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Abstract

A method for pilot-assisted Inertial Navigation System (INS) aiding is explored in which the

pilot identifies and tracks a ground feature of unknown position over a short measurement

epoch using an Electro-Optical (E/O) sensor. One then refers to Visual-INS. In contrast

to current research trends, a human operator is entrusted with visually tracking the ground

feature. In addition, a less conventional measurement linearization technique is applied to

generate “converted” measurements of the feature position from successive bearing mea-

surements and the INS estimated aircraft position. A linear regression algorithm is then

applied to the converted measurements providing an estimate of the INS horizontal velocity

error and accelerometer biases. At the completion of the measurement epoch, the INS is

corrected by subtracting out the estimated errors. Aiding the INS in this manner provides

a significant improvement in the accuracy of the INS-provided aircraft navigation state esti-

mates when compared to those of a free/unaided INS. A number of scenarios are simulated

including with and without a constrained flight path, with single vs. multiple ground fea-

ture tracking sessions, and with a navigation vs. tactical grade INS. Applications for this

autonomous navigation approach include navigation in Global Positioning System (GPS)

denied environments and/or when RF emitting/receiving sensors are undesirable.
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VISUAL-INS USING A HUMAN OPERATOR AND CONVERTED MEASUREMENTS

I. Introduction

“I hate GPS. The idea that we are all hooked to a satellite... in a semi-synchronous orbit

that doesn’t work in certain circumstances... is ridiculous.”

—Ashton Carter, U.S. Secretary of Defense 1

Modern navigation is dominated by Global Navigation Satellite System (GNSS), pre-

dominately the Global Positioning System (GPS) operated by the U.S. Air Force. Its ease

of use, the low cost and small form-factor of its user segment, and its long-term accuracy

are among the many reason few aircraft, water vessels, or even land vehicles—military or

civilian—navigate without it. The GPS is truly remarkable; however, as Secretary Carter

lamented in the quote from a June 2014 interview, it is not without flaws. The long-term

outlook of military navigation, he went on to assert, is not in expensive and inherently vulner-

able orbiting satellites but in highly-accurate gyroscope and accelerometer Micro-Electrical

Mechanical Sensors (MEMS) integrated into a new class of Inertial Navigation System (INS)

[5].

Although many experts do not see GPS going away anytime soon, there is a clear need

for alternative Position Navigation and Timing (PNT) technology to supplement the GPS, a

view shared by many top Air Force leaders. General William Shelton and Gen John Hyten,

former and current commanders of US Air Force Space Command (AFSPC), respectively,

both recognize the risk of GPS dependency. As they have stated, the U.S. Air Force and her

sister services must get off the GPS-only solution by implementing a more resilient/robust,

multi-faceted approach to PNT. Advanced MEMS-based inertial systems are part of the

1from a June 2014 interview with the podcast a16z [5].
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solution, but not the lone solution. Furthermore, although in active development at DARPA

and elsewhere, adequate MEMS technology is likely years away and is not a short-term

solution [12, 33]. Therein lies the ultimate purpose of this research: develop a short-term

solution for a robust navigation system that supplements GPS. This research proposes and

develops an INS system aided by vision in the form of a human-aided monocular Electro-

Optical (E/O) system, which will provide a sufficiently accurate navigation solution when

the GPS is compromised. This research will demonstrate, via MATLAB simulation, the

developed method and characterize its effectiveness.

1.1 Problem and Approach

In exploring GPS alternatives, one must consider the INS. The INS is essential to the

navigation of modern aircraft. It provides a self-contained, truly autonomous navigation

solution impervious to jamming, spoofing, and environmental factors. However, the free or

unaided INS suffers from drift or error growth over time rendering it unreliable for long-

duration navigation. The rate of error growth depends on the quality of the INS. Alone, the

INS is not a viable navigation system. However, when integrated with other instrumentation,

the INS error can be constrained, and it can provide a very accurate and reliable navigation

solution over long durations. Unsurprisingly, the GPS itself is a popular choice for INS aiding.

As earlier mentioned, the user segment hardware is small and inexpensive, and navigation

solution it provides is very accurate with errors commonly less than a few meters —depending

on Geometric Dilution of Precision (GDOP), the environment, and other factors. However,

GPS availability is not always assured. The GPS is vulnerable to jamming and spoofing;

consequently, when integrated into the navigation solution, it compromises the autonomy

and integrity of the overall navigation system.

Research efforts seeking alternative, passive aiding sources have recently turned to optical

sensors and computer vision. The increase in computing power and development of auto-

2



mated feature tracking software, such as Scale Invariant Feature Transformation (SIFT),

combined with the availability of digital cameras, makes Visual-INS (V-INS) an enticing

option [7]. Furthermore, optical sensors are passive, non-radiating and are not susceptible

to traditional Electronic Warfare (EW) attacks and are not dependent on outside sources

of information, an aircraft navigation system to maintain autonomy. The possibility of

tightly coupled INS and vision navigation systems has been explored with promising results

[6, 23, 40]. However, current computer vision and Simultaneous Localization and Map-

ping (SLAM) techniques often struggle in “dynamic environments, in environments with

too many or very few salient features, during erratic movements of the camera and when

partial or total occlusions of the sensor occur” [7]. It is generally the same problem that

also plagues Automatic Target Recognition (ATR); automated imaging algorithms strug-

gle in operational enthronements [30]. Consequently, it remains an active field of research.

Near-term solutions may employ human-aided techniques to overcome the shortcomings of

the purely automated systems.

This work seeks a V-INS unencumbered by the limitations of current fully autonomous

solutions, one which may be implemented in aircraft immediately with minimal system

modification. It diverges from contemporary research in that the pilot or navigator is in

the loop and, over a short measurement epoch, manually tracks a single ground feature

relying on the innate pattern recognition ability of humans. In this way, serious drawbacks

of automated feature tracker are avoided, in particular, the inevitability of false matches

and image registration problems. Using an available E/O imaging system (e.g., Sniper

or LANTIRN), the pilot/navigator, when manually tracking the ground feature while the

aircraft is flown by the autopilot, obtains isochronal measurements of the bearings to a ground

feature, from which the aircraft’s horizontal velocity components’ errors and accelerometer

biases are estimated. At the end of the measurement epoch, the minimum variance estimate

of the aircraft horizontal velocity error is calculated in batch using linear regression, and the

3



horizontal velocity measurements provided by the INS are corrected. Thus, the INS provided

estimates of horizontal velocity will be improved. Since velocity is the derivative of position,

an improved estimate of the aircraft’s future position is also obtained. In addition, because

velocity is the integral of acceleration, by estimating the accelerometers’ biases, the future

error in velocity will by reduced even more, consequently the error in position is further

reduced.

The proposed V-INS operates under the assumption that the position of the tracked

ground features is unknown. However, if the position of the ground features is known, the

V-INS could also supplement the traditional INS update technique of obtaining position

fixes from check points. If the feature position is known, INS would receive both a position

and velocity update. This would substantially decrease the position error at the end of the

scenario when compared to either the V-INS or check point position alone. In addition, the

more measurement epochs accomplished, the greater the aiding benefit. Demonstration and

evaluation of the herein developed V-INS was accomplished using MATLAB simulations.

Multiple aiding scenarios were simulated, including one which exploits the correlation be-

tween the INS position and velocity errors, one which includes multiple measurement epochs,

and one which replaces the navigation-grade INS with a less accurate tactical-grade inertial

system.

The human-in-the-loop V-INS navigation method was previously investigated in [19]

where the measurement equation was linearized—the measurement equation associated with

bearing measurements is nonlinear. In this paper the measurement equation is “linearized”

by reverting to the use of converted measurements generated from the distance of the aircraft

from the ground feature; the INS-provided aircraft position and the measured bearings and

altitude are taken at face value. This is an adaption of “linearization” method which is

sometimes used in radar tracking and referred to as converted measurements [14]. Only the

measurement errors are linearized.
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1.2 Thesis Organization

Following the introduction, Chapter II delivers a brief review of the navigation con-

cepts and underlying modeling and estimation principles considered in this research. It

next provides a sample of current research in the area of INS and visual aiding tracing de-

velopments/contributions over the last decade and explains how this research ties in and

advances the field. In Chapter III the human-in-the-loop V-INS aiding method is developed

and the stochastic system models derived. The simulations designed to demonstrate and

evaluate/characterize the V-INS are described. Chapter IV presents the simulation results

and attempts to analyze and explain the observed performance. Finally, Chapter V sum-

marizes the research emphasizing its potential impact on real-world operations and suggests

specific ideas to advance the research.
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II. Background

Chapter II begins by providing the physical and mathematical background necessary to

develop the key aspects of the research herein. It presents a high-level review of relevant

concepts in the fields of navigation (particularly inertial navigation), computer vision, state

space and stochastic modeling, and estimation that are essential to the research. The second

portion of the chapter presents a brief review of current V-INS research is provided. This

serves to both bring the reader up to speed regarding research trends of the last decade and

demonstrate and differentiate the contributions of this research to the larger V-INS field.

The bulk of this chapter is derived from [36] [2] [18] [4] [1]; each provide an excellent and

highly recommended discussion of their respective topics.

2.1 Notation

The following list defines the notation used throughout this work.

Variables

Scalars (lowercase, italicized): x

Vectors (lowercase, boldface): x

Matrices (capitalized, boldface): X

Estimated value: x̂ (hat accent)

Element of a matrix (i th row and the j th column): X(i,j)

Mathematical Operators

Transpose: [·]T

Expectation: E[·]
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Time derivative: ˙[·]

Matrix exponential: e[·]

Reference Frames

Vector frame of reference: x(b) (superscript frame identifier in parentheses)

Relative vector motion: ωib (motion of the right subscript relative to the left sub-

script)

Direction Cosine Matrix (DCM): Ci
b (rotate from subscript frame to superscript

frame)

Aircraft body frame identifier: b

Earth-Centered Earth-Fixed frame identifier: e

Earth-Centered inertial frame identifier: i

North-East-Down (NED) navigation frame identifier: n

Camera frame identifier: c

2.2 Reference Frames and Coordinate Transforms

Modern navigation, especially inertial navigation, requires well-defined coordinate refer-

ence frames which give spacial relevance to physical navigation states. Coordinate transforms

allow vectors represented in a particular reference frame to be represented relative to a differ-

ent reference frame. The reference frames used in this research are orthogonal, right-handed

Cartesian frames. Each is identified and defined below.

Inertial Frame.

The inertial frame is the frame of Sir Isac Newton, the static frame in which Newton’s

laws of motion are rooted. Though the true inertial frame has no fixed origin, for Earthbound

7



navigation it is the convention (and quite convenient) to place an inertial frame origin at the

Earth’s center. Conventionally, the x-axis is aligned with the first star of the constellation

Ares, the z-axis is aligned with the Earth’s polar axis, and the y-axis is orthogonal to both,

see Figure 1.

Earth-Centered Earth-Fixed Frame.

The Earth Centered Earth Fixed (ECEF) is fixed to the Earth and rotates with respect

to the Earth-Centered inertial frame. Its origin is at the Earth’s center of mass. The z-

axis is aligned with the Earth’s polar axis, the x-axis extends through the intersection of the

Equator and Prime Meridian, and the y-axis is orthogonal to both following the right-handed

convention. It rotates with the Earth (ωie = 2π rad
23.93 hr

), see Figure 1.

Navigation Frames.

Navigation frames are local, geographic frames in which relative measurements of a nav-

igation system’s position, velocity, and orientation are made. The vehicle-fixed navigation

frame has its origin at the navigation system, and the axes (x, y, and z) are convention-

ally defined in either the East-North-Up (ENU) or the NED direction. The down and up

directions are aligned with and opposite to the gravity vector, respectively. The frame is

attached to and moves with the navigation system. In contrast, the Earth-fixed navigation

frame has its origin located at a predefined point, often on the Earth’s surface and at the

vehicle’s starting location. Like the vehicle-fixed frame, its axes are aligned in the ENU or

NED directions, but it does not move with the vehicle, see Figure 1.
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Figure 1. Earth-Fixed Inertial Frame, Earth-Centered Earth-Fixed Frame, and NED Naviga-
tion Frame denoted with subscripts [40]

Body Frame.

Body frames are tied to the reference vehicle. They shares an origin with the vehicle-fixed

navigation frame, but axes are aligned with physical components of the vehicle. Conven-

tionally for aircraft, the body frame of fixed-wing aircraft have the x-axis aligned with the

fuselage pointing out the nose, the y-axis aligned with the right wing, and the z-axis pointing

down orthogonal to the others, as indicated in Figure 2.
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Figure 2. Aircraft Body Frame

Camera Frame and Image Frame.

The camera frame is a reference frame with origin at the optical center of the camera

or E/O sensor. Its z-axis extends out of the camera aligned with the focal length and

perpendicular to the focal plane or the image frame. An object in the image frame is

the two-dimensional projection of that object from the three-dimensional world and may be

referenced relative to the camera frame; the object’s z axes coordinate is equal to the camera

focal length [10], see Figure 3. Conventionally, the x-axis points up and the y-axis points to

the right; although, this may vary among different texts.
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Figure 3. Camera Frame (right) and Image Frame (left)

Coordinate Transforms.

Often vector quantities given relative to a particular reference frame require conversion

to another reference frame. This is quite common in navigation when vehicle position,

velocity, acceleration, or orientation are not available in the desired frame. For example, an

INS, as described in a later section, measures specific force along vehicle’s body frame, which

must first be transformed into the inertial frame in order to navigate. Coordinate transforms

allow the transformation of vectors from one reference frame to another. Common transform

methods include Euler angle rotations, DCMs, and quaternions. In this research only the

DCM is used.

2.3 Dead Reckoning, Inertial, and Vision Navigation

Dead Reckoning.

