STATISTIC WHITELISTING FOR
ENTERPRISE NETWORK INCIDENT
RESPONSE

THESIS

Nathan E. Grunzweig, CPT, USA
AFIT-ENG-MS-16-M-019

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Army,
the United States Department of Defense, or the United States Government. This
material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.

AFIT-ENG-MS-16-M-019

STATISTIC WHITELISTING FOR ENTERPRISE NETWORK INCIDENT
RESPONSE

THESIS

Presented to the Faculty
Department of Electrical and Computer Engineering
Graduate School of Engineering and Management
Air Force Institute of Technology
Air University
Air Education and Training Command
in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cyber Operations

Nathan E. Grunzweig, B.S.I.T.
CPT, USA

March 2016

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-16-M-019

STATISTIC WHITELISTING FOR ENTERPRISE NETWORK INCIDENT
RESPONSE

THESIS

Nathan E. Grunzweig, B.S.I.T.
CPT, USA

Committee Membership:

Dr. G. L. Peterson
Chair

Dr. T. H. Lacey
Member

Dr. M. J. Mendenhall
Member

AFIT-ENG-MS-16-M-019

Abstract

This research seeks to satisfy the need for the rapid evaluation of enterprise net-
work hosts in order to identify items of significance through the introduction of a
statistic whitelist based on the behavior of the processes on each host. By taking
advantage of the repetition of processes and the resources they access, a whitelist can
be generated using large quantities of host machines. For each process, the Mod-
ules and the TCP & UDP Connections are compared to identify which resources are
most commonly accessed by each process. Results show 47% of processes receiving
a whitelist score of 75% or greater in the five hosts identified as having the worst
overall scores and 60% of processes when the hosts more closely match the hosts used

to build the whitelist.

v

Acknowledgements

I would like to extend my sincerest thanks to my advisor, Dr. Gilbert Peterson,
for his mentorship and unending patience. This would not have been possible without
his steady guidance and support. I would also like to thank my committee for their
flexibility and expertise. Lastly, I would like to thank the rest of the AFIT staff

and faculty for the incredible education and opportunities afforded to me during my

attendance.

Table of Contents

Page

ADSETact . . oo iv
Acknowledgements v
List of Figures o viii
List of Tables. ix
List of Abbreviations X
L. Introduction 1
1.1 Background 1

1.2 Motivation 2

1.3 Research Goals and Hypothesis......... 2

1.4 Approach 3

1.5 ASSUMPHIONSot 3

1.6 Contributions 4

1.7 Thesis OVerviewot e e 4

II. Background and Related Research)
2.1 Digital Forensics 5)

2.2 Forensic Analysis Technologies 7

2.2.1 Blacklist ... 7

2.2.2 Whitelist 7

2.2.3 Hashes 8

2.3 Related Research 8

2.4 SUININATY .« ottt et et e e e e e e 9

III. Methodology e 10
3.1 Whitelisting Overview i 10

3.2 Helix Data 11

3.3 Pre-Processing 14

3.4 Building the Whitelist 16

3.5 Testing Against the Whitelist 19

3.6 Generating Results 21

3.7 SUMIMATY . ottt 21

vi

IV. Results and Analysis........... . 23
4.1 Results 23
4.1.1 #1: 131.10.16.12 oo 24
4.1.2 #2: 131.10.16.11 oo 25

4.1.3 #3 - #5: 131.10.157.11, 131.10.157.12, and
1311005714 oo 26
4.1.4 Further Analysis i 27
4.1.5 Host: 131.10.159.106 oot 28
4.1.6 Host: 131.10.160.189o 29
4.1.7 Host: 131.10.159.140o oot 29
4.1.8 Host: 131.10.160.102ot 30
4.1.9 Host: 131.10.160.12o i 30
4.1.10 Analysis Conclusions., 31
4.2 Limitations 31
4.3 Future Work 32
4.4 SUMIMNATY © oottt e e e e e e e e e 33
V. Conclusions and Recommendations 34
5.1 Research Conclusion 34
5.2 Research Contributions 34
Appendix A. Code: Pre-Processing 35
Appendix B. Code: Whitelist 54
Appendix C. Code: Results Generation i, 81
Appendix D. Results Extraction Scripts 92
Bibliography 93

vii

Figure

List of Figures

Page
Common Process Model of Digital Forensics [1]. 6
Helix Data Structure. 12
Helix Raw Process Data. 13
Aggregation Pipeline Example. 14
PreProcessed Data Structure. 16
Build Logic Flow Diagram................ 18
Test Logic Flow Diagram......... 20
Results Logic Flow Diagram. 22

viil

Table

10

11

12

List of Tables

Page
Hosts with the Lowest Score. 24
Host #1: 131.10.16.12 Process Scores.oouiiriniinon.. 25
Host #2: 131.10.16.11 Process Scores.ouiiirininnn.. 26
Host #3: 131.10.157.12 Process SCOres.o.uuiiinanennan.. 26
Host #4: 131.10.157.11 Process Scores.t . 27
Host #5: 131.10.157.14 Process Scores.vuuiiinanennan.. 27
Additional Hosts Selected for Examination. 28
Host: 131.10.159.106 Process Scores. 28
Host: 131.10.160.189 Process Scores.c.oiiiinianan... 29
Host: 131.10.159.140 Process Scores.coiiiinanannno.. 29
Host: 131.10.160.102 Process Scores.ouuiiiiannen... 30
Host: 131.10.160.12 Process SCOTes., 30

1X

Abbreviation
DoD
DC3
IT
FBI
RFCL
0OS

IT
SPH
(O
SQL
TCP
UDP
PID
PPID
AFIT
CSV
ICS

GUI

List of Abbreviations

Page
Department of Defense 1
DoD Cyber Crime Center, 1
Information Technology 1
Federal Bureau of Investigation’s 1
Regional Computer Forensics Laboratory 1
Operating System 2
Information Technology)
Similarity Preserving Hashing 9
Operating System 11
Structured Query Language 12
Transmission Control Protocol, 12
User Datagram Protocol 12
Process Identifier. 12
Parent Process Identifier 15
Air Force Institute of Technology, 19
Comma-Separated Values 21
Industrial Control Systems 24
Graphical User Interface 25

STATISTIC WHITELISTING FOR ENTERPRISE NETWORK INCIDENT
RESPONSE

I. Introduction

1.1 Background

THE field of Digital Forensics has steadily grown with the proliferation of computing

technology. Since the early digital crimes in the 1970’s the need for experienced
digital forensic analysts has only grown [2]. The Department of Defense (DoD) has
understood the necessity of the field of Digital Forensics with the establishment of
organizations, such as the DoD Cyber Crime Center (DC3) [3]. The establishment
of a strong digital forensic capability is of special importance to the DoD due to the
nature of both criminal and adversarial threats.

The rapid advancement of technology has made the process of conducting digital
forensic investigations increasingly complex. As enterprise Information Technology
(IT) capabilities have become more inter-connected, the quantity of data that must be
analyzed with each incident has grown. In 2012, the Federal Bureau of Investigation’s
(FBI) Regional Computer Forensics Laboratory (RFCL) reported a 40% increase in
the amount of data to be analyzed in investigations [4]. However, the increase in the
size and complexity of each incident has not been met with the same increase in staff
and capabilities. The increase in the average quantity of forensic data associated with
each case has necessitated the development of methods to quickly reduce the data

that must be processed and allow the investigator to focus on items of interest.

This research addresses the need for capabilities to address the volume of data
through the implementation of a whitelist based on process behaviors. In order to
reduce the time required for each investigation, analysts must focus on the objects
of interest that are different from the data produced by normal use and operation of
devices. The development of a statistic-based whitelist highlights data of interest to

investigators because of its uniqueness.

1.2 Motivation

The need for expanded Digital Forensic capabilities has grown with the prolif-
eration of digital devices and storage. Where early forensic efforts were faced with
Megabytes of data to process, modern investigations can easily amount to Terabytes
of data [5]. The increase in the quantity of data collected during an incident ne-
cessitates methods of reducing the data that must be evaluated by the investigator.
By developing a method of generating a statistic-based whitelist using large sets of
forensic data, an analyst can better focus on the information of importance to the

investigation.

1.3 Research Goals and Hypothesis

The goal of this research is to determine the viability of a statistic whitelist in
reducing the amount of data that must be analyzed as part of an enterprise network
incident response. There are many methods used to reduce this data but statistic-
based whitelisting using large data sets has the potential to reduce the time necessary
to analyze each host by quickly identifying the hosts that are most likely to yield items
of interest to the investigation.

The hypothesis is based on the repetition of similar processes across hosts. This is

based on how processes are executed and how the Operating System (OS) is initialized

at boot up. The behavior of the OS processes on a single host will match the OS
processes of another host, provided the OS on both machines is the same. Because of
this repetition of processes across many hosts, the processes that are different from
the other hosts are more likely to be of forensic interest.

It is believed that this repetition of processes can be used to generate a statistic
whitelist from large sets of untrusted data. By using large sets of host machines,
malicious processes will represent a statistical minority within the data set. When
new hosts are tested against the whitelist, any process outliers will become quickly

apparent for additional analysis.

1.4 Approach

Traditional whitelists require that the data being used is of a “known good” con-
figuration to prevent the whitelist from ignoring processes that are malicious. This
research utilizes a large data set of many hosts of unknown configuration to generate
a statistic-based whitelist. The intention is to take advantage of the natural repeti-
tion of processes across large quantities of hosts to mitigate the impact of malicious

processes added to the whitelist.

1.5 Assumptions

This research assumes that processes behave consistently similar when the Appli-
cation, its Parent process, and the application’s location in the host file system all
match. Additionally, it is assumed that the whitelist will be resistant to falsely ignor-
ing malicious processes unless a significant majority of the data set is infected. It is
believed that, in order for malicious processes to be falsely ignored by the whitelist,

greater than half of the hosts used to build the whitelist must be infected.

1.6 Contributions

This thesis contributes to the future of forensic analysis within the DoD commu-
nity. Specific contributions include the ability to process large sets of forensic data
and reduce the quantity of processes that must be evaluated by a forensic analyst.
As the DoD maintains both large and small networks, the ability to effectively reduce

the analysis necessary to detect malicious software is invaluable.

1.7 Thesis Overview

This thesis is organized into five chapters. Chapter 2 offers a detailed perspective
of forensic analysis and the methods of processing forensic data. Chapter 3 provides
the methodology used which includes the configuration and tools to generate the
whitelist. Chapter 4 gives a summary of results and analysis of the effectiveness of
the statistic whitelist. Chapter 5 concludes this study and suggest recommendation

for future work.

II. Background and Related Research

THIS chapter describes digital forensics and the different methods of reducing the

workload of forensic analysts. Because of the incredible growth in the size of
enterprise Information Technology (IT) systems, new methods of reducing forensic
data must be implemented. By developing a statistic-based whitelist on the repetition
of process behavior, potential items of interest to an investigation can be found by
identifying processes that are different from those previously identified in the whitelist.

To further develop the justification for this research, the following sections will
provide background to the previous research in this area. Section 2.1 defines digital
forensics and contains an overview of the forensic process. Section 2.2 covers some of
the technologies used to reduce analysis workload, including Hashes, blacklists, and
Whitelists. Lastly, Section 2.3 concludes the chapter by providing details on related

research.

2.1 Digital Forensics

Enterprise I'T Systems have been increasingly targeted by hackers in recent years.
Defending the IT infrastructure has become a priority in the military as evidenced by
the recent establishment of the Cyber branch of the US Army [6]. Digital forensics
capabilities are a key aspect in defense for both military and private sector networks.
The field of digital forensics is essential to the detection of malicious activity within
the IT infrastructure [3]. This is primarily through preemptive scanning and analysis
of the network and attached devices to detect suspicious activity. Once unauthorized
activity has been detected, the Incident Response process occurs.

The Common Process Model [1] by Freiling is shown in Figure 1. In this model,

there are three main phases: Pre-Analysis, Analysis, and Post-Analysis. The Pre-

Analysis phase consists of all actions taken prior to analysis. The primary focus
during this phase is the detection of the Incident(s) and the initial response taken.
This is also when analysis of routine log data is analyzed to detect malicious activity
that was not detected immediately upon infection. The Analysis phase covers all
forensic data analysis of the incident and the response taken. This phase includes
the collection of data from “live” machines that are still running. Lastly, the Post-
Analysis phase is when all Investigative reports are completed, documenting all steps

taken in the detection, capture, and analysis of the incident.

Pre-Incident Preparation

Pre-Analysis Phase

Detection of B Formulation of
— - Initial Response Response
Incident Occurs N Shtooy

Analysis Phase

Live i ' Forensic | ' Data : ' H i ' Reduction and
Response | | Duplication | | Recovery | ! anvesting { | Organization
Analysis

Post-Analysis Phase

Report Resolution

Figure 1. Common Process Model of Digital Forensics [1].

2.2 Forensic Analysis Technologies

This research focuses on the identification of hosts that have been involved in an
incident. The significant challenge to timely and effective detection is the quantity of
data that must be analyzed to properly identify the hosts of interest. There are many
different methods of reducing forensic analyst workload that have been developed,
each with varied success. Each method has different advantages and disadvantages
over the other methods. This section covers some of the most common techniques

used and the various pros and cons related to them.

2.2.1 Blacklist.

A blacklist is the straightforward method of identifying a file by hand and then
adding the file to a known list of “bad” files [7]. The method of identifying the
blacklisted files depends from system to system. Some of the most common methods
are file location and name [8]. However, blacklists are rarely implemented without
additional detection measures. This is because maintaining an up-to-date blacklist
is nearly impossible [8]. If the malicious files that have been blacklisted are altered
then the blacklist will not detect the now slightly different files. These mutations of
the file allow it to remain undetected from the now-obsolete blacklist. Additionally,
in order to keep up with these file alterations, a blacklist very quickly grows in size.

This can become very resource intensive when scanning for blacklisted items.

2.2.2 Whitelist.

The opposite of the blacklist is the whitelist. This method of screening works by
maintaining a list of approved files. The method of identifying approved files can vary
depending on how the whitelist is implemented. A whitelist is most commonly used

to identify trusted files that do not need to be checked by the forensic analyst [9].

However, whitelists have many of the same issues faced by blacklists. The whitelist
must be updated whenever applications are updated or policies change [7]. Addition-
ally, if a malicious file is added to the whitelist or similar enough to a file that has

already been added, then it will be overlooked by the analyst.

2.2.3 Hashes.

When analyzing digital forensic data, a combination of a whitelist and blacklist
is used to reduce the quantity of data. Omne of the most common methods is by
using file hashes. In this manner, a whitelist of file hashes can remove the “known
good” files and a blacklist of hashes can identify the “known bad” files. A hash
is the resulting fixed length value returned when a file is processed by the hashing
algorithm [10]. This hashing function produces a very different result even if only one
bit has changed in the file being processed. This allows hashing to be a very effective
method of ensuring that the file being inspected is matched exactly to the white or
black list being used [2]. However, this causes the same problem encountered by other
methods of implementing white or black lists; the file hash used for comparison must

be updated every time the file is altered [11].

2.3 Related Research

Chwathe [12] was the first to propose the application of a whitelist to digital
forensic data in 2009. In his work, he focused on the development of a hash-based
whitelist to process the forensic data and return the items of interest. However his
application faced the issues presented earlier. The hash function produces completely
different hashes for files with very slight differences.

This field of research has since been continued by Breitinger, et al. [13] with

the development of the mvHash-B algorithm. By using Similarity Preserving Hashing

(SPH), the mvHash-B algorith has made progress in recognizing when files have only
been slightly changed. However, this research has only been applied to document
files and JPG images. It also suffers from the requirement of a complete whitelist of

hashes to match the files against.

2.4 Summary

This chapter introduces the field of Digital Forensics and covers the basic technolo-
gies used to reduce the data that must be analyzed. The application of whitelist and
blacklist methods have been the foundation of research into reducing forensic analyst
workload. The focus of related research has been on the application of hash-based
whitelisting of files. This research expands the field of digital forensics by developing

statistic-based whitelisting of processes.

III. Methodology

TO address the challenge of ever increasing amounts of data to analyze, this research

develops and demonstrates a method of reducing the analysis required through a
statistic-based whitelisting of processes. Whitelisting in digital forensics has been
shown to reduce the amount of data that must be reviewed by a forensic analyst [7].
This is done by comparing the processes of a host sample against the process in a
whitelist. If the processes being compared reach an acceptable threshold, the process
can be ignored as an acceptable process. By applying this concept to a large data
set, a statistic whitelist can be generated without reviewing every process added to
the whitelist.

This chapter presents this whitelisting system in the following sections. First,
Section 3.1 covers how the whitelist benefits the forensic investigator and how the
data is gathered. The structure and properties of the collected data are outlined in
Section 3.2. The Pre-Processing, Build, and Testing functions of the whitelist are
covered in Sections 3.3, 3.4, and 3.5 respectively. Lastly, Section 3.6 will summarize

how the results of whitelist Testing are generated.

3.1 Whitelisting Overview

Whitelisting can be an effective method of filtering “known good” data in order
to reduce the overall data collected. When applied to digital forensics, it can have
a significant impact on the quantity of data that must be reviewed by an analyst.
Traditionally, implementing a whitelist without verifying that the processes are good
can have disastrous results [7]. If a malicious process is added to a whitelist, it will
no longer be able to identify that process as malicious. Any host screened by said

whitelist would identify the bad process as legitimate. This research takes advantage

10

of the repetition of processes in large data sets to circumvent these potentially adverse
effects.

It is this repetition of processes across hosts of the same Operating System (OS)
that is the basis for this research. Because of how each OS and program is initial-
ized, many of the same processes will utilize identical resources when compared across
multiple hosts. When a single identical process is compared across many hosts, each
process will utilize the same resources. When a single version of the process uti-
lizes different resources, or has additional connections, it is an indicator of potential
forensic significance.

By generating a statistic-based whitelist from a large data set of process behavior,
the whitelist can take advantage of this repetition of processes inherent to digital
forensics. Hosts of the same OS often have the same processes running, accessing
the same resources. By applying a statistic approach to these processes, a pattern
emerges. If each host in the data set has the same process but only one is accessing
different resources, it is a very clear indicator that an analyst should investigate
said process as a potential item of interest. When this concept is expanded to the
magnitude of several hundred hosts, the negative effect of adding a malicious process
to the whitelist is mitigated because it will have a minor impact on the screening

results.

