the queue 

Assumptions 

Arrival Process 

We use two primary arrival processes during our simulations.  The first arrival 

process we utilize is a constant (deterministic) arrival rate used to verify the models are 

processing customers appropriately.  The second arrival process used for the majority of 

simulations will follow the Poisson distribution.  Due to the lack of empirical data and the 

success that the Poisson distribution has had when used in queue modeling (Allen, 2014), 

(Banks et al., 2000), we found this approach to be the most logical choice for our 

analysis. 

Although utilizing the Poisson arrival rate is not ideal to model high peak traffic 

hours during which arrivals become time dependent, the Poisson arrival rate should be 

successful to model the majority of arrivals to the base. 
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Service Times 

If service times within a queueing system are considered completely random, the 

exponential distribution is often used in the simulations process (Banks et al., 2000).  

Without empirical data, we thought to utilize the exponential distribution for service 

times, but there is an issue with this assumption. 

Our processing time for customers includes the drive from the “on-deck” position 

behind the current customer being serviced to the position in front of the server (ECP 

worker).  In order to find that distance for which the car would travel to move into the 

servicing position, we estimated that the car lengths and space between the cars would be 

similar to a parallel parking space.  Each car would have to travel approximately 22 feet 

(Danbury City Council, 2016), (Planning Division, 2016), (Fort Worth City Council, 

2016) from the “on-deck” position to the service position.  In compliance with the safety 

standards and speed limits (Department of Defense, 25 May 2005) set forth in each ECP 

cars would travel this length at approximately 5 miles per hours (mph).  Using this data, 

we approximate the travel of a vehicle over 22 feet at 5 mph to take 3 seconds.  This 

would imply that the service time would take a minimum of 3 seconds. 

If we were to use a strictly exponential distribution for the service times, from the 

characteristics of the exponential distribution (Ross, 2014) we know that the probability 

of an unknown value, X , being less than or equal to a given value, t , calculated using 

Equation 2 where λ  is the mean of the distribution. 

( ) 1 tP X t e λ−≤ = −  

Equation 2: Probability for Exponential Distribution 
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Using Equation 2 for number of different means, λ , we see that in Table 3 that even for a 

large 20λ = , there is a significant amount of data, 13.9%, that would be modelled at a 

value less than 3 seconds which would be unlikely. 

Table 3: P(X < 3) for Exponential Distribution. 

 

In order to correct our distribution to be more realistic but still use the exponential 

distribution due to the lack of empirical data we utilize an exponential distribution with 

mean, 3λ − , plus an additional 3 seconds which places a lower bound on the exponential 

distribution. 

Customer Characteristics 

We assume that all customers act logically when entering the queue unless 

otherwise stated.  Acting rationally consists of the following: entering the shortest 

available queue, customers enter one queue and remain in that queue not disrupting other 

lanes of traffic, and customers do not leave a large gap between them and the vehicle in 

front of them. 

λ (mean) P(X < 3)
2 0.777
4 0.528
6 0.393
8 0.313
10 0.259
12 0.221
14 0.193
16 0.171
18 0.154
20 0.139
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Service Characteristics 

Different FPCON levels dictate whether all of the vehicle occupant’s 

identifications are checked or if only the driver’s identification is checked (Surface 

Deployment, 2008).  The majority of traffic serviced through ECPs during busy traffic 

hours are vehicles on their way to work.  According to the United States Census Bureau, 

88.3% of vehicles driving to work are single occupancy vehicles (McKenzie & Rapino, 

2011).  In order to represent the vehicles with more than one occupant, 11.7% of the 

vehicles, we use the right tail of the exponential service times to represent the infrequent 

cases when more than one occupant is in the vehicle. 

ECP Operations 

Contingent on the FPCON level, random vehicle inspections are conducted at 

different rates (Surface Deployment, 2008).  To conduct vehicle inspections, a vehicle is 

removed from the queue to a separate (side) location to conduct the inspection process.  

We assume that random vehicle inspections will not interfere with traffic flow; therefore, 

vehicle inspections are not considered in our analysis. 

Model Formulation 

Service Times 

As discussed previously, we consider the service time to be from when a vehicle 

arrives in front of the worker for inspection until when the vehicle following arrives in 

the same position as the previous vehicle for processing.  We also established that we 

would be using the exponential distribution for processing time through the ECP.  In 

order to find the mean specific service time,  1
µ

, for the process we used data provided to 
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us in SDDCTEA Pamphlet 55-15, Exhibit 2.5 which is shown in Table 4 (Department of 

Defense, 25 May 2005). 

Table 4: ECF Processing Rates 

 

Using this data, we were able to establish the low and high processing times for 

each processing technique for single checks per lane that we examine.  We found the 

processing times using basic algebra seen in Equation 3. 

 

450 vehicles per hour per lane (vphpl) 0.125 vehicles per second per lane
3600 seconds per hour

1 8 seconds per vehicle per lane
0.125 vehicles per second per lane

=

=
 

Equation 3: Vehicle Processing Time 

 We were able to find all the service times for each method of service using the same 

process that is shown in Table 5. 

Table 5 : Processing Time for ECP Service 

 

Low Mid High Low Mid High Low Mid High Low Mid High
vplph 300 375 450 275 325 375 400 425 450 325 337.5 350
(1/µ) 12 9.6 8 13.091 11.077 9.6 9 8.471 8 11 10.667 10.286

Processing Times
Manual Checks Checks Using Handheld Automated Lanes without Automated Lanes with Arms
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As discussed in our assumptions, we are not using a pure exponential distribution 

for our modeling.  We use an adjusted processing time, and a sample of this is shown in 

Table 6. 

Table 6: Adjusted Processing Times 

 

Tandem Servers 

As discussed previously, we saw that the Military ECP was not a common 

queueing system; this is particularly evident when examining the use of tandem servers in 

a single lane.  In Chapter II, Figure 1 showed the overall queueing system which had a 

single server per facility or process, but if there were multiple servers at a given process 

there was freedom to maneuver to the next server or out of the system.  For ECPs, 

tandem servers are two servers in a single lane that provide the same service to the 

customer.  Once a customer receives the service, has identification verified from one 

server, they are able to bypass the next server and continue onto the base.  However, due 

to the security posture at the military ECPs, vehicles are unable to bypass vehicles in 

front of them keeping them in a single processing lane, as they get closer to each server. 

 

Figure 2: Tandem Server 

Low Mid High Low Mid High
(1/µ) 12 9.6 8 13.091 11.077 9.6

Exp(1/µ - 3) + 3 Exp(9)+3 Exp(6.6)+3 Exp(5)+3 Exp(10.091)+3 Exp(8.077)+3 Exp(6.6)+3

Manual Checks Checks Using Handheld Devices
Processing Times
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Examining Figure 2 we see Guard 1 is servicing Vehicle 1 in this queue.  Once 

Vehicle 1 occupant’s identifications are verified they no longer need the service of Guard 

2, so they are able to continue through the ECP onto the base without stopping to be 

serviced by Guard 2. 

If we exam the process a little closer, we see that this set-up is an inefficient use 

of manpower.  We look at two simple scenarios in order to recognize that the tandem 

server process is less efficient than the two parallel service gates. 

For the start of each scenario, use Figure 2 as a visual reference.  The first 

scenario uses the assumption that Vehicle 1 is processed faster than Vehicle 2 in both the 

tandem and the parallel servers.  In the parallel server example, Vehicle 1 is free to move 

forward onto the base and allow the next vehicle to move forward and begin processing.  

Alternatively, in the tandem server, Vehicle 1 is blocked by Vehicle 2 and cannot move 

forward until Vehicle 2 has completed its service as shown in Figure 3. 

 

Figure 3 : Vehicle Blocked 

 

The second scenario uses the assumption that Vehicle 2 is processed faster than 

Vehicle 1 in both the tandem and parallel servers.  In both the parallel server and tandem 

server examples, Vehicle 2 is free to move forward onto the base.  Once again, with the 

parallel servers when a vehicle is processed and moved forward the next vehicle in line is 
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able to move forward and begin processing.  However, in the tandem server, once 

Vehicle 2 moves forward onto the base, the next vehicle in queue is unable to move 

forward because it is blocked by Vehicle 1 until it has completed its service.  Guard 2 sits 

unutilized (idle) until Vehicle 1 has concluded service seen in Figure 4. 

 

Figure 4: Queue Blocked 

 

In both scenarios, we see that parallel servers allow for efficient throughput since 

each lane is essentially independent and is not affected by the processing time on the 

other lane.  However, we see that with the tandem servers the maximum of the two 

service times for Vehicle 1 and Vehicle 2 dictates ECP throughput. 

In the utilized software, SIMIO, there is not built in logic for tandem servers.  We 

created our own process that allows a vehicle to bypass the first server when entering into 

tandem servers; drive to the front available server.  We were able to accomplish this 

using a Decide and Transfer loop within the Processes section of SIMIO for our model.  

This loop, Figure 5, requires each entity (vehicle) to decide if both guards are open before 

transferring to the front guard when it is available.  This processes leaves out the 

possibility of infeasibly transferring (leap frogging) to the front guard past an occupied 

guard still servicing a vehicle. 
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Figure 5: Tandem Loop 

Model 1: Split to Individual Queue Model 

Since military ECPs are laid out and manned for base security, there is not always 

freedom to maneuver within the queue of the ECP.  For a more controlled approach, ECP 

sometimes use a technique that emplaces serpentine bollards to slow vehicle speed, 

Figure 6. 

 

Figure 6: ECP Serpentine (Surface Deployment, 2008) 

The serpentine is good for security, but not for traffic flow.  This technique takes 

two lanes of traffic and makes it only one lane, which changes the vehicle capacity of the 

ECP.  To study the effects the serpentine has on an ECP we produce a model that has an 

individual queue length that is shorter than the overall ECP queue length.  The individual 

queue length begins where the serpentine ends (Figure 7). 
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Figure 7: Serpentine for Model 

Model 2: Illogical Customer 

Most queue systems model queues that have logical customers that go to the next 

available server.  Not all customers at an ECP act logically; this may be due to the 

customer being concerned about which direction they have to turn after they pass through 

the ECP or a number of different reasons.  We create a model that examines the effect of 

the illogical customer on the queue length.  For this model, we combine the split to 

individual lane queues with having a percent of customers that stick to the left lane for 

servicing regardless of the status of the right server, acting illogically.  The remainder of 

customers act logically and enter the server with the fewest in the queue. This process is 

shown in Figure 8. 

Individual Lane Queue

Overall ECP Queue
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Figure 8: Illogical Customer Process 

Model 3: Open Additional Server 

A mitigation factor to improve throughput that was previously discussed was 

opening an additional server.  Ideally, an ECP would have all lanes occupied with 

workers in order to maximize throughput, but this could be a waste in man-power.  We 

would like to find out at what queue length to open an additional server in order to keep 

the overall queue length from increasing past the ECP lanes capacity. 

In order to model this decision, we utilized a process that would check the overall 

queue length of the system and then open the additional server if the open criterion has 

been reached.  In addition to opening the system, we record the time that it happened for 

later analysis shown in Figure 9. 
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Figure 9: Open New Server Process 

The process is the same for all models that open a second server for both tandem and 

parallel servers. 