Dead Reckoning (DR) is one of the earliest and simplest forms of navigation. It provides

a method for determining one’s position, direction or heading to destination, and time of

arrival from basic measurements of velocity, heading, and time [38]. Prior to the development

11



of accurate, seafaring clocks in the mid-18th century, DR was the primary means of long

distance sea navigation and was used by explorers such as Columbus. In 1927 Charles

Lindbergh completed his illustrious, nonstop transatlantic flight from New York to Paris

using DR, a testament to its efficacy [15]. In its simplest form, DR consists of estimating the

distance traveled from a known starting point by multiplying one’s ground speed by time

traveled. The distance traveled, combined with ground track angle, gives one’s new position

relative to the starting point.

In practice, DR is complicated by many factors, most notably wind drift. The wind

vector (wind speed and direction) affects an aircraft’s ground speed and track. Aviators in

the pioneering decades of powered flight were limited to airspeed indicators and magnetic

compasses, however, which measure only air speed and true heading (the direction in which

the aircraft is pointed), respectively. The relationship between the aircraft ground speed and

track (ground vector), wind vector, and air speed and true heading (air vector) is illustrated

in the “wind triangle” in Figure 4.

Gr
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pe
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Ground	Track	Angle

Wind	Vector

Drift	Angle

Figure 4. The wind triangle consists of three vectors: air vector, ground vector, and wind
vector. Having two vectors allows for the third to be mathematically computed.
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To compute the ground vector, aviators required both the air speed (available from

on-board air speed indicator and magnetic compass) and the wind vector. Local weather

reports could provide current wind conditions, but these were not always accurate and could

change quickly rendering the measurements useless, especially for missions of long duration.

One method used by aviators to determine the wind vector and ground speed from within

the cockpit while in flight involved making a series of measurements of a fixed landmark

using a drift indicator or driftmeter. A variety of such instruments existed; the simplest

consisted of lines marked on the aircraft, usually on the wings or tail, at increasing angles

as in Figure 5a [27]. By noting the drift line corresponding to the path of a landmark, the

aviator obtained an estimate of the wind direction. More advanced drift meters were later

developed including the Gatty drift indicator in 1930, Figure 5b, and the gyro-stabilized B-6

driftmeter, Figure 5c, in the 1940s and used into the mid 1960s. Instrument stabilization

increased the accuracy of readings, especially in turbulent air.

a.

b. c.

Figure 5. a. Drift lines on the tail [27] b. Gatty drift indicator1 c. B-6 driftmeter [38]
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Despite differences in design and accuracy, drift indicator functioned on the same princi-

ples. The schematics of a conceptual driftmeter sight plate are shown in Figure 6. It consists

of a transparent plate with several parallel “drift lines” perpendicular to two outer “timing

lines”. The instrument is positioned to provided the navigator with a view of the terrain

directly beneath the aircraft. To measure wind drift and ground speed, the pilot first holds

a steady heading and airspeed. As the aircraft overflies a landmark, the navigator rotates

the plate to align the drift lines with the landmark’s path. The angle of the rotation as

measured on the plate is the aircraft’s drift angle due to wind. The navigator also notes the

time taken for the landmark to cross between the two timing lines, from which he or she

may calculate the ground speed geometrically using the aircraft’s absolute altitude (height

above ground level) and the distance between the timing lines on the transparent plate.

Without such measurements, relying solely on the air speed indicator, the aircraft would

“drift” significantly from DR calculated track.

Speed	Lines

Drift	Lines

Drift	Angle
+		
30°
	20°	

10°		0°		10°	20°	30°		-

Figure 6. The navigator rotates the plate of the driftmeter until the drift lines are aligned
with the path of a stationary landmark

1National Air and Space Museum, Smithsonian Institution:
http://timeandnavigation.si.edu/multimedia-asset/prototype-gatty-drift-indicator
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It is noteworthy that even with the ability to determine the ground speed and track, DR

navigation suffered from other errors including error in instrumentation accuracy. Because

DR is essentially an integration of velocity, even a small error in the ground speed will cause,

over time, errors to accumulate in position. Therefore, DR navigation required additional

aiding to be viable for all but short flights. Among the many DR navigation aiding methods

available to aviators of the mid 20th century included map reading (or piloting), celestial

navigation, and radio based systems (i.e., radar fixes, long range (LORAN), and VHF Omni

directional Radio (VOR)) [38].

The Inertial Navigation System.

The INS is a modern day, high-tech DR system. Although they may vary greatly in form,

cost, and accuracy, any INS comprises the same fundamental design: three orthogonally

arranged accelerometers and three orthogonally arranged gyroscopes. The foundations of the

INS are set in the development of the laws of force and motion in the 18th century and the

development and demonstration of gyroscopes in the late 19th and early 20th centuries. By

the late 1930, technological advancements in accelerometer and gyroscopic sensors improved

enough to permit the first practical inertial guidance systems, which was used on the German

V2 rockets during World War II [21]. Development continued, and by the 1960s, the INS

was standard aboard US military aircraft, ship, and submarines [36].

Early INS models consisted of expensive, bulky platform-stabilized and gimbaled sensors

that were difficult to maintain. However, solid-state technology led to the development of

the strapdown INS. The strapdown INS costs far less than traditional gimbaled systems. In

addition, they are much smaller and lighter, do not suffer from gimbal lock, and have fewer

moving parts requiring less maintenance. Optical gyroscopes, including the ring laser type

first developed in the 1960s, helped pave the way for the strapdown system. In the last three

decades, advancements in MEMS technology have enabled more accurate, smaller silicon chip
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based accelerometers and gyroscopes. The relative low cost and small form-factor combined

with high accuracy of strapdown systems make them the dominant design of modern day.

Nearly all modern aircraft use a version of the strap-down INS, and it is a strapdown INS

considered in this research2. A brief development of fundamental INS mechanization and

error analysis follows providing sufficient background to develop the research herein. For a

far more in-depth discussion of the INS seek [2, 36].

Inertial Navigation Systems: Fundamental Strapdown Mechnization.

The INS mechanization equations provide the desired vehicle navigation states (posi-

tion, velocity, and attitude) from the accelerometer and gyroscope outputs and fundamental

kinematics and laws of motion. The accelerometers found in the INS measure specific force

along their respective axes and the gyroscopes measure angular rate of change. The specific

force is a combination of all forces acting on an aircraft (or any vehicle), including its own

propulsion and gravity. The accelerometers make no distinction between acceleration due to

gravity and acceleration from other sources. However, by subtracting out an estimate of the

gravity component the acceleration of the aircraft is obtained. By integrating the vehicle

acceleration, the velocity is obtained, and by integerating a second time, the vehicle position

is obtained. In their simplest form, relative to an inertial frame, the dynamics can be ex-

pressed as in Equation (1) and Equation (2), where v is the vehicle velocity and p is vehicle

position. The vectors f and g are the specific force and gravity acceleration, respectively.

Integrating Equation (1) and Equation (2) yields vehicle velocity and position, respectively.

v̇(i) = f (i) + g (1)

2It is worth noting that the most accurate platform stabilized mechanical systems outperform strapdown
systems from an accuracy standpoint. However, technological advancement continues to close that gap.
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ṗ(i) = v(i) (2)

The accelerometers, however, measure specific force in the body frame, f (b). Thus, to

obtain specific force in the inertial frame, the vector must be rotated into the inertial frame.

This may be accomplished by pre-multiplying the vector by a DCM:

f (i) = Ci
bf

(b) (3)

where Ci
b is derived from the gyroscope measurements of angular rate of change by solving

the ordinary differential equation3:

Ċi
b = Ci

bΩb
ib (4)

The matrix Ωb
ib is the skew symmetric matrix form of the vector ωb

ib = (ωx, ωy, ωz)
T, the

angular rate of change around each axis as measured by the corresponding gyroscope:

Ωb
ib =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (5)

The reference frame in which one navigates dictates the form of mechanization equations.

In practice, terrestrial navigation occurs on a rotating reference frame; thus, a more careful

analysis is required to account for the forces apparent from the motion of the reference

frame itself. Thus, the phantom Coriolis acceleration and centripetal acceleration must be

accounted for:

v̇(n) = Cn
bf

(b) − [2ω
(n)
ie + ω(n)

en ]× v(n)
e + g

(n)
1 (6)

3See [2] for a full derivation
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where g
(n)
1 is the sum of gravity and the centripetal force. The DCM, Cn

b, rotates the ac-

celerometer indicated specific force from the aircraft body reference frame into the navigation

frame.

Inertial Navigation Systems: General Error Equations.

The errors sources associated with the strapdown INS are well documented. They include

inertial alignment errors, inertial sensor errors, and computational error. The dynamic

error equation may be developed using the perturbation of the INS dynamic mechanization

equations previously described, and full derivation are found in [2, 36]. Once again, a local-

level navigation reference frame is considered. It turns out these equation are quite useful

for aiding an INS, precisely what this research accomplishes with computer vision. As will

be described, they provide for the modeling and propagation of INS error states, which

when integrated with an aiding source allow for a far more accurate navigation solution

estimate than the INS provides alone. In fact, the use of error states is used for essentially

all terrestrial navigation when using an aided INS [18]. In general, the equations model

the errors of nine navigation states (comprising the popular Pinson INS error model [18]):

position, velocity, and attitude.

Position Error

δṗ(n) = δv(n) (7)

Velocity Error

δv̇(n) = [f (n)×]ψ + Cn
bδf

(b) − (2ω
(n)
ie + ω(n)

en )× δv

− (2δω
(n)
ie + δω(n)

en )× v − δg
(8)

Attitude Error
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δψ̇ ≈ −ω(n)
in × δψ + δω

(n)
in −Cn

bδω
(b)
ib (9)

The attitude error term is a vector of the misalignment angles:

δψ = (δφ, δθ, δψ)T (10)

which indicate the angle errors about each axes in Cn
b provided by the INS.

Modeling and estimating the INS error states as opposed to the direct state dynamics

is commonplace. The equations are linear, and the high-frequency dynamics of the vehicle

need not be modeled, as the INS provides very accurate high-frequency information. The

low-frequency error dyanmics require far less computational power due to their low sampling

rate.

Vision Navigation.

Visual navigation is conducted with optical sensors and encapsulates a broad assortment

of navigation techniques. Digital cameras and other E/O sensors (e.g., infrared) are the

most popular choice in recent decades due to the power of computers in processing digital

imagery. Figure 7 illustrates a simple digital imaging model in which reflected light enters

the sensor through a lens and is focused onto a photon detector and converted to a digital

signal.
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Figure 7. Digital Imaging Model [40]

Multiple vision navigation technologies and techniques exists. [1] proposes a vision nav-

igation classification structure which serves to guide this background discussion. To begin,

consider two conditions: known and unknown environments. In the former, the naviga-

tion system has a database of known landmarks. Vision navigation in such an environment

primarily consists of comparing and matching landmarks in live images with those in the

database. The vehicle position and pose are estimated from the stored position of the

landmarks, akin to obtaining position fixes from check points. In contrast, operating in an

unknown environment means navigation systems have no previous knowledge of the environ-

ment or landmarks. Subdividing further, vision navigation systems either operate alone or

as part of an integrated, multi-sensor navigation system. This research considers the latter

operating in an unknown environment.

Most vision navigation systems operating in unknown environments, regardless of a stan-

dalone or integrated design, rely on one of two approaches, Visual Odometry (VO) or SLAM.

In VO camera motion is estimated from a series of two-dimensional images using optical flow

or feature tracking. At its heart, it is a measurement of velocity, from which position is ob-

tained through integration. SLAM implements feature tracking VO, estimating the vehicle
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trajectory, but also estimates the location of all feature landmarks along the way building

a map of the environment. In this way, SLAM accounts for the correlation that exists be-

tween camera pose and the position of observed features making it more accurate than a

purely VO based system but at the cost of computational burden. Both operate on the basic

DR principle and accordingly require a known starting point. Like DR or INS navigation

systems, errors accumulate with time. Reliable, longterm/long-duration navigation requires

aiding of some variety, such as an INS.

Vision navigation approaches require relating the projection of objects in a 2-dimensional

image to their position in a world coordinate frame. The pinhole camera model is widely

used when representing the relationship between the three-dimensional (3D) scene and two-

dimensional projected image [8, 16, 24, 40]. Implementing the fundamental equation of the

thin lens, the position of a feature or landmark in the world scene as projected onto the

image plane is given by

simage =

(
f

scz

)
sc (11)

where f is the camera focal length, sc is the feature position in the camera reference frame,

and scz is the z-axis component of the feature position. The image plane may be notionally

inverted and moved to the front of the camera one focal length away, as illustrated in

Figure 8, which produces an upright image projection. The position of the feature thus may

be derived, with scale ambiguity, from the projected image. That is, the feature may rest in

an infinite number of positions along the line of site. Techniques may be employed to resolve

the scale including a binocular camera setup or a target ranging sensor. In this research,

knowledge of aircraft altitude is employed to that effect.
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Figure 8. Pinhole Camera Projection Model

2.4 System Modeling

In order to analyze a system, be it tangible or otherwise, it is helpful to model it. By

modeling a system mathematically, one can master it—that is, determine the outputs given

a set of inputs or determine the inputs that provide the desired outputs. Often, as in the case

of navigation, we concern ourselves with the way systems behave with time, the dynamics of

a system. Navigation systems, as well as many other physical and non-physical systems, are

conventionally modeled in continuous time with systems of differential equations. Further-

more, we define system “states” as the quantities/information from the system we desire to

analyze. If a system’s dynamics are linear, it may be converted to a system of first-order

differential equations and modeled in state-space form using matrices with Equation (12),

the dynamics equation, and Equation (13), the output or measurement equation.

ẋ(t) = Ax(t) + Γu(t) (12)

z(t) = Hx(t) + Du(t) (13)
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where the vectors x(t), u(t), and z(t) are the system’s states, inputs, and outputs, respec-

tively. The outputs are typically sensor measurements (e.g., an altimeter outputs a mea-

surements of altitude). The matrices A, Γ, H, and D are known as the system or dynamics

matrix, the input matrix, the output or observation matrix, and the direct input matrix,

respectively, and define the linear relationships among states, outputs, and inputs. Linear

systems are especially convenient because the mathematics behind their analysis, control,

and estimation are well understood and relatively simple to implement.

