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Abstract 

This paper will compare competing methods for optically detecting binary objects.  

This is mostly intended for use in Space Situational Awareness (SSA), though has the 

potential to be used in other applications.  The first method referred to as, “Single Object 

Detection” is a versatile algorithm which is currently used to detect extraterrestrial 

objects.  However, it does not take into account interference by a nearby object.  

Therefore a second algorithm is investigated, referred to as “Binary Object Detection”, 

which does.  The binary detection algorithm proved to have a comparable or superior 

Receiver Operating Characteristic (ROC) curve (based upon the area under the curve) in 

all cases.  The algorithm was tested with both simulated and measured data containing 

single points and binary objects. 
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GEOSYNCHRONOUS BINARY OBJECT DETECTION 

 

I.  Introduction 

General Issue 

Detecting binary objects (two objects that appear to be very close) is critical to 

SDA (Space Domain Awareness).  It is currently possible for a threat nation to deploy a 

spy satellite in close proximity to one of our assets and use this satellite to hamper our 

abilities or potentially acquire intelligence from us.  A second scenario involves being 

able to detect a piece of space debris which is in danger of colliding with and potentially 

destroying, one of our orbital assets.  Thirdly, it is possible for an asteroid to escape 

detection by being too close to a brighter object, which would then serve to mask it.  

Without the ability to detect these threats, we will have no way of initiating any kind of 

countermeasure against them.  Other, less threatening scenarios in which this would be 

useful, involve modular space assets, designed to separate in orbit to perform repairs on 

other orbital assets, or even exoplanet detection.   

Problem Statement 

Current detection methods are adept at locating a single object in space, as well as 

two objects that are greatly separated, but have difficulty finding a second object that is 

nearby.  [1] The problem is exacerbated if, as in the two examples listed above, the 

second object is much dimmer than the first object.  One reason for this shortfall is that 

light generated by the Point Spread Function (PSF) of the brighter object can completely 

obscure that of the dimmer object if the two are too close together.  This is why, the 

brighter the second object is, or the farther they are apart, the better the current detection 
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algorithm performs.  However, enough possibilities exist that could confound this 

method, that it is necessary to develop a more specialized approach to deal with the 

binary object scenario. 

Research Objectives/Hypotheses 

The current methods simply make a scan of the entire area to detect objects The 

proposed method, Binary Object Detection (BOD) would work with the current method 

in that it waits for the current algorithm to detect something and then scans the area 

around this object for a second object that might not have been detected by the initial 

scan [2].  In this case the algorithm looks at a pixel and determines how bright an object 

would be if there were an object in that pixel, then applies a binary test to determine the 

probability that there an object of that brightness in the pixel, given the known object in 

its vicinity.  In theory, this will have the greatest advantage over the original method 

when the objects are very close together or the second object is very dim.  As the PSFs of 

the two objects are farther apart, the current method and BOD will likely have more 

similar results. 

Research Focus 

For this project, a software only solution was sought.  The program was written in 

Matlab, which is very portable and can be used with multiple platforms.  This way the 

algorithm could be implemented on existing hardware without the need to purchase 

additional equipment.  Currently the program can operate via an imported .mat file but 

the code can be altered for additional file types if necessary.  
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Methodology 

As stated above, the algorithm was implemented in Matlab.  Once the algorithm 

itself was devised, an artificial pair of binary objects was created, via simulation code, 

and was processed by both the current algorithm and BOD.  This was repeated for several 

different distances and brightness levels.  This produced a series of Receiver Operating 

Characteristic (ROC) curves, which were compared against each other.  Next, actual data 

was collected by shining Light Emitting Diodes (LEDs) through pinholes and 

photographing the pinholes.  The two algorithms were then fed this data and the resulting 

ROC curves were compared. 

Assumptions/Limitations 

There are several assumptions that are necessary for this approach to work.  The 

noise is assumed to be Poisson, meaning that the objects are reflecting incoherent light, 

most likely from the sun and the electronic noise from the camera is also assumed to be 

negligible.  The optical system is also assumed to be space invariant.  Additionally there 

are proximity limitations associated with the algorithm.  The point spread function of the 

optical system is also assumed to be measured or known a priori. This is true for both the 

baseline algorithm and BOD.  Because of this assumption, the integration time of the 

sensor must be short enough so that space objects do not streak significantly in the 

observed images. 

Implications 

If the camera used is a photon counting detector of some sort and the light is 

incoherent, the dominant form of noise will be Poisson [3, p. 485].  If the objects exceed 
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the “nearby” proximity then the code will not detect them because it will not look outside 

a certain distance, however the current method that it is paired with will likely detect both 

objects in this case.  The assumption that the two point sources are not touching is more 

critical.  If the two point sources are touching, it will be unable to differentiate them from 

one source that is two pixels long.  If the system is not space invariant than the way the 

code calculates the Optical Transfer Function (OTF) may be inaccurate.   

Outline of Chapters 

This document is organized as follows.  Chapter II will discuss prior work in this 

topic area as well as explaining part of the mathematical derivation of the algorithm.  

Chapter III will explain how the code functions as well as describing how the real world 

data was collected.  Chapter IV will cover the results of both methods as well as 

comparing the current method to the BOD.  Lastly, Chapter V will discuss conclusions 

that can be drawn from this research, as well as list some recommendations for continued 

investigations and implementation. 
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II. Literature Review 

Chapter Overview 

First, this chapter will examine the current method used to detect unknown orbital 

objects.  It will then take a look at some other object detection methods and explain why 

they are not relevant to our current area of interest.  Next, previous work in the area of 

multi-hypothesis testing will be discussed, as this is critical to BOD.  Lastly, BOD will be 

contrasted with this prior work.  

Current Method 

Currently, Geosynchronous Earth Orbit (GEO) objects are detected via an 

algorithm which assumes that the background noise is Gaussian, not Poisson. [2] This 

method is implemented through the well known Source Extractor or SExtractor program.  

This method, as stated in Chapter I, is good at locating solitary objects, but has shortfalls 

in cases where two objects have overlapping PSFs.  This can happen if the two objects 

are very close or if there is a great deal of atmospheric turbulence (which will cause the 

PSFs to spread out [4, p. 76]).  Additionally, the dimmer the secondary object is, the less 

likely SOD is to pick it up.  Recently a new version of SOD was proposed by Gessel [1].  

This method is referred to throughout this research as Single Object Detection (SOD). 

SOD makes the assumption that objects in GEO do not move appreciably during 

the exposure time.  This assumption holds if the telescope is staring at a section of the sky 

and not tracking at the sidereal rate.  The exposure time must still be short enough so that 

small orbital perturbations are not detectable.  Once the data is collected, the next step is 

image processing. 
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To process this data, SOD begins by examining a neighborhood around the 

candidate pixel, referred to as the processing window.  Within this neighborhood the 

average background is computed via a median filter operation.  The background is then 

subtracted from the data in the window.   

Next, a binary hypothesis test can be used to accomplish object detection.  To do 

this the probability that there is one object, 𝑃(𝐷|𝐻1) will be compared with the 

probability that cell is empty, 𝑃(𝐷|𝐻0).    The probability of the data, D, given either 

hypothesis is expressed as Eq. (2.1),  

 

𝑃(𝑑(𝑥, 𝑦)|𝐻) = ∏ ∏
(𝐼(𝑥,𝑦))𝑑(𝑥,𝑦)𝑒−𝐼(𝑥,𝑦)

𝑑(𝑥,𝑦)!𝑦𝑥  ,                                  (2.1) 

 

where 𝐼(𝑥, 𝑦) is the expected value of the data.  For the single object detector the 

substitutions would simply be; 𝐸(𝑑(𝑥, 𝑦)|𝐻1) = 𝛼𝑛ℎ(𝑥, 𝑦) + 𝑏𝑛, and 𝐸(𝑑(𝑥, 𝑦)|𝐻0) =

𝑏𝑛,  where h(x,y) is the impulse response of the system,  𝛼𝑛 is the brightness of the object 

and 𝑏𝑛 is the average value of the background.         

In general, the Log Likelihood Ratio Test (LRT) , Λ, is compared against a 

threshold, 𝑡.  If  Λ > 𝑡 the object is said to be absent and if Λ < 𝑡 the object is said to be 

present.  In order to acquire a ROC curve, a range of 𝑡 values is necessary [4, p. 92]. 

Λ =
𝑙𝑛(𝑃(𝐷|𝐻1))

𝑙𝑛(𝑃(𝐷|𝐻0))
                                                   (2.2)                                                             

Once an object has been found to match all of these criteria it is compared against 

Satellite Catalogue as a reference.  The Satellite Catalogue is a compilation of all 

detected orbital bodies for use in object tracking and detection of orbital objects 
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(https://www.space-track.org/auth/login).  If no record of the object exists it is listed as a 

new object.  Since the known objects are ignored, any object that is within the PSF of a 

known object is also ignored, and becomes hidden along with the known object.  

Additionally, if two new objects are within a few PSFs of one another the detector may 

only register one object instead of two because it neglects to calculate any contributions 

the first object may have toward the second object.   

BOD effectively makes a second pass around each known object looking for a 

second object.  The additional pass may add computation time, but should be able to 

discover many objects SOD would have missed.  BOD will be discussed in more depth in 

Chapter III.  The advantages of the new approach will be demonstrated by comparing a 

ROC curve using both BOD and SOD.   

A different method that is used to detect and catalogue Near Earth Objects 

(NEOs) is being implemented by a program called PAN-STARRS (PAN-chromatic 

Survey Telescope and Rapid Response System) [5, p. 2].  The PAN-STARRS telescope 

monitors the sky by taking long exposure (30 second) images.  This image is averaged 

and combined with images from as many as four telescopes to create a Master Sky image.  

Whenever a new image is taken of the same section of sky, it is compared against the 

previous master image.  A difference detection algorithm compares the two and 

documents anomalies.  These anomalies are catalogued and added to a separate database 

for review.  If they are found to not already be in the catalogue, they are added as new 

objects.  This method proved to have a 40% increased detection rate over its 

predecessors.  This is shown by looking at the 0.1 probability of false alarm mark in 

Figure 1, which consists of a comparison between the Poisson and Gaussian models.  
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In 2012, a new algorithm was proposed for PAN-STARRS, which if implemented 

could increase its detection rate by as much as 700% (see Figure 1) [5, p. 54].  The 

proposal involved treating the data as Poisson instead of Gaussian.  However, while it 

performs better than the previous algorithms, it still encounters similar problems for 

detecting two objects in close proximity to one another, especially in scenarios where 

there is a large difference in brightness between the two objects [5, p. 52].  PAN-

STARRS ability to detect objects in close proximity is dependent upon the quality of the 

Master Sky image.  The proposed BOD method does not depend upon this because it 

generates its own version of a Master Sky image as part of the algorithm. 

 

Figure 1: ROC Curve Comparison Between Poisson and Gaussian Assumptions Using 

Measured Data [5, p. 59].   

Other Binary Detection Methods 

 Radial Velocity is currently in use by NASA to detect binary exoplanets.  This 

works because two planetoids are likely to emit a different spectrum of light.  However, 
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if we are interested in two similar satellites orbiting the Earth in close proximity to one 

another, the two satellites are likely to emit a similar spectrum.  Thus this method will not 

work for the given area of interest.  [6] 

 Another method NASA employs to detect exoplanets is called Transit 

Photometry.  This method relies upon observing the change in brightness of a star in 

order to detect a much smaller image (in this case a planet) passing in front of it.  While 

this does potentially parallel the issue of a piece of space debris approaching a satellite, 

there is a major problem this method will encounter if it were to be used for the purposes 

presented in this paper.  For example, the smaller/dimmer object has to pass directly in 

front of the larger/brighter object.  This requirement renders Transit Photometry 

ineffective in the scenario of a spy satellite approaching one of our orbital assets. [7]   

Multi-Hypothesis Testing 

In 2014, a more relevant method of binary object detection was suggested.  To 

detect an object within an image, this method uses a multi-hypothesis test.  In this case, 

the object, o, is assumed to be indistinguishable from a point source, as displayed in Eq. 

(2.3), where 𝑎𝑛 is the brightness of the source and 𝑥 and 𝑦 are spatial coordinates, and 𝑥0 

and 𝑦0 are the location of the object.    

      𝑜(𝑥, 𝑦) = 𝑎𝑛𝛿(𝑥 − 𝑥0, 𝑦 − 𝑦0)                  (2.3) 

The mean of the data itself, 𝑑(𝑥, 𝑦), is the brightness of the point source object 

times the PSF plus the background noise, 𝑏𝑛, as shown in Eq. (2.4).   

𝐸[𝑑(𝑥, 𝑦)] = ℎ(𝑥, 𝑦) ∗ 𝑜(𝑥, 𝑦) + 𝑏𝑛                               (2.4) 
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Starting with a known object; this method looks at each pixel in that object’s 

vicinity.  It begins by assuming an object is present in the selected pixel.  Next, it begins 

an iterative process to estimate what the brightness of the object would be if there were 

one there. [8]   In order to find the brightness, it is important to know the OTF (Optical 

Transfer Function), 𝐻(𝑓𝑥, 𝑓𝑦), of the data.  The OTF of the atmosphere, 𝐻𝑎𝑡𝑚(𝑓𝑥, 𝑓𝑦), 

simulates a long exposure time image, so all of the atmospherically induced aberrations 

are averaged together to yield Eqs. (2.5) and (2.6), where 𝑓𝑥 and 𝑓𝑦 are the spatial 

frequency components [3, p. 428] .  This is multiplied by the OTF of the optical system, 

𝐻𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒(𝑓𝑥, 𝑓𝑦), which is modeled here as the Fourier Transform of the clear pupil 

function (typically a circle), to yield the total transfer function, H . 

 𝐻𝑎𝑡𝑚(𝑓𝑥, 𝑓𝑦) =
𝑒−3.44(𝑓𝑥2+𝑓𝑦2)

5
6

𝜆 ∗ 𝑓
 (2.5) 

 𝐻(𝑓𝑥, 𝑓𝑦) = 𝐻𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒(𝑓𝑥, 𝑓𝑦) ∗ 𝐻𝑎𝑡𝑚(𝑓𝑥, 𝑓𝑦) (2.6) 

 

The method for finding the brightness is detailed below in Eq. (2.7), where 𝑎𝑛 is 

the current brightness estimate, ℱ−1 is an inverse Fourier transform.  A method like Pan-

starrs does not need this brightness detection algