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Abstract 

 

As Air Force operations continue to move toward the use of more autonomous 

systems and more human-machine teaming in general, there is a corresponding need to 

swiftly evaluate systems with these capabilities. We support this development through 

software design improvements of the execution of human cognitive performance 

experiments. This thesis sought to answer the following two research questions 

addressing the core functionality that these experiments rely on for execution and 

analysis: 1) What data infrastructure software requirements are necessary to execute the 

experimental design of human cognitive performance experiments? 2) How effectively 

does a central data mediator design pattern meet the time-alignment requirements of 

human cognitive performance studies? To answer these questions, this research 

contributes an exploration of establishing design patterns to reduce the cost of conducting 

human cognitive performance studies. The activities included in this exploration were a 

method for requirements gathering, a meta-study of recent experiments, and a design 

pattern evaluation all focused on the experimental design domain.   
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ANALYSIS OF SOFTWARE DESIGN PATTERNS FOR HUMAN COGNITIVE 

PERFORMANCE EXPERIMENTS 

 

 

 

 

I. Introduction 

To motivate and provide context for the research activities discussed in this thesis, 

we open with a hypothetical, representative operational scenario. The objective of this 

scenario is to provide concrete examples of the human cognitive performance products 

which this thesis seeks to support. The plot of this hypothetical scenario is a high value 

target extraction from a location in hostile territory. The friendly actors include an 

Unmanned Aerial Vehicle (UAV) video sensor operator, Unmanned Ground Vehicle 

(UGV) operator, and a squad of ground soldiers. 

 In this scenario, the UAV sensor operator has control over the aerial vehicle’s 

video sensor pod to track two ground targets on foot simultaneously. At times, locating 

the targets within a complex environment can be extremely mentally demanding, such as 

when many similar looking individuals exist in the same visible area. This demand is 

mitigated by automated assistance of the locating and tracking of targets. The assistance 

is triggered at the most opportune time using an operator functional state model to 

continuously assess the cognitive load of the sensor operator. His cognitive load is based 

on a combination of physiological and behavioral metrics. These metrics include heart 

rate variability (HRV), eye movement, multiple electroencephalogram (EEG) channels, 
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and several key task performance features such as reaction time. To maintain optimum 

performance, when the operator’s workload falls below a certain threshold, he is given 

additional manual control, and when workload has exceed a threshold, automated 

assistance is provided.  

 Meanwhile, a UGV operator maneuvers several ground vehicles towards the 

building while on alert for enemy contacts. The operator is able to achieve a higher level 

of performance during the operation because her task performance deficiencies were 

already identified and addressed in real-time during training. In addition to increased 

preparedness, a distraction model detects if the operator’s attention drifts from the 

primary task using data feeds from an eye tracker and scenario updates. 

 Finally, a squad of ground soldiers equipped with Heads-up Displays (HUD) 

approaches the building. The message handlers for each soldier’s HUD present a unique 

interface of operational intelligence and communication based on their cognitive state. 

Each of the soldier’s cognitive state is derived from real-time data streams of multiple 

EEG channels identified as stable cognitive workload predictors during training sessions. 

 This scenario presents three types of real-time capabilities currently under 

development with significant potential for improvement to operations conducted by the 

Department of Defense (DoD). The first is the ability to assess the cognitive state of an 

operator and use that assessment to decide how to support their task to improve 

performance. The second capability is an improvement to training by providing 

automated real-time feedback that supplements or replaces trainers. The last portion of 
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the scenario demonstrates that this capability may also be employed in a mobile 

environment in a physical task. 

 The capabilities mentioned in the opening scenario and the methods of their 

application are created and matured through human cognitive performance experiments. 

If we support these experiments, then we can help create and develop these operational 

capabilities. Two ways that we can contribute to the experiments are by providing 

solutions for additional functionality and making it easier to achieve current levels of 

functionality within the execution of the experiments. 

A major component of these capabilities is the ability to use real-time streams of 

physiological and behavioral sensor data from the human operator. The data streams flow 

between multiple computational processes and some also need to be time synchronized 

during the execution of the experimental designs. These types of communication create 

significant complexity that must be managed by nontrivial software. This software takes 

the form of a data infrastructure to provide researchers the ability to execute their 

experimental design. Finally, it is by providing a discussion and analysis of solutions to 

the data infrastructures that this thesis seeks to support these operational capabilities. 

We define human cognitive performance studies as experiments that analyze the 

elicitation, manipulation, or observation of cognitive state changes in human subjects. 

Adaptive automation is defined as computational control over all or a portion of the task. 

The automation may be statically enabled or dynamically enabled by a trigger such as 

cognitive workload estimation. 
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Time-alignment is a key capability in the scenario we just presented as well as the 

execution of many other real-world experiments. Time-alignment is the time 

synchronization of two or more continuous streams of data. The synchronization is 

essential in this case because all the cognitive state models observe distinct physiological 

and behavioral responses from the same task stimuli.  

One key element that must be time-aligned in human cognitive performance 

experiments are the physiological observations from the human subject. Physiological 

sensors can measure a range of physical features from the human subject, such as heart 

rate, skin conductivity, and pupil size. Psychophysiological observations are a subset of 

physiological observations that are characterized by neurological measurements of the 

human mind, such as an electroencephalogram. 

 While not all of the capabilities presented in the opening scenario currently exist 

at the level of functionality described, groundwork to deploy them is ongoing within the 

research community. Due to factors that include the decreasing cost of equipment, 

development of new technology, and focused effort by the Department of Defense 

(DoD), the quantity of experiments to support the types of operations included in the 

opening scenario is expected to increase. 

Several key research activities are crucial to develop and refine the functions that 

appear in the opening scenario. One of these is the ability to derive a human operator’s 

workload. A second is to understand how operators interact with automation and machine 

agents. Yet another is to understand how certain situational elements of a task scenario 

affect human cognitive resources.  
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Each of these research activities exist within the domain of human cognitive 

performance, but the software systems to make this research possible are not native to 

that same domain. They require development from a different domain of knowledge, 

software engineering. It is these systems which we seek to improve, specifically the data 

infrastructure enabling the flow of the data streams and their temporal alignment. 

There are many individual software solutions to meet experimental designs 

throughout the human cognitive performance research community. The similarities in 

these solutions are due in part to a set of consistent functionality required to run 

experiments to answer research questions. Redundant design is not a unique 

phenomenon, and leveraging the patterns of these designs is possible. This idea is 

illustrated with the following often quoted analogy on the design of buildings and towns. 

Christopher Alexander wrote, “Each pattern describes a problem which occurs over and 

over again in our environment, and then describes the core of the solution to that 

problem, in such a way that you can use this solution a million times over, without ever 

doing it the same way twice” [1]. 

Key Concepts 

There are a number of terms and concepts used in this thesis that are uncommon 

or have a unique meaning in the context of this research. In order to provide a common 

context, we provide the definitions of these terms referred to often throughout this 

research. Some are reiterated versions of commonly used definitions, while other 

definitions are novel to this research. 
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 Human cognitive performance (HCP) experiments: A categorical set of 

experiments that seek to further the understanding of cognitive functions in 

the human mind. 

 Data stream: A continuous time-ordered series of data points. An example is 

the instantaneous measure of heart rate over time sampled at 5 times per 

second (5 Hz).  

 Experiment data infrastructure: The hardware and software configuration 

collecting and routing data during the execution of an experiment. 

 Experimental design: The design of a systematic task or set of tasks necessary 

to achieve the research goals. The design describes the conditions under which 

to run the experiment, the data to be collected and how the observed data is 

analyzed.  

 Experimental design execution: The sequence of practical, concrete tasks that 

must occur during the execution of an experimental trial in order to collect the 

data necessary to achieve the research goals. The scope of this thesis covers 

the design execution phases starting with collecting observations, to 

processing the data if necessary and finally storing the results for post-

experimental analysis. The analysis portion of the experimental design is not 

within the execution scope. 

 Central Data Mediator (CDM): Software design pattern that describes how 

data streams and communication between components of an experiment are 

managed. More specifically, the design pattern provides a general architecture 
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and descriptions of communications between the data flow producing and 

consuming modules of an experiment. A software design pattern is a 

generalized, reusable solution for a common problem in a given domain. 

 Software requirements: The functionality of a system required by the 

customer (cognitive performance researchers are the customer in the scope of 

this research). 

Problem Statement 

Data stream management requires a nontrivial solution when multiple distinct 

streams of data (e.g., EEG measures and task performance) must be synchronized and 

transmitted in real-time. Add to this challenge multiple versions of an adaptable task 

interface and maintaining alignment between the physiological sensor streams and task 

performance measures, and the necessary software infrastructure becomes even more 

complex. For these reasons, researchers in this domain require nontrivial software 

designs to execute their experimental designs. 

The complexity necessary to execute the experimental designs of current human 

cognitive performance studies will only continue to grow and will include important new 

capabilities for adaptive automation and the understanding of human cognitive process in 

complex environments. In an effort to meet ever increasing demands of automation, the 

complexity of each of these experiments will also continue to grow. One factor of the 

complexity is time alignment of the data within the execution of the experiment. Time 

alignment is an essential activity for these researchers to correlate the observations from 

discrete sources within the experiment.  
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A simple example illustrating the necessity of this activity is the time alignment 

of presentation stimuli within an experiment to the physiological observations from the 

human. If one does not know when a psychophysiological measure occurred in relation to 

when the stimuli occurred, then little to no conclusions can be drawn from the data. 

The ultimate vision for developing software patterns in this domain is to eliminate 

barriers of human cognitive performance experimental designs caused by software 

architecture limitations. It is very likely that no single tool could address the needs of the 

entire spectrum of experimental design configurations. Thus, our goal in this thesis is to 

provide groundwork towards this vision. Our focus is on real-time and augmented 

automation dynamic tasks because these are some of the primary drivers of complexity. 

Research Focus and Research Questions 

The research focus is software requirements and design. The scope of 

requirements in this thesis is the set that describes the flow of data critical to the 

execution of a human cognitive performance experimental design. Supporting data 

streams requires certain functionality from software, specifically from the software that 

serves as the data management infrastructure. The focus is on the common necessary 

characteristics of this experiment execution supporting software.  

The process necessary to answer the research questions presented at the end of 

this section requires an understanding of the cognitive performance problem domain to 

include concepts such as: human factors, cognitive science, human-computer interaction, 

decision making and adaptive automation. We use a software engineering approach to 

investigate opportunities to both meet and provide solutions to make it easier to meet the 
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requirements of human cognitive performance experiments. From this software 

paradigm, we analyze three software designs that use different strategies to meet the data 

management to execute human cognitive performance experiments.  

One of the research goals is to understand the root causes that drive an increase in 

software complexity within experiment software infrastructure solutions. To improve the 

field’s ability to address challenges designing software that meets data management 

needs, a firm understanding of the challenges is necessary. The research focus reflects 

this goal of increasing the understanding of the software complexity challenges. 

In order to begin building a foundation to solve the problems that face human 

cognitive performance experiments, this thesis answers two research questions addressing 

the data stream management software infrastructure necessary to execute the desired 

experimental design. The first question focused on gathering requirements of human 

cognitive performance experiment design. The second question focused on the evaluation 

of a specific design approach in the context of the requirements. 

 What data infrastructure software requirements are necessary to achieve the 

research goals of human cognitive performance experiments?  

 How effectively does a central data mediator design pattern meet the time-

alignment requirements of human cognitive performance studies?  

 

Motivation 

The preconditions for performing analysis of the results of a human cognitive 

performance study are the ability to collect continuous, dynamic time-series of 
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observable measurements, using those data streams to inform models and make 

decisions, and storing the data for later analysis. Managing the data produced and 

processed during the execution of one of these studies is often a nontrivial exercise due to 

the large number of experimental components, the difference in functions performed by 

each component and the magnitude of data generated. The experimental modules may 

include: 1) human subject physiological sensors, 2) the simulated task environment, 3) 

persistent storage mechanisms, 4) computational models and 5) adaptive automation 

controllers.  

There is no single best feature provided by physiological measurements for all 

cognitive manipulations (factors and levels) of a task [2]. A large quantity of data is the 

result of high resolution physiological observations of the human subject such as EEG. 

These types of measurement may produce multiple channels of data with sampling rates 

over 1,000,000 samples per second or 1 Megahertz (MHz). Physiological data in these 

experiments is primarily used as an indicator of the cognitive state of a human subject. 

Physiological measurements are not the only source of high-fidelity data streams during 

the experiments. 

A non-physiological source of high-density data may be a simulated task 

environment. A continuous stream of task performance metrics is one common data 

stream from a task environment. The environment state representation for the task shared 

with other components is another possible output. Maintaining an accurate record of the 

task state throughout the trial is essential for analysis, so that the human subject responses 

can be time-aligned with the event stimuli and physiological sensor data. 
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In this research, we are interested in the portion of the experiment that manages 

the collection of data from every producer and consumer of data within the experiment. 

To clarify, the scope of this research does not include any study of the actual values of 

data from a study, but rather the process used to manage the flow of the data.  

 The potential number of different software solutions to the problem of providing 

data management is staggering. There are more experiment data management software 

architectures than there are potential human-machine team performance studies. 

However, there are many common design aspects between all of the studies which can be 

leveraged to reduce the complexity of the data management architecture design and 

implementation.  

In order to provide context for Chapters 2 and 3, we briefly list below the 

requirement statement results from Chapter 4. The common data requirements gathered 

from published experiments and queries of data architectures by this research are as 

follows: 

 Data streams from disparate processes not operating on the same system 

clock shall be time-series aligned. 

 Modules within the experiment shall have the ability to receive multiple 

streams of data from one or more other modules in real-time. 

 Modules within the experiment shall have the ability to send multiple 

streams of data to one or more other modules in real-time. 

 Multiple data types shall be handled simultaneously. Examples are double 

floating points, integers, strings, binary, images and video. 
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 The available physiological hardware sample rates shall be maintained. 

General Approach and Thesis Overview 

There are many possible approaches to improve the research methods of 

designing human cognitive performance experiments. However, this thesis focuses on 

one: improvements to developing and integrating the data management software 

infrastructure necessary to execute an experimental design.  

The thesis is divided into five chapters. I. Chapter II provides further details and 

challenges of human cognitive performance experiments. These include motivation, core 

concepts, current challenges and what is being done to address those challenges. Chapter 

III presents the methods used to answer the research questions. This includes novel 

constructs necessary to perform the. Chapter IV presents the results of executing the 

methods to answer the research questions. The conclusion, in chapter V, contains a 

distillation of the results and the lessons learned from the methods used. The operational 

significance of the results is discussed next and, recommendations for future work 

following the results of this research are presented.  
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II. Literature Review 

 

 

 

This chapter provides the context necessary to discuss the data infrastructure 

requirements of human cognitive performance experiments.  While software tools that 

manage the complex communication of data streams have been developed in recent 

years, there has been no theoretical discussion of the requirements that these tools are 

built to support. Further, while there were several examples of software product 

solutions, discussion on general software approaches and design were not seen in the 

literature. We discuss this concept using recent published works in human cognition 

research. 

We build a foundation of knowledge on human cognitive performance 

experiments by focusing on several domains in the research literature. The first domain is 

background on various research goals within human cognitive performance studies. 

Second, we present literature that represents human cognitive performance research 

including or relying on complex system interactions. Finally, current and past approaches 

for creating standard interfaces for the components of a human cognitive performance 

experiments are enumerated.  