The solution to the linear system dynamic equation is given by

x(t) = eA(t−t0)x(t0) +

∫ t

t0

e−A(t−τ)Γu(τ)dτ (14)

Unfortunately, the systems found in the real world are never perfectly linear. However,

they can often be approximated with linear systems to a useful degree of accuracy through

linearization.

Model in Discrete Time.

It is worth noting that the previous development used continuous time. However, any

system which incorporates a digital computer will generally require discrete modeling, as

is the case with this research. An approximation of the discrete time state-space dynamics

converted from continuous time is given by the following difference equation [34]:

xk = Ak−1xk−1 + Γk−1uk−1 (15)

where

Ak−1 = eA(tk−tk−1) (16)

and
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Γk−1 =

∫ tk

tk−1

eA(tk−τ)Γdτ (17)

the subscript ‘k’ denote the digital time step. It must be assumed that the matrix A is

constant during the small time step interval, ∆t, as is the case in the research herein.

Stochastic Modeling.

The systems described thus far are deterministic; that is, the system inputs are com-

pletely known, the model is perfect, and the solution is exact. This rarely, if ever, happens

in the real world. Linearization introduces error into the model, for example, and sensors

always exhibit a degree of measurement error. Stochastic modeling, in contrast, adds ran-

domness or noise to the system which account for the unknowns and errors in the model and

sensors and more accurately portrays real-world systems. The type of noise added depends

on the system, but Gaussian white noise is very common in navigation modeling because

the majority of errors (e.g., gyroscope and accelerometers biases) tend to be Gaussian dis-

tributed. Equations (18) and (19) show the addition of noise to the linear system’s dynamics

and measurement equations.

The noise input matrix, G, maps the vector of white noise sources, w(t), to the states

and primarily accounts for model error and system disturbances. The sensor noise vector,

v(t), accounts for error in the sensor measurements.

ẋ(t) = Ax(t) + Γu(t) + Gw(t), w(t) ∼ N (0,Q(t)) (18)

z(t) = Hx(t) + v(t), v(t) ∼ N (0,R(t)) (19)

The noise sources are zero mean with strengths defined by the covariance matrices Q and

R. Unlike deterministic system, which have an exact solution, the states in stochastic sys-
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tems exist as probability distribution. Accordingly, the solutions to stochastic systems with

Gaussian distributed noise are completely described by their expected value and covariance.

2.5 Estimation

In a perfect, deterministic world system models are free of imperfections and always

provide the exact solution; consequently, sensors and measurement models would serve no

purpose and life would be quite dull. However, unavoidable uncertainty in the models and

measurements means that exact solutions are unobtainable. The best one can do is estimate

the truth value from all the information at hand, namely the measurements and system

model, and calculate the corresponding uncertainty, the estimate covariance or standard

deviation. Estimation is a gargantuan field in its own right, and there are a plethora of

texts on the subject. This section provides a high-level review of the techniques used in this

research. For a thorough explanation, three great resources include [4, 18, 34], from which

this section is derived.

Linear Regression.

Regression analysis involves modeling the relationship between sets of independent and

dependent variables, often called the regressors and predictors, respectively. Linear Regres-

sion (LR) applies specifically to situations in which this relationship is linear. LR finds utility

in many navigation problems as a method to reduce error in state estimates given multiple

observations. The relationship may be expressed in the following form

z = Hθ + ν (20)

where z is the predictor, θ is the regressor, H is the regression matrix, and ν is error.

Typically, the predictor variables are provided in the form of measurements and the regressor
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variables are those we wish to estimate. Numerous methods for estimating the regressors

exist. The simplest is probably the method of ordinary least squares (OLS), an unbiased4

and minimum-variance optimal estimate, which minimizes the sum square of the residual

[4]. In this research, the residual is defined as the difference between the measurement and a

prediction of what the measurement should be from the system model [18]. The OLS method

is valid for Gaussian distributed noise. The regressor variable or parameter is estimated as

follows:

θ̂ = (HTH)−1HTz (21)

One drawback of OLS is the necessary assumption that all measurements are equally

“good”, an impractical condition in many real-world scenarios. A small modification to

the above equation allows the “weighting” of measurements, giving more value/credence

to the more accurate measurements. This form, called weighted least squares, is given in

Equation (22).

θ̂ = (HTWH)−1HTWz (22)

where W is the weighting matrix. To obtain the optimal, minimum variance estimate (as well

as the maximum likelihood estimate it turns out) the inverse of the measurement covariance

matrix is used for the weighting matrix [4]. That is, W = R−1. The estimate uncertainty

or covariance is given by

Pθ̂ = (HTR−1H)−1 (23)

4The expected value of the regressors estimate equals the regressors: E[θ̂] = θ
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Kalman Filter.

The LR method, as described above, assumes all measurements are available at the time of

estimation. However, this is not always the case, especially in dynamic navigation scenarios.

The Kalamn filter essentially applies a recursive weighted least squares algorithm, acting on

measurements as soon as they become available and updating the estimate accordingly. The

filter need only store information from the latest estimate update; it does not need to keep

track of all measurements or navigation states for the entire mission duration. When dealing

with a lot of measurements, this form of recursive estimation is essential as the amount

of data and computational power required to process all stored states, measurements, and

covariances quickly grows intractable. As with least squares LR, the traditional Kalman

filter requires the dynamics model and measurement equations to be linear and all noise to

be white, Gaussian distributed.

The key component to Kalman filtering is the Kalman gain matrix. Essentially, it contains

the combined uncertainty information from all previous estimates and is needed to carry-on

estimation with new measurements. The Kalman gain provides the minimum mean squared

error estimate and is calculated as follows 5:

Kk+1 = P−k+1H
T
k+1(Hk+1P

−
k+1H

T
k+1 + R)−1 (24)

The process begins with initialized states and state covariance matrix, usually at time

step k = 0. The states and covariance are then propagated in time using the state transition

matrix at each time step, as in Equation (25). The Kalman gain is also computed at each

time step. Only the most recent state and covariances, along with the Kalman gain, are

stored.

5The superscript ‘−’ indicates an estimate or estimate covariance which was propagated to a given
timestep but not yet “updated” with newly available information or measurements. The superscript ‘+’
indicates an estimate or estimate covariance which has incorporated the latest information or measurements
available at a given timestep.
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x̂−k+1 = Φx̂+
k

P−k+1 = ΦP+
k ΦT + Qd, for k = 0, 1, 2, ...

(25)

the state transition matrix, Φ, is just the discrete dynamic matrix as calculated in Equa-

tion (16) that propagates the states from 0 to the next digital time step, k + 1.

When new measurements are available, the estimates are updated using the Kalman gain

and Equation (26).

x̂+
k+1 = x̂−k+1 + Kk+1(z̄k+1 −Hk+1x̂

−
k+1)

P+
k+1 = (I−Kk+1Hk+1)P−k+1, for k = 0, 1, 2, ...

(26)

Non-Linear Estimation.

The methods discussed up to this point assume all linear models; however they can be

extended to included non-linear models. There are multiple techniques to deal with problems

of non-linearity. Non-linear least squares, for example, uses Taylor series approximations

to linearize the system dynamics or measurement equations. Among its many practical

applications includes GPS navigation in which it is used iteratively to estimate user position.

The Extended Kalman Filter (EKF) is essentially the recursive analog of the non-linear

weighted least squares. Additional methods may be found in [3, 4, 17].

Another method to deal with non-linearity is to convert the model parameters in such a

way that the model itself need not be linearized, only the error. This can provide a more

accurate estimate and decrease computational burden, depending on the scenario. For ex-

ample, a radar system tracking a target provides measurement in polar coordinates while the

target dynamics are often modeled in Cartesian coordinates. Thus, the measurement model

is inherently non-linear as the following example demonstrates: A typical, 2-dimensional non-

28



linear measurement model for the described tracking scenario might be given as in equations

(27) and (28),

R(x, y) =
√
x2(t) + y2(t) + δR(t) (27)

θ(x, y) = tan−1

(
y(t)
x(t)

)
+ δθ(t) (28)

where R is range and θ is azimuth to target, and the error in the respective measurements,

δR and δθ, may be modeled as white Gaussian noise of strengths σ2
R and σ2

θ .

An alternative linear measurement equation may be generated using the clean variables

as follows:

xk = Rk cos θk (29)

yk = Rk sin θk (30)

Now, the physical measurements are Rmk
= Rk + δRk and θmk = θk + δθk, where the

subscript m denotes a measured value yielding equations (31) and (32)

xk = (Rmk
− δRk) cos (θmk

− δθk) (31)

yk = (Rmk
− δRk) sin (θmk

− δθk) (32)

Expanding, neglecting small terms, and rearranging yields

Rmk
cos θmk

= xk + cos θmk
· δRk −Rmk

sin θmk
· δθk (33)

Rmk
sin θmk

= yk + sin θmk
· δRk +Rmk

cos θmk
· δθk (34)

Thus, the measurement given to the KF is, in matrix notation
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zk = Rmk

cos θmk

sin θmk

 (35)

The observation matrix is

H =

1 0 0 0

0 0 1 0

 (36)

and the Kalman filter’s “linear” measurement equation is

zk = H

xk
yk

+

ν1k

ν2k

 (37)

where νk is measurement noise:

νk ,

ν1k

ν2k

 =

cos θm −Rm sin θm

sin θm +Rm cos θm


δR
δθ

 (38)

Define the matrix

Mk =

cos θm −Rm sin θm

sin θm +Rm cos θm

 (39)

The covariance of the measurement noise E(νkν
T
k ) is then

Rk = Mk

σ2
R 0

0 σ2
θ

Mk
T (40)

With a linear dynamics and measurement model, the target may be tracked using a linear

Kalman filter. The sensor noise strength matrix, Rk, is dynamic, however, and will change

with each new measurement. Such methods are discussed in [14], and a similar method
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of measurement conversion and error linearization is employed in this research. As will be

explained in great detail in Chapter 3, this research employs a combination of the Kalman

filter and batch LR using converted measurement.

2.6 Review of Related Research

Since the proliferation of the INS in the mid 20th century, researchers have sought to

overcome its inherent limitations through aiding with additional sensors and navigation

instruments. Aiding methods including external velocity measurements, celestial tracking,

and basic map reading or using known check points were explored as early as the 1950s [35].

The LORAN-C navigation system was used extensively to reduce INS drift through the

1970s and 1980s, particularly on long-distance missions. Shortly after the development of

the GPS in the 1970s and 1980s however, the GPS became the dominant INS aiding method

and remains so to this day [32]. The unrivaled accuracy and precision of GPS combined

the low unit cost and small size of the user segment solidified its predominance in modern

navigation. Unlike the INS, the GPS is not self contained, and its availability is not always

assured. Although modernization efforts have strengthened the GPS, it remains vulnerable

to spoofing and jamming. Environmental factors also affect the GPS. Multi-path in urban

environment can significantly reduce accuracy as can reduced satellite visibility from trees,

buildings, and other obstructions. Realizing the vulnerabilities of the GPS, governments and

researchers seek an alternative, and vision aided INS is one such alternative. Although first

proposed as early as the late 1970s [32], vision aiding of INSs has only recently garnered

extensive research bolstered by the advancement of computer vision technology in the 1990s.

Due in part to the growing popularity the Unmanned Aerial Vehicle (UAV), the majority of

research focuses on automated vision navigation.

What follows is a brief chronological review of germane research contributions to the field

over the last fifteen years. The focus is on visual landmark or ground feature tracking applied
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to aiding INS systems, specifically involving stationary landmarks of unknown position. It

is not exhaustive but presents the primary foundations of the research herein.

Pachter, Polat, and Porter: INS Aiding using Passive, Bearings-only Vision

Measurements.

In [25], Polat, under the guidance of his adviser, Dr. Pachter, broke new ground in 2002

with his work on INS aiding using bearing-only measurements of unknown ground features

taken with a theoretical gimbaled E/O telescope tracker. Though aiding using position

updates from known landmarks, check points, was commonplace, scant modern research

explored using unknown landmarks. He assumed no GPS availability and proposed and

simulated a method in which five aircraft’s angular navigation variables (roll, pitch, yaw,

heading and flight path) are estimated using bearings-only measurements to a single, un-

charted ground feature. The measurement provided a direct measurement of the aircraft

angle of attack and side slip angles, assuming no wind. His simulations demonstrated signif-

icant improvement to the estimate of the aforementioned parameters; however, he obtained

little direct improvement to positional aircraft navigation state estimates without prior in-

formation about the landmark, e.g. position coordinates or range.

Alec Porter expanded on the work of Polat [26], again working under Dr. Pachter. Using

a comparable setup, he demonstrated an improvement in the estimated positional navigation

state when including measurements form an independent altitude sensor. The advance of

digital camera technology and computer vision, however, vectored later research toward

automated feature tracking and optical flow techniques using digital camera imagery.

Veth and Neilsen: INS Aiding with SLAM.

In [40], Veth was one of the first researchers to explore a SLAM approach to passive

INS aiding with vision. It automated the task of manual feature tracking, applying deep
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vision/INS integration. He developed an improved solution to the feature tracking corre-

spondence problem, see Section 2.3, using the aircraft INS and EKF to predict the location

of features in successive image frames. The method constrained the feature detection er-

rors, improving upon similar visual landmark tracking research such as [9]. Experiments

demonstrated navigation state estimates several orders of magnitude smaller using the inte-

grated vision INS than with the free-running INS using low-cost complementary metal-oxide

semiconductor cameras and both a tactical-grade and consumer-grade MEMS Inertial Mea-

surement Unit (IMU).

Neilsen, in [23], expanded on the work of Veth. He implemented the same SIFT algorithm

as Veth but with a monocular camera setup and in a more robust, militaristic environment.

Examining the aided system observability Grammian, Neilsen showed that the setup required

two or more ground features with a priori known locations to achieve full observability and

full INS aiding. In contrast, when limited to a single camera, observability is unachievable

when the position of the tracked ground features are unknown, regardless of the number

of features tracked. Furthermore, Neilsen witnessed no aiding (position/velocity estimate

improvement) when tracking features of unknown position using only bearing measurements

(supporting the earlier results of Polat and Porter [25] [26]). However, by integrating inde-

pendent measurements of altitude and heading, the research showed improved performance.

Mulat, Relyea, and Quarnermyne: Bearing-only Measurement Observability

and Monocular SLAM.

In [22, 28, 31] research focused on the observability of feature tracking and the aiding

of an INS through “bootstrapping”. Examining the dynamic observability Grammian, it

was ascertained that that full navigation state observability is attainable when at least

two known ground features are tracked. Specifically, [31] performed an in-depth covariance

annalysis. Two assumptions were made: 1) the location of at least two ground features was
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known at scenario start and 2) at least two ground features were available in every frame

thereafter. It showed that the growth in INS position errors significantly slowed, by 99.5%

for horizontal position error, though not eliminated when continuously tracking at least two

ground features of unknown position. The technique relied on the SIFT automated feature

tracking algorithm and successful image correspondence. A significant contribution of the

work was the geometry-based, non-linear measurement equation relating the ground feature

in the image plane to the aircraft position:


xp

yp

zp

 =


x

y

z

+
|rLOS|√

x2
f + y2

f + f 2
Cn

b


xf

yf

−f

 (41)

It is the general measurement equation used by proceeding researchers at AFIT and the

basis for the measurement equation used in this research.

Recent SLAM Research.

The latest research into V-INS when considering only landmarks/ground features of un-

known position continues to focus near exclusively on improving SLAM for autonomous

aircraft. Many recent improvements have been made. In [32], researchers used multiple

passes made around landmarks of unknown position to constrain INS divergence/error. The

navigation state vector is augmented with multiple estimates of the same landmarks decreas-

ing the estimate covariance of each, thereby constraining the INS divergence. The technique,

although demonstrated in a binocular setup, should also apply to the monocular case. Al-

though insightful, one drawback is the required “circling” of landmarks which is not feasible

in many applications.

In [16] researchers improved upon the traditional EKF SLAM approach implementing

a factored EKF. Flight test confirmed the approach improved numerical stability without
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noticeably taxing the navigation computer. Although research continues to improve the

SLAM technique in a variety of ways, the specific problem of feature tracking and image

correspondence is often overlooked or assumed “solved” as in [32]. In addition, successful

flight tests typically occur in highly controlled environments [16] [24]. This implies much

research into the correspondence problem is still required for reliability in many real-world

applications. Indeed, [13] demonstrated successful motion estimation of a ground system im-

plementing an monocular V-INS, but among their conclusions, researchers highlight the need

for solutions to a score of problems including complex visual environments, moving objects,

and environmental aberrations. Similarly, in [30] Ratches discusses the problems computer

vision has in operational and unpredictable environments underscoring the continued need

for human-aided/human-in-the-loop implementation in real-world systems.

Mirabile: Pilot-Assisted V-INS.

In [20], Mirabile and Pachter broke from traditional V-INS methods replacing the auto-

mated SLAM approach with a human operator, presumably the aircraft pilot or navigator.

By allowing a human operator to select and track the ground feature, the approach side-

stepped hurdles innate to current computer vision technology including the image registra-

tion/correspondence problem. Aiding was accomplished through a ground speed measure-

ment. Development was based on the idea of early navigators using driftmeters. Mirabile

first showed that a ground speed measurement, such as one obtained by a navigator employ-

ing a driftmeter, could reduce error at the end of a one-hour flight by up to 60%, if the flight

path was constrained. He also demonstrated the validity/robustness of his the simplified

INS error model in scenarios of varied aircraft acceleration.

Mirabile continued development considering next an updated E/O system. He tracked

a single ground feature while flying wing-level with constant velocity during a short, 10-

second epoch and incorporated a barometer for z-channel stabilization. He employed the
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same measurement equation of his predecessors, originally derived in [22, 31], and used the

linear Kalman filter for estimation. Although theoretically valid for a ground feature located

anywhere within the E/O system field of view, only grounds features directly beneath the

aircraft were simulated, he examined only aiding in the x (or east) channel. Although the

navigation states are not all observable, a respectable reduction in estimate uncertainty at

the end of the scenario when compared to a free-running INS was demonstrated. Monte

Carlo trials were not executed, but the single-run results he presented demonstrated aiding.

Among other advancements, this research will use Monte Carlo trials to strengthen the

validity of simulation results.

Advancing the Research.

This work follows directly from that of [19] and Mirabile’s immediate predecessors. His

results demonstrated the feasibility of the human-in-the-loop V-INS approach. This research

develops and implements an alternative approach to the measurement equation. Instead of

conventional linearization, the measurement equation is “linearized” by reverting to the use

of converted measurements in which the sensor outputs are manipulated algebraically to

yield a linear measurement to INS navigation error state relationship. In this way, only the

“small” measurement error terms must be linearized, which may be accomplished through

perturbation analysis. Theoretically, linearizing only the error terms in the measurement

equation, instead of the measurement equations themselves, reduces the overall modeling

error, and consequently, the estimation error. This is an adaption of a “linearization” method

which is sometimes used in radar tracking and referred to as converted measurements [14].

The new measurement model allows a more accurate V-INS navigation solution. In ad-

dition to a new measurement model, the overall method is matured with a more robust

simulation, including the addition of ground feature not directly below the aircraft. Esti-

mation of the y-direction error is added, providing a more complete, 3D simulation. Monte
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Carlo trials are also executed. Such a thorough exploration should provide the results and

risk reduction necessary to justify continued research, including simulations enhanced with

real-world flight data followed by flight tests.
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III. Methodology

The intent of this research is to develop, demonstrate, and characterize a human-in-the-

loop, bearings-only measurement approach to the V-INS. The herein developed V-INS will

provide an alternative, inertial-based navigation system that is entirely passive and self-

contained, which the system accomplishes using a barometer and monocular E/O system to

aid an INS. Furthermore, the V-INS will employ a human to assist with E/O operation.

This chapter entails a complete, step-by-step development of the V-INS. It then describes

the simulations designed to demonstrate and characterize the V-INS.

3.1 V-INS Method Development

Development of the human-in-the-loop V-INS begins with defining a baseline flight sce-

nario in which the system is employed and simulated. This baseline scenario will aid the

development of the INS error model and measurement equation. The scenario also provided

a model for simulation development; the simulation demonstrated the V-INS and provided

for its characterization. Following the initial round of simulations, the baseline scenario was

altered to demonstrate other facets of the V-INS method including the benefits of undertak-

ing multiple measurement epochs and the aiding potential of the visual system when paired

with a less accurate tactical-grade INS.

Baseline Navigation Scenario.

The baseline navigation scenario considers an aircraft, equipped with a navigation-grade

INS, during a one-hour flight along an arbitrary, unconstrained flight path. Because the

flight duration is only one hour, the aircraft navigates in a simplified terrestrial navigation

frame (Earth-fixed) on a theoretical flat, non-rotating earth. These assumptions significantly

impacts the error model development, as will be seen shortly. The aircraft is equipped with
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the V-INS system, as well as a basic autopilot capability. The scenario may start in midflight

and need not begin at takeoff; however, the navigation system must acquire a precise aircraft

Position Velocity Attitude (PVA) solution and near-perfect INS alignment at scenario start.

When the scenario begins, the pilot navigates only with the INS, aided by the barometer. A

navigation grade INS always requires aiding from an independent altitude source to maintain

stability in the vertical channel [2, 36]. A Kalman Filter (KF) integrates the unaided INS

solution with the barometer altitude measurements. Although a number of altimeters are

available, a barometer maintains the passive nature of the V-INS and does not transmit Radio

Frequency (RF). Coined the “free”-INS, the baro-aided INS model will exhibit immediate,

unbounded error growth in the horizontal x and y channels but maintains a stable vertical

z channel solution.

The V-INS navigation solution comes only from the “free”-INS for the entire one-hour

scenario, except for a single velocity update from its E/O sensor approximately halfway

through the flight. This velocity update is generated from isochronal, bearing measurements

of a stationary ground feature. The pilots uses the E/O sensor’s digital display to identify

and select the ground feature and manually tracks it over a short, 10-second, measurement

epoch as illustrated in Figure 9. The V-INS interprets the measurements and generates

the INS PVA update. The measurement equation, as will be seen shortly, requires the

aircraft maintain constant velocity (ground speed), constant altitude, steady heading, and

wings-level flight for the duration of the measurement epoch. The pilot may accomplish

this by engaging the autopilot. Any error that occurs due to the autopilot during the

short measurement epoch will be small and Gaussian in nature. The autopilot generates an

airspeed hold; therefore, to maintain a constant velocity/ground speed the research assumes

the wind field is constant during the measurement epoch. Although different flight dynamics

will induce varying amounts of error growth, they will not effect the accuracy of this velocity

update.
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Figure 9. Measurement Epoch in ENU frame: As the aircraft flies East and the pilot tracks
the ground feature on the E/O display, measurements of the feature location (xf` , yf`)in the
focal plane are recorded and sent to the navigation computer.

Following the measurement epoch, the pilot may disengage the autopilot and continue

the flight plan for the remainder of the one hour scenario. At the end of one hour scenario,

the aircraft V-INS position and velocity errors are decreased compared to the errors of the

“free”-INS acting alone.

INS Error Dynamics and Initialization.

The development of the INS error dynamics is presented, followed by the measurement

equation development. The aircraft flightpath determines the INS error dynamics and,

therefore, drive the growth of error during the flight. The error dynamics developed herein

serve two purposes: (1) they provide a means for modeling and simulating the INS error

growth during the flight; (2) they drive the derivation of the measurement equation. The

ground speed estimate obtained from the measurements through LR is independent of the

flight path dynamics prior to the measurement epoch. Therefore, the flight path need only

be constrained during the short measurement epoch. For simplicity, however, the scenarios

simulated herein considers an aircraft in straight, constant velocity and level flight in an

eastward direction at a steady altitude for the duration of the flight, not just the measurement
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epoch. Because the per-measurement epoch flight path does not affect the ground speed

measurement, using a simple flight path to derive the dynamics model does not detract from

the legitimacy of the V-INS development or its simulations.

This research employs an unaided INS error state dynamics model, like the one described

in Section 2.3, derived from the navigation scenario and based on the Pinson INS error model.

The error model is used by the V-INS in generating INS error updates both for the “free”-

INS and when integrating the E/O measurements. It is also used to propagate the INS error

in the simulations. The nine standard Pinson states (position, velocity, and platform mis-

alignment errors) are augmented with the accelerometer and gyroscope biases—the greatest

contributers to INS error—for a total of 15 error states:

δp(n) =


δx

δy

δz

 , the aircraft position errors (nav. frame)

δv(n) =


δvx

δvy

δvz

 , the aircraft velocity errors (nav. frame)

δψ =


δφ

δθ

δψ

 , the notional platform tilt errors

δb(b) =


δbx

δby

δbz

 , the accelerometer biases (body frame)

41



δω(b) =


δωx

δωy

δωz

 , the gyro biases (body frame)

which comprise the complete error state vector δx:

δx =

(
δp(n), δv(n), δψ, δf (b), δω

(b)
ib

)T

(42)

The model neglects INS accelerometer and gyroscope drift, justified given the short scenario

duration.

Development of the error state dynamics begins with the “platform”1 misalignment er-

rors. Equation (9), from Section 2.3, may be simplified due to the flat, non-rotating earth

assumption yielding

δψ̇ ≈ −Cn
b δω

b
ib (43)

The continuous time velocity error state dynamics, first described in Equation (8), are

simplified to Equation (44) where the Coriolis terms are neglected and the gravity vector is

assumed known.

δv̇(n) = [f (n)×]ψ + Cn
b δb

(b) (44)

where [f (n)×] is the skew symmetrix matrix form of the specific force vector, f (n), defined,

in the case of constant altitude and wings-level flight, in the east direction by

1Although there is no actual platform, because we consider a strapdown INS, these are the errors that
would be present if the gyroscopes and accelerometers were platform mounted.
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f (n) =


f

(n)
x

f
(n)
y

f
(n)
z

 =


ax

0

0

−


0

0

−g

 =


ax

0

g

 (45)

where g is the acceleration of gravity and ax the aircraft acceleration along the x-axis; in the

considered scenarios, ax = 0. During the measurement epoch, while the autopilot is engaged,

the aircraft velocity is constant. The aircraft position error state dynamics are modeled as

the time derivative of the velocity error.

δṗ(n) = δv(n) (46)

Finally, the accelerometer and gyroscope errors are modeled as zero-mean, Gaussian constant

biases:

δḃ = 0, δb(0) ∼ N (0, σ2
b ) (47)

δω̇ = 0, δω(0) ∼ N (0, σ2
ω) (48)

The variance values (σ2
b and σ2

ω) are chosen to induce an unaided INS position error of 1

km/hr, typical of a navigation grade INS [36, 39], and later 100 km/hr typical of a tactical

grade INS. Combining the dynamics equations from the above into matrix form, which

allows for easy computation, yields

δẋ(t) = Aδx(t), where δx = (δp, δv, δψ, δb, δω)T (49)
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and

A =



03 I3 03 03 03

03 03 −F(n) Cn
b 03

03 03 03 03 Cn
b

03 03 03 03 03

03 03 03 03 03


15×15

(50)

It is worth noting that because the model considers only constant random biases (accelerom-

eter and gyroscope biases), the dynamics model has no noise vector component as did the

stochastic system described in Section 2.4, Equation (18).

The continuous time dynamics are converted to the their discrete time equivalents by

evaluating the matrix exponential of A, Equation (51), which allows computer processing

and modeling. In simulating the scenario, this step is executed with built-in MATLAB

functions.

Ad = eA∆t, where ∆t , computer system time step (51)

Propagating the INS error requires initialization. The aircraft PVA solution is known

precisely at scenario start; the INS errors are exclusively caused by the accelerometers’ and

gyroscopes’ biases. Accordingly, the V-INS error states are initialized as follows:

δx0 =

(
δx0 δy0 δz0 δvx0 δvy0 δvz0 δφ0 δθ0 δψ0 δbx0 δby0 δbz0 δωx0 δωy0 δωz0

)T

=

(
01×9 N (0, σ2

b ) N (0, σ2
b ) N (0, σ2

b ) N (0, σ2
ω) N (0, σ2

ω) N (0, σ2
ω)

)T

(52)

and the covariance at scenario start is
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Pδx0 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 σ2
b 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 σ2
b 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 σ2
b 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 σ2
ω 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 σ2
ω 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 σ2
ω



(53)

The “Free”-INS.

In the envisioned scenario, the “free”-INS runs continuously providing the vertically

stabilized aircraft navigation solution, which is only aided by the E/O sensor once, after the

measurement epoch. The “free”-INS consists of the unaided INS and barometer integrated

with a linear KF. The navigation solution is obtained using the INS error model previously

developed, and the trivial measurement equation:

zbrk = hbrkxk + vbrk (54)

where the scalar measurement zbr, at time step k, is actually the INS altitude error generated
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by differencing the indicated INS altitude, taken at face value, and the altitude provided by

barometer:

zbrk = zc − zbaro (55)

Furthermore, the regressor matrix is a direct mapping from the measurement to the INS

altitude error

hbr =

[
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

]
(56)

and the measurement noise, from the barometer sensor, is zero-mean, Gaussian with variance

σ2
br:

vbrk ∼ N (0, σ2
br) → rbr = σ2

br (57)

The “free”-INS error states and covariance are propagated and updated for the duration

of the scenario using a linear KF according to Equation (24) through Equation (26). The

“free”-INS error states and covariance, at any time step k immedetly following a barometer

measurement, are indicated by the variables δx
+(free)
k and P

+(free)
k .

V-INS.

The estimation of the ground speed/velocity error is the linchpin of the herein developed

V-INS navigation method. The V-INS combines the “free”-INS output with the E/O sensor

measurement through a LR algorithm at the end of the measurement epoch. Development

of the V-INS measurement equation, required for the LR, involves the conversion of the non-

linear E/O bearing measurements to linear measurements of INS velocity error. Calculating

the change in the ground feature position at each step of the measurement epoch and applying
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Figure 10. INS Velocity Error Measurement Concept: The change in the calculated feature
position, xc, from time (t) to time (t + L∆t) is attributed to the error in the INS indicated
velocity, δv [20].

a linear regression algorithm allows an estimate of the aircraft ground speed error as well as

the horizontal axes accelerometer biases. Figure 10 depicts the V-INS aiding concept.

The measurement equation employed herein is novel in that the bearing measurements

taken with the E/O system and recorded as the position coordinate (xf , yf ) of the ground

feature in the E/O system’s focal plane are converted so their relationship with the INS

error states is linear. Thus, only the measurement error terms need be linearized, which is

accomplished using conventional perturbation techniques. This allows the application of LR,

which tends to be less computationally intensive than the EKF or particle filter methods, as

well as more accurate.

Development begins with a measurement equation relating the position of the ground

feature, as referenced in the E/O inverse focal plane, to the INS error states in the local-level

navigation frame. The measurement made by the E/O system are illustrated in Figure 11

and guide the model development.
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Figure 11. Measurement Geometry: The selected ground feature is projected onto the focal
plane at coordinates (xf ,yf).

Working in the navigation frame, the position of the feature, xp, is equal to the position

of the aircraft, x, plus the distance of the feature from the aircraft, d:


xp

yp

zp

 =


x

y

z

+


dx

dy

dz

 (58)

The derivation depends on two key assumptions. For the duration of the measurement

epoch, (1) the aircraft is on a constrained flight path (flying due east with wings level and

at a constant velocity and steady altitude) and (2) the wind field is constant.

The pilot/navigator takes the bearing measurement to the selected ground feature, which

is interpreted by the E/O imaging system as a pixel whose two-dimensional image plane co-

ordinates are xf and yf . Exploiting the similar triangle relationship between the camera and

navigation frames, the ratio of the nav frame and camera frame line-of-sight magnitudes is
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equal to the ratio of the three ground feature distance components and the feature projection

components in the camera frame:

rLOS
rf

=
dx
xf

=
dy
yf

=
dz
zf

(59)

Accordingly, the distance component values are proportional to the projected feature location

in the image frame:


dx

dy

dz

 =
rLOS
rf
·


xf

yf

zf

 (60)

Substituting the above yields the non-linear measurement equation


xp

yp

zp

 =


x

y

z

+
|rLOS|√

x2
f + y2

f + f 2
Cn

b


xf

yf

−f

 (61)

The DCM, Cn
b , is identity in the presented scenario because the aircraft body is aligned

with the navigation frame (i.e., wings level and easterly heading). Furthermore, because

the barometer provides the “height above ground level” altitude, knowledge of the elevation

at the aircraft position is assumed, which allows the altitude of the ground feature to be

constrained and the equation simplified. The z component of Equation (61) may be isolated

and rearranged as follows:

|rLOS|√
x2
f + y2

f + f 2
=

zp − z(
0 0 1

)
Cn

b

(
xf
yf
−f

) (62)
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Now, substituting this back into Equation (61) yields

xp
yp

 =

x
y

+
zp − z(

0 0 1

)
Cn

b

(
xf
yf
−f

)
1 0 0

0 1 0

Cn
b


xf

yf

−f

 (63)

Equation (63) ties together the aircraft INS navigation states, ground object position,

and the E/O bearing measurements (xf , yf )
T. The equation is clearly nonlinear; thus, we

convert the measurement to provide a linear measurement equation. Through conversion,

the INS navigation error states are realized. The measurement equation is first rearranged

and the right-hand side (RHS) is linearized using the perturbation method and written in

the form of Equation (64), where the subscript c indicates a value provided by the baro-aided

“free”-INS taken at face value, and the subscript m indicates a measured valued provided

by the E/O sensor, namely the position of the ground feature in the E/O sensor inverted

focal plane (xfm , yfm). The full derivation is provided in Appendix A.
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x
y

−
xp
yp

 =
zc − zp(

0 0 1

)(
Cn

b

)
c

(
xfm
yfm
−f

)
1 0 0

0 1 0

 (Cn
b)c


xfm

yfm

−f



− 1(
0 0 1

)
Cn

b

(
xf
yf
−f

)
1 0 0

0 1 0

Cn
b


xf

yf

−f

 δz

+
z − zp(

0 0 1

)
Cn

b

(
xf
yf
−f

)
1 0 0

0 1 0




0 δψ −δθ

−δψ 0 δφ

δθ −δφ 0



xf

yf

−f



− z − zp

[

(
0 0 1

)
Cn

b

(
xf
yf
−f

)
]2

(
0 0 1

)
0 δψ −δθ

−δψ 0 δφ

δθ −δφ 0



xf

yf

−f


1 0 0

0 1 0

Cn
b


xf

yf

−f



− z − zp(
0 0 1

)
Cn

b

(
xf
yf
−f

)
1 0 0

0 1 0

Cn
b


δxf

δyf

0



+
z − zp

[

(
0 0 1

)
Cn

b

(
xf
yf
−f

)
]2

(
0 0 1

)
Cn

b


δxf

δyf

0


1 0 0

0 1 0

Cn
b


xf

yf

−f


(64)

The body to navigation frame DCM, Cn
b, is identity due to the scenario flight conditions;

accordingly, Equation (64) is simplified yielding Equation (65).
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x
y

−
xp
yp

 =
zc − zp

(
0 0 1

)(
Cn

b

)
c


xfm

yfm

−f



1 0 0

0 1 0

 (Cn
b)c


xfm

yfm

−f

+


xf
f

yf
f

 δz

− (z − zp)


yf
f
δψ + δθ

−xf
f
δψ − δφ

− (z − zp)
(
xf
f
δθ − yf

f
δθ

)

+ (z − zp)


xf
f

yf
f

+ (z − zp)


δxf
f

δyf
f



(65)

The measurement equation remains a bit unwieldy. Letting matrix, M, equal the INS error

state coefficients aids in readability for continued development.

M =


0 0

xf
f

0 0 0 (zp − z)
xf
f

yf
f

(z − zp)
(

1 +
xf
f

)
(z − zp)yff 01×6

0 0
yf
f

0 0 0 (zp − z)

[
1 +

(
yf
f

)2
]

(z − zp)xff
yf
f

(zp − z)
xf
f

01×6


(66)

or, allowing that z − zp equal aircraft altitude, h:

M =


0 0

xf
f

0 0 0 −hxf
f

yf
f

h
(

1 +
xf
f

)
h
yf
f

01×6

0 0
yf
f

0 0 0 −h
[
1 +

(
yf
f

)2
]

h
xf
f

yf
f

−hxf
f

01×6

 (67)

Thus, the measurement equation may be written as follows:
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x
y

−
xp
yp

 =
zc − zp

(
0 0 1

)(
Cn

b

)
c


xfm

yfm

−f



1 0 0

0 1 0

 (Cn
b)c


xfm

yfm

−f



+ Mδx+ h

 δxf
f

δyf
f



(68)

The horizontal aircraft position coordinates, x and y, are perturbed. Again, the subscript

‘c’ denotes the calculated value as indicated by the INS, which is taken at face value.

xc
yc

−
δx
δy

−
xp
yp

 =
zc − zp

(
0 0 1

)(
Cn

b

)
c


xfm

yfm

−f



1 0 0

0 1 0

 (Cn
b)c


xfm

yfm

−f



+ Mδx+ h

 δxf
f

δyf
f



(69)

To further simplify, let ζ equal the first term on the RHS of the equation plus the calculated

horizontal aircraft position:

ζ = − zc − zp

(
0 0 1

)
(Cn

b)c


xfm

yfm

−f



1 0 0

0 1 0

 (Cn
b)c


xfm

yfm

−f

+

xc
yc


(70)
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which is a measurement of the horizontal ground feature position. Taking a series of these

measurements provides a measurement of ground speed. Substituting back into Equa-

tion (69) yields

δx
δy

+

xp
yp

 = ζ −Mδx− h


δxf
f

δyf
f

 (71)

At this point, the x-channel and y-channel components are decoupled and the ground

speed for each is estimated separately. Accordingly, let mT
1 denote the first row of matrix

M, corresponding to the x-channel, and mT
2 the second row, corresponding to the y-channel.

Consider L + 1 measurements, ζ`, processed by the aircraft navigation system yielding the

x and y channel components: ζx` and ζy` , for ` = 0, 1, . . . , L. For the x-channel this yields

δx` + xp = ζx` −mT
1`
δx` − h

(
δxf
f

)
`

, for ` = 0, 1, . . . , L (72)

and for the y-channel

δy` + yp = ζy` −mT
2`
δy` − h

(
δyf
f

)
`

, for ` = 0, 1, . . . , L (73)

Subtracting the measurements for ` = 1, 2, ..., L from the measurement at ` = 0 yields L

measurements of the change in the ground feature position error:

δx` − δx0 = ζx` − ζx0 + mT
10
δx0 + h

(
δxf
f

)
0

−mT
1`
δx` − h

(
δxf
f

)
`

(74)

and

δy` − δy0 = ζy` − ζy0 + mT
20
δy0 + h

(
δyf
f

)
0

−mT
2`
δy` − h

(
δyf
f

)
`

(75)

It is worth noting that for the special case of tracking a known ground feature, the measure-
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ment z10 is the known position of the feature, and z1` remains derived from Equation (70)2.

In either case, the feature is stationary, thus we attribute the change in its measured posi-

tion error to the velocity error in the INS, as well as the INS accelerometer bias using the

equation for linear motion. That is,

δx` − δx0 = δvx0`∆t+
1

2
bx`

2∆t2, for ` = 1, 2, ..., L (76)

and equivalently for the y-channel

δy` − δy0 = δvy0`∆t+
1

2
by`

2∆t2, for ` = 1, 2, ..., L (77)

substituting into Equations (74) and (75) yields

ζx` − ζx0 = δvx0`∆t+
1

2
bx`

2∆t2 + mT
10
δx0 + h

(
δxf
f

)
0

−mT
1`
δx` − h

(
δxf
f

)
`

(78)

and equivalently

ζy` − ζy0 = δvy0`∆t+
1

2
by`

2∆t2 + mT
20
δy0 + h

(
δyf
f

)
0

−mT
2`
δy` − h

(
δyf
f

)
`

(79)

for ` = 1, 2, . . . , L. Thus, a linear measurement equation of ground speed error in the

x and y directions is obtained for each E/O bearing measurement increment of `. The

regressors variable are the INS velocity error and accelerometer bias, and the error terms are

a combination of the E/O sensor uncertainty and the error introduced when using the INS

output to determine the relative feature position. Employing the general linear regression

form described in 2.5, Equation (20), yields

2The measurement error terms if the ground feature position is known would also differ as they would
depend on the precision of known feature coordinates
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zx = ∆t ·Hθx + vx (80)

zy = ∆t ·Hθy + vy (81)

where the converted measurements are zx =



zx1 − zx0

zx2 − zx0
...

zxL − zx0


and zy =



zy1 − zy0

zy2 − zy0
...

zyL − zy0


.

The linear regressor matrix H =



1 1
2
∆t

2 2∆t

...
...

L 1
2
L2∆t


L×2

.

The INS velocity error and acceleration bias are the regressor parameters:

θx =

δvx
δbx

 and θy =

δvy
δby


The uncertainty or error terms on the converted measurement are Gaussian distributed:

vx =



mT
10
δx0 + h

(
δxf
f

)
0
−mT

11
δx1 − h

(
δxf
f

)
1

mT
10
δx0 + h

(
δxf
f

)
0
−mT

12
δx2 − h

(
δxf
f

)
2

...

mT
10
δx0 + h

(
δxf
f

)
0
−mT

1L
δxL − h

(
δxf
f

)
L


, vy =



mT
20
δx0 + h

(
δyf
f

)
0
−mT

21
δx1 − h

(
δyf
f

)
1

mT
20
δx0 + h

(
δyf
f

)
0
−mT

22
δx2 − h

(
δyf
f

)
2

...

mT
20
δx0 + h

(
δyf
f

)
0
−mT

2L
δxL − h

(
δyf
f

)
L


,

(82)

We now have a linear measurement model and may use LR to estimate the desired INS

error states, δv and δb. The measurement error covariance, R, for each direction is derived
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from the measurement equation error terms of Equation (78) and Equation (79) at every

measurement step. That is,

Rx = E[(v1x + v2x) · (v1x + v2x)T]− E[(v1x + v2x)]2

= E[v1xv
T
1x ] + E[v2xv

T
2x ] (83)

and

Ry = E[(v1y + v2y) · (v1y + v2y)T]− E[(v1y + v2y)]2

= E[v1yv
T
1y ] + E[v2yv

T
2y ] (84)

where E[·] is the expectation operator. The equation error components of Rx are

vx1 =



mT
10
δx0 −mT

11
δx1

mT
10
δx0 −mT

12
δx2

...

mT
10
δx0 −mT

1L
δxL


L×1

and vx2 = h



(
δxf
f

)
0
−
(
δxf
f

)
1(

δxf
f

)
0
−
(
δxf
f

)
2

...(
δxf
f

)
0
−
(
δxf
f

)
L


L×1

(85)

Similarly, the equation error components of Ry are

vy1 =



mT
20
δx0 −mT

21
δx1

mT
20
δx0 −mT

22
δx2

...

mT
20
δx0 −mT

2L
δxL


L×1

and vy2 = h



(
δyf
f

)
0
−
(
δyf
f

)
1(

δyf
f

)
0
−
(
δyf
f

)
2

...(
δyf
f

)
0
−
(
δyf
f

)
L


L×1

(86)
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calculated seperately for each direction, Rx and Ry. The derivations for these covariance

matrices are provided in Appendix B.

Admittedly, Equations (76) and (77) do not completely describe the aircraft motion as

the accelerometer bias is not the sole contributer to velocity error: from Equation (44),

aircraft velocity error is coupled with additional states, notably the INS tilt error. The tilt

errors may contribute significantly to the velocity error. However, even though the velocity

error is attributed solely to the accelerometer biases, a significant reduction in the error is

still achievable using this method.

In order to improve the accelerometer bias estimates, we apply a final adjustment to the

matrices H and R, augmenting them with prior information on the accelerometer bias error

uncertainty, as provided by the accelerometer’s specifications included in the accelerometer’s

data sheet.

H −→

 H

(0, 1)

 R −→

 R 0L×1

01×L σ2
b

 (87)

Error Estimation.

The E/O sensor provides a ground speed update at half-time which ultimately leads to

a superior navigation solution. Using linear regression [4], the minimum variance estimate

for the velocity error and accelerometer bias are calculated according to

θ̂x =

 ˆδvx

ˆδbx

 = (HTR−1
x H)−1HTR−1

x zx (88)

and

θ̂y =

 ˆδvy

ˆδby

 = (HTR−1
y H)−1HTR−1

y zy (89)
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Furthermore, the parameter estimation error covariance for each direction is given by

Pθ̂x
= E[(θ̂x − θx)(θ̂x − θx)T] = (HTR−1

x H)−1 and

Pθ̂y
= E[(θ̂y − θy)(θ̂y − θy)T] = (HTR−1

y H)−1

V-INS Update.

The INS navigation error states are updated at the end of the measurement epoch (at

approximately k = 1810 sec) by subtracting out the new velocity error and accelerometer

bias estimates obtained through the LR algorithm3:

δx̂k = δx
(free)
k −

(
0 0 0 ˆδvx ˆδvy 0 0 0 0 ˆδbx ˆδby 0 0 0 0

)T

The covariance is also update by replacing the applicable “free”-INS velocity error and

accelerometer bias covariance elements (elements in red and underlined):

3If an accurate flight INS error model exists, the estimates can be fed into the Kalman filter of the “free”-
INS as opposed to being simply subtracted from the INS solution, which would provide a more accurate
solution as it allows the Kalman filter to automatically account for error state correlation. The benefits
are evident later in this document when simulations are run to demonstrate the position/velocity error
correlation, see Section 4.2 pg. 81
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Pδx̂k
=



P
+(free)
k(1,1) P

+(free)
k(1,2) P

+(free)
k(1,3) P

+(free)
k(1,4) P

+(free)
k(1,5) P

+(free)
k(1,6) P

+(free)
k(1,7) P

+(free)
k(1,8)

P
+(free)
k(2,1) P

+(free)
k(2,2) P

+(free)
k(2,3) P

+(free)
k(2,4) P

+(free)
k(2,5) P

+(free)
k(2,6) P

+(free)
k(2,7) P

+(free)
k(2,8)

P
+(free)
k(3,1) P

+(free)
k(3,2) P

+(free)
k(3,3) P

+(free)
k(3,4) P

+(free)
k(3,5) P

+(free)
k(3,6) P

+(free)
k(3,7) P

+(free)
k(3,8)

P
+(free)
k(4,1) P

+(free)
k(4,2) P

+(free)
k(4,3) Pθ̂x(1,1) P

+(free)
k(4,5) P

+(free)
k(4,6) P

+(free)
k(4,7) P

+(free)
k(4,8)

P
+(free)
k(5,1) P

+(free)
k(5,2) P

+(free)
k(5,3) P

+(free)
k(5,4) Pθ̂y(1,1) P

+(free)
k(5,6) P

+(free)
k(5,7) P

+(free)
k(5,8)

P
+(free)
k(6,1) P

+(free)
k(6,2) P

+(free)
k(6,3) P

+(free)
k(6,4) P

+(free)
k(6,5) P

+(free)
k(6,6) P

+(free)
k(6,7) P

+(free)
k(6,8)

P
+(free)
k(7,1) P

+(free)
k(7,2) P

+(free)
k(7,3) P

+(free)
k(7,4) P

+(free)
k(7,5) P

+(free)
k(7,6) P

+(free)
k(7,7) P

+(free)
k(7,8)

P
+(free)
k(8,1) P

+(free)
k(8,2) P

+(free)
k(8,3) P

+(free)
k(8,4) P

+(free)
k(8,5) P

+(free)
k(8,6) P

+(free)
k(8,7) P

+(free)
k(8,8)

P
+(free)
k(9,1) P

+(free)
k(9,2) P

+(free)
k(9,3) P

+(free)
k(9,4) P

+(free)
k(9,5) P

+(free)
k(9,6) P

+(free)
k(9,7) P

+(free)
k(9,8)

P
+(free)
k(10,1) P

+(free)
k(10,2) P

+(free)
k(10,3) Pθ̂x(2,1) P

+(free)
k(10,5) P

+(free)
k(10,6) P

+(free)
k(10,7) P

+(free)
k(10,8)

P
+(free)
k(11,1) P

+(free)
k(11,2) P

+(free)
k(11,3) P

+(free)
k(11,4) Pθ̂y(2,1) P

+(free)
k(11,6) P

+(free)
k(11,7) P

+(free)
k(11,8)

P
+(free)
k(12,1) P

+(free)
k(12,2) P

+(free)
k(12,3) P

+(free)
k(12,4) P

+(free)
k(12,5) P

+(free)
k(12,6) P

+(free)
k(12,7) P

+(free)
k(12,8)

P
+(free)
k(13,1) P

+(free)
k(13,2) P

+(free)
k(13,3) P

+(free)
k(13,4) P

+(free)
k(13,5) P

+(free)
k(13,6) P

+(free)
k(13,7) P

+(free)
k(13,8)

P
+(free)
k(14,1) P

+(free)
k(14,2) P

+(free)
k(14,3) P

+(free)
k(14,4) P

+(free)
k(14,5) P

+(free)
k(14,6) P

+(free)
k(14,7) P

+(free)
k(14,8)

P
+(free)
k(15,1) P

+(free)
k(15,2) P

+(free)
k(15,3) P

+(free)
k(15,4) P

+(free)
k(15,5) P

+(free)
k(15,6) P

+(free)
k(15,7) P

+(free)
k(15,8)

P
+(free)
k(1,9) P

+(free)
k(1,10) P

+(free)
k(1,11) P

+(free)
k(1,12) P

+(free)
k(1,13) P

+(free)
k(1,14) P

+(free)
k(1,15)

P
+(free)
k(2,9) P

+(free)
k(2,10) P

+(free)
k(2,11) P

+(free)
k(2,12) P

+(free)
k(2,13) P

+(free)
k(2,14) P

+(free)
k(2,15)

P
+(free)
k(3,9) P

+(free)
k(3,10) P

+(free)
k(3,11) P

+(free)
k(3,12) P

+(free)
k(3,13) P

+(free)
k(3,14) P

+(free)
k(3,15)

P
+(free)
k(4,9) Pθ̂x(1,2) P

+(free)
k(4,11) P

+(free)
k(4,12) P

+(free)
k(4,13) P

+(free)
k(4,14) P

+(free)
k(4,15)

P
+(free)
k(5,9) P

+(free)
k(5,10) Pθ̂y(1,2) P

+(free)
k(5,12) P

+(free)
k(5,13) P

+(free)
k(5,14) P

+(free)
k(5,15)

P
+(free)
k(6,9) P

+(free)
k(6,10) P

+(free)
k(6,11) P

+(free)
k(6,12) P

+(free)
k(6,13) P

+(free)
k(6,14) P

+(free)
k(6,15)

P
+(free)
k(7,9) P

+(free)
k(7,10) P

+(free)
k(7,11) P

+(free)
k(7,12) P

+(free)
k(7,13) P

+(free)
k(7,14) P

+(free)
k(7,15)

P
+(free)
k(8,9) P

+(free)
k(8,10) P

+(free)
k(8,11) P

+(free)
k(8,12) P

+(free)
k(8,13) P

+(free)
k(8,14) P

+(free)
k(8,15)

P
+(free)
k(9,9) P

+(free)
k(9,10) P

+(free)
k(9,11) P

+(free)
k(9,12) P

+(free)
k(9,13) P

+(free)
k(9,14) P

+(free)
k(9,15)

P
+(free)
k(10,9) Pθ̂x(2,2) P

+(free)
k(10,11) P

+(free)
k(10,12) P

+(free)
k(10,13) P

+(free)
k(10,14) P

+(free)
k(10,15)

P
+(free)
k(11,9) P

+(free)
k(11,10) Pθ̂y(2,2) P

+(free)
k(11,12) P

+(free)
k(11,13) P

+(free)
k(11,14) P

+(free)
k(11,15)

P
+(free)
k(12,9) P

+(free)
k(12,10) P

+(free)
k(12,11) P

+(free)
k(12,12) P

+(free)
k(12,13) P

+(free)
k(12,14) P

+(free)
k(12,15)

P
+(free)
k(13,9) P

+(free)
k(13,10) P

+(free)
k(13,11) P

+(free)
k(13,12) P

+(free)
k(13,13) P

+(free)
k(13,14) P

+(free)
k(13,15)

P
+(free)
k(14,9) P

+(free)
k(14,10) P

+(free)
k(14,11) P

+(free)
k(14,12) P

+(free)
k(14,13) P

+(free)
k(14,14) P

+(free)
k(14,15)

P
+(free)
k(15,9) P

+(free)
k(15,10) P

+(free)
k(15,11) P

+(free)
k(15,12) P

+(free)
k(15,13) P

+(free)
k(15,14) P

+(free)
k(15,15)


15×15

(90)

The effect on the horizontal velocity error is immediate. The effect on the INS horizontal

position error is gradual but becomes noticeably more significant as time progresses. The
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navigation scenario continues with no further aiding; consequently, if the INS navigation sys-

tem’s aiding session was conducted at halftime (30 min into the flight) then at one hour into

the flight the aircraft’s positional uncertainty is far less than that of the “free”-INS—this,

courtesy of the corrected velocity at halftime and the recalibration of the horizontal ac-

celerometers.

The complete V-INS system is illustrated in Figure 12.

INS Acceleration 
Angular Rates

KFBaro

+

-

+

-

E/O

Altitude

Measurement 
  Generator

    Linear 
Regression

Ground 
Feature

(P)

+

-

Figure 12. V-INS Navigation System: The unaided (free) INS solution is corrected with a
baro and KF yielding the ”free”-INS solution. After the measurement epoch, the INS solution
is corrected using estimates of the horizontal velocity errors and accelerometer biases from
the vision system and LR estimator, and the INS is updated.

Estimation with a Constrained Flightpath.

A special case presents itself if the flight path leading up to the measurement epoch

is constrained/known. A constrained scenario (e.g., a constant aircraft velocity, wings level

flight) allows the determination of the INS velocity error for the entire flight leading up to the

measurement epoch, not just the error at the beginning of the measurement epoch. As was

demonstrated in [19], if one knows the flight conditions leading up to the measurement epoch,

the correlation between velocity and position error states allows the estimation of the position

error in addition to the velocity error and accelerometer bias. Essentially, it allows the system
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to account for the position error growth leading up to the measurement epoch, providing a

far more accurate navigation solution. However, this limits the practicality of the method

since it assumes a constrained flight path for otherwise the INS error equations would be

different. Therefore, although the scenario herein considers a constrained pre-measurement

epoch flight path, our measurement model assumes no knowledge of the flight path outside

of the 10-second measurement epoch and, therefore, no position velocity correlation; the

position error is not estimated. Regardless, the V-INS still yields a reduction in the position

error over the course of the flight, which comes only from the onetime velocity error estimate;

the reduced velocity error after the INS update at the end of the measurment epoch reduces

the growth of position error no matter the flight dynamics leading up to or following the

measurement epoch. If, however, the entire flight was wings level and at constant altitude and

airspeed, the position error may—by exploiting the position/velocity error correlation—be

estimated by executing a LR using the estimated INS velocity error and accelerometer bias

as follows:

z ≡


0

ˆδvx

ˆδbx

 , θ ≡


δx

δvx

δbx

 , H ≡


1 0 0

0 1 0

0 0 1

 , (91)

R ≡


Pδxδx Pδxδvx Pδxδbx

Pδvxδx P ˆδvx ˆδvx
P ˆδvx ˆδbx

Pδbxδx P ˆδbx ˆδvx
P ˆδbx ˆδbx

 (92)

where the elements of R are taken from the error state covariance matrices from the V-INS

KF and Equation (90).
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Benefit of Additional Measurement Epochs.