Ranges for Testing 

 After choosing a slightly modified exponential distribution for the service time 

and a Poisson distribution for the arrival time, we use some of the guidelines already in 

place for M/M/1 and M/M/c servers in order to minimize our testing values. 

Arrival Rate (λ) 

 We wanted the testing to be realistic for ECP workers to calculate and decipher.  

With this in mind, we use arrival rates that refer to the number of cars that enter the ECP 

per minute.  Using these values makes it easier for workers to adjust while working; a 

simple count of the cars that entered the previous minute estimate the current arrival rate. 

Parallel Servers 

In order for an M/M/c server to be considered stable, it must have a utilization 

rate, 1cρ < , otherwise the queue length will grow infinitely over time as the server 

cannot keep up with the arrival rate.  For the majority of testing, we examine the ranges 
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where the utilization rate for a singer server is great than 1, 1 1ρ > , and the utilization rate 

for two servers is less than 1, 1cρ < .  These values are shown in Table 7. 

Table 7: Parallel Server Testing 

 

Tandem Servers 

We know that tandem servers should outperform an M/M/1 queue, but 

underperform compared to an M/M/2 server.  This assists in narrowing the scope of 

testing for the tandem model.  After a few initial experiments, our testing uses the range 

where the utilization rate for a singer server is great than 1 and less than 1.6, 11 1.6ρ< < . 

Service Rate (μ)
(seconds)

Arrival Rate (λ)
vehicles  per minute ρ ρ2

8 7 0.93 0.47
8 8 1.07 0.53
8 9 1.2 0.6
8 10 1.33 0.67
8 11 1.47 0.73
8 12 1.6 0.8
8 13 1.73 0.87
8 14 1.87 0.93
8 15 2 1

9.6 6 0.96 0.48
9.6 7 1.12 0.56
9.6 8 1.28 0.64
9.6 9 1.44 0.72
9.6 10 1.6 0.8
9.6 11 1.76 0.88
9.6 12 1.92 0.96
9.6 13 2.08 1.04
9.6 4 0.64 0.32
12 5 1 0.5
12 6 1.2 0.6
12 7 1.4 0.7
12 8 1.6 0.8
12 9 1.8 0.9
12 10 2 1
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Verification of Baseline Model 

 To ensure that our adjusted distribution followed the current expected throughput 

for the lanes we ran our model for 50 replications with a constant, overwhelming arrival 

rate that would ensure a full queue for processing.  We then compare our numbers to the 

estimations provided in Table 4 earlier in this chapter; we do this through visual 

inspection and not statistical testing as we are only verifying if our model is a good 

estimation of the current process. 

Table 8: Baseline Vehicle Throughput 

 

We see from Table 8 that using the adjusted exponential service time does not affect the 

overall throughput of the server. 

Simulation Specifics 

Simulation Overview 

The models examined utilize SIMIO for all simulations.  Each of the individual 

variants of the models is replicated 30 times.  For example, Model 1 will run 30 

replications for a single arrival rate (eight vehicles per minute), single service time (eight 

seconds per vehicle), and single individual queue length (five vehicles).  In order to 

remove the variance of the arrival rate from influencing the results, the starting seed for 

the arrival rate is set for consistency between experiments.  An internal process to SIMIO 

Low Mid High Low Mid High
Assumed vplph 300 375 450 275 325 375

Model vplph 303.68 376.22 449.5 278.46 327.38 376.22
Difference 3.68 1.22 -0.5 3.46 2.38 1.22

Vehicle Throughput
Manual Checks Checks Using Handheld 
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will record all start and end times into a spreadsheet (Appendix A: SIMIO Processes) that 

is used to analyze the data after all experiments are completed. 

Recovery Time 

The focus of the simulations is to monitor when queue length interferes with 

traffic outside the base.  In order to record this data we needed to set standards for a 

recovery once the queue reaches a length that interferes with civilian traffic surrounding 

the base.  The simple standard would be once the queue is equal to its capacity it is 

recovered, but due to the rate of arrivals involved with the queueing system it could be 

very likely that the system would reach a length over capacity within seconds.  We 

determined an adequate queue length for recovery was two vehicles less than the capacity 

of the ECP.  This would allow for two arrivals before queue length would interfere with 

outside traffic again.  The recovery time is defined in Equation 4. 

( ) ( ) Queue < (Capacity - 2)  Queue > CapacityRecovery Time = Time Time-  

Equation 4: Recovery Time 

Unrecoverable Queue 

For some of the systems we know there will be a time when the queue length 

becomes unrecoverable with the processing and arrival rates tested.  We establish a 

method to determine if the queue is considered unrecoverable.  We defined a queue as 

unrecoverable if the end time of the simulation minus the last time the queue length was 

observed within the capacity of the ECP was greater than the average recovery time for 

that experiment with the same arrival and processing rates. 
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Analytic Methodology 

There are two primary formulas within M/M/1 and M/M/c queueing systems that 

we later utilize to compare analytical solutions to our model results.  We use the mean 

(expected) number of customers in the queue during steady state operations.  These 

formulas are shown in Equation 5and Equation 6. 

2

1qL ρ
ρ

=
−

 

Equation 5: M/M/1 Expected Number of Customers in the Queue 
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Equation 6: M/M/c Expected Number of Customers in the Queue 

Scoring Measure – Fitness Functions 

After we obtain the numerical results from the simulations, other than visual 

inspection, we have not set any criteria to assist in choosing the best option for 

application.  We discuss how we used numerical results in choosing the best options 

below. 

Since our attention is on the length of the queue as the driving decision for our 

assignment, we choose to focus on unrecoverable queues and the duration of overages 

that interfere with traffic.  Using just those inputs, the results would focus purely on 

queue length and not on the stress of the worker for the additional ECP as the worker 

may occupy the server multiple times an hour for a short duration of time each opening.  

Additionally, any simulation that ended with 50% or more runs unrecoverable were 

eliminated from consideration regardless of score. 
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We explore a few different scoring options in order to place emphasis on different 

aspects of the results.  We chose four different scoring equations and noted the top four in 

each category, which is the lowest score for that category.  In order to keep the 

proportions similar for each category we normalized the data before adding them 

together.  The option with the greatest number of top scores in the all categories is chosen 

as the best.  The four equations we chose as scores are shown below. 

( ) ( ) ( )# unrecoverable # over occurances average duration of overages+ +  

Equation 7: Score 1 

( ) ( ) ( )#  unrecoverable # over occurances 2 average duration of overages+ +  

Equation 8: Score 2 

( ) ( )Score 1 + # open occurances  

Equation 9: Score 3 

 ( ) ( )Score 2 + # open occurances  

Equation 10: Score 4 

If there is a tie within a given queue system we will chose the option with the longest 

opening length as we will obtain similar results with a longer queue length before 

opening. 

Summary 

This chapter discussed many aspects of our models that we use to build our 

simulations to analyze ECP operations.  We discussed which distributions to use to for 

our model as well as some of the processing decisions we use during our simulations.  

The ranges for our tests were determined based on our knowledge of a similar queueing 
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system.  We concluded with some of the analytic solution methods we use during our 

analysis.  
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IV. Analysis and Results 

Chapter Overview 

This chapter uses simulation results from the methods described previously to 

provide insight in our queueing system.  We focus on four simulation models: the 

baseline model, split length to individual queues model, illogical customer model, and 

opening of second server model.  For the baseline model, we compare our results to 

analytical solutions to verify if we can use them for later analysis.  For the other three 

models, we explore the results from some of the more interesting simulations and discuss 

insights we take away from the simulations. 

Baseline Model 

We wanted to explore each queue system process, single server, tandem server, 

and parallel server, to compare them to some of the analytic solutions of similar queueing 

systems.  Each server design ran for 30 replications with a one-hour warm up period in 

order to get the system into a steady state. 

Single Server 

We concentrated our simulations on arrival rates (λ) and processing rates (μ) that 

would result in utilizations that range from 0.60 to 1.00.  This would give us an insight to 

the model in comparison with the M/M/1 queueing system. 

The first test we conduct is the comparison of the expected queue length, qL , 

utilizing a two sample t-test to verify if the means are equal.  For the rejection criterion, 

we use a significance level of 0.05 to reject the hypothesis that the means are equal. 
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Table 9: Mean t-test for Single Service Model 

 

Looking at Table 9 we see that for all models we reject the hypothesis that the 

mean queue lengths are equal.  Using these results, there is a low likelihood that our 

model is equivalent to the M/M/1 system.  In order to estimate results of our queueing 

system, utilizing the M/M/1 system calculations would not be a good assumption. 

Tandem Servers 

The same testing is conducted for the tandem server, though there are no tandem 

server systems with established analytical solutions.  The tandem simulations were 

conducted on single server utilizations that range from 0.70 to 1.20.  For this comparison, 

we once again use a two-sample t-test to verify the equality of the means. 

Processing 
Time (1/μ)

Inter-arrival 
Time (1/λ) ρ

Exponential 
Distribution L Eq

Adjusted 
Distribution L Aq t-score p-value L Eq  = L Aq

8 7 0.933 5.290 2.605 4.586 0.000 No
8 6 0.800 1.465 0.627 8.583 0.000 No
8 5 0.667 0.546 0.212 11.010 0.000 No
8 4 0.533 0.199 0.066 12.055 0.000 No

9.6 6 0.960 7.980 4.776 2.682 0.010 No
9.6 5 0.800 1.460 0.727 6.936 0.000 No
9.6 4 0.640 0.439 0.195 8.841 0.000 No

11.08 5 0.923 4.663 2.792 2.872 0.006 No
11.08 4 0.739 0.897 0.474 6.174 0.000 No
11.08 3 0.554 0.214 0.103 5.812 0.000 No

12 4 0.800 1.425 0.818 4.674 0.000 No
12 3 0.600 0.303 0.158 5.192 0.000 No

13.1 4 0.873 2.609 1.643 3.042 0.004 No
13.1 3 0.655 0.448 0.255 4.516 0.000 No
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Table 10: Mean t-test for Tandem Service Model 

 

The results seen in Table 10 show that there is a low likelihood that the adjusted 

exponential distribution tandem model is equivalent to a strict exponential distribution as 

only 1 of 16 means were statistically equal. 

Parallel Servers 

Once again, the same testing is conducted for the parallel servers.  Our 

simulations were conducted on arrival rates (λ) and processing rates (μ) that would result 

in utilizations that range from 0.60 to 1.00 for a multiple server queueing system.  A two-

sample t-test is used to verify the equality of the means. 

Processing 
Time (1/μ)

Inter-arrival 
Time (1/λ) ρ

Exponential 
Distribution L Eq

Adjusted 
Distribution L Aq t-score p-value L Eq  = L Aq

8 9 1.200 114.707 85.347 2.591 0.012 No
8 8 1.067 26.309 6.377 3.208 0.002 No
8 7 0.933 1.851 0.320 4.874 0.000 No
8 6 0.800 0.426 0.121 6.240 0.000 No

9.6 7 1.120 44.656 18.959 3.498 0.001 No
9.6 6 0.960 1.985 0.582 4.039 0.000 No
9.6 5 0.800 0.393 0.143 3.881 0.000 No

11.08 6 1.108 28.331 12.341 2.653 0.011 No
11.08 5 0.923 1.425 0.449 3.189 0.003 No
11.08 4 0.739 0.342 0.116 4.782 0.000 No

12 6 1.200 75.578 55.672 2.397 0.020 No
12 5 1.000 4.416 1.032 3.357 0.002 No
12 4 0.800 0.559 0.196 4.151 0.000 No

13.1 5 1.092 21.331 11.567 1.764 0.084 Yes
13.1 4 0.873 0.940 0.390 3.644 0.001 No
13.1 3 0.655 0.163 0.072 3.595 0.001 No
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Table 11: Mean t-test for Parallel Service Model 

 

Examining Table 11 we see that for values of ρ greater than 0.96 there is no 

evidence to reject that the means of the queue lengths are equal.  This is most likely due 

to the high variance of the mean for these models.  Our concentration for our simulations 

is on utilization values of less than one otherwise the models could become unstable and 

queue lengths would trend towards infinity and there are no closed for solutions for 

M/M/c systems unless 1ρ <  .  This information confirms that for all three models, there 

is a low likelihood that the adjusted exponential distribution models are equivalent to a 

strict exponential distribution.  These results inform us not to use known M/M/c or 

M/M/1 system calculations as estimates for our models. 

Processing 
Time (1/μ)

Inter-arrival 
Time (1/λ) ρ

Exponential 
Distribution L Eq

Adjusted 
Distribution L Aq t-score p-value L Eq  = L Aq

8 15 1.000 37.955 28.699 1.230 0.224 Yes
8 14 0.933 9.928 4.942 2.820 0.008 No
8 13 0.867 3.355 1.643 3.897 0.000 No
8 12 0.800 1.735 0.837 3.815 0.000 No
8 11 0.733 0.912 0.424 5.399 0.000 No
8 10 0.667 0.477 0.201 6.846 0.000 No

9.6 12 0.960 13.755 8.464 1.618 0.112 Yes
9.6 11 0.880 3.682 2.059 2.891 0.006 No
9.6 10 0.800 1.470 0.779 4.404 0.000 No
9.6 9 0.720 0.684 0.343 5.339 0.000 No
9.6 8 0.640 0.340 0.162 5.186 0.000 No

11.08 11 1.016 37.104 32.086 0.804 0.425 Yes
11.08 10 0.923 5.418 3.380 2.292 0.027 No
11.08 9 0.831 1.828 1.049 3.418 0.001 No
11.08 8 0.739 0.769 0.430 3.293 0.002 No
11.08 7 0.646 0.341 0.174 4.257 0.000 No

12 10 1.000 24.588 20.016 0.900 0.372 Yes
12 9 0.900 3.857 2.423 2.700 0.010 No
12 8 0.800 1.287 0.783 2.618 0.012 No
12 7 0.700 0.540 0.300 3.654 0.001 No
12 6 0.600 0.239 0.125 4.350 0.000 No

13.1 9 0.983 16.856 12.954 1.148 0.256 Yes
13.1 8 0.873 2.646 1.695 2.432 0.019 No
13.1 7 0.764 0.925 0.558 2.942 0.005 No
13.1 6 0.655 0.388 0.222 3.704 0.001 No
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Model 1: Split to Individual Queue Model 

Examining the split to individual queue model where customers act logically is 

comparable to an examination into the overall length of a single queue system with two 

servers.  Using this information, we know that the length should increase continuously 

over time with utilization rates greater than or equal to one.  We also discovered from the 

baseline model that once the utilization rate drops below 0.9 the average queue length is 

less than four customers that is well below the ECP capacity of twenty customers.  We 

focus our analysis on the five models with 20.90 1.00ρ≤ <  

Results 

Starting with the lowest two utilization models of 2 0.90ρ = and 2 0.92ρ = , we 

found that if the individual queue length is greater than four, there were no occurrences 

where the overall queue length exceeded the capacity of the ECP.  In order for the next 

model, 2 0.93ρ = , to satisfy the same requirement, the individual queue length would 

have to be greater than eleven.  Although that is the best case for this model, having an 

individual queue length of 1 resulting on only 0.4 overage occurrences per hour with an 

average recovery time of 3.0 ± 1.3 minutes. 

For the next three models, we had to utilize numerical criteria to assist in our 

decision-making, as it was not as straightforward as the previous results.  We focused on 

minimizing unrecoverable occurrences within each model as well minimizing all overage 

occurrences in the simulations.  The choices for the remaining two models are shown in 

Table 12. 
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Table 12: Split Queue Results 

 

Insights 

When opening a second server it is important to open a second full lane.  

Although there are few models, when parallel servers are unable to maintain a steady 

control of the queue, fully opening the second lane adds a large buffer for any variations 

with the customers at the ECP. 

Model 2: Illogical Customer Model 

With the illogical customer model, we test probability values from 0.2 to 0.8 of 

turning left while the remaining customers act in a logical manner choosing the shortest 

queue to enter if it was accessible. 

Results 

We are able to conclude that a probability of turning left of 0.8 was detrimental to 

queues and ended every replication in an unrecoverable state.  Most models with a 

probability of turning left equal to 0.7 were also unrecoverable except for two models, 

2 0.70ρ =  and 2 0.72ρ = , which resulted in 33% and 40% of the models reaching an 

unrecoverable queue length.  Once the probability dropped to 0.6 there were only five 

total models able to sustain a maintainable queue within the ECP capacity; all five 

sustainable models had a utilization value less than or equal to 0.80. 

 The models with a left turn probability of 0.5 showed the largest range throughout 

the models.  Examining the average queue length in Figure 10, we see an almost linear 

Processing Time 
(1/μ)

Inter-arrival Time 
(1/λ)

Two Server
ρ2 = (λ/2μ)

Length of 
Individual Queues

Unrecoverable
(Percent)

Over Occurances 
(per hour)

Average Recovery 
Time

(minutes)

13.1 6.67 0.98 > 14 3.33% 0.183333333 4.47 ± 3.85
9.6 5.00 0.96 > 10 3.33% 0.1 4.81 ± 2.85
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trend to what individual queue length is required for the overall queue length to no longer 

be affected by the turning probability. 

 

Figure 10: Illogical Customer Probability = 0.5 

With the probability at or below 0.4 of turning left, all models could easily 

maintain an overall queue length within the ECP capacity.  There were only three models, 

seen in Table 13, that required a separate individual queue while all other models with 

2 0.90ρ <  were able to sustain a single queue for the system and stay within the ECP 

capacity. 

Table 13: Illogical Customer Probability = 0.40 

 

Insights 

When using multiple (parallel) servers it is vital to open both individual queue 

lanes as fully as possible in order to sustain any variability with the customers. 
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Processing Time 
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ρ2 = (λ/2μ)

Length of 
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8 4.29 0.93 > 3
12 6.67 0.90 > 1

*All other models (ρ < 0.90) can sustain a joint single queue
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Model 3: Open Additional Server Model 

Tandem Server Results 

After running multiple iterations of the tandem server, we notice that this system 

can be extremely sensitive.  This is amplified by the fact we only used inter-arrival times 

related to whole car arrivals per minute.  There is a very small gap of utilization values 

where operating an additional tandem server would be useful.  From our results, the only 

time to utilize a tandem server as the only addition to your single server queueing system 

would be for the following single server utilization values: 0.93 1.12ρ< < . 

Using the weighting scale from Chapter III, we were able to choose the best 

option of when to open the tandem server.  The results of this testing is shown below, in 

Table 14. 

Table 14: Results for Open Tandem Server 

 

 Even though we were able to find solutions using our scoring criteria, we wanted 

to see if we would come to the same conclusions using visual inspection of the graphical 

Processing 
Time (1/μ)

Inter-arrival 
Time (1/λ)

Single 
Server

ρ = (λ/μ)

Queue 
Length To 

Open
Open Time 
(minutes)

Between 
Openings 
(minutes)

Over 
Occurances 
(per hour)

Queue 
Unrecoverable

(Percent)
9.6 8.57 1.12 + + + + +

11.08^ 10 1.11 5 7.22 ± 1.63 15.28 0.716666667 43.33%
13.1^^ 12 1.09 6 11.69 ± 2.35 30.66 0.45 40.00%

8 7.5 1.07 6 7.38 ± 1.44 10.1 0.57 16.67%
9* 8.57 1.05 9 11.29 ± 2.19 24.01 0.333333333 20.00%
9.6 9.23* 1.04 7 7.64 ± 1.24 14.73 0.133333333 0.00%
12 12 1.00 8 9.82 ± 1.68 31.09 0.016666667 0.00%
9.6 10 0.96 12 8.99 ± 1.92 107.14 0.00 0.00%
8 8.57 0.93 - - - - -

11.08 12 0.92 18 12.14 3,587.86 0.00 0.00%
13.1 15 0.87 - - - - -
12 15 0.80 - - - - -

+ All open lengths resulted in > 50% unrecoverable

 ̂Only four options were consider as the rest resulted in > 50% unrecoverable

^  ̂Only nine options were consider as the rest resulted in > 50% unrecoverable

* Data added to fill gap in ρ values

- Single server sustained for 60 hours of simulation
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results.  We examine two of the results with the graphs; referring to the experiments by ρ 

value, we examine ρ = 1.07 and ρ = 1.00 from Table 14. 

For the first experiment, ρ = 1.07, Figure 11 contains three separate graphs which 

contain the majority of the results we have been discussing.  The top left graph shows the 

average ending queue length for each experiment with a queue length of 20 being our 

ECP capacity.  The top right graph displays the statistics gathered from the second server 

opening, and the bottom graph shows the recovery statistics for the experiment.  By 

examining the graphs in Figure 11 we would most likely choose a value between 4 and 6, 

and being conservative we would choose the open length of 4 which is the same result 

utilizing the scoring method. 

 

Figure 11: Tandem Experiment ρ = 1.07 
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The second ρ = 1.00 has graphs configured the same way as the previous 

experiment in Figure 12.  Focusing specifically on the recover statistics, we would likely 

choose a queue length of 12-14 for the opening length.  Looking back at our scoring 

method, we would have chosen 14 which strengths our confidence that the scoring 

methodology. 

 

Figure 12: Tandem Experiment ρ = 1.00 

Tandem Server Insight 

While opening a second server in a tandem position may be beneficial to 

increasing throughput when faced with a high arrival rate, it is not beneficial in dropping 

the overall length of the queue during steady state operations. 

When observing the operation of this queue during the simulation we noticed that 

the tandem servers acted like a batch server.  This was due to the fact that both servers 
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were occupied or blocked until all services were complete.  That idea should hold for any 

number of tandem servers.  The tandem servers do not act like a typical batch server, 

which has one service distribution for the batch.  Instead, the service time for the “batch” 

is the max service time of the total of tandem servers. 

Parallel Server Results 

The results of the parallel server system seem to require a little less analysis due 

to the responsiveness of the queue as we cut the utilization in half when adding a second 

server because both servers are accessible to the queue. 

We look at the same model over three different queue capacities.  We first look at 

opening a second server but keeping a single queue so the capacity does not change from 

20 when opening a second server.  Then we look at opening a second server with a 

partially blocked second lane only opening half the available 2nd queue increasing the 

capacity to 30.  Lastly, we look at the case where we open a second server with the full 

lane accessible to the queue for a new capacity of 40 vehicles. 

ECP Capacity Single Lane 

When analyzing the single lane model for the best choice of opening queue length 

the scoring model was no longer the best method for models with 1.6ρ < .  Using the 

scoring methodology these models would choose the small values of opening queue 

length when there was no significant benefit to opening the queue more often for shorter 

periods of time.  These models also had zero unrecoverable replications.  For models with 

1.6ρ <  we chose the best option to be when the number of over occurrences per hour 

was less than 1.  Table 15 shows our results for opening a parallel server. 
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Table 15: Results for Open Parallel Server (Capacity = 20) 

 

ECP Capacity Single Plus Partial Lane 

There was a significant change to the results if the ECP was able to achieve 1.5 

times the original capacity opening a second lane.  For all models with 1.85ρ ≤ , the 

opening criteria was 19 in the queue (at capacity) as long as vehicles could begin to move 

freely into the second queue.  For the remaining three models and their new 

recommended opening queue, lengths are shown in Table 16. 

Processing 
Time (1/μ)

Inter-arrival 
Time (1/λ)

Single 
Server

ρ = (λ/μ)

Queue 
Length To 

Open
Open Time 
(minutes)

Between 
Openings 
(minutes)

Over 
Occurances 
(per hour)

Queue 
Unrecoverable

(Percent)
4.29 1.87 5 4.39 ± 0.52 1.24 0.73 3.33%
4.62 1.73 13 6.43 ± 0.38 2.8 0.52 0.00%
5.00 1.60 16 5.31 ± 0.22 3.94 0.67 0.00%
5.45 1.47 17 4.18 ± 0.14 5.15 0.42 0.00%
6.00 1.33 18 3.51 ± 0.10 7.63 0.65 0.00%
6.67 1.20 18 2.94 ± 0.10 12.58 0.17 0.00%
7.50 1.07 19 2.61 ± 0.11 33.03 0.27 0.00%
5.00 1.92 7 10.19 ± 1.86 4.68 1.02 23.33%
5.45 1.76 17 11.16 ± 0.78 4.91 2.08 3.33%
6.00 1.60 17 6.50 ± 0.31 5.04 0.83 0.00%
6.67 1.44 18 5.08 ± 0.18 7.25 1 0.00%
7.50 1.28 18 3.93 ± 0.13 11.01 0.55 0.00%
8.57 1.12 19 3.24 ± 0.13 24.88 0.47 0.00%
6.67 1.80 10 8.91 ± 0.85 3.72 0.483333333 3.33%
7.50 1.60 17 8.15 ± 0.42 6.49 0.75 0.00%
8.57 1.40 18 5.79 ± 0.24 10.07 0.6 0.00%

10.00 1.20 19 4.70 ± 0.22 20.48 0.533333333 0.00%
6.00 1.85 8 8.28 ± 0.93 2.8 0.416666667 3.33%
6.67 1.66 16 8.62 ± 0.49 5.44 0.616666667 0.00%
7.50 1.48 17 5.95 ± 0.24 7.43 0.483333333 0.00%
8.57 1.29 18 4.52 ± 0.18 12.46 0.333333333 0.00%

10.00 1.11 19 3.66 ± 0.17 31.29 0.4 0.00%
6.67 1.97 11 23.16 ± 5.17 26.15 1.3 36.67%
7.50 1.75 14 11.59 ± 0.92 5.72 0.766666667 0.00%
8.57 1.53 17 7.31 ± 0.37 8.27 0.6 0.00%

10.00 1.31 18 5.61 ± 0.25 13.75 0.316666667 0.00%
12.00 1.09 19 4.42 ± 0.27 44.89 0.15 0.00%

9.6

13.1

8

12

11.08
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Table 16: Results for Open Parallel Server (Capacity = 30) 

 

ECP Capacity Double Lane 

If the ECP was able to open up two full lanes for a 40 vehicle capacity the only 

model that would not have opening criteria of a queue length of 19 would be the model 

with a single server 1.97ρ =  with an opening queue length equal to 16, shown in Table 

17. 

Table 17: Results for Open Parallel Server (Capacity = 40) 

 

Parallel Server Insight 

As we saw earlier, opening up the extra queue capacity within the ECP is crucial.  

While opening a second server is great advantage to processing, opening a second server 

and a second queue is the best way to keep the ECP queue from interfering with the 

outside traffic. 

Scoring Sensitivity Analysis 

Exploring the sensitivity of the scoring fitness functions, we examine the criteria 

in which we consider a queue unrecoverable.  In our earlier fitness function, we defined 

an unrecoverable queue if the end time of the simulation minus the last time the queue 

length was observed within the capacity of the ECP was greater than the average 

Processing 
Time (1/μ)

Inter-arrival 
Time (1/λ)

Single 
Server

ρ = (λ/μ)

Queue 
Length To 

Open
Open Time 
(minutes)

Between 
Openings 
(minutes)

Over 
Occurances 
(per hour)

Queue 
Unrecoverable

(Percent)
13.1 6.67 1.97 12 26.43 ± 6.18 27.3 0.65 16.67%
9.6 5.00 1.92 11 16.21 ± 2.74 9.14 0.52 10.00%
8 4.29 1.87 14 12.84 ± 1.51 4.98 0.27 3.33%

Processing 
Time (1/μ)

Inter-arrival 
Time (1/λ)

Single 
Server

ρ = (λ/μ)

Queue 
Length To 

Open
Open Time 
(minutes)

Between 
Openings 
(minutes)

Over 
Occurances 
(per hour)

Queue 
Unrecoverable

(Percent)
13.1 6.67 1.97 16 30.97 ± 7.21 44.03 0.316666667 10.00%
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recovery time for that experiment with the same arrival and processing rates.  In order to 

cover a wider range of data, we explored an unrecoverable queue if the end time of the 

simulation minus the last time the queue length was observed within the capacity was 

greater than the average recovery time plus three standard deviations.  Using Chebyshev's 

inequality, we know that if we include up to three standard deviations, we cover at least 

88.89% of the data.  Changing the fitness function with the new unrecoverable criteria, 

we only see a change in three of the 27 parallel model results seen in Table 18. 

Table 18: Fitness Function Sensitivity Analysis Parallel 

 

With the 12 tandem models, the results did not change at all.  The total change from 

using the new fitness function for the 39 experiments is less than eight percent.  After 

seeing these results, we did not change the original fitness functions.  

Summary 

This chapter provided analysis for four queueing system models.  We were also 

able to provide some insights into the overall model from the analysis conducted.  

Finally, in Chapter V, we discuss conclusions and recommendations for an ECP queueing 

system. 

Processing 
Time (1/μ)

Inter-arrival 
Time (1/λ)

Single 
Server

ρ = (λ/μ)

Queue 
Length To 

Open
Open Time 
(minutes)

Between 
Openings 
(minutes)

Recovery 
Time 

(minutes)

Queue 
Unrecoverable

(Percent)
8 7.41 ± 0.94 2.04 2.70 ± 0.73 6.67% Mean
3 2.37 ± 0.28 0.7 3.12 ± 1.22 0.00% Mean + 3σ
5 6.93 ± 1.20 2.96 5.55 ± 1.80 23.33% Mean
3 3.66 ± 0.63 1.48 5.69 ± 1.69 10.00% Mean + 3σ
4 7.70 ± 1.72 5.48 8.61 ± 2.92 33.33% Mean
6 11.08 ± 2.41 10.22 9.56 ± 4.11 0.00% Mean + 3σ

4.29 1.87

5.00 1.92

6.67 1.97

8

9.6

13.1
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V.  Conclusions and Recommendations 

Chapter Overview 

In this chapter, we summarize the insights found from our research and propose 

possible directions for future research.  This analysis presented insights into the ECP 

queueing system that can prevent the system from interfering with surrounding traffic.  

With improved data and further exploration into multiple lane systems, policies and 

procedures could be implemented to improve ECP operations. 

Conclusions of Research 

Although our model utilized an adjusted exponential service distribution, not 

statistically the same as a pure exponential service distribution, we were able to use the 

utilizations, ρ, as references for our experimentation.  This is beneficial for an ECP to 

utilize as a quick calculation to understand if their current processing layout is even 

feasible with the current arrival rate; the ECP cannot sustain a constant utilization greater 

than 1. 

Illogical Customer 

In order to prevent the illogical customer base from affecting the operations of the 

ECP it is imperative to open both queues back as far as possible in order to maximize the 

space for logical drivers to move to the shortest queue available.  Not opening the entire 

queue can result in customers being unable to access an available server, which then 

cause the queue length to grow unnecessarily due to obstruction. 
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Tandem Server vs. Parallel Server 

Based on the results from the two experiments there does not seem to be a time 

when utilizing tandem servers over parallel servers would be beneficial.  The tandem 

server set-up was only able to recover the queue for utilization levels of 1.11ρ ≤ , where 

the parallel system was able to recover for utilization levels of 1.97ρ ≤ . 

While adding a second tandem server does not significantly influence the overall 

length of the queue compared to the parallel server, in certain circumstances it can be 

beneficial.  If there is not another lane to add an additional parallel server or the ECP is 

trying to shorten the wait time for customers in a system with utilization levels of 

1.11ρ ≤ , then utilizing the tandem server is beneficial. 

Recommendations for Future Research 

We suggest the following areas to improve and/or extend this research. 

Verify Service Distribution 

Without empirical data, we chose to utilize the most common service distribution, 

the exponential distribution.  Gathering data from ECPs throughout the military would be 

beneficial to verify our assumption. 

Multiple Lanes 

This research focused on two lanes for an ECP system, which allowed us to focus 

on the effect of adding a second server to the ECP, not set policies.  Expanding the 

research to larger systems could provide input to a variety of ECP arrangements allowing 

each military instillation to receive input for their specific ECF layout. 
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Closed Form Solution for Adding Additional Server 

We utilize simulations for our research because we chose to use an 

unconventional service distribution that did not have analytical or closed form solutions.  

For queueing systems that operate with known distributions, utilizing the N-policy 

research from Balachandran, 1973, it may be possible to explore a closed form solution 

for adding and removing queueing systems that become overwhelmed. 

Tandem Servers as Batch Service 

 As previously discussed, we observed tandem servers to operate similar to a batch 

service system with the service time equal to the maximum service time of the tandem 

servers in that lane.  Exploring this further may lead to way to approximate the two 

service times as one batch service time.  This would speed up the processing time of 

experiments utilizing fewer decisions in the simulations.  This could also lead to better 

comparisons of the system if approximate batch processing time distributions are found. 
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Appendix A: SIMIO Processes 

 
Figure 13: Record Length of Time for Recovery of Queue (All Models) 

 

 
Figure 14: Illogical Customer Decision to Choose Left or Right Lane (Model 2) 

 

 
Figure 15: Record Length of Time 2nd Server Open (Model 3) 
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Figure 16: Transfer Vehicle to Open Gate (Model 3) 

 
Figure 17: Transfer Vehicle to Open Server (Model 3 - Tandem) 
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Appendix B: Story Board 
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