3.2 Helix Data

The data used for this study is being generated by a suite of forensic incident
response tools, specifically a plugin called Helix. The Helix plugin is not the same as
the Helix3 incident response toolkit provided by E-Fense [14]. The data generated is

placed in a MongoDB Database under a collection named helix.

11

MongoDB is an open-source database that uses key-value pairs to store data in a
format-agnostic flat file. Each data entry is called a “document” and each document
can contain additional subdocuments [15]. This results in a very flexible and fast
platform for the storage of large quantities of data. The downside to these capabilities
is that MongoDB queries are significantly more complicated than Structured Query
Language (SQL) databases. The helix collection generated by the forensic tools has
the document structure shown in Figure 2. Due to this unique structure, only a
handful of the data fields collected have overlapping data fields. The lack of overlap
means that the fields that can be connected are the primary data sources for this

research, specifically the Processes, Modules, and TCP & UDP Connections.

TCPS holix LOCALACCTS helix SERVICES helix CERTIFICATES helix
PROCESSES helix ODULES hel -CAPTION -DESCRIPTION THUMBPRINT
. elix -]
SOURCERORT "USERDOMAIN RARLNAME -CODESIGVERIFY -ENCODED_BLOB
-PID -PID ||-CREATIONDATE -PID -PID |[-DISKSPAMSUM -MD5
-IPVERSION DISKSPAMSUM _SHA256 -SETTINGID _SHA256
-STATUS sHAzes _SHAL -HOMEDIRDRIVE | DISPLAYNAME
-PID USERNAME _MEMIPS -PROFILE SHAL
-DESTINATIONIP stiat _PERCMATCH -HOMEDIR | SERVICENAME RPCEPS el
-DESTINATIONPORT | CERTAUTHHASH _PATH -AUTHFLAGS . CERTAUTHHASH
R -CODESIGVERIFY - -GROUP -
_gg"éMANDL'NEARGS _MD5 -BADPWCOUNT -RAWBINDING
VDS _MEMDNS -DESCRIPTION -NETOPT
UDPS helix PERCMATCH _MEMSPAMSUM -ACCTEXPIRE -IUUID
MEMSPAMSUM _PIDS -USERCOMMENT -ANNOTATION
-PID -UDERID DRIVERS heli -ENDPOINT
-SOURCEIP -PID | SCRIPTPATH S helix PROTSEQ
-IPVERSION R -CODESIGVERIFY _PRIMARYGROUPID -CODESIGVERIFY _NETADDR
-SOURCEPORT || - - | COUNTRYCODE -MD5
-LASTLOGON -SHA256
-PID -USERTYPE -STATUS
P 7(S::)lg}l'AUTHHASH
-PID i -COMMENT - PFROS helix
All helix fields are | PRIVILEGES .s:%s —
! tied to an IP -NUMLOGONS - i
HPROCS helix PWAGE DEST
-PID host helix -FLAGS
-PATH P -LOGONSERVER
-WORKSTATIONS
‘E’ESJE'-F?SGOEFF NAMEDS helix
_-PARAMETERS -The names of Named Pipes
-LOGONHRS -There is no clear pattern

Figure 2. Helix Data Structure.

Processes, Modules, and the Transmission Control Protocol (TCP) & User Data-
gram Protocol (UDP) Connections are the only fields that have Process Identifier
(PID) correlations. However, using the data from these fields requires more resources
due to the unusual document structure generated by the Helix plugin. All of the
data for each Host is contained within a single MongoDB document. Each of the

Data fields shown in Figure 2 are contained within a single subdocument for each

12

Host document. In order to make the data easier to work with and to accomplish
the research goal of not modifying the helix data directly, the data is pre-processed

into a flat format. An example of the raw Helix data for a single process is shown in

Figure 3.

— PROCESSES \
—PID [1252 \
— PPID |[724 |
—‘ PATH H C:\\WINDOWS\\system32\\svchost.exe ‘
— USERNAME ||LoCAL SERVICE |
—{ USERDOMAIN |[NT AUTHORITY \
- COMMANDLINEARGS |[c:\\ioows\\systen32\\svehost .exe -k Localservice |
—I MEMIPS \

||:: 9999: : \
— DISKSPAMSUM | EV‘?}i‘i?ﬁiEili.?é;"iéizi‘sf'é’éﬁi'sﬁiﬁii222.‘ii‘§“”“”“"°‘°““‘“‘5”"“”
—{MEMSPAMSUM e
L CERTAUTHHASH |[29p19562c49EEE6659DE92247AR8117AE043B849 |
— CODESIGVERIFY |[verified |
—{SHA1 |[49083aE372520488E0A8FBBE1 335C745F70C4667 |
—{ SHA256 o1 1 TepseiesraTararmiseceiscons |
—{MD5 |[27c6D03BCDBBCFEB96B716F3D8BE3ELS \
— PERCMATCH [97 |
L—{CREATIONDATE \

—{YEAR |[2015 |

— MONTH IE |

— DAY |17 |

{UTC | |

—{HOUR [E |

— MINUTE s |

L SECOND |58 |

Figure 3. Helix Raw Process Data.

The raw data shown in Figure 3 also demonstrates the three ways MongoDB stores
key-value pairs. The first is the traditional one-to-one relationship where each key
has a single value, as shown in PID and the majority of the other data fields. The
second method of storage is the creation of a subdocument, where a key contains an
array of key-value pairs. This is specifically shown by the CREATIONDATE data field.
Lastly, a key can have an array of values, such as the multiple values stored under

the MEMIPS key.

13

3.3 Pre-Processing

In order to break up the processing time for building and testing using the
whitelist, the Helix data set is Pre-Processed to pull only the information used in
representing the process behavior. One of the primary goals of this research is to
avoid altering the original data set in order to avoid interfering with existing forensic
tools that also use the data. This Pre-Processing utilizes the MongoDB Aggregation
Pipeline to query the multiple sub-documents and pull only the information used to
build the whitelist.

The MongoDB Aggregation pipeline is used to query elements from within a
subdocument, through the execution of multiple stages. The Pre-Processing utilizes
four of the stages possible in MongoDB 2.4: Match, Unwind, Project, and Sort [15].
Match functions like a traditional MongoDB query, but it can be used repeatedly in
a single pipeline to continue to reduce the data being returned. Unwind is used to
deconstruct an array field within a document; in this case it is used to directly query
only the specific data fields from the overall Host document. The data being returned
by the Aggregation pipeline is reduced during the Project stage. Project is used
to limit the returned data to only the fields needed for the whitelist. Lastly, Sort is
used to sort the returned data by a specified data field. Due to the processing needed
for Sort, it is avoided as much as possible and only used when iterating through the

Hosts of the Job ID being processed.

{"Smatch":{"job id":"JOBID", "host":"HOSTIE"} },
{"Sunwind" : "SPROCESSES"},
{"S$match":{"job_id":"JOBID", "host™:"HOSTIP"} },
{"Sproject":{" id":0, "PID":"$PROCESSES.PID",

"PPID" :"SPROCESSES.EPID",

"PATH": {"StoUpper": "SPROCESSES.PATH™} } }

Figure 4. Aggregation Pipeline Example.

14

The query shown in Figure 4 is used to find all Modules in the helix database
for a specific Host. The first Match filters to find the single document that matches
the Job ID and Host IP provided. The Unwind stage then breaks each PROCESSES
subdocument out of the single document that was returned by the Match stage into
individual documents. Another Match stage is performed to ensure the list of docu-
ments matches the query. This second Match is also where the query can be further
narrowed down to focus on a single PID or element. Finally, the Project stage iter-
ates through all the documents at this stage of the pipeline and filters the results to
only return the desired values in a new document. In this query, only the PID, Parent
Process Identifier (PPID), and PATH are returned.

The full Pre-Processing is straightforward in its execution. When it is executed, a
Job ID is supplied and checked to ensure that the Job ID has not yet been processed.
Then each Host IP recorded under the Job ID is sorted and iterated through. For
each Host, the Processes, Modules, and TCP & UDP Connections are processed and
saved to a new database. Because Path is the only reference to process locations in the
Host file system, it is parsed and is recorded as the Location, Application or Module
name, and the full Path. Additionally, during these conversions, the Drive letter is
replaced to avoid later match issues. Figure 5 shows the resulting data structure once

the Pre-Processing has completed. The Pre-Processing code is shown in Appendix A.

15

collection = Processed

Processed is used to track which JobID’s/Hosts have been Pre-Processed
<tableName: Processeds

<JobID IUTFE>
<HOSTIP CUTFE>
<loaded 01>
<completed (01>

PreProcessList contains the records of each Process for each Host
<tableName: ProcessList>

<JobID IUTF8>
<HOSTIP CUTFE=
<PID CUTFE=
<Application TUTF8>
<PPID CUTFE=
<Parent CUTFE=
<Path TUTF8>
<Location CUTF8>
<NumTCP INT32>
<NumuDP tINT32>

Modules contains the records of Modules associated with PreProcessList
<tableName: Premoduless

<JobID TUTFE>
<HOSTIP CUTFE>
<PID CUTFE>
<Application TUTFE>
<DLL CUTFE=
<Path IUTF8>
<Location TUTF&>

S/PreTcPs contains the records of TCP connections associated with ProcessList
<tableName: PreTCPS>

<JobID TUTF8>
<HOsSTIP CUTFE=
<PID UTFE>
<SourcelIP UTFE>
<SourcePort UTFE>
<Version UTF8>

//PreUDPs contains the records of UDP connections associated with ProcessList
<tableName: PreUDP5S>

<JobID TUTFE>
<HOSTIP CUTFE>
<PID CUTFE>
<SourceIpP CUTFE>
<Sourcerort CUTFE=
<Version TUTF&>

Figure 5. PreProcessed Data Structure.

3.4 Building the Whitelist

Once the Helix data has been Pre-Processed, the whitelist statistics are calculated.
Building the whitelist focuses on iterating through all the Hosts that were scanned
under a Job ID. For each host, the processes are evaluated and imported into the
whitelist based on whether it is a new process or it matches a process already added
to the whitelist. As part of the Build process, the whitelist keeps track of each host as
it is imported. If for any reason the Build process fails or is interrupted in the middle
of completing a Job ID, it can resume at the last host to be added to the whitelist.

Figure 6 shows the logic flow diagram for the Build process.

16

The whitelist determines if a process has already been imported or not by assigning
an Application ID (AppID) by comparing the Application name, Parent process, and
Location. If the process being added to the whitelist does not match any previously
imported processes then it is added to the whitelist. This simply involves copying each
of the data fields from the Pre-Processed list into the whitelist format and inserting
into the whitelist collection. A Quantity field with an initial value of 1 is also inserted
with each record. This Quantity field will be incremented when this process is added
to the whitelist when importing another host in order to track how often the process
has appeared in the whitelist.

If the AppID of the process being added does match a previously imported process,
then the Quantity field of each record is incremented by 1 for every record in the
process being tested. This includes iterating through every Module and TCP &
UDP Connection record for the process that matched the whitelist. If a Module or
Connection record does not match any of the previous processes that matched the
ApplID, that new record will be added with a Quantity of 1. This allows the whitelist
to recognize when a single process is an outlier from the other versions of that process
that have been imported into the whitelist.

Because a Quantity field is maintained for ever record entered into the whitelist,
anomalies can be identified when Testing against the whitelist. For example, a
CALC.EXE process that is added to the whitelist 100 times only has a single instance
which had an active TCP connection. By maintaining the Quantity record, when
another CALC.EXE process that has an active TCP connection is Tested against the
whitelist, it will recognize that while it is found in the WhiteList, it is an anomaly
because of how rare it’s occurrence rate is. Identifying these outliers will allow the
whitelist to ignore the versions of these processes that are not of forensic interest.

The whitelist code that contains the Build function can be found in Appendix B.

17

All Hosts

4

Update Collections
to show JoblID has
been laoded into
the WhiteList

h 4

Terminate Build

Figure 6. Build Logic Flow Diagram.

Finished |

buildMongodb
using a JobID

Is JobID

PreProcessed?

No
v

Iterate through
each HostIP in
the JobID

Is HostIP
Loaded?

No
h 4

Compare
Application,
Parent, and
Location to

WhiteList.

Assign AppID

v

Insert/Update
ProcessList,
Module, and
Connection
records for the
AppID

18

3.5 Testing Against the Whitelist

Once the whitelist has been built, a Job ID can be tested against the whitelist.
Testing functions similarly to Build with the major difference in that scores are as-
signed to each Process record being Tested. When a process being Tested matches a
process in the whitelist, a score is assigned by averaging how often each Module and
Connection record appeared in the whitelist against the Quantity that the whitelist
Process appeared in the whitelist. Thus, the process is being checked to see how
often similar processes in the whitelist accessed the same resources as the process
being Tested.

The Process is given an overall score based on a weighted average of the Module
and Connection scores. The TCP Connections are given a weight of 20% of the
Process score. Additionally, UDP Connections are given a weight of 20% as well.
Lastly, the remaining 60% is assigned by the average Module score. These weights
were based on previous unpublished research conducted at the Air Force Institute
of Technology (AFIT) implementing whitelisting with very small numbers of hosts
[16]. The adjustment of these weights and their implications are a subject of future
research. Once each Process has been scored, a Host score is assigned based on the
average of the Process scores for that Host.

Standard deviation and unweighted averages are recorded as well. Process score
standard deviation is calculated based on the Module scores of Process. The Host
score standard deviation is calculated using the Process scores of the Host. Figure 7
show the logic flow diagram for the Test process. The code containing the Testing

function can be found in Appendix B.

19

A

Update Collections
to show JobID has
been laoded into
the WhiteList

Terminate Build

All Hosts |
Tested

testMongoSample
using a JobID

Is the
JobID
Tested?

No

Is JobID

No
A 4

Iterate through
each HostIP in
the JobID

Is HostIP
Tested?

No
v

Compare
Application,
Parent, and
Location to

WhiteList.

Assign AppID.
Applications that
are not in the
WhiteList are
assigned AppID 0

Is the
AppID 0?

No

v

Insert Module and
Connection
records for the
Process. Score
based the average
of how often each
record appears in
the WhiteList.

Yes

Yesy

Insert ProcesslList,
Modules, and
Connections with
score O

A

Insert ProcessList
record. Score
based on the

weighted average
of Module and

Connection
scores.

Figure 7. Test Logic Flow Diagram.

20

3.6 Generating Results

After a sample has been Tested, the Results can be generated. The Results process
follows the logic flow diagram shown in Figure 8. First, the Job ID is checked to ensure
that it has been Tested. Then, the Hosts are sorted based on the Host score assigned
during Testing. For each Host, the Processes are sorted based on the Process score in
order of lowest to highest. The Hosts and Processes with the lowest scores are given
the highest priority for forensic analysis. Each Host is given a Host rank based on
how low of a score it received. Each Process is then given a Process rank within each
Host. For each Process, the Modules and Connection records are updated with the
respective ranks as well. Once all Results have been generated, a script can be used to
output the MongoDB Collection into a Comma-Separated Values (CSV) file format
for investigator analysis. The code for Results generation is located in Appendix
C. Additionally, the scripts used to extract the final CSV results can be found in

Appendix D.

3.7 Summary

This chapter discusses the approach taken to generate a statistic whitelist in order
to identify items of interest within large data sets. By using the inherent repetition
of processes within large enterprise environments, a large set of unverified data can
be used to generate a whitelist to identify common processes within the environment.
The methods used to Process the data and Build the whitelist have been covered.

Additionally, the Testing and generation of Results have been shown.

21

Generate Results
using a JobID

No

Is the
JobID
Tested?

Yes

v

All Hosts |
Complete

Iterate through
each HostIP in

the JobID sorted
by HostScore.
Assign Host Rank

v
Terminate Results

A

Generation

|

Iterate through
each Process
sorted by Process
Score.
Assign Process
Rank with each
Host Rank.

A

Update each
Module and
Connection record

with Host and
Process Rank

Figure 8. Results Logic Flow Diagram.

22

IV. Results and Analysis

THIS chapter outlines the results of the whitelist Testing. Once the whitelist has

been Built and the data has been Tested, the Results must be generated. Re-
sults are generated based on the Host and Process scores assigned during Testing.
These scores indicate how closely the data processes matched the process previously
examined during the Build phase of the whitelist. By comparing the data against the
whitelist, the processes that are the most unique will be assigned lower scores. This
allows the forensic investigator to ignore the results with high scores and focus on the
processes that are most likely to be identified as items of interest to the investigation.

In order to generate the results for this research, the whitelist was built using 512
unique hosts in the manner covered in Section 3.4. Second, a set of 519 new hosts were
Tested against the whitelist according to the process covered in Section 3.5. Finally,
the Results of the Test phase were generated as covered in Section 3.6. The Results

were exported into human-readable form using the scripts shown in Appendix D.

4.1 Results

The Results generation ranks the Tested hosts according to the assigned HostScores
as covered in Section 3.6. In order to evaluate the effectiveness of the whitelist, every
process of the worst 5 hosts was examined. The five worst hosts are listed in Table
7 with the Host Score as well as the Standard Deviation of the Process Scores from
the Host.

It was quickly determined that these hosts received the worst Host Scores be-
cause of the large number of processes that did not match processes contained in the
whitelist. Of the 50 processes running on host 131.10.16.12, 17 received a score of 0

because they did not match the whitelist. Some of the processes are easily cleared of

23

Table 1. Hosts with the Lowest Score.

Host TP Host Score | StDev of Process Scores
131.10.16.12 | 0.5145 0.4029
131.10.16.11 | 0.5927 0.4217
131.10.157.12 | 0.6555 0.3711
131.10.157.11 | 0.6958 0.3435
131.10.157.14 | 0.7323 0.3162

suspicion; the forensic incident response suit generates a new executable file when-
ever it collects data. Therefore, these randomly generated processes can be ignored
because they were generated by the actions of the forensic analyst.

Additionally, there are a number of processes that have a different Parent pro-
cesses than those that were added to the whitelist. By checking the Modules and
Connections it becomes clear that these processes are not different than those con-
tained in the whitelist. Finally, some processes are programs that were not installed
on the hosts that were used to build the whitelist. The subsections below cover the

specific processes of interest for each host.

4.1.1 #1: 131.10.16.12.

As the host with the lowest assigned Host score, there were a large number of
processes that did not match the whitelist. Many of these were quickly ruled out.
Three processes were part of the 64-bit version of McAfee antivirus, 3 had parent
processes that were different then the whitelist, 2 were part of a digital network
monitoring suite, 2 were caused by the Oracle server, and 1 was generated by the
Java Quick Starter service.

