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Abstract

A system-level analysis was performed on Visible Infrared Imaging Radiometer

Suite (VIIRS) Cloud Base Height (CBH) products. CBH is an important factor for

both aviation and climate research, but a lack of spatial coverage for ground-based

CBH retrieval is a significant limitation. Therefore, space-based retrieval by

polar-orbiting satellites is essential. The VIIRS CBH retrieval algorithm was

evaluated for single-layer water clouds at moderate pixel resolution, which averages

˜1 km. Accurate (truth) measurements were needed not only for the CBH product,

but also for other VIIRS data used to create the CBH product: cloud optical

thickness (COT), effective particle size (EPS), and cloud top height (CTH). This

necessitated the exploitation of ground-based data collected at the United States

(U.S.) Department of Energy (DOE) Atmospheric Radiation Measurement (ARM)

sites. Match-up datasets were created between VIIRS cloud products and DOE

ARM site truth datasets from June 2013 through October 2015 for four locations.

The initial results showed the error in the VIIRS CBH products to be large and

highly variable; however, errors in VIIRS COT and the derived VIIRS cloud

geometric thickness were much smaller. Consequently, the VIIRS CTH product was

replaced with the ARM CTH (truth) product, which substantially reduced the

variability and errors in the VIIRS CBH products - indicating that performance of

the VIIRS CBH products were most strongly correlated with errors in the VIIRS

CTH product, while errors in COT and cloud geometric thickness were acceptable.

Once corrections were made for the CTH errors, the CBH products were found to

be greatly improved, which verifies the technical approach used in the retrieval of
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the CBH product. Thus, future research is needed to reduce the errors in the VIIRS

CTH products in order to ensure the VIIRS CBH products are suitable for civilian

and military aerodrome operations.
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EVALUATION OF THE VISIBLE INFRARED IMAGING RADIOMETER SUITE

CLOUD BASE HEIGHT PIXEL-LEVEL RETRIEVAL ALGORITHM FOR

SINGLE-LAYER WATER CLOUDS

I. Introduction

1.1 Motivation

Cloud base height (CBH) is an important factor for both aviation and climate

research. The American Meteorological Society (AMS) Glossary of Meteorology

defines cloud base to be “the lowest level in the atmosphere at which the air

contains a perceptible quantity of cloud particles” (AMS Glossary, 2015b). For

aviation, the height of the “ceiling” occurs where the lowest cloud layer obscures

more than half of the sky (AMS Glossary, 2015a). Low ceilings often occur in

conjunction with restricted visibility (e.g. fog), and a National Weather Service

(NWS) study found that low ceilings and fog were contributing factors in 63% of all

fatal accidents involving general aviation and small commuter aviation aircraft

between 1995 and 2000 (Pearson, 2002).

For military aviation, in particular, the identification of cloud boundaries is

useful for a wide range of weather-sensitive mission profiles. For example, the

reduced visibility caused by cloud particles can be a limiting factor for in-flight

refueling operations. Additionally, unmanned aircraft are known to be extremely

sensitive to even the most benign aircraft icing conditions (Williams, 2004), and

therefore, must be aware of cloud boundaries at altitudes where ice formation is

possible. However, it is low cloud bases that greatly impact a wide variety of

1



military operations, including takeoff and landing; air assaults; search and rescue,

particularly in coastal and oceanic regions where sea stratus is prevalent;

intelligence, surveillance, and reconnaissance; general low-level rotary flight,

especially through narrow mountain passes; and close air support. Some mission

impacts result from having to operate at unsafe altitudes to stay below such low

cloud bases, which elevates risk and forces pilots to rely on aircraft instrumentation

rather than visual cues, while other impacts result from a lack of cloud-free line of

sight (CFLOS).

In terms of climate research, CBH is a significant parameter in determining the

surface energy budget (Gupta, 1989; Berendes et al., 1992; Forsythe et al., 2000).

Longwave radiation emitted by the surface of the earth is absorbed and re-emitted

by clouds, as well as by water vapor, carbon dioxide, and other atmospheric gases.

The amount of infrared radiation emitted to the surface by clouds depends

primarily on the average temperature at cloud base, as shown by the

Stefan-Boltzmann law for an approximate blackbody (which clouds are in the

infrared) (Petty, 2006). Given that the average temperature of the emitting cloud

layer depends strongly on its height, it is clear that more accurate CBH retrieval

corresponds with a more precise surface energy budget determination. In fact, one

study found that a 100-millibar (mb) uncertainty in CBH at the 650-mb level leads

to surface errors of approximately 5 W m-2 (Gupta, 1989).

Currently, the most reliable method for retrieving CBH for a single location is

from the surface, with lidar-exploiting ceilometers being the instrument of choice for

civilian airports and military bases, alike. The primary limitation of the ceilometer

is the lack of coverage across the earth, especially in remote, data-sparse locations.

One way to overcome this limitation is to use the high-resolution, global data of

polar-orbiting satellites. With the launch of the Suomi National Polar-orbiting

2



Partnership (S-NPP) satellite in 2011, the Visible Infrared Imaging Radiometer

Suite (VIIRS) became “the first operational satellite sensor capable of retrieving

three-dimensional cloud fields” (Hutchison et al., 2006b), ultimately determining

CBH from a single platform.

1.2 Cloud Base Height (CBH) Retrieval

While space-based retrieval of CBH is important for a wide range of

applications, it is notoriously challenging to develop an algorithm that can provide

accurate retrievals for the full gamut of cloud regimes (Liou, 1980; Welliver, 2009;

Seaman et al., 2014). The use of passive visible and infrared spectra to characterize

cloud properties is limited by their inability to penetrate all but the most optically

thin cloud layers (Lhermitte, 1988; Forsythe et al., 2000; Welliver, 2009). Therefore,

such algorithms rely on substantial parameterization, while exploiting reflectance

and radiance information retrieved from the uppermost portion of the highest cloud

layer (Liou, 1992). This has led some to explore cloud boundary detection using a

combination of instruments.

Much effort in CBH retrieval has been focused on combining millimeter-wave

cloud radar (MMCR) and micro-pulse lidar (MPL), especially with the launch of

the CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite

Observations (CALIPSO) satellites in April of 2006 (Welliver, 2009). CloudSat’s

primary instrument is the 94-GHz Cloud Profiling Radar (CPR), while CALIPSO

hosts the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument.

The synergistic use of these instruments for cloud profile retrieval combines the

ability of the CPR to penetrate thick cloud layers with the advantage of detecting

thin cloud layers (e.g. thin cirrus) with the CALIOP lidar. CBH, then, is

represented by the lower boundary of such a profile. A significant limitation of this

3



approach is ground clutter bias in the lowest 500 m (Welliver, 2009). This low-level

bias is undesirable for aviation, especially in remote, data-sparse locations where

satellite data may be the only CBH information available.

The development of the Moderate-resolution Imaging Spectroradiometer

(MODIS) and VIIRS instruments brought about a new generation of passive visible

and infrared sensors that contained a wide range of spectral bands at very high

resolution on a single platform. MODIS was developed and launched approximately

12 years before VIIRS, but the two instruments have many similarities. This

allowed pre-launch testing of the VIIRS CBH algorithm using MODIS data;

however, MODIS microphysical properties are only available during daytime, and

the MODIS retrieval of cloud top height (CTH) is different than that of VIIRS

(Hutchison, 2002).

Beginning in 1998 under the National Polar-orbiting Operational Environmental

Satellite System (NPOESS) program, and leading up to the launch of the S-NPP in

2011, an algorithm for the retrieval of CBH using the VIIRS instrument was

developed and ground tested (Hutchison, 1998; Hutchison and Wilheit, 2000;

Hutchison, 2002; Hutchison et al., 2006b). The basic idea of the algorithm is to

subtract geometric cloud thickness (∆Z) from CTH, where ∆Z is derived from

parameterized equations that convert the cloud optical thickness (COT, τ) and

effective particle size (EPS, re) to a geometric thickness (∆Z) (Hutchison, 1998).

This is done in the CBH intermediate product (IP), which uses other VIIRS cloud

products’ output as its input. VIIRS IPs serve as intermediaries between the sensor

data records (SDRs), which are the calibrated and geolocated sensor (i.e., radiance

and reflectance) data, and the lower-resolution environmental data records (EDRs)

that serve as final cloud products for the end user. The CBH IP has a pixel-level,

horizontal spatial resolution (HSR) of approximately 750 m at nadir and 1.6 km at
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edge of scan (EOS) (see Table 2 in Chapter II), giving an average HSR of

approximately 1 km. On the other hand, the CBH EDR is the result of pixel

aggregation and averaging and has a reduced resolution of approximately 6 km at

both nadir and EOS (JPSS OAD for VIIRS CCL, 2013).

Calibration and validation (cal/val) of the VIIRS CBH retrieval algorithm by

the National Aeronautics and Space Administration (NASA) Joint Polar Satellite

System (JPSS) cal/val team has revealed some significant limitations. The

CPR/CALIOP vertical profile product served as ground truth during cal/val,

ignoring cases with precipitation and/or clouds below 1 km in order to compensate

for errors in the CPR/CALIOP truth data at lower altitudes. The cal/val team

reported that the algorithm consistently performed far better for single-layer,

water-phase clouds than for any other cloud phase (Seaman et al., 2014), which

confirmed pre-launch expectations (Hutchison, 2002; Hutchison et al., 2006b).

Performance for water-phase clouds peaked at a correlation of 0.814 when CTH was

within the VIIRS-required accuracy range of 1 km for optically thick clouds, and 2

km for optically thin clouds (see Table 1 in Section 2.2.1). When all cloud types

were considered, the correlation was 0.595 when CTH was within the accuracy

range. However, correlation dropped to 0.188 for all cloud types when CTH was not

within this accuracy range. Due to the poor overall performance, a statistics-based

replacement algorithm is currently being tested (Noh et al., 2015). The new

algorithm uses a CPR/CALIOP training dataset with linear regression to calculate

a more accurate CBH, which was shown to outperform the existing algorithm. At

the time of inquiry, the new algorithm was still being tested, with no planned,

operational time frame reported.
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1.3 Research Topic and Objective

Previous research in the spaceborne retrieval of CBH has relied upon using

radar/lidar as ground truth. Even validation of the VIIRS CBH retrieval algorithm

has been limited to a single, CPR/CALIOP-based approach for daytime pixels using

satellite “match-up points.” This is not unwarranted, as the CPR/CALIOP

combination has proven to capture most cloud boundaries quite accurately.

However, it has a clear bias in the lowest levels of the atmosphere, where CBH

retrieval becomes critical for a majority of aviation operations. It is this low-level

water-phase cloud regime, in the absence of overlap by upper-level cloud layers (i.e.,

cirrus), which performs best for the current VIIRS algorithm. This was shown by

the VIIRS CBH cal/val team for daytime cases above 1 km and will be expanded

below 1 km for both daytime and nighttime cases in this research.

While cal/val moves towards a statistics-based regression algorithm, relying

heavily on the combined radar/lidar product, daytime and nighttime validation of

the actual components of the existing VIIRS CBH algorithm and operational

products being created at the NASA Interface Data Processing Segment (IDPS, i.e.,

ground station) is noticeably absent. No study has conducted a system-level

analysis of the physical parameterizations and cloud product components that

comprise the current algorithm. The primary objective of this research was to

construct an algorithm error budget, by performing sensitivity analysis on each of

the key components of the algorithm, in order to identify the largest sources of

error. Specifically, VIIRS-calculated CBH, CTH, COT (τ), and EPS (re) were

evaluated for single-layer water clouds against ground-based truth datasets from

four Atmospheric Radiation Measurement (ARM) site locations, which provided the

necessary precision for analysis. Retrieval comparisons were made for both daytime

and nighttime conditions using the pixel-level IP, as opposed to the lower-resolution
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EDR. After evaluating the error of these key components of the physical algorithm,

future research can be focused to address the major sources of error.

1.4 Preview

The next chapter provides an overview of previous CBH retrieval research and

the VIIRS CBH IP retrieval algorithm, as well as ARM instrumentation and

associated algorithms. Methodology is presented in Chapter III, and results and

findings are covered in Chapter IV. The final chapter summarizes the findings and

provides recommendations for future research.
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II. Background

2.1 Previous Research

Algorithm development for the space-based retrieval of CBH has been attempted

since long before the launch of VIIRS on the S-NPP satellite. Given the importance

of CBH retrieval for military operations, the Department of Defense (DOD) led the

way in various early attempts at retrieving CBH. These early methods relied

primarily on data from the Defense Meteorological Satellite Program (DMSP),

conventional weather observations, or combinations of the two. The earliest known

attempt can be traced back to the agency formerly known as the Air Force Global

Weather Central (AFGWC) and its automated cloud analysis model (Fye, 1978),

which later became the 3-Dimensional Nephanalysis (3DNEPH) Model. The

3DNEPH ran operationally at AFGWC beginning in 1970, until it was replaced

with the Real-Time Nephanalysis (RTNEPH) Model in 1983 (Kiess and Cox, 1988;

Hamill et al., 1992). Both the 3DNEPH and the RTNEPH merged surface-based

weather observations, and additional conventional weather observations, with

satellite-based cloud products to generate a global CBH product (Hamill et al.,

1992). Since 2002, the 557th Weather Wing’s Cloud Depiction and Forecast System

II (CDFS II) has produced an hourly World Wide Merged Cloud Analysis

(WWMCA) that employs geostationary and polar-orbiter imagery, as well as surface

observations, and uses the RTNEPH technique to determine CBH (Horsman II,

2007). Due to limitations with the automated retrieval, CBH output often relies

upon the climatological cloud thicknesses of 10 cloud types being subtracted from

the CTH (Kiess and Cox, 1988). These early attempts relied heavily on climatology

and surface-based observations to supplement the satellite data, which was a
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significant limitation for remote, data-sparse regions. Other early algorithms shared

this limitation, or only applied to specific cloud types.

Another early approach by Berendes et al. (1992) used image processing

techniques with Land Satellite (LANDSAT) imagery to match the edges of daytime

cumulus clouds with their corresponding shadows. CBH was then approximated

using the Generalized Hough Transform to determine the separation distance.

Values calculated from this method were within 100 m (328 ft) of surface-based

CBH observations; however, the approach assumes flat terrain, and LANDSAT

views a given location on Earth’s surface only once every 16 days. In another early

approach, Forsythe et al. (2000) combined visible and infrared, satellite-derived

cloud classification methods with surface observations to retrieve CBH for bases less

than 10,000 ft (3,048 m). The study found an improvement over techniques that

estimate CBH using only surface data interpolation, especially for broken and

overcast conditions (Forsythe et al., 2000). However, given the large extinction

cross-section of cloud particles at these wavelengths, the inability of radiation to

penetrate most cloud depths was a substantial drawback for these early, passive,

visible and infrared algorithms.

Much progress has been made towards independent, space-based retrieval of

CBH with active radar and lidar instrumentation, complementing each other in

advantageous ways (Wang and Sassen, 2001). Micro-pulse lidar (MPL) struggles to

penetrate thick low- and mid-level clouds, but is ideal for detecting relatively thin,

mid- and high-level clouds that may be missed by radar. On the other hand,

MMCR is able to penetrate thick cloud layers, but is often contaminated by virga,

precipitation, and even insects. MMCR is also often unable to detect clouds with

small particles, such as altocumulus, thin cirrus, or stratus (Wang and Sassen, 2001).
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Lhermitte (1988) demonstrated the superiority of hydrometeor detection by

ground-based MMCR over that of previously used centimeter-wavelength radar.

While the higher-frequency MMCR is more susceptible to attenuation by water

vapor, it is also more sensitive to hydrometeor reflectivity in the detection of cloud

boundaries. Clothiaux et al. (1995) advanced the use of MMCR by developing an

algorithm for cloud boundary height detection using power return statistics. The

study highlighted the radar’s ability to estimate both CTH and CBH for single- and

multiple-layer clouds, simultaneously.

A significant drawback identified by both studies was the MMCR sensitivity to

drizzle and precipitation, resulting in radar-determined CBH being substantially

lower than ground truth comparisons (Lhermitte, 1988; Clothiaux et al., 1995).

Another limitation was the underdetection of optically thin clouds, such as thin

cirrus (Clothiaux et al., 1995). However, MPL can be used in conjunction with

MMCR in order to overcome the latter limitation (Clothiaux et al., 2008). A key

skill of surface-based MPL during testing at the Southern Great Plains (SGP) ARM

site was its superior detection of thin cirrus compared to that of the Belfort Laser

Ceilometer (BLC) (Clothiaux et al., 2008), which was the primary ceilometer at the

ARM facilities from 1994-2000 (ARM BLC, 2015).

During initial testing of space-based lidar, known as the Lidar In-space

Technology Experiment (LITE), it was found that “LITE profiles penetrated to an

altitude of 1 km or less in 70% of all cloud cases” (Winker et al., 2003). The success

of this space-based testing led to the development of the CALIOP instrument

on-board the CALIPSO satellite. The CALIOP sensor works by producing

linearly-polarized pulses of light at 1.064 and 0.532 mm. The backscattered intensity

at 1.064 mm, and the two orthogonal polarization components at 0.532 mm, are all

measured by a 1-m telescope (Winker et al., 2003).
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Many scholars have since focused on a multi-instrument approach for

space-based CBH retrieval that combines 94-GHz radar and MPL on the CloudSat

and CALIPSO satellites of the NASA Earth Observing System A-Train

constellation. The CloudSat and CALIPSO satellites were launched in April 2006,

and the CPR and CALIOP instruments on-board these two synergistic platforms

combine to provide highly accurate cloud profiling (Welliver, 2009). The result is

the 2B-GEOPROF-Lidar (2GL) product, which combines data from each

instrument “to provide a complete profile of the vertical structure of clouds in the

atmosphere” (Welliver, 2009). However, the product is limited to a vertical (i.e.

nadir) cross-section of the atmosphere along the satellite ground track, which limits

both the horizontal footprint (shown in Figure 1) and temporal resolution of the

product. The horizontal footprint is less than 100 m, and it views the same spot on

the globe only once every 16 days.

A study similar to the one detailed in this paper compared CBH values from the

2GL product to CBH truth data at four different ARM sites (Welliver, 2009).

However, rather than using only ceilometer data for truth values, a since-retired

ARM CBH Value-Added Product (VAP) was used. VAPs are developed to derive

important cloud properties from ARM site measurements. This VAP was the CBH

portion of the Active Remote Sensing of Clouds (ARSCL) VAP, and it combined

co-located 35-GHz MMCR, MPL, and Vaisala laser ceilometer data to derive

best-guess CBH values at each ARM site. 2GL CBH values were considered to be

“accurate” when they were within 480 m of the truth values, where 480 m is the

vertical resolution of the CPR. Welliver found that CBH values were accurate 73%

of the time. However, it was noted that the limited horizontal surface footprint and

temporal resolution were significant drawbacks to any operational application of the

product. Another substantial drawback was the “clear bias towards classifying
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Figure 1. VIIRS-CALIOP Comparison. This figure shows the significant difference in
the horizontal footprint of the CALIOP and VIIRS instruments. The CALIOP views
only the vertical profile of the sub-satellite column, so the horizontal footprint is very
small compared to that of VIIRS. The VIIRS swath is 3,000 km wide, and only one
granule (48 scans) is shown here. VIIRS pixels undergo “bow-tie deletion” (explained
in Section 2.2.2), which are seen as empty pixels when the ground track mercator
projection is not used. These missing pixels begin to appear at a scan angle of 31.72
degrees, and double in size at 44.86 degrees.

hydrometeors detected in the lowest 500 m of the column as ground clutter”

(Welliver, 2009). Error handling by the algorithm ignored the low-level feature

altogether, which resulted in the algorithm consistently placing the CBH too high.

While the 2GL product of the CALIOP/CPR instruments is quite useful as a set

of ground truth data in cloud boundary analysis, it lacks the footprint and temporal

resolution needed for aviation operations support. Also, the shortcomings of the

active radar/lidar approach in the near-surface limit are inherent in the MMCR

wavelengths being employed and are difficult to overcome. Therefore, a return to

passive visible and infrared instrumentation is necessary for low-level CBH accuracy,

especially with the high resolution and advanced, hyperspectral sampling ability of

the VIIRS instrument.
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2.2 Suomi NPP and VIIRS

2.2.1 Suomi NPP.

The NPOESS was created in the early 1990s in order to consolidate “civilian

and military environmental sensing programs and expertise under a single national

system” (Lee et al., 2006). The acquisition and management of the program for

both the Department of Commerce (DOC) and DOD fell under a single

organization, called the Integrated Program Office (IPO). The IPO, a tri-agency

organization composed of DOC, DOD, and NASA personnel, established

system-level requirements for all EDRs. Requirements for the VIIRS CBH EDR

(see Table 1) were first described in the VIIRS Technical Requirements Document

of 2000, and, after cancellation of the NPOESS program, were incorporated into the

EDR requirements for the National Oceanic and Atmospheric Administration

(NOAA) JPSS (JPSS REQ, 2013). These requirements remained the same as the

NPOESS program evolved into the S-NPP.

The S-NPP satellite, formerly known as the NPOESS Preparatory Project

(NPP), launched on October 28th, 2011 (NASA S-NPP Mission Page, 2015). The

spacecraft resides at an altitude of approximately 824 km, has an orbital inclination

of about 98.74 degrees, and a near-circular orbit with a period of about 101

minutes. The satellite has five sensors on board (NASA S-NPP Brochure, 2015).

The Clouds and the Earth’s Radiant Energy System (CERES) measures reflected

solar and emitted infrared energy in order to compile a long-term record of the

Earth’s energy budget. The Cross-track Infrared Sounder (CrIS) and the Advanced

Technology Microwave Sounder (ATMS) work together to provide “global

high-resolution profiles of temperature and moisture,” with the ability to create

cross-sections of weather systems for both short- and long-term forecasting (NASA

S-NPP Brochure, 2015). The Ozone Mapping and Profiler Suite (OMPS) measures
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Table 1. VIIRS System Specification Requirements. Table adapted from Tables 5.3.1,
5.3.3, 5.3.6-5.3.9 in JPSS Level 1 Requirements document (JPSS REQ, 2013). The
“threshold” is the required accuracy/uncertainty, while the “objective” is the desired
accuracy/uncertainty.

Cloud Product Attribute Threshold Objective

Cloud Base Height
Measurement
Uncertainty

≤ 2 km ≤ 250 m

Cloud Top Height
Measurement

Accuracy
2 km if COT < 1
1 km if COT ≥ 1

≤ 300 m

Cloud Top Temperature
Measurement

Accuracy
6.0 K if COT < 1
3.0 K if COT ≥ 1

2.0 K
1.5 K

Cloud Top Pressure

Measurement
Accuracy

(shown only
for COT ≥1)

Surface - 3 km: 100 mb
3 - 7 km: 75 mb
> 7 km: 50 mb

10 mb
7 mb
5 mb

Cloud Optical Thickness
(τ)

Measurement
Accuracy

Greater of 24% or 1 τ ≤ 5%

Effective Particle Size
(re)

Measurement
Accuracy

Greater of :
22% (water) or 1 mm

28% (ice) or 1 mm
≤ 5%

and tracks ozone in the upper atmosphere and troposphere, improving air quality

monitoring and extending a “40-year long record” of ozone measurement (NASA

S-NPP Brochure, 2015). However, the VIIRS instrument on-board the S-NPP is the

focus of this study.

2.2.2 VIIRS.

The VIIRS is a direct descendant of the MODIS, which flies on NASA’s Terra

and Aqua Earth Observing System satellites (NASA S-NPP Brochure, 2015). The

sensor serves a wide range of scientific communities, providing radiometric data

from 22 channels (see Table 2) that are used to observe clouds, aerosols, active fires,

vegetation, ocean color, and sea surface temperature, among other surface features.

VIIRS information is used for both short- and long-term forecasting, to include

potential climate change.
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Table 2. VIIRS Channels. Also shown are the corresponding central wavelengths
and horizontal spatial resolution (HSR) (downtrack x crosstrack) at both nadir and
edge-of-scan (EOS). Intermediate products (IPs) that use these channels as input are
listed in the far right-hand column and include Cloud Mask (CM), Cloud Optical
Properties (COP), and Cloud Top Parameters (CTP). This table is adapted from Table
1 in the VIIRS SDR User’s Guide (Cao et al., 2013), and from inputs listed in the
JPSS Operational Algorithm Description (OAD) documents (VIIRS CM, 2015; VIIRS
COP, 2013; VIIRS CTP, 2013). M-band channels are moderate resolution channels,
I-band channels are imagery resolution channels, and the day-night band (DNB) is a
panchromatic, solar reflective channel.

Channel #
Central

Wavelength
(mm)

HSR, Nadir (m) HSR, EOS (m) IPs

M1 0.412 742 x 259 1600 x 1580 CM

M2 0.445 742 x 259 1600 x 1580
M3 0.488 742 x 259 1600 x 1580
M4 0.555 742 x 259 1600 x 1580 CM

I1 0.640 371 x 387 800 x 789 CM

M5 0.672 742 x 259 1600 x 1580 CM, COP

DNB 0.700 742 x 742 800 x 789
M6 0.746 742 x 776 1600 x 1580
I2 0.865 371 x 387 800 x 789 CM

M7 0.865 742 x 259 1600 x 1580 CM

M8 1.240 742 x 776 1600 x 1580 COP

M9 1.378 742 x 776 1600 x 1580 CM

I3 1.610 371 x 387 800 x 789
M10 1.610 742 x 776 1600 x 1580 CM, COP

M11 2.250 742 x 776 1600 x 1580 CM, COP

M12 3.700 742 x 776 1600 x 1580 CM, COP

I4 3.740 371 x 387 800 x 789 CM

M13 4.050 742 x 259 1600 x 1580 CM, COP

M14 8.550 742 x 776 1600 x 1580 CM, COP

M15 10.763 742 x 776 1600 x 1580
CM, COP,

CTP
I5 11.450 371 x 387 800 x 789 CM

M16 12.013 742 x 776 1600 x 1580 CM, COP
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The instrument uses a rotating telescope scan, extending to 56 degrees on either

side of nadir (Cao et al., 2013). Each VIIRS moderate-resolution band (M-band, see

Table 2) has 16 detectors in the along-track direction, while the imagery-resolution

bands (I-bands) have 32. At nadir, three detector footprints are aggregated to form

a single VIIRS “pixel.” The aggregation scheme transitions from 3x1 (downtrack x

crosstrack) at nadir to 2x1 at around 32 degrees scan angle, and then to a 1x1 at

around 48 degrees (see Table 2). The resulting swath width is approximately 3000

km.

Detector size and scan timing are designed so that no gaps are present between

adjacent scans because “scan width at nadir is the same as the traveling distance of

the sub-satellite point in one scan period” (Cao et al., 2013). However, pixel growth

occurs in both the along-scan and along-track directions, as the scan width increases

from 11.7 km at nadir to 25.8 km at EOS. The result is scan-to-scan overlap beyond

a scan angle of approximately 19 degrees, which is known as the “bow-tie” effect

(Cao et al., 2013). The overlap becomes apparent as it grows beyond the M-band

pixel size at 31.72 degrees, and double the pixel size at 44.86 degrees (Cao et al.,

2013). In order to save downlink bandwidth, these duplicate pixels are not

transmitted to the ground. This is referred to as “bow-tie deletion,” and these

deleted pixels are shown in Figures 1 and 4.

2.3 VIIRS CBH Retrieval Algorithm

Three VIIRS IPs use a total of 17 of the 22 channels (as shown in Table 2), in

addition to ancillary data, to begin the VIIRS CBH processing chain (CM OAD,

2015; CBH OAD, 2013; COP OAD, 2013; CTP OAD, 2013). These first three IPs,

the Cloud Mask (CM), the Cloud Optical Properties (COP), and the Cloud Top

Parameters (CTP) IPs, compute cloud confidence, cloud phase, EPS (re), COT (τ),
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CTH, cloud top temperature (CTT), and cloud top pressure (see Figure 2). After

parallax and terrain corrections are applied, these key parameters are then used as

inputs for the Cloud Layer/Type (CLT) and CBH IPs to compute cloud type and

CBH, respectively. More detailed information is available for each IP in the

following sections, and at the S-NPP Science Documents page:

http://npp.gsfc.nasa.gov/documents.html (accessed December, 2015).

Figure 2. VIIRS CBH Processing Chain Diagram. VIIRS Intermediate Products (IPs)
are processed in the order shown, with selected outputs indicated by the black text.
Each IP (with the exception of CM) uses outputs from preceding IPs. Outputs of
interest for this research include cloud confidence, cloud phase, cloud optical thickness
(COT), effective particle size (EPS), cloud top temperature (CTT), cloud top pressure,
cloud top height (CTH), cloud type, and cloud base height (CBH). CTT* is calculated
in the COP IP only for the nighttime/IR processing path; otherwise, it is calculated
in the CTP IP. Figure adapted from Figure 1 in Hutchison et al. (2006b).
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2.3.1 VIIRS Cloud Mask (CM) IP.

Cloud confidence and cloud phase are both retrieved from the CM IP (JPSS

VCM ATBD, 2014). Cloud confidence is the likelihood that each pixel is cloudy or

not, and cloud phase is the physical state of the particles that make up the cloud.

The CM IP takes in many inputs in addition to the calibrated and geolocated SDR

data from the channels listed in Table 2.

Other VIIRS inputs include:

1. Gridded, 17-day Top-of-Canopy Normalized Difference Vegetation Index

(TOC NDVI) IP

2. Moderate, pixel-level resolution, monthly gridded Snow Cover IP

3. Active Fires IP

4. 1-km Quarterly Surface Type IP

Gridding consists of mapping VIIRS swath data to a fixed external grid, while

re-gridding involves mapping external gridded data (e.g. numerical weather model

data listed below) to the VIIRS swath (JPSS Earth Gridding ATBD, 2014).

Non-VIIRS input includes the following numerical weather prediction (NWP)

products:

1. Sea surface winds for determination of sun glint

2. Total precipitable water for thin cirrus determination over daytime desert

backgrounds

3. Near-surface (i.e., 2-m) temperature for determining numerous brightness

temperature thresholds

NWP sources include National Centers for Environmental Prediction (NCEP)

Global Forecast System (GFS) and Navy Operational Global Atmospheric

Prediction System (NOGAPS) data (JPSS CDFCB, 2014).
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Before cloud tests are applied, background conditions are determined by

choosing one of eight background domains: daytime land, daytime coast, daytime

water, daytime desert, daytime snow/ice, nighttime land/desert/coast, nighttime

water, and nighttime snow/ice. The domain depends on the input surface type from

the VIIRS Quarterly Surface Type IP, and on snow/ice cover information from the

gridded Snow Cover IP, as well as the solar zenith angle from the

moderate-resolution geolocation data. A solar zenith angle of less than 85 degrees is

considered to be daytime.

Next, a series of spectral and spatial tests are executed, depending on the

background conditions (see Tables 5 and 6 in the JPSS VCM ATBD, 2014). Tests

are placed in one of five independent groups according to the test type. Test types

include emission threshold, emission difference, reflectance threshold, reflectance

thin cirrus, and emission thin cirrus. More details on the determination of cloud

confidence can be found in numerous publications (Hutchison et al., 2005, 2008,

2012, 2014; Kopp et al., 2014), and the JPSS VIIRS CM Algorithm Theoretical

Basis Document (ATBD) (2014).

The final process in the CM IP that is most significant for CBH retrieval is the

cloud phase determination, as described by Pavolonis and Heidinger (2004, 2005),

and in the ATBD (JPSS VCM ATBD, 2014). Initially, the M15 brightness

temperature (BT) is compared to CTT values in Table 20 in the ATBD, where a

cloud is classified as a water cloud as long as the CTT is above freezing (i.e., 273.16

Kelvin (K) ). Next, several tests are run to determine if cloud overlap is present,

where cloud overlap is defined as a thin cirrus layer overlying a lower-level water

cloud layer. Thin cirrus will contaminate the true BT of the water cloud if it goes

undetected. The only way a cloudy pixel can be classified as liquid water phase is if

the M15 BT is above the freezing threshold, and no overlying cirrus is detected.
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This single-layer, water cloud phase is the only one considered in this research. A

flow chart of the entire cloud phase algorithm can be found in Figure 28 of the

ATBD, and details of the cloud phase tests are also found in the ATBD and

aforementioned publications. These publications also cover differentiation between

heavy aerosols and clouds (Hutchison et al., 2008, 2010; JPSS VCM ATBD, 2014),

as well as geometric-based cloud shadow detection (Hutchison et al., 2009; JPSS

VCM ATBD, 2014), as some algorithms in the CM IP are sensitive to cloud shadow

and heavy aerosol contamination.

One major assumption of this IP is that all required inputs can be retrieved,

which is a good assumption with the exception of rare cases of data retrieval errors.

It also assumes that the surface type, snow and ice coverage, and NDVI databases

are accurate and representative of the current, overall conditions of each individual

pixel. This can be a poor assumption with rapidly changing background conditions,

due to the relatively low temporal and spatial resolution of these databases.

However, the snow/ice cover database is augmented in the daytime by an internal,

pixel-resolution algorithm that performs spectral tests to determine the presence of

snow or ice. It also assumes that the NWP weather model data used are accurate,

which can be another poor assumption due to the relatively low, 1-degree spatial

resolution. Finally, for cloud phase determination, it is assumed that the M15 (i.e.,

10.763-mm) IR window channel BT is the same as the CTT. This is generally a good

assumption, considering that water vapor and other atmospheric gases have very

little effect on radiance in this window band, and that clouds are a good blackbody

approximation at this wavelength. A significant limitation is evident during

nighttime, when the lack of solar reflectivity data constrains the amount of

information that can be gathered about cloud cover and cloud phase.
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Accuracy of the CM IP is very important because all errors flow downstream to

the other IPs, as shown in Figure 2. Probability of correct typing (PCT) is a

measure of how often the algorithm correctly classifies a pixel as cloudy or clear

(JPSS VCM ATBD, 2014). One study found that when CM IP data were compared

to manually generated cloud masks, they had PCT values of 96.5%, 94.4% and

95.7% for ocean, land, and desert backgrounds, respectively (Hutchison et al., 2014).

This same study also found that PCT values were 95.0%, 93.9%, and 96.0% when

compared to CALIOP-generated cloud masks with the same respective

backgrounds. On the other hand, VIIRS cloud phase was only 83% accurate when

compared to CALIOP-generated cloud phase (Heidinger, 2014), which agrees with

ongoing cloud phase validation by Pavolonis (2014). This level of accuracy of cloud

confidence and cloud phase is passed onto the next algorithm, the COP IP.

2.3.2 VIIRS Cloud Optical Properties (COP) IP.

Cloud microphysics, phase, particle shape, and particle size distribution all

determine COP; and COP, in turn, affect emission, transmission, reflection, and

absorption of radiation propagating through the atmosphere (Ou et al., 2004).

Cloud optical depth (COD, τ ∗) is defined to be the total extinction optical thickness

of all cloud layers in a vertical column of the atmosphere, shown below in

Equation 1.

τ ∗ = ∆Z

ˆ
σen(r)dr = ∆Z

ˆ
Qeπr

2n(r)dr (1)

In this equation, ∆Z is the geometric vertical distance between two levels of the

atmosphere; σe = Qeπr
2 is the extinction cross-section; Qe is the extinction

efficiency factor, and is a function of droplet radius, wavelength, and refractive

index; r is the droplet radius; n(r) is the cloud droplet number concentration as a
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function of radius; and dr is the increment across which the droplet size distribution

is integrated.

COT (τ) is COD along an off-nadir, diagonal path through the atmosphere, and

is related by the inverse cosine (i.e., secant) of the sensor scan (i.e., zenith) angle

(θ). This is depicted mathematically in Equation 2 below and graphically in Figure

3 in Section 2.3.6.

τ =
τ ∗

cos(θ)
= τ ∗ sec(θ) (2)

Additionally, τ and τ ∗ are wavelength dependent and assumed by the VIIRS

COP IP to be measured in a narrow band centered on 0.450 mm.

EPS (re, i.e., mean effective radius) serves as a measure of the mean size of the

cloud droplet size distribution, which determines the scattering properties of the

distribution (Liou, 1992). It is defined to be the ratio of the 3rd and 2nd moments

of the droplet size distribution, where the 3rd moment is the liquid water content

(LWC, i.e., liquid water concentration), and the 2nd moment is the surface area

concentration of the distribution (Ou et al., 2004). This is shown mathematically in

Equation 3 below,

re =

´
rπr2n(r)dr´
πr2n(r)dr

(3)

where r is the radius of each droplet, and πr2 is the cross-sectional area of each

droplet. In other words, EPS is essentially the simple mean radius weighted by the

droplet cross section (Liou, 1992).

Four basic techniques are employed to retrieve both COT and EPS in the COP

IP. In the daytime, one of two solar reflectance techniques is chosen for either ice or

water clouds, using a two-channel correlation method for both water (Nakajima and
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King, 1990; Ou et al., 2004) and ice (Platnick et al., 2003; Ou et al., 2003, 2004)

phases. These reflectances are compared to reflectance values listed in a

comprehensive look-up table (LUT) to infer the COT and EPS. The LUT

reflectance values are pre-computed using a line-by-line equivalent (LBLE) radiative

transfer model (RTM) for a wide range of possible scenarios. For each scenario, an

atmospheric profile, solar and sensor geometry, band parameters (e.g. spectral

response), cloud phase and CTH are all specified. A value must be assumed for

CTH because it has not yet been determined at this point in the process (discussed

below). Also for each scenario, the RTM is run over a wide range of COT and EPS

values.

For nighttime retrieval, IR radiance is used for both cloud phases, with a

two-channel technique from Liou et al. (1990) and Ou et al. (1993; 2004), to infer

CTT and IR emissivity. COT and EPS are then derived based on theory and

parameterizations of radiative transfer and cloud microphysics.

VIIRS inputs include:

1. Calibrated, geolocated radiance and reflectance data

2. Viewing geometry and solar illumination

3. Cloud confidence and cloud phase from the CM IP

4. Surface albedo from the VIIRS Surface Albedo IP, for proper use of the solar

reflectance LUTs

5. Surface type from the 1-km Quarterly Surface Type IP (Ou et al., 2004)

Non-VIIRS inputs are used for pre-processing only, and are not used operationally.

They are used to compute a priori LUT values, to be referenced later by the

algorithm while it’s in operation. These include:

1. Atmospheric NWP soundings, for construction of the reflectance LUTs and

running the LBLE RTM

23



2. A spectral library containing reflection and emission properties for various

surface types, which are used to create the LUTs

3. Exo-atmospheric, solar, spectral irradiance values, for conversion of radiance

to bi-directional reflectance factors for the LUTs

4. VIIRS band parameters for deriving single-scatter properties and reflectance

LUTs

5. CTH, which must be assumed (hasn’t been calculated yet) for computation of

the LUTs for the solar algorithms; 1 km is assumed for water clouds, and 10

km for all others (all other phases are considered in a single, “ice” cloud phase

processing path for this IP)

The daytime retrieval method uses M10 reflectance with M8 reflectance over snow

or ice surfaces, and it uses M10 with M5 reflectances over non-snow/ice surfaces

(Ou et al., 2004). The approach is relatively simple for water clouds, where

properties for these solar channels are computed using classic Mie scattering theory

for water droplets. In the water phase retrieval method, sun-sensor geometry

parameters are first determined for each pixel, which include the solar zenith angle,

the sensor viewing zenith angle, and the relative azimuth angle. Surface albedo is

assigned based on the surface type. Reflectance arrays are then constructed for each

combination of water droplet EPS and COT, as well as for each VIIRS channel used

(i.e., M5, M8, and M10). Numerical iteration is executed, as described in Appendix

B of the COP ATBD (Ou et al., 2004), to find the LUT reflectances in the arrays

that best match the measured reflectances. Computing optical properties for the

myriad of ice particles is much more complex. Additional details on this ice phase

approach can be found in the COP ATBD (Ou et al., 2004).

Conversely, the IR nighttime method uses radiances at M12, M14, M15, and

M16 to infer CTT and IR emissivity. Specifically for water clouds, only the M12

24



and M15 window channels are used, where water vapor has very little effect. Nine

particle size distributions were used to calculate the regression coefficients for this

two-channel correlation method. Clear-sky radiances were calculated using the

Pressure-layer Fast Algorithm for Atmospheric Transmittances (PFAAST) RTM

described in Appendix C of the COP ATBD (Ou et al., 2004). The correlated

k-distribution radiative transfer (RT) equations of Kratz (1995), coupled with

microphysical parameterizations, are used to numerically solve for CTT and

channel-specific emissivities. The emissivities are parameterized in terms of visible

COT, so an inversion method is used to solve for COT once the emissivities have

been calculated (Liou et al., 1990). EPS can then be solved for as a function of

COT and liquid water path (LWP), as shown in Equation 7 in Section 2.3.6. A

cloud thickness must be assumed for this parameterization, so a value of 1 km was

chosen. A climatological LWC value, expressed in terms of CTT, is also used (Ou

et al., 2004).

In addition to the assumptions already listed for this IP, standard RT

assumptions apply. These include the plane parallel approximation, the single layer

assumption (i.e., multi-layer clouds are not considered), hydrostatic equilibrium,

and local thermodynamic equilibrium. These are all good assumptions for the

spatial scales and portion of the atmosphere being considered. Furthermore,

mixed-phase clouds are treated as ice clouds (e.g. CTH assumed to be 10 km for

mixed-phase clouds), and situations where the clear radiance is less than the cloudy

radiance (e.g. polar winter) are not considered. For ice-phase clouds, size

distributions are based on in situ observations from field experiments that were

conducted primarily in the mid-latitudes. Ice crystals are assumed to be randomly

oriented, and the only habits considered are solid columns and plates. Scattering by

ice crystals is highly complex, and the COP IP approach uses a Monte Carlo
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ray-tracing method with a “unified theory” for an approximate solution (Ou et al.,

2004). Such significant assumptions make it much more difficult to accurately

determine COT and EPS for ice clouds.

Validation was performed by comparing daytime VIIRS COT and EPS retrievals

to MODIS and NOAA cloud products, as reported in the VIIRS Cloud Products

Beta Maturity Status Report (CPBMSR) (2013). These retrievals were found to be

within the required specification range of Table 1 68% of the time for COT and 64%

of the time for EPS. However, these comparisons could only be made when VIIRS

CM and cloud phase matched that of the NOAA cloud products. Snow- and/or

ice-covered surfaces were ignored, as well. For nighttime retrieval validation,

indirect comparisons were made “based on the cloud emissivity data generated by

the MODIS cloud top products” (VIIRS CPBMSR, 2013). This method exploited

the fact that COT is related to cloud emissivity using the sensor zenith angle and

scattering effects. Using this method, it was determined that nighttime retrieval of

COT was within the required accuracy range approximately 40% of the time.

As mentioned in the processing chain diagram in Figure 2 and in this section,

CTT is computed only for the nighttime/IR processing path. If the daytime/solar

processing path is used, CTT is computed in the following CTP IP.

2.3.3 VIIRS Cloud Top Parameters (CTP) IP.

The CTP IP uses VIIRS radiance, other IP data, and ancillary atmospheric

profiles from NWP to estimate CTT, CTH, and cloud top pressure (JPSS CT,

2012). Two processing paths are used: one for daytime water (DW) clouds, and

another for all other conditions, called non-day-water (NDW) .

For DW, an iterative process is used to minimize the difference between the

observed M15 (10.763 mm) radiance and radiance produced by a fast RTM (JPSS
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CT, 2012). The RTM uses ancillary NWP profiles of temperature and moisture as

inputs, as well as COT, EPS, NWP near-surface temperature, and surface

emissivity. Moisture profiles from the NWP source (e.g. NCEP GFS) are used to

account for the amount of water vapor absorption above the cloud top. The

atmosphere is nearly transparent for the M15 band, but some attenuation occurs

due to absorption by water, carbon dioxide, and aerosols. Therefore, optically thick

water clouds are very close to being blackbodies, and most of the upwelling

radiation at cloud top is from the cloud itself. Conversely, most of the radiation

from a clear scene will be from the ground. Optically thin clouds will result in a

mixture of ground and cloud radiation because not all of the ground radiation is

absorbed by the cloud. In this DW method, cloud top pressure is derived first, then

CTT and CTH by interpolating from the ancillary soundings. Interpolation is

accomplished through one of two methods: the Newton-Raphson iteration, or the

“Search” method when convergence is a problem with the former method. More

details on these interpolation methods can be found in the ATBD (JPSS CT, 2012).

If the COP IP process described in Section 2.3.2 should fail (e.g. required inputs

are missing or degraded) in the daytime, this DW method can be used as a backup

COT/EPS retrieval method. In this backup mode, the cloud is assumed to be

optically thick, allowing the COP values to be approximated by BT using a

correction for water vapor above the cloud top (from NWP profile) (JPSS CT,

2012).

For NDW clouds, the CTT derived from the COP IP in Section 2.3.2 is used to

determine the CTH by linearly interpolating from an ancillary NWP temperature

sounding (Rossow et al., 1991). Cloud top pressure is also interpolated from a NWP

sounding using the hypsometric equation.
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Standard RT assumptions apply here, much like with the COP IP methodology

in Section 2.3.2 (JPSS CT, 2012). This set of assumptions includes the single cloud

layer assumption, which is valid for the cases included in this study. Of particular

importance is the hydrostatic assumption for CTH and cloud top pressure

interpolation, where pressure is assumed to decrease exponentially. This is a good

assumption for all vertical spatial scales except for severe convection, which is not

included in the set of cases for this study. Furthermore, general standard

atmospheric temperature profile characteristics are assumed, i.e., temperature

decreases monotonically (JPSS CT, 2012). Therefore, temperature inversions and

isothermal layers can be problematic. Finally, sub-pixel clouds are ignored (i.e., it is

assumed that the entire pixel is cloudy if the pixel is determined to be confidently

cloudy in the CM IP) (JPSS CT, 2012), so cloud types with little spatial extent in

the horizontal, such as fair weather cumulus, will be susceptible to errors.

Performance of the CTP IP has been validated by matching CTT and CTH

values with truth values derived from the CALIOP product suite, and by comparing

cloud top pressure to MODIS “truth” values (Heidinger, 2014). Accuracy was

defined according to the specification requirements listed in Table 1, and a COT

filter for τ > 1 was applied using the CALIOP COT product. CTT had the lowest

accuracy at 47.6%, CTH was 73.2%, and cloud top pressure was the most accurate

at 82.9%.

2.3.4 VIIRS Parallax and Terrain Correction.

Parallax correction is performed for CM, COP, and CTP outputs, while terrain

correction is performed for the geolocation data. The purpose of parallax correction

is to adjust for the apparent displacement of a tall feature (e.g. cloud) away from

the satellite subpoint as the sensor viewing angle becomes large (i.e., off-nadir angle
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increases) (Kidder and Vonder-Haar, 1995). The algorithm uses the CTH, satellite

position, and cloud position to make the correction (JPSS OAD for PPC, 2013). A

similar correction is also made for terrain, where high terrain needs the same

adjustment that a cloud would need at the same large viewing angle (Cao et al.,

2013). The parallax-corrected CM, COP, and CTP IPs, and the terrain-corrected,

moderate resolution geolocation files are used in this study.

2.3.5 VIIRS Cloud Layer/Type (CLT) IP.

Last in line prior to CBH computation, the CLT IP uses an adapted, k-means

clustering algorithm to determine the extent, type, and physical characteristics of

vertically distributed cloud layers. The k-means algorithm is “an established

mathematical method for clustering points into groups with similar properties”

(MacQueen, 1967; Selim and Ismail, 1984; Theiler and Gisler, 1997; JPSS VIIRS

CCL ATBD, 2011). Pixels with high statistical similarity are grouped together

within a single “cluster,” and unique physical attributes within a cluster/layer are

used to identify the cloud type according to Table 3 below (JPSS VIIRS CCL,

2011). Each pixel is assigned to a cloud layer, where up to four layers are possible

with this algorithm.

Table 3. VIIRS Cloud Type Assignments. Predefined cloud types characterized in
terms of their macro (height and phase) and micro (EPS/COT) properties. Table
adapted from Table 12 in JPSS VIIRS CCL (2011), and is a combination of observations
from numerous studies (Weickmann and Aufm-Kampe, 1953; Heymsfield and Platt,
1984; Dowling and Radke, 1990; Liou, 1992).

Cloud Type Height
(km)

EPS
(mm)

COT Phase

Stratus (ST) < 2.5 2-25 1-10 Water
Alto-cumulus/-stratus (AC, AS) 1.5-5.5 4-30 2-32 Water/Ice

Cumulus (CU) 0.2-6.5 5-50 3-50 Water/Ice
Cirrus (CI) 6-12 10-100 0.01-5 Ice

Cirrocumulus (CC) 6-15 30-120 1-8 Ice
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The major assumption with this algorithm is that the values listed in Table 3

are accurate and all-inclusive (JPSS VIIRS CCL, 2011). While the data used to

compile this table are varied and robust, they may not be representative of all cloud

types observed globally. For example, much of the data for the table were gathered

in the mid-latitudes and tropics, so these cloud types are more likely to be

erroneous near the poles. To date, the cloud type output from this particular IP has
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not been validated by the VIIRS cal/val team, so the amount of potential CBH

error resulting from cloud type misclassification is unknown.

2.3.6 VIIRS Cloud Base Height (CBH) IP.

The CBH IP focuses on calculating geometric cloud thickness, as the CTH is

retrieved externally from the CTP IP. CBH is calculated for every confidently

cloudy pixel, as identified in the CM IP, and the applicable algorithm is chosen

based on cloud phase (JPSS OAD for CBH, 2013). The water phase CBH algorithm

is for all water clouds, while the mixed phase algorithm covers all ice, mixed, and

overlap cloud phases. For both phase algorithms, geometric cloud thickness (4Z) is

subtracted from CTH (see Figure 3), but the parameterization of cloud thickness is

different for each phase (Hutchison, 1998).