The baseline scenario considers a single measurement epoch at halftime; however, ad-

ditional measurement epochs would theoretically reduce the INS error and increase the

accuracy of the navigation solution. The INS velocity error is reset at the end of each

measurement epoch restricting it growth. The INS position error growth is also further re-

duced. Thus, the more measurement epochs, the less time there is for the error to grow.

In the original scenario, the INS error is left to grow for 30 minutes, but if a second epoch

is added the growth period is restricted to 20 minutes. And at three epochs, the growth is

limited to 15 minutes.

Unfortunately, this is likely impractical in the real-world because although a single mea-

surement epoch is a minor and manageable distraction for the pilot, adding additional aiding

epochs risks task saturation. Despite the lack of real-world practicality, simulating additional

epochs is not difficult, and it provides insight into the benefits of the added measurements.

Therefore, an additional scenario in which the pilot engages in six measurement epochs

throughout the scenario, roughly every 8.5 minutes was envisioned and simulated. Although

inherently impracticable, the addition of measurement epochs may become possible by re-

ducing the pilot involvement during the epoch—e.g., by using an automated tracking system.

3.2 Simulation Design and Setup

The object of the simulations was to demonstrate and charaterize the herein developed

V-INS method. They are based on the scenario descried previously and simulates the INS

error growth during the one hour flight. Multiple simulation phases were executed to demon-

strate different facets of the V-INS method; all simulations used the same flight path (wings

level, constant velocity and altitude, heading due east) and assumed the ground feature lo-

cation was unknown. Phase 1 considered a “free”-running navigation-grade INS with aiding
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only from the barometer to verify that the INS horizontal position error is 1 km/hr and

to provide a baseline for evaluating the V-INS. Phase 2 employed the full V-INS aiding

method tracking a single ground feature for 10 seconds to derive 10 measurement. Phase 3

exploited the correlation between the INS position and velocity errors due to demonstrate

the increased aiding potential. Phase 4 removed the position and velocity correlation and in-

troduces five additional measurement epochs. Phase 5, reimplemented Phase 2, but replaced

the navigation-grade INS with one of tactical-grade INS with horizontal position errors of

100 km/hr.

V-INS Characterization.

The simulations allow the characterization of the following system attributes:

� Reduction of errors and uncertainty in the INS horizontal position estimates after one

hour of flight

� Reduction of errors and uncertainty in the INS horizontal velocity estimates after one

hour of flight

� Reduction of errors and uncertainty in the x and y channel INS accelerometer bias

estimates after one hour of flight

Due primarily to lack of observability of the INS platform tilt errors and gyroscope biases

and the stochastic nature of the system, unaccounted for acceleration can sometimes induce

additional error weakening or invalidating the estimates. Thus, it is possible for an individual

realization to exhibit increased error. The stochastic nature of the system called for the use

of Monte Carlo trials; 10,000 flight scenario were executed to generate the performance data.
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Simulated Error States and Covariance.

The MATLAB simulations propagated the 15 INS error states and covariance of both

the “free”-INS and the V-INS over the one-hour flight. Prior to the measurement epoch and

V-INS updated, these values are identical. The scenario assumes precise knowledge of the

aircraft position and pose; thus, the error states and covariance are initialized according to

Equations (52) and (53).

For all but the final simulation phase, the accelerometer biases’ and gyroscope biases’

standard deviation values were chosen to induce a 1 km/hr error horizontal position error in

the “free”-INS4: σb = 1.0906× 10−4 m/sec2 and σω = 9.0859× 10−9 rad/sec. This is within

the typical error range of a navigation-grade INS [36]. The tactical-grade INS was modeled

with accelerometer biases of 1.0906 × 10−4 m/sec2 and gyroscope biases of 9.0859 × 10−9

rad/sec to induce a 100 km/hr horizontal position error.

Simulated Sensors.

The simulated aircraft E/O sensor design was based on the same camera specifications

used in previous vision-aided INS researcher [20, 29, 31, 40]:

� Focal length: 0.0048 m

� Aspect Ratio: 1 (focal plane area: 0.00482 m2)

� Resolution: 9 megapixels

� Error standard deviation: 1 pixel ⇒ σxf = σyf = 0.0048√
9×106

= 1.6× 10−6 m

The simulated barometric altimeter sensor specifications was also borrowed from previous

research [20] and was based on the Honeywell AM-250 [11]. The altitude error standard

deviation, σh, was set at 1 m.

4Derived using the Lyapunov equation and propagating the covariance through time separately for each
bias, as was done in previous research [19, 29, 31, 37].
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Simulated Measurement Epoch and Estimates.

For all simulation phases, with the exception of Phase 4, the aircraft enters the mea-

surement epoch at the 1800 second mark and begins measurements of the ground feature’s

bearings at one second intervals for eleven seconds. The ground feature is position 100 m

south of the aircraft and approximately 180 km east of the starting position. In this manner,

10 measurements of ground speed error, generated using Equations (76) and (77), provide

the linear regression measurements for estimating the x and y-channel INS velocity errors

and accelerometer biases with Equations (88) and (89). Equation (90) provides the estimate

covariance. Note that Phase 3 also considers the position and velocity error correlation and,

therefore, uses Equation (91) to estimate the INS position error. Phase 4 simulates six mea-

surement epochs evenly spaced across the one-hour flight, so that the first epoch begins at

around the 514 second mark; all measurements and estimation are carried out as in Phase

2, just multiple times.

Following the measurement epoch, the estimated INS error values are subtracted from

the current propagated error states. The new/corrected estimate covariance replaces the

former, propagated covariance. This constitutes the INS update, creating the new/corrected

V-INS error states. The simulation continues propagating both the “free”-INS and updated

V-INS error states and covariances for the remainder of the scenario.
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IV. Results

This chapter documents and analyzes the results obtained from the V-INS simulations.

It begins with the verification of the barometer aided “free”-INS and accelerometer and gy-

roscope calibration, simulation Phase 1. The chapter follows with the results and discussion

from simulation Phases 2, 3, 4, and 5.

4.1 “Free”-INS Calibration (Phase 1)

Error state plots from a single realization of the “free”-INS, Figures 13-17, depict its

propagated state error and covariance over the one-hour scenario. The simulated “free”-

INS position error, Figure 13, demonstrates the proper accelerometer and gyroscope bias

calibration: The position error in the x and y directions grows to 1000 m over the course of

the one-hour scenario. It also demonstrates proper barometer aiding of the z channel as the

error is constrained.

Figure 14 displays the INS velocity error growth. As expected, the vertical channel is

constrained due to the barometer and KF.

Figure 15 displays the INS “platform” tilt error growth propagated for the one-hour flight.

The accelerometer and gyroscope biases cause a total growth in error standard deviation of

about 0.33 Mils. As expected, the error is unaffected by the barometer.

Figure 16 and Figure 17 show the random, constant accelerometer and gyroscope biases,

respectively. The z-direction accelerometer bias is standard deviation shrinks significantly a

short time into the scenario due to the barometer aiding effect.
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Figure 13. Propagated “Free”-INS Position Error (solid) and standard deviation (dashed)
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Figure 14. Propagated “Free”-INS Velocity Error (solid) and standard deviation (dashed)
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Figure 15. Propagated “Free”-INS Tilt Error (solid) and standard deviation (dashed)
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Figure 16. Propagated “Free”-INS Accelerometer Bias (solid) and standard deviation (dashed)
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Figure 17. Propagated “Free”-INS Gyroscope Bias (solid) and standard deviation (dashed)

72



4.2 V-INS Performance (Phase 2)

The following plots compare the 15 error states of the “free”-INS and V-INS from a single,

typical realization of the one-hour flight simulation, demonstrating the INS aiding. Each

figure depicts error state in the three orthogonal directions (x,y, and z), which correspond

to east, north, and altitude in this scenario; each is flanked by its standard deviation.

At its heart, this system works on a ground speed update. Thus, examining the velocity

error and accelerometer bias states first provides an illuminating demonstration of the V-INS

aiding function. Figure 18 displays the velocity error states in each direction. The measure-

ment epoch occurs from 1800 sec through 1810 sec; the “free”-INS and V-INS errors are

identical up until this point. At the 1810 sec mark, the final ground feature measurement is

taken, the ground speed and accelerometer bias estimates are obtained via linear regression,

and the INS is updated/reset. The ground speed estimate made from the E/O measure-

ments is far more accurate than the “free”-INS estimate. Accordingly, the system exhibits

an immediate reduction in the velocity error in both x and y directions; they experience very

similar aiding. The estimate standard deviations also drops. Following the V-INS reset, the

error instantly begins to grow again. However, because it was reset, the resulting V-INS

error remains less than the “free”-INS error for the remainder of the scenario. Accordingly,

the INS position error also received aiding from the velocity error estimate as it is simply

the integral of the velocity error. There is, of course, no aiding to the vertical, z-direction

velocity error as there is no vertical observability from E/O system, alone. The vertical

channel is aided by the barometer, and thus, the “free”-INS and V-INS z-direction plots are

identical.

Figure 19 compares the accelerometer bias errors. There is a very small decrease in the

standard deviation; although it is not noticeable on the plot. As earlier mentioned, because

position is simply the integral of the velocity, the reduction in accelerometer bias also con-
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tributes to the reduction in the INS position error, see Figure 20. This is apparent in Table 1,

which compares the error reduction achieved with and without the accelerometer bias es-

timated. As will be shown, other scenarios exhibited better estimates of the accelerometer

bias.

Figure 20 depicts the position error states in each direction. Aiding from the E/O sys-

tem occurs in the x and y channels. Although there is never a direct estimate of the INS

position error, it still obtains significant aiding from the estimation of INS velocity error and

accelerometer bias as it is the integral of the velocity error. Accordingly, there is not an

immediate reduction in the position error as was witnessed in the velocity error. However,

because the position error following the update propagates with reduced velocity error, its

overall growth is dampened. Thus, over the remainder of the scenario, the V-INS posi-

tion error is much less than the “free”-INS error. As with the velocity error plots, there is

additional aiding of the z-channel and the V-INS and “free”-INS plots are identical.

Figure 21 displays the growth of the three INS “platform” tilt error associated with each

aircraft axis for the on-hour flight. The tilt errors contribute to the growth in the INS position

and velocity errors because they cause incorrectly aligned force vectors, see Equation (44).

However, they obtain no aiding from the measurements and their error growth continues

unbounded; i.e., the V-INS and “free”-INS plots are identical. The inability to estimate the

platform tilt error limits (but certainly does not nullify) the aiding potential of this V-INS.

Figure 22 shows the random, constant gyroscope biases. As with the platform tilt errors,

they are not directly estimated and do not receive any aiding from the measurements. Thus,

they contribute to the error growth of the position, velocity, and tilt angles for both the

V-INS and the “free”-INS, and the plots for each are identical.
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Figure 18. Propagated V-INS velocity error (solid) and standard deviation (dot-dash) com-
pared to the “Free”-INS velocity error (dotted) and standard deviation (dashed)
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Figure 19. Constant V-INS accelerometer bias (solid) and standard deviation (dot-dash)
compared to the “Free”-INS accelerometer bias (dotted) and standard deviation (dashed)
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Figure 20. Propagated V-INS positioin error (solid) and standard deviation (dot-dash) com-
pared to the “Free”-INS position error (dotted) and standard deviation (dashed).
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Figure 21. Propagated “Free”-INS and V-INS Tilt Error (solid) and standard deviation (dot-
ted)
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Figure 22. Propagated “Free”-INS Gyroscope Bias (solid) and standard deviation (dotted)
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Monte Carlo Results.

To legitimately characterize the aiding potential of this V-INS, 10,000 Monte Carlo trials

were executed simulating the navigation scenario and the resulting navigation state errors

and covariance values were averaged. Table 1 compares the reduction in state error and

standard deviation achieved using the V-INS over the “free”-INS for the horizontal direc-

tions of applicable states, i.e., state which received aiding. As expected, the x and y channels

experienced very similar aiding on average. The table also includes the reduction in standard

deviation of the V-INS navigation state error estimates with the simulation reprogrammed

not to estimate accelerometer bias, highlighting the advantage of estimating the INS ac-

celerometer bias in addition to the INS velocity error, even if the reduction is very small.

Table 1. V-INS error reduction with and w/out the accelerometer bias: 10K realizations

Bias Estimated Bias not Estimated

X-Channel Y-Channel X-Channel Y-Channel

Position Error 42.90% 43.00% 42.86% 42.93%

Position Std Dev 17.33% 17.35% 10.15% 10.16%

Velocity Error 31.73% 31.75% 31.42% 31.62%

Velocity Std Dev 14.81% 14.81% 6.19% 6.19%

Accelerometer Bias 0.001% 0.005% 0% 0%

Accelerometer Bias Std Dev 0.001% 0.001% 0% 0%
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Constrained/Known Flight Path Demonstration (Phase 3).

The constrained aircraft flight path used in the simulated scenario allows for the demon-

stration of the increased aiding available when the flight path is known and correlation

between the INS position error and velocity is considered. In the simulated scenarios, the

aircraft maintains the wings-level, constant speed and altitude, and east direction of the

measurement epoch for the entire one-hour flight. As discussed in Section 3.1 pg. 61, this

method required exact knowledge of the flight path and is, therefore, not always practical.

Figure 23 displays a single realization of the V-INS x-direction navigation error states (and

standard deviation) compared to the “free”-INS. The y-direction plots are not shown, but

the results are the same.

The reduction in error is substantial, considerably more than when the position velocity

correlation is not considered. The correlation present between the position error and velocity

error provide an estimate of the INS position error; therefore, unlike the earlier simulations,

there is an immediate reduction in the estimated position error following the measurement

epoch. Essentially, the system is able to “back out” the position error that accumulated for

the first half of the scenario from the ground speed estimate. Accordingly, the x-direction

position error estimate standard deviation decreased by 80%, significantly more than the

modest 17% reduction realized earlier when the flight path was considered unknown.

There is also a reduction in the horizontal velocity error and accelerometer bias, since

the LR estimator accounts for the known flight path, which also reduces the overall position

growth.
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Figure 23. V-INS Aiding when Position/Velocity Error Correlation is Present: x-direction
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Additional Measurement Epochs (Phase 4).

As mentioned in Section 3.1 pg. 63, additional measurement epochs provide greater aiding

to the INS. This result is apparent from Figure 24 and Figure 25, which demonstrates the

error reduction realized in the six-measurement epoch simulation for the x-direction and

y-direction, respectively. Examining the plot, the velocity plot, the measurement epochs

are clearly demarcated by the abrupt drop in error and standard deviation at roughly 514

second intervals. By the end of the flight, the position standard deviations is 60% reduced

compared to the “free”-INS, much greater than the modest 17% reduction realized for a

single measurement epoch.

The application of multiple measurement epochs in an operational environment may not

be possible due to the risk of pilot task saturation. However, any additional measurement

epoch conducted along the flight path will reduce the overall horizontal position error. The

scenario considers six measurement epochs, but even a single additional epoch, providing it

is not too close to the first, will provide significant additional error reduction.

Tactical-Grade INS (Phase 5).

The final round of simulations demonstrated the V-INS system using a tactical-grade

INS, which accumulated horizontal position error at a rate of 100 km/hr, and as Figure 26

illustrates, the “free”-INS horizontal position errors grew to 100 km by the end of the sce-

nario. Like the baseline scenario, this simulation considered only a single measurement

epoch, and the results were promising. The V-INS position error standard deviation was

reduced by 17.9 km, or 17.9%, slightly better than the 17.3% reduction obtained using the

navigation-grade INS. In Figure 27, the velocity error standard deviation was reduced by

15.7%, also slightly better than the 14.8% reduction achieved using the navigation grade

INS. Examining Figure 28, it is clear that the accelerometer bias estimate is significantly

improved over the navigation-grade scenario, where the aiding was very slight. The ac-
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celerometer bias standard deviation was reduced by 8.95%. The increased accuracy in the

horizontal accelerometer bias estimates when a tactical-grade INS is used is due to the sig-

nificantly greater error in the aircraft velocity estimate and contributes its slightly increased

performance. The proposed V-INS method could, therefore, also prove useful in aircraft with

tactical-grade inertial systems.
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Figure 24. “Free”-INS and V-INS error comparison with six measurement epochs: x-direction
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Figure 25. “Free”-INS and V-INS error comparison with six measurement epochs: y-direction
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Scenario Comparison.

Table 2 compares the V-INS attributes under the varied simulated scenarios including

the baseline scenario (navigation grade INS with a single measurement epoch), the baseline

scenario with position/velocity correlation considered, a navigation-grade INS with multiple

measurement epochs, and finally, a with a single measurement epoch using a tactile-grade

INS. Only the x-direction is shown; the y-direction exhibits near equal aiding for all scenarios.

Using multiple measurement epochs provides a clear benefit, as does a contained flight path

where the position/velocity error correlation may be considered; however, these scenarios

may not be practical.

Table 2. Reduction in estimate error and standard deviation among simulated scenarios (x-
direction)

Nav-Grade INS Tactical-Grade INS

One Epoch One Epoch 1 Multi Epochs One Epoch

Position Error 42.90% 80.52% 81.46% 44.79%

Position Std Dev 17.35% 81.86% 39.26% 17.85%

Velocity Error 31.46% 62.60% 76.23% 32.78%

Velocity Std Dev 14.81% 68.38% 43.20% 15.69%

Accelerometer Bias 0.001% 13.83% 0.005% 9.73%

Accelerometer Bias Std Dev 0.001% 30.53% 0.001% 8.95%

1with position/velocity error correlation
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Figure 26. Propagated tactical-grade V-INS positioin error (solid) and standard devia-
tion (dot-dash) compared to the “Free”-INS position error (dotted) and standard deviation
(dashed).
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Figure 27. Propagated tactical-grade V-INS velocity error (solid) and standard deviation (dot-
dash) compared to the “Free”-INS velocity error (dotted) and standard deviation (dashed).
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Figure 28. Propagated tactical-grade V-INS accelerometer bias error (solid) and standard de-
viation (dot-dash) compared to the “Free”-INS velocity error (dotted) and standard deviation
(dashed).
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V. Conclusion

Despite the predominance of the GPS in navigation, our nation’s leaders have made it

clear that the country needs alternatives. What makes inertial navigation such a promising

alternative—and also sets it apart from other modern navigation technologies—is its total

self-containment, passiveness, and insusceptibility to RF attack and environmental factors.

Alone, the INS is not tenable, but its shortcoming, namely debilitating drift, can be overcome

through aiding. Many aiding methods exists, but vision aiding was the focus of this research.

In addition to its relatively low cost, employing E/O systems enables the INS to maintain

its passive nature emitting no RF.

This work introduced a new, operated-assisted V-INS navigation method based on a

modified measurement model for aiding an INS using bearings-only measurements taken

over time of a stationary, but unknown ground, feature. An estimate of INS velocity error

and accelerometer bias is readily obtained from the measurements, which then allows more

accurate future potion estimates by reducing the growth in the INS horizontal position error.

A basic navigation scenario simulation was used to demonstrate the novel V-INS aiding

concept. The simulation results demonstrated significant improvement of navigation state

estimates over time and also a reduction of predicted navigation state estimation uncertainty.

At the end of a one-hour flight, a single vision-aiding session conducted at halftime enabled a

17% reduction in the horizontal position uncertainty over the free-running INS estimate. In

addition, other variations of the V-INS method were explored demonstrating varying degrees

of aiding, including conducting multiple measurement epochs, constraining the flight path

to allow position and velocity error correlation, and using a higher error, tactical-grade INS.

The important theoretical development is the unconventional converted measurements

method of linearization that makes possible accurate linear state estimation. In addition,

an important element of the V-INS navigation method is keeping a human in the loop, thus
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avoiding the potential false matches that plague autonomous, computer vision based feature

trackers/ATR. However, this does not limit the V-INS navigation method to piloted aircraft,

as many unmanned aircraft have downward facing cameras monitored real-time by remote

human operators, so, when operationally feasible, their navigation performance could be

enhanced using the V-INS method.

The rapid employability of our V-INS is enticing. It requires no maturation of technology

and may be implemented on current aircraft, manned and unmanned, without the need for

additional hardware. Thus, unlike many new navigation technologies with prospects in the

mid and long-terms, it could fill a short-term operational need. In theory, minor updates

to the on-board navigation computer are all that is required and implementation cost is

relatively low.

The method appears feasible, but more work is required to assess true real-world benefit.

Accordingly, continued research should evaluate the method using a more robust dynamics

model that does not limit the aircraft trajectory to wings-level, constant altitude flight. In

addition, if an accurate INS error model exists, the method could be modified to employ the

Kalman filter to achieve the INS update, as opposed to the ad-hoc, direct subtraction/re-

placement method that was employed in this research. Different flight paths would alter

the percentage of error reduction achieved with the V-INS; although, it would not effect

the ground speed estimate. The sensor error, specifically error induced by the barometer

and E/O also require a more rigorous analysis. In addition, a thorough reexamination of

the latest advances in autonomous visual INS research should be accomplished, as well as

inquiry into the capabilities of current E/O systems, e.g. the Sniper targeting pod.

If possible, the aiding algorithms should be validated using real flight data consisting

of digital imagery and unaided INS output and using a truth reference such as GPS data.

Assuming the method proves successful using flight data, actual hardware integration and

flight testing is the logical next step.
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Future research could also focus on relevant human factors. The error induced by a human

operator manually tracking the ground feature on a digital display should be characterized.

Furthermore, the accuracy and practicality of allowing the E/O system to track a human-

identified and selected feature (e.g., using the Sniper targeting pod’s point tracking feature)

is worth exploring as it might remove much of the human error.
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Appendix A.

1.1 Measurement Equation Linearization

The error terms of the V-INS measurement equation, Equation (63), are linearized, yield-

ing Equation (64), using conventional perturbation analysis: Consider a general non-linear

function, f(x). The argument of the function equals its calculated value (e.g., from the

navigation computer), which is its true value plus some error. Thus, f(xc) = f(x + δx).

An linear approximation of the function may thus be made by f(x) ≈ f(xc)− df
dx

∣∣∣∣
x

δx. The

linearization is performed on Equation (63) as follows:

After rearranging,

x
y

−
xp
yp

 =
z − zp(

0 0 1

)(
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b

)( xf
yf
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1 0 0

0 1 0

 (Cn
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
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
To aid readability, let z equal the RHS of the above equation and apply the following

substitutions:

u =z − zp,

v =

(
0 0 1

)
(Cn

b)c

(
xfm
yfm
−f

)
,

and w =

1 0 0

0 1 0
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
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 .

Thus,

z =
u

v
·w,

Next, employing the perturbing technique to linearize yields
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z(z,Cn
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where the subscript c indicates a value provided by the baro-aided “free” INS taken at face

value and where xf ≡
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. The derivative terms are evaluated as

follows:

∂z

∂z

∣∣∣∣
z

=
∂u
∂z

v
·W

=
1(

0 0 1

)
Cn

b

(
xf
yf
−f

)
1 0 0

0 1 0

Cn
b


xf

yf

−f



∂z

∂Cn
b

∣∣∣∣
z

=
∂
(
u
v

)
∂Cn

b

·w +
u

v
· ∂w

∂Cn
b

=− u

v2
· ∂v
∂Cn

b

·w +
u

v

∂w

∂Cn
b

=
z − zp(

0 0 1

)
Cn

b

(
xf
yf
−f

)
1 0 0

0 1 0



xf

yf

−f



− z − zp

[

(
0 0 1
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b

(
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Appendix B.

2.1 Linear Regression Converted Measurement Covariance

The linear regression implemented at the end of each measurement epoch relies on the

converted measurement and its error covariance, Rx and Ry. It is derived from the measure-

ment equation, Equation (80) or Equation (81), and is dependent on the E/O sensor pixel

error, E/O focal length, aircraft altitude, the ground feature location, and the estimates of

the INS error provided by the “free”-INS KF. The derivation for the x and y directions is

identical, but this derivation considers the x-direction only. From Equation (83),

R = R1 + h2R2

where

R1 = E[v1 · vT
1 ], R2 = E[v2 · vT

2 ],

and

v1 =



mT
10
δx0 −mT

11
δx1

mT
10
δx0 −mT

12
δx2

...

mT
10
δx0 −mT

1L
δxL


L×1

, v2 =



(
δxf
f

)
0
−
(
δxf
f

)
1(

δxf
f

)
0
−
(
δxf
f

)
2

...(
δxf
f

)
0
−
(
δxf
f

)
L


L×1

thus
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R1 = E[



mT
10
δx0 −mT

11
δx1

mT
10
δx0 −mT

12
δx2

...

mT
10
δx0 −mT

1L
δxL


(mT

10
δx0−mT

11
δx1,m

T
10
δx0−mT

12
δx2, · · · ,mT

10
δx0−mT

1L
δxL)]

(93)

The terms δx0, δx1, ..., δxL are the “free”-INS navigation state estimation errors; thus,

the “free”-INS KF yields estimates of theses estimation errors: ˆδx0, ˆδx1, ..., ˆδxL. Hence,

δx` = ˆδx` + e` for ` = 0, 1, ..., L, where e` is the KF estimation error. Accordingly, vx1

may be written as the sum of two vectors: vx1 = v11 + v12 , where

v11 =



mT
10

ˆδx0 −mT
11

ˆδx1

mT
10

ˆδx0 −mT
12

ˆδx2

...

mT
10

ˆδx0 −mT
1L

ˆδxL


and v12 =



mT
10

e0 −mT
11

e0

mT
10

e0 −mT
12

e1

...

mT
10

e0 −mT
1L

eL


(94)

from which we have R1 = v11v
T
11︸ ︷︷ ︸

R11

+E[v12v
T
12

]︸ ︷︷ ︸
R12

. R12 is found as follows:

R12 = E[v12·vT
12

] = E[



mT
10

e0 −mT
11

e0

mT
10

e0 −mT
12

e1

...

mT
10

e0 −mT
1L

eL


·(mT

10
e0−mT

11
e0,m

T
10

e0−mT
12

e1, ...,m
T
10

e0−mT
1L

eL)]
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The elements of the matrix R12 are
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R12 (i,j) = E[(mT
10

e0 −mT
1i

ei) · (mT
10

e0 −mT
1j

ej)], for i = 1, ..., L; j = i, ..., L (96)

which are calculated using the covariance, Pi,j , E[ei · eT
j ], from the V-INS KF and noting

that Pi,j = PT
j,i :

R12 (i,j) = mT
10

P0m10 −mT
10

P0,jm1j −mT
1i

PT
0,im10 + mT

1i
Pi,jm1,j (97)

Finally, to complete the derivation,

R2 = E[


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)
2
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(
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−
(
δxf
f

)
L

)
]

(98)

which simplifies to

R2 =
σ2
c

f 2
·



2 1 · · · 1

1 2
. . .

...

...
. . . . . . 1

1 · · · 1 2


L×L

(99)
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