However, there were some suspicious processes as well. A version of WINLOGON . EXE
was listening on UDP port 1090 for the field bus message protocol. This is used to
communicate with Industrial Control Systems (ICS) on the network. A more exact

knowledge of the network is required to conclusively determine if this is unapproved

24

software or not. However, ICS control software should always be closely monitored
as it is the bridge between types of networks.

Additionally, the LSASS.EXE process shows RASSFM.DLL as active. This is an
item of further interest because RASSFM.DLL is only active when a password is being
changed. When it is always active, it is a sign that a malicious attacker may be
attempting to capture any password changes by using function hooking [17].

Table 2. Host #1: 131.10.16.12 Process Scores.

Total Processes 50
Score 1.0 - 0.76 17
Score 0.75 - 0.51 13
Score 0.5 - 0.1 3
Score 0.0 17
Suspicious Processes | 2

4.1.2 #2: 131.10.16.11.

This host contains many similarities to host #1, to include the Java Quick Starter
Service and the network monitoring suite. Additionally, the LSASS.EXE process on
this host showed that RASSFM.DLL was active there as well. A new process of interest is
JAVAW.EXE. This particular Java executable does not have a Graphical User Interface
(GUI) and will execute in the background, unknown to the operator if they did not
execute the process. Lastly, WINLOGON.ESE has an open connection to the Remote
Assistance protocol port, port number 1053. This is a Windows service that allows
remote control of the host over the network. While not necessarily malicious, such

software must be closely monitored to prevent misuse.

25

Table 3. Host #2: 131.10.16.11 Process Scores.

Total Processes 69
Score 1.0 - 0.76 34
Score 0.75 - 0.51 11
Score 0.5 - 0.1 3
Score 0.0 21
Suspicious Processes | 4

4.1.3 #3 - #5: 131.10.157.11, 131.10.157.12, and 131.10.157.14.

These three hosts are extremely similar to each other. The reason these hosts
were scored so low becomes apparent very quickly. For each of these hosts, half of the
un-matched processes belong to an information management program used to manage
airfield automation. The other half of the unmatched processes belong to Automated
battery backup system management software as well as remote host management
suites.

These three hosts highlight the difficulty in creating a whitelist from unknown
hosts. Within large enterprise networks, there is always a small subset of machines
with special hardware and software installed. If some of these machines were included
in the whitelist then the overall Host score for these hosts would be raised. However,
this requires detailed knowledge of the hosts contained in the data before beginning
the Build phase. This detailed knowledge was unavailable at the time of this research.

Table 4. Host #3: 131.10.157.12 Process Scores.

Total Processes 84
Score 1.0 - 0.76 40
Score 0.75 - 0.51 22
Score 0.5 - 0.1 4
Score 0.0 11
Suspicious Processes | 2

26

Table 5. Host #4: 131.10.157.11 Process Scores.

Total Processes 75
Score 1.0 - 0.76 38
Score 0.75 - 0.51 22
Score 0.5 - 0.1 3
Score 0.0 17
Suspicious Processes | 1

Table 6. Host #5: 131.10.157.14 Process Scores.

Total Processes 77
Score 1.0 - 0.76 42
Score 0.75 - 0.51 22
Score 0.5 - 0.1 5
Score 0.0 8
Suspicious Processes | 2

4.1.4 Further Analysis.

The data from the five hosts with the lowest calculated scores show that 47% of
the processes examined fall within the score range of 1.0 - 0.76. With even a cursory
review of the remaining processes, greater than half of the processes that received
a score of 0 can be ignored based on the process having never been imported into
the whitelist. However, examination of these Tested hosts reveals that many of the
lowest scoring hosts are not “normal” hosts. Many of these hosts were servers or had
unusual hardware and software configurations. In order to evaluate the effectiveness
of the whitelist, each host was examined in order of the Host Rank assigned by the
whitelist. Hosts that were determined to be servers or unusual hardware and software
configurations were eliminated as outliers. For example, the two hosts identified in
Sections 4.1.1 and 4.1.2 were found to be servers and the next three shown in Section
4.1.3 are airfield automation and logistics computers with touchscreen devices. In
order to better evaluate the effectiveness of the whitelist against “regular” host con-

figurations, additional hosts were selected that were not servers or unusual hardware

27

configurations. The five hosts selected for additional analysis are listed in Table 7
with the Host Rank and Host Score as well as the Standard Deviation of the Process
Scores from the Host.

Table 7. Additional Hosts Selected for Examination.

Host Rank | Host IP Host Score | StDev of Process Scores
7 131.10.159.106 | 0.7558 0.2870
8 131.10.160.189 | 0.7579 0.2565
10 131.10.159.140 | 0.7666 0.2723
11 131.10.160.102 | 0.7670 0.2738
13 131.10.160.12 | 0.7734 0.2764

4.1.5 Host: 131.10.159.106.

For this host, there were seven processes that did not match the whitelist but
many of these were quickly ruled out. Two of the processes were used for an external
scanning device. Another three processes were part of the Microsoft Office Suite.
The remaining processes included WININIT.EXE and CSRSS.EXE with a Parent process
that had not been imported into the whitelist. Lastly, the process generated by the
forensic tools was not in the whitelist. However, no processes were found to be items
of interest.

Table 8. Host: 131.10.159.106 Process Scores.

Total Processes 99
Score 1.0 - 0.76 99
Score 0.75 - 0.51 31
Score 0.5 - 0.1 6
Score 0.0 7
Suspicious Processes | 0

28

4.1.6 Host: 131.10.160.189.

Nothing unusual was discovered on this host. There were only four processes
not already in the whitelist. Two were device management software for a document
scanner. The remaining two processes were for Java and a USB Hub Controller. No
processes of interest were found on this machine.

Table 9. Host: 131.10.160.189 Process Scores.

Total Processes 111
Score 1.0 - 0.76 65
Score 0.75 - 0.51 33
Score 0.5 - 0.1 9
Score 0.0 4
Suspicious Processes | 0

4.1.7 Host: 131.10.159.140.

For this host 5 processes were not identified by the whitelist. One was Microsoft
Powerpoint as well as one was generated by the forensic tools used to gather the data.
Also, the remaining processes were used for a Brother brand printer management
software and a scanner management process. No processes of interest were found on
this machine.

Table 10. Host: 131.10.159.140 Process Scores.

Total Processes 98
Score 1.0 - 0.76 56
Score 0.75 - 0.51 29
Score 0.5 - 0.1 8
Score 0.0 5
Suspicious Processes | 0

29

4.1.8 Host: 131.10.160.102.

Three instances of CMD.EXE were not identified by the whitelist. They were not
identified because the Parent process had not been previously seen as the parent of a
CMD.EXE process within the whitelist. There were only two additional processes that
received a score of 0; the forensic process created during the data gathering processes

and digital scanner management software. No processes of interest were found on this

machine.

Table 11.

Host: 131.10.160.102 Process Scores.
Total Processes 102

Score 1.0 - 0.76 60

Score 0.75 - 0.51 26

Score 0.5 - 0.1 11

Score 0.0 5
Suspicious Processes | 0

4.1.9 Host: 131.10.160.12.

This host was identified because three of its unidentified processes were used to
manage a digital label maker. The remaining processes that were not identified by the
whitelist because one was generated by the forensic process and the final process was

created during the installation of the Windows Configuration Manager. No processes

of interest were found on this machine.

Table 12.

Host: 131.10.160.12 Process Scores.
Total Processes 77
Score 1.0 - 0.76 99
Score 0.75 - 0.51 23
Score 0.5 - 0.1 10
Score 0.0 5
Suspicious Processes | 0

30

4.1.10 Analysis Conclusions.

The five hosts with the lowest Host scores show that 47% of the processes exam-
ined fall within the score range of 1.0 - 0.76and with a cursory review of the remaining
processes, greater than half of the processes that received a score of 0 can be ignored
based on the process having never been imported into the whitelist. However, the
whitelist identified these hosts with the lowest scores because they were very different
from the hosts used to create the whitelist. These servers and machines with unique
hardware configurations do not provide an adequate example of how the whitelist
performs against hosts similar to a “normal” enterprise network host.

The data from the five additional “normal” hosts examined shows that 60% of
the processes Tested against the whitelist fell within the score range of 1.0 - 0.76.
Additionally, all of the processes that received a score of 0 were easily verified as not
suspicious. This shows that the whitelist can effectively reduce the data that must

be analyzed when identifying items of interest to a forensic incident.

4.2 Limitations

The methodology used in constructing the whitelist have some inherent limita-
tions. As shown by the hosts analyzed in Section 4.1.3, if each host configuration
is not included when building the whitelist, some hosts will receive deceivingly low
scores. This can be mitigated by including each “version” of the hosts on the network
when conducting the Build phase of the whitelist. However, a skilled forensic investi-
gator familiar with the network being scanned can also identify these “variant” hosts
quickly when analyzing the Results.
Also, the whitelist currently is unable to properly assign scores to OS processes
that have multiple instances on a single host. In particular, SVCHOST . EXE and WMIPRVSE.EXE.

These processes are created with the same process name, parent, and from the same

31

location as each other. However, each version of these processes performs different
functions from each other and accesses different resources. The whitelist must be
expanded to recognize the alternate versions of these processes to better score them.
In the current implementation, nearly every process with a Process score between
0.01 - 0.75 is SVCHOST.EXE or WMIPRVSE.EXE. Improved analysis of these processes
has the potential to improve the scores so that 79% of the Tested processes could be
ignored without examination.

Additionally, 32-bit and 64-bit versions of the same process will be considered
different processes and represented separately. This results in the whitelist having
limited utility if the whitelist was built using 64-bit host processes but then tested
against 32-bit processes, or vice-versa. This is mitigated by building the whitelist
with a mix of both 64-bit and 32-bit OS and should be avoided by using a large data
set to construct the whitelist.

If an Application is installed in a non-default file location then it will not match the
same process installed in the default location due to how Process similarity is deter-
mined. This is mitigated by replacing the directory drive letter when Pre-Processing
the application location and path but it does not prevent the machine user from in-
stalling software in non-default locations. Those processes will then be considered a

“new” process due to the Assumptions reviewed in Chapter 1, Section 1.5.

4.3 Future Work

These limitations present very clear opportunities for future research. The whitelist
can be upgraded to better distinguish between 32-bit and 64-bit versions of the same
process. Additionally, the Pre-Processing presented in Section 3.3 can be expanded
to recognize and ignore processes created by the forensic analyst in the process of

gathering the data.

32

The Pre-Processing can also be expanded to better recognize process connections,
in particular by differentiating between internal connection versus external connec-
tions. Distinguishing between well-known port numbers and randomly assigned port
numbers could also be used to better evaluate the process connections. This would
ensure that external connections on unexpected port numbers would very quickly be
identified during Testing.

Finally, the whitelist must be expanded to recognize different versions of the same
OS process. 32-bit and 64-bit processes often access the same resources but need to
be tested separately to ensure the whitelist is only testing the same processes against
each other. The method of scoring processes and hosts can also be expanded upon.
Currently, the scoring does not take into account if a process was only imported into
the whitelist a single time even if there are hundreds of hosts added to the whitelist.
Initial applications of this scoring method caused all scores to settle to within 10% of
the average score. A more effective implementation of such scoring will better identify

processes that very rarely appear in the hosts added to the whitelist.

4.4 Summary

This chapter presents and analyzes the data collected in the demonstration of a
behavior-based whitelisting of processes. By generating a whitelist from a large data
set of unknown hosts, previously unexamined hosts can be examined more quickly.
This research has shown that nearly half of the processes Tested by the whitelist can be
immediately skipped by the analyst. When Testing process from the most common
hosts of an enterprise network, the number of processes that must be inspected is
reduced by 60%. While there is room for improvement, whitelisting of process based
on the process behavior can help reduce the workload of processes that must be

investigated by a forensic analyst.

33

V. Conclusions and Recommendations

THIS chapter summarizes the research performed in this study. The development of

a statistic whitelist based on the inherent repetition of processes in an enterprise
environment has been shown to be possible. Further improvements on this method-
ology can significantly improve a forensic analysts ability to identify hosts of interest
during an incident response. Section 5.1 presents the conclusions reached during

experimentation. Section 5.2 discusses the impact and contributions of this research.

5.1 Research Conclusion

The primary goal of this research, reducing the workload of forensic analysts
through the development of a statistic-based whitelist, has been shown to have an
impact. By using a large data set, it becomes apparent if a process is vastly different
than the processes used to build the whitelist. Further improvements to this technique
can make this very effective in identifying items of interest to the analyst. This
technique has been shown to be a successful method of reducing analyst workload in

identifying hosts of significance to an incident response.

5.2 Research Contributions

This research contributes to the DoD focus of better securing the I'T infrastruc-
ture against malicious and criminal threats by providing a method of reducing the
workload of forensic analysts. By minimizing the data that must be inspected, ana-
lysts can be better focus on the processes that pose the greatest potential of being a
threat. This whitelist allows the analyst to use large enterprise network data instead
of hand picking the hosts and processes to generate a whitelist which can successfully

identify processes of interest to the forensic analyst during an incident response.

34

Appendix A. Code: Pre-Processing

preprocess.cpp

#include " preprocess.h”

#define DBNAME " thesis”

const bson_-t xcurrentDoc;

mongoc_client_t xclient;

int _tmain(int argc, TCHAR xargv[]) {

uint32_t i;

int ctr;

TCHAR wprefix [1000], wjobID[1000];

mongoc-collection_t *xcollection , xhelixCollection;

// Syntax: whitelist [process] dbname jobID(s)

collection = NULL;
helixCollection = NULL;

mongoc_init () ;

client = mongoc_client_-new (”mongodb://127.0.0.1/7);

//collection is the PreProcessed collection. This is where Process/Modules/
— Connections are processed from the helix collection
//into simple key/value pairs to speed up the processing during build and
— test operations.
collection = mongoc_client_get_collection (client , DBNAME, ”Processed”)
=
if (collection == NULL) return O;
//helixCollection is the helix collection generated by Metasponse’s
< helix module. This code never writes to this collection.
helixCollection = mongoc_client_get_collection (client , DBNAME, ”helix

= ")

35

if (helixCollection == NULL) return O;

if (!_tcscmp(argv[l],” process”))
printf(”\nProcessing DB\n");

printf(” Using Database %s\n” ,DBNAME) ;

//Process each JobID passed to the program.
for (ctr = 3; ctr < argc; ctr++) {
for (i = 0; i < _tcslen(argv[ctr]); i++4) wprefix[i] = argv[ctr
<][i]; wprefix[_tcslen (argv[ctr])] = 0;
_tcscpy (wjobID , wprefix) ;
if (!_tcscmp (argv([1l],” process”)) {
if (!processMongoSample(collection , helixCollection ,
< wjobID)) return O;
} else
printf(”\nBad Operation Specified\nwhitelist process
— database JobID(s)\n”);
}

printf(” Exiting\n”);

//Clean up

mongoc-collection_destroy (collection);

mongoc_collection_destroy (helixCollection);
mongoc_client_destroy (client);

mongoc_cleanup () ;

return 1;

} //END main ()

uint8_t processMongoSample(mongoc_collection_t *collection , mongoc_collection_t

< xhelixCollection , TCHAR xjobID) {

char xlocation, xlocation?2;

int rc, tcpl, udpl;

const bson_t xdoc, xdoc2, xdoc3, spipeline, xpipeline2, xhostpipeline ,
<~ xquery, xcurrentHost, xhostdoc;

mongoc_cursor_t ximportCursor, ximportCursor2, xhostCursor, *cursor;

36

char xapplicationS , =xparentS, *dllS, xpathS, xnewpathS, xpathS2, =x
— newpathS2, xhostIP, xstr;

char #pidl, xppidl, =portl;

char #versionS, xconnectipS;

bool debugit = false;

bson_error_t t_error;
t_error .domain = 0;

t_error.code = 0;

//Check if the jobID has already been processed
query = BCONNEW (”$query”, "{”, ”tableName”, ”Processed”, ”JobID”,
< BCON_UTF8(jobID), ”completed”, BCONINT32(1), ”}”);
cursor = mongoc_collection_find (collection , MONGOCQUERYNONE, 0, 0,
< 0, query, NULL, NULL);
if (mongoc_cursor_next(cursor, &doc)) {
printf(” JobID Already Loaded\n”);
mongoc_cursor_destroy (cursor) ;
return 1; //If the jobID has already been processed then exit
} else {
if (debugit) {printf(”JobID Not Loaded\n”);}

printf(” Iterating through all Hosts for Job ID %s\n”,jobID);

//The Host IP are iterated through after sorting. If the program ever

< crashes before completing test, then it will only lose the progress
//for the Host IP it crashed on. Re—running the same command will start

< testing from the same Host IP it crashed on. (This may result in
//a handful of Processes/Modules/Connections being processed twice.

— Provided many Hosts are being processed, this should have a very

— minor impact.

hostpipeline = BCONNEW (” pipeline”, 7[7,

{7, ”$match”, "{”, "job_id”, BCON.UTF8(jobID), "}”,

= "},

{7, ”$project”, "{”, ”_id”, BCONINT32(0), "HOST”, ~
< $host”, 7}7, "},

{7, ”$sort”, ”{”, "HOST”, BCONINT32(1), "}, "},

37

hostCursor = mongoc_collection_aggregate (helixCollection ,MONGOC.QUERYNONE
< ,hostpipeline ,NULL,NULL) ;

if (mongoc_cursor_error (hostCursor,&t_error))

printf(”\tmongoc_collection_aggregate error = %d.%d: %s\n” ,t_error.

< domain, t_error.code, t_error.message) ;

//Loop through each Host IP
while (mongoc_cursor_next (hostCursor, ¤tHost)) {
if (debugit) { str = bson_as_json (currentDoc, NULL); printf(” Hosts\t\
— tstr = %s\n”,str); bson_free (str); }

getMongoValue (currentHost , "HOST”, (void #*x) &hostIP);

query = BCONNEW (”$query”, "{”, ”tableName”, ”Processed”, ”JobID”,
< BCON_UTF8(jobID), "HostIP”, BCON.UTF8(hostIP), ”loaded”,
<» BCONINT32(1), "}7);

cursor mongoc_collection_find (collection , MONGOCQUERYNONE, 0, O,

< 0, query, NULL, NULL);

if (mongoc_cursor_next (cursor , &hostdoc)) {
printf (”Host IP %s Already Processed\n” ,hostIP);
mongoc_cursor_destroy (cursor);
//1f the hostIP has already been loaded then continue to the next
— host
} else {
if (debugit) { printf(” Checking ProcessList and Module records\n”);
=}

printf("%s Checking ProcessList and Module records\n” ,hostIP);

pipeline = BCONNEW (” pipeline”, 7[”,

"7 »$match”, "{”, 7job.id”, BCON.UTF8(jobID),
<5 “host”, BCON.UTFS(hostIP), "}”, "}”,

" {7 "S$unwind”, "$PROCESSES”, ”}”,

" {7 »$match”, "{”, "job.id”, BCON.UTF8(jobID),
<5 ”host”, BCON.UTF8(hostIP), "}7, ”}7,

"{” "$project”, "{”, ”_id”, BCONINT32(0), ”
— PID”, ”$PROCESSES.PID” , "PPID”, ”
<» $PROCESSES.PPID” , "PATH”, ”{”, ”$toUpper

<y » , ”$PROCESSESPA’IH” , ”» }77 , ” }77 , ” }n ,

38

)

importCursor = mongoc_collection_aggregate (helixCollection ,

<+ MONGOC.QUERYNONE, pipeline ,NULL,NULL) ;

if (mongoc_cursor_error (importCursor,&t_error))
printf(”\tmongoc_collection_aggregate error = %d.%d: %s\n”,

< t_error.domain, t_error.code, t_error.message);

//Iterate through each Process
while (mongoc_cursor_next (importCursor, ¤tDoc)) {
if (debugit) { str = bson_-as_json (currentDoc, NULL); printf(”
— Processes\tstr = %s\n”,str); bson_free (str); }
getMongoValue (currentDoc, "PID”, (void =x*) &pidl);
getMongoValue (currentDoc, "PPID”, (void x*x) &ppidl);
parentS = getMongoApp(helixCollection ,jobID ,hostIP ,ppidl);
if (parentS = NULL) {
if (debugit) { printf(” parentS NULL in PPID %s\n”,ppidl); }
parentS = (char %) malloc(sizeof(char) * 4);
sprintf(parentS,”N/A”);
}
getMongoValue (currentDoc, "PATH” , (void x*%) &pathS);
if (pathS = NULL) {
if (debugit) { printf(”pathS NULL in PID %s\n”,pidIl); }
pathS = null();
}
newpathS = convert_path (pathS);
location = convert_loc (newpathS);

applicationS = convert_app (pathS);

doc = BCONNEW (” tableName”, ”PreProcessList”, ”JobID”,
< BCON_UTF8(jobID), ”HostIP”, BCON_UTF8(hostIP)

"PID” , BCON.UTF8(pidI), ” Application”,
< BCON_UTF8(applicationS), "PPID”,
<+ BCON_UTFS8(ppidl),

”Parent”, BCON_UTF8(parentS), ”Location”,
— BCON_UTF8(location), ”Path”,
< BCON_UTF8(newpathS)

39

rc = mongoc-collection_insert(collection , MONGOCINSERT NONE,
< doc, NULL, NULL);

//Start Modules Processing
if (debugit) { printf(” Starting Modules\n”); }

pipeline2 = BCONNEW (” pipeline”, ”[”,

"{”, "$match”, "{”, ”job_id”, BCON_UTF8(jobID),
s “host”, BCON.UTF8(hostIP), 1}, "},

?{”, ”$unwind”, "$MODULES”, ”}”,

{7, "$match”, "{”, "job.id”, BCON.UTF8(jobID),
< ”host”, BCON.UTF8(hostIP), "MODULES.
< PIDS”, BCON.UTFS8(pidl), »}”, "}”,

" "$project”, *{”, ”_id”, BCONINT32(0), ”
— PATH” , ”{”, ”$toUpper”, "$MODULES.PATH” ,
ooy

1

importCursor2 = mongoc-collection_aggregate (helixCollection ,

<+ MONGOC.QUERYNONE, pipeline2 ,NULL,NULL) ;

if (mongoc_cursor_error (importCursor2,&t_error))
printf(”\tmongoc_collection_aggregate error = %d.%d: %s

<~ \n”,t_error.domain, t_error.code,t_error.message);

while (mongoc_cursor_next(importCursor2, ¤tDoc)) {

if (debugit) { str = bson_as_json (currentDoc, NULL);
— printf(” Modules\t\tstr = %s\n”,str); bson_free (str)
= 5}

getMongoValue (currentDoc, "PATH”, (void x*%) &pathS2);

if (pathS2 = NULL) {
if (debugit) { printf(”pathS2 NULL in PID %s module\n”,

< pidl); }

pathS2 = null();

}

newpathS2 = convert_path (pathS2);

location2 = convert_loc (newpathS2);

d11S = convert_app (pathS2);

40

doc2 = BCONNEW (” tableName”, ”PreModules”, ”JobID”,
<> BCON_UTF8(jobID), ”HostIP”, BCON_UTF8(hostIP)
"PID” , BCON_.UTF8(pidl), ”Application”,
< BCON_UTF8(applicationS), "DLL”,
< BCON_UTF8(dllS),
”Location”, BCON.UTF8(location2), ”Path
— 7, BCON_UTF8(newpathS2)

)

rc = mongoc_collection_insert(collection ,

<+ MONGOCINSERTNONE, doc2, NULL, NULL);

}//End Modules Loop

pipeline2 = BCONNEW (” pipeline”, "[”,

" »$match”, "{”, "job.id”, BCON.UTF8(jobID),
<5 ”host”, BCON.UTF8(hostIP), "}7, ”}7,

"{” | ?$unwind”, "$TCPS”, ”}”,

" {7 ”$match”, "{”, "job.id”, BCON.UTF8(jobID),
< “host”, BCON.UTF8(hostIP), "TCPS.PID” ,
< BCON_UTFS(pidl), "}”, ”}”,

"{” "$project”, "{”, ”_id”, BCONINT32(0), ”
< SOURCEPORT” , ”$TCPS.SOURCEPORT” , " }”,

< » "
)

1)

importCursor2 = mongoc-collection_aggregate (helixCollection ,

<+ MONGOC.QUERYNONE, pipeline2 ,NULL,NULL) ;

if (mongoc_cursor_error (importCursor2,&t_error))
printf(”\tmongoc_-collection_aggregate error = %d.%d: %s

<~ \n”,t_error.domain, t_error.code,t_error.message);

if (debugit) { printf(” Starting TCP Connection Count Loop\n”);
=}
tcpl = 0;
while (mongoc_cursor_next(importCursor2, ¤tDoc)) {
if (debugit) { str = bson_as_json (currentDoc, NULL);
— printf (”TCP Connections\t\tstr = %s\n”,str);

< bson_free (str); }

41

tepl++;
}//End TCP Connections Loop

pipeline2 = BCONNEW (” pipeline”, "[”,
"7 »$match”, "{”, "job.id”, BCON.UTF8(jobID),
< “host”, BCON_.UTF8(hostIP), ”}”, ”}”,
"{” | ?$unwind”, "$UDPS”, ”}”,
" {7 ?$match”, "{”, "job.id”, BCON.UTF8(jobID),
< “host”, BCON.UTF8(hostIP), "UDPS.PID” ,
— BCONUTEF8(pidl), ”}”, 7}7,

”{77 , ” $project” , ’7{77 , » _id?” , BCONJNT32(O) , 9
< SOURCEPORT” , ”$UDPS.SOURCEPORT” , " }”,
C_> ” 777
77]77);
importCursor2 = mongoc-collection_aggregate (helixCollection ,

<+ MONGOC.QUERYNONE, pipeline2 ,NULL,NULL) ;

if (mongoc_cursor_error (importCursor2,&t_error))
printf(”\tmongoc_collection_aggregate error = %d.%d: %s

<~ \n”,t_error.domain, t_error.code,t_error.message);

if (debugit) { printf(” Starting UDP Connection Count Loop\n”);
=}
udpl = 0;
while (mongoc_cursor_next(importCursor2, ¤tDoc)) {
if (debugit) { str = bson_as_json (currentDoc, NULL);
< printf ("UDP Connections\t\tstr = %s\n”,str);
— bson_free (str); }
udpl++;
}//End UDP Connections Loop

if (debugit) { printf(”NumTCP %i\tNumUDP %i\n” ,tcpl ,udpl); }
doc2 = BCONNEW (” tableName”, ”PreProcessList”, ”JobID”,
< BCON_UTF8(jobID), ”HostIP”, BCON_UTFS8(hostIP)
»PID” , BCON_UTFS(pidI));
doc3 = BOONNEW (”$inc”, ”{”, "NumTCP” , BCONINT32(tcpl), ”
< NumUDP” , BCON.INT32(udpl), ”}”);
if (!mongoc_collection_update(collection , MONGOCUPDATE UPSERT
< , doc2, doc3, NULL, &t_error))

42

printf(” Update Error: %i.%i:\t%s\n”,t_error .domain,

< t_error.code,t_error .message) ;

}//End Processes Loop

if (debugit) { printf(” Checking TCP records\n”); }

pipeline = BCONNEW (” pipeline”, 7[”,
"7 »$match”, "{”, 7job.id”, BCON.UTF8(jobID),
< “host”, BCON.UTF8(hostIP), ”}”, ”}”,
7{”, ”$unwind”, "$TCPS”, 7}”,
"7 ”$match”, "{”, 7job.id”, BCON.UTF8(jobID),
<5 ”host”, BCON.UTF8(hostIP), "}7, ”}”,
»{”, "$project”, "{”, ”_id”, BCONINT32(0), ”
<, PID”, "$TCPS.PID”, "SOURCEPORT”, ”$TCPS.
— SOURCEPORT” ,
”SOURCEIP” , ”$TCPS.SOURCEIP” , ”
— IPVERSION” | ”$TCPS.
— IPVERSION” |
AN
1)

importCursor = mongoc-collection_aggregate (helixCollection ,

s MONGOC.QUERYNONE, pipeline ,NULL,NULL) ;

if (mongoc_cursor_error (importCursor,&t_error))
printf(”\tmongoc_collection_aggregate error = %d.%d: %s\n”,

< t_error.domain, t_error.code,t_error.message);

if (debugit) { printf(” Before TCP Loop\n”); }

//Iterate through all the TCP Connections being tested

while (mongoc_cursor_next (importCursor, ¤tDoc)) {
if (debugit) { str = bson_-as_json (currentDoc, NULL); printf(”

— TCPS\t\tstr = %s\n”,str); bson_free (str); }

getMongoValue (currentDoc, "PID”, (void #*x) &pidl);
getMongoValue (currentDoc, "SOURCEPORT” , (void #x) &portl);
getMongoValue (currentDoc, "SOURCEIP”, (void #x) &connectipS);
if (connectipS == NULL) {

connectipS = null();

43

}
getMongoValue (currentDoc, "IPVERSION” | (void x*%) &versionS);

if (versionS == NULL) {

versionS = null();

doc = BCONNEW (” tableName”, "PreTCPS”, ”JobID”, BCON_UTF8(
<+ jobID), ”HostIP”, BOON.UTFS8(hostIP),
"PID” , BCON_UTFS(pidl), ”SourcePort”,
<> BCON_UTF8(portl)
,” SourcelP” , BCON_UTF8(connectipS), ”Version”,
< BCON_UTF8(versionS)

);

rc = mongoc-collection_insert(collection , MONGOCINSERT NONE,
< doc, NULL, NULL) ;

}//End TCP Loop

if (debugit) { printf(” Checking UDP records\n”); }

pipeline = BCONNEW (” pipeline”, 7[”,
{7, "$match”, "{”, "job.id”, BCON.UTF8(jobID),
<+ “host”, BCON.UTF8(hostIP), "}", "}7,
?{”, ”$unwind”, ”$UDPS”, ”}”,
{7, "$match”, "{”, "job.id”, BCON.UTF8(jobID),
<+ “host”, BCON.UTF8(hostIP), "}", "}7,
"{7, "$project”, "{”, ”_id”, BCONINT32(0), ”
— PID”, ”$UDPS.PID”, "SOURCEPORT” , ”$UDPS.
— SOURCEPORT” ,
”SOURCEIP” , ”$UDPS.SOURCEIP” , ”
< IPVERSION” , ”$UDPS.
< TPVERSION”
DML
1)

importCursor = mongoc_collection_aggregate (helixCollection ,

<+ MONGOC.QUERYNONE, pipeline ,NULL,NULL) ;

if (mongoc_cursor_error (importCursor,&t_error))

44

printf(”\tmongoc_-collection_aggregate error = %d.%d: %s\n”,

< t_error .domain, t_error.code,t_error. message) H

if (debugit) { printf(” Before UDP Loop\n”); }

//Iterate through all the UDP Connections being tested
while (mongoc_cursor_-next (importCursor, ¤tDoc)) {
if (debugit) { str = bson-as_json (currentDoc, NULL); printf(”
— UDPS\t\tstr = %s\n”,str); bson_free (str); }
getMongoValue (currentDoc, "PID”, (void =x*) &pidl);
getMongoValue (currentDoc, "SOURCEPORT”, (void xx) &portl);
getMongoValue (currentDoc, "SOURCEIP”, (void #x) &connectipS);
if (connectipS = NULL) {
connectipS = null();
}
getMongoValue (currentDoc, "IPVERSION” , (void #%) &versionS);
if (versionS = NULL) {

versionS = null();

doc = BCONNEW (” tableName” , ”PreUDPS”, ”JobID”, BCON_UTF8(
<> jobID), ”HostIP”, BOON.UTF8(hostIP),
?PID” , BCON_.UTF8(pidI), ”SourcePort”,
<> BCON_UTFS8(portI)
,” SourcelP” , BCON_UTF8(connectipS), ”Version”,
<> BCON_UTF8(versionS)

)

rc = mongoc_collection_insert(collection , MONGOCINSERTNONE,

<+ doc, NULL, NULL);

}//End UDP Loop

//Update HostIP as loaded

doc = BCONNEW (” tableName” , ” Processed”, ”JobID”, BCON_.UTF8(jobID)
<5 , "HostIP” , BCON.UTFS8(hostIP), ”loaded”, BCONINT32(1));

rc = mongoc_collection_insert(collection, MONGOCINSERT NONE, doc
< , NULL, &t_error);

45

if (debugit) printf(” mongoc-collection_insertrc = %i error = %d

— %d: %s\n” ,rc,t_error.domain, t_error.code,t_error.message);

printf (”Host IP %s Processed\n”, hostIP);
}//End IF for HostIP not loaded

}//End JobID Loop
mongoc_cursor_destroy (importCursor) ;
mongoc_cursor_destroy (importCursor2);

mongoc_cursor_destroy (hostCursor) ;

//Mark the JobID as completed

doc = BCONNEW (” tableName”, ”Processed”, ”JobID”, BCON_UTF8(jobID), ”
— completed”, BCON_INT32(1));

rc = mongoc-collection_insert(collection , MONGOCINSERTNONE, doc, NULL, &
< t_error);

if (debugit) printf(” mongoc_collection_insertrc = %i error = %d.%d: %s\

< n”,rc,t_error.domain, t_error.code, t_error . message);

if (debugit) { printf(’rc = %d\n”,rc); }

return 0;

} //END processMongoSample ()

R K K K K K K K K K K K K KKK KKK KRR R R R R R o o o o o o 5 3K K S K K KKK KKK KKK R R R R R R R R R KR R R Rk [
// Convert the string to upper case and return a new string
char xstrtoupper_c (const char xlower) {
unsigned int ij;
char supper;
if (lower = NULL) return NULL;
upper = (char =) malloc(sizeof(char) = (strlen(lower) + 1));
for (i = 0; i < strlen(lower); i++) upper [i] = toupper(lower[i]);
upper [strlen (lower)] = 0;

return upper;

// Convert the string to upper case in place (i.e., do not return a new string)
void strtoupperIP (CHAR xlower) {
unsigned int ij;

if (lower = NULL) return;

46

for (i = 0; i < strlen(lower); i++) lower[i] = toupper(lower[i]);

R R R K K K K R K K K K KK KKK KKK R R R R R SR R R R R K K K K K R K SR KKK KR KKK R R R R R K K R Rk ok ok
//convert_path removes the drive letter of the path and replaces it with ’ROOT’
char xconvert_path(char xpath) {

char xbasename, xnewpath;

int i, len;

basename = strrchr (path,’\\’);

if (basename =— NULL) {

//There were no ”\\” characters in path. This means Path is null or

< helix only returned the application/module name

return path;

} else {

len = strlen (path);

for (i = 0; i < (len =1); i++4) path[i] = path[i+1];

path[len —1] = 0;

newpath = (char) malloc(sizeof(char) % (strlen(path) 4+ 5));

memcpy (newpath, "ROOT”, 4);

memcpy (newpath + 4, path, strlen(path));

newpath[strlen (path)+4] = 0;

return newpath;

}

printf(”\n\nSomething happened in convert_path\n\n”);

return path;

} //END convert_path

// convert_loc takes a process/module path and removes the process/module to
< provide the directory path to said process/module
char sxconvert_loc(char xpath) {
char xbasename, *location;
int i;
basename = strrchr (path,’\\’);
if (basename = NULL) {
//There were no ”\\” characters in path. This means Path is null or
< helix only returned the application/module name
if (strcmp (path, ”SYSTEM IDLE PROCESS”) = 0) {
location = (char x) malloc(sizeof(char) * 20);
sprintf(location ,” SYSTEM IDLE PROCESS”) ;

return location;

47

} else if (strcmp(path, "SYSTEM”) = 0) {
location = (char) malloc(sizeof(char) x 7);
sprintf(location ,”SYSTEM”) ;
return location;
} else {
return null();
}
} else {
//Copy the Location from the Path (everything but the application/

< module name)

location = (char) malloc(sizeof(char) * (basename — path + 2));
for (i = 0; i < (basename — path + 1); i++) location[i] = path[i];
— location[i] = 0;

return location;

}

printf(”\n\nSomething happed in convert_-loc\n\n");
return null () ;

} //END convert_loc

// convert_app takes a process/module path and removes the directory path to
< provide the process/module name
char xconvert_app (char xpath) {
char *name;
name = strrchr (path,’\\’);
if (name — NULL) {
//There were no ”\\” characters in path. This means Path is null or
< helix only returned the application/module name

if (stremp(path, ”SYSTEM IDLE PROCESS”) = 0) {

name = (char *) malloc(sizeof(char) = 20);
sprintf (name,” SYSTEM IDLE PROCESS”) ;

return name;

} else if (strcmp(path, ”"SYSTEM”) =— 0) {

name (char x) malloc(sizeof (char) * 7);
sprintf (name,” SYSTEM”) ;
return name;
} else {
if (path = NULL) {
//helix recorded nothing for Path

return null ();

} else {

48

//helix only recorded the application/module name for Path

return path;

}

printf(”\n\nSomething happed in convert_app null check\n\n”);
return null () ;

}

} else {
//Return the application/module name incremented by 1 to remove the

(_) 7\\7

name-+-;

return name;

}

printf(”\n\nSomething happed in convert_app\n\n”);

return null () ;

} //END convert_app

char xnull () {
char sretval;
retval = (char %) malloc(sizeof (char) % 5);
sprintf(retval ,”NULL”) ;
return retval;

} //END null

[s sk sk ok ok sk sk sk ok ok ok sk sk sk ok R o sk ok ok R R ot ok SR sk ok sk ok ok ok R ok ok R sk R KR K sk ok R R R ok ok R R OR Rk ok kR sk ok ok /
// getMongoValue returns the value of the inputKey in the imported document
void getMongoValue(const bson_t xdoc, const char xinputKey, void sxoutputValue)
= |

char *str, *retval, xwkey, xinputKeyUpper;

bson_iter_t iter;

const bson_value_t xbvalue;

int i;

int32_t xindirectInt32;

inputKeyUpper = strtoupper_c (inputKey) ;
str = bson_as_json (doc, NULL);
if (bson_iter_init(&iter, doc)) {
while (bson_iter_next(&iter)) {
wkey = (char %) malloc(sizeof(char) % (strlen(bson_iter_key
— (&iter)) + 1));

strcpy (wkey, bson_iter_key (&iter));

49

strtoupperIP (wkey) ;
if (!strecmp (wkey,inputKeyUpper)) {
bvalue = bson_iter_value (&iter);
if (bvalue—>value_type = BSON_.TYPE_UTF8) {
retval = (char %) malloc(sizeof(char) x (
< bvalue—>value.v_utf8.len + 1));
for (i = 0; i < (int) bvalue—>value.v_utf8.
< len; i++4) retval[i] = bvalue—>value.
— v_utf8.str[i];
retval [i] = 0;
free (wkey) ;
free (inputKeyUpper) ;
bson_free (str);

xoutputValue = (void %) retval;
} else if (bvalue—>value_type = BSON_TYPEINT32) {
free (wkey) ;
free (inputKeyUpper) ;
bson_free (str);
indirectInt32 = (int32_t *) outputValue;
*indirectInt32 = bvalue—>value.v_int32;
} else {
printf (”«xgetValuexx key = %s\t\ttype = %i\
< ndocument = %s\n\n” ,inputKey ,bvalue—>
< value_type ,str);

}

return;

}

free (wkey) ;

free (inputKeyUpper) ;

bson_free (str);

return ;

} //END getMongoValue

// getMongoApp returns the name of an Application using the PID, JobID, and

— HostIP, used to determine PPID Application Name

50

char * getMongoApp(mongoc_collection_-t xhelixCollection , TCHAR xjobID , TCHAR x*
— hostIP, TCHAR *pid) {
char *retval, =pathS;
const bson_t xdoc, xpipeline;
mongoc_cursor_t kcursor;

bson_error_t t_error;

t_error .domain = 0;

t_error.code = 0;

pipeline = BCONNEW (” pipeline”, ”[7,
"{”, "$match”, "{”, ”job_id”, BCON.UTFS(jobID), ”host”,
< BCONUTFS(hostIP), ”}”, ”}”,
7{”, ”$unwind”, "$PROCESSES”, ”}”,
{7, ?$match”, "{”, ”job_id”, BCON.UTF8(jobID), "host”,
< BCON.UTF8(hostIP), ”"PROCESSES.PID”, BCON_UTFS(

= pid), "}7, 7},

"{”, "$project”, "{”, ”_id”, BCONINT32(0), "PATH”,
< 7{”, "$toUpper”, "$PROCESSES.PATH”, "}”, "}”,
= "}

AP

cursor = mongoc-collection_aggregate (helixCollection , MONGOC.QUERYNONE,
< pipeline , NULL, NULL) ;
if (mongoc_cursor_error(cursor,&t_error))
printf(”\tmongoc_collection_aggregate error = %d.%d: %s\n”,

< t_error.domain, t_error.code,t_error.message);

if (mongoc_cursor_next(cursor, &doc)) {
getMongoValue (doc, "PATH” , (void =) &pathS);
retval = convert_app (pathS);
mongoc_cursor_destroy (cursor);
return retval;
}
retval = null();
return retval;

} //END getMongoApp

51

preprocess.h

#include <math.h>

/+ Standard Ct+ includes =*/
#include <stdlib .h>

#include
#include
#include
#include

#define
#define
#define

#define
#define

#define
#define
#define
#define
#define

<iostream>

<stdio .h>

<stdint .h>

<string.h>

_tmain main

TRUE true

FALSE false

TCHAR char

CHAR char

_tcslen
_tcscmp
_tcscpy

_tcscat

strlen
strcmp
strcpy

strcat

_totupper toupper

#include <mongoc.h>

#ifdef _UNICODE

#define
#define
#define
#define
#define
#define
#define
#else

#define
#define
#define
#define
#define
#define

_fputs fputws

__fsopen

_strcpy-

_strlen

_wfsopen
S wcscpy._s

weslen

_sprintf_s swprintf_s

strcat

s wcscat_s

_strcmp wcscmp

_fputs fputs

__fsopen

_strcpy-

_strlen

_fsopen
s strcpy-s

strlen

_sprintf_s sprintf_s

strcat

s strcat_s

52

#define _strcmp strcmp

#endif

/% Standard C++ headers x/
#include <iostream>
#include <sstream>
#include <memory>

#include <stdexcept>

#define NA 0

#define INULL —1
#define DUMPIT 1
#define PRTINTEREST 2
#define PRINORMAL 3
#define MONGO 4

#define useSQL 0

#define totalByDump 1 // if 0 total by appid

// Globals

using namespace std;

void strtoupperIP (CHAR xlower);
char xconvert_path (char spath);
char xconvert_loc(char =path);
char xconvert_app (char =xpath);

char xnull();

void getMongoValue(const bson_-t xdoc, const char sinputKey, void skxoutputValue)
=

char * getMongoApp(mongoc_collection_t xhelixCollection , TCHAR xjobID, TCHAR =
— hostIP, TCHAR xpid);

uint8_t processMongoSample(mongoc_collection_t xcollection , mongoc_collection_t

< xhelixCollection , TCHAR #jobID) ;

53

Appendix B. Code: Whitelist

whitelist.cpp

#include " whitelist .h”

#define DBNAME " thesis”

const bson_-t xcurrentDoc;

mongoc_client_t xclient;

int _tmain(int argc, TCHAR xargv[]) {

uint32_t i;

int ctr;

TCHAR wprefix [1000], wjobID[1000];

mongoc-collection_t *xcollection , *processedCollection , =

— testedCollection;

// Syntax: whitelist [load|build|test] dbname jobID (s)

collection = NULL;
processedCollection = NULL;
testedCollection = NULL;

mongoc_init () ;

client = mongoc_client_new (”mongodb://127.0.0.1/”);

//collection is the WhiteList collection. This is where Process/Modules/
— Connections are recorded when ’buildMongodb’ is ran.

//These are then used to determine WhiteList percentages when ’

— testMongoSample’ is used to compare against the WhiteList.

collection = mongoc_client_get_collection (client , DBNAME, ” WhiteList”)
=

if (collection = NULL) return O0;

//processedCollection is the helix collection generated by Metasponse’s

< helix module. This code never writes to this collection.

o4

processedCollection = mongoc_client_get_collection (client , DBNAME, ”
< Processed”);

if (processedCollection == NULL) return O;

//testedCollection is the WhiteListTested collection that is used to
— track what JobID’s/HostIP’s have been compared against the
— WhiteList .

testedCollection = mongoc_client_get_collection (client , DBNAME, ”
< WhiteListTested”);

if (testedCollection = NULL) return O;

if (!_tcscmp (argv[1l],” build”))
printf(”\nBuilding DB\n”);
else if (!_tcscmp(argv[1l],” test”))
printf(”\nTesting sample\n”);
else
printf(” Using DB %s\n” ,DBNAME) ;
//Process each JobID passed to the program.
for (ctr = 3; ctr < argec; ctr++) {
for (i = 0; i < _tcslen(argv[ctr]); i++) wprefix[i] = argv[ctr
— |[i]; wprefix[_tcslen(argv[ctr])] = 0;
_tcscpy (wjobID , wprefix) ;
if (!_tcscmp(argv[1l],” build”)) {
if (!buildMongodb(collection , processedCollection ,
— testedCollection , wjobID)) return O;
} else if (!_tcscmp(argv[1l],” test”)) {
if (!testMongoSample(collection , processedCollection ,
< testedCollection , wjobID)) return O0;
} else
printf(”\nBad Operation Specified\nwhitelist build
< JobID(s)\nwhitelist test JobID(s)\n”);
}

printf(” Exiting\n”);

//Clean up

mongoc_collection_destroy (collection);

mongoc_collection_destroy (processedCollection);

mongoc_collection_destroy (testedCollection);
mongoc-client_destroy (client);

mongoc_cleanup () ;

55

return 1;

} //END main ()

uint8_t buildMongodb(mongoc_collection_t xcollection , mongoc_collection_t =x
<~ processedCollection, mongoc_collection_t *testedCollection , TCHAR xjobID

=) A

int appidl, rc, numtcp, numudp;

char xapplicationS , xpathS, *xstr, xpidS, xparentS, xdllS, xlocationS , =*
— hostIP;

bool debugit;

const bson_t xdoc, xdoc2, xpipeline, xpipeline2, xquery, xhostpipeline,
— xcurrentHost , xhostdoc;

bson_error_t t_error;

mongoc_cursor_t xcursor , ximportCursor, ximportCursor2, sxhostCursor;

//DEBUG output boolean
debugit = false;
t_error .domain = 0;

t_error.code = 0;

//Check if the jobID has already been loaded into the WhiteList
query = BCONNEW (”$query”, "{”, ”tableName”, ” Collections”, ”JobID”
< BCON_UTF8(jobID), ”completed”, BCONINT32(1), "}”);
cursor = mongoc-_collection_find (collection , MONGOC.QUERYNONE, 0, O,
< 0, query, NULL, NULL);
if (mongoc_cursor_next(cursor, &doc)) {
printf(”JobID Already Loaded\n”);
mongoc_cursor_destroy (cursor) ;

return 1; //If the jobID has already been completed then exit
— Build

} else {
printf(” JobID Not Loaded\n”);

//Now to check that the JobID has already been PreProcessed
query = BCONNEW (”$query”, "{”, ”tableName”, ”Processed”, ”JobID”,
— BCON_UTF8(jobID), ”completed”, BCONINT32(1), ”}”);

56

cursor = mongoc-collection_find (processedCollection ,
— MONGOC.QUERYNONE, 0, 0, 0, query, NULL, NULL);
if (!mongoc_cursor_next(cursor, &doc)) {
printf(”JobID has not been PreProcessed\n”);
mongoc_cursor_destroy (cursor) ;

return 1;

printf(” Iterating through all Hosts for Job ID %s\n”,jobID);

//The Host IP are iterated through after sorting. If the program ever

< crashes before completing build, then it will only lose the progress
//for the Host IP it crashed on. Re—running the same command will start

< building from the same Host IP it crashed on. (This may result in
//a handful of Processes/Modules/Connections being added twice to the

— WhiteList. Provided many Hosts are being added this should have a
//very minor impact. This impact cannot be removed without adding some

— significant overhead.

hostpipeline = BCONNEW (”8$query”, ”"{”, ”tableName”, ”Processed”, ”JobID”
< BCON.UTF8(jobID), ”"loaded”, BCON.INT32(1), 7}”,
?$orderby”, ”{”, "HostIP”, BCONINT32(1), "}");
hostCursor = mongoc_collection_find (processedCollection ,

<~ MONGOCQUERYNONE, 0, 0, 0, hostpipeline, NULL, NULL);

//Loop through each Host IP
while (mongoc_cursor_next (hostCursor, ¤tHost)) {
if (debugit) { str = bson_as_json (currentHost, NULL); printf(”
— HostCursor\t\tstr = %s\n”,str); bson_free (str); }

getMongoValue (currentHost , ”HostIP”, (void xx) &hostIP);

//Check if the Host IP has already been loaded.

query = BCONNEW (”$query”, ”{”, ”tableName”, ” Collections”, ”JobID”
< BCON_UTF8(jobID), "HostIP”, BCON.UTF8(hostIP), ”loaded”,
< BCONNT32(1), "}7);

cursor = mongoc_collection_find (collection , MONGOCQUERYNONE, 0, O,
< 0, query, NULL, NULL);

if (mongoc_cursor_next (cursor, &hostdoc)) {
printf(”Host IP %s Already Loaded\n” ,hostIP);

mongoc_cursor_destroy (cursor);

57

//1f the Host IP has already been loaded then continue to the next
— Host IP

} else {

printf(” Building from Process Lists for Job ID %s, Host %s\n”,jobID
< ,hostIP);

pipeline = BCONNEW (”$query”, "{”, ”tableName”, ”"PreProcessList”,
< 7JobID”, BCON_UTF8(jobID), ”HostIP”, BCON_UTF8(hostIP),
% ’7}97);

importCursor = mongoc-collection_find (processedCollection ,

<+ MONGOC.QUERYNONE, 0, 0, 0, pipeline, NULL, NULL);

//Iterate through each Process of the current Host IP
while (mongoc_cursor_next(importCursor, ¤tDoc)) {
if (debugit) { str = bson_as_json (currentDoc, NULL); printf(”

< ProcessList\t\tstr = %s\n”,str); bson_free (str); }

getMongoValue (currentDoc, "PID”, (void xx%) &pidS);
getMongoValue (currentDoc, ” Application”, (void xx) &

< applicationS);
getMongoValue (currentDoc, ”Parent”, (void xx) &parentS);

getMongoValue (currentDoc, ”Location”, (void #*x) &locationS);

appidl = getMongoAppid(collection , testedCollection , jobID,
< hostIP, pidS, applicationS, parentS, locationS, TRUE);

getMongoValue (currentDoc, ”"Path”, (void *x) &pathS);
getMongoValue (currentDoc, "NumTCP”, (void =#) &numtcp);
getMongoValue (currentDoc, "NumUDP”, (void %x) &unumudp);

if (debugit) { printf(”TCP %i\tUDP %i\n” ,numtcp, numudp); }

// Either add another ProcessList record or update the count on
—» an existing one
doc = BCONNEW (” tableName”, ”ProcessList”, ” Application”,
< BCON_UTF8(applicationS), "AppID”, BCON_INT32(appidl) ,
”?Parent” , BCON_UTF8(parentS), ”Path”,
< BCON_UTF8(pathS), ”Location”,
— BCON_UTF8(locationS));
doc2 = BCONNEW (” $inc”, 7{”, ”Qty”, BCONINT32(1), "}");

58

if (!mongoc_collection_update(collection , MONGOCUPDATE UPSERT
< , doc, doc2, NULL, &t_error))
printf(” Update Error: %i.%i:\t%s\n”,t_error.domain,t_error.

< code, t_error.message);

doc = BCONNEW (” tableName”, "TCP”, ” Application”, BCON_UTF8(
< applicationS), ”"AppID”, BCON.INT32(appidl),
"NumTCP” , BCON_INT32(numtcp));
doc2 = BOONNEW (” $inc”, ”{”, ”Qty”, BCON.INT32(1), "}");
if (!mongoc_collection_update(collection , MONGOCUPDATE UPSERT
< , doc, doc2, NULL, &t_error))
printf (” Update Error: %i.%i:\t%s\n”,t_error.domain, t_error.

< code,t_error .message);

doc = BCONNEW (” tableName”, "UDP”, ” Application”, BCON_UTF8(
< applicationS), ”AppID”, BCON.INT32(appidl),
"NumUDP” , BCON_INT32(numudp));
doc2 = BOONNEW (” $inc”, ”{”, "Qty”, BCONINT32(1), "}");
if (!mongoc-_collection_-update(collection , MONGOC.UPDATE UPSERT
< , doc, doc2, NULL, &t_error))
printf(” Update Error: %i.%i:\t%s\n”,t_error.domain, t_error.

< code, t_error.message);

pipeline2 = BOCONNEW (”$query”, 7{”, ”tableName”, ”PreModules
< 7, ”JobID”, BCON.UTF8(jobID), ”HostIP”, BCONUTF8(hostIP
<), "PID”, BCONUTF8(pidS), "}”);

importCursor2 = mongoc-collection_find (processedCollection ,

<+ MONGOC.QUERYNONE, 0, 0, 0, pipeline2, NULL, NULL);

// Inserting/ Updating Modules
while (mongoc_cursor_next(importCursor2, ¤tDoc)) {
if (debugit) { str = bson_as_json (currentDoc, NULL);
< printf(” Modules\t\tstr = %s\n”,str); bson_free (str)

— ; }

getMongoValue (currentDoc, ”Path”, (void #*x) &pathS);
getMongoValue (currentDoc, ”Location”, (void #x%) &location$)
— 3

getMongoValue (currentDoc, ”"DLL”, (void =) &dllS);

59

doc = BCONNEW (” tableName”, ”Modules”, ” Application”,
< BCON_UTF8(applicationS), ”AppID”, BCON_INT32(appidl)
g
"DLL” , BCON_.UTF8(dl1lS), ”"Path”,
< BCON_UTF8(pathS), ”Location”,
< BCON_UTF8(locationS));
doc2 = BCONNEW (” $inc”, ”{”, "Qty”, BCONINT32(1), ”"}”);
if (!mongoc-_collection_update(collection ,
— MONGOC_.UPDATEUPSERT, doc, doc2, NULL, &t_error))
printf(” Update Error: %i.%i:\t%s\n”,t_error.domain,
< t_error.code,t_error.message);

}//End Modules Loop

}//End Processes Loop

//Update HostIP as loaded

doc = BCONNEW (” tableName”, ” Collections”, ”JobID”, BCON_UTF8(
< jobID), "HostIP”, BCONUTF8(hostIP), ”loaded”, BCON_INT32(1)
=)

rc = mongoc_collection_insert(collection, MONGOCINSERT NONE, doc
< , NULL, &t_error);

if (debugit) printf(” mongoc_collection_insertrc = %i error = %d

— %d: %s\n” ,rc,t_error.domain, t_error.code,t_error.message);

printf(” Host IP %s Loaded\n”, hostIP);

mongoc_cursor-destroy (cursor) ;

}//End IF for HostIP not loaded

}//End JobID Loop

//Mark the JobID as completed

doc = BCONNEW (” tableName”, ” Collections”, ”JobID”, BCON.UTF8(jobID), ”
< completed”, BCON.INT32(1));

rc = mongoc_collection_insert(collection , MONGOCINSERT NONE, doc, NULL, &
< t_error);

if (debugit) printf(” mongoc_collection_insertrc = %i error = %d.%d: %s\

< n”,rc,t-error.domain, t_error.code, t_error . message);

mongoc_cursor_destroy (importCursor) ;

60

mongoc_cursor_destroy (importCursor2);

mongoc_cursor_destroy (hostCursor);

printf(”\n\nBuild Finished\n\n”);

return 0;

} //END buildMongodb ()

uint8_t testMongoSample(mongoc_collection_t xcollection , mongoc_

— processedCollection, mongoc_collection_t xtestedCollection

=) A

//uint32_t recCount, totCount;
char xlocation, xlocation2;

int appid, rc, numtcp, numudp;

collection_t =

, TCHAR xjobID

const bson_t *xdoc, xdoc2, xpipeline, xpipeline2, xpipeline3 , =x

— hostpipeline , xquery, xcurrentHost, xhostdoc, xxrefDoc, =*

<~ moduleDoc;

mongoc_cursor_t ximportCursor, ximportCursor2, ximportCursor3, =

<~ hostCursor, #*cursor;
char sapplicationS , =xparentS, xdllS, xhostIP, *str;
char xpidl;
bool debugit = false;

int countProcesses, countSub, countSub2, numHosts, numProcesses, numQty

—

double hostScore, processScore, processWeightedScore, subScore,

— moduleScore, tcpScore, udpScore, stdevProcess, stdevHost, temp;

stack <double> hostStack;

stack <double> processStack;

bson_error_t t_error;
t_error .domain = O0;

t_error.code = 0;

//Check if the jobID has already been tested
query = BCONNEW (”$query”, "{”, ”tableName”, ”Tested”,

”JobID”

< BCON_UTF8(jobID), ”completed”, BCONINT32(1), ”"}”);

61

cursor = mongoc-collection_find (testedCollection , MONGOC.QUERYNONE,
< 0, 0, 0, query, NULL, NULL);
if (mongoc_cursor_next(cursor, &doc)) {
printf(”JobID Already Loaded\n”);
mongoc_cursor_destroy (cursor) ;
return 1; //If the jobID has already been completed then exit
— Build
} else {
if (debugit) {printf(”JobID Not Loaded\n”);}

//Now to check that the JobID has already been PreProcessed
query = BCONNEW (”$query”, ”"{”, ”tableName”, ”Processed”, ”JobID”,
— BCON_UTF8(jobID), ”completed”, BCONINT32(1), 7}”);
cursor = mongoc-collection_find (processedCollection ,
— MONGOCQUERYNONE, 0, 0, 0, query, NULL, NULL);
if (!mongoc_cursor_next(cursor, &doc)) {
printf(” JobID has not been PreProcessed\n”);
mongoc_cursor_destroy (cursor) ;

return 1;

//Find the total number of hosts in the WhiteList
query = BCONNEW (” pipeline”, ”[”,
?{”, "$match”, "{”, ”tableName”, ”

— Collections”, ”loaded”,

— BCONJNT32(1)’ 77}”, 7’}77’

”» ”» ”» ” ” ”» ” M ” ”»
{ 7 $group b} { 9 *ld b
— $tableName”, ”count”,
— {7, ?$sum”, ”$loaded”,

SRS AT A AR

"17)
mongoc_collection_aggregate (collection , MONGOCQUERYNONE, query,
< NULL, NULL);

cursor

if (mongoc_cursor_next(cursor, &doc)) {

getMongoValue (doc,” count”, (void xx) &numHosts);

printf(” Iterating through all Hosts for Job ID %s\n”,jobID);

62

//The Host IP are iterated through after sorting. If the program ever
— crashes before completing test, then it will only lose the progress
//for the Host IP it crashed on. Re—running the same command will start
< testing from the same Host IP it crashed on. (This may result in
//a handful of Processes/Modules/Connections being tested twice. Provided

— many Hosts are being tested, this should have a very minor impact.

hostpipeline = BCONNEW (”8query”, ”"{”, ”tableName”, "Processed”, ”JobID”,
< BCON.UTF8(jobID), ”"loaded”, BCON.INT32(1), 7}”,

?$orderby”, 7{”, "HostIP”, BCONINT32(1), ”}”)
>
hostCursor = mongoc_collection_find (processedCollection ,

— MONGOCQUERYNONE, 0, 0, 0, hostpipeline, NULL, NULL);

//Loop through each Host IP
while (mongoc_cursor_next(hostCursor, ¤tHost)) {
if (debugit) { str = bson_as_json (currentHost, NULL); printf(” Hosts\t\
— tstr = %s\n”,str); bson_free (str); }
getMongoValue (currentHost , ”HostIP”, (void =xx) &hostIP);
hostScore = 0.0;
stdevHost = 0.0;

countProcesses = 0;

query = BCONNEW (”8$query”, "{”, ”tableName”, ”Tested”, ”JobID”,
< BCON_UTF8(jobID), ”"HostIP”, BCON_.UTF8(hostIP), ”loaded”,
— BCON.INT32(1), "}”);

cursor = mongoc-collection_find (testedCollection , MONGOC.QUERYNONE,
< 0, 0, 0, query, NULL, NULL);

if (mongoc_cursor_next (cursor , &hostdoc)) {
printf (”Host IP %s Already Tested\n” ,hostIP);

mongoc_cursor_destroy (cursor);

//1f the hostIP has already been tested then continue to the next

<~ host

} else {

printf(” Testing Host IP %s\n”, 6 hostIP);

63

pipeline = BCONNEW (”$query”, "{”, ”tableName”, ”PreProcessList”,
< 7JobID”, BCON_UTF8(jobID), ”HostIP”, BCON_UTF8(hostIP),
(H ’7}77);

importCursor = mongoc-collection_find (processedCollection ,

s MONGOC.QUERYNONE, 0, 0, 0, pipeline, NULL, NULL);

//Test each Process
while (mongoc_cursor-next(importCursor, ¤tDoc)) {
if (debugit) { str = bson_as_json (currentDoc, NULL); printf(”
< Processest\tstr = %s\n”,str); bson_free (str); }
countProcesses++;
processScore = 0.0;
processWeightedScore = 0.0;
stdevProcess = 0.0;
countSub = 0;
countSub2 = 0;
getMongoValue (currentDoc, "PID”, (void #*x) &pidl);
getMongoValue (currentDoc, ” Application”, (void xx) &
< applicationS);
getMongoValue (currentDoc, ”Parent”, (void *%) &parentS);

getMongoValue (currentDoc, ”Location”, (void *%) &location);

//Get the AppID of the Process in the Whitelist that is the
— nearest match to the Process being tested.

pipeline2 = BCONNEW (”$query”, ”{”, ”tableName”, ”
< ApplicationXREF” , "PID” , BCON_UTF8(pidI), ”JobID”,
< BCON_UTF8(jobID), ”HostIP”, BCON_.UTF8(hostIP), ”}”);

importCursor2 = mongoc_collection_find (collection ,

<» MONGOC.QUERYNONE, 0, 0, 0, pipeline2 , NULL, NULL);

if (mongoc_cursor_next(importCursor2, &xrefDoc)) {
//1f the PID, HostIP, and JobID match a process that was
< used to build the WhiteList, we can just grab the
— AppID from the ApplicationXREF table
getMongoValue (xrefDoc, ”AppID”, (void =xx) &appid);
} else {
//Otherwise, we must do the work to find the AppID for the
<~ process being tested
appid = getMongoAppid(collection ,testedCollection ,jobID,

< hostIP , pidI ,applicationS ,parentS,location ,FALSE);

64

}
if (debugit) {printf(” Processes Appid %i\n”,appid);}

getMongoValue (currentDoc, "NumTCP”, (void *%) &numtcp);

getMongoValue (currentDoc, "NumUDP”, (void x*%) &uumudp);

if (appid = 0) {
//The Process doesn’t match any Process in the WhiteList.
//Test TCP Connections
doc2 = BCONNEW (”tableName”, "TCP”, ”JobID”, BCON_UTF8(
— jobID), ”"HostIP”, BCONUTF8(hostIP),

"PID”, BCON.UTF8(pidl), ”Application”,
< BCON_UTF8(applicationS), ”AppID
< 7, BCON.INT32(appid), "NumTCP”,
< BCON_NT32(numtcp) ,

" TCPScore”, BCONDOUBLE(0.0));

rc = mongoc_collection_insert(testedCollection,

< MONGOC.INSERT.NONE, doc2, NULL, NULL);

//Test UDP Connections
doc2 = BCONNEW (” tableName”, "UDP”, ”JobID”, BCON._UTF8(
< jobID), "HostIP”, BCON.UTF8(hostIP),

"PID” , BCON.UTF8(pidl), ”Application”,
< BCON_UTF8(applicationS), ”AppID
< 7, BCON.INT32(appid), "NumUDP”,
< BCON_INT32 (numudp) ,

”UDPScore”, BCONDOUBLE(0.0));

rc = mongoc_collection_insert(testedCollection ,

< MONGOCINSERT.NONE, doc2, NULL, NULL);

//Test Modules
pipeline2 = BCONNEW (”$query”, ”{”, ”tableName”,6 ”
— PreModules”, ”JobID”, BCON_UTF8(jobID), ”HostIP”,
< BCON_UTF8(hostIP), "PID”, BCON.UTF8(pidl), 7}”);
importCursor2 = mongoc_collection_find (
— processedCollection , MONGOCQUERYNONE, 0, 0, O,
< pipeline2 , NULL, NULL);

while (mongoc_cursor_next (importCursor2, &moduleDoc)) {

getMongoValue (moduleDoc, ”DLL”, (void #x*) &dl1S);

65

getMongoValue (moduleDoc, ”Location”, (void xx) &

< location2);

doc2 = BCONNEW (” tableName”, ”Modules”, ”JobID”
< BCON_UTF8(jobID), ”HostIP”, BCON.UTF8(hostIP),

?PID” , BCON.UTF8(pidI), ”
< Application”, BCON_UTF8(
< applicationS), "AppID”,
<» BOON_INT32(appid) ,

?DLL” , BCON.UTF8(d1lS), ”Location”,
< BCON_UTF8(location2),

” ModuleScore” , BCONDOUBLE(0.0));

rc = mongoc_collection_insert(testedCollection ,
< MONGOCINSERT NONE, doc2, NULL, NULL) ;
}//End Modules Loop

doc = BCONNEW (” tableName”, ”ProcessList”, ”JobID”,
< BCON_UTF8(jobID), "HostIP”, BCON.UTF8(hostIP),
"PID” , BCON_UTF8(pidl), ”AppID”,
< BCON.NT32(appid), ”Application
< 7, BCON.UTF8(applicationS),
”Parent”, BCON_UTF8(parentS), ”"Location
— 7, BCON_.UTF8(location), ”
< ProcessScore”, BCONDOUBLE(0.0) ,
”ProcessAvg”, BCONDOUBLE(0.0) , ”
< ProcessStDev”, BCONDOUBLE(0.0) ,
— ”ProcessOccurrenceCount”

< BCON_INT32(0));

rc = mongoc-collection_insert(testedCollection ,

s MONGOC.INSERT.NONE, doc, NULL, NULL);

//Update the host stack
hostStack.push(0.0);

else {
//The Application being Tested matches an Application in
— the WhiteList

subScore = 0.0;

66

//Find the total number of entries for this Application in
— the WhiteList
pipeline2 = BOCONNEW (” pipeline”, 7[7,
{7 "$match”, "{”, ”"tableName”, ”
— ProcessList”, ” Application”,

< BCON_UTF8(applicationS),

«y ” 777 77}737

?7{77’ ” $gr0up7? s 77{7?’ ”» 7id77 s ”
— $tableName”, "count”, 7{7, ”
;) $Sum” s 77$Qty77 , ”}77 , ” }77 ,
sy 7 777

75}77) .
b

importCursor2 = mongoc_collection_aggregate (collection ,

<+ MONGOC.QUERYNONE, pipeline2 , NULL, NULL);
if (mongoc_cursor_next(importCursor2, &doc)) {

getMongoValue (doc,” count”, (void %) &numProcesses);

//Test TCP Connections
pipeline2 = BOONNEW (” pipeline”, ”[”,
7{” 7$match”, "{”, ”tableName”, ”
— TCP”, ” Application”,
< BCON_UTF8(applicationS), ”

<5 NumTCP” , BCON_INTS32(numtcp) ,

”»” ” ” ”
= T}, 7,
” ” ” ” ” ” ” M ” ”
{ bl $gr0up b { I 71d b
— $tableName”, ”count”, {7, ”

— $sum”, ”8Qty”, 7}, "},
=),
1)
importCursor2 = mongoc_collection_aggregate (collection ,
— MONGOCQUERYNONE, pipeline2 , NULL, NULL) ;
if (mongoc_cursor_next (importCursor2, &doc)) {

getMongoValue (doc,” count”, (void #x*) &numQty) ;

//Do math for TCP SubScore
if (numQty >= numProcesses) {

tcpScore = 1.0;

67

} else {
tecpScore = (float)numQty / (float)numProcesses;
}
//Stats
countSub++;
processScore += tcpScore;
processStack .push(tcpScore);
//Weighted Stats

processWeightedScore += (tcpScore * weightTCP);

doc2 = BOONNEW (” tableName”, "TCP”, ”JobID” , BCON_UTFS(
< jobID), "HostIP”, BCON.UTF8(hostIP) ,
"PID” , BCON_UTF8(pidl), ” Application”,
— BCON_UTF8(applicationS), ”AppID
< 7, BCON.INT32(appid), "NumTCP”,
— BCON.INT32(numtcp) ,
”TCPScore” , BCONDOUBLE(tcpScore));
rc = mongoc-collection_insert(testedCollection,

<+ MONGOCINSERTNONE, doc2, NULL, NULL);

//Test UDP Connections
pipeline2 = BCONNEW (” pipeline”, ”[”,
{7, "$match”, "{”, ”"tableName”, ”
— UDP”, ” Application”
< BCON_UTF8(applicationS), ”
< NumUDP” , BCON_INT32(numudp) ,

SR AT A
»{”, ”8group”, {7, 7_.id”, 7
— $tableName”, "count”, 7{”, ”
< $sum”, 7?$Qty”, 7}, ”}”,
(—> 7 777
1)
importCursor2 = mongoc_collection_aggregate (collection ,

<+ MONGOC.QUERYNONE, pipeline2 , NULL, NULL);
if (mongoc_cursor_next(importCursor2, &doc)) {

getMongoValue (doc,” count”, (void #x) &numQty) ;

//Do math for UDP SubScore

if (numQty >= numProcesses) {

68

udpScore = 1.0;
} else {
udpScore = (float)numQty / (float)numProcesses;
}
//Stats
countSub++;
processScore += udpScore;
processStack . push(udpScore) ;
// Weighted Stats
processWeightedScore += (udpScore * weightUDP);

doc2 = BCONNEW (” tableName”, "UDP”, ”JobID”, BCON_UTF8(
< jobID), "HostIP”, BCON.UTF8(hostIP) ,

»PID” , BCON_UTF8(pidl), ” Application”,
< BCON_UTF8(applicationS), ”AppID
< 7, BCON.INT32(appid), "NunUDP”,
< BCON_NT32 (numudp) ,

”UDPScore” , BCONDOUBLE(udpScore));

rc = mongoc-collection_insert(testedCollection,

<+ MONGOCINSERT.NONE, doc2, NULL, NULL);

// Test Modules
pipeline2 = BCONNEW (”$query”, ”{”, ”tableName”, ”
< PreModules”, ”JobID”, BCONUTF8(jobID), ”HostIP”,
— BCON_UTF8(hostIP), "PID”, BCON.UTF8(pidIl), ”}”);
importCursor2 = mongoc-collection_find (
— processedCollection , MONGOCQUERYNONE, 0, 0, O,
< pipeline2 , NULL, NULL);
subScore = 0.0;

if (mongoc_cursor_next(importCursor2, &moduleDoc)) {
while (mongoc_cursor_next (importCursor2, &moduleDoc))
= A
getMongoValue (moduleDoc, ”"DLL”, (void xx*) &dllS);
getMongoValue (moduleDoc, ”Location”, (void xx) &

— location2);
pipeline3 = BCONNEW (” pipeline”, "[”,

77{77 , ” $rnatch” , 77{77 , ”

— tableName”, ”Modules

69

”

— ” Application”
— BCON_UTF8(

< applicationS), ”DLL
< 7, BCON.UTF8(dIlIS),
=Py,

{”, ?8§group”, {7, 7 _.id”,
— "$tableName”, ”
< count”, 7{”, ”$sum”,
R AN S B
S

"1

importCursor3 = mongoc_collection_aggregate (

— collection , MONGOCQUERYNONE, pipeline3 ,
< NULL, NULL);
if (mongoc_cursor_next(importCursor3, &doc2)) {

getMongoValue (doc2,” count”, (void xx) &numQty) ;

//Do math for Modules SubScore
if (numQty >= numProcesses) {
subScore = 1.0;

} else {

subScore = (float)numQty / (float)numProcesses;
}
countSub++;
countSub2-++;
processScore += subScore;
moduleScore += subScore;

processStack . push(subScore);

doc2 = BCONNEW (” tableName”, ”Modules”, ”JobID”
< BCON_UTF8(jobID), ”HostIP”, BCON_UTF8(hostIP
-),
"PID” , BCON_UTFS(pidl), ”
< Application”, BCON_UTF8(
< applicationS), ”AppID”,
< BCON_INT32(appid) ,
"DLL” , BCON_.UTF8§(dllS), ”
< Location”, BCON_UTFS8(

< location2),

70

”ModuleScore” , BCONDOUBLE(

< subScore));

rc = mongoc-collection_insert(testedCollection ,
< MONGOCINSERT NONE, doc2, NULL, NULL);
}//End Modules Loop

//Stats
moduleScore = moduleScore / (float)countSub2;
//Weighted Stats
if (moduleScore >= 1.0) {
moduleScore = 1.0;
processWeightedScore += weightModule;
} else {
processWeightedScore += (moduleScore % weightModule
=)

}//End Module Loop

} else {

moduleScore = 1.0;
processWeightedScore += weightModule;
}//End Modules IF

processScore = processScore / (float)countSub; //The

— Average of all the TCP, UDP, and Module Scores

while (!processStack.empty()) { //Find the variance of
— the SubScores
temp = processStack.top();
stdevProcess += (temp — processScore)*(temp —
< processScore);
processStack .pop () ;

}

stdevProcess = sqrt(stdevProcess / (float)countSub); //Now

)

— find the Standard Deviation of the SubScores

doc = BCONNEW (” tableName”, ”ProcessList”, ”JobID”,
< BCON_UTF8(jobID), "HostIP”, BCON.UTF8(hostIP),

71

"PID” , BCON_UTF8(pidl), ”AppID”,
< BCON_INT32(appid), ”Application
< 7, BCON.UTF8(applicationS),
”Parent” , BCON_UTF8(parentS), ”"Location
— 7, BCON_UTF8(location), ”
< ProcessScore”, BCONDOUBLE(
— processWeightedScore) ,
”ProcessAvg”, BCONDOUBLE(processScore)
< , ”ProcessStDev”, BCONDOUBLE(
stdevProcess), 7

—
— ProcessOccurrenceCount” ,
—

BCON_NT32(numProcesses));

rc = mongoc-_collection_insert(testedCollection ,

<+ MONGOCINSERTNONE, doc, NULL, NULL);

//Now to update for Scoring
hostStack . push(processWeightedScore);
hostScore += processWeightedScore;
}//End AppID IF
}//End Processes Loop

//Now to score the HostIP
hostScore = hostScore / (float)countProcesses; //The Average of all
— the Process Scores
while (!hostStack.empty()) { //Find the variance of the
— ProcessScores
temp = hostStack.top();
stdevHost += (temp — hostScore)=*(temp — hostScore);
hostStack .pop();
}
stdevHost = sqrt(stdevHost / (float)countProcesses); //Now find the

< Standard Deviation of the ProcessScores

//Update HostIP as loaded
doc = BCONNEW (” tableName” , ” Tested”, ”JobID”, BCON_UTF8(jobID), ”
— HostIP”, BCON.UTF8(hostIP), ”loaded”, BCON_INT32(1),
”?HostScore”, BCONDOUBLE(hostScore), ”
— HostStandardDeviation” , BCON.DOUBLE(

« stdevHost));

72

rc = mongoc-collection_insert(testedCollection ,
— MONGOCINSERTNONE, doc, NULL, &t_error);
if (debugit) printf(” mongoc_collection_insertrc = %i error = %d

— %d: %s\n” ,rc,t_error.domain, t_error.code,t_error.message);

printf (”Host IP %s Tested\n”, hostIP);

mongoc_cursor-destroy (cursor) ;

}//End IF for HostIP not loaded

}//End JobID Loop

mongoc_cursor_destroy (hostCursor) ;

//Mark the JobID as completed

doc = BCONNEW (” tableName”, ”Tested”, ”JobID”, BCONUTF8(jobID), ”
— completed”, BCONINT32(1));

rc = mongoc_collection_insert(testedCollection , MONGOCINSERTNONE, doc,
— NULL, &t_error);

if (debugit) printf(” mongoc_collection_insertrc = %i error = %d.%d: %s\

”

< n”,rc,t_error.domain, t_error.code, t_error . message);
if (debugit) { printf("rc = %d\n”,rc); }

return 0;

} //END testMongoSample ()

R R R K K K K K K K K KKK KRR KKK KRR R R R R R R R R R K K K K K R K KKK KKK KKK R R R R R R K K K Rk ok ok
// Convert the string to upper case and return a new string
char xstrtoupper_c (const char xlower) {
unsigned int 1i;
char *upper;
if (lower = NULL) return NULL;
upper = (char) malloc(sizeof(char) % (strlen(lower) 4+ 1));
for (i = 0; i < strlen(lower); i++) upper[i] = toupper(lower[i]);
upper [strlen (lower)] = 0;

return upper;

// Convert the string to upper case in place (i.e., do not return a new string)

void strtoupperIP (CHAR xlower) {

73

unsigned int i;
if (lower = NULL) return;

for (i = 0; i < strlen(lower); i++) lower [i] = toupper(lower[i]);

/**/
// getMongoValue returns the value of the inputKey in the imported document
void getMongoValue(const bson_-t xdoc, const char xinputKey, void skxoutputValue)
= |

char #str, xretval, *xwkey, xinputKeyUpper;

bson_iter_t iter;

const bson_value_-t xbvalue;

int i;

int32_t sindirectInt32;

inputKeyUpper = strtoupper_c (inputKey) ;
str = bson_as_json (doc, NULL);
if (bson_iter_init(&iter , doc)) {
while (bson_iter_next(&iter)) {
wkey = (char %) malloc(sizeof(char) % (strlen(bson_iter_key
— (&iter)) + 1));
strcpy (wkey, bson_iter_key (&iter));
strtoupperIP (wkey) ;
if (!stremp (wkey,inputKeyUpper)) {
bvalue = bson_iter_value (&iter);
if (bvalue—>value_type = BSON_.TYPE_UTFS8) {
retval = (char %) malloc(sizeof(char) x (
— bvalue—>value.v_utf8.len + 1));
for (i = 0; i < (int) bvalue—>value.v_utf§.
< len; i++4) retval[i] = bvalue—>value.
— v_utf8.str[i];
retval [i] = 0;
free (wkey);
free (inputKeyUpper) ;
bson_free (str);
xoutputValue = (void %) retval;
} else if (bvalue—>value_type = BSON_TYPE.INT32) {
free (wkey) ;
free (inputKeyUpper) ;

bson_free (str);

74

indirectInt32 = (int32_t %) outputValue;
xindirectInt32 = bvalue—>value.v_int32;
} else {
printf ("«xgetValuexx key = %s\t\ttype = %i\
< ndocument = %s\n\n” ,inputKey ,bvalue—>
— value_type,str);

}

return;

}

free (wkey) ;

free (inputKeyUpper) ;

bson_free (str);

return;

} //END getMongoValue

// getMongoAppid uses a JobID, HostIP, and PID and determines the nearest match
— to a Process that has been assigned an AppID in the Whitelist

int getMongoAppid(mongoc_collection_t xcollection, mongoc_collection_t =
— testedCollection , TCHAR xjobID, TCHAR xhostIP , TCHAR xpid, TCHAR =x
< wapplication , TCHAR swparent, TCHAR xwlocation, bool makeChanges) {

int rc2;
bool appFound;
char xappLocation, xappParent;
uint32_t wappid, bestApp;
uint8_t prtit;
const bson_-t xquery, =xdoc, =xdoc2;

mongoc,cursor,t *CUrsor ;

//DEBUG control

prtit = 0;
// First, check to see if we’ve already figured out what the appid is

if (makeChanges) {//When makeChanges is TRUE, we check the WhiteList (
< buildMongodb)

5

query = BCONNEW (”8$query”, "{”, ”tableName”, ” ApplicationXREF”, ”PID
< 7, BCON_UTF8(pid), ”JobID”, BCON_.UTF8(jobID), ”HostIP”,
< BCON_UTF8(hostIP), 7}”);

cursor = mongoc-_collection_find (collection , MONGOC.QUERYNONE, 0, O,
< 0, query, NULL, NULL);

if (mongoc_cursor_next (cursor, &doc)) {
getMongoValue (doc, "AppID”, (void x*x) &wappid);
mongoc_cursor_destroy (cursor);
return wappid;

}

} else {//When makeChanges is FALSE, we check the the testedCollection
— (testMongoSample)

query = BCONNEW (”$query”, ”{”, ”tableName”, ”ProcessList”, "PID”,
< BCON_UTFS8(pid), ”JobID”, BCON.UTFS8(jobID), ”HostIP”, BCON_UTFS(
< hostIP), 7}”);

cursor = mongoc_collection_find (testedCollection , MONGOC.QUERY_NONE,
— 0, 0, 0, query, NULL, NULL);

if (mongoc_cursor_next(cursor, &doc)) {
getMongoValue (doc, "AppID”, (void #*x) &wappid);
mongoc_cursor_destroy (cursor);

return wappid;

appLocation = NULL;
appFound = FALSE;
bestApp = 0;

//Query every Whitelist process of the same name

if (prtit) printf(”pid = %s\t\twapplication = %s\n” ,pid, wapplication);

query = BCONNEW (”$query”, "{”, ”tableName”, ”ProcessList”, " Application
< 7, BCON.UTF8(wapplication), 7}”);
cursor = mongoc_collection_find (collection , MONGOCQUERYNONE, 0, O,
< 0, query, NULL, NULL);

// Iterate through all Applications of the same name in the Whitelist

while ((mongoc_cursor_next (cursor, &doc)) && (!appFound)) {

76

getMongoValue (doc,” Location”, (void *%) &appLocation);

getMongoValue (doc,” Parent”, (void xx) &appParent);

//printf (” App %s\n\tLoc %s\tParent %s\nWhiteList\n\tLoc %s\tParent %s\n
< ”,wapplication , wlocation , wparent ,appLocation ,appParent);

if ((!strcmp(wlocation ,appLocation)?1:0) && (!strcmp (wparent ,appParent
<)71:0)) |
getMongoValue (doc,” AppID”, (void #x*) &wappid);
bestApp = wappid;
appFound = TRUE;

}

}

if (prtit) {

if (appFound){
printf(”%s FOUND AppID %i\n”,wapplication ,bestApp);

} else {

printf("%s Not Found\n” ,wapplication);

mongoc._cursor_destroy (cursor);

// Now that every existing Whitelist AppID has been compared, if no
— existing ApplD matched then a new ApplD is generated
if ((lappFound) && (makeChanges)) {
query = BCONNEW (”$query”, ”"{”, ”tableName”, ” Miscellaneous”,
< 7fieldName”, "MaxAppID”, 7}”);
cursor = mongoc_collection_find (collection , MONGOC.QUERY NONE,
— 0, 0, 0, query, NULL, NULL);
if (mongoc-cursor_next (cursor, &doc)) {
getMongoValue (doc ,” MaxAppID” ,(void *%) &bestApp);
doc = BCONNEW (” tableName” , ” Miscellaneous”, ”fieldName”, ”
— MaxAppID”) ;
doc2 = BCONNEW (” tableName”, ” Miscellaneous”, ”fieldName”, ”
< MaxAppID” , ”MaxAppID”, BCON_INT32(bestApp + 1));
rc2 = mongoc_collection_update(collection ,
— MONGOC.UPDATENONE, doc, doc2, NULL, NULL) ;
bestApp++;

} else {
bestApp = 1;

7

doc = BCONNEW (” tableName” , ” Miscellaneous”, ”fieldName”, ”
— MaxAppID” , ”MaxAppID”, BCON_INT32(bestApp));
rc2 = mongoc._collection_insert (collection ,
< MONGOCINSERTNONE, doc, NULL, NULL);
}
mongoc_cursor_destroy (cursor);
// Get the next available Appid
if (prtit) printf(?rc2 = %i bestApp = %i app = %s\n”,

< rc2,bestApp,wapplication);

// Add it into the Application table
doc = BCONNEW (” tableName”, ” Application”, ”AppID”, BCONINT32(bestApp
=),
” Application”, BCON_UTF8(
< wapplication), ”Count”,
< BCON.NT32(0)) ;
rc2 = mongoc_collection_insert (collection , MONGOC_INSERT NONE,
< doc, NULL, NULL);

if (makeChanges) { // i.e. getMongoAppid is being invoked from
— buildMongodb

// A cross reference table is maintained to avoid repeating finding the
— AppID for a PID

doc = BCONNEW (” tableName”, ” ApplicationXREF”, ”AppID”, BCON_INT32(
< bestApp), ”"PID”, BCONUTF8(pid), ”JobID”, BCON.UTF8(jobID), ”
< HostIP”, BCON_UTF8(hostIP));

rc2 = mongoc_collection_insert (collection , MONGOC_INSERT NONE,
< doc, NULL, NULL);
}
return bestApp;
} //END getMongoAppid

78

whitelist.h

#include <math.h>

/+ Standard Ct+ includes =*/
#include <stdlib .h>

#include
#include
#include
#include

#define
#define
#define

#define
#define

#define
#define
#define
#define
#define

<iostream>

<stdio .h>

<stdint .h>

<stack>

_tmain main

TRUE true

FALSE false

TCHAR char

CHAR char

_tcslen
_tcscmp
_tcscpy

_tcscat

strlen
strcmp
strcpy

strcat

_totupper toupper

#include <mongoc.h>

#ifdef _UNICODE

#define
#define
#define
#define
#define
#define
#define
#else

#define
#define
#define
#define
#define
#define

_fputs fputws

__fsopen

_strcpy-

_strlen

_wfsopen
S wcscpy._s

weslen

_sprintf_s swprintf_s

strcat

s wcscat_s

_strcmp wcscmp

_fputs fputs

__fsopen

_strcpy-

_strlen

_fsopen
s strcpy-s

strlen

_sprintf_s sprintf_s

strcat

s strcat_s

79

#define _strcmp strcmp

#endif

/% Standard C++ headers x/
#include <iostream>
#include <sstream>
#include <memory>

#include <stdexcept>

#define NA 0

#define INULL —1
#define DUMPIT 1
#define PRTINTEREST 2
#define PRINORMAL 3
#define MONGO 4

#define useSQL 0

#define totalByDump 1 // if 0 total by appid

// These are the thresholds for how strict a Process must match to be assigned
<~ an existing ApplD

#define weightModule 0.6

#define weightTCP 0.2

#define weightUDP 0.2

// Globals

using namespace std;

void strtoupperIP (CHAR xlower);

void getMongoValue(const bson_t xdoc, const char xinputKey, void #xoutputValue)
= ;
int getMongoAppid(mongoc_collection_t *collection , mongoc_collection_t x
— testedCollection , TCHAR xjobID, TCHAR xhostIP , TCHAR xpid, TCHAR x
< wapplication , TCHAR swparent, TCHAR #wlocation, bool makeChanges) ;
uint8_t buildMongodb(mongoc_collection_t %collection , mongoc_collection_t =
< helixCollection , mongoc_collection_t xtestedCollection , TCHAR xjobID);

uint8_t testMongoSample(mongoc_collection_t *xcollection, mongoc_collection_t =*

< helixCollection , mongoc_collection_t #*testedCollection , TCHAR #jobID);

80

Appendix C. Code: Results Generation

results.cpp

#include " results.h”
#define DBNAME ” thesis”

//These options will limit the number of results returned.
#define resultHosts 50

#define resultProcs 100

const bson_t xcurrentDoc;

mongoc_client_t *xclient;
int _tmain(int argc, TCHAR xargv[]) {

uint32_t 1i;

i

int ctr;
TCHAR wprefix [1000], wjobID[1000];
mongoc._collection_t xcollection , xresultsCollection;

// Syntax: whitelist [process] dbname jobID (s)

collection = NULL;

resultsCollection = NULL;
mongoc-init ();
client = mongoc_client_-new (”mongodb://127.0.0.1/7);

//collection is the PreProcessed collection. This is where Process/Modules/
— Connections are processed from the helix collection

//into simple key/value pairs to speed up the processing during build and

— test operations.

collection = mongoc_client_get_collection (client , DBNAME, ”
< WhiteListTested”);

if (collection = NULL) return O0;

81

//helixCollection is the helix collection generated by Metasponse’s
<~ helix module. This code never writes to this collection.
resultsCollection = mongoc_client_get_collection (client , DBNAME, ”

< WhiteListResults”);

if (resultsCollection == NULL) return O;

if (!_tcscmp(argv[l],” results”))

printf(”\nGenerating Results\n”);

printf(” Using Database %s\n” ,DBNAME) ;

//Process each JobID passed to the program.
for (ctr = 3; ctr < argc; ctr++4) {
for (i = 0; i < _tcslen (argv[ctr]); i++4) wprefix[i] = argv[ctr
<][i]; wprefix[_tcslen (argv[ctr])] = 0;
_tcscpy (wjobID , wprefix) ;
if (!_tcscmp (argv([1l],” results”)) {
if (!results(collection, resultsCollection , wjobID))
<~ return O0;
} else
printf(”\nBad Operation Specified\nwhitelist results
— database JobID(s)\n”);
}

printf(” Exiting\n”);

//Clean up

mongoc-_collection_destroy (collection);

mongoc_collection_destroy (resultsCollection);
mongoc_client_destroy (client);
mongoc_cleanup () ;
return 1;

} //END main ()

uint8_t results (mongoc_collection_t *collection , mongoc_collection_t =

— resultsCollection , TCHAR xjobID) {

const bson_t xdoc, xhostpipeline, xpipeline, xquery, xcurrentHost K =x

— subDoc;

82

mongoc_cursor_t xhostCursor, *cursor, ximportCursor;

char xhostIP, xstr, xapplicationS , xparentS, xlocationS , xpidS, =*dllS,
— xdllLocS;

int rc, appID, processCount, i, j, numTCP, numUDP;

double hostScore, hostStDev, processScore, processStDev, tcpScore,
— udpScore, subScore;

bool debugit = false;

bson_error_t t_error;
t_error .domain = 0;

t_error.code = 0;

//Check if the jobID has already been processed
query = BCONNEW (”$query”, ”{”, ”tableName”, "Tested”, ”?JobID”,
< BCON_UTF8(jobID), ”completed”, BCONINT32(1), "}”);
cursor = mongoc-collection_find (collection , MONGOCQUERYNONE, 0, O,
< 0, query, NULL, NULL);
if (!mongoc_cursor_next(cursor, &doc)) {
printf(”JobID hasn’t been Tested\n”);
mongoc_cursor_destroy (cursor) ;
return 1; //If the jobID has already been processed then exit
} else {
if (debugit) {printf(”JobID has been Tested\n”);}

printf(” Iterating through all Hosts for Job ID %s\n”,jobID);

//The Host IP are iterated through after sorting. If the program ever

— crashes before completing test, then it will only lose the progress
//for the Host IP it crashed on. Re—running the same command will start

< testing from the same Host IP it crashed on. (This may result in
//a handful of Processes/Modules/Connections being processed twice.