Human Cognitive Performance Studies Background 

The following works are a primer on the types of research activities conducted 

within the domain of human cognition performance experiments. Many research efforts 

in the human cognitive performance domain seek to answer questions such as: What are 

the physiological markers of cognitive state from external stimuli? How can that 
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information be employed to inform a computational model to take optimal actions in 

concert with a human actor?  A common measure used to answer this question is the 

operator’s cognitive workload or functional state.  Due to the vast number of 

uncontrollable, directly unobservable, and unrecognized factors that play a role in an 

operator’s cognitive workload, many distinct experiments are necessary to expand the 

current body of knowledge. Additionally, the interactions between human and 

computational agents are dynamic. The large quantity of research necessary to forward 

the field suggests the necessity of an architecture to improve the ease and capability of 

performing the research. 

Durkee et al addressed the question of how to identify when to apply adaptive 

augmentation, and to answer this, focused on the ability to measure and predict workload 

in real-time [3]. The authors presented a data aggregation and modeling architecture to 

describe their approach of modeling workload in real-time. The model, shown in Figure 1 

below, serves as a source providing a listing of components that exist within the 

experiment’s data infrastructure. The diagram also demonstrates how the components and 

the data streams flowing between them may be arranged. The data bus serves as one 

example of a standard interface to improve modularization and extensibility. 
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Figure 1: Durkee et al data management architecture [3] 

The authors also presented their application of adaptive automation as a tool to 

modify the user interface of a task to match the inherently dynamic states of the operator. 

As a motivator of using physiological measures within their model, the authors point to 

the architecture’s proven effective use as a predictor of workload. Three insightful 

limitations observed by the authors regarding current approaches to measuring operator 

states provided were: 1) reasonable model accuracy was not possible without “training” 

to a specific individual, 2) temporal gap between observation and assessment, not being 

able to derive a classification in real time, 3) overall lack of granularity and timeliness of 

operator state assessments. 

 One example of enabling communication between disparate models from 

different cognitive modelling paradigms is presented by Lebiere et al. The authors 
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presented work on integrating IMPRINT and ACT-R that focuses on demonstrating the 

possibility of aligning these disparate computational models in such a way that they 

exchange information on their respective levels of task execution [4]. Figure 2 depicts a 

generic demonstration of ACT-R’s role with an experiment. The complexity of the task is 

twofold: one, to decompose the task appropriately, and two, and probably more difficult, 

to pass the necessary information between the models in a format that can be ingested 

into each. The communication is accomplished in a narrow scope, only engineering 

communication between the two specific instances of models they explored. The authors 

did not, however, discuss extending the mode of communication to a standard format that 

could be applied to other forms of models or even other types of components, such as 

synthetic task environments (STEs) or physiological measurement devices. 

 

Figure 2: ACT-R Experimental Method [5] 

 

 Additionally, Lebiere et al ran simulations with the models rather than having the 

cognitive models interact with the same instance of the task environment as a human 
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subject. The authors note the act of sharing variables, such as clock time, between models 

is an essential requirement of conducting the experimental design. Variable sharing can 

be extended to additional components of the experiment design beyond just the models. 

The large amount of information sharing necessary between the models suggests that 

message passing between parallel computational models in an experiment is a workflow 

requirement. 

Allanson and Fairclough’s literature survey focuses on the argument for standard 

processes, software libraries, and architectures of human computer interaction systems 

which integrate physiological measurements [6]. Allanson and Fairclough also include a 

robust listing and description of detectable human physiology measures which include: 

EEG, electromyogram (EMG), electrooculogram (EOG), pupillometry, 

electrocardiogram (ECG), respiratory patterns, electrodermal activity/galvanic skin 

response (GSR), and blood pressure. Two requirements noted by the authors for systems 

that integrate physiological measures are 1) the necessity to retrieve physiological data 

from an external measurement module, and 2) the necessity to have some degree of pre-

processing of the physiological data suitable for consumption by edge components that 

employ the data. One potential solution to accomplish pre-processing proposed by the 

authors is to use tuned thresholds to determine if the raw data indicates a real 

physiological response. Other physiological data streams may require filtering on specific 

bandwidths via one of several spatial filtering methods. 

While the authors express passionate support of standardized development 

practices, they do not provide a full workflow perspective to include testing and research 
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activities. Following are two examples of activities called out by the authors as future 

work that need to be developed. The first is the need to develop algorithms with the 

ability to categorize physiological states and distinguish levels within those states from a 

basis of research. The second is the development of the ability to match a proper system 

response to a physiological pattern recognition, whether there is a significant or almost 

imperceptibly small change. 

In a similar research effort, Allanson’s PhD thesis provides additional, more in-

depth discussions on the implementation details of physiological measurement devices as 

well as tools to aid in the design of human computer interaction (HCI) systems [7]. The 

author goes into detail over using conceptual models of component interaction to improve 

the design of systems that rely on communication between a human and a machine. The 

author also introduces the concept of Electrophysiologically Interactive Computer 

Systems (EPICS) as a class of systems that leverages human physiological measurements 

within the machine to make programmatic decisions. 

Jo, Myung, and Yoon also focus on cognitive workload prediction capability; 

however, their work uses a tool, ACT-R, that does not natively provide cognitive 

workload prediction [8]. The authors suggest enabling workload prediction in non-native 

tools can be extended to other models and thus this is something that should be supported 

by the framework. A list of cognitive architectures compiled by the authors includes: 

ACT-R, Executive Process/Interactive Control (EPIC), Soar, and Queuing Network – 

Model Human Processor. The capability presented in Jo et al’s work is limited to the 

domains supported by the ACT-R tool, which excludes certain aspects of human 
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cognition such as vigilance tasks and mental fatigue. Similar to many experiments in the 

human cognitive performance domain, the dependent variables measured by the authors 

were task completion times and subjective workload, NASA Task Load Index (TLX). 

Mancuso et al discuss their human team performance study, investigating 

differences in integrated and differentiated knowledge structures within distributed 

teams [9]. The authors’ primary goal is to investigate whether common knowledge or a 

disparate, wider knowledge base can better improve human team performance. The 

environment used in this study is referred to as a scaled world simulation. The task is 

cyber-domain specific as it represents network intrusion detection analyst actions.  

The task environment in Mancuso’s study is more complex than many of the 

other human cognition experiments in literature which usually leverage a very simple 

task to reduce confounding factors. One possible future extension to this study using an 

implementation of the proposed framework would be to study the effects of various 

augmentation agents mixed into the teams. This team effectiveness study suggests that a 

framework design should consider the inherent or extensible ability to support 

experiments with multiple task environment instances.  

Subjective mental workload measures are another important measure in human 

cognitive performance experiments as Wiebe et al discuss [10]. Specifically, the authors 

covered the following subjective workload assessments: NASA TLX and Paas’ 

Subjective Cognitive Load (SCL) measure. The authors point to Eggemeier et al’s work 

which classifies mental workload measurements into three categories of 1) subjective 

self-assessment methods, 2) task performance measures, and 3) physiological indirect 
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measures of workload [11]. The implementation of their methodology to study the 

differences used a visual diagram whose design was altered to manipulate the 

independent variables.  

Wiebe et al also describe several components of Cognitive Load Theory with 

respect to learning, namely intrinsic load, germane load, and extraneous load [10]. These 

concepts may be used with respect to the framework in extending its application to the 

learning and instruction domain beyond HCI and workload theory studies. The study also 

raises the question of how the framework might integrate manually collected subjective 

data into the framework, especially if the researchers choose not to use a computer based 

worksheet or questionnaire. 

Sources of Complexity in HCP Experimental Designs 

 This section of the literature review uses existing research to provide real-world 

and theory-based examples of the need for a software infrastructure design in human 

cognitive performance experiments. Some of the examples are extensions of existing 

systems, while others are proposals for novel activities that rely upon non-existing 

capabilities that would be provided by this framework. 

 A new human cognitive performance assessment system developed by the Air 

Force Research Laboratory called the 24/7 Combat Fitness System is slated for release in 

2016 [12]. The common theme between this system and this thesis is the assessment and 

prediction of human cognitive performance. The goals and outputs of the system provide 

further evidence of the need for human cognitive performance research in the near future 

and beyond. In the article, Dr. Scott Galster, chief of the branch developing the system, 
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explains that the goal of the 24/7 Combat Fitness System is to provide leaders with the 

capability to assess whether their team is performing optimally as well as understanding 

the factors that lead to their team’s success. 

 The system performs many of its tasks in real-time and gathers data continuously 

to provide immediate assessments. Real-time assessment necessitates a shift toward on-

line model usage rather than post hoc analysis. An increase in real-time assessment and 

prediction will require a corresponding increase in research to support these activities. 

The research would benefit from a standardized approach to the experiment 

communication design in order to conduct a greater quantity of studies as well as adding 

the ability to assess cognitive model performance and make experimental level 

adjustments in real-time. These are outcomes that this research of the proposed 

framework is building toward. 

 Bindewald et al provide evidence of experiments with high degrees of data 

infrastructure complexity, as the authors describe a human cognitive performance 

experiment employing adaptive automation [13]. The sources of complexity are the 

numerous modes with which a human and machine can dynamically balance task load 

between each other. The authors note the large degree of information that needs to be 

shared in real-time between the human and the computational machine providing 

automation. This increase in information sharing, especially with a real-time stipulation, 

increases the demand of functionality of an experiment’s data management infrastructure. 

Tools mentioned in the study for capturing interface design requirements include Systems 

Modeling Language (SysML), Structured Analysis and Design Technique (SADT), and 
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Unified Modeling Language (UML). These tools may be applicable to other human 

cognitive performance experiments.  Bindewald et al provided a walkthrough of 

decomposing a high-level human function to distinct tasks that could be allocated 

appropriately between the human and task automation.  

 One additional research effort that provided motivation of improved human 

computer interfaces and adaptive automation and thus the research and experiments that 

support them was conducted by Kaber et al [14]. Their work discusses the paradigm of 

considering the human within the experiment as another module of data processing. 

Many of the implementation issues the authors present are centered on challenges in the 

communication of information between human subjects and machine systems. The 

common characteristic indicates a corresponding need to manage the flow of information 

to support various methods of presentation. 

Current Standards Development and Architecture Design 

This last section of the literature review research presents existing efforts in 

connecting components of the human cognitive performance experiment data 

architecture. 

 Research conducted by Halverson, Reynolds, and Blaha represents work 

dedicated to improving researchers ability to construct the equipment necessary to 

execute their experimental design [15]. The scope of their research is focused on the task 

environment and cognitive architecture model components of an experiment. A key 

concept broached by the authors with respect to a standardized experiment architecture is 



 

23 

that there should be minimal modification or re-configuration required of the original task 

source code.  

 Halverson, Reynolds, and Blaha present several arguments in support of using a 

software framework rather than re-implementing a very similar task design to study a 

similar interface or cognitive task. The overall theme for these reasons is that re-

implementation requires time resources that do not benefit the study which is the purpose 

for building the experimental software architecture.  

 Cohen et al focus on abstracting aspects of the cognitive model development 

process [16]. This is another example of a research study aimed at enabling researchers to 

abstract from implementation configurations and details. The primary goal of the 

language presented is to enable the creation of models that contain explanations of their 

design and is based on developing models in the Soar language. The authors establish a 

standard representation by using an ontology to describe the relationship between the 

high level classes.  

 Cohen et al use a sample implementation of a Soar model to aid in describing 

their language. The main advantage noted by the student participants in the Cohen’s 

study was implementation reuse in the form of conditions and actions for the Soar model. 

The authors include strategies for connecting modules of a study that serve as both 

producers and consumers of data and actions. These strategies include creating an 

ontology, simplification of cognitive model development, and generation of explanations 

for running models. 
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 Following are some examples of cognitive performance that is not directly 

cognitive workload, that show other measures of human cognitive performance that are 

studied. The importance of this is that a general framework for human cognitive 

performance experiments should be applicable to the multiple cognitive performance 

experimental designs currently executed in this field. Another cognitive architecture that 

contains elements of a standard framework is EPIC (Executive Process-Interactive 

Control) [17]. One of the significant contributions of validated models from this 

architecture is the ability to drive the design of HCI systems. One example of a human 

subjects experiment not directly on cognitive workload, but a related concept, situation 

awareness, is detailed in research by Giacobe [18]. Giacobe presents a study on situation 

awareness and cognitive measures in simulations using methods not as commonly used as 

the rest of the literature. While the standard NASA TLX was used to measure subjective 

workload, a situation awareness assessment was conducted via a short quiz during breaks 

in the task. The Sense-Assess-Augment taxonomy produced by AFRL is yet more 

research that describes standardized communication techniques [19].  

 One of the most comprehensive products for providing a solution to managing the 

many potential components of a human cognitive performance experiments is the Fusion 

High Level Framework [20]. Rowe, Spriggs, and Hooper present a novel framework that 

meets a wide range of functional requirements to include integration of real-time models, 

managing control and data message passing and presenting a standard user interface the 

human participant. Their solution also employs an application programming interface 
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(API), which provides a single, standard interface for new components added to the 

experiment. 

Summary 

 The literature review first described the makeup of the experiments for this 

research. Next, several of the core, common data architecture designs were discussed. 

Lastly, this chapter illustrated the operational motivation for improving these studies. In 

the next chapter, we transition from introducing the varieties and components of human 

cognitive performance experiments, to the methodology used to identify and analyze 

properties of those experiments.  
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III. Methodology 

 

 

 

This chapter builds on the familiarization with human cognitive performance 

experiments and their challenges to introduce methods for analyzing and addressing the 

complexity of their data infrastructures. This focus on the experimental software data 

infrastructure includes identifying common experimental designs across published studies 

and the practical challenges in achieving those designs. The following sections describe 

how the data were collected, analyzed, and presented to answer the research questions. 

Answering each research question required distinct and, at times, novel methods.  

First we introduce a taxonomy that is used in each of the activities to describe key 

elements of the data infrastructure. Following the taxonomy description, an overview of 

the four research activities provides a consolidated description of all the planned 

activities. Finally, the details of each activity are presented to describe the actual process 

and contents. 

Data Infrastructure Module Taxonomy 

The elemental building blocks of data management software infrastructures need 

to be defined in order to clearly discuss an infrastructure’s configuration and 

requirements. The elements are defined to create a standard way of describing the 

components so that the same definitions apply across a wide range of human cognitive 

performance experiments. Since such a construct was not observed in the literature, we 

developed the following taxonomy. This section first discusses overviews categories and 

boundaries of the taxonomy and then lists the specific instances of classification. 
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In order to provide context for the introduction to the taxonomy, the categories of 

the taxonomy are listed here. 

 Human Participant 

 Task Environment 

 Physiological Measure 

 Computational Module 

o Computational Agent 

o Computational Analyzer 

 Persistent Storage 

The scope of experiments covered was limited to those that offer potential 

benefits to DoD operations. One of the sets of operators supported are Remote Piloted 

Aircraft (RPA) operators with the Multi-Attribute Task Battery (MATB) task. Another 

group is cyber operators, such as through studies on team dynamics in a cyber task [21]. 

Tactical planners are also supported through efforts such as the Fusion framework and 

the studies that use the design [20].  The specific experimental components that each of 

the analyzed studies have in common are first listed and then described in further detail. 

Each includes a human participant, a physical or computer simulated task, one or more 

streams of physiological or behavioral measurements collected from the human 

participant, zero or more computational agents, and finally, persistent storage.  

The data-producing and data-consuming components of an experiment are 

defined according to their function in this taxonomy. The taxonomy is used to orient the 

discussion on measurements of complexity and requirements within an experiment’s 



 

28 

software configuration. The boundary of each module is defined as the point when data 

produced by one module is sent to another process that does not share the same 

computing memory. This means that the data must be intentionally packaged in order for 

the other process to use it rather than passing a pointer to the data in memory.  Processing 

in this case could also include persistent storage for later analysis.  

One specific example of defining a module boundary is considering all EEG 

output collected from a single piece of hardware a single module, as opposed to an 

individual module for each channel of the signal. Multiple channels will likely be 

collected off a subject’s scalp, which are then passed in analog format through an 

amplifier to a digital converter. All processing up to the point where the data stream is 

digitized is considered part of a single module, as opposed to an alternative, considering 

that same configuration two modules. This alternative is one module for the analog 

signals collected off the scalp, and a second that consumes the voltages from the scalp 

and outputs a digitized time series. Therefore, the digitized data distinction is used to 

abstract away unmodifiable hardware aspects of physiological collection from module 

and infrastructure configuration. 

Human Participant. 

 There are at least two cases of the human subject’s participation in this research’s 

scope of experiments. The human participant may be the primary subject of the study, 

and if they are not then it is likely the case that one or more of the machine agents are the 

focus of the study. The human in the second scenario is usually included in the 

experiment as a comparison to the computational models as verification or validation. 
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Task Environment. 

 A task environment is a system that provides a stimulus presented to the acting 

agents within the experiment whether those agents are human or computational, machine 

agents. The spectrum of tasks for which the research questions apply covers two 

dimensions. The first is synthetic vs real-world environments. Synthetic environments are 

those that exist purely within the confines of a computational model. One example is a 

Synthetic Task Environment (STE) that is a computational environment that also takes in 

real-world information. Another type of synthetic task is a fully computational task that 

can be a simplification of a real-world task or a task designed to elicit specific cognitive 

and physiological responses. The other end of that dimension are those which exist only 

in the physical domain. The physical end of the task type spectrum are those where all of 

the environment operations are completely within the physical domain.  

The second dimension is a physical vs mental action of the human subject. For the 

physical dimension, the task type is a physical action such as running or performing a 

physical maneuver. The other end of the spectrum, mental task types are those where the 

task is performed in the mind such as addition or memory tasks. 

Physiological Measures. 

 Detectable human physiology has been studied for over 70 years, increasingly so 

to understand the responses to various psychological and physical conditions [6]. The 

observations originate from specialized hardware designed to measure discernable signals 

from a human subject.  Several examples are heart rate, pupil dilation size, and 

respiratory patterns. A subset of physiological measures are psychophysiological 
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observations which refer to those measurements made on the cognitive portion of the 

human, such as EEG. 

Computational Module. 

A computational module, which has two sub components, is defined generally as 

a module that takes an input, performs some algorithmic computation, and outputs a 

result. The two subcomponents differ on the type of output, information or action. The 

computational agent is the module that outputs an action, while a computational 

informational unit outputs information that is not a direct task action. 

Computational Agents. 

 A computational agent is an instance of a computer process that performs 

functions on input of data and stimuli within the experiment to produce an output. The 

general form of these agents is: Sense, Decide, Act. The inputs, Sense, are the perceptual 

inputs of the agent to the world. Decide corresponds to the algorithmic processing of the 

data. Finally, Act is the resulting action to be carried out within the task 

environment [22]. 

Computational Analyzer. 

This type of module performs some type of computation on inputs of data from 

within the experiment. The output may include information such as Operator Functional 

State in terms of cognitive workload, a specific level of automation to employ, or 

modeled neurological signals. 
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Persistent Storage. 

 This is storage that is used to record observations from each trial of the 

experiment. The primary function of the storage is to maintain the data for analysis after 

the completion of the experimental trials. 

Research Activities Overview 

Four primary research activities were conducted to answer both of the research 

questions. All of these activities are depicted in Figure 3. Each activity is separated by a 

horizontal dashed line. The horizontal groups can be read left to right as that activity was 

performed with the pictured resource to result in the listed products. The arrows indicate 

that the output of one activity was used as a resource for another. The timing of the 

activities may generally be read left to right, top to bottom; however, it is not a strict 

ordering as the activities were accomplished concurrently to an extent. The activities are: 

1) data infrastructure queries, 2) meta-study, 3) requirements gathering, and 4) design 

specification and evaluation. 
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The purpose for the first activity, data infrastructure queries, was to observe 

details not otherwise available in published research. These details were then used to 

inform both the software requirements to help answer the first research question and the 

design pattern construction to help answer the second research question. This activity 

also provided an opportunity to anecdotally capture relevant challenges encountered by 

the human cognitive performance researchers. 

The data infrastructure query activity consisted of eliciting experimental design 

details from subject matter experts (SMEs) and Institutional Review Board (IRB) 

protocols. The SMEs were research scientists of the Air Force Research Laboratory who 

conduct experiments in the human cognitive performance domain. The SME interviews 

collected data on details of the equipment configuration of planned or completed 

experiments (no personal information was collected). The data collected were mostly of a 

qualitative nature because the focus was on describing the configuration of a system. 

The second activity, a meta-study, was conducted in order to achieve a broader 

view of the state of human cognitive performance experiments.  Through a review of a 

sample of studies from the global population, we could gain evidence to reason for the 

larger population of human cognitive performance experiments. Requirements gathering, 

the third activity, was conducted in order that the proposed design pattern and future 

designs would be a resource for drawing design choices from by software developers. 

The fourth activity was the design pattern evaluation. This activity consisted of 

two parts, the first of which was to create a notional design pattern specification to 

review. The second part was an evaluation of the design using a case study. 
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Data Infrastructure Queries 

The following section presents the motivation, contents, and execution plan of the 

data infrastructure query research activity. This section first discusses why this activity 

was a chosen method to answer the research questions. Next, the contents of the 

questionnaire used for the SME interviews and IRB protocol reviews are discussed. 

Finally, considerations for how the activity was conducted are discussed. 

There was not enough detail in published human cognitive performance studies 

literature to capture all of the software requirements. Through the literature review in 

Chapter 2, we observed that the majority of methodology sections contained little or no 

description of how the components in the experiment were connected. The methodology 

sections lacked information describing how the data streams were managed during the 

experiment. An example of desired information not available in the published research is 

a description of the data-passing architecture. This architecture is part of the data 

infrastructure, specifying how each of the distinct modules are connected to each other 

during the execution of an experiment. 

Additionally, interviewing SMEs would provide a source for collecting anecdotal 

evidence of common challenges in executing their experimental designs. While the same 

challenges may not be discussed outright in published experiments, it is possible to infer 

the challenges from the experimental designs. The anecdotal observations could then be 

validated against observations from the wider body of published experiments. 

In order to capture this information that was not available in published literature 

we queried primary sources on experimental designs. Those sources were the researchers 
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conducting human cognitive performance experiments and experimental designs. The 

product used to gather the selected measures from each source was a questionnaire. That 

questionnaire appears in Appendix A: Data Infrastructure Query. 

 The questionnaire to accomplish the data infrastructure queries was designed to 

gain insight into two characteristics of human cognitive performance experiments. One 

desired insight was the actual data infrastructure software solutions and configurations 

that researchers are currently using to execute their experimental designs. The second 

insight was to gain further details and clarification on the goals for the experimental 

design. The common goal of gathering these insights was to better understand the data 

management needs for the experimental design and how they are currently being met. 

Understanding the data management needs could then be used to make better suited 

design recommendations. 

The following measures were chosen to capture relevant and measurable 

characteristics of the data management software infrastructure designs supporting the 

experimental design execution. The two general categories of measures collected are data 

infrastructure system complexity and experiment data management processes. The 

chosen system complexity attributes were: 

 Module coupling 

 Module cohesion 

 Message communication growth 

 Module count 

Experimental data management process observations included: 
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 Post-Trial analysis 

 Data collection and processing 

The following sub-sections describe each of the measures to be collected and why 

they were chosen. The first several measures originate from software engineering metrics 

for describing the complexity of multiple module systems. The paradigm of what is 

defined as a module used in this section is according to the taxonomy at the beginning of 

the chapter. This definition of a module differs from the typical definition in software 

engineering which is a set of lines of program code.  

Module Coupling. 

Module coupling is the degree to which distinct components are interdependent 

on the configuration of each other, a measure of interconnectedness. The consequence of 

higher degrees of coupling is an increase in the work required to modify or exchange any 

single module. Since modules with a high level of coupling are very interdependent on 

the details of their connection, a modification of one will also require modification of the 

other. Alternatively, a very low level of coupling, such as a standard interface, enables 

modification, or even exchange, of modules to be hidden or abstracted behind the 

interface.  

The responses to questions about this metric were used to assess where along the 

coupling spectrum the specific study’s data architecture lies. A common theme of a high 

degree of coupling between modules of an experiment would suggest that an effort to 

provide a higher level of abstraction (encapsulation of the details that change) will have a 

positive effect. A lower degree of coupling allows the software components to be more 
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modular, requiring much less effort each time a new component is added or created for 

the execution of the experimental design. 

Module Cohesion. 

A similar and related concept, module cohesion, is a measure of the organization 

or centralization of the logic used to manage the data produced and consumed by 

experimental modules in the course of trials. The management of experimental data 

during execution consists of distribution to the applicable modules and collection for 

post-trial analysis. Cohesion is used to assess the quality of modularization which has 

been measured by the cohesiveness of service provided by an individual module [23]. 

Message Communication Growth. 

The common measures of algorithmic space and time complexity were not used 

because they measure software execution at a lower layer of abstraction than the scope of 

this thesis. Inter-module interactions take place on a higher level of abstraction than the 

algorithmic design. A similar measure that may still be applicable within the scope is 

message communication growth. This refers to the growth of the total number of message 

packets that are required as the number of components, (𝑛), in the experiment is 

increased. An architecture in which every component is connected to every other 

component, could have a message growth rate as large as 𝑛2.  

This measure can reveal complexity in an architecture that is not designed to 

efficiently handle the addition of many experimental modules that both produce and 

consume data streams, such as computational cognitive models (workload, vigilance, 

distraction measures) based on physiological data. The existence of a large growth rate in 
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an architecture may not represent capability-limiting impact at the moment; however, as 

research into building and testing multiple computational models and agents increases, 

the growth rate will begin to create limitations. 

Post-Trial Analysis. 

One of the descriptive observations collected was the post-trial analysis conducted 

after the runs of the experiment were completed. This observation consisted of a list of 

investigative questions from the experimental design and the techniques used to analyze 

the data. The primary purpose for gathering information on post-trial analysis was to find 

solutions to address challenges that occurred after the execution of the experiment before 

they became a problem. The purpose of gathering this list was to provide context to the 

rest of the experimental workflow. Another was to be used as a source to derive the 

requirements for the format of the data. 

Module Count. 

The simple number and type of modules was captured in order to provide a simple 

estimate of the size and complexity of the experimental architecture. There are other 

aspects such as whether the modules capture data in real-time or the task environment has 

dynamic levels of automation that affect the communication complexity just as much, if 

not more than the number of modules. The modules are defined and counted according to 

the taxonomy at the beginning of this chapter. The end goal for this measure is to supply 

a summary statistic that is on the same scale across both observed experiments and 

literature survey experiments. 
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Data Collection and Processing Limitations. 

A listing of data collection and processing limitations was used to gain insight 

into any requirements for the design of the architecture that were not met, and thus could 

not be inferred from an external analysis of the existing architecture. The scope of the 

limitations applied to both the experimental trial execution phase as well as the post-trial 

analysis phase. 

 The primary sources for this information were in-person process description 

elicitation sessions with active researchers in the field. The process description elicitation 

sessions consisted of questions about the experimental workflow design and were used to 

elicit information that was not otherwise available in documentation. In addition to 

questions in person, review of other available design products, such as experimental 

protocols, was conducted. 

Meta-Study – Cognitive Performance Experimental Designs. 

In order to gather evidence to describe the current state of data management 

complexity in human cognitive performance experiments, we reviewed published papers 

in the format of a meta-study. The purpose of the meta-study was to investigate potential 

trends and common characteristics of the experiments. This purpose was accomplished 

by eliciting specific characteristics of published experiments that indicated the data 

infrastructure architecture and configuration. The papers reviewed were published 

between 1996 and 2015.   

To perform the meta-study, we borrow the methodology format from the meta-

analysis. A meta-analysis differs from this meta-study in that the contents, a common 



 

40 

statistical measure, presented in each study is not the target measure, but rather the setup, 

information about the experimental design. The five steps in a meta-analysis are: 1) 

Formulation of the problem, 2) Search of literature, 3) Selection of studies 

(“incorporation criteria”), 4) Decide on dependent variables, and 5) Selection of a meta-

regression statistical model. 

 First, the problem to answer was an investigative question that would improve our 

understanding of the current and, especially, near future requirements for the designs of 

experiments within the thesis’s scope. The goal is to identify the current state of data 

management complexity in order to assess the costs and benefits of using a specific data 

software infrastructure are to achieve these experimental designs. The idea is summed up 

in the following conjecture: “There exists a trend in the increase in complexity of the 

communication between data streaming modules during the execution of human 

cognitive performance experiments.” The trend may be due to several factors which 

include an increase in the need for real-time data stream processing, an increase in the 

fidelity and dynamism of task levels of automation, and a decrease in the cost of 

physiological measurement hardware. 

 Second, the literature search was conducted primarily using two sources of pre-

collected publications. One source was a PhD candidate’s literature review of adaptive 

automation. Another was a research group’s collection of human-machine teaming 

publications. Additionally, one journal, Proceedings of the Human Factors and 

Ergonomics Society Annual Meeting, was searched by keyword. The keywords used to 
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search these journals were: “real-time”, “physiological measures”, “operator state 

assessment” and “adaptive automation”. 

Third, the incorporation criteria were those publications that included human 

cognitive performance experiments. Specific requirements for those experiments were: 

Each included a human participant, a physical or computer simulated task, one or more 

streams of physiological or behavioral measurements collected from the human 

participant, zero or more computational agents, and finally, persistent storage.  

Fourth, we discuss the measures collected from each of the studies surveyed. Each 

of these measures are listed in Table 1 is described in the following paragraphs. Year 

published is self-evident and is collected in order to group and order the measurements 

temporally. The count of modules producing data streams is the number of modules (as 

defined by the taxonomy in the beginning of the section) that send one or more streams of 

data to another, distinct module. This count is collected as one indicator of the amount of 

data that is flowing through an experiment. The number of modules consuming data 

streams is obtained by counting the modules that accept one or more streams of data from 

another, distinct module during the course of the experiment.  

The fifth step, selection of a regression statistical model, was not included 

because several of the necessary conditions were not achieved. One of the conditions not 

met was a random sampling of the global population since the samples largely came from 

pre-collected sources. Another set of conditions not met were knowledge of the global 

population size and variance of each of the dependent variables collected. 
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Table 1: Measures Used in Meta-Study 

 

 

 The total number of distinct modules is obtained by the number of individual 

modules according to the taxonomy. Since some modules may both produce and 

consume data streams, they are counted in both P and C, but only once in T. Thus, the 

total number of distinct modules may be less than the sum of consuming and producing 

modules. Real-Time Inter-Module communication is considered “Yes” if there exists at 

least one stream that is sent from a producing module to a separate, distinct consuming 

module which processes the stream and may or may not export the result. The most 

common example of this is a computational model predicting workload from one or more 

physiological data streams. 

 Data standards mentioned is coded as “Yes”, when the authors mention details of 

the data infrastructure configuration. The threshold for coding a “Yes” is at least 

Measure Measurement Range 

Year Published Integer: 1996 – 2015 

Count Modules Producing Data Streams (P) Integer: P ≥ 0 

Count Modules Consuming Data Streams (C) Integer: C ≥ 0 

Count Total Number of Distinct Modules (T) Integer: T ≥ 0,  𝑇 ≤ 𝑃 + 𝐶 

Real-Time Inter-Module Communication {Yes, No} 

Data Standards Mention {Yes, No} 

Dynamism of Automation {Static, Dynamic, None} 

Adaptive Automation Exists {Yes, No} 
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mentioning what specific type of hardware is used for physiological or behavioral 

measures.  

Dynamism of Automation has three levels: None, Static and Dynamic. “None” is 

coded when there is no automation that assists the human perform the task. “Static” is 

coded when there is computational assistance of the same task the human is performing, 

but the automation is configured to be on or off over the course of each entire trial 

(between experimental conditions). “Dynamic” is coded when there is computational 

assistance, and the type of automation changes during the course of a trial (within an 

experimental condition). The types of changes include varying the level of automation or 

triggering the automation on or off in real-time. 

 Each of the publications was reviewed for data architecture limitations that were 

either explicitly expressed by the authors or implied from the design. For example, it 

could be implied that an experiment had no ability to perform online data analysis across 

all physiological measures if each of the data streams were saved to unconnected storage 

devices.  

Complexity Metric. 

The core contribution of a data infrastructure software architecture is to manage 

the complex communication between data producing and consuming modules of an 

experiment. The reason for measuring complexity is to gather evidence for what type of 

design is required. A metric, rather than a narrative description, creates the ability to 

rapidly compare large numbers of infrastructure complexity for analysis. One approach to 

measuring the complexity of data communication within an experiment is to use features 
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of that experimental design to produce a complexity metric. In this section we will 

introduce a novel metric developed to quantify the complexity of data stream 

management. We first describe a very basic model with two features and build upon that 

to obtain a model that captures the complexity more accurately. 

Two primary drivers are the number of modules within the experimental 

workflow that produce one or more data streams (P) and those modules that consume one 

or more data streams (C). A very basic metric to quantify the complexity of a data 

infrastructure is: (𝑃 + 𝐶), where P is the count of data stream producing modules, C is 

the count of data stream consuming modules.  T is the total number of distinct modules in 

the experiment. Since some modules may both produce and consume data streams they 

may be accounted for in both P & C, but only once in T. Thus: 𝑃 + 𝐶 ≥ 𝑇 

𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =  𝑃 + 𝐶 

Requirements Gathering 

 This section of the chapter describes the activity used to review customer needs in 

order to specify the experiment data infrastructure requirements necessary to execute 

experimental designs. The primary goal of the activity is to synthesize software 

requirements that are common across human cognitive performance studies. This goal 

supports both research questions which seek to elicit a set of requirements and to 

investigate to what extent they are met by a central data mediator design pattern.  

Another goal of the activity is to answer the question: What do researchers need 

from the software data management infrastructure in order to execute the experimental 

design? The answers to this question should be agnostic of specific instances of software 
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and hardware solutions. Requirements were drawn from the researchers because they are 

ultimately the end customer of the requirements elicitation. 

Not all of the requirements engineering steps are used due to the scope of this 

thesis. We are not specifying a complete specification of a system that will be 

implemented in program code and are intentionally keeping aspects of the design vague 

to maintain broader applicability. The general steps for requirements engineering include: 

inception, elicitation, elaboration, negotiation, specification, validation and requirements 

management [24]. Negotiation and requirements management are two of the steps that 

are not being conducted. Negotiation is not conducted because this is an observational 

approach and the flow of information is only one way. Requirement management is not 

conducted because we are not pursuing the full development lifecycle through 

implementation in this research. 

  

 

Inception 

In the inception step, the customer and business need are defined. We defined 

both the stakeholder and user as the researcher who performs a human cognitive 

performance experiment. The users of the system may also include laboratory technicians 

who are executing experimental trials on the researcher’s behalf. The business need is to 

answer a research question.  

While answering a research questions consists of a large number of activities, the 

activity this research focused on is the collection, processing and storage of data during 
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the execution experiment. This activity occurs after the experimental design has been 

completed and before the analysis phase of answering the research question. Preparation 

of data for analysis is included, but not the analysis activities themselves.  

Elicitation 

Requirements elicitation consists of drawing out information from the customer. 

The two sources of data for requirements gathering were data infrastructure queries, as 

discussed by the previous section, and published literature on human cognitive 

performance experiments. The in-depth reviews were gathered from experiments that had 

the experiment’s hardware and software equipment configuration defined. 

Elaboration 

The elaboration step begins to describe how the user, the researcher performing 

the experiment, will use the system. The scope of the use case was from start to finish of 

the actual execution of an experiment including data collection, data processing during 

the experiment (if applicable), and storage of the data in preparation for analysis. Since 

the experiment data infrastructure system only has one type of user, researcher, and one 

type of activity, experiment data management, a simple use case diagram was employed. 

Specification 

Specification adds detail to the elaboration step results. The specification was 

developed through a narrative use case. The purpose was to capture the data 

infrastructure system’s behavior over the various sub-tasks of collecting, processing and 

storing the data during the execution of the experiment. 
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Validation 

The validation step is used to examine the results for ambiguity, omission and 

inconsistency. The review of the requirements was conducted by answering three 

questions proposed by Pressman [24]. One limitation of the validation step was that it 

was only conducted by the author of this thesis and not by external entities such as a 

representative set of stakeholders. The questions used were as follows: 

 Do any requirements conflict with each other? 

 Is each requirement testable, once implemented? 

 Is each requirement consistent with the overall objectives for the system? 

 

Design Pattern Activities  

The second research question asks how well a specific type of solution meets the 

requirements for executing the experimental design. This section describes both how the 

design was elicited from the software requirements, and also how that design will be 

evaluated against other basic alternative designs. In the results chapter, the central data 

mediator design pattern is compared against a data bus architecture and an ad-hoc setup. 

These two configurations are basic alternatives that highlight the benefits and drawbacks 

of the elements at the core of more complex designs. This section concludes with 

describing how the design will be evaluated.  

 The term chosen to describe the design, Central Data Mediator, implies several 

key design choices. The first of which is that there exists a distinct element that controls 

the streams of data, separate from any of the other existing modules in the experiment. 
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This element serves not only as a controller, but also provides a single interface for 

keeping modules from referencing each other directly. The design is primarily based on 

the Mediator Object behavioral pattern described by Gamma et al [25] and the 

Centralized Control architectural pattern described by Gomaa [26]. 

Design Pattern Specification 

 First is the software engineering process description of formalizing the 

requirements into a system specification and using standard design products to 

communicate the design. The architecture design choice was made between centralized, 

distributed, and hierarchical. Distributed was not chosen because it would have required 

manipulation of the mediator pattern which would add complexity without providing 

corresponding benefit to this problem domain. The complexity arises from having to 

create and maintain system state across multiple controllers. This may be beneficial when 

modules are spread across various networks, but in the case of most HCP studies, the 

experiment is a local operation. Hierarchical was not chosen because of the extra logic 

without benefit.  

The degree of control that each module has over each other in HCP data 

infrastructures is very small. The case where this usually occurs is between the 

automation agent and the task environment, and is not significant enough to warrant the 

extra complexity. Centralized was chosen because it provides the ability for real-time 

synchronization without any of the unnecessary overhead of a distributed or hierarchical 

architecture.  
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The design description is purposefully kept void of discussion of any specific 

programming language. The pattern is intended for an object-oriented paradigm to 

leverage both information hiding behind a standard interface and classes of functionality. 

The abstraction of software details behind an interface makes the design more modular. 

The increased modularity enables the components to be modified or swapped with fewer 

changes to the software configuration. 

The communication diagram in Figure 4 depicts a notional object-oriented class 

structure for the CDM. The top-left class, Colleague, is one of the modules in the 

experiment data infrastructure. The top-right class, Mediator, is the CDM module that 

serves as the hub. The Colleagues only need to be configured to connect to the Mediator 

regardless of internal changes to the Mediator class or other Colleague class instances 

that exist.  

 

Figure 4: CDM Communication Diagram 



 

50 

 

Both the Colleague and Mediator classes have a separate subclass that serves to 

send and receive data message. This subclass runs in a distinct execution thread so that 

the module does not block execution while waiting for an asynchronous message of 

unknown arrival time. The Colleague class communicates once with the Mediator to 

establish a connection and so that the Mediator logs a new module to send and receive 

data from. All subsequent data messages are handled through the threaded subclasses and 

the control messages are passed between the parent classes. 

 Figure 5 depicts the general layout for the central data mediator within the context 

of an experimental architecture. The central component is the product of the proposed 

design. The logic for the design resides centrally in the CDM, however, software logic is 

also necessary for any modules that send data in both directions. Physiological sensors 

can stream data directly to the central hub using standard networking protocols such as 

TCP, UDP, or Bluetooth without having to implement any additional software on the 

sensor modules. Passive agents can also receive streams of data by only configuring 

standard network connection protocols for connection to the central hub. 
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Figure 5: General Design – Central Data Mediator 

Design Pattern Evaluation 

This section describes the method for performing an evaluation of the CDM 

design pattern against two other possible architecture configurations, Ad Hoc and Data 

Bus. The designs are discussed in greater detail at the start of the evaluation in Chapter 4, 

but we provide brief introductions here for context. Ad Hoc indicates the lack of any 

formal design and an infrastructure where module communication is configured on a 

case-by-case basis. A Data Bus architecture specifies a shared communication medium is 

used by all of the modules use to broadcast produced data streams and listen for 

consumed data streams. 

The format of the evaluation is a case study employing each of the three 

architectures, Ad Hoc, Data Bus & CDM. We perform the case study by examining the 
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effects of using the design at five phases of the experimental design execution where 

infrastructure design choices have an impact on system functionality and software 

development and maintenance costs. These phases are: 1) infrastructure design 

specification, 2) infrastructure construction, 3) running the experiment, 4) data extraction 

and analysis preparation, and 5) system reuse and maintenance. 

After the effects of the three design during each phase are discussed, qualitative 

criteria are used to assess whether the benefits of using a CDM design outweighs the cost 

and disadvantages. Table 2 presents a notional effort using criteria to qualitatively assess 

whether a given data infrastructure warrants the use of the CDM design pattern. 

 

Table 2: CDM Evaluation Rubric 

 

ID Criteria Red (CDM Not 

Warranted) 

Yellow (CDM 

Use Uncertain) 

Green (CDM 

Warranted) 

1 
Are real-time module 

interactions necessary? 
No N/A Yes 

2 

Will this data infrastructure be 

used for HCP studies in the 

future? 

No Unsure Yes 

3 

What percentage of 

physiological sensors can 

export their data in real-time 

[RT] (versus limited to local, 

on-device storage)? 

𝑅𝑇 𝑆𝑒𝑛𝑠𝑜𝑟𝑠 ≤ 50% 50 < 𝑅𝑇 < 75 
𝑅𝑇 𝑆𝑒𝑛𝑠𝑜𝑟𝑠
≥ 75% 

4 

How many distinct data streams 

must be aligned for the analysis 

phase? 
𝑆𝑡𝑟𝑒𝑎𝑚𝑠 ≤ 3 4 ≤ 𝑆𝑡𝑟𝑒𝑎𝑚𝑠 ≤ 6 𝑆𝑡𝑟𝑒𝑎𝑚𝑠 ≥ 7 

5 Total module count, T (P+C) 𝑇 ≤ 5 6 ≤ 𝑇 ≤ 10 𝑇 ≥ 11 

6 

How often are the modules 

modified (over the course of a 

particular study)? 

Never Once/Unknown Twice or more 

7 

Are there an unknown number 

of modules that may need to be 

configured dynamically during 

the execution of a trial? 

No N/A Yes 
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The method for assigning a final assessment from the rubric is based on the count 

of criteria that register for each color. If more criteria are coded green than red, then using 

the CDM design is warranted. Otherwise, if there are less criteria coded as green 

compared to red or there is a tie, then a CDM is not warranted.  

 Chapter Summary 

This chapter built on the introduction to current human cognitive performance 

studies and the activities being conducted to improve data infrastructure design and 

capabilities. This chapter presented a method for measuring complexity and capturing 

requirements, with the goal of helping to determine the necessity of applying software 

architecture design to workflow data architectures.  Presented next was a method 

describing how to conduct an analysis of a specific software architecture design. The 

design chosen was based on attempting to meet the identified current and future 

requirements of researchers in this field. The next chapter discusses the results of 

conducting these described methods. 
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IV. Results and Discussion 

 

 

 

This chapter discusses the results of each of the research activities maintaining the 

same order as their methodology was presented in the last chapter. In the opening of this 

chapter, we briefly summarize our research goals to provide context for the presented 

results. Second, we review the detailed software and hardware descriptions from SME 

interviews and Experimental Design reviews otherwise not available in published 

literature. Next, the coded results from the meta-study are examined for data 

infrastructure complexity and real-time usage trends across the samples. Then the list 

from the requirements gathering activity is discussed to establish a basis across the 

observed samples. Finally, an evaluation of the Central Design Mediator design pattern is 

presented to exhibit the effects of the design on the resulting data infrastructure. 

Data Infrastructure Queries Results 

This section discusses findings gleaned reviewing hardware and software 

configurations of human cognitive performance experiments. The reviewed sources 

contained equipment configuration details that were not included in published literature. 

Even though the sample size (n = 7) was very small, the findings can be extended to a 

larger range of experiments because the number and types of modules as well as the 

research goals were very similar to those in the meta-study. The data from the interviews 

and reviews is located in Appendix B: Data Infrastructure Query Results. 

Overall, we observed low rates of interaction between modules during the 

execution of experiment trials. One common example of interaction was the output of 
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physiological or behavior data streams to a computational module that produced a 

workload level. Another, less common interaction was between the automation controller 

and the task environment.  Additionally, the modules that did interact had a low level of 

interdependence, the need to share their exact current state. One reason for this was that 

the majority of message passing was one-way.  

In general, the execution of each module did not depend on the exact state or 

timing of others. While data streams were crucial as inputs from one module to another, 

knowledge of the exact state of another module was not necessary. The message 

complexity measurement did not provide much value because the experiments were 

either conducted with all the components on the same physical machine or local area 

network (LAN). The quantity of data flowing during the experiments was insignificant 

compared to the capacities of the networks on which they resided. 

Meta-Study Results 

This section includes the results of the meta-study of published human cognitive 

performance experiments. The purpose of the meta-study was to determine the 

requirements of human cognitive performance experiments being conducted throughout 

the research community. Therefore, the focus while reviewing each published experiment 

was the data architecture content and configuration.  

There were several goals for analyzing the meta-study results. The first was to 

identify whether a trend of increasing complexity of the experimental workflow exists. A 

second was to capture common factors of the designs used to build each experiment’s 

data infrastructure, such as support for real-time communication or dynamic levels of 
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automation in the task. Determining the existence of any discussion on designing the data 

infrastructure to support executing the experiment with the literature was a third goal. 

The list of studies included in this meta-study is located in Appendix C: Meta-Study. 

The published research on human cognitive performance experiments was chosen 

based the minimum qualifications of the scope discussed in the last chapter.  To recall, 

the included studies consisted of human cognitive performance experiments in which a 

human subject engages in a task and from whom behavioral or physiological data streams 

are collected and then processed or stored. The sampling of the publications was ad-hoc; 

not entirely random, nor systematic. The publication years of samples ranged from 1996 

to 2015. The distribution of experiments that were collected over that range of years is 

presented in Figure 6. The number of published experiments collected for each year does 

not necessarily represent the proportion of experiments published in the corresponding 

year. 
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Figure 6: Distribution of Surveyed Experiments (n=51) 

 

While all of the published experiments collected fall under the umbrella of human 

cognitive experiments, there was a focus on gathering experiments for which the 

proposed Central Data Mediator is most applicable. These research focus topics include 

Adaptive Automation (AA) and the research efforts to support AA. The supporting 

efforts in general consist of understanding how humans react to various levels of 

automation (LOA), automation invocation methods and determining operator functional 

state (OFS). The key properties of these topics are real-time data stream management and 

tasks that dynamically change throughout a trial.  
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Meta-Study Results. 

This section reviews the results of the meta-study first to investigate for the 

conjectured trend of increasing complexity in data infrastructures. Identified trends would 

improve our understanding of how the data infrastructure requirements may change in the 

near future. One of the most basic methods to assess complexity is to quantify the number 

of distinct modules producing or consuming data streams.  

Figure 7, shows the average number of modules for each experiment over the time 

range which the meta-study covered. The producing and consuming modules are counted 

according to the taxonomy from Chapter 3. It is important to keep in mind that the total 

number of modules measure, T, in an experiment will be less than or equal to the sum of 

modules producing data streams and the number of modules consuming data streams (P + 

C) because some modules may both produce and consume data. Instead of representing 

the sum of all the data streams, the total number of modules represents the number of 

distinct modules that appear in an experiment.   
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Figure 7: Average Modules per Experiment over Time 

 

 One of the most obvious observations is that there are always more producers of 

data than consumers. This indicates that the data streams are consolidated and sent to one 

module or their stream isn’t sent anywhere at all and is instead stored locally. The graph 

also shows that the metrics remain fairly stable over time. Since the number of 

components that data infrastructures are designed to support remains stable over time, 

this may indicate that the software requirements for the infrastructures may also remain 

stable. 

 One limitation of this graph is that it oversimplifies the measure of complexity 

that exists within the data management infrastructure for each experiment. A simple 
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count of the modules does not capture the complexity of that single data stream, such as 

whether it is a subjective workload captured once per trial or a set of EEG features 

sampled at 2.0 MHz. Another aspect of complexity that is not captured is the real-time 

data streaming requirement versus saving individual streams to a persistent storage.  

The following equation was used to develop the plot in Figure 8 that provides a 

distribution of all the complexity values assigned to the observed experiments. Each of 

the points is the complexity value for an individual experiment. 

𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = (𝑃 + 𝐶) 

 

Figure 8: Trend of Complexity over Time 

 

In Figure 8, the distribution over the years is the same as the original histogram in 

Figure 6. The distribution of complexity values does not show a definitive increasing 

trend when applied over all of the observed experiments. Next we observed whether there 
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was a subset of the experiments that demonstrated an increasing trend. Whether the 

experiment included any form of automation was chosen as the feature to create distinct 

graphs for Figure 9. 

 

 

Figure 9: Complexity Values With and Without Automation 

 In Figure 10, a box-and-whisker diagram of the same complexity values is used to 

better visualize the median values over time. The observations are grouped by every 4 

years in order have enough observations per box to be meaningful. This complexity value 

distribution does not show a definitive increasing trend, but it does not rule out the 

existence of a trend even for this simple count of modules. 
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Figure 10: Complexity Metric Grouped by Year Range 

 

Task environments become more dynamic as real-time modification by 

automation and augmentation controllers is being added to the experiment systems. 

Dynamic task environments may mean an increase in complexity of the software 

infrastructure because the state of the task can no longer be known a priori or implicitly 

from the conditions of a trial. Instead, a time series of system or task environment states 

must be recorded. This task state time series must also have the ability of being aligned to 

each of the other data streams so that physiological and performance responses can be 

mapped to the subject’s actions and task environment current state. 

The complexity metric does not currently take into account the complexity of the 

data stream contents. For example, subjective workload collected once per trial requires 
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much less complexity than EEG channels sampled at rates as high as 2.048 MHz over 

multiple frequency bands. 

Meta-Study Limitations 

The findings from the sum of the studies presented in this chapter are limited to 

explaining only the samples within the observational study. While the publications used 

in the meta-study were not systematically chosen within the constraints of the scope, they 

were also not randomly sampled from a global population. The distribution of the 

samples of the complexity feature, such as the complexity score or level of adaptive 

automation dynamism, cannot be shown to be statistically representative of the whole 

population of human cognitive performance experiments. For this reason, the samples 

cannot be used to provide arguments for the entire population of human cognitive 

performance experiments or even real-time adaptive automation studies. 

Meta-Study Summary. 

This section provided data gathered from the human cognitive research 

community to examine the current state and trends of complexity with respect to the data 

management infrastructures. The lack of computational models that can accurately assess 

operator functional state in real-time may be one reason that a trend towards more 

complexity may not exist. Without existing well-performing models, research is focused 

more on collecting data to develop the models rather than studying the effects of using 

them in real-time, such as with adaptive automation. The next section details the specific 

requirements for data architectures that make up the complexity of experiments discussed 

in this chapter. 
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Requirements Gathering Results 

 This section presents the results of the requirements gathering process as defined 

in Chapter 3. The requirements gathering process is conducted with human cognitive 

performance researchers as the customers. Inception and Elicitation are not included in 

the results. There is no new content for Inception and the Elicitation results were covered 

by the Data Infrastructure Queries Results.    

Elaboration 

We provide a very simple stick figure use case to demonstrate the primary user 

and activity. 

 

Figure 11: Basic HCP Experiment Use Case  

Specification 

The specification consisted of drawing observations from the SME discussions to 

build the following narrative use case. 

Use case name: Conduct human cognitive performance experiment 

Summary: The human subject conducts a task and physiological and behavioral 

measures are collected in order to answer a research question. 

Actors: Research Scientist 

Preconditions: The hardware and software to run each module is complete. The 

physiological sensors are able to output their measurements in real-time. 
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Main sequence:  

1. Research scientist configures all modules producing (e.g. physiological sensors) 

and consuming (e.g. OFS model) data streams to begin to produce and consume 

data streams respectively. 

2. The research scientist begins the task and experimental trial. 

3. The data infrastructure routes data between modules during the experiment 

execution. Some modules store the input through the end of the experiment. 

Others process input data streams and output a result as another data stream. 

4. The research scientist collects the data streams into a single logical (e.g. hard 

drive or network storage) location and time-aligns data in preparation for analysis. 

Alternative sequences:  

Step 4: Some of the data from the experiment was not sent to a shared storage 

location. Instead the data was stored locally at the producing module. Locally stored 

data from multiple distinct locations needs to be combined and time-aligned. 

Postcondition: Data has been collected in preparation for filtering and analysis post 

experiment completion. 

 

Following is a bulleted list of requirements gathered from completed and planned 

human cognitive performance studies. The sources for the use cases were the meta-study, 

SME discussions and Experimental Design reviews. The ordering does not suggest any 

prioritization. 

Software requirements: 

1. Data streams from disparate processes not operating on the same system clock 

shall be time-series aligned. 

2. Modules within the experiment shall have the ability to receive multiple 

streams of data from one or more other modules in real-time. 
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3. Modules within the experiment shall have the ability to send multiple streams 

of data to one or more other modules in real-time. 

4. Multiple data types shall be handled simultaneously. Examples are double 

floating points, integers, strings, binary, images and video. 

5. The available physiological hardware sample rates shall be maintained. 

 

Validation 

The validation step answered the following three questions: 

 Do any requirements conflict with each other? 

None of the requirements are mutually exclusive. Neither does meeting any one of the 

requirements hamper the ability to meet any of the others. 

 Is each requirement testable, once implemented? 

The first requirement creates a specific end result that can be tested. One method for 

testing alignment would be to use an existing, correctly-aligned data set to compare 

against the results of the data infrastructure after replaying the distinct data streams. The 

second and third requirements represent functionality that can be tested, such as by 

providing input and measuring the time until the corresponding output. The fourth 

requirement can be verified by providing the system with the necessary file types and 

observing that each are collected, stored or processed correctly. The fifth requirement can 

be verified by noting the sampling rate at the source and confirming that rate where the 

data is ultimately stored. 

 Is each requirement consistent with the overall objectives for the system? 
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The first three requirements specify aspects of real-time data management functionality. 

Real-time data management is necessary for several types of key human cognitive 

performance research such as adaptive automation that need to assess OFS in real-time. 

The fourth requirement is supported by the need to manage many data formats used in 

HCP experiments. In addition to the many formats of physiological and behavioral 

measures, HCP experiments also store video recording as a data source for analysis, such 

as in Recarte et al’s work [27].  

 

Design Pattern Evaluation Results 

This section discusses the effects of using a Central Data Mediator architecture 

design on experimental workflow design and implementation. In order to make the 

discussion more salient, we present a case study using an experimental design from the 

literature. Real-time support is a minimum requirement for the architecture because it is a 

necessity in a subset of the experiments. To support a population-wide application, the 

architecture design then must also support real-time systems. 

This section examines the case study application of the CDM design pattern to a 

published experiment in comparison to both an ad hoc and data bus configuration. To 

review from Chapter 3, we perform the case study by examining the effects of using the 

design at five phases of the experimental design execution. These phases are: 1) 

infrastructure design specification, 2) infrastructure construction, 3) running the 

experiment, 4) data extraction and analysis preparation, and 5) system reuse and 

maintenance. Before the application is discussed, the experimental design of the 



 

68 

publication is introduced. Then we list the experiment’s data infrastructure modules. 

Each of the infrastructure designs discussed in the evaluation are introduced next. Finally, 

we discuss the consequences of the CDM design pattern in each phase. 

Case Study 1 

The experiment used for the case study was originally conducted in 2012 by 

Dorneich et al [28]. The research goal of the experiment was to measure the costs and 

benefits of an adaptive automation task interruption manager. The task, conducted in a 

physical environment, required the subjects to perform concurrent navigation and target 

spotting tasks while receiving informational and instructional messages. The adaptive 

automation module, Communications Scheduler, modified how messages were presented 

to the subject based on a workload assessment and task context. The workload 

assessment was provided in real-time by a cognitive state classifier using EEG and ECG 

(heart rate) data streams.  

There are several other modules in the experiment in addition to the 

Communications Scheduler and the cognitive state assessor, all of which appear in each 

of the diagrams. The physiological stream producing modules were EEG and ECG 

sensors. The task environment contains several components that are the internal 

generators or recipients of data streams within the module. In order to examine the design 

more fully, two components are added. The data storage and distraction model were 

added based on the authors conclusions that a deeper understanding of the human’s state 

and nonverbal cues leads to improved human-machine interactions. The first of the 

additions is a distraction model that uses eye tracking information. The second is storage 
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of the each of the measures and model output generated throughout the experiment to 

enable post-trial analysis. The original setup collected several task performance metrics.  

The first configuration, shown in Figure 12, does not consists of an overt design 

for connecting each of the components. Each of the connections are independent of each 

other, and a connection is configured only when necessary between two modules. The 

connection must be configured for both the producing and consuming modules. 

 

 

Figure 12: Ad Hoc Module Concurrent Communication Diagram 

 

The next configuration, shown in Figure 13, provides a single interface for each 

module to communicate with others. The bus is a message passing medium, but it does 

not contain any logic that processes the data. There may be extra logic necessary to filter 
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out the messages not destined for a specific module because each message is broadcast to 

all of the modules. This logic is located in each of the individual modules. 

 

Figure 13: Data Bus Module Concurrent Communication Diagram 

 

 The architecture of the Central Data Mediator (CDM) is depicted in Figure 14. In 

this diagram, the double sided arrows signify that data may pass in both directions. Flow 

in data in both directions is a capability for every connection, but physiological sensors 

only produce data and so the arrows for those modules are drawn in one direction. The 

CDM is considered an additional module that exists in software, but does not inherently 

require additional hardware to implement. 
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Figure 14: Central Data Mediator Module Concurrent Communication Diagram  

 

We now discuss the effects of the three designs with respect to each of the five 

phases. 

Infrastructure Design Specification 

In the initial infrastructure design specification, requirements gathering and 

results will not differ because they are driven by the same research goals. The process of 

creating the specification for how the connections are configured is more involved for the 

data bus and CDM configurations than for the ad hoc setup. The extra work is due to 

establishing or adopting a single interface that all of the modules will use for 

communication external to themselves. This interface must support the functionality of 

all of the modules in the data infrastructure. The interface will have more complexity in 

the CDM configuration compared to the data bus because data destination information 

must also be included. 
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In the design specification phase, the CDM has the highest relative cost, but the 

cost is mitigated to a degree by a high potential for reuse even if the modules are 

completely different. The reuse statement is also true for the data bus. The ad hoc setup 

will still require implementation of logic for each connection to function, but an 

established design is not necessary.  

Infrastructure Construction 

One of the key differences with respect to the software implementation during the 

infrastructure construction phase is amount of software logic that must be implemented 

for each individual module. For each module in the ad hoc configuration, there are 

multiple types of interfaces that need to be configured. These include physiological data 

streams to models, models to the task environment, and task environment updates to 

automation controllers. There is configuration that needs to occur at each module for the 

data bus and CDM designs, however, the configuration is only a slight modification for 

each. 

Running the Experiment 

While the experiment is running, the CDM natively offers the ability to process 

all of the data in real-time because it has access to all of the streams in a single location. 

Real-time alignment is achievable with the ad hoc and data bus architectures, but 

additional configuration or equipment is necessary. In the ad hoc setup, the modules can 

work off of a shared start time, however, this approach is prone to time drifts inherent in 

different hardware. An approach for the data bus architecture is to include additional 

equipment to run Network Time Protocol (NTP) which can broadcast the current time to 
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all of the modules to prevent time drift. Both of these methods require the 

implementation of additional software logic. 

Data Extraction and Analysis Preparation 

This phase consists of gathering the data produced and collected during the course 

of the experiment. The data is moved to a location and converted, if necessary, to a 

format such that post-completion analysis can be conducted. The activity we focus on for 

this phase is moving and time-aligning the data because of the large amount of resources 

it takes to accomplish.  

Using an ad hoc configuration, there are two general solutions for combining and 

time-aligning the collected data into a single location. One method would be to store data 

streams at the module from which it is produced. An alternative is to configure the 

modules to send all of the data streams to a central storage location. Both of these options 

require significantly more configuration to achieve the same result as compared to the 

data bus and CDM designs.  

In the data bus design, all of the data is already being broadcast and once a 

storage module is connected, it can collect every data stream. The storage module must 

contain logic to align or assign timestamps if they do not already exist for each data point 

in a data stream. Similarly, with the CDM design, adding a central storage module only 

requires a single connection to the CDM module. The difference from the data bus 

design, however, is that the logic for aligning and timestamping the data points resides 

within the CDM module. The central location of logic in the CDM is advantageous when 
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the storage module changes and the logic must be reconfigured or reimplemented in the 

storage module in the data bus design. 

System Reuse and Maintenance 

Software maintenance refers to updates to the functionality or format of the 

modules. For example, this may consist of an entirely new version of a computational 

model or more simply an update to the parameters that the model outputs. The CDM and 

data bus configurations benefit the reuse phase because of their modular standard 

interface. This allows reuse of modules from previous experiments in a “plug and play” 

fashion. The effect is a reduction in the amount of source code that needs to be 

configured. This applies to both the central mediator and the module itself. In the ad hoc 

configuration, if the modification or replacement of a module affects the communication 

format, all of the other modules it is connected to must also be modified. 

Case Study 1 Summary 

The results of the criteria assessed for the experiment in Case Study 1 are in Table 3 

below. 
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Table 3: Case Study 1 Evaluation Rubric 

 

Since the total number of criteria coded green and red are tied, this experiment would not 

warrant the use of a CDM design without additional extenuating factors.  

Case Study 2 

The second case study is performed on the experimental design as described by 

the primary investigator of the 4
th

 SME interview. The data infrastructure was described 

by its developers as a type of universal data bus or a data bus that contained logic for 

managing and formatting data. A visual diagram of the configuration is provided in 

Figure 15. There is a single interface for all new modules to connect to. There are four 

physiological modules producing at least one data stream. For behavioral and task 

situational data, there are three data producing modules, to include the status of the 

ID Criteria Red (CDM Not 

Warranted) 

Yellow (CDM 

Use Uncertain) 

Green (CDM 

Warranted) 

1 
Are real-time module 

interactions necessary? 
  Yes 

2 

Will this data infrastructure be 

used for HCP studies in the 

future? 

 Unsure  

3 

What percentage of 

physiological sensors can 

export their data in real-time 

[RT] (versus limited to local, 

on-device storage)? 

  
𝑅𝑇 𝑆𝑒𝑛𝑠𝑜𝑟𝑠
≥ 75% 

4 

How many distinct data streams 

must be aligned for the analysis 

phase? 
 4 ≤ 𝑆𝑡𝑟𝑒𝑎𝑚𝑠 ≤ 6 

[Streams = 6] 

 

 

5 Total module count, T (P+C)  
6 ≤ 𝑇 ≤ 10 

[T=6]  
 

6 

How often are the modules 

modified (over the course of a 

particular study)? 

Never   

7 

Are there an unknown number 

of modules that may need to be 

configured dynamically during 

the execution of a trial? 

No   
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Figure 15: Concurrent Communication Diagram – SME Interview 4 

human-computer interface (H-C Interface) presented to the operator to inform the task 

augmentation controller. 

Rather than using a single performance or cognitive workload measure, the 

experimental design creates multiple of each. Multiple models capture various aspects of 

either performance or workload using different sets of inputs. The results are 

consolidated into a single continuous measure. All of the data is also stored in a central 

database.  

The results of the criteria evaluation are in Table 4 below. 
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Table 4: Case Study 2 Evaluation Rubric 

 

With the count of criteria coded green, the second case study experiment warrants 

the use of a CDM. This does not mean that a CDM is the only solution for the data 

infrastructure, but that it would be an appropriate solution. A greater count of criteria 

coded as green indicates that the benefits of using a CDM design would outweigh the 

costs. 

CDM Analysis Summary. 

The example applications of CDM to various experimental designs show that the 

benefits and drawbacks are dependent on the makeup of the experiment. There are some 

types of experimental designs that the CDM is especially suited towards. These include 

ID Criteria Red (CDM Not 

Warranted) 

Yellow (CDM 

Use Uncertain) 

Green (CDM 

Warranted) 

1 
Are real-time module 

interactions necessary? 
  Yes 

2 

Will this data infrastructure be 

used for HCP studies in the 

future? 

  Yes 

3 

What percentage of 

physiological sensors can 

export their data in real-time 

[RT] (versus limited to local, 

on-device storage)? 

  
𝑅𝑇 𝑆𝑒𝑛𝑠𝑜𝑟𝑠
≥ 75% 

4 

How many distinct data streams 

must be aligned for the analysis 

phase? 
  𝑆𝑡𝑟𝑒𝑎𝑚𝑠 ≥ 6 

5 Total module count, T (P+C)   𝑇 ≥ 11 

6 

How often are the modules 

modified (over the course of a 

particular study)? 

 Once/Unknown  

7 

Are there an unknown number 

of modules that may need to be 

configured dynamically during 

the execution of a trial? 

No   
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those experiments with many distinct sources of continuous data flow that must be 

processed in real-time during the execution of an experimental trial. There is also a time 

cost that applies to adapting the laboratory’s processes to building data infrastructures to 

a new standard. Additionally, the time for the support personnel building the data 

infrastructure to learn this new paradigm may be another drawback that must be balanced 

by the time-alignment and modularity benefits. 

Discussion 

While the research goals of human cognitive performance experiments vary, there 

are similarities in the way data is collected and managed during the execution of an 

experiment. Leveraging the requirement commonalities, specifically software design 

patterns, provides several benefits. A community-driven set of solutions can lead to 

additional capabilities and reduction of the resources necessary to construct, execute, and 

analyze the experiments.  

The results show that many experiment data infrastructure requirements are 

common across the majority of these types of experiments conducted. It was also argued 

that the complexity of the data communication will only continue to increase. There are 

still benefits to a continued effort into software design in this domain even if the 

complexity at this current time does not demand the use of specialized software 

architectures. Benefits include reduction in resources necessary to build new or modify 

existing experiment data infrastructures and native support for time series alignment of 

data streams from modules with distinct system clocks in real-time. As research in the 

near future increasingly employs adaptive automation requiring the management of 
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multiple real-time streaming data modules, data infrastructures will need to grow more 

complex to support those requirements. 
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V. Conclusions and Recommendations 

 

 

 

Summary 

 Software design requirements were gathered from human cognitive performance 

experiments and used to develop and evaluate a design pattern. The software 

requirements, design pattern specification and evaluation provided insights into the data 

infrastructure necessary to achieve the various research goals of human cognitive 

performance experiments.  

 The advantages of a software design pattern are realized as the complexity of data 

management increases. The primary sources of this complexity in human cognitive 

performance experiments are the number of distinct, separate process streams of high 

fidelity data and real-time synchronization requirements. The more the two sources exist 

in an experiment, the greater the necessity for a design to manage the complexity is 

needed. 

Even though we did not show a trend in increasing or decreasing complexity, the 

assertions of authors from human cognitive performance literature suggest an increasing 

trend. While the authors may not address the topic of complexity in their software data 

infrastructures explicitly, they argue for future work that implies an increase in 

complexity.  

One of the critical components required for adaptive automation is the operator 

assessment or state determination function argue Barnes, Parasuraman and Cosenzo [29]. 

As early as 2001, Russell and Wilson argued that in addition to physiological data, 
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performance and situational data could result in higher accuracy of operator state [30]. 

This would result in the need for additional streams of data to be aligned and further add 

to the complexity of an experiment’s data infrastructure. 

In order for the machine within the human-machine team to provide the 

appropriate type and amount of aiding at the optimal point in time, the machine must 

have a sense of the human’s state. There are many methods for determining the 

components of the operator’s state in order to make the best decisions. The methods 

primarily consist of observing the operator’s behavioral and physiological metrics. 

However, it may be beneficial to include as many operator functional state assessments as 

possible from various features argue Durkee et al [31]. Not only may more assessments 

be better, Fairclough and Venables argue more complex interactions of physiological 

features may offer further benefit [32]. Therefore, the complexity of experiments will 

continue to increase as additional features are collected and streamed to operator 

functional state assessment models and the output of those models are streamed 

throughout the experiment to inform changes in the task or other components of the 

study. 

 The following are some practical applications for the results of the research. The 

design pattern could serve as a starting point for future, actual instantiations of software 

data infrastructures. Improvements on the design could be captured and published to 

continue evolving the design to best meet the needs of the human cognitive performance 

community.  
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Development and improvement of data infrastructure suffers as a result of the lack 

of discussion within the publication methodologies. There are likely several reasons that 

a discussion of the specific software configuration for managing data within the 

experiment is not included. One of the reasons is that there is little direct research 

contribution for discussing the design of the data infrastructure or the challenges. Another 

is that there are no human cognitive performance domain standards for building one. 

Without common design standards to reference, it requires a large portion of an article to 

describe the software infrastructure. The majority of the time, the authors consider the 

portion too great and do not include any discussion. If general architecture software 

designs for this domain existed in literature, a single sentence describing the type of 

design used may be sufficient and beneficial. 

Benefits of using a centralized design were identified, but did not come without 

cost. The benefits included the temporal alignment of data streams in real-time, a single 

interface for programming communications, and a reduction in reuse costs when 

compared to an ad-hoc configuration. The costs for these benefits consist of a higher 

upfront cost of software planning and implementation. The benefits are realized more so 

as the quantity of data streams increase and the complexity of interaction between the 

modules of the experiment increases. 

While an analysis of the existing state of complexity suggests that a Central Data 

Mediator design is not essential to meet the currently standing experimental design 

requirements, it also shows promise for positive impact in the present and near future. 

One use case is to address the trend of increasing complexity of experimental design 
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requirements for which a CDM or similar design may be necessary to meet in the near 

future. The second benefit is that the design still offers a reduction in the resources 

necessary to design and implement the data infrastructure.  

The reduction of resources comes from the modularity of data stream producers 

and consumers when implementing a mediator design pattern. Another source of the 

reduction of resources is the ability to handle time-series alignment in real-time. This 

provides additional capability to the researcher and reduces work necessary after the 

completion of the experiment. 

Contributions 

This thesis provided an example of a software design pattern mapped to a novel 

domain, the data infrastructures of human cognitive performance experiments. The 

application of domain knowledge was accomplished by collecting observations from both 

published and unpublished sources. This activity could serve as lessons learned when 

repeated with a greater sample size or a different design paradigm. 

This research also produced a preliminary approach to capturing and analyzing 

the software complexity in the human cognitive performance domain. A basic metric was 

presented and the limitations were discussed. This could be used as a basis for future 

work to generate more accurate models of complexity. 

Future Work 

A partial list of metrics for human cognitive performance data workflows and 

software architectures was discussed in this work. There are several potential benefits for 

future work to gather additional metrics and compare the requirements analysis against 
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the results of the presented method. One benefit is further validation of the findings from 

this research. Another benefit is a deeper understanding of the root causes of complexity 

in the experiment data infrastructures and how to address them. 

To further the concept of providing a common design architecture that can be 

used as a template, implemented software solutions could be added to the available 

resources along with the design. The goal is to build a library of code that follows the 

design, but is still highly configurable. The flexibility needs to remain in order to meet 

the custom requirements of the vast array of research goals and subsequent experiment 

designs. An additional desired quality would be implementations and documentation such 

that the resources could be applied by someone who is not a software developer. 

The ultimate goal is to produce resources that reduce the burdens of constructing, 

using and maintaining software data infrastructures in human cognitive performance 

experiments. Toward that goal, this thesis provides groundwork for further research and 

discussion. With contributions from the academic and operational communities, openly 

available code libraries and enhanced, validated designs may lower the barriers to entry 

for new research groups and enable established labs to take their research even further.  
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Appendix A: Data Infrastructure Query Contents 

 The purpose of this document is to gather metrics on the portions of the human 

cognitive performance study that produce, consume and route the data during the course 

of an experimental trial.  We desire to understand HOW you move and store your data 

more than WHY you are collecting it. Additionally, we are more interested in the format 

rather than the specific content (factors and levels) of your data. For example, the scope 

includes physiological data streams, how that data gets to a cognitive workload model, 

and where the output of the model needs to go (such as storage, visualization, or a level 

of automation controller). The scope does not include the construction or analysis of the 

model, an analysis of what physiological measures are used, or the specific results of the 

trial. 

In order to clarify the questions included and the desired format of the answer, 

brief descriptions of the measure, examples of the subject in question in a hypothetical 

experiment and examples of how it could be answered. 

Scope of studies for this research 

1. The studies reviewed will be Human Cognitive Performance experiments 

2. The studies will have at a minimum: 

a. A task environment 

b. One human participant and/or one or more machine agents that can take 

actions in the task environment 

c. Post-study storage and analysis of collected data 

d. Real-time or replayed psychophysiological measures, at least one instance 

(i.e. heart rate, EEG, pupilometry, etc) 

3. The studies may also have: 

a. Computational elements that do not produce actions in the task 

environment, such as: 

i. Workload prediction/assessment algorithms 

ii. Cognitive architecture to produce workload estimation 

iii. Data visualization logic/products 
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Background Questions 

1. Provide a publication abstract level description of the study 

2. Describe the data that each trial collects, such as: 

a. Human subject action and performance metrics 

b. Individual streams of physiological data 

c. Computational model outputs 

3. Describe the process of handling data from its production source to where it 

remains after the experiment trial is complete. For example: 

a. The human participant’s mouse and keyboard actions are generated in the 

task environment and are sent to a computational model where 

performance is assessed. 

 

Measures to collect and Questions to elicit those metrics 

1. Standard software metrics - Software coupling of experiment data collection and 

processing components 

a. Questions: 

i. Are there any defined data formats or schemas that any of the 

components rely on for communication? (i.e. XML, CSV, XLS, 

JSON, Proprietary, etc) 

ii. Alternatively, is each connection between components that share 

any data uniquely configured? 

iii. Are there any instances where more than one component 

references the same data resource (i.e. the same file is accessed by 

multiple components)? 

iv. If machine agents exist in the study, do they modify the 

representation of the task environment directly or pass a message 

to trigger an action? 

b. Description:  The degree to which distinct components of the data 

collection architecture are interdependent on each other.  

c. Research Value:  Use the responses to assess where along the coupling 

spectrum the specific study’s data architecture lies. A common theme of a 

high degree of coupling between the distinct research studies suggests that 

an effort to provide a higher level of abstraction (encapsulation of the 

details that change) will have a positive effect. 

d. Examples: 

i. Machine agents that take action in the task must modify the state of 

the task, and can do so on the spectrum of directly manipulating 

the internal representation of the task to sending a generic message 

of an action in the same standard input format as a human subject. 
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ii. A cognitive model (an algorithm, discrete event simulator, 

cognitive architecture, etc) may require physiological observations 

in addition to updates about the task environment state to make 

assessments, predictions and/or recommend actions. 

2. Standard software metrics - Software cohesion of experiment components (data 

collection and processing) 

a. Questions:   

i. Which components of the study collect and process any data 

streams? 

ii. Which components contain any logic that forwards the data to 

another component in the study? 

b. Description:  A measure of how organized or centralized is the logic that 

is used to manage the collection and processing of the data collected 

during an experiment’s trial. The spectrum of cohesion with respect to 

these studies ranges from high cohesion logic used to route the 

experiment’s data may be centralized and grouped according to 

functionality down to low cohesion where functionality is grouped 

arbitrarily.  

c. Research Value:  The responses will be used to assess where on the 

cohesion spectrum the specific study’s data architecture lies. A low degree 

of cohesion is likely in an architecture that was not intentionally designed 

to efficiently manage data and built in an ad hoc fashion. A common 

theme of low cohesion suggests that and effort to standardize and 

consolidate functionality will improve researchers’ ability to maintain and 

extend the software architectures of their experiments.  The primary 

benefit could be gained by reducing necessary time and personnel 

resources for building, maintaining and operating the experimental data 

processing architecture. 

d. Examples:   

i. All data output (such as: human subject actions and performance, 

model workload level assessment, task environment updates) is 

sent to a common component which contains the logic that 

distributes the data throughout the system appropriately. 

ii. Alternatively, each component is configured independently with 

respect to where its output is sent. Such as, the physiological 

observations are sent to a model predicting workload, the task 

environment that displays the data and a storage component for 

post-trial analysis. In this case, if a different physiological 

hardware with a new format is used, all three components it is 

connected to (task, model and storage) will likely also need to be 

updated. 

3. Cyclomatic complexity – Data flow process 

a. Questions:   
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i. List each component of the study that either produces or consumes 

data. Additionally, include the number of distinct data streams 

(data originating from a distinct source) that enter and leaved each 

component. 

ii.  Describe each step of processing that occurs on a stream of data 

starting from its original production. Repeat for each data stream 

source that is produced or consumed during the experiment. 

b. Description:  Cyclomatic complexity refers to the count of the linearly 

independent path through program code or a system. The complexity 

measure is measured using a tool called a control flow graph (a directed 

graph). Each node of the graph is an indivisible group of commands. 

c. Research Value:  Gain insight into the complexity due to the paths the data 

must travel independent of the makeup of the details of the component that 

the data passes through. 

d. Examples:   

i. Physiological observations of the human participant’s heart rate is 

sent to a model estimating workload, a data visualization element 

that displays to the task environment, and thirdly to persistent 

storage. Each of the connections of physiological data to the other 

components would be the start of a distinct path. 

4. Cyclomatic complexity – Synchronization complexity 

a. Questions:   

i.  Do any of the data collection components of the study (data 

storage or processing) require temporal alignment of the received 

data? 

b. Description:  Synchronization complexity is cyclomatic complexity except 

that it applies to the interleaving of multiple concurrent threads rather than 

a single thread of operations. Thus, this metric would only apply when an 

experiment is actively using the data streams from multiple, disparate 

sources combined into a single data consumer. 

c. Research Value:  This metric can identify additional sources of complexity 

not indicated by the standard, single-thread control flow graph measure. 

d. Examples:   

i. Task performance (instantaneous) and physiological measures 

being used by a computational model to predict human subject 

workload. 

ii. Logging multiple data streams produced from disparate source (i.e. 

physiological measures, model output and participant actions) into 

a single, common storage or processing source. 

5. Algorithmic complexity – Big-O message communication message complexity 

a. Questions:   

i. For all the components that produce any data, do they specify 

within their internal configuration where their outputted data is 



 

89 

sent within the data architecture? Alternatively, do all components 

broadcast their output to all other components of the study? 

ii. Are there any components within the data architecture that 

contains logic specifically used to control the flow of data from 

other components? 

1. If so, how is this component connected to the other data 

components? 

b. Description:  This metric refers to the growth of the total number of 

message packets that are required as the number of components in the 

experiment (𝑛) is increased. An architecture in which every component is 

connected to every other component (such as in a basic data bus), will 

have a message growth rate of 𝑛2. Even if not every component in the 

system is both a producer and consumer, 𝑓((𝑛 − 1)2) = 𝑂(𝑛2). 

c. Research Value:  This measure can reveal complexity in an architecture 

that is not designed to efficiently handle the addition of many components 

that both produce and consume data streams, such as workload models 

based on physiological data. The existence of a high growth rate in an 

architecture may not create a severe enough impact to prevent its use at 

the moment; however, as research into building and testing multiple 

computational models and agents increases, the impact will become an 

unavoidable issue. 

d. Examples:   

i. A study contains several physiological measures being collected 

off the human participant to include heart rate, heart rate variability 

and several EEG locations and frequency bands. Currently, all the 

physiological measures are sent to both a computational model 

producing workload estimates off of task performance and all 

physiological measures in addition being sent to the task 

environment for display. The original architecture is built so that 

each component sends its output to all the other components which 

either consume or ignore the data. If an additional computational 

model is added, say to use another method of estimating workload 

from physiological measures and task performance, all other 𝑛 − 1 

streams of data are duplicated in order to send their data to and 

from this new component. 

6. General complexity measures – Data flow process description 

a. Questions:   

i.  What data collection capabilities are essential in order for you to 

perform your study? Examples: 

1. Collecting human subject actions/events in the task 

environment 

2. Storing full resolution observations from physiological 

sensors 
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3. Ability for a machine agent to interact with the task 

environment simultaneously with any other human or 

machine agents 

ii. What data collection limitations are preventing you from desired 

research activities? Examples: 

1. Analysis of consolidated subject actions & physiological 

sensors in real-time 

b. Description:  This measure is a natural language description of the 

processes that must take place to capture, store and prepare data for 

analysis with regard to a specific experiment’s data architecture.  

c. Research Value:  This description can be used to identify common 

bottlenecks regarding the manual administration of experimental data that 

may be alleviated by a product such as a software framework. 

7. General complexity measures – Data architecture maintenance 

a. Questions:   

i.  How many data collection components and data collection 

architectures used in this study are from a previous study? 

1. Of those, how many are from your own 

group/organization? 

2. Would you have used an existing component if there was 

less of a time or other resource barrier to implementation? 

ii. What, if any, defined process did you follow for building the 

architecture to collect the data produced during this study? 

iii. What, if any, current data collection capability do you see as a 

limitation to the research activities you would like to perform? 

iv. How many distinct programming languages were used in this 

study? Such as, JavaScript, C#, Java, Python, etc. 

b. Description:  These are activities required to build and maintain the data 

collection software architecture.  

c. Research Value:  Intricate/involved processes necessary to modify and 

update components of a data collection software architecture indicate that 

additional, unnecessary resources are being spent on activities that do not 

directly improve the results of the experiment itself. 

8. General complexity measures – Post-trial process requirements  

a. Questions: 

i. What post-trial analysis of the data was conducted? 

ii. What actions had to be taken in order to arrange the collected data 

so that it could be analyzed? 

iii. Are there instances where an automated process or standard format 

would have reduced the time/effort of arranging the data for 

analysis? 
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Appendix B: Data Infrastructure Query Results 

This portion of the index includes the results from the SME and IRB protocol 

experimental design reviews. 

SME Interview 1 

Background 
 

1 

The study was conducted in 2007 as part of a graduate degree program. The overall 
goal was to observe EEG in correspondence with levels of expertise. The task 
required the human participant to push a single button in response to a stimulus that 
appeared on a computer screen. EEG observations were recorded from the human 
participant while the stimulus was produced, during which time the participant would 
hit a button. 

2 

The task environment was one source of data which data was collected on which 
was the timing and sequence of the stimuli presented to the participants. A second 
set of collected data were EEG signals from a passive scalp device. A third set of 
data collected was button press information (which one and timing). A questionnaire 
capturing basic demographic information was also collected. Finally, a video camera 
captured the trial for reference 

3 

All of the data was processed and stored on one machine. One path of the process, 
a MATLAB program handled driving the events to display the stimulus to the 
participant and capture their respective button  
pushes. A second path, the EEG signals were passed through an amplifier and 
recorded on the machine. 

Questions 
 

1-i 
The stimuli sequences and button pushes were stored in a MATLAB file format in a 
matrix. The EEG signals were also stored in the same manner. 

1-ii 

The two MATLAB programs communicated with each other using functions. The 
purpose of the communication was to trigger the recording of EEG signals right 
before a stimulus occurred and until a button was pushed so it would not be 
constantly running and cause the machine to run out of memory. 

1-iii No 

1-iv 

The study did not have any computational agents. If it did, an agent would modify 
the timing of the stimuli to keep the participant in a certain range. This would require 
the agent to send some sort of offset or sequence adjustment for producing the 
stimuli. 

2-i 

The two “components” that collect data are the two MATLAB programs. One that 
collects the sequence and button press data, and another that collects the EEG 
signal data. 

2-ii 

The main trial script will trigger the EEG collection. The main MATLAB script does 
not forward the data, but it does process the participant timings to assess 
performance for analysis post-trial. 

3-i 

EEG -> MATLAB program #2 Participant actions -> Task driving MATLAB code -> 
stored in MATLAB file for post process Task event sequences -> MATLAB file for 
post processing 
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3-ii 

No active processing occurred on the data. One way this could have occurred in this 
study would have been: Button presses and timings -> Verification of accuracy -> 
Display metric back to participant 

4-i 

The only alignments that needed to occur in this study were the two matrices. One 
that held the stimulus occurrence timings and participant button presses and the 
matrix that held the EEG observations. 

5-i 
The modules in this study do not send their data externally with the exception of the 
task MATLAB code which triggers the recording of EEG. 

5-ii No, data is shared, but not control. 

6-i 

Time stamps of button presses and button types. Sequences of the stimuli need to 
be captured in sequence with the button presses. There must also be the same 
sequencing for the stimuli and button press events correlated to the recordings of 
EEG. 

6-ii 
The amount of EEG signals that can be captured at one time was limited by the 
computer’s memory. 

7-i 

The MATLAB code for producing the stimuli and capturing button presses was 
modified code. Additionally, the EEG calibration and tuning functions were reused 
from previous experiments. 

7-ii The reused pieces came from the lab that the experiment was run from. 

7-iii 
The MATLAB Toolbox is a set of software tools that were used to build the code for 
the experiment data capture, but no design standards were explicitly used. 

7-iv 

The head-mounted eye tracking hardware interfered with the EEG signal collection 
and could not be used. There was a hardware limit of memory available for storing 
EEG signals. 

8-i One was used, MATLAB. 

8-ii 

The behavioral analysis consisted of investigating the response times of the 
participant. Event-related potentials (ERP) and a linear discriminant classifier were 
used for analysis on the EEG waveforms. 

8-iii 

For EEG, the primary work was to remove noise (such as eye-blinks and other 
artifacts). Then the sequence of EEG captures needed to be time-aligned with the 
stimuli conditions and participant responses. The fact that the exact timings and 
sequence of the stimuli events was known a priori and was static made the 
alignment easy. One matrix could be directly combined with another. 

8-iii 
The automation of artifact removal from the EEG signals would have been a huge 
time saver. 

 

SME Interview 2 

Background 
 

1 

The study is being put together as of Jan 2016. It includes a handgun firing task 
focused on improving performance defined by Euclidean distance from the target. 
The human subject is connected with multiple physiological sensors that collect as 
the task is performed. The data is collected for off-line analysis in order to perform 
feature selection for the feature that has the greatest predictive power for 
performance (target accuracy). The vision for future studies is to use the models and 
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features developed from this currently described study and have them fed with the 
physiological features in real-time. 

2 

The target in the task environment (firing range) was a source of data as the location 
of the hits from the bullets. There were multiple streams of data captured from 
physiological sensors. An audio queue was  
provided as the stimulus for the subject to fire the weapon. There was also a video 
log of the subject and view down the range to the target. The following physiological 
sources were collected from sensors. A  
Zephyr BioHarness was used to collect Heart Rate, ECG and posture. Toby Glasses 
were used to track eye position and movement. Portable EEG was used to capture 
13 channels of EEG. 

3 

Due to hardware limitations, the data from each the Zephyr BioHarness, Toby 
Glasses and Portable EEG, were stored on different devices. Otherwise, all of the 
data would be processed and stored on a single machine. All of the data is 
processed post-trial, with the exception that the Portable EEG output can be viewed 
in real-time. 

Questions 
 

1-i 

The data is not transferred in real-time. And if it is in a subsequent study, there is no 
current decision for all the data to be of a particular type. However, it would most 
likely be stored in JSON format as other tools within the lab already use that 
convention. 

1-ii N/A, no connection between experimental modules. 

1-iii No 

1-iv The study did not have any computational agents. 

2-i There is one machine that collects the EEG signal data. 

2-ii No 

3-i Each of the physiological sensors produce a distinct data stream. 

3-ii 
None of the streams are processed, rather, they flow directly to storage with the 
exception of EEG with is sent to a monitor to view the current status of the streams. 

4-i No 

5-i All of the components store data right to persistent storage. 

5-ii No 

6-i 
Physiological sensor data should remain at as high of a sampling resolution as 
possible. 

6-ii None at this time. 

7-i Zephyr and EEG processing software. 

7-i-1 The reused pieces came from the lab that the experiment was run from. 

7-i-2 
No, the available resources were easy enough to modify in order to work for this 
study. 

7-ii None 

7-iii None for this study, maybe an issue with image analysis of the video pointing at the 
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target. 

7-iv 
Proprietary software to gather physiological sensor data and R and JavaScript to 
align data post trial. 

8-i Feature selection for predicting accuracy. 

8-ii Put through RAVED system. 

8-iii Would save time spent aligning data. 

 

SME Interview 3 

Background 
 

1 

The study will be conducted in order to compare multiple methods of workload 
estimation on the same task captured from the same subject at one time. The data 
streams are composed of both behavioral and physiological data types. 

2 

The study collects behavioral, physiological and demographic data. The behavioral 
data is the performance data on the task (MATB). The following physiological 
sources were collected from sensors. A Zephyr BioHarness was used to collect 
Heart Rate, ECG and posture. Toby Glasses were used to track eye position and 
movement. Portable EEG was used to capture 13 channels of EEG. 

Performance Data Stored in database by the MATB task 

software. 

Zephyr BioHarness Data is stored in the “puck”, which a 

piece of the equipment. 

Portable EEG Data is saved to a folder on the device 

(computer/tablet) that the amplifier and 

signal digitizer is connected to. 

Toby Glasses Recorded to SD card in the hardware 

Demographic data Saved to folder on a separate machine 

the surveys are taken on. 

Subjective Workload (NASA TLX) On same machine as MATB task, but 

separate program. 
 

3 

Due to hardware limitations, the data from each the Zephyr BioHarness, Toby 
Glasses and Portable EEG, were stored on different devices. Otherwise, all of the 
data would be processed and stored on a single machine. No modules in the 
experiment took data from another module during the course of the experiment. 
 
All of the data is processed post-trial, with the exception that the Portable EEG 
output can be viewed in real-time. Once all sources are converted into CSV, then 
they are all ingested into a database using the local lab developed program to align 
the data from the disparate sources all to a common time series. 
 

Performance Data Pulled out of database and exported to 

CSV. 

Zephyr BioHarness Collected data is processed through 

AFRL software into a CSV (captured at 
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250 Hz for ECG, 25 Hz respiration rate, 

100 Hz position accelerometer, 1Hz 

posture) 

Portable EEG Sample rate is 128 Hz, data processed 

through AFRL software 

Toby Glasses Uses proprietary process to convert 

collected data to a CSV. 

Demographic data Traits are stored as the averages of 

scores across all surveys. 

Subjective Workload (NASA TLX) On same machine as MATB task, but 

separate program. 
 

Questions 
 

1-i No, the data is stored in proprietary formats. 

1-ii No 

1-iii No real-time models exist in the study. 

2-i 

The task environment creates a performance data stream stored directly to a 
database. The physiological sensors create data streams that are stored directly to 
disparate data storage locations. 

2-ii None, the data stays locally for each module. 

3-i 

Task environment performance measures are streamed to a database (persistent 
storage). EEG sensor data is visualized on the machine (desktop/tablet) for 
visualization for verification that it is recording correctly. 

3-ii 

The qualitative data, condition descriptions and demographics data are coded for 
digital storage in the database. Otherwise, all other data is stored as already 
described. 

4-i 

Only the task environments has small elements that must be aligned within itself. 
This includes task events, such as the occurrence of stimuli, being aligned to the 
participant’s actions, key presses and mouse clicks. 

5-i 
The data is stored locally to each module of the experiment. Even the task has its 
data stream stored within its own software. 

5-ii No 

6-i Collect as high resolution data as the hardware allows. 

6-ii 

Nothing, limiting the experimental design, but it would make it easier to verify and 
align if all of the data sources (physio sensor hardware) could stream externally to 
the device. 

6-iii No roadblocks 

7-i 

Zephyr data processing software. Demographic LIME survey tool. The task 
environment, JavaScript version of modifiable MATB (mMATB). Each of these came 
from previous work. 

7-ii 
Consistent naming conventions for files and folders. This helps to keep the subjects 
and trial (conditions) straight. 

7-iii 
CSV file size limitations. Some of the data from physiological sensors for a single 
trial exceeds the size limitation of CSV files. 
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8-i Comparisons between measures. 

8-ii 
The data must be run through RAVED. Has to be converted to a readable format by 
RAVED (CSV files). Demographic data is run through an R script. 

8-iii 
Generating common timestamps. Having a synchronization port on the hardware 
devices to sync to a common clock at the beginning of a trial. 

 

SME Interview 4 

Background 
 

1 

This study is currently ongoing as of the interview on 13 Jan 2016. Subjects are still 
being run through the task to collect more data. The study is focused on collecting 
data regarding the “Augment” piece of the Sense-Assess-Augment cycle. The 
researchers are doing this by including task augmentation during the trials that turn 
on according to a timed schedule during the task. The augmentation is not 
controlled by computational models yet because the models are not accurate 
enough to effectively manage the automation. The actual task description is in  

2 

Performance Data Created by the task environment 

BioRadio (EEG) EEG 

SmartEye Off person pupilometery  

Vertical EOG 

Horizontal EOG 

BioHarness Respiration Rate 

Microphone Voice stress analysis 

Subjective Measures NASA TLX (between rounds of trial 

according to the schedule in the 

appendix) 

Computational Models There are 18 models that accept 

various data features and produce 

outputs, predicting workload or 

performance 
 

3 

All of the data flows in real-time to a Universal Data Bus that resides on a computer 
in the lab network. The software for the data bus was developed collaboratively by 
the researchers involved in the study and an external research and software 
development company also involved in executing the study. 

Questions 
 

1-i 
Data is sent from the sensors to the data bus as raw data and then is sent in XML 
format to the computational models or other modules. 

1-ii No, connections are managed by the data bus. 

1-iii Unknown, but unlikely. 

1-iv 

The models take in performance data from the task environment, but none of the 
models control the task environment. There is a script in the task schedule that 
toggles augmentation. 

2-i 
The computational models take physiological and performance features as input 
streams. 
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2-ii 
The data bus accept raw sensor data and forward the digitized, XML format version 
of it out to the rest of the data workflow architecture. 

3-i 
There are 18 distinct computational models in the study. The all take a subset of the 
performance and physiological features. 

3-ii 
Raw physiological sensor data is sent to the Universal Data Bus. From there, it is 
exported as XML to the computational models. 

4-i Yes, they may receive multiple data feature streams. 

5-i 
Yes, the data bus is configured to send the data to specific models over the network 
LAN. 

5-ii Yes, the data bus. 

5-ii-1 Over web sockets on the LAN. 

6-i 
Physiological sensor data should remain at as high of a sampling resolution as 
possible. Network Time Protocol is available on the network. 

6-ii None at this time. 

7-i The data bus is from the previous HUMAN Lab Formal Study 1 at least. 

7-i-1 The data bus software was developed by one of the Primary Investigators. 

7-i-2 Did not ask 

7-ii Did not ask 

7-iii 
None for this study, maybe an issue with image analysis of the video pointing at the 
target. 

7-iv Did not ask. Postgress SQL database to store collected data. 

8-i Feature selection for predicting to analyze computational model performance. 

8-ii 
The data is aligned with the central data bus in real-time and then stored into a SQL 
database that maintains that alignment. 

8-iii This is already achieved with the existing data bus software configuration. 

 

IRB Protocol Review 1 

Background 
 

1 

This project will seek to define a robust method for remotely and noninvasively 
determining heart rate through application of imaging technology. It also seeks to 
better understand the relationship between heart rate measures and mental 
workload levels experienced by operators. Data will also be collected to determine 
which user tasks are discarded as mental workload levels increase. Subjects will 
interact with the Air Force Multi-Attribute Test Battery (AF_MATB), running on a 
laptop computer. The AF_MATB provides a method to manipulate an operator’s task 
load and impose different levels (high, med, low) of mental workload. The original 
MATB software has become a mainstay for psychological research regarding 
cognitive workload and this version has simply updated the software to be 
compatible with modern operating systems.Subjects will use the standard laptop 
keyboard in addition to a USB joystick to perform the given tasks. The task does not 
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depend on real-time and there is no automation. 

2 

Equipment Measurement 

Stored by the AF MATB task software Task performance Data 

NASA TLX Subjective workload assessment 

Analytical Spectral Devices (ASD) 

FieldSpec® Pro spectrometer 

Measures spectral bands that are 

associated with heart rate 

BIOPAC 150 with ECG amplifier electrical signals associated with the 

beat of the human heart 
 

3 

Performance Data Recorded by MATB software 

Spectral wavelengths Processed by proprietary software to 

MATLAB readable format 
 

Questions 
 

1-i The data is not transferred in real-time. 

1-ii N/A, no connection between experimental modules. 

1-iii N/A, no connection between experimental modules. 

1-iv N/A, the study did not have any computational agents. 

2-i No modules collect any external data streams. 

2-ii None 

3-i 
Data streams: ECG, performance data, spectral wavelengths. None of the streams 
are communicated external to the module that created them. 

3-ii N/A the streams are not processed in real-time. 

4-i No 

5-i All of the components store data directly to distinct persistent storage mechanisms. 

5-ii No 

6-i 
Physiological sensor data should remain at as high of a sampling resolution as 
possible. 

6-ii Not discussed 

7-i The task environment is the same and collects performance data. 

7-i-1 The reused task environment is from the same organization. 

7-ii Unknown 

7-iii Unknown 

7-iv Unknown 

8-i 

The data from the ECG will also be analyzed to determine whether significant 
changes in heart rate or heart rate variability occurred during each experimental 
session and these values will be correlated with changes in the reflectance data 
collected from the ASD. 

8-ii Group data collections by trial. 
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8-iii Unknown 

IRB Protocol Review 2 

Background 
 

1 

The aim of this study is to determine the effect of localized temperature changes on 
vigilance performance and whether individual stress appraisals moderate the 
relationship between localized temperature changes and vigilance performance. 
Electrocardiography, electrooculography, and cerebral oximetry data will be 
measured during a vigilance task to determine the relationship between these 
physiological measures, temperatures changes, and human performance. The task 
does not depend on real-time and there is no automation. 

2 

Equipment Measurement 

Air Traffic Control Vigilance Task 

(Super Duper Lab) 

Performance results (accuracy)  

Cerebral Oximeter (CO) Noninvasive blood oxygen saturation 

BIOPAC 150 with EOG amplifier EOG, eye positions 

BIOPAC 150 with ECG amplifier ECG, electrical signals associated with 

the beat of the human heart 
 

3 

Performance Data Recorded by Super Duper Lab 

software 

Physiological measures The physiology data is filtered to 

remove any extraneous data or outliers 
 

Questions 
 

1-i Not specified. 

1-ii 

It appears that all the data collecting modules are connected in some fashion. It is 
unknown what the ‘single process’ phrase refers to, task procedure or computational 
instance of software. This is a quote from the protocol: “Additionally, BIOPAC 
software will continue to record all of the ECG and EOG data and INVOS software 
for the CO data. The temperature changes, performance data, and physiological 
data will all be coupled within a single process to accurately keep the time scale 
consistent throughout the experiment.” 

1-iii No, the data is passing in one direction, only being saved. 

1-iv N/A, the study did not have any computational agents. 

2-i No modules collect any external data streams. 

2-ii None 

3-i Data streams: CO, EOG, ECG all flow one-way into storage. 

3-ii N/A the streams are not processed in real-time. 

4-i No, alignment occurs after the completion of the experiment. 

5-i Unknown, unclear from protocol equipment description. 

5-ii No 
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6-i 
Physiological sensor data should remain at as high of a sampling resolution as 
possible. 

6-ii Not discussed 

7-i Unknown  

7-i-1 Unknown 

7-i-2 Unknown 

7-ii Unknown 

7-iii Unknown 

7-iv Unknown 

8-i 

To test whether localized temperature changes have an effect on vigilance 
performance one-way Analysis of Variance, with temperature as the independent 
variable and performance as the dependent variable will be conducted. To test 
whether individual stress appraisals moderate the relationship between localized 
temperature changes and vigilance performance a hierarchical regression will be 
conducted. 

8-ii The sources had to be connected at the beginning of the trial. 

8-iii Unknown 

 

IRB Protocol Review 3 

Background 
 

1 

If the results from the previous experiment show that vigilance performance does 
improve when localized temperature conditions change, then an additional 
experiment will be conducted. Experiment 2 will investigate whether performance 
can be additionally improved by using real-time physiological data to predict when 
vigilance is declining and implement a localized temperature change at that time.The 
aim of this study is to determine the effect of localized temperature changes on 
vigilance performance and whether individual stress appraisals moderate the 
relationship between  
localized temperature changes and vigilance performance. Electrocardiography, 
electrooculography, and cerebral oximetry data will be measured during a vigilance 
task to determine the relationship between these physiological measures, 
temperatures changes, and human performance. The task does not depend on real-
time and there is no automation. 

2 

Equipment Measurement 

Air Traffic Control Vigilance Task 

(Super Duper Lab) 

Performance results (accuracy)  

Cerebral Oximeter (CO) Noninvasive blood oxygen saturation 

BIOPAC 150 with EOG amplifier EOG, eye positions 

BIOPAC 150 with ECG amplifier ECG, electrical signals associated with 

the beat of the human heart 
 

3 Performance Data Recorded by Super Duper Lab 
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software 

Physiological measures The physiology data is filtered to 

remove any extraneous data or outliers 
 

Questions 
 

1-i Not specified 

1-i-1 

If the results from the previous experiment show that vigilance performance does 
improve when localized temperature conditions change, then an additional 
experiment will be conducted. Experiment 2 will investigate whether performance 
can be additionally improved by using real-time physiological data to predict when 
vigilance is declining and implement a localized temperature change at that time.The 
aim of this study is to determine the effect of localized temperature changes on 
vigilance performance and whether individual stress appraisals moderate the 
relationship between localized temperature changes and vigilance performance. 
Electrocardiography, electrooculography, and cerebral oximetry data will be 
measured during a vigilance task to determine the relationship between these 
physiological measures, temperatures changes, and human performance. The task 
does not depend on real-time and there is no automation. 

1-i-2 
Unknown, the configuration of the vigilance assessment model, physiological data 
and thermoelectric pad and blanket. 

1-ii N/A, the study did not have any computational agents. 

2-i 

ECG, EOG and CO data are streamed to a source that checks for a predetermined 
vigilance decrement. However, the method for evaluating the trigger condition was 
not established yet. The temperature control will have to be triggered 

2-ii Unknown  

3-i 

Data streams producers: CO, EOG, and ECG. Data streams consumer: temperature 
controller (either decision is made externally and receives an instruction to change 
temperature or decision is made internally and receives each of the physiological 
streams). 

3-ii Unknown, the connection design was not presented. 

4-i 

Real-time temporal alignment will be necessary if the logic making the vigilance level 
assessment uses a combination of physiological measures. It may be the case that 
each of the streams has their own trigger threshold and they do not need to be 
aligned with each other. 

5-i Unknown, unclear from protocol equipment description. 

5-ii Unknown, unclear from protocol equipment description. 

6-i 
Physiological data streams need to be collected and assessed as quickly as 
possible in order to match the assessment to the real-world. 

6-ii Not discussed 

7-i The process for collecting all of the data streams into one location. 

7-i-1 Unknown 

7-i-2 Unknown 

7-ii Unknown 
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7-iii Unknown 

7-iv Unknown 

8-i 

The physiology data will be analyzed as in Experiment 1, but with an additional real 
time component to ideally predict the vigilance decrement and counter it in real time. 
Performance data will be recorded and analyzed then compared to results from 
Experiment 1 to determine how the effects of temperature changes initiated from 
physiology signals differ from one at set time interval. 

8-ii The sources had to be connected at the beginning of the trial. 

8-iii Unknown 
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Appendix C: Meta-Study  

 There are two sections of this appendix, publication list and coded results. The 

first section provides the citation for each of the published experiments used in the meta-

study. The numbered list indicates the identifier for the study which corresponds to the 

same ID field in the coded results. Following the list of studies are the coded results. 

 

Measure Measurement Range 

Year Published Integer: 1996 – 2015 

Count Modules Producing Data Streams (P) Integer: P ≥ 0 

Count Modules Consuming Data Streams (C) Integer: C ≥ 0 

Count Total Number of Distinct Modules (T) Integer: T ≥ 0,  𝑇 ≤ 𝑃 + 𝐶 

Real-Time Inter-Module Communication {Yes, No} 

Data Standards Mention {Yes, No} 
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 The total number of distinct modules is obtained by the number of individual 

modules according to the taxonomy. Since some modules may both produce and 

consume data streams, they are counted in both P and C, but only once in T. Thus, the 

total number of distinct modules may be less than the sum of consuming and producing 

modules. Real-Time Inter-Module communication is considered “Yes” if there exists at 

least one stream that is sent from a producing module to a separate, distinct consuming 

module which processes the stream and may or may not export the result. The most 

common example of this is a computational model predicting workload from one or more 

physiological data streams. 

 Data standards mentioned is coded as “Yes”, when the authors mention details of 

the data infrastructure configuration. The threshold for coding a “Yes” is at least 

mentioning what specific type of hardware is used for physiological or behavioral 

measures.  

Dynamism of Automation has three levels: None, Static and Dynamic. “None” is 

coded when there is no automation that assists the human perform the task. “Static” is 

coded when there is computational assistance of the same task the human is performing, 

but the automation is configured to be on or off over the course of each entire trial 

(between experimental conditions). “Dynamic” is coded when there is computational 

assistance, and the type of automation changes during the course of a trial (within an 

experimental condition). The types of changes include varying the level of automation or 

triggering the automation on or off in real-time. 

Dynamism of Automation {Static, Dynamic, None} 

Adaptive Automation Exists {Yes, No} 
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Each of the publications was reviewed for data architecture limitations that were 

either explicitly expressed by the authors or implied from the design. For example, it 

could be implied that an experiment had no ability to perform online data analysis across 

all physiological measures if each of the data streams were saved to unconnected storage 

devices.  
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