Figure 3. VIIRS CBH Algorithm Overview. Top-of-Atmosphere (TOA) radiance and
reflectance sensed by the VIIRS allows for the parameterization of cloud geometric
thickness (∆Z) using COT, EPS, LWP/IWP, and LWC/IWC. ∆Z is then subtracted
from CTH to estimate CBH. Sensor zenith angle (i.e., scan angle, θ) is related to
the nadir-viewing ARM sensors at the surface. Figure adapted from Hutchison et al.
(2006b).
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For water clouds, COT (τ) and EPS (re) are related to the cloud’s geometric

thickness (∆Z) using the ratio of LWP and LWC, both of which were mentioned

briefly in Section 2.3.2. LWC is the integration of cloud droplet size distribution

over droplet size (Hutchison, 1998), while LWP is defined as the vertical integration

of LWC across cloud thickness. Both are shown mathematically in the following

equations:

LWC =
4πρl

3

ˆ
r3n(r)dr (4)

LWP =

CTHˆ

CBH

LWC dz = ∆Z
4πρl

3

ˆ
r3n(r)dr (5)

where ρl is the density of liquid water, and the LWC is assumed to be constant

throughout the vertical extent of the cloud. This is approximately the case for thin

stratus clouds, but not for thick stratus or cumuliform.

For spherical, liquid cloud droplets and solar/visible wavelengths, the extinction

efficiency factor (Qe) in Equation 1 (Section 2.3.2) is very close to two. Using

Equations 1, 3, and 5, LWP can be solved for in terms of τ and re as shown by Liou

(1992), and in Equations 6 and 7 below. Next, the ratio of LWP to LWC is used to

determine the geometric thickness in Equation 8:

LWP

τ
≈

∆Z 4
3
ρl
´
rπr2n(r)dr

2∆Z
´
πr2n(r)dr

(6)

LWP ≈
2 · τ · re

3
(7)
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CBH = CTH −4Z = CTH − (
LWP

LWC
× 1 km

1000m
) (8)

where ρl is 1 g cm-3, τ is unitless, re is in mm, CTH is in km, LWP is in g m-2,

and LWC is in g m-3. The ratio of LWP and LWC is divided by 1000 to convert m

to km, and the final value of CBH is in km above mean sea level (MSL) (JPSS OAD

for CBH, 2013). LWC is a constant, climatological value based on the input cloud

type from the CLT IP, and is determined from “a priori information on the cloud

particle size distributions and cloud type” (Hutchison, 1998). These LWC values are

stored in a LUT and are based on Table 4.2 in Liou (1992), which summarizes

measurements from numerous studies. However, the actual values of LWC differ

slightly from those in Liou due to the small differences in cloud type classification.

The values used by the VIIRS algorithm are shown in Table 4 below.

Table 4. VIIRS Liquid Water Content (LWC) Values. LWC values as a function of
cloud type used in the VIIRS CBH algorithm (Hutchison, 1998; JPSS OAD for CBH,
2013). Only the top three cloud types (i.e., water clouds) are used for this analysis.

Cloud Type LWC (g m-3)

Stratus (ST) 0.293
Altocumulus (AC) 0.455

Cumulus (CU) 0.580
Cirrus (CI) 0.010

Cirrocumulus (CC) 0.010

For the mixed phase processing path, LWP is replaced by ice water path (IWP),

and LWC is replaced by ice water content (IWC). Again, Liou (1992) showed that

IWP is a function of τ through the ice crystal size distribution, and ice crystal

diameter (De = 2· re), as shown in Equation 9. Regression coefficients (a, b, c0 − c3)

in Equations 9-12 are given in Table 5.4 of Liou (1992).

IWP =
τ

a+b
De

(9)
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ln(IWC) = −7.6 + 4 expterm (10)

term = [(−0.2443× 10−3)(|Tc| − 20)2.455] for |Tc| > 20 ◦C (11)

De = c0 + c1Tc + c2T
2
c + c3T

3
c (12)

In these equations, IWP is in g m-2, De is in mm, IWC is in g m-3, and Tc is the

mean cloud temperature in ◦C, based on the CTT and COT (Hutchison, 1998).

Only Tc values of −20 to −60 ◦C are used, since ice clouds generally do not fall

outside this range (Hutchison, 1998). If Tc < −60 ◦C, the value is reset to −60 ◦C,

and if Tc > −20 ◦C, the value is reset to −20 ◦C. Additional details on the

mixed/ice phase portion of the algorithm can be found in the VIIRS CBH ATBD

(Hutchison, 1998), but water clouds are the focus of this research.

Many assumptions and limitations exist for the CBH IP algorithm that have not

yet been highlighted in the preceding IP algorithms. A general assumption is that

all upstream IP and ancillary data that serve as inputs to the CBH IP are accurate

and available. This assumption is most significant for the CTH input, which is

directly related to the accuracy of CBH. The accuracy of CBH can be no more

accurate than CTH, as this value is what the parameterized ∆Z is subtracted from,

as shown in Figure 3 and Equation 8. In fact, validation of CTH has demonstrated

an accuracy of only 73%, as discussed in Section 2.3.3. It is also assumed that the

LWC or IWC is constant throughout the cloud layer, which only holds for thin

stratiform-type clouds (Hutchison et al., 2006b). Therefore, thick stratus,

cumuliform, and cirrus-type clouds are expected to be less accurate.
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A primary limitation of the CBH IP is that there is a maximum COT value for

which CBH can be accurately computed, which was determined during algorithm

development to be approximately 64 for water clouds and 10 for ice clouds

(Hutchison, 1998; Ou et al., 2004). Beyond these values, the information that can

be extracted from the data is extremely limited, which makes the retrieved CBH

unreliable. However, these limits are still being investigated. One study found the

maximum usable COT value for water clouds to be closer to 40 (Welch et al., 2008).

Furthermore, CBH is not retrieved if any of the following occur:

1. The pixel is not confidently cloudy

2. Cloud phase is anything other than water, opaque ice, cirrus, mixed, or overlap
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3. Cloud type is outside the definition range of stratus, altocumulus/altostratus,

cumulus, cirrus, or cirrocumulus (see Table 3)

4. The cloudy layer is outside the range of reasonable values, as stated in the

CLT Operational Algorithm Description (OAD) (JPSS OAD for CCL, 2013)

5. The pixel is determined to be in an area affected by “bow-tie” deletion

(described in Section 2.2.2)

6. COT, EPS, or CTH contain “fill values” for various errors (i.e., retrieval failed

for any one of these critical parameters)

7. For ice, mixed, or overlap phases, CTT retrieval failed (i.e., contains a “fill

value”) (JPSS OAD for CBH, 2013)

2.3.7 Validation of the VIIRS CBH IP.

Prior to the launch of the S-NPP spacecraft, data from the MODIS on-board the

Terra Earth Observing System satellite were used for initial validation of the CBH

retrieval algorithm to be used with the VIIRS instrument (Hutchison, 2002).

MODIS, as the primary predecessor instrument to VIIRS, contains many of the

same channels; however, MODIS calculates CTH using different channels than that

of VIIRS, so collocated radiosondes were used to manually determine the CTH, as

CloudSat wasn’t launched until 2006. Therefore, only the geometric thickness (∆Z),

which is the heart of the CBH algorithm, was validated. Initially, daytime MODIS

data were used for the simulated VIIRS COT and EPS retrieval, since MODIS does

not retrieve these microphysical parameters at night. Test scenes were limited to

single-layer water cloud systems, the condition for which the algorithm was

predicted to perform most accurately. Such scenes were identified over Texas, where

the Terra spacecraft descends at approximately 17-18Z. Therefore, overflight of the

spacecraft occurred five to six hours after the collocated 12Z radiosondes, so cloud
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fields had to persist for this period of time. Nearby surface reports using lidar

ceilometer measurements were used as ground truth CBH data. Due to the

stringent requirements for test scenes, Corpus Christi, Texas, was the only location

with useful validation data. Analyses were performed for approximately 225

individual pixels within 0.25 degrees latitude and longitude of Corpus Christi. It

was found that the algorithm-calculated, geometric cloud thickness (∆Z) was 89 m

(292 ft) more, or 36% larger than, the ground truth thickness. A similar evaluation

was performed for nighttime data using MODIS with ARM MMCR truth data

(Hutchison et al., 2006b). This study also found the VIIRS-calculated thickness

values to be well within the system specification thresholds listed in Table 1.

A post-launch validation study was conducted for the VIIRS CBH EDR by the

Center for Satellite Applications and Research (STAR) JPSS Science Team for their

1st annual team meeting in 2014 (Seaman et al., 2014). For truth data, the team

used the CloudSat CPR, the instrumentation of which has known limitations when

detecting clouds in areas of significant ground clutter or precipitation. The S-NPP

and CloudSat spacecrafts are in the same orbital plane at different altitudes, and

they overlap for approximately four and a half hours every two to three days

(Seaman et al., 2014). Test cases were limited to daytime events where no

precipitation was occurring. To prevent ground clutter issues, only the closest,

usable VIIRS pixels that overlapped CloudSat, and had CBH and CTH beyond 1

km above ground level (AGL), were used. Nine total match-up periods were

examined during September, 2013.

Results were organized into two categories: the first for all clouds, which

consisted of all cases observed simultaneously by CloudSat and VIIRS; and the

second for only those cases where VIIRS CTH was within specification requirements

(Table 1). This second category was used due to the fact that CBH accuracy is
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closely tied to CTH accuracy. For the first category, the overall r2 correlation was

0.188, with water clouds being the best and overlap conditions being the worst.

When the CTH was within specification, the overall correlation increased to 0.595,

with water clouds the best at 0.814 and overlap the worst at 0.181.

The VIIRS CBH calibration and validation team presented initial results for an

improved, statistics-based algorithm at the 2015 Annual STAR JPSS Science Team

Meeting (Noh et al., 2015). Linear regression was performed between the MODIS

cloud water path product and geometric thickness of the uppermost layer from

Afternoon Train (“A-Train”) constellation data. Specifically, the 2GL product was

used, as described in Section 2.1. The regression method used CTH bins of 2 km up

to a maximum of 20 km. The median water path value was determined for each

2-km CTH bin, and linear regression was carried out both above and below this

value. This method was initially applied to July daytime data from 2007 to 2010, in

order to develop a training dataset. When applied to match-up points from

September to October 2013, the r2 correlation increased from 0.286 to 0.427 for all

valid cloud cases, and from 0.452 to 0.760 when the CTH was within specification.

2.3.8 VIIRS Data Maturity.

With the S-NPP satellite only recently launched in late 2011, data needed time

to mature as the cloud products underwent cal/val. By mid-2013, the VIIRS CM

product was at the provisional level of maturity (see Table 5), while all other VIIRS

cloud products had been lumped together as beta (S-NPP Data Maturity, 2015).

However, some of the cloud products were closer to provisional status than others;

the CBH and nighttime COP products were lagging behind the others in their

performance (VIIRS Beta Status Report, 2013). All products had reached

provisional maturity status by January 2014, and nearly all reached the validated
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level by September 2014. The two exceptions are the CLT and nighttime COP

algorithms, which currently remain in provisional status (JPSS Algorithm Maturity,

2015).

Table 5. S-NPP Data Maturity Definitions. From S-NPP EDR Product Maturity
Levels web page (2015).

Level Description

Beta Early release, minimally validated product, which may still contain
significant errors

Provisional Incremental product improvements still occurring, and product
quality may not be optimal

Validated Product performance well defined over a range of representative
conditions, but there may still be later, improved versions; three

stages of maturity exist

2.4 Atmospheric Radiation Measurement (ARM) Data

The Department of Energy (DOE) ARM Program operates and maintains “some

of the most sensitive instruments available” for observing the presence, extent, and

radiative properties of clouds (Ackerman and Stokes, 2003). The central facility at

Lamont, Oklahoma (OK), of the Southern Great Plains (SGP) site, is the premier

facility, but other permanent locations include the Tropical Western Pacific (TWP),

North Slope of Alaska (NSA), and Eastern North Atlantic (ENA) (ARM Annual

Report, 2015). Mobile sites have also been established, temporarily, at numerous

locations around the globe. Datastreams consist of calibrated instrument

measurements, as well as post-processed data used in many different algorithms.

For example, Value-Added Products (VAPs) are used to derive important cloud

properties from ARM site measurements (ARM Annual Report, 2015). Ceilometer

measurements and output from two different VAPs were used as ground truth data

for this system-level analysis.
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2.4.1 Cloud Base Height (CBH) Retrieval.

The primary instrument for CBH measurement at the ARM sites, and the

source of ground truth for CBH in this research, is the Vaisala Ceilometer (VCEIL).

The VCEIL is a “self-contained, ground-based, active, remote sensing device

designed to measure cloud-base height, vertical visibility, and potential backscatter

signals by aerosols” (Morris, 2012). A laser ceilometer transmits near-infrared

(NIR) pulses of light, and its receiver detects the backscattered light from clouds

and precipitation. This basic concept is known as lidar, more generally. Model

CL31 is the latest version being employed, and it has a maximum vertical range of

7700 m (25,262 ft). It also has a vertical resolution of 10 m (33 ft). The transmitter

is a pulsed indium gallium arsenide (InGaAs) diode laser with a wavelength of 910

nanometers (nm), and the receiver is a silicon avalanche photodiode. Primary

output variables are backscatter intensity, CBH for the three lowest layers detected

(in m AGL), and vertical visibility in m. An important secondary variable is time,

in seconds (s), and numerous data quality flags are included, as well. Additionally,

accuracy is ±5 m, the measurement interval is 2 s, and the reporting interval is 16 s.

The measurement is a lidar technique based on “the time needed for a short

pulse of light to traverse the atmosphere from the transmitter of the ceilometer to a

backscattering cloud base and back to the receiver of the ceilometer” (Morris, 2012).

In order to attain the 10 m vertical resolution, the ceilometer digitally samples the

return signal every 67 nanoseconds from 0 to 50 microseconds. This resolution is

assumed to be adequate, as 10 m is the approximate visibility in the densest of

clouds (Morris, 2012). The constant of proportionality between the backscatter and

extinction is known as the Lidar Ratio, which normally varies from 0.02 (for high

humidities) to 0.05 (for low humidities). This assumption is known to be accurate

for the purposes of cloud detection (Morris, 2012).
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2.4.2 Cloud Top Height (CTH) Retrieval.

CTH ground truth is obtained at each ARM site using a micro-pulse lidar

(MPL), 30-s cloud mask algorithm developed at the University of Utah (Wang and

Sassen, 2001). The algorithm is applied to backscattered radiation of the MPL in

30-s samples in order to detect cloud boundaries and other properties between 500

m and 20 km (Sivaraman and Comstock, 2011). The algorithm cannot be applied

below 500 m because of the overlap between the receiving and transmitting systems

at these heights (Wang and Sassen, 2001; Sivaraman and Comstock, 2011). A series

of lidar-specific corrections is applied, including range-square, background,

deadtime, and overlap corrections, as described in the literature (Campbell et al.,

2002; Sivaraman and Comstock, 2011).

The algorithm is executed in five basic steps, described below (Wang and Sassen,

2001):

1. In the first step, the signal slope, signal quality, and standard deviation of the

background noise level are all calculated. The signal slope and variation “are

calculated for the whole profile, and a minimum reliable signal Pmin is defined

for lidar data with a given signal-averaging scheme” (Wang and Sassen, 2001).

2. The second step involves examining the signal from the ground up to

determine possible layers and their properties, which include the base, top,

and peak signal of the layer. The base is defined as the location “where the

signal starts to increase in terms of the positive signal slope,” while the top is

“the altitude at which the signal slope returns to the slope of the clear-sky

signal or the signal magnitude drops below Pmin” (Wang and Sassen, 2001).

The clear-sky signal is calibrated below the layer base by assuming no aerosol

is present. The ratio of the peak signal to that of the layer base (T ) and the

maximum negative slope (D) are two other properties for each layer that are
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also used in the algorithm (Wang and Sassen, 2001). In this second step, it is

noted that the “layer” could be cloud, aerosol, precipitation, virga, or simply a

noise peak. Therefore, certain range-corrected signals are used for low-cloud

detection. Additionally, if the signal-to-noise ratio (SNR) is above a given

threshold, then the D value within 500-800 m of the layer top is found. The

layer top height is then searched again starting from this D value height,

which addresses cases of cloud layers with multiple signal peaks.

3. For the third step, cloud is distinguished from aerosols and noise. Clouds are

much more dense than aerosols at a given altitude, so an altitude-dependent

threshold for the T value can be used to distinguish aerosols and clouds.

Dense low clouds can sometimes have a small T value (i.e., indicating aerosol),

though, so a D value threshold is used in these cases. If signal variation is

high, but T and D values are small, this is indicative of a noise layer.

4. Step four involves determining whether the cloud layer top is an actual top or

an “effective top” (ET) (Wang and Sassen, 2001), which is an important

factor when considering whether or not these CTH values can be used as

ground truth or not. If the signal falls below the Pmin value, it is considered to

be completely attenuated, and this is an ET. A quality flag is included in the

output, which indicates whether the top is an actual or ET.

5. In the final step, actual cloud bases are distinguished from virga and

precipitation. A key difference between signal characteristics of the two classes

is that the signal slope is typically much smaller for virga and precipitation.

There exists an inherent uncertainty of ±2% for all reported distances due to the

timing electronics, as well as ±7.5 m due to the width (i.e., vertical resolution) of

each range bin (Coulter, 2012). Other uncertainties related to the MPL instrument

that are more difficult to quantify are described in Coulter (2012).
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2.4.3 Cloud Optical Property (COP) Retrieval.

Optical thickness ground truth is determined by first using an algorithm for

retrieving COD (τ∗), and then by converting τ∗ to COT (τ) using the VIIRS sensor

zenith angle as shown in Equation 2. The same algorithm is also used to retrieve

EPS. The algorithm is an ARM VAP that infers the COD and EPS of liquid water

clouds from surface-based Multi-Filter Rotating Shadowband Radiometer (MFRSR)

measurements of solar irradiance at 0.415 mm in 15-s intervals (Min and Harrison,

1996). This wavelength was chosen due to the lack of gaseous absorption, the

relatively constant surface albedo (in the absence of snow), and the fact that its

scattering properties are less sensitive to cloud particle sizes (Min and Harrison,

1996; Turner et al., 2014). The algorithm incorporates total LWP measured by a

microwave radiometer (MWR) every 20 s to independently retrieve the EPS (re) of

the warm cloud droplets, which improves the accuracy of the inferred COD.

Accuracy is improved due to the “slight dependence” of the extinction coefficient,

single scattering albedo, and asymmetry parameter on re at this wavelength (Turner

et al., 2014). The re value is determined from LWP using the inverse of Equation 7

in Section 2.3.6. When a coincident MWR is not available or is inoperable, an

assumed re of 8 mm is used (Turner et al., 2014).

Input data include observed irradiance from the MFRSR; LWP from the ARM

MWR retrieval datastream; Top-of-Atmosphere (TOA) irradiance for clear, stable,

temporally proximal days from the Langley regression method; cloud sky cover

fraction from the ARM short wave flux analysis VAP, or from the total sky imager if

the VAP is not available; estimated CBH from the ARM Clothiaux CBH VAP;

infrared sky temperature; and an assumed surface albedo value of 0.036 for green

vegetation (Turner et al., 2014). An assumed surface albedo is appropriate for

surfaces with such small albedos; however, for a surface with a high albedo, such as
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snow-covered regions, the albedo becomes much more important. A method for

determining the albedo for this VAP for snow-covered regions is still in the

evaluation phase, and thus more uncertainty exists in the COD truth data for this

background condition (Turner et al., 2014).

Atmospheric transmittance at 0.415 mm is computed using the observed

irradiance and the TOA irradiance, where two TOA values are computed for each

day (Turner et al., 2014). These values are the mean of clear-sky days within three

months before and after the current day being processed. From this sample, the

best 10 to 20 points are chosen from which the mean is calculated, as described by

Michalsky et al. (2001). The heart of the algorithm is the nonlinear least squares

method (NLSM), a linearized iterative method described by Bevington (1969). In

this method, the solar zenith angle is varying and scattering properties are

parameterized to determine EPS and COD, where classic Mie theory is the basis for

scattering by approximately-spherical water droplets (Turner et al., 2014). Only

COD is returned if the LWP estimate cannot be provided by a coincident MWR.

The VAP assumes horizontally homogeneous, stratiform clouds with COD

greater than approximately seven (Turner et al., 2014), and is restricted to daytime

retrieval only. A single cloud layer consisting of only liquid water droplets is also

assumed. Two temporal resolutions are available for this product: one

“instantaneous” output at the 20-second interval of the MFRSR, and an “average”

output for the 5-minute period centered on the sample time (Turner et al., 2014).

Total 1-sv (i.e., one standard deviation) uncertainties for both COD and EPS are

propagated through from the input data and assumed parameters and are available

as output. If LWP is available from the MWR retrieval, the uncertainty for LWP is

assumed to be 20 g m-2.
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One study at the SGP ARM site compared retrieved cloud particle sizes to eight

in situ vertical profiles constructed from observations by an aircraft-based forward

spectra scattering probe, and found that they were within 5.5% (Min et al., 2003).

Furthermore, a sensitivity study included in this paper demonstrated that a 13%

uncertainty in observed LWP (i.e., 20 g m-2) results in only a 1.5% difference in

retrieved COD, but a 12.7% difference in EPS. Therefore, it is clear that EPS is

much more sensitive to the relatively large uncertainties of LWP.

2.5 Research Question and Objective

A system-level analysis of the VIIRS CBH IP must include an assessment of

other key cloud products used to retrieve CBH in order to completely understand

sources of error that drive inaccurate retrievals. Specifically, CTH from the CTP IP,

as well as COT and EPS from the COP IP, are assessed for their accuracy. Such an

analysis is critical to establishing a detailed algorithm error budget, which is needed

to identify the major sources of error in the CBH product and focus future research

efforts to address them. Thus, precise measurements are needed not only for the

CBH product, but also for the CTH, COT, and EPS products, which led to the use

of ground-based data collected at the DOE ARM sites. Data from these ARM sites

are assumed to be ground truth data, and are compared to VIIRS data for

single-layer water clouds at the pixel level for both daytime and nighttime scenes.
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III. Methodology

3.1 Time Period and Location Selection

A significant factor in choosing a time period for the coincident VIIRS and ARM

data was the data maturity timeline of the VIIRS cloud products, described in

Section 2.3.8. All VIIRS cloud products had been released to the public in beta

status by late April 2013, and a report was released in mid-May 2013. Therefore,

June 2013 was chosen as the beginning of the research time period. For the sake of

time allocated for this research, a cutoff end date was chosen to be 31 October 2015.

The other important factor in selecting a time period was that of data availability

at each location.

Ground truth locations were chosen by first identifying the data that would be

used as ground truth and then finding which locations in the ARM data archive

contained those datasets for June 2013 and beyond. In order to evaluate CBH and

CTH, at a minimum, it was required that each location have these data available.

Any locations that also had data for COP evaluation were considered to be a bonus,

as those data were relatively rare. Thus, time periods varied for each location

depending on when these particular datasets were available. Individual datasets

were placed into one of two categories, as shown in Table 6: Tier 1 for those

containing all three ground truth measurements (CBH, CTH, and COP), and Tier 2

for those containing only the CBH and CTH ground truth measurements. Four

locations had the measurements needed for the June 2013 - October 2015 time

period: Lamont, OK, of the SGP ARM Facility; Darwin, Australia, TWP ARM

Facility; Graciosa Island (Isl.), Azores, Portugal, ENA ARM Facility; and the

mobile ARM site at Manacapuru, Brazil. Arctic locations at the NSA ARM Facility

did not provide enough water-phase cloud cases for evaluation. However, the four
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selected locations provided observations for both mid-latitude and tropical climates,

in addition to covering all seasons. The Lamont and Darwin sites provided all of the

Tier 1 data, while the other two consisted of only Tier 2 data. Therefore, the

number of cases with COP truth data would be limited.

3.2 Data Sources

The University of Wisconsin Space Science and Engineering Center (SSEC)

maintains a NASA Atmosphere Science Investigator-led Processing System (SIPS)

website that enabled access to 1 km IP granules, which are the basic units of

packaged VIIRS data. One granule contains 48 scans of VIIRS data, which covers

approximately 3040 x 570 km, spatially, and about 85 seconds, temporally. The

SIPS website contains a search tool that allows users to specify VIIRS granules by

product type (e.g. VIIRS CBH IP), date, time, latitude, and longitude. Different

methods can be used to specify the spatial search area, but the method used for this

research was to search a radius around the latitude and longitude of each ARM site

location’s coordinates. Matrix Laboratory (MATLAB) software code was used to

continuously generate these FTP search pages from the SIPS website until a certain

radius was able to single out the closest granule for each VIIRS overpass. With this

retrieval method, 12 files of the closest granule were identified and downloaded for

every pair of overpasses (six day and six night) for the locations and time periods

specified in Table 6. The six files were the moderate-resolution, terrain-corrected

geolocation (GMTCO) SDR; CM IP; Parallax-corrected COP IP; Parallax-corrected

CTP IP; CLT IP; and CBH IP. All VIIRS files were formatted as Hierarchical Data

Format 5 (HDF5) files.

Late in the data collection process, SIPS began removing all GMTCO files prior

to 2015 from the online archive, so the NOAA Comprehensive Large Array-Data
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Table 6. ARM Sites and Corresponding Data. Tier 1 datasets include all three ground
truth measurements (CBH, CTH, COP), while Tier 2 datasets only have the CBH and
CTH measurements (i.e., COT and EPS cannot be validated). The far right column
shows what percentage of the data were Tier 1 for each location.

ARM Site Tier 1 Tier 1 Tier 2 Tier 2 Tier 1
Date Range (months) Date Range (months) %

Lamont, OK,
USA

1 Jun 2013 -
9 Jul 2015

25 1 Jun 2013 -
31 Oct 2015

29 86%

Darwin,
Australia

1 Jun 2013 -
5 Oct 2014

16 1 Jun 2013 -
30 Dec 2014

19 84%

Graciosa Isl.,
Azores,

Portugal

None 0 2 Oct 2013 -
31 Oct 2015

25 0%

Manacapuru,
Brazil

None 0 1 Jan 2014 -
31 Dec 2014

12 0%

Stewardship System (CLASS) was used to collect these files for the remaining

locations and time periods. NOAA CLASS packages their VIIRS data in “chunks”

of four granules, so the data had to be de-aggregated at the time they were ordered.

From the de-aggregated data, the nearest granule was found and downloaded.

All ground truth data were collected using the ARM data archive (ARM, 1996a;

1996b; 1997), which was also used to determine data availability for the locations

and time periods in Table 6, as described in section 3.1. The archive search function

allows the user to easily browse and order specific data. In the archive, the specific

datasets are named ceilometer (listed in the ARM Data Archive as “CEIL”) for the

CBH truth data, the 30-s MPL Cloud Mask using the first Wang and Sassen (2001)

algorithm (30SMPLCMASK1ZWANG) for the CTH truth data, and the 1-minute

MFRSR Cloud Optical Depth (MFRSRCLDOD1MIN) for the COP truth data.

After datasets were ordered, they were downloaded for each date, time, and location

as Network Common Data Form (NetCDF) files using MATLAB code.
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3.3 Evaluation

3.3.1 VIIRS-ARM Site Match-ups.

Within each GMTCO granule file, which contains all geolocation data, all pixels

were searched to find the pixel with coordinates nearest to those of the particular

ARM site being evaluated. Using this spatial match-up method, 89% of the

VIIRS-ARM match-ups were within 500 m, and 99% were within 1 km. It was from

this single, closest pixel that all other pertinent data were extracted, to include

time. The time associated with this pixel was then used to match-up all data from

the ARM truth dataset that were within ±5 minutes of the pixel time. An average

value for this 10-minute period was used as the ground truth value for each ARM

site and data type.

3.3.2 Processing the Data.

Data were processed in three different ways: two different methods for daytime

cases, and one for all nighttime cases. This would yield three principal datasets for

evaluation.

3.3.2.1 Primary Daytime Method.

Each location and associated datasets were processed one at a time, for the

respective time period listed in Table 6, using MATLAB. After the data were

processed to find the closest pixel, as described in section 3.3.1, the VIIRS CM data

were then used to determine if it was a suitable test case by meeting four criteria:

1. Pixel must be “confidently cloudy,” meaning that all tests in the CM

algorithm indicate that the pixel is cloudy
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2. Pixel CM quality must be “high,” meaning the maximum number of tests

were used, given the limiting factors of background conditions and solar

illumination

3. Pixel cloud phase must be “water” phase, indicating that the pixel scene was

comprised completely of liquid water cloud particles

4. The thin cirrus flag in the CM algorithm indicated that no thin cirrus clouds

were present in the pixel scene

If any of the above criteria were not met, the case was omitted by the MATLAB

code. At a minimum, a case had to include both VIIRS-calculated and ground truth

values for both CBH and CTH to be evaluated. Furthermore, there were cases

where a liquid water phase was identified by the CM IP, but an inconsistent cloud

type (i.e., cirrus or cirrocumulus) was chosen in the CLT IP. In the CLT IP

clustering algorithm, all pixels within a 6x6 km grid cell are assigned the same cloud

type, so it was likely that cirrus was too close to the ARM site to be a valid test

case. This was confirmed using a manual inspection of false-color imagery, as

described in Section 3.3.3.

Next, other important data were extracted from each VIIRS file for the nearest

pixel, including sensor and solar zenith angles from the GMTCO, COT and EPS

from the COP IP, CTH from the CTP IP, cloud type from the CLT IP, and CBH

from the CBH IP. Truth data were also extracted and included the lowest

instantaneous CBH from the CEIL file, the highest instantaneous CTH from the

30SMPLCMASK1ZWANG file, and the instantaneous COD and EPS values from

the MFRSRCLDOD1MIN file. All of these instantaneous values were averaged over

a 10-minute period (i.e., within ±5 minutes of the pixel time), as described in

section 3.3.1.
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To compare these VIIRS-calculated and ARM ground truth values, they had to

be converted to common units and measurements. CBH and CTH values were

compared in meters, while EPS values were compared in microns. Additionally, the

unitless COD ground truth value (τ ∗) from the MFRSR VAP was converted to

COT (τ) using the cosine of the VIIRS sensor scan (i.e., slant-path) angle, as shown

in Equation 2. VIIRS assumes a wavelength of 550 nm when calculating COT,

while the ARM VAP uses transmittance at 415 nm to estimate COT; therefore, it

was assumed that atmospheric extinction coefficients were the same for these two

wavelengths, which is a very good approximation for these wavelengths and particle

sizes (Warren, 2015).

Furthermore, two different methodologies were used to handle the attenuation

flag information described in step four of the CTH algorithm in Section 2.4.2. In

this primary daytime method, the first and simplest method was to average the

attenuation flag array corresponding to the 10-minute average of the CTH truth

data. If the average was closer to the value of an ET, then it was labeled as such;

otherwise, it was labeled as an actual top. With this method, an ET implies that

the array used to calculate the CTH truth value was more heavily weighted with

false tops, and should therefore be used with caution.

3.3.2.2 Alternate Daytime Method.

Another method was added in order to increase the robustness of the evaluation.

The alternate daytime method involved all of the same steps as the primary

method, but with a different approach to the ARM CTH attenuation flag handling.

It consisted of removing all effective CTH values from the array before averaging,

such that the CTH ground truth value was an average of only true CTH values,

uncontaminated by ET values. While this second method was more ideal, there
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were many cases that consisted entirely of ETs (i.e., optically thick clouds that

completely attenuated all of the MPL signals during that 10-minute period).

Therefore, this second method limited the number of total cases in the study,

especially with the ±5 minute time period that was used. To offset this limitation,

time periods of ±10 minutes and ±15 minutes were attempted, but this only

resulted in larger errors, especially for COT. These results were not included in this

document.

3.3.2.3 Nighttime Method.

The nighttime method consisted of all the same steps as the primary daytime

method, but with one significant difference: the COT and EPS products could not

be evaluated. The ground truth measurements for these properties rely on solar

reflectance information. Additionally, the false color imagery, described below, could

not be used to verify cloud phases for the nighttime cases.

3.3.3 Test Scene Identification using False Color Images.

False-color, composite images were used to verify the cloud phase calculated by

the VIIRS CM IP. These images were generated using the method described by

Hutchison and Cracknell (2005). The method involves using the M1 (0.412 mm), M9

(1.378 mm), and M10 (1.610 mm) channels to create multi-spectral images in which

cloud phases and types are clearly observed. Low-level water clouds appear yellow,

while mid-level water clouds appear gray/white, as shown in Figure 4. More

information is given in the figure caption below.
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Figure 4. VIIRS False-color Image Example. False-color (red-green-blue) composite
image used to identify the cloud types in the VIIRS scene being used (Hutchison and
Cracknell, 2005). This scene is July over Darwin, Australia. Yellow means stronger
reflectance in the red (M1, 0.412 µm for this method) and green (M10, 1.61 µm),
characteristic of low-level water clouds. Pink and purple have strong reflectance in red
and blue (M9, 1.378 µm), indicative of high-level, thick ice clouds, while blue alone is a
thin ice cloud. Mid-level water clouds are shown in the red box (surrounding Darwin),
where there is approximately equal contribution from all three bands, and so the clouds
appear gray/white. Snow/ice (when present) is shown in red for low elevations, and in
blue/purple for higher elevations. Water appears dark blue/black, and land surfaces
appear green. Scan angles across the bottom of the figure indicate the appearance of
“bow-tie” deleted pixels, which is described in Section 2.2.2. These deleted pixels first
appear at 31.72 degrees, and double in size at 44.86 degrees.
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IV. Results and Analysis

4.1 Initial Results

4.1.1 Daytime Results using Primary Method.

Daytime comparisons for VIIRS CBH and upstream cloud products were made

using the truth data collected at all four ARM sites, first with the primary data

processing method from Section 3.3.2.1. The data in Figures 5-8 represent 156

coincident, daytime observations for single-layer water clouds found in VIIRS-ARM

site match-ups for the period of 1 June 2013 to 31 October 2015, using this primary

method. Correlation between VIIRS and ARM CBH is plotted on the left side of

Figure 5 (in blue), while correlation between VIIRS and ARM CTH is plotted on

the right side (in red). In Figure 6, CBH error is shown in blue (+), while CTH

error is shown in red (*). Additionally, average CBH error is represented by the

solid blue line, while average CTH error is represented by the dashed red line. Error

was calculated by subtracting the ARM ground truth values from the VIIRS values.

Figure 5. Correlations for CBH and CTH (Primary Daytime). Correlation of VIIRS
and ARM CBH is shown on the left (in blue), while correlation of VIIRS and ARM
CTH is shown on the right (in red).
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Figure 6. Error (VIIRS - ARM) for CBH and CTH (Primary Daytime). CBH error is
shown in blue (+), while CTH error is shown in red (*). Average CBH error is indicated
with the solid blue line, while average CTH error is indicated with the dashed red line.

Correlation is weak for both CBH and CTH, with a significant cluster of

observations towards the lower right-hand side of each plot - indicating that VIIRS

often overestimates both CBH and CTH. This is consistent with the average (i.e.,

arithmetic mean) error (VIIRS - ARM) of CBH and CTH, plotted in Figure 6,

which demonstrates a large positive bias for both products. Similar plots are shown

for the two other key, upstream VIIRS cloud products, COT and EPS, in Figures 7

and 8 below.
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Figure 7. Correlations for COT and EPS (Primary Daytime). Correlation of 19 coinci-
dent VIIRS and ARM COT observations is shown on the left (in blue), while correlation
of 15 coincident VIIRS and ARM EPS observations is shown on the right (in red).

Figure 8. Error (VIIRS - ARM) for COT and EPS (Primary Daytime). COT error
is shown in blue (*), while CTH error is shown in red (+). Average COT error is
indicated with the solid blue line, while average EPS error is indicated with the dashed
red line.

The number of cases comparing VIIRS and ARM data for these products was

much lower, with only 19 cases for COT and 15 for EPS. VIIRS COT has a much
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stronger correlation with its ARM counterpart, at 0.89, while the EPS correlation is

weak and similar to that of CBH and CTH, at 0.20. In Figure 8, COT (blue *, axis

on left) has a negative bias, while EPS (red +, axis on right) has a positive bias, as

indicated by the different scales of their respective y-axes.

Corresponding statistics are shown in Table 7. Of the 156 cases, 69 occurred at

the Graciosa Island site (Azores, Portugal), 39 at the Lamont, OK site, 34 at the

Manacapuru, Brazil site, and 14 match-ups at the Darwin, Australia site.

Comparisons between the VIIRS cloud products and ARM site truth data are shown

for CBH, CTH, COT, and EPS, as a function of cloud type. The numbers of COT

and EPS cases, which were much smaller than that of CBH and CTH, are indicated

by the parentheses in the correlation coefficient (r) column for each cloud type.

Table 7. Daytime Statistics (Primary). All VIIRS - ARM daytime match-up datasets,
segregated by cloud type, along with the error (VIIRS - ARM) of VIIRS cloud products
compared to the ARM ground-based truth datasets. Cloud types are stratus (ST),
altocumulus (AC), and cumulus (CU). These results were generated using the primary
daytime processing method described in Section 3.3.2.1. Numbers of COT and EPS
cases are in parentheses.

ARM VIIRS VIIRS VIIRS VIIRS
Site CBH CTH COT EPS

Observations
Cloud # of

r
Avg.

r
Avg.

r
Avg.

r
Avg.

Type Cases Error
(m)

Error
(m)

Error Error
(mm)

ST 14 0.33 443.0 0.30 287.5 1.00
(2)

-3.7 1.00
(2)

-0.4

CU 82 0.17 1191.0 0.13 694.2 0.99
(3)

2.8 -0.09
(4)

10.0

AC 60 0.26 757.6 0.58 802.4 0.87
(14)

-4.3 0.73
(9)

1.3

Total 156 0.20 957.2 0.27 699.3 0.89
(19)

-3.1 0.20
(15)

3.4

In general, the correlations between the VIIRS cloud products and ARM truth

data were poor, except for the COT product, which had a relatively high correlation
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coefficient of 0.89. Correlation for the CBH product was 0.20 for all cloud types,

although it improved slightly to 0.33 for the 14 stratus cloud cases. Correlations for

the CTH and EPS products were 0.27 and 0.20, respectively. VIIRS CBH and CTH

both had a high bias for all cloud types, but especially for cumulus CBH. COT

values had a low bias overall, with average VIIRS-calculated values being smaller

than that of the truth data for all cloud types. Cumulus was the exception,

however. By far, the lowest correlation and largest errors for EPS came from the

four cumulus cases. The alternate data processing method for daytime cases was

evaluated, as well, in order to see if results were similar for both methods.

4.1.2 Daytime Results using Alternate Method.

Daytime match-ups using the alternate ARM CTH attenuation flag handling

method, described in Section 3.3.2.2, yielded 63 total cases, only six of which

contained COT and EPS comparisons.

Figure 9. Correlations for CBH and CTH (Alternate Daytime). Correlation of VIIRS
and ARM CBH is shown on the left (in blue), while correlation of VIIRS and ARM
CTH is shown on the right (in red).
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Figure 10. Error (VIIRS - ARM) for CBH and CTH (Alternate Daytime). CBH
error is shown in blue (+), while CTH error is shown in red (*). Average CBH error
is indicated with the solid blue line, while average CTH error is indicated with the
dashed red line.

Figure 9 shows CBH and CTH correlations that are very similar to those using

the primary data processing method in the preceding section. Additionally, Figure

10 again shows a large positive bias for both CBH and CTH, indicated by their

average errors. The two following figures show COT and EPS in the same way as

the preceding section, but for a small sample size of only six cases each.
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Figure 11. Correlations for COT and EPS (Alternate Daytime). Correlation of 19
coincident VIIRS and ARM COT observations is shown on the left (in blue), while
correlation of 15 coincident VIIRS and ARM EPS observations is shown on the right
(in red).

Figure 12. Error (VIIRS - ARM) for COT and EPS (Alternate Daytime). COT error
is shown in blue (*), while CTH error is shown in red (+). Average COT error is
indicated with the solid blue line, while average EPS error is indicated with the dashed
red line.

The six COT cases in Figure 11 again show a strong correlation with the ARM

COT values, while the correlation of six VIIRS-ARM EPS cases is weak and similar
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to CBH and CTH. Furthermore, there is a negative COT bias and positive EPS bias

in Figure 12, just as with the primary method, but they are smaller with this

alternate method. It is difficult to draw conclusions from such small COT and EPS

sample sizes, but there is clearly a very similar trend to that of the primary method.

The same statistics were generated for the alternate method results and are shown

in Table 8 below.

Table 8. Daytime Statistics (Alternate). All VIIRS - ARM daytime match-up datasets,
segregated by cloud type, along with the error (VIIRS - ARM) of VIIRS cloud products
compared to the ARM ground-based truth datasets. Cloud types are stratus (ST),
altocumulus (AC), and cumulus (CU). These results were generated using the alternate
daytime processing method described in Section 3.3.2.2. Numbers of COT and EPS
cases are in parentheses.

ARM VIIRS VIIRS VIIRS VIIRS
Site CBH CTH COT EPS

Observations
Cloud # of

r
Avg.

r
Avg.

r
Avg.

r
Avg.

Type Cases Error
(m)

Error
(m)

Error Error
(mm)

ST 6 -0.08 648.2 0.05 678.8 N/A
(1)

-0.9 N/A
(1)

-0.6

CU 42 0.22 1430.4 0.22 777.4 1.00
(2)

3.1 1.00
(2)

-0.6

AC 15 0.34 605.9 0.48 1115.8 0.99
(3)

-2.8 0.42
(3)

4.2

Total 63 0.21 1159.6 0.26 848.6 0.97
(6)

-0.5 0.39
(6)

1.8

The total number of valid cases decreased by 60% to 63, and the number of cases

including COT and EPS dropped sharply to only six cases each. Comparing these

results to those of all 156 cases in Table 7, one can see that CBH performance is

very similar using the two different data processing methods, with correlations of

0.20 and 0.21 for the primary and alternate methods, respectively. CTH correlation

was also very similar using the two methods, at 0.27 and 0.26, for primary and

alternate, respectively. CBH and CTH bias was once again positive, and slightly
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larger than that of the primary method. COT correlation was higher for the

alternate method - likely a result of such a small number of cases.

4.1.3 Nighttime Results.

Nighttime results consisted of only CBH and CTH comparisons, as ARM COT

and EPS truth data were not available for nighttime cases. A total of 27 match-ups

were generated using the same method as the primary daytime dataset. The same

correlation and error plots were created for these nighttime cases and are shown in

the two figures below.

Figure 13. Correlations for CBH and CTH (Nighttime). Correlation of VIIRS and
ARM CBH is shown on the left (in blue), while correlation of VIIRS and ARM CTH
is shown on the right (in red).
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Figure 14. Error (VIIRS - ARM) for CBH and CTH (Nighttime). CBH error is shown
in blue (+), while CTH error is shown in red (*). Average CBH error is indicated with
the solid blue line, while average CTH error is indicated with the dashed red line.

Results were similar to those of the daytime cases, but correlations and errors

were generally worse, as expected. The correlations in Figure 13 for CBH and CTH

were 0.08 and -0.39 (anti-correlated), respectively, compared to 0.20 and 0.27 from

the primary daytime results. The statistics for these results are summarized in

Table 9 below. The bias for CBH was negative for these nighttime cases, as seen in

Figure 14, owing primarily to the large, negative average error for stratus. This was

surprising, but such large errors were likely produced by an outlier in such a small

sample size. More analysis was needed in order to better understand these results

for both daytime and nighttime cases, and the first thing to do was to identify such

outliers.
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Table 9. Nighttime Statistics. All VIIRS - ARM nighttime match-up datasets, segre-
gated by cloud type, along with the error (VIIRS - ARM) of VIIRS cloud products
compared to the ARM ground-based truth datasets. COT and EPS ground truth data
were not available for nighttime cases. Cloud types are stratus (ST), altocumulus (AC),
and cumulus (CU).

ARM VIIRS VIIRS
Site CBH CTH

Observations
Cloud # of

r
Avg.

r
Avg.

Type Cases Error (m) Error (m)
ST 3 0.32 -2534.2 0.94 -5966.8
CU 6 0.70 553.3 -0.67 -2496.6
AC 18 -0.02 -70.3 -0.37 -1920.6

Total 27 0.08 -205.5 -0.39 -2498.2

4.2 Removal of Outliers

Due to the overall poor accuracy and correlation with truth data, outlying cases

were removed from the complete dataset to see how they were impacting

performance. Outliers were removed for the following conditions:

1. CTH greater than 20,000 ft (6100 m, both VIIRS and ARM truth)

2. CTH error greater than 10,000 ft (3050 m), or less than -10,000 ft (-3050 m)

3. COT/EPS truth uncertainty greater than 10%, based on the output

parameter from the ARM VAP used for COP truth data (described in Section

2.4.3); not all ARM COD/EPS truth values have an associated uncertainty

value, as it was unable to be calculated by the VAP for some cases

4. EPS error greater than 5 mm, or less than -5 mm

Criterion 1 was needed in order to identify those cases in which cloud phases were

labeled as water clouds, but the height of the layer indicated that this was unlikely.

The false-color images were also used to confirm the existence of these erroneous

cloud phases for daytime images. Criterion 2 was necessary to omit the cases in

which it was clear that the VIIRS and ARM instruments were detecting two
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different layers. Criterion 3 identified the cases where there was too much

uncertainty for the ARM data to serve as reliable ground truth. Criterion 4 was

used to omit cases of large VIIRS EPS error, which included two cases where the

errors were 39 and 9 mm - significantly larger than all other cases.

Criteria 1 and 2 are shown graphically in Figure 15. Criterion 1 (CTH outliers)

is shown in blue, such that all markers above the blue line are the outliers. The

majority of the outliers are VIIRS CTH values (indicated by symbol: *), although

there are some ARM CTH outliers (indicated by symbol: +), as well. Criterion 2

(CTH error outliers) are in red, and all of the red markers that fall outside of the

space contained between the two lines (i.e., between -10,000 ft and 10,000 ft) are the

outliers. More error outliers exist on the positive end, which is not surprising

considering the overall positive bias that was found in the preceding section. Some

VIIRS cases were outliers for both criteria, as indicated by the vertically aligned red

and blue asterisk (*) markers falling outside of the defined ranges.
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Figure 15. CTH Outliers. Outliers identified for CTH > 20,000 ft (6100 m) and CTH
error (VIIRS CTH – ARM CTH) > 10,000 ft (3050 m, or < -10,000 ft/-3050 m). CTH
values are listed in blue (* for VIIRS CTH and + for ARM CTH), while CTH error
values are listed in red (*). Generated using the primary daytime processing method
described in Section 3.3.2.1.

COP outliers are shown graphically in Figure 16, where criterion 3 outliers

(ARM COD/EPS truth uncertainty outliers) are in blue, and criterion 4 (EPS error

outliers) are in red. Again, all blue markers lying above the blue line are outliers,

and all red markers outside of the two red lines are outliers. Both kinds of blue

markers are ARM values in this figure, with (*) representing the COD uncertainty,

and (+) representing the EPS uncertainty. Only one EPS uncertainty outlier exists;

all the rest are COD uncertainty. The red markers represent the VIIRS EPS error

outliers, of which there were only two.
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Figure 16. COD and EPS Outliers. Outliers identified for COD/EPS uncertainty > 10%
and EPS error (VIIRS EPS – ARM EPS) > 5 mm (or < - 5 mm). Uncertainty values are
listed in blue (* for ARM COD Uncertainty and + for ARM EPS Uncertainty), while
ARM EPS error values are listed in red (+). Generated using the primary daytime
processing method described in Section 3.3.2.1.

After these outliers were removed, 134 daytime cases remained for the primary

method, the results of which are shown in Table 10. Overall, CBH and CTH

correlations nearly doubled to 0.36 and 0.50, respectively, while EPS correlation

increased four-fold to 0.82 (shown graphically in Figure 17). In general, average

error was reduced drastically for all cloud types except for stratus, which had no

outlier cases. Correlation improved from -0.09 to 0.87, and average error fell from 10

mm to 0.4 mm.
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Table 10. Daytime Statistics with Outliers Removed (Primary). Outliers removed for
CTH > 20,000 ft (6100 m) and CTH error (VIIRS CTH – ARM CTH) > 10,000 ft (3050
m, or < -10,000 ft/-3050 m), COD/EPS uncertainty > 10% and EPS error (VIIRS EPS
– ARM EPS) > 5 mm (or < - 5 mm). Cloud types are stratus (ST), altocumulus (AC),
and cumulus (CU). Generated using the primary daytime processing method described
in Section 3.3.2.1. Numbers of COT and EPS cases are in parentheses.

ARM VIIRS VIIRS VIIRS VIIRS
Site CBH CTH COT EPS

Observations
Cloud # of

r
Avg.

r
Avg.

r
Avg.

r
Avg.

Type Cases Error
(m)

Error
(m)

Error Error
(mm)

ST 14 0.33 443.0 0.30 287.5 1.00
(2)

-3.7 1.00
(2)

-0.4

CU 65 0.33 670.1 0.36 373.1 0.99
(3)

2.8 0.87
(3)

0.4

AC 55 0.39 850.3 0.65 584.8 0.73
(11)

-4.6 0.84
(7)

0.1

Total 134 0.36 720.3 0.50 451.0 0.90
(16)

-3.1 0.82
(12)

0.1

Figure 17. EPS Correlation Comparison. Correlation before (left) and after (right)
outliers are removed for error > 5 mm (or < - 5 mm), using the primary daytime
results. Correlation improves dramatically after outliers are removed. Generated using
the primary daytime processing method described in Section 3.3.2.1.

The alternate CTH attenuation flag method produced similar results, with 53 of

the 63 cases left after outlier removal, as shown in Table 11. The CBH correlation
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more than doubled from 0.21 to 0.44, and CBH average error was nearly cut in half,

decreasing from 1160 m to 610 m. Likewise, CTH correlation improved from 0.26 to

0.41, while CTH average error dropped from 849 m to 373 m. Much like the

primary daytime results, EPS saw the most significant improvement with just a

single case removed. Correlation improved from 0.39 to 0.74, and error dropped

from 1.8 mm to 0.3 mm.

Table 11. Daytime Statistics with Outliers Removed (Alternate). Outliers removed
for CTH > 20,000 ft (6100 m) and CTH error (VIIRS CTH – ARM CTH) > 10,000
ft (3050 m, or < -10,000 ft/-3050 m), COT/EPS uncertainty greater than 10%, and
EPS error (VIIRS EPS – ARM EPS) > 5 mm (or < - 5 mm). Cloud types are stratus
(ST), altocumulus (AC), and cumulus (CU). Generated using the alternate daytime
processing method described in Section 3.3.2.2. Numbers of COT and EPS cases are
in parentheses.

ARM VIIRS VIIRS VIIRS VIIRS
Site CBH CTH COT EPS

Observations
Cloud # of

r
Avg.

r
Avg.

r
Avg.

r
Avg.

Type Cases Error
(m)

Error
(m)

Error Error
(mm)

ST 6 -0.08 648.2 0.05 678.8 N/A
(1)

-0.9 N/A
(1)

-0.6

CU 34 0.36 475.2 0.36 177.8 1.00
(2)

3.1 1.00
(2)

-0.6

AC 13 0.61 943.0 0.50 742.1 1.00
(2)

-2.4 1.00
(2)

1.6

Total 53 0.44 609.5 0.41 372.9 0.98
(5)

0.1 0.74
(5)

0.3

Improvement was even more drastic for the 18 nighttime cases remaining after

omission of CTH and CTH error outliers. As shown in Table 12, correlations

increased from 0.08 to 0.39 for CBH, and from -0.39 to 0.20 for CTH, which were

still weak correlations. The negative bias that existed before outlier removal became

a positive bias for both CBH and CTH. While the removal of these outliers yielded

some interesting results, some analysis of upstream cloud products was needed to

identify the largest sources of error.
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Table 12. Nighttime Statistics with Outliers Removed. Outliers removed for CTH >
20,000 ft (6100 m) and CTH error (VIIRS CTH – ARM CTH) > 10,000 ft (3050 m, or
< -10,000 ft/-3050 m). Cloud types are stratus (ST), altocumulus (AC), and cumulus
(CU).

ARM VIIRS VIIRS
Site CBH CTH

Observations
Cloud # of

r
Avg.

r
Avg.

Type Cases Error (m) Error (m)
ST 1 N/A -1506.8 N/A -2933.5
CU 4 0.83 873.9 0.91 774.9
AC 13 0.31 482.0 0.27 213.7

Total 18 0.39 458.6 0.20 163.6

4.3 Analysis of the Upstream Cloud Products

4.3.1 CTH Analysis: CBH Sensitivity to CTH Error.

Since the COT is a reflection of the cloud geometric thickness, as shown in

Equations 7 and 8, additional analyses were needed to better understand the poor

correlations for CBH products in spite of the excellent COT correlations. The

individual cloud cases were examined more closely, and the results for a subset

(April 2014 through May 2015) of the individual VIIRS-ARM truth match-up data

collected at the Lamont, OK site are shown in Table 13. The subset serves to help

demonstrate the sensitivity analysis using the primary daytime dataset, but with a

smaller, less cumbersome sample size. The subset only consists of cases from the

Lamont, OK site, which contained the greatest number of COT and EPS

match-ups, as well as the largest mixture of cloud types. The first column contains

the calendar dates of the match-up dataset, and the second shows the type of cloud

present, based upon the cloud type output parameter from the VIIRS CLT IP

described in Section 2.3.5. The VIIRS CBH, CTH, and COT are shown in Table 13,

columns 3, 6, and 9, while the corresponding ARM cloud products are in columns 4,
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7, and 10, respectively. The EPS is not shown for convenience. The arithmetic

errors between the VIIRS and truth data (VIIRS – ARM) for the match-ups are

shown in columns 5, 8, and 11.

Table 13. Daytime Subset. Error of VIIRS CBH and other VIIRS cloud data products
based upon comparisons with ARM site truth match-ups. Cloud types are stratus
(ST), altocumulus (AC), and cumulus (CU). Generated using the primary daytime
processing method described in Section 3.3.2.1.

Cloud VIIRS ARM CBH VIIRS ARM CTH VIIRS ARM COT

Date Type CBH CBH Error CTH CTH Error COT COT Error

(m) (m) (m) (m) (m) (m)

4/1/2014 ST 36.7 865.7 -829.0 472.2 1003.2 -531.1 7.7 14.1 -6.4

4/2/2014 AC 2293.6 1740.6 552.9 2949.9 2043.9 905.9 30.8 - -

5/30/2014 CU 2152.9 1537.3 615.6 2542.7 2028.2 514.5 2.0 - -

6/9/2014 CU 1319.8 1469.7 -149.8 1674.0 1731.3 -57.3 1.7 - -

6/17/2014 AC 2240.1 1512.1 727.9 2685.9 1861.2 824.7 11.0 - -

6/27/2014 AC 2586.9 1193.1 1393.8 3063.5 2082.5 981.0 10.9 - -

7/31/2014 AC 2160.2 1608.6 551.5 2660.8 1759.9 900.9 12.4 16.7 -4.4

9/1/2014 AC 3080.0 1728.3 1351.7 3712.4 3400.2 312.3 10.4 17.2 -6.7

9/6/2014 AC 2513.4 1445.4 1068.0 3015.0 1725.6 1289.4 10.3 8.5 1.8

9/10/2014 AC 4710.0 2818.3 1891.7 5111.8 5311.7 -199.9 4.4 8.3 -3.9

9/16/2014 ST 1521.7 594.1 927.7 1956.1 936.9 1019.3 6.1 7.0 -0.9

10/23/2014 AC 3206.7 1121.6 2085.1 3583.9 1285.9 2298.0 10.2 14.4 -4.2

12/5/2014 AC 2021.0 292.7 1728.3 2461.5 1584.1 877.4 5.7 7.8 -2.2

12/10/2014 ST 1745.9 1660.0 85.9 2133.1 1814.1 319.0 7.5 - -

1/10/2015 AC 3022.5 1565.9 1456.5 3361.5 1747.0 1614.5 1.2 - -

5/6/2015 AC 2001.2 1164.9 836.3 2461.6 1662.8 798.8 8.6 - -

5/20/2015 CU 2639.5 741.6 1897.9 3217.5 914.7 2302.8 31.4 29.4 2.0

5/30/2015 AC 2150.1 954.9 1195.3 2581.1 1108.9 1472.2 4.2 9.9 -5.7

5/31/2015 AC 1702.9 1140.9 562.0 2171.1 1354.4 816.7 11.5 17.8 -6.3

Table 14 lists the statistics for Table 13, with σerror representing the

one-standard-deviation error. An inspection of the results shows that the

correlations between the VIIRS CBH and CTH products are similar, at 0.59 and

0.71, respectively, while the correlations between the VIIRS COT product and the

ARM site truth data are much stronger, at 0.91. Thus, it appears that the largest

71



errors in the VIIRS CBH product results are associated with errors in the VIIRS

CTH products.

In order to decouple the errors in the VIIRS CBH products from those in the

VIIRS CTH products, further results were generated using the ARM CTH (truth)

data in place of the VIIRS CTH products. First, the geometric cloud thicknesses

were calculated from the VIIRS CTH and CBH products shown in Table 13. These

cloud thicknesses were then subtracted from the ARM CTH (truth) data, and those

“corrected” results are shown in column 2 of Table 15. Only columns that contain

results affected by this substitution of the ARM CTH product for the VIIRS CTH

product are shown in Table 15, i.e., columns 3 (VIIRS CBH), 5 (CBH error), 6

(VIIRS CTH), and 8 (CTH error) from Table 13. The rest of the columns from

Table 13 are not shown to avoid redundancy.

Table 14. Daytime Subset Results. Statistics of the data from from Table 13. CBH and
CTH correlations are similar and weak, while that of COT is much higher. Generated
using the primary daytime processing method described in Section 3.3.2.1.

CBH CTH COT
r Avg. σerror r Avg. σerror r Avg. σerror

Error (m) (m) Error (m) (m) Error

0.59 944.7 750.2 0.71 866.3 743.1 0.91 -3.4 3.2
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Table 15. Daytime Subset (Corrected). Error of VIIRS CBH and other VIIRS cloud
data products based upon comparisons with ARM site truth match-ups (same as Table
13), but with ground truth (ARM) CTH substituted for VIIRS CTH. Only updated
columns are shown here (dates have not been changed). Generated using the primary
daytime processing method described in Section 3.3.2.1.

VIIRS CBH VIIRS CTH

Date CBH Error CTH Error

(m) (m) (m) (m)

4/1/2014 567.8 -297.9 1003.2 0.0

4/2/2014 1387.6 -353.0 2043.9 0.0

5/30/2014 1638.4 101.2 2028.2 0.0

6/9/2014 1377.1 -92.6 1731.3 0.0

6/17/2014 1415.4 -96.8 1861.2 0.0

6/27/2014 1605.9 412.9 2082.5 0.0

7/31/2014 1259.2 -349.4 1759.9 0.0

9/1/2014 2767.8 1039.4 3400.2 0.0

9/6/2014 1224.0 -221.4 1725.6 0.0

9/10/2014 4909.9 2091.5 5311.7 0.0

9/16/2014 502.5 -91.6 936.9 0.0

10/23/2014 908.7 -212.9 1285.9 0.0

12/5/2014 1143.6 850.9 1584.1 0.0

12/10/2014 1426.9 -233.1 1814.1 0.0

1/10/2015 1408.0 -158.0 1747.0 0.0

5/6/2015 1202.4 37.5 1662.8 0.0

5/20/2015 336.7 -404.9 914.7 0.0

5/30/2015 677.9 -277.0 1108.9 0.0

5/31/2015 886.1 -254.8 1354.4 0.0

Table 16. Daytime Subset Comparison. A comparison of statistics of the data from
from Tables 13 and 15. Ground truth (ARM) CTH is substituted for VIIRS CTH in
Table 15, which greatly increases the CBH correlation and reduces the CBH error.
COT is unchanged between Tables 13 and 15.

Table CBH CTH
r Avg. (σerror) r Avg. (σerror)

Error (m) (m) Error (m) (m)

13 0.59 944.7 750.2 0.71 866.3 743.1
15 0.83 78.4 627.4 1.00 0.0 0.0

The most obvious difference between Tables 13 and 15, shown in the comparison

in Table 16, is the dramatically improved correlation between VIIRS CBH and ARM
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CBH data after errors in VIIRS CTH are taken into account. This CBH correlation,

which was 0.59 when the VIIRS CTH product was used to retrieve the VIIRS CBH

product, improved to 0.83 when the ARM CTH (truth) data are used in place of the

VIIRS CTH product. Additionally, the VIIRS CBH one-standard-deviation error

(σerror) improves from 750 m to 627 m, while the average VIIRS CBH error is

reduced from 945 m to nearly 75 m, which allows the VIIRS CBH product to easily

meet the system requirements listed in Table 1. Thus, the results obtained by using

the ARM (truth) CTH product in the VIIRS CBH retrieval demonstrate that the

theoretical basis of the VIIRS CBH algorithm is fundamentally sound, i.e., it

validates the concept of converting COT into a geometric cloud thickness.

When applying the same statistical analysis and sensitivity methodology to all

156 cases of the complete, primary, daytime dataset (not shown here to save space),

the correlations, mean errors, and error standard deviations improved for the full

spectrum of CBH and upstream parameters, as shown in Table 17. The CBH results

generated using the VIIRS CTH are shown in columns 3, 4, and 5, while the results

from the “corrected” method (i.e., using ARM CTH in place of VIIRS CTH) are

shown in columns 6, 7, and 8. Correlation improved from 0.20 to 0.31, while average

error dropped from 957 m to 258 m, and σerror decreased from 2020 m to 1704 m.

Improvement is even more substantial when applying this same analysis to the

outlier-free dataset, show in Table 18. The improvement in CBH correlations for all

daytime cases using the primary method is shown graphically in Figure 18. Red

dots in the figure represent the “corrected” CBH, observed to be grouped much

closer to the correlation line in the figure.
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Table 17. Corrected Daytime CBH Comparison (Primary). A side-by-side comparison
of CBH results for all primary, daytime VIIRS - ARM CBH match-up datasets by cloud
type after ARM CTH truth data have been substituted for VIIRS CTH. Generated
using the primary daytime processing method described in Section 3.3.2.1.

ARM VIIRS Corrected VIIRS
Site CBH CBH

Observations
Cloud #

of
r

Avg. σerror r
Avg. σerror

Type Cases Error
(m)

(m) Error
(m)

(m)

ST 14 0.33 443.0 664.3 0.47 155.5 476.3
CU 82 0.17 1191.0 2461.0 0.31 496.8 1948.2
AC 60 0.26 757.6 1458.2 0.32 -44.8 1479.6

Total 156 0.20 957.2 2019.8 0.31 257.8 1703.6

Table 18. Corrected Daytime CBH Comparison with Outliers Removed (Primary).
VIIRS - ARM CBH match-up datasets by cloud type after ARM CTH truth data has
been substituted for VIIRS CTH. Outliers removed for CTH > 20,000 ft (6100 m) and
CTH error (VIIRS CTH – ARM CTH) > 10,000 ft (3050 m, or < -10,000 ft/-3050 m),
COT/EPS uncertainty greater than 10%, and EPS error (VIIRS EPS – ARM EPS) > 5
mm (or < - 5 mm). Generated using the primary daytime processing method described
in Section 3.3.2.1.

ARM VIIRS Corrected VIIRS
Site CBH CBH

Observations
Cloud #

of
r

Avg. σerror r
Avg. σerror

Type Cases Error
(m)

(m) Error
(m)

(m)

ST 14 0.33 443.0 664.3 0.47 155.5 476.3
CU 65 0.33 670.1 1165.6 0.51 296.9 1138.6
AC 55 0.39 850.3 1155.5 0.61 265.5 948.4

Total 134 0.37 720.3 1120.4 0.55 269.3 1006.4
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Figure 18. CBH Correlation Comparison. Correlation before (left) and after (right)
outliers are removed. Correlation improves significantly after CTH error is removed
(in red). Generated using the primary daytime processing method described in Section
3.3.2.1.

Similar results are shown using the alternate ARM CTH attenuation flag

method (Tables 19 and 20). The highest correlation and lowest error for all cloud

types are observed using the alternate approach, especially after CTH error and

outliers have been removed (Table 20). This makes sense because ARM CTH values

are closest to truth when using the alternate processing method.

Table 19. Corrected Daytime CBH (Alternate). VIIRS - ARM CBH match-up datasets
by cloud type after ARM CTH truth data has been substituted for VIIRS CTH, using
the alternate data processing method described in Section 3.3.2.2.

ARM VIIRS Corrected VIIRS
Site CBH CBH

Observations
Cloud #

of
r

Avg. σerror r
Avg. σerror

Type Cases (m) (m) Error
(m)

(m)

ST 6 -0.08 648.2 737.8 0.78 -30.7 224.7
CU 42 0.22 1430.4 2625.2 0.39 653.0 1362.4
AC 15 0.34 605.9 1232.0 0.21 -509.9 1954.3

Total 63 0.21 1159.6 2256.8 0.29 311.0 1532.1
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Table 20. Corrected Daytime CBH with Outliers Removed (Alternate). VIIRS -
ARM CBH match-up datasets by cloud type after ARM CTH truth data has been
substituted for VIIRS CTH, using the alternate data processing method described
in Section 3.3.2.2. Outliers removed for CTH > 20,000 ft (6100 m) and CTH error
(VIIRS CTH – ARM CTH) > 10,000 ft (3050 m, or < -10,000 ft/-3050 m), COT/EPS
uncertainty greater than 10%, and EPS error (VIIRS EPS – ARM EPS) > 5 mm (or
< - 5 mm).

ARM VIIRS Corrected VIIRS
Site CBH CBH

Observations
Cloud #

of
r

Avg. σerror r
Avg. σerror

Type Cases Error
(m)

(m) Error
(m)

(m)

ST 6 -0.08 648.2 737.8 0.78 -30.7 224.7
CU 34 0.36 475.2 1061.9 0.77 297.4 511.5
AC 13 0.61 943.0 885.3 0.90 200.9 423.2

Total 53 0.44 609.5 994.2 0.80 236.6 472.4

Using both data processing methods, the most promising cloud type was stratus

- the first four cases of which were collected from the well-established, permanent

Lamont, OK site. When CTH ground truth was substituted for VIIRS CTH, as

described above, the four Lamont stratus cases of the primary daytime dataset

resulted in a 0.98 correlation, an average error of -180 m (i.e., low bias), and σerror

of 103 m. This demonstrates that the desired CBH accuracy listed in Table 1 (250

m) may be achievable for stratus clouds if a more accurate CTH retrieval is used.

However, when 10 cases from the site at Graciosa, Portugal were added, the

performance for stratus decreased to that shown in Tables 17 and 18. For the

alternate daytime results, removal of CTH error resulted in a CBH correlation of

0.80, average error of 237 m, and σerror of 472 m. VIIRS retrieval of CBH for stratus

is by far the closest to satisfying the system specification objective (i.e., “desired”)

accuracy requirement listed in Table 1, and this is shown graphically in Figure 19.

Numerous other analyses are also shown in this figure, including by other cloud

types, with and without outliers removed, the CBH “correction” applied, for
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nighttime cases, etc. Only the primary daytime results are shown in this figure, and

the number of cases for each analysis type is shown in parentheses. The same is

shown for CTH retrievals in Figure 20, where it is clear that CTH fails, overall, to

satisfy even the threshold (i.e., “required”) system specification from Table 1.

Figure 19. VIIRS CBH Error Plots. VIIRS CBH error compared to the specification
requirements using the primary data processing method. The VIIRS System Specifi-
cation Requirements from Table 1 are shown in black, where the “required” accuracy
is the threshold accuracy, and the “desired” accuracy is the objective. All other colors
are compared to this standard, including all daytime cases (in red), all nighttime cases
(purple), daytime stratus (blue, no outliers), cumulus (green), and altocumulus (cyan).
The order from top to bottom in the legend is the same order from left to right on the
plot. Number of cases for each analysis type are in parentheses in the legend. “Cor-
rected” cases use ARM CTH in place of VIIRS CTH. The corrected daytime stratus
cases are closest to the desired accuracy, and corrected nighttime cases (all cloud types)
with outliers removed are a close second.
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Figure 20. VIIRS CTH Error Plots. VIIRS CTH error compared to the specification
requirements using the primary data processing method. The VIIRS System Specifi-
cation Requirements from Table 1 are shown in black, where the “required” accuracy
is the threshold accuracy, and the “desired” accuracy is the objective. Only the re-
quirements for COT > 1 (over 95% of the cases) are shown here. All other colors are
compared to this standard, including all daytime cases (in red), all nighttime cases
(purple), daytime stratus (blue, no outliers), daytime cumulus (green), and daytime
altocumulus (cyan). The order from top to bottom in the legend is the same order from
left to right on the graph. Number of cases for each analysis type are in parentheses
in the legend. The required accuracy from Table 1 isn’t satisfied in most cases, with
stratus as the exception.

4.3.2 COT Analysis: CBH Retrieval as a Function of COT.

As highlighted by Hutchison (2002), a retrieval of CBH using optical properties

becomes increasingly unreliable at large values of COT. This was confirmed by

Welch et al. (2008), who noted that CBH errors increased significantly for COT

values greater than approximately 40. Out of the total 156 cases analyzed with the

primary daytime method, eight contained VIIRS-calculated COT values greater

than this threshold (i.e., 5%). CBH results were compared for different values of

COT by placing cases in bins of 10 t and using the corrected version of CBH (ARM

CTH – VIIRS geometric thickness). Results are shown in Table 21, and it is clear
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that correlation decreases dramatically while error increases significantly for the

cases of COT > 40, in agreement with the previous findings of Welch et al. (2008).

Table 21. Corrected Daytime CBH by Optical Thickness. VIIRS - ARM CBH match-
up datasets, segregated by VIIRS-calculated COT and compared to ground truth after
ARM CTH truth data have been substituted for VIIRS CTH. Generated using the
primary daytime processing method described in Section 3.3.2.1.

VIIRS-calculated COT VIIRS CBH
COT Bin # of

r
Avg. σerror

Cases Error (m) (m)
COT < 10 92 0.34 610.0 1661.4

10 < COT < 20 44 0.19 70.3 1064.4
20 < COT < 30 7 -0.15 -906.6 1499.7
30 < COT < 40 5 0.14 -25.4 757.2

COT > 40 8 -0.31 -1564.1 3480.2

4.3.3 EPS Analysis: Replacing VIIRS EPS with Modal EPS Values.

The VIIRS EPS correlation was unexpectedly low in Section 4.1, Tables 7 and 8,

which led to another sensitivity study consisting of replacing the VIIRS-retrieved

EPS values with climatological averages based on cloud type, much like the

climatological LWC values used in Equation 8. The modal EPS values from Table

4.2 in Liou (1992) were used, representing the values most likely to be sampled for a

given cloud type: 3.5 mm for ocean stratus at Graciosa, 4.5 mm for stratus over land

at Lamont, 3.75 mm for cumulus (splitting the difference between fair weather

cumulus and cumulus congestus), and 5.0 mm for altocumulus. Retrievals using

these EPS values were compared to the standard retrieval using VIIRS-calculated

EPS values, and results are shown in Table 22. In all cases, the correlations

increased with the modal EPS retrievals, but the errors increased, as well. In

general, the modal EPS values resulted in a geometric cloud thickness that was too

small; thus, the already-high CBH bias (i.e., VIIRS-calculated CBH generally higher

80



than truth) increased even more. The σerror also increased in all cases, with stratus

being the one exception.

Table 22. Daytime Statistics using Modal EPS. VIIRS - ARM match-up datasets,
comparing the usual retrieval to one that uses modal EPS values rather than VIIRS-
calculated EPS values. The far right columns use modal EPS values and show a higher
correlation with increased error.

ARM VIIRS Modified VIIRS
Site CBH CBH

Observations
Cloud #

of
r

Avg. σerror r
Avg. σerror

Type Cases Error
(m)

(m) Error
(m)

(m)

ST 14 0.33 443.0 664.3 0.35 638.9 657.9
CU 82 0.17 1191.0 2461.0 0.23 1758.0 2518.6
AC 60 0.26 757.6 1458.2 0.40 1345.1 1533.5

Total 156 0.20 957.2 2019.8 0.29 1498.8 2087.5

4.4 Findings and Discussion

Daytime results showed a large overall positive bias for both CBH and CTH,

indicating that VIIRS is systematically overestimating both. Nighttime results, on

the other hand, showed a small negative bias for CBH and a large negative bias for

CTH. For both daytime datasets and the one nighttime dataset, correlation was low

while error was high. The removal of outliers demonstrated how significantly they

were impacting these datasets. VIIRS cloud products include quality flags that may

be able to help screen such outliers for future studies, but they were not included in

this research. A previous finding that a COT threshold of approximately 40 should

be used as an effective upper limit for reliable CBH retrieval appears valid, as well.

Using average EPS values as a function of cloud type in place of the

VIIRS-calculated EPS offers higher correlation with ground truth CBH, but only at
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the cost of higher CBH errors. The most significant finding, though, was the large

source of error in VIIRS CTH.

Comparisons between results obtained from the VIIRS CTH product, shown in

Table 14 for the subset of Lamont cases, with the system requirements listed in

Table 1, show that the CTH product failed to satisfy EDR thresholds. With a

correlation of 0.71 compared to the ARM CTH truth data, total CTH error (average

error ±σerror) exceeded 1.6 km, while the threshold (required) σerror accuracy is

1 km, and the objective (desired) accuracy requirement is 300 m (shown graphically

in Figure 20). The performance is even worse for the complete set of primary

daytime cases, shown in Tables 7 and 10, where correlations with and without

outliers are 0.27 and 0.50, respectively. The poor performance of the VIIRS CTH

retrieval reiterates the findings of the cal/val team (Seaman et al., 2014; Noh et al.,

2015). Thus, it becomes clear that future research to obtain more useful information

on the CBH retrieved from VIIRS data must focus on improving the VIIRS CTH

product. Other VIIRS cloud products used in the VIIRS CBH algorithm appear

adequate, since the correlation between VIIRS and ARM (truth) COT data was

0.91 for the subset in Table 14. Thus, only small errors were introduced into the

VIIRS CBH product by the retrieved microphysical cloud properties products.

Previous research has shown various methods to improve the accuracy of CTH of

water clouds retrieved from environmental satellite data. One method placed added

emphasis on the ancillary moisture profile information from NWP models to

compensate for errors in the MODIS CTT product (Hutchison et al., 2006a) when

converting from CTT to CTH. For lower-level water clouds, with cloud top

pressures greater than about 700 mb, both the MODIS and VIIRS CTH algorithms

convert from CTT to CTH based solely on atmospheric temperature and

geopotential height profiles without regard for atmospheric humidity profiles
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(Platnick et al., 2003; Menzel et al., 2010). Errors as small as 3 K in the CTT

product can result in placing the CTH in regions where humidity levels do not

support the presence or sustainment of clouds. Thus, CTH products become grossly

in error and unsuitable for use in NWP applications (Hutchison et al., 2006a). An

improved procedure for the conversion from CTT to CTH was demonstrated.

However, it has not been proven that moisture forecast fields created by NWP

models, such as the Weather Research and Forecasting (WRF) Model (Skamarock

and Klemp, 2008), produce moisture forecast fields that would be useful in reducing

existing errors obtained with the MODIS and VIIRS approaches.
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V. Conclusion

5.1 Summary of Results

Results were generated for coincident VIIRS-ARM observations using two

daytime methods and one nighttime method. All of the VIIRS cloud products had

weak correlations with their corresponding ARM products, except for COT.

Removal of outliers for cumuliform cloud cases led to a significant improvement in

the retrieval for those cloud types. Furthermore, CBH products were shown to be

very strongly correlated with CTH error when VIIRS CTH values were replaced

with ARM CTH truth values, which produced a “corrected” CBH product. This

corrected product increased the correlation by an average of 46% for all cases (i.e.,

day and night). Average error for daytime cases was reduced by an average of 217%,

while daytime σerror was reduced by 47%. Nighttime errors didn’t improve until the

outliers were removed, after which the average error fell by 56%, and σerror fell by

225%. Additionally, an effective upper limit for COT in the retrieval of CBH was

shown to be approximately 40, corroborating an earlier finding by Welch et al.

(2008). However, this value was exceeded only 5% of the time in the primary

daytime dataset. Finally, replacing VIIRS EPS values with modal EPS values by

cloud type did not yield any noteworthy improvement in CBH retrieval.

The current VIIRS CBH product is not yet accurate enough to be used to

support operational users, especially in austere locations where ancillary data are

scarce. However, this study concludes that the CBH algorithm, which uses cloud

microphysical and optical properties to determine the geometric cloud thickness, is

valid and capable of providing useful CBH products. This is especially true for the

relatively homogeneous, water-phase stratiform clouds that tend to have the lowest

cloud bases, and thus create the most hazardous conditions for the full spectrum of
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aviation operations. Results were similar for the alternate data processing method,

as well, which served to enhance the findings of the primary daytime dataset. A

robust error budget was initiated in this study, with hopes of expanding upon it in

the future in order to better understand the sources of error in the VIIRS CBH

algorithm.

5.2 Recommendations for Future Research

Future research efforts should initially focus on improving the accuracy of CTH

retrieval using other remote sensing techniques, such as observations in the O2

A-band (Fischer et al., 2003), or methodologies that use NWP moisture profiles to

compensate for errors in the CTT to CTH conversion, as described in Section 4.4.

As for further evaluation of the VIIRS CBH algorithm, one could expand upon the

research presented within this paper by evaluating the 6-km EDR product in a

similar manner to the 1-km IP evaluated here. Moreover, ground-based MMCR

could be used in conjunction with ground-based MPL in order to provide a better

set of CTH truth data, where MMCR would determine the CTH in those cases

when the MPL becomes fully attenuated. Otherwise, CTH truth data could be

retrieved from the CALIOP/CPR product, which is essentially just a space-based

version of this retrieval method. Finally, quality flags from the VIIRS cloud

products could also be incorporated in order to screen the types of outliers identified

in this document. For example, the COP IP algorithm will flag an excessively large,

unrealistic EPS > 50µm for both ice and water clouds (JPSS OAD for VIIRS COP,

2013). Research such as this can aid the future operational user in determining when

CBH retrievals are most likely reliable versus when they are of questionable value.
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Appendix . Acronym and Abbreviation List

2GL - 2B-GEOPROF (Geometrical Profile) -Lidar

3DNEPH - 3-Dimensional Nephanalysis

30SMPLCMASK1ZWANG - 30-Second MPL Cloud Mask, 1st Z. Wang et al.

A-Train - Afternoon Train

AC - Altocumulus

AFGWC - Air Force Global Weather Central

AGL - Above Ground Level

AMS - American Meteorological Society

ARM - Atmospheric Radiation Measurement

ARSCL - Active Remote Sensing of Clouds

AS - Altostratus

ATBD - Algorithm Theoretical Basis Document

ATMS - Advanced Technology Microwave Sounder

BT - Brightness Temperature

CALIOP - Cloud-Aerosol Lidar with Orthogonal Polarization

CALIPSO - Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations

CBH - Cloud Base Height

CC - Cirrocumulus

CCL - Cloud Cover/Layers

CDFS II - Cloud Depiction and Forecast System II

CEIL - Ceilometer

CERES - Clouds and the Earth’s Radiant Energy System

CFLOS - Cloud Free Line of Sight

CI - Cirrus

CLASS - Comprehensive Large Array-data Stewardship System
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CLT - Cloud Layer/Type

CM - Cloud Mask

COD - Cloud Optical Depth

COP - Cloud Optical Properties

COT - Cloud Optical Thickness

CPBMSR - Cloud Products Beta Maturity Status Report

CPR - Cloud Profiling Radar

CrIS - Cross-track Infrared Sounder

CTH - Cloud Top Height

CTP - Cloud Top Parameters

CTT - Cloud Top Temperature

CU - Cumulus

DMSP - Defense Meteorological Satellite Program

DOC - Department of Commerce

DOD - Department of Defense

DW - Day-Water

EDR - Environmental Data Record

ENA - Eastern North Atlantic

EOS - Edge Of Scan

EPS - Effective Particle Size

ET - Effective Top

GFS - Global Forecast System

GMTCO - Moderate-resolution, Terrain-corrected Geolocation

HDF5 - Hierarchical Data Format 5

HSR - Horizontal Spatial Resolution

IDPS - Interface Data Processing Segment
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InGaAs - Indium Gallium Arsenide

IP - Intermediate Product

IPO - Integrated Program Office

Isl. - Island

IWC - Ice Water Content

IWP - Ice Water Path

JPSS - Joint Polar Satellite System

LANDSAT - Land Satellite

LBLE - Line-By-Line Equivalent

LITE - Lidar In-space Technology Experiment

LUT - Look-Up Table

LWC - Liquid Water Content

LWP - Liquid Water Path

MATLAB - Matrix Laboratory

MFRSR - Multi-Filter Rotating Shadowband Radiometer

MFRSRCLDOD1MIN - MFRSR COD, 1-Minute

MMCR - Millimeter-wave Cloud Radar

MODIS - Moderate-resolution Imaging Spectroradiometer

MPL - Micro-Pulse Lidar

MSL - Mean Sea Level

MWR - Microwave Radiometer

NASA - National Aeronautics and Space Administration

NCEP - National Centers for Environmental Prediction

NDW - Non-Day-Water

NetCDF - Network Common Data Form

NIR - Near Infrared
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NLSM - Nonlinear Least Squares Method

NOAA - National Oceanic and Atmospheric Administration

NOGAPS - Navy Operational Global Atmospheric Prediction System

NPOESS - National Polar-orbiting Operational Environmental Satellite System

NPP - NPOESS Preparatory Project

NSA - North Slope of Alaska

NWP - Numerical Weather Prediction

NWS - National Weather Service

OAD - Operational Algorithm Description

OK - Oklahoma

OMPS - Ozone Mapping and Profiler Suite

PCT - Probability of Correct Typing

PFAAST - Pressure-layer Fast Algorithm for Atmospheric Transmittances

PPC - Perform Parallax Correction

RT - Radiative Transfer

RTM - Radiative Transfer Model

RTNEPH - Real-Time Nephanalysis

SDR - Sensor Data Record

SGP - Southern Great Plains

SNR - Signal-to-Noise Ratio

ST - Stratus

STAR - Center for Satellite Applications and Research

TOA - Top-of-Atmosphere

TOC NDVI - Top-Of-Canopy Normalized Difference Vegetation Index

TWP - Tropical Western Pacific

VAP - Value-Added Product
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VCEIL - Vaisala Ceilometer

VCM - VIIRS Cloud Mask

VIIRS - Visible Infrared Imaging Radiometer Suite

WRF - Weather Research and Forecasting

WWMCA - World Wide Merged Cloud Analysis
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