— Provided many Hosts are being processed, this should have a very

<~ minor impact.

hostpipeline = BCONNEW (” pipeline”, ”[”,
7{”, ”$match”, ”{”, ”tableName”, ”Tested”, ”JobID”,
— BCON_UTF8(jobID), ”loaded”, BCON.INT32(1), ”}”,

s 77}77’

83

»{”, ”$sort”, "{”, "HostScore”, BCONINT32(1), ”}”,
oy

"{7, "$limit”, BCONINT32(resultHosts), "}”,

1)

hostCursor = mongoc_collection_aggregate (collection ,MONGOC.QUERYNONE,

< hostpipeline ,NULL,NULL) ;

if (mongoc_cursor_error (hostCursor,&t_error))
printf(”\tmongoc_collection_aggregate error = %d.%d: %s\n” ,t_error .

< domain, t_error.code,t_error.message) ;

i = 0;
//Loop through each Host IP
while (mongoc_cursor_next (hostCursor, ¤tHost)) {
if (debugit) { str = bson_as_json (currentDoc, NULL); printf(” Hosts\t\

— tstr = %s\n”,str); bson_free (str); }
i++;

getMongoValue (currentHost , "HostIP”, (void *x) &hostIP);
getMongoValue (currentHost , ”HostScore”, (void %) &hostScore);
getMongoValue (currentHost , ” HostStandardDeviation”, (void xx) &

— hostStDev);

doc = BCONNEW (” tableName”, ” CollectionResults”, ”JobID”, BCON_UTFS§(
< jobID), "HostIP”, BCON.UTF8(hostIP),
”HostRank” , BCON_INT32(1i),
”HostScore”, BCONDOUBLE(hostScore), 7
< HostStandardDeviation” , BCONDOUBLE(

— hostStDev)
)

rc = mongoc-collection_insert(resultsCollection , MONGOCINSERT NONE,

<+ doc, NULL, NULL);
i =0

pipeline = BOONNEW (” pipeline”, "[”,

84

{7, "8match”, "{”, ”tableName”, "ProcessList”, ”

— JobID”, BCON_UTF8(jobID), ”HostIP”,

— BCONUTF8(hostIP), 7}”, ”}7,
"{”, "8$sort”, "{”, "ProcessScore”, BCONINT32(1),
=Py
{7, "$limit”, BCONINT32(resultProcs), "}”,
7175
importCursor = mongoc_collection_aggregate (collection ,

s MONGOC.QUERY.NONE, pipeline ,NULL,NULL) ;

if (mongoc_cursor_error (importCursor,&t_error))
printf(”\tmongoc_collection_aggregate error = %d.%d: %s\n”,

<~ t_error.domain, t_error.code,t_error.message);

//Iterate through each Process
while (mongoc_cursor_next (importCursor, ¤tDoc)) {
if (debugit) { str = bson_as_json (currentDoc, NULL); printf(”
— Processes\tstr = %s\n”,str); bson_free (str); }

Jj++s

getMongoValue (currentDoc, ”"PID”, (void #x) &pidS);

getMongoValue (currentDoc, ”AppID”, (void xx) &appID);

getMongoValue (currentDoc, ” Application”, (void #x) &applicationS);
getMongoValue (currentDoc, ”Parent”, (void #x%) &parentS);
getMongoValue (currentDoc, ”Location”, (void #x*) &locationS);
getMongoValue (currentDoc, ” ProcessScore”, (void =x%) &processScore);
getMongoValue (currentDoc, ”ProcessStDev”, (void #x) &processStDev);
getMongoValue (currentDoc, ”ProcessOccurrenceCount”, (void #*x*) &

< processCount) ;

query = BOONNEW (”$query”, ”{”, ”tableName”, "TCP”, ”JobID”,
<+ BCON_UTF$(jobID) , ”HostIP”, BCON.UTF8(hostIP), "PID”
< BCON_UTF8(pidS), "}7);

cursor = mongoc_collection_find (collection , MONGOCQUERYNONE, O,
<~ 0, 0, query, NULL, NULL);

while (mongoc_cursor-next(cursor, &subDoc)) {

getMongoValue (subDoc, "NumTCP”, (void #*) &uumTCP);

getMongoValue (subDoc, ”TCPScore”, (void =*x) &tcpScore);

85

query = BCONNEW (”$query”, ”"{”, ”tableName”, "UDP”, ”JobID”,
< BCON_UTF8(jobID), ”HostIP”, BCON.UTF8(hostIP), "PID”,
< BCON_UTF8(pidS), "}7);

cursor = mongoc_collection_find (collection , MONGOCQUERYNONE, 0,
<~ 0, 0, query, NULL, NULL);

while (mongoc_cursor_next(cursor, &subDoc)) {
getMongoValue (subDoc, "NumUDP” , (void #*) &umUDP) ;
getMongoValue (subDoc, ”UDPScore”, (void *x) &udpScore);

doc = BCONNEW (” tableName”, ” ProcessResults”, ”JobID”, BCON_UTF§(
<+ jobID), ”HostIP”, BCON.UTFS8(hostIP),

”?HostRank” , BCON_INT32(i), ”ProcessRank”,
< BCON_INT32(j), "AppID”, BCON_INT32(applD
=),

"PID” , BCON_UTFS(pidS), ” Application”,
< BCON_UTF8(applicationS),

?Parent”, BCON_UTF8(parentS), ”Location”,
< BCON_UTF8(locationS),

” ProcessScore” , BCONDOUBLE(processScore), ”
— ProcessStDev”, BCON.DOUBLE(processStDev)
< , ”?ProcessOccurrenceCount”, BCONDOUBLE(
< processCount) ,

"NumTCP” , BCON_INT32 (numTCP) , » TCPScore”
< BCONDOUBLE(tcpScore), "NunUDP”
< BCON_INT32(numUDP) , ” UDPScore” ,
<> BCONDOUBLE(udpScore)

)

rc = mongoc_collection_insert(resultsCollection ,

<+ MONGOCINSERTNONE, doc, NULL, NULL);

query = BOONNEW (”$query”, 7{”, ”tableName”, ”Modules”, ”JobID”,
— BCON_UTF8(jobID), ”HostIP”, BCON.UTF8(hostIP), ”"PID”,
< BCON_UTF8(pidS), "}7);

cursor = mongoc_collection_find (collection , MONGOCQUERYNONE, O,
<~ 0, 0, query, NULL, NULL);

86

while (mongoc_cursor_next(cursor, &subDoc)) {
getMongoValue (subDoc, "DLL”, (void xx) &dllS);
getMongoValue (subDoc, ”Location”, (void *%) &dllLocS);

getMongoValue (subDoc, ”ModuleScore”, (void *%) &subScore);

doc = BCONNEW (” tableName”, ” ModuleResults”, ”JobID” |
<» BCON.UTFS8(jobID), ”HostIP”, BCON_UTFS(hostIP),
”HostRank” , BCON_INT32(i), ”ProcessRank”,
<5 BCON.INT32(j), "AppID”, BCON_INT32(appID
=)
?PID” , BCON.UTF8(pidS), ”Application”,
< BCON_UTF8(applicationS),
?DLL” , BCON_.UTF8(d1lS), ”Location”, BCON_UTF8(
< dllLocS),
”?ModuleScore” , BCON.DOUBLE(subScore)

)

rc = mongoc-collection_insert(resultsCollection ,

<+ MONGOCINSERTNONE, doc, NULL, NULL);

}

printf (”Host %s Completed\n” ,hostIP);
}//End JobID Loop
mongoc_cursor_destroy (importCursor) ;
mongoc_cursor_destroy (cursor) ;

mongoc_cursor_destroy (hostCursor) ;

if (debugit) { printf("rc = %d\n”,rc); }

return O;

} //END processMongoSample ()

/] s s sk sk sk sk sk ok okt sk ok sk ok R Rk sk sk ok R R o sk ok R s ok kR Rk sk sk ok R R sk ok R sk ok sk oR SR R sk ok Rk R sk ok Rk R kR Rk kR Rk sk ok ok /
// Convert the string to upper case and return a new string
char xstrtoupper_c (const char xlower) {

unsigned int 1i;

char xupper;

if (lower = NULL) return NULL;

upper = (char x) malloc(sizeof(char) * (strlen(lower) + 1));

87

for (i = 0; i < strlen(lower); i++) upper[i] = toupper(lower[i]);
upper [strlen (lower)] = 0;

return upper;

// Convert the string to upper case in place (i.e., do not return a new string)
void strtoupperIP (CHAR xlower) {

unsigned int i;

if (lower = NULL) return;

for (i = 0; i < strlen(lower); i++) lower [i] = toupper(lower[i]);

[s s sk ks sk oot ok ok sk sk ook ok sk K ok otk Sk sk kK of S ok oK ok R s ko Rk sk R KR sk koK R R Rk ok kR KRRk koK ok sk ok ok /
// getMongoValue returns the value of the inputKey in the imported document
void getMongoValue(const bson_-t xdoc, const char xinputKey, void skxoutputValue)
= |

char xstr, sretval, xwkey, xinputKeyUpper;

bson_iter_t iter;

const bson_value_t xbvalue;

int i;

int32_t xindirectInt32;

double xindirectDouble;

inputKeyUpper = strtoupper_c (inputKey) ;
str = bson_as_json (doc, NULL);
if (bson_iter_init(&iter , doc)) {
while (bson_iter_next(&iter)) {
wkey = (char %) malloc(sizeof(char) % (strlen(bson_iter_key
< (&iter)) + 1))
strcpy (wkey, bson_iter_key (&iter));
strtoupperIP (wkey) ;
if (!strecmp (wkey,inputKeyUpper)) {
bvalue = bson_iter_value (&iter);
if (bvalue—>value_type = BSON_.TYPE_UTF8) {
retval = (char %) malloc(sizeof(char) x (
— bvalue—>value.v_utf8.len + 1));
for (i = 0; i < (int) bvalue—>value.v_utf8.
< len; i++4) retval[i] = bvalue—>value.
— v_utf8.str[i];

retval [i] = 0;

88

free (wkey) ;
free (inputKeyUpper) ;
bson_free (str);
xoutputValue = (void %) retval;
} else if (bvalue—>value_type = BSON_TYPEINT32) {
free (wkey);
free (inputKeyUpper) ;
bson_free (str);
indirectInt32 = (int32_t %) outputValue;
xindirectInt32 = bvalue—>value.v_int32;
} else if (bvalue—>value_type == BSON.TYPEDOUBLE) {
free (wkey) ;
free (inputKeyUpper) ;
bson_free (str);
indirectDouble = (double %) outputValue;
*indirectDouble = bvalue—>value.v_double;
} else {
printf (”«xgetValuexx key = %s\t\ttype = %i\
< ndocument = %s\n\n” ,inputKey ,bvalue—>

< value_type ,str);

return;

}

free (wkey) ;

free (inputKeyUpper) ;

bson_free (str);

return;

} //END getMongoValue

89

results.h

#include <math.h>

/+ Standard Ct+ includes =*/
#include <stdlib .h>

#include
#include
#include
#include

#define
#define
#define

#define
#define

#define
#define
#define
#define
#define

<iostream>

<stdio .h>

<stdint .h>

<string.h>

_tmain main

TRUE true

FALSE false

TCHAR char

CHAR char

_tcslen
_tcscmp
_tcscpy

_tcscat

strlen
strcmp
strcpy

strcat

_totupper toupper

#include <mongoc.h>

#ifdef _UNICODE

#define
#define
#define
#define
#define
#define
#define
#else

#define
#define
#define
#define
#define
#define

_fputs fputws

__fsopen

_strcpy-

_strlen

_wfsopen
S wcscpy._s

weslen

_sprintf_s swprintf_s

strcat

s wcscat_s

_strcmp wcscmp

_fputs fputs

__fsopen

_strcpy-

_strlen

_fsopen
s strcpy-s

strlen

_sprintf_s sprintf_s

strcat

s strcat_s

90

#define _strcmp strcmp

#endif

/% Standard C++ headers x/
#include <iostream>
#include <sstream>
#include <memory>

#include <stdexcept>

#define NA 0

#define INULL —1
#define DUMPIT 1
#define PRTINTEREST 2
#define PRINORMAL 3
#define MONGO 4

#define useSQL 0

#define totalByDump 1 // if 0 total by appid

// Globals

using namespace std;

void strtoupperIP (CHAR xlower);

void getMongoValue(const bson_t xdoc, const char xinputKey, void sxoutputValue)
3
uint8_t results(mongoc_collection_t xcollection , mongoc_collection_t =

— resultsCollection , TCHAR x*jobID);

91

Appendix D. Results Extraction Scripts

1. ResultsProcesslist.sh

echo "Exporting Processes”

mongoexport —d thesis —c WhiteListResults —f JoblID 6 HostIP
< ,HostRank , ProcessRank ,AppID,PID, Application , Parent ,
< Location ,ProcessScore ,ProcessStDev ,
— ProcessOccurrenceCount ,NumTCP, TCPScore ,NumUDP,
< UDPScore —q ’{”tableName”:” ProcessResults”}’ ——csv
N

—o0 ResultsProcesses.csv

2. ResultsModules.sh

echo " Exporting Modules”

mongoexport —d thesis —¢ WhiteListResults —f JoblID , HostIP
< , HostRank , ProcessRank ,AppID,PID, Application ,DLL,
< Location , ModuleScore —q ’{” tableName”:”

< ModuleResults”}’ —csv —o ResultsModules. csv

3. ResultsCollections.sh

echo ”Exporting Collection Info”

mongoexport —d thesis —c¢ WhiteListResults —f JoblID , HostIP
< ,HostRank , HostScore , HostStandardDeviation —q '{”
— tableName”:” CollectionResults”}’ —csv —o

s ResultsCollection . csv

92

10.

11.

12.

Bibliography

F. Freiling. A Common Process Model for Incident Response and Computer
Forensics. Technical report, Laboratory for Dependable Distributed Systems,
University of Mannheim, Germany, 2007.

. S. Garfinkel. Digital Forensics. Last Accessed: Feb 20, 2016, December 2013.
http://www.americanscientist.org/issues/pub/digital-forensics.

. W. Lynn. DoD Executive Agent for the DoD Cyber
Crime Center. Last Accessed: Feb 20, 2016, March 2010.

http:/ /www. dtic.mil /whs/directives /corres/pdf/550513E.pdf .
FBI Regional Computer Forensics Laboratory Annual Report, 2012.

J. Clark N. Beebe. Dealing with Terabyte Data Sets in Digital Investigations. In
Advances in Digital Forensics, IFIP International Conference on Digital Foren-
sics, volume 194 2005, pages 3—16. The International Federation for Information
Processing, February 2005.

LTC C. Thomas. Human Resources Command stands
up Cyber Branch. Last Accessed Feb 19, 2016, 2014.
http:/ /www.army.mil/article /122456 /Human_Resources-Command_stands_up
_Cyber_Branch/ .

F. Breitinger and H.Baier. Performance Issues About Context Triggered Piece-
wise Hashing. In Digital Forensics and Cyber Crime: Third International ICST
Conference, volume Pavel Gladyshev, Marcus K. Rogers, pages 141-155. Springer,
October 2011.

J. Spring T. Shimeall. Introduction to Information Security: A Strategic-Based
Approach. Syngress Publishing, 14th edition, 2014.

D. Shackleford. Application Whitelisting: Enhancing Host Security. SANS
Whitepaper, October 2009.

J. Pelzl C. Paar. Understanding Cryptography: A Textbook for Students and
Practitioners. Springer, 2010.

C. Winter H. Baier A. Rybalchenko M. Steinebach F. Breitinger, H. Liu. Towards
a Process Model for Hash Functions in Digital Forensics. In Digital Forensics and
Cyber Crime: Fifth International ICST Conference, volume 132, pages 170-186.
Springer, December 2014.

Sudarshan S. Chawathe. Effective Whitelisting for Filesystem Forensics. In Intel-
ligence and Security Informatics, IEEE International Conference, pages 131-136,
June 2009.

93

13

14.

15.
16.
17.

. H. Baier C. Busch F. Breitinger, K. P. Astebol. mvHash-B: A New Approach
for Similarity Preserving Hashing. In IT Security Incident Management and IT
Forensics (IMF), 2013 Seventh International Conference, pages 33-44. Biomet-
rics and Internet Security Research Group, Hochschule Darmstadt, IEEE, March

2013.

e fense. Helix3 Pro. Last Accessed: Feb 22, 2016, 2014. http://www.e-
fense.com/helix3pro.php.

MongoDB, Inc. MongoDB Documentation: Release 2.4.14, October 2015.

Air Force Institute of Technology J. Okolica. Personal interview, October 2015.
Clymb3r. Intercepting Password Changes with Function
Hooking. Last Accessed: Feb 20, 2016, September 2013.

https://clymb3r.wordpress.com/2013/09/15 /intercepting-password-changes-
with-function-hooking/ .

94

REPORT DOCUMENTATION PAGE OM’E’,’\’,’O_A’;’;Z)ZV_G&%

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704—-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)|2. REPORT TYPE 3. DATES COVERED (From — To)
24-03-2016 Master’s Thesis Aug 2014 — Mar 2016
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER
Statistic Whitelisting for Enterprise Network Incident Response

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER
Grunzweig, Nathan E., CPT, USA

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

Air Force Institute of Technology

Graduate School of Engi i d M t (AFIT/EN

291“;0 lll{aogsofl 3\(7);1 y0 ngineering and Management (JEN) AFIT-ENG-MS.16-M.019

WPAFB OH 45433-7765

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

Intentionally Left Blank 11. SPONSOR/MONITOR’S REPORT

NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

DISTRIBUTION STATEMENT A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT

This research seeks to satisfy the need for the rapid evaluation of enterprise network hosts in order to identify items of
significance through the introduction of a statistic whitelist based on the behavior of the processes on each host. By
taking advantage of the repetition of processes and the resources they access, a whitelist can be generated using large
quantities of host machines. For each process, the Modules and the TCP & UDP Connections are compared to identify
which resources are most commonly accessed by each process. Results show 47% of processes receiving a whitelist score
of 75% or greater in the five hosts identified as having the worst overall scores and 60% of processes when the hosts more
closely match the hosts used to build the whitelist.

15. SUBJECT TERMS

Digital Forensics, Whitelist

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF | 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
a. REPORT | b. ABSTRACT|c. THIS PAGE| ABSTRACT Fces | Dr- Gilbert L. Peterson, AFIT/ENG
19b. TELEPHONE NUMBER (include area code)
U U U U 106 (937) 255-6565, x4281; gilbert.peterson@afit.edu

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

