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Abstract 

A phase retrieval algorithm designed for use with under-sampled astronomical data is 

developed in this thesis. Blind-deconvolution, Gerchberg Saxton (GS), and a field-based 

compass search are combined into an algorithm capable of recovering Zernike 

coefficients 4 through 11 from single frames of noisy, under-sampled data without the 

need to unwrap the recovered phase. The performance of the algorithm in data under-

sampled by a factor of 2 is compared the performance of the algorithm on Nyquist-

sampled data. 

     In simulation trials, the magnitudes of all 8 estimated Zernike coefficients converged 

to within half a wave of the true values for 98% of the Nyquist-sampled frames and 92% 

under-sampled frames. The simulation was conducted using 100 frames of point-source 

data generated by randomly choosing Zernike coefficients 2 through 11 from a normal 

distribution. In addition to the simulation, phase retrieval was performed on defocused 

data and data containing an astigmatism aberration. For the astigmatism data, the 

estimated Zernike coefficient magnitudes were within 1/10th of a wave for Nyquist data 

and 1/5th of a wave for data under-sampled by a factor of 2. The magnitude of defocus 

recovered from Nyquist-sampled data was within 0.02 waves of the value predicted using 

defocus recovered from data under-sampled by 2.  



v 

Acknowledgments 

I would like to express my sincere appreciation to my faculty advisor, Dr. Stephen Cain, 

for his guidance and support throughout the course of this thesis effort.  The insight and 

experience was certainly appreciated.   

 

 
       Tatsuki L. Watts 

 

 

 

  



vi 

Table of Contents 
               Page 

Abstract .............................................................................................................................. iv 

Acknowledgments................................................................................................................v 

List of Figures .................................................................................................................. viii 

List of Tables .......................................................................................................................x 

List of Symbols .................................................................................................................. xi 

I.  Introduction .....................................................................................................................1 

Importance of Space Situational Awareness ................................................................1 
Motivation ....................................................................................................................2 
Background...................................................................................................................2 
Problem Statement ........................................................................................................3 
Thesis Outline ...............................................................................................................3 

II.  Optical Modeling............................................................................................................5 

Background...................................................................................................................5 
Predicting Zernike Coefficients ....................................................................................9 
Simulating Frames of Data .........................................................................................20 

III.  Under-sampled Blind Deconvolution .........................................................................23 

Estimate Update Equations .........................................................................................23 
Termination Condition ...............................................................................................32 

IV. Phase Retrieval ............................................................................................................35 

Gerchberg-Saxton .......................................................................................................35 
Compass Search ..........................................................................................................37 
Phase Retrieval Algorithm .........................................................................................39 

V. Simulation/Experimentation and Results ......................................................................42 

Number of Gerchberg-Saxton Iterations ....................................................................42 
Random Zernike Simulation.......................................................................................43 
Defocus Experiment ...................................................................................................45 
Astigmatism Experiment ............................................................................................49 
Atmosphere Experiment .............................................................................................53 



vii 

VI. Conclusions and Recommendations ............................................................................55 

Summary.....................................................................................................................55 
Significance ................................................................................................................56 
Recommendations ......................................................................................................56 

Bibliography ......................................................................................................................58 

  

 



viii 

List of Figures 

Figure                    Page 

1. Optical system as a function. .......................................................................................... 5 

2. Point spread function (PSF). ........................................................................................... 5 

3. PSF effects on image. ..................................................................................................... 7 

4. Optical setup. ................................................................................................................ 10 

5. Gerchberg Saxton (GS). ................................................................................................ 37 

6. Two-dimensional compass search. ............................................................................... 38 

7. Field-based compass search. ......................................................................................... 38 

8. Field-based phase retrieval ........................................................................................... 39 

9. Field-based phase retrieval with random starting points. ............................................. 41 

10. Reduction in squared error from GS iterations. .......................................................... 42 

11. Simulated Data ............................................................................................................ 43 

12. Under-sampled phase retrieval inputs. ........................................................................ 44 

13. Initial object estimate. ................................................................................................. 44 

14. Simulation Results ...................................................................................................... 44 

15. Defocus experiment setup. .......................................................................................... 45 

16. Telescope aperture. ..................................................................................................... 46 

17. Defocus experiment results. ........................................................................................ 47 

18. Astigmatism experiment setup. ................................................................................... 49 

19. Rayleigh-Sommerfeld Phase. ...................................................................................... 50 

20. Wavefront residual. ..................................................................................................... 50 

21. Astigmatism experiment data. .................................................................................... 51 



ix 

22. Predicted and estimated PSFs for astigmatism experiment. ....................................... 52 

23. Atmosphere experiment setup. .................................................................................... 53 

24. Atmosphere experiment results. .................................................................................. 54 



x 

List of Tables 

Table               Page 

1. Recovered Zernike Coefficient Magnitudes ................................................................. 47 

2. Predicted vs. Estimated Zernikes .................................................................................. 48 

3. Astigmatism Experiment Setup Measurements ............................................................ 49 

4. Zernike Coefficient Magnitudes ................................................................................... 51 

 

 

 

  



xi 

List of Symbols 

Symbol              Page 

,u v  Continuous detector plane coordinates....................................................................5 

,   Continuous aperture plane coordinates....................................................................5 

g  Point-spread function...............................................................................................5 

A  Aperture function.....................................................................................................5 

  Phase function..........................................................................................................5 

h   Normalized Point-spread function...........................................................................5 

i  ith Zernike coefficient...............................................................................................7 

iZ  ith Zernike polynomial..............................................................................................7 

,    Aperture plane spatial sampling period...................................................................7 

,p q  Discrete aperture plane coordinates.........................................................................7 

k  Wavenumber............................................................................................................8 

21r  Distance between point in object plane and point in aperture plane........................8 

,x y  Continuous object plane coordinates............... .......................................................8 

01r  Distance between point in aperture plane and point in detector plane....................8 

t  Phase transform introduced by imaging system optics............................................8 

  Wavelength of light .................................................................................................8 

DU  Field incident on detector plane...............................................................................9 

01z   Perpendicular distance between aperture plane and detector plane.........................9 

AU  Field incident on aperture plane...............................................................................9 



xii 

j  Square root of -1......................................................................................................9 

21z  Perpendicular distance between aperture plane and object plane .........................10 

,u v   Detector plane shifts..............................................................................................10 

,    Shifted aperture plane coordinates.........................................................................11 

b  Variable for paraxial approximation......................................................................12 

D   Aperture diameter..................................................................................................14 

,n m  Discrete detector plane coordinates.......................................................................14 

maxn  Maximum discrete dimension size in detector plane.............................................14 

#f   F-number of the optical system..............................................................................16 

i  Blurred true intensity.............................................................................................20 

o  Object.....................................................................................................................19 

,x y   Object plane spatial sampling period.....................................................................19 

,w s  Discrete object plane coordinates..........................................................................19 

d  Data........................................................................................................................20 

P  Probability..............................................................................................................20 

B  Background............................................................................................................20 

N  Down-sampling factor...........................................................................................20 

,n m   Dummy detector plane coordinates for convolution..............................................20 

F  Discrete Fourier transform.....................................................................................20 

1F   Discrete Inverse Fourier transform........................................................................20 

blurri  Blurred true intensity.............................................................................................20 



xiii 

dsampi  Down-sampled true intensity.................................................................................20 

  Discrete, one-dimensional coordinate spanning data ............................................20 

E  Expected value.......................................................................................................21 

d  Complete set of data related to the intensity..........................................................21 

c  Complete set of data related to the background ....................................................21 

  Discrete, one-dimensional coordinate spanning object.........................................22 

  Discrete, one-dimensional coordinate spanning PSF.............................................22 

C  Expected value of c  ..............................................................................................22 

#  Cardinality..............................................................................................................22 

CDL  Log-likelihood of complete data............................................................................24 

Q  Expected complete data log-likelihood based on old object and PSF estimates...24 

oldE  Expected value based on old estimates..................................................................24 

oldo  Old object estimate ...............................................................................................24 

oldh  Old PSF estimate...................................................................................................24 

oldi  Old intensity estimate............................................................................................26 

  Arbitrary point in the object...................................................................................26 

   Arbitrary point in the PSF .....................................................................................28 

*  Conjugate...............................................................................................................30 

cov Covariance.............................................................................................................31 

  Estimated parameters.............................................................................................31 

Ι  Fisher Information Matrix......................................................................................31 

L  Log-likelihood of a single frame of data ...............................................................31 



xiv 

  Matrix row.............................................................................................................31 

  Matrix column........................................................................................................31 

var  Variance.................................................................................................................32 

  Constrained field function estimate.......................................................................33 

ˆ
DU  Unconstrained detector field estimate....................................................................33 

DU   Constrained detector field estimate........................................................................34 

̂   Unconstrained field function estimate...................................................................34 

̂   Unconstrained field function estimate...................................................................34 

  Objective correlation function for field-based compass search.............................36 

gs  Field function estimate from Gerchberg-Saxton algorithm...................................36 

a
zern  Field function estimate from potential Zernike coefficient updates......................36 

ˆi  Zernike coefficient estimates.................................................................................37 

A  Matrix mapping Zernike coefficients before and after change in aperture size....45 

α Zernike coefficient vector before aperture size change.........................................45 

α Zernike coefficient vector after aperture size change............................................45 

R  Original aperture diameter.....................................................................................45 

R   Final aperture diameter..........................................................................................45 

  Radial degree of Zernike polynomial....................................................................45 

  Azimuthal frequency of Zernike polynomial.........................................................45 

  Lens thickness .......................................................................................................46 

2d  Lateral shift in object plane....................................................................................46 



xv 

1d  Lateral shift in detector plane................................................................................46 

totz  Total length of experiment setup...........................................................................46 

 

 

 

 

 

 

 



1 

FIELD-BASED PHASE RETRIEVAL USING UNDER-SAMPLED DATA 

 
I.  Introduction 

Importance of Space Situational Awareness 

One facet of Space Domain Awareness (SDA) is the ability to track satellites and debris 

in orbit around the Earth. Two events highlighted the importance of SDA in the late 

2000’s. The first event occurred in 2007 when China shot down one of its own satellites 

with a developmental anti-satellite missile (ASAT) [1]. The second event occurred in 

2009 when Iridium 33 collided with Cosmos 2251, a defunct Russian satellite [2]. Both 

events created thousands of pieces of debris, which continue to threaten satellites and 

spacecraft today. Even small pieces of debris can cause significant damage due to the 

high velocities at which they travel. It is theorized that the amount of space debris will 

grow exponentially over time as existing debris collides with other objects to create more 

objects.  

     The vulnerability of space assets coupled with the US military’s operational reliance 

on these assets has made SDA a priority for national defense. The 2015 National Security 

Strategy states: “We will also develop technologies and tactics to deter and defeat efforts 

to attack our space systems; enable indications, warning, and attributions of such attacks; 

and enhance the resiliency of critical U.S. space capabilities” [3].  Developing 

technologies that facilitate the population of the space catalog is the primary focus of this 

research. 
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Motivation 

The Joint Space Operations Center (JSpOC) maintains SDA for the U.S. government 

using RADAR and optical systems. The focus of this thesis is on ground-based telescopes 

such as the Ground Based Electro-Optical Deep Space Surveillance Telescope and its 

successor, the Space Surveillance Telescope.  

     In 2011, the National Research Council (NRC) conducted a study on the effectiveness 

of the algorithms used by the JSpOC to detect and track objects in orbit. A key system 

limitation identified by the NRC was the “…understanding of the quality of the 

observations, and the challenge of fusing disparate data from different systems and 

phenomenology.” The goal of this thesis is to develop the ability to regularly quantify 

optical aberrations, which could serve as a useful measure of observation quality for 

optical telescopes. 

Background 

Phase retrieval algorithms determine the effective aperture phase from the impulse 

response, or point-spread function (PSF), of the optical system. General phase retrieval 

algorithms have been investigated by Feinup, his most notable accomplishment being the 

characterization of the Hubble Space Telescope [4]. However, Feinup’s work sought to 

estimate the entire aperture plane phase, instead of constraining phase retrieval to an 

estimation of low-order Zernike coefficients.  

     Algorithms with the ability to estimate Zernike coefficients from astronomical images 

exist.  One such method is called the donut algorithm and is currently used to measure the 

aberrations of the Space Surveillance Telescope [5]. However, the donut algorithm 
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requires large amounts of defocus to be introduced into the image in order to be effective 

[6], which incurs operational downtime thereby preventing practical routine use of the 

algorithm. Another technique for estimating aberration coefficients involves the use of 

the Gerchberg-Saxton (GS) phase retrieval algorithm [7] together with phase 

unwrapping. Although the GS algorithm has been shown to recover useful estimates of 

optical phase errors, these estimates are only correct modulo 2π. Two-dimensional phase 

unwrapping is necessary to reproduce the original phase, from which Zernike coefficients 

may be recovered. Many phase-unwrapping algorithms exist, but none have been 

recognized as the definitive solution [8].  

     A technique capable of directly recovering aberrations from in-focus images without 

the need for phase unwrapping was developed at AFIT by Maj. Zingarelli [9]. Such an 

algorithm could be used to routinely characterize telescopes with no operational 

overhead. However, testing was performed under ideal conditions with Nyquist-sampled 

data.  

Problem Statement 

The goal of this research is to develop a new method based on Zingarelli’s work that 

recovers optical phase aberrations from astronomical imagery that is under-sampled by a 

factor of two.  

Thesis Outline 

Chapter II introduces methods used to model telescopes and predict aberrations in terms 

of Zernike coefficients. Under-sampled blind deconvolution and the convergence of 

variance termination condition is discussed in Chapter III. The phase retrieval algorithm 
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is synthesized in Chapter IV and its performance is evaluated in Chapter V. Finally, 

Chapter VI concludes the thesis by describing the significance of the results and outlining 

areas for possible future research. 
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II.  Optical Modeling  

Background 

Optical systems can be viewed as functions mapping objects to images, as shown in 

Figure 1 [10].  

 

Figure 1: Optical system as a function. 

An optical system’s impulse response, or point-spread function (PSF), shown in Figure 2 

describes how a single point of light is spread out by the imaging system [10]. The 

mapping in Figure 1 is often reduced to a two-dimensional convolution between the 

object and PSF by assuming the PSF remains constant over the image. 

 

Figure 2: Point spread function (PSF).  

Equation (2.1) shows the relationship between the PSF, ( , )g u v , the aperture,   , ,A    

and the phase function,  ,   .  

        
2

,
2

, ,
j u v

zjg u v A e e dd
  
     

 
   (2.1) 
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The aperture as well as the detector are approximated as being infinitely thin and thus 

contained within two-dimensional planes perpendicular to the optical axis, spanned by 

the coordinates  ,   and  ,u v , respectively. Additionally, the PSF is often normalized 

to sum to one as shown in (2.2), where  ,h u v is the normalized PSF. 

    
 

,
,

,

g u v
h u v

g u v dudv



  (2.2) 

     In general, smaller PSFs are desirable because they produce images that better 

represent the object. Problematically, fluctuations in the phase function tend to increase 

the size of the PSF. These fluctuations can be reduced by physically improving the 

imaging system. However, the phase function itself is not directly measurable and must 

be estimated through phase retrieval techniques. Additionally, once the phase function is 

recovered, it must be decomposed into classical aberrations which convey physical 

meaning in terms of the optical configuration. 

    Luckily, the second issue was solved by Fritz Zernike, who invented a radially 

orthogonal set of functions known as the Zernike polynomials, where many correspond to 

classical aberrations. The strength of these aberrations are communicated by the size of 

the Zernike coefficients, i , associated with each polynomial. The bottom two rows of 

Figure 3 shows the degradation in image quality due to the presence of defocus and 

oblique astigmatism, which are classical aberrations corresponding to the 4th and 5th 

Zernike polynomials. The top row of Figure 3 shows the image obtained by and imaging 

system free of aberrations. Such an imaging system is said to be diffraction-limited since 

its performance is only limited by diffraction caused by the finite extent of its aperture. 
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Figure 3: PSF effects on image.  

Since the Zernike polynomials are radially orthogonal, these coefficients can be 

calculated by normalizing the inner product between the phase function and the ith 

Zernike polynomial,  ,iZ   , as shown in (2.3), assuming a circular aperture. 

 

 
   

 2

, ,

,

i

i

i

Z d

Z d

d

d

     

  



 


  (2.3) 
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Numerically, (2.3) is evaluated as shown in, where the aperture plane coordinates are 

discretized.  Spatial sampling periods in the   and   direction are denoted by  and  , 

respectively and  ,p q I . 

 
   

 
,

2

,

, ,

,

i
p q

i

i
p q

p q p qZ

Z p q

   

 




  

 





  (2.4) 

The phase function is reconstructed from Zernike coefficients as shown in (2.5). Note 

that, in general, the reconstructed phase will only be an approximation unless infinite 

Zernike coefficients are used. 

    , ,  i
i

iZ       (2.5) 

In our characterization of optical aberrations, we restrict our attention to the 11th Zernike 

polynomial and below in a similar manner to recent literature attempting to focus and 

align the Space Surveillance Telescope [5]. The first Zernike polynomial is also ignored 

because the corresponding aberration, piston, has no effect on the PSF, as shown in (2.6).  

 

 
   

 
   

 
   

11

11

1

11

1

2

2

2

,

2

,

2

2

,

2

2

,

,

,  

i

i

i

i i

i i

i i

j u v
z

j u v

j Z

j Z
j

j u
z

Z

z

j v

e d

e d

A e d

e A e d

A e de d

  


  




  

  


    


   

   

   







 

 

 















  (2.6) 
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Predicting Zernike Coefficients 

Under certain conditions, Zernike coefficients can be predicted to an extent limited by 

our knowledge of the optical configuration of the imaging system. To estimate Zernike 

coefficients, the phase function  ,    is calculated as shown in in (2.7) and 

decomposed into Zernike coefficients using (2.3). 

       21 01( , ,, , , , , ) ,k r r ux y tv            (2.7) 

In (2.7), the term  21 ,, ,r x y    represents the distance from a point source to an arbitrary 

point within the aperture, whereas the term  01 ,, ,r u v    represents the distance from an 

arbitrary point within the aperture to an arbitrary point on the detector. Like the aperture 

and detector, the object, in this case a point source, is also assumed to lie in a plane 

perpendicular to the optical axis spanned by coordinates  ,x y .  The term  ,t    

represents the phase transformation induced by the optical elements of the imaging 

system and k  is the wave number defined as shown in (2.8)  

 
2

k



   (2.8) 

A simple optical setup where the phase function can be modeled using (2.7) is shown in 

Figure 4.   
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Figure 4: Optical setup. 

     The remainder of this section is dedicated deriving the conditions under which 

calculating the phase function as shown in (2.7) is mathematically valid. The Rayleigh-

Sommerfeld diffraction equation (2.9), relates the field incident on the aperture plane, 

 ,AU   , to the field incident on the detector plane,  ,DU u v , which are 

perpendicularly separated by distance 01z . 

    
 

 
01 ,

01
2

01

, ,e
,

, , ,
,

u vjkr

D A

z
U u v U d

j r
d

u v

 

   
 

    (2.9) 

The goal is to approximate the Rayleigh-Sommerfeld formula as the Fourier transform 

shown in (2.10), since the detector field is calculated from Zernike coefficients using the 

Fourier propagation shown in (2.11).  

           
21 01 01

2
(, , , , ) ,, ,,, e

j u v
jk r r u vy z

D

x tAU u dv e d
  

        
 

     (2.10) 

    
   

01

2,

,, e
i i

i

Zj j u v
z

DU u v e dA d
     

   
 

    (2.11) 
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Only the argument of the leftmost complex exponentials differ between (2.10) and (2.11). 

For detector field produced by (2.10) and (2.11) to be consistent, (2.12) must be true. 

         21 01, , , , , , ) ,( , ,
i

i iZ x yk r r u v t                (2.12) 

     First, an expression for the aperture field is substituted into the Rayleigh-Sommerfeld 

equation. To simulate an impulse response, the aperture field is set equal to the product of 

the spherically diverging field from a point source and the phase transformations induced 

by the optics, as shown in (2.13).  

    
    

 
21 , , , ,

21

, ,
, , ,

x yjk r t

A A
x y

e
U

r

  

   
 



   (2.13) 

Substituting (2.13) into (2.9) gives (2.14).  

    
    

   
21 01, ( , )

01
2

21

,

01

, , , ,

,
, , , , , ,

,
jk r rx y u t

D

vz e
U u v

j r r
A d d

x y u v

     

   
   

 

    (2.14) 

     Assuming    2 22
01z x y      and    2 22

21z u v      , where 21z  is the 

perpendicular distance between the aperture plane and object plane, the substitutions 

shown in (2.15) are made in the denominator of (2.14), yielding (2.16). These 

substitutions only have a weak effect on the amplitude of the result and are universally 

accepted since they are used in the derivation of the Fresnel diffraction equation [10]. 

 
     

     

2 22
21 21 21

2 22
01 01 01

, , ,

u, v, ,

r z x y z

r z

x

u

y

v z

 





 





   

   

 

 
  (2.15) 

           21 01

21 01

, , , u,v, , ,1
, , e x yjk r r

D

tU u v d
j

A
z

d
z

       


      (2.16) 
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     Traditionally, the Rayleigh-Sommerfeld equation must be evaluated separately for 

every point of interest in the detector plane. However, we are attempting to approximate 

the Rayleigh-Sommerfeld equation using a Fourier transform only evaluated once for the 

entire detector plane. Therefore, the Rayleigh-Sommerfeld formula is modified to 

calculate the detector field over an arbitrary region surrounding the point of interest by 

substituting  ,u u v v    for  ,u v  as shown in (2.17), where ,u v  are shifts from the 

point of interest. 

           21 01,

21 01

, , , , , ,1
, e, x yjk r ur

D

u v v tU u u v v d
j z z

A d      


           (2.17) 

The term 01 , )( , ,r u u v v      then, represents the distance to  ,u u v v   , calculated 

as shown in (2.18). 

      2 22
0101( , , , ) zr u u v v u u v v                (2.18) 

Regrouping terms in (2.18) gives (2.19) . 

      2 22
0101( , , , ) zr u u v v u u v v                (2.19) 

 
u

v

 
 
  
  

  (2.20) 

    2

01

22
01( , , , )r zu u v v u v             (2.21) 

Performing the squares within the radical and regrouping results in (2.22). 

 2 2 2
01

2 2
01 ( ), , 2 2, zr u u v v u u v v                        (2.22) 

Notice that the bracketed terms correspond to 01 )( ,, ,r u v    from (2.15). Therefore, 

substitute (2.23) into (2.22) to get (2.24) 
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    2 22 2 2 2
01 1 01

2
0 ( , , ),r u v uz v z                (2.23) 

 2 2 2
01 01( , , ( , ,, ) , ) 2 2r u u v v r u v u u v v                 (2.24) 

Pulling 01 )( ,, ,r u v    outside of the radical results in (2.25). 

 
2 2

01 01 2
01

2 2
( , , ( , ,

( , ,
, ) , ) 1

, )

u u v v
r u u v v r u v

r u v

    
 

     
 

       (2.25) 

The radical in (2.25) is replaced with its binomial approximation, consisting of the first 

two terms of its Taylor series. The Taylor series expansion of 1 b  is shown in (2.26).  

 
2 3 45

1 1 ...
2 8 16 128

b b b b
b        (2.26) 

 
2 2

01 01
01

2 2
( , , ( , ,

( ,
, ) , )

, ),

u u v v
r u u v v r u v

r u v

    
 

     
 

       (2.27) 

Note that the rightmost term within the radical in (2.25) corresponds to b in (2.26), as 

shown in (2.28). 

 
2 2

2
01

2 2

( , , , )

u u v v
b

r u v

 
 

      
   (2.28) 

The resulting equation, (2.27), is only valid when the product of the wave number and the 

sum of the third term onwards of the Taylor series expansion of (2.25) is much less than 

one.  

 
2 3 45

... 08 16 128 1
b b b

jk
e e

       (2.29) 

Since successive terms have alternating signs as well as diminishing magnitudes when 

1b  , the third term of the series can be used as an upper bound for the sum of the terms 

neglected by the binomial approximation. 
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2 2 3 45

...
8 8 16 128

b b b b
       (2.30) 

 Therefore, (2.27) is valid if the product of the wavenumber and the third term of the 

Taylor series expansion of (2.25) is much less than 1, as shown in (2.31).  

 

22 2

22
01

01

2 2
( , ,2

( , , 1
)

, )
8 8

,
u u v v

r u vkb
r u v

 
   



       
 
 

 





  (2.31) 

Simplifying (2.31) gives (2.32). 

 
 22 2

3
01

2 2
1

4 ( , , , )

u u v v

r u v  
        




  (2.32) 

Since 01 01r z , 01z  is substituted for 01r  to yield a simplified upper bound, as shown in 

(2.33). 

 
   2 22 2 2 2

3 3
01 01

2 2 2 2

4 ( , , 4, )

u u v v u u v v

r u v z

   

 
 
 

                



  (2.33) 

In (2.34), the triangle inequality is used to further simplify the upper bound.  

 
      22 2 22 2

3 3
01 01

22 2

4 4

u v u vu u v v

z z

 
 

              
   (2.34) 

Expanding the outermost square on the RHS of (2.34) produces three terms, the first of 

which is shown in (2.35).  

 
 2

3
1

22

04

u v

z





  (2.35) 

It is useful to transform the spatial coordinates  ,u v   into pixel coordinates  ,n m  using 

the relationship in (2.36) predicted by the Nyquist-sampling theorem. The diffraction 
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limited maximum spatial frequency in the detector plane, given a circular pupil function 

is 
01

D

z
, leading to a spatial sampling period of 01

2

z

D


. 

 

01

01

2

2

z
u n

D
z

v m
D





 

 
  (2.36) 

Substituting (2.36) into (2.35) gives (2.37). 

 
   

4
2 201

3 2 2
01

3 4
01

2
2

2
4 64

z
n m z n mD
z D






 


 
 
    (2.37) 

The expression in (2.37) can be simplified using the upper bound generated by 

substituting maxn , defined in (2.38), for both ,n m . The simplified expression is shown in 

(2.39). 

  max max ,n n m   (2.38) 

 
3 4

01 max
464

z n

D


  (2.39) 

The second term yielded by the expansion of (2.34) is shown in (2.40). 

 
  2 2

3
01

u v u v

z




   
  (2.40) 

The maximum values for both   and   are equal to half the aperture diameter plus the 

magnitude of the coordinate of the point of interest in the detector plane along the same 

dimension. However, since sensors are much smaller than the aperture diameter for 

telescopes, the maximum values for   and   are approximated as show in (2.41).  
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 

 

max
2 2

max
2 2

D D
u

D D
v





  

   


  (2.41) 

Substituting 
2

D
 for  and   in (2.40) and transforming u  and v  to pixel coordinates 

using (2.36), gives the upper bound in (2.42). 

 
      

3
2 201

2 2

3 3
01 01

22

z
n m n m

u v u v D

z z

D




 

 
     

 
    

          (2.42) 

The upper bound is further simplified in (2.43) by substituting maxn  for n and m . 

 
   2 2 2

2 3
max

3 28

2

4

n m n m
n

D D

D


 
  


   
     (2.43) 

The third and final term from expanding (2.34) is shown in (2.44). 

 
 

3
0

2

1

4

4

u v

z

 


 
  (2.44) 

In a similar manner to the second term, the third term is simplified using an upper bound 

as shown in (2.45), where max2

D
u  is substituted for ,    and spatial coordinates ,u v   

are transformed to pixel coordinates using (2.36).   

 
   

2

01

3 3
01 01

2

2

22

z
n m

u v

z

D
D

z

 
 

   
    
           (2.45) 

In (2.46), the upper bound is further simplified by substituting maxn  for n and m . 
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 

2

2
01 01

2
max

2 2

2
n

n
m

z z

D

D




  
   


   (2.46) 

Therefore, the binomial approximation in (2.27) holds given (2.47) is satisfied. 

 
3 4 2 3

01 max max
4 2

2
max

01

1
64 4 2

z n n

D D

n

z

  
    (2.47) 

Generally, wavelength is by far the smallest term. Therefore, (2.47) is practically satisfied 

if its rightmost term is much less than 1, as shown in (2.48).  

 
0

2

1

max 1
2z

n
   (2.48) 

Note that (2.48) can be satisfied, even for large, short focal length telescopes such as the 

SST. Consider the impact of (2.48) on the maximum region size in the detector plane 

over which the field can be computed in terms of Nyquist-sampled pixels in (2.49).  

 
 
 

0
max

1
2 3.52

2111pixels
.5

mz

m
n

  
    (2.49) 

Even after accounting for the CCD on SST being spatially under-sampled by a factor of 

120, a 
2111

17.6
120

  pixel squared region on the actual detector is still more than large 

enough to contain a well-behaved PSF.  

     Shifting focus back to the binomial approximation of 01 , )( , ,r u u v v     , (2.27) 

may be split into three terms as shown in (2.50). 

 
2 2

01 01
01 01

( , , ( , ,
2 ( , , ( , ,

, ) , )
, ) , )

u v u v
r u u v v r u v

r u v r u v

    
   

      


    (2.50) 

Substituting (2.50) into (2.16) results in (2.51). 
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 

      
2 2

01 0121 01 2 ( , , ) , ), , , , ) , ( , ,( , ,

21 0

,

1

,

,

1
e e

u v u v
jk

r u v r u vj x y tk r r u v

U u u v v

d
j z z

A d
 

         


 
    

   





   


  (2.51) 

The quadratic phase term in (2.51) can be bounded above by replacing 01 )( ,, ,r u v   with

01z  as shown in (2.52), since 01 01( , ), ,r u v z   . 

 
2 2 2 2

01 012 ( , 2,, )

u v u v

r u v z 
    

   (2.52) 

Spatial detector plane coordinates are transformed into pixel coordinates using (2.36) and 

the result is bounded above by replacing n and m  with maxn .  

 
 2 2 2 2 2

01 01 max
2 24 2

z n m z n

D D

 
   (2.53) 

Since wavelength is squared in (2.53), it will be much smaller than 1, assuming (2.48) is 

satisfied, allowing the quadratic phase term in (2.51) to be disregarded, yielding (2.54). 

       01 ( , ,

21 0

),

1

,1
, e e,

u v
jk

r u vj
DU u u v v

j
A dd

z z

 
     




  
  



 

       (2.54) 

The propagation equation in (2.54) is nearly a Fourier transform except that the 

denominator of the Fourier kernel is a function of the variables of integration. To 

approximate (2.54) as a Fourier transform, the condition shown in (2.55) must be 

satisfied. 

 
01 01

1
( , ,, )

u v u v
k

r u v z

   
 

    


   
 

 


  (2.55) 

In a similar manner to (2.52), a simplified upper-bound for (2.55) is created by 

substituting 01z  for 01 )( ,, ,r u v   in the denominator on the LHS of (2.56). 
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    01 01 01 01
2 2 2

01 01 01

, ) , )

, )

( , , ( , ,

( , ,

r u v z r u v z
k u v u v

r u v z z
k

      
 

 
     

 

       (2.56) 

In (2.58), the RHS of (2.56) is further simplified though another upper bound generated 

by substituting the binomial approximation for 01 )( ,, ,r u v   , shown in (2.57). 

 
2 2

01 2
01

01( )
2

, , ,r u v z
z

  
 

    (2.57) 

    
2 2

3
01

01 01
2
01

( ,

2

, ),r u v z
u v u v

z
k k

z

        
         (2.58) 

Finally, the expression is simplified even further using yet another upper bound, created 

this time by transforming ,u v   to pixel coordinates ,n m and substituting maxn for n and 

m ,
2

D
for   and  . 

    ma

32 2

3 2
x

01 0142
k

z

n D
u v

Dz

  


  



   (2.59) 

Substituting for in which case the RHS of (2.59) becomes the LHS of (2.60). 

 
2

#

max

4
1

f

n
   (2.60) 

The inequality in (2.60) suggests that the field produced in the detector plane using the 

Fourier Transform approximation of the Rayleigh-Sommerfeld formula in (2.61) is valid 

in a region around the point of interest in the detector plane defined by the f-number of 

the optical system. 

 

 

        
21 01 01

2
( , ,

21 1

, , , , ) ,

0

,

1
e, e

D

j u v
jk r r tv zx uyA d

U u u v v

d
j z z

      


  



  




  

 
  (2.61) 
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If (2.60) is satisfied, the Rayleigh-Sommerfeld formula may be approximated using 

(2.61). Dropping the constant outside of the integral in (2.61) gives us the RHS of (2.10). 

Ignoring the constant outside of the integral in (2.61) is generally accepted since it has no 

effect on the PSF, which is normalized to sum to one. 

Simulating Frames of Data  

Since the mapping between an object and its image, or intensity,  ,u vi n m  ,  is 

modeled through a two-dimensional convolution with the PSF, frames of data can be 

simulated using (2.62) [10]. The term  ,x yo w s   represents the object, where x and 

y are spatial sampling periods and ,w s  are discrete object plane coordinates. 

         
,

, , ,u v u v x y
w s

i n m h n w m s o w s           (2.62) 

Spatial sampling periods are dropped throughout the rest of this Thesis in favor of 

compressed notation. The object, aperture, and detector planes instead of being 

continuous planes are redefined as two-dimensional arrays. Discrete coordinates address 

array elements in the same manner as the Cartesian system, where the center element of 

the array corresponds to the origin. Removing the spatial sampling periods from (2.62) 

yields (2.63). 

      
,

, , ,
w s

i n m h n w m s o w s     (2.63) 

Images generated using (2.63) lack realism due to the absence of noise. In actual images, 

each pixel contains shot noise caused by the discrete nature of photons [11]. Shot noise is 

simulated by selecting intensity values for each pixel using the Poisson distribution 
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shown in (2.64), whose mean is the true intensity,  ,i n m , plus the background, B. The 

background accounts for all light captured by the detector not originating from the object. 

The final data frame is represented as  ,d n m  and P  represents the probability. 

      ( , )( , ) ( , )
,

( , )!

d n mi n m Be i n m B
P d n m

d n m

 
   (2.64) 

     Frames can be down-sampled by a factor of N  by convolving the intensity with a 

square ones matrix of size N  and decimating the result by N  as shown in (2.65). 

Blurring and decimation are simultaneously accomplished by the term 

 ,b Nn n Nm m   , where b  is a square ones matrix of size N and ,n m   are dummy 

detector plane coordinates. 

          
,

, , ,usamp
n m

i n m b Nn n Nm m i n m  
 

       (2.65) 

Noise is added in the same manner as Nyquist-sampled frames using the Poisson 

distribution from (2.64). 

     Fourier transforms can be used to implement (2.62) and (2.65), as shown in (2.66) and 

(2.67). The operators F  and 1F   represent the two-dimensional Discrete Fourier 

transform and its inverse. 

          1, ( , ) ,i n m F F h n m F o w s    (2.66) 

   
        
   

1,

, ,

, ,blurr

dsamp blurr

b n m i n mi n m F F F

i n m i Nn Nm




    (2.67) 

When using Fourier transforms to down-sample, blurring and decimation must be 

performed in two separate steps as shown in (2.67). The term  ,blurri n m  represents the 
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blurred intensity and the term  ,dsampi n m  represents the down-sampled intensity.  Using 

Fourier transforms as shown in (2.66) and (2.67) also requires all arrays to be the same 

size. Therefore, the blurring function is zero-padded to be the same size as the detector 

plane.  Additionally, (2.66) and (2.67) implement circular convolution instead of linear 

convolution. However, the use of circular convolution is acceptable for astronomical 

images where the object only extends over a small portion of the center region of the 

image. 
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III.  Under-sampled Blind Deconvolution 

Since images produced by optical systems are modeled by convolving the PSF with the 

object being observed as shown in (2.66) and (2.67), the reverse process, deconvolution, 

can generate estimates of the PSF from data. Generally, both the PSF and the object are 

unknown and must be estimated jointly.  Techniques to jointly estimate both the PSF and 

the true object intensity are called blind deconvolution algorithms. Schultz introduced a 

blind deconvolution algorithm for Nyquist-sampled astronomical images which is 

extended for use with under-sampled data in the following section [12]. All derivations in 

the remainder of this chapter are performed in one dimension to compress notation, but 

can be generalized to two. 

Estimate Update Equations 

Assuming an image is dominated by shot noise, the intensity measured by the th  pixel of 

data,  d  , can be considered a Poisson random variable with the Probability 

MassFunction (PMF) shown in (3.1) [12]. 

   
      

 
B

!

di Be i
P d

d

 




  
   (3.1) 

The expected value of the th  pixel is the true intensity,  i   , plus background, B  (3.2). 

    E d i B       (3.2) 

Independence is assumed for the intensity measurements of each pixel.  Therefore, the 

likelihood function for the entire frame of data is the product of the PMFs for each pixel, 

(3.3) [12]. 
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  
      

 

B B

!

die i
P d

d








  
   (3.3) 

Two sets of complete data,  , ,d     and  c  , are defined in (3.4), where  , ,d    is 

related to  i   and  c   is related to B . 

      , ,d d c
 

          (3.4) 

If the expected values of the two sets of complete data are defined as in (3.5)  the 

relationship between the measured data and true intensity in (3.2) is preserved, as shown 

in (3.6). The coordinates   and span the object and PSF, respectively. 

 

       

     

, ,

# #

E d b N h o

B
E c C

       


 

     

   




  (3.5) 

In (3.5),  #  and #  denote the cardinality of  and  . 

 
           

   

, ,

# #

E d E d c b N h o C

i C i B

   

         

   

          

   

  
  (3.6) 

Equations (3.8) and (3.9) confirm the PMFs of the complete data are consistent with the 

PDF of the measured data, (3.1), if the complete data are defined as independent Poisson 

random variables, as shown in (3.7).  

 

  
               

 

      

 

, ,

, ,
, , !

!

db N h o

cC

e b N h o
P d

d

e C
P c

c

      



    
  

  




  



 














  (3.7) 
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In (3.8) and (3.9), note that the addition of two independent Poisson random variables 

produces another Poisson random variable with mean equal to the sum of the means of 

the two original Poisson random variables. 

     
                 

   

, ,

, ,
, , !

d cb N h o Ce b N h o C
P d c

d c

            
   

   

      
 



 

   
  (3.8) 

 

      

     
     

 

 
       

 

, ,

!

B

!

d
b N h o C

di B

P d P d c

e b N h o C

d

e i

d

 

 

    

 



    

    






     

 

 
    

 

  
     

 








 

 (3.9) 

The statistical model for the complete data is validated in (3.9), where the statistical 

model for the incomplete data is produced through the relationship between the 

incomplete data and the complete data defined in (3.1). Therefore, we move on to 

deriving the log-likelihood of the complete data in (3.10)-(3.12). 

     Since the two sets of complete data are independent, the joint PMF is a product of the 

individual PMFs.   

     
               

 
   

 

, ,

, , ,
!, , !

db N h o cCe b N h o e C
P d c

cd

           
   

  

    


 

   
 (3.10) 

Therefore, assuming independence over  ,  , and   the likelihood function of the 

complete data is the product of the joint PMF, (3.10),  over  ,  , and  as shown in 

(3.11). 
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    
               

 
   

 

, ,

, , ,

!, , !

db N h o cC

P d c

e b N h o e C

cd

       

  

   

    
  

    


 

 

 

  (3.11) 

Taking the natural logarithm of (3.11) gives the log-likelihood of the complete data, 

(3.12). 

 

          
            

ln , , ! !

, , ln ln

CDL b N h o C d c

d b N h o c C

  

  

        

        

     

   





 

 
     (3.12) 

To derive the object and PSF updates, the Q function is defined as the expected value of 

the complete data likelihood based on data, the old object estimate, oldo , and the old PSF 

estimate, oldh , as shown in (3.13). 

 | , ,old CD old oldQ E L d o h      (3.13) 

Substituting the complete data log-likelihood function, (3.12), into (3.13) gives (3.14). 

 

            

          

     

ln , , ! ! |

, , | ln

| ln

old

old

old

Q b N h o C E d c d

E d d b N h o

E c d C

  

  

         

        

 

        

    

   





 





 (3.14) 

An expression for    , , |oldE d d     
  is derived in (3.16)-(3.21). To compress 

notation, the substitutions shown in (3.15) are made.  

 
 
 

, ,d d

d d

  







 
  (3.15) 

The probability distribution,  |P d d  is derived using Bayes’ theorem in (3.16). 
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    
 

,
|

P d d
P d d

P d



  (3.16) 

The joint PMF of the complete and measured data can be found using (3.17), due to the 

definition of the complete data, (3.4). 

      ,P d d P d P d d     (3.17) 

Substituting Poisson PMFs on the right-hand side (RHS) of (3.17) gives (3.18). 

    
,

! !

d d dE d E d d
E d e E d d e

P d d
d d d

              


   


   (3.18) 

The PMF for the measured data is shown in (3.19). 

      

 !

d E dE d e
P d

d



   (3.19) 

Substituting (3.19) and (3.18) into (3.16) gives (3.20), which is the equation for a 

binomial probability density function with number of trials d  and probability of success

 
E d

E d

  


. 

    
     

!
|

! !

d d d

E d E d dd
P d d

E d E dd d d


            
       

 
 


    (3.20) 

Taking the expectation of (3.20) and substituting (3.5) and (3.2) produces the final 

expression for    , , |oldE d d     
   in (3.21), where  oldi  , refers to the old 

intensity estimate. 
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     

       
 

, , |

o

old

old
old

old old

old

E d
E d d d

E d

b N h
d

i B

   

    




     

 







  (3.21) 

Substituting (3.21) into (3.14) results in (3.22). 

 

            

       
        

     

ln , , ! ! |

o
ln

| ln

old

old old

k old

old

Q b N h o C E d c d

b N h
d b N h o

i B

E c d C

  

  

         

    
     



 

        

 
  



   





 



  (3.22) 

To determine the update equation for the object, Q is maximized by setting the derivative 

of (3.22) with respect to the object at an arbitrary point,  o   to zero 

 
        

       
 

 
 

o

oold old

old

Q
b N h

b N h
d z

i B o

  

  

      


       
 

     


  







  (3.23) 

The term     ln , , ! | doldE d     
 

 disappears, as it only depends on  oold  , and not 

 o  . Additionally,      | lnoldE c d C     and C vanish, since they are also constant 

with respect to  o  . 

 

      

       

 

ln , , ! | d 0
o

| ln 0
o

0
o

old

old

E d

E c d C

C

   


 




    


  








   (3.24) 

Using the sifting rule, (3.23) becomes  
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      

       
   

o

o 1

o

old old

old

Q
b N h

b N h
d

i B

 

 

   


    


 

    


  







  (3.25) 

Setting the derivative of the Q function in (3.25) to zero and moving the negative term to 

the left-hand side (LHS) produces  

 

   

       
   

o 1

o

old old

old

b N h

b N h
d

i B

 

 

   

    


 

  

  





  (3.26) 

Isolating  o x  in (3.26) on the RHS and moving  o xold   to the outside of the 

summation gives the update equation for object,  

    
     

 
   

o o

old

old
old

b N h
d

i B

b N h
 

 

   



 

   

 


 
 




  (3.27) 

The PSF is constrained to sum to 1 as shown in (3.28). Additionally, the under-sampling 

function, b , also sums to 1 since decimating a square ones matrix of size N by a factor of 

N reduces to a single-element ones matrix. 

 

 

 

1

1

h

b N
















  (3.28) 

Thus, the denominator on the RHS of (3.27) evaluates to 

     1b N h
 

        (3.29)  

Substituting (3.29) into (3.27) produces the final object update equation. 
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The PSF update equation is derived in a similar manner to the object update equation, 

beginning by taking the derivative of the Q function with respect to an arbitrary point    

of the PSF,  h   .  
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Note that the terms that vanished in (3.23) also vanish in (3.31). Using the sifting 

property results in  
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Setting the derivative of the Q function in (3.32) to zero and moving the negative term to 

the LHS produces (3.33). 
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Isolating  h   on the LHS and moving  oldh   outside of the summation gives the 

update equation for the PSF (3.34). 
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Since the blurring function is defined to sum to one (3.28), the summation in the 

denominator of the PSF update equation, (3.34), is equivalent to summing over the 

object, which gives constant K in (3.35). 
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Substituting (3.35) into (3.34) gives (3.36).   
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The PSF was defined to sum to one in (3.28). Therefore, when updating the PSF, the 

constant in the denominator of (3.36) is ignored and the updated PSF is normalized to 

sum to one as shown in (3.37). 
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Computationally, Fourier transforms are used to implement the estimate update equations 

as shown in (3.38) and (3.39), where *  denotes a conjugation.  
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Although computationally more efficient, there are drawbacks to using Fourier 

transforms to compute update equations. One issue is that circular convolution is 

implemented instead of linear convolution. Using circular convolution instead of linear 

convolution is acceptable for astronomical images of near-point sources where only 

background noise is present at the edges of the image. Zero-padding must be performed 

for images with significant content near the edges. Another inconvenience is that all 

matrices must be the same size. Therefore, to recover a Nyquist-sampled PSF, the data 

must be up-sampled by a factor of N before being used in the update equations. The 

blurring function must be zero-padded to match the PSF array size. 

     Updating PSF and object estimates using (3.38) and (3.39) guarantees the likelihood 

will increase every iteration [13]. However, estimates converge to a trivial solution if left 

unconstrained, where the object becomes a point source and the PSF becomes the data. 

One method Shultz proposed to overcome the trivial solution was to incorporate a phase-

retrieval algorithm called Gerchberg-Saxton into blind-deconvolution to prevent the PSF 

from converging to the data [12]. The phase retrieval algorithm described in this thesis 

uses similar approach where the PSF is constrained using the phase retrieval algorithm.  

Termination Condition 

Using the Cramer-Rao lower bound, the minimum variance between a parameter and its 

estimate can be estimated by inverting the Fisher information matrix as shown in (3.40), 

where cov( )  is the covariance matrix of the estimated parameters,  , and I represents 

the Fisher information matrix [14]. 

   1cov   I   (3.40) 
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Entry ,    of the Fisher information matrix is defined as shown in (3.41) [14]. 
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  (3.41) 

The log-likelihood function, L, for a single frame of data is shown in (3.42), where ( )i   

is the true intensity and ( )d   is the captured frame of data.  
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Since the true intensity is being estimated, i  and the Fisher information matrix can be 

found by first taking the derivative of (3.42) with respect to  i  . 
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The second derivative is now taken with respect to the true intensity. The second 

derivative is equal to zero except when the second derivative is taken with respect to the 

same pixel as the first derivative, as shown in (3.44). 
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Therefore, the Fisher information matrix is a diagonal matrix as shown below. 

  
1

B

0

iI
 


 


   



  (3.45) 

Inverting a diagonal matrix is equivalent to inverting each of its elements. Therefore the 

lower bound for variance is equal to the value of the corresponding true intensity pixel.  
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     var Bi i     (3.46) 

When using only a single frame of data, the blind deconvolution algorithm is thus 

terminated when the sum of squared error between the intensity estimate and the data is 

less than or equal to sum of the data. This convergence of variance termination condition 

was used by Neff in his work to estimate seeing conditions [15]. 
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IV. Phase Retrieval 

Phase retrieval is the process of recovering phase from intensity measurements. Phase 

retrieval is widely applicable in optical sensing problems because intensity is often the 

only directly measurable quantity. To determine the aberrations that are present in the 

system, the phase of the field must be retrieved. The phase retrieval technique reported in 

this research is based on Blind-deconvolution, Gerchberg-Saxton, and a field-based 

compass search. Blind deconvolution was described in the previous chapter as a means of 

separating the object from the PSF. The Gerchberg-Saxton algorithm and the Field-based 

compass search are explained in the first two sections of this chapter, which concludes by 

described in the phase retrieval algorithm in its third and final section.  

Gerchberg-Saxton 

The Gerchberg-Saxton (GS) algorithm was one of the first successful algorithms 

developed for phase retrieval. The field function,  ,p q , is defined as 

      ,, , j p qep q A p q     (4.1) 

The magnitude of the field function and the detector field is known to be the aperture and 

the square root of the PSF respectively [7]. The field function in (4.1) is equal to the 

argument of the Fourier propagation from (2.10) and (2.11). The GS algorithm exploits 

the Fourier relationship between the field function and the detector field by iteratively 

constraining the magnitude of the two fields while allowing their phase to change. As 

shown in (4.2), the constrained field function estimate,  ,p q  ,  may be initialized to 

any field, as long as its magnitude is consistent with the aperture shape.  
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    ,  ,pq qp A   (4.2) 

First, the unconstrained detector field estimate,  ˆ ,DU n m , is updated to the Fourier 

transform of the constrained phase function estimate [7]. 

     ˆ , ,DU n m F p q   (4.3) 

Then, the magnitude of the detector field estimate is constrained to the square root of the 

point-spread function [7]. 
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Next, the estimated field function is updated the inverse Fourier transform of the 

constrained detector field [7]. 

      1ˆ ,, DF U mp q n


    (4.5) 

Finally, the magnitude of the field function is constrained to the aperture shape [7]. 
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Steps (4.3)-(4.6) are iteratively repeated until a loop limit is exceeded to improve the field 

estimate, as shown in Figure 5 [7]. 
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Figure 5: Gerchberg Saxton (GS). 

Every iteration of the GS algorithm reduces the error between the true and estimated 

fields. However, convergence to the true field is not guaranteed.  

Compass Search 

     The compass search is a subset of direct search algorithms, which are not gradient-

based. Gradient-based algorithms are faster but their use is avoided due to their 

susceptibility to noise [16]. The compass search was also utilized by Zingarelli [9]. At 

each iteration, the compass search moves one of the current parameter estimates in the 

direction that produces the most favorable objective function value [16]. Every estimated 

parameter is considered a separate dimension in the search space [16]. The objective 

function is evaluated for every possible axial direction of movement and the current 

parameter set is moved in the direction that produces the most favorable value [16]. A 

two-dimensional compass search is illustrated in Figure 6. 
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Figure 6: Two-dimensional compass search.  

The Field-based compass search is shown in Figure 7, where Zernike coefficients 2 

through 11 are fitted to the field recovered by the GS algorithm. The search space is ten-

dimensional, where each dimension defined by a single Zernike coefficient.  

 

Figure 7: Field-based compass search. 

The objective function is defined by the correlation,  a , between the field function 

estimate produced by GS,  ,gs p q  , and the field produced by one of the a potential 

Zernike coefficient estimate updates,  ,a
zern p q . 
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In (4.7), Re{ } returns the real portion of its argument. The coefficient estimates are 

moved in the direction of highest correlation, which implies a better estimate.  

Phase Retrieval Algorithm 

Blind-deconvolution, GS, and Field-based compass search are combined into the phase 

retrieval algorithm shown in Figure 8. 

 

Figure 8: Field-based phase retrieval 

As input, phase retrieval algorithm requires data, aperture shape, initial Zernike 

coefficients and an initial object estimate. First, the intensity estimate is generated based 

on object and Zernike estimates using (2.1)-(2.5) and (2.62). The object and PSF are 

updated based on blind-deconvolution update equations (3.38) and (3.39). The updated 

PSF is input into the GS algorithm, whose aperture field is initialized based on current 

Zernike estimates, ˆi . 
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After the GS algorithm is executed for a number of iterations, the field produced by GS is 

passed to the field-based compass search algorithm. The field-based search updates 

Zernike coefficient estimates using the field produced by GS, then passes the Zernike-

based field estimate back to GS as the initial aperture field for the next iteration of the 

phase retrieval algorithm. Zernikes are compared to a history of Zernike coefficients from 

previous iterations. The algorithm is terminated when all Zernikes coefficients in the 

history match. Using a history of Zernike estimates ensures that both the PSF and object 

estimates have stabilized before the algorithm is terminated.  

     Performance can be improved by running the phase retrieval algorithm multiple times 

with different starting points, as shown in Figure 9. The algorithm returns the Zernike 

estimate that generates the PSF yielding the smallest error between the data and the 

estimated intensity. Alternatively, the termination condition from Chapter 3 may be used 

return Zernike coefficient estimates immediately once convergence of variance is 

satisfied.. 
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Figure 9: Field-based phase retrieval with random starting points. 
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V. Simulation/Experimentation and Results 

Number of Gerchberg-Saxton Iterations 

A simulation was conducted to determine the number of iterations of GS to perform 

within the phase retrieval algorithm. The GS algorithm was executed on 100 different 

PSFs, generated by randomly choosing Zernike coefficients 2 through 11 from a normal 

distribution. For each instance, the initial aperture phase was initialized to the aperture 

itself, and the squared error between the true and estimated PSF was tracked for 100 

iterations.  Figure 10 shows the average squared error curve.  

 

Figure 10: Reduction in squared error from GS iterations. 

Performing more than 10 iterations of GS does not significantly reduce the squared error 

between the true and estimated PSF. Therefore, 10 iterations of GS are preformed within 

the phase retrieval algorithm. 
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Random Zernike Simulation 

The performance of the phase retrieval algorithm was evaluated using simulated frames 

of data, generated using (2.62)-(2.65).  Zernike coefficients were randomly selected from 

a normal distribution. Frames were simulated for a point-source object with intensity 

10e4 photons and 1 photon of background.  Figure 11 shows simulated Nyquist-sampled 

and under-sampled data. True intensity is shown in the top row and the final, simulated 

frame with shot noise is shown in the bottom row. The left column of Figure 11 is 

Nyquist-sampled and the right column is under-sampled by a factor 2. 

 

Figure 11: Simulated Data 

In Figure 12, the zero-padded blurring function  ,b n m is shown on the left and the 

under-sampled data after up-sampling is shown on the right.  
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Figure 12: Under-sampled phase retrieval inputs. Blurring function (left), up-sampled 

data (right). 

 The object estimate is initialized to the zero-padded 5 by 5 ones matrix shown in Figure 

13. 

 

Figure 13: Initial object estimate. 

 

Figure 14: Simulation Results from 100 frames of simulated data. Absolute error between 
true and estimated Zernikes are plotted for results from Nyquist-sampled data (left), and 

data under-sampled by 2 (right). 
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     Simulation results are shown in Figure 14. Tip and tilt were ignored because they are 

affected by the object estimate. The object estimate often converges to an off-axis point 

source, causing tip and tilt to compensate by straying from their true values. Ten 

iterations of the phase retrieval algorithm with randomly selected initial Zernikes were 

performed for each of the 100 simulated frames. Figure 14 shows the mean absolute error 

between the true and estimated Zernike coefficients. Results from Nyquist-sampled data 

are shown on the left while results from under-sampled data are shown on the right.  

Defocus Experiment 

A Newtonian telescope was used to observe a pinhole 15m away. The setup of the 

experiment is shown in Figure 15.  

 

Figure 15: Defocus experiment setup. 

The telescope was intentionally slightly defocused by an unknown amount. To obtain 

Nyquist-sampled and under-sampled data, the telescope aperture was setup as shown in 

Figure 16. An opaque screen was used to block out most of the original aperture around 

an adjustable iris. Spatial Nyquist-sampling in the detector plane for a circular aperture is 

defined by the relationship in (5.1), where dx is the pixel pitch. 

 
2

z
dx

D


   (5.1) 
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The pixel pitch of the detector used in the experiment was 16µm. Therefore, assuming 

the change in focal length, z, to slightly defocus the telescope was insignificant, the 

aperture diameter D required for Nyquist-sampling was 3 cm as shown in (5.2). 

 
 
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3
2 2 16 32

m cmz cm
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      (5.2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16: Telescope aperture. 

Therefore, the effective aperture size of the telescope was reduced to 3 cm, as shown in 

Figure 16, to obtain a Nyquist-sampled image. The size of the aperture was then doubled 

to 6 cm to generate an image under-sampled by a factor of 2. Frames of data obtained 

from the experiment are shown in the top row of Figure 17. The corresponding PSFs 

recovered by the phase retrieval algorithm are shown in the bottom row. The initial object 

estimate in Figure 13 was used and the phase retrieval algorithm was executed 100 times 
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with initial sets of Zernike coefficients 2-11 randomly selected from a normal 

distribution.  

 

Figure 17: Defocus experiment results. Experiment data (top row), recovered PSFs 
(bottom row), Nyquist (left), under-sampled by 2 (right). 

 
The final Zernike coefficient estimates minimizing the squared error between estimated 

intensity and the data is shown in Table 1.  

Table 1: Recovered Zernike Coefficient Magnitudes 

  Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 
Nyquist-sampled 0.31 0.06 0.04 0.02 0.17 0.07 0.02 0.47 
Under-sampled 1.88 0.20 0.03 0.08 0.05 0.08 0.07 0.25 

 

The recovered coefficients cannot be compared directly, because adjusting the aperture 

size affects the Zernike coefficients. The change in Zernike coefficients can be predicted 

to a certain extent through the matrix multiplication shown in (5.3).  
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  α Aα   (5.3) 

The upper-triangular matrix, A , whose entries, A , are populated according to (5.4), 

maps the Zernike coefficients before the aperture size is changed, α, to the Zernike 

coefficients after the aperture size is changed, α . 
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  (5.4) 

In (5.4), R  is the original aperture diameter and Ris the final aperture diameter. Also 

note that   and   have been used to represent the radial degree and azimuthal frequency 

of Zernike polynomials corresponding to the value of the subscript. Conventionally the 

radial degree and azimuthal frequency are represented using n and m  - however, these 

variables have already been defined as discrete detector plane coordinates.  Table 2 

shows the estimated and predicted Zernike coefficients for Nyquist-sampled data.  

Table 2: Predicted vs. Estimated Zernikes 

 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 
Predicted 0.29 0.05 0.00 0.01 0.01 0.01 0.01 0.02 
Estimated 0.31 0.06 0.04 0.02 0.17 0.07 0.02 0.47 

 

In Table 3, Zernike coefficients other than Z8 and Z11 are within 1/10th of a wavelength. 

The differences in Z8 and Z11 could be due to the small but significant presence of 

higher-order aberrations and failure of the phase retrieval algorithm.  
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Astigmatism Experiment 

An image containing a predictable amount of astigmatism was collected in the past by 

Zingarelli using the experimental set up shown in Figure 18. 

 

Figure 18: Astigmatism experiment setup. 

Table 3: Astigmatism Experiment Setup Measurements 

Λ 648 nm Ztot 2.44 m D 10 mm 
d2 22.3 cm Z21 1.74 m Δ 2.2 cm 
d1 -8.5 cm Z01 0.68 m   

 

A 500 mm focal length lens was used to focus light onto the detector. The position of the 

pinhole and camera were adjusted laterally to induce astigmatism. Zernike coefficients 

predicted based on the optical setup of the experiment are shown in . The components of 

the wave-front, ( , )   , are defined in (5.5)-(5.7), where lf  in (5.7) represents the focal 

length of the lens. 

   2 2 2
2 2 2121 ,0, , ( )dr k d zk          (5.5) 

    2 2
101 011

2,0, ,d k zdkr          (5.6) 

  2 2( , )
2 l

k
kt

f
        (5.7) 
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The numerical evaluation of each component of the wave-front (5.5)-(5.7) and are shown 

in order, from the top left to the bottom right of Figure 19.  

 

Figure 19: Rayleigh-Sommerfeld Phase.  

Predicted Zernike coefficients 2 through 11 are shown in the top row of Table 4 and the 

corresponding PSF is shown on the left in Figure 22. The absolute error between the 

decomposed wave-front and the reconstructed wave-front is shown in Figure 20.  

 

Figure 20: Wavefront residual.  
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Zernike coefficients 2 through 11 sufficiently characterize the wave-front, as the residual 

in Figure 20 on the order of 1000th of a wavelength.  

Table 4: Zernike Coefficient Magnitudes 

 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 
Predicted 0.01 0.00 0.77 0.00  0.01 0.00 0.00 0.00 
Nyquist 0.07 0.17 0.73 0.05 0.01 0.05 0.04 0.07 

Under-sampled 0.03 0.16 0.70 0.04 0.11 0.05 0.07 0.12 
 

The original data obtained from the experiment, shown on the left side in Figure 21, is 

oversampled by a factor of 1.4. Nyquist-sampled and under-sampled data were not 

captured. Therefore, the Nyquist-sampled and under-sampled frames shown in the center 

and the right of Figure 21 were generated in MATLAB. 

 

Figure 21: Astigmatism experiment data. Original data (left), generated frames (center, 
right). 

 
 To generate the Nyquist-sampled data, each pixel in the over-sampled frame was split 

into 7 by 7 pixels. The result was convolved by a 10 by 10 matrix, where each cell has a 

value of 1/7, and decimated by 10. The under-sampled data was generated by convolving 

the Nyquist-sampled frame with a 2 by 2 square and decimating by 2. Down-sampling 

data by a small factor does not cause the data to become unrealistic as long as size of the 

effective pixel in the down-sampled data is reasonable. The camera used in this 
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experiment had a pixel pitch of 16µm. The effective pixel pitch in the Nyquist and under-

sampled data therefore remain reasonable at 22.4µm and 44.8µm, respectively. Zernike 

coefficients were retrieved for both Nyquist-sampled and under-sampled cases. The 

phase retrieval algorithm was performed 100 times with different initial sets of Zernike 

coefficients 2-11 randomly selected from a normal distribution, and the initial object 

estimate shown in Figure 13. Of the 100 estimates produced, Zernike coefficients 

minimizing squared error between the estimated intensity and the data were selected. 

Final Zernike coefficients estimates from Nyquist and under-sampled data are shown on 

the second and third row of Table 4. The corresponding PSFs are shown in the center and 

right of Figure 22. 

 

Figure 22: Predicted and estimated PSFs for astigmatism experiment. Predicted PSF 
(left), PSF from Nyquist data (center), PSF from under-sampled data (right). 

 

 Zernike coefficients retrieved from Nyquist-sampled data and from under-sampled data 

mostly agree.  In both cases, the difference between the estimated amount of astigmatism 

and the predicted amount of astigmatism is under 1/10th of a wave.  
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Atmosphere Experiment 

The experimental setup shown in Figure 23 was used to generate 250 frames of data with 

random atmospheric aberrations. The original data obtained from the experiment was 

oversampled by a factor of 4. However, in a similar manner to the astigmatism 

experiment, the data was down-sampled by a factor of 4 to obtain Nyquist data and by a 

factor of 8 to obtain under-sampled data. Although these down-sampling factors are 

larger than those used in the astigmatism experiment, the pixel pitch of the camera was 

also smaller. The resulting effective pixel pitch remains reasonable at 13.8µm for 

Nyquist-sampled data and 27.6µm for under-sampled data. 

 

Figure 23: Atmosphere experiment setup. 

The mean absolute error between the Zernike coefficients estimated from Nyquist-

sampled data and Zernike coefficients estimated from under-sampled data are plotted in 

Figure 24. Additionally, for 244 out of 250 frames, all Zernike coefficients magnitudes 

estimated from under-sampled data converged to within half a wave of the estimates from 

Nyquist-sampled frames. 
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Figure 24: Atmosphere experiment results. Mean absolute error is shown between 

Zernike coefficient estimates from Nyquist-sampled data and Zernike coefficient 

estimates from under-sampled data. 
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VI. Conclusions and Recommendations 

Summary 

The purpose of this research was to retrieve phase from under-sampled images of 

astronomical objects. Zernike coefficients 4 through 11 were successfully recovered from 

noisy, under-sampled data using an algorithm combining blind-deconvolution, GS, and 

field-based compass. In Chapter 3, update equations for blind deconvolution originally 

proposed by Schultz were modified for under-sampled data. These update equations were 

combined with the GS algorithm and the field-based in Chapter 4. Simulation and 

experiments were conducted in Chapter 5 to evaluate the performance of the newly 

formed phase retrieval algorithm.  

Conclusion 

The phase retrieval algorithm often converges to Zernike coefficient estimates with the 

incorrect sign. However, there was no way of correcting this behavior without additional 

information. Zernike coefficients with the wrong sign still produced the same PSF as 

Zernike coefficients with the correct sign. Therefore, Zernike coefficient magnitudes 

were compared to evaluate the performance of the algorithm.  

     The algorithm performed well in simulation. The magnitudes of the Zernike 

coefficient estimates Zernike coefficients converged to within 0.5 waves for 97% of the 

trials using Nyquist-sampled data and 92% of the trials using under-sampled data. The 

phase retrieval algorithm worked on real data as well. Zernike coefficients magnitudes 

converged to predicted values to within 1/10th of a wave for Nyquist data and 1/5th of a 

wave for data under-sampled by a factor of 2. Unlike results from the astigmatism data, 
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estimates from the defocused data could not be compared to a predicted set of 

coefficients since the optical configuration of the telescope is unknown. Instead, Zernike 

coefficients recovered from the under-sampled data were compared to those recovered 

from the Nyquist-sampled data. The magnitude of defocus recovered from Nyquist-

sampled data was within 0.02 waves of the value predicted using defocus recovered from 

data under-sampled by 2. The magnitude of horizontal coma and primary spherical 

aberration recovered from the Nyquist sampled data differed significantly from values 

predicted using the under-sampled data, however. Horizontal coma was off by 1/5th of a 

wave while primary spherical aberration was off by half a wave. 

Significance 

The phase retrieval algorithm developed and evaluated in this thesis is an important step 

towards a method to analyze and improve the detection capability of optical systems such 

as star trackers and telescopes, especially since these systems are generally under-

sampled. Although under-sampled phase retrieval has been performed in the past the new 

phase retrieval algorithm is unique because it uses Zernike polynomials to constrain the 

complexity of the problem, allowing it to quantify the phase using a much smaller set of 

variables.  

Recommendations 

A major limitation of this algorithm is that it must be performed multiple times on each 

frame of data with different initial Zernike coefficient estimates to produce good final 

estimates. Phase retrieval could be performed significantly faster if the algorithm’s 
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reliance the initial Zernike coefficient estimates were reduced. Alternatively, a method 

that could quickly determine bad sets of initial Zernike coefficients could be developed.      

     Additional testing should be performed on the algorithm to determine the extent of its 

capabilities with worse atmospheric conditions and further under-sampling. For realistic 

use with telescopes used for space domain awareness such as the GEODSS or the Space 

Surveillance Telescope, the phase retrieval algorithm will have to work for much larger 

atmospheric aberrations and under-sampling factors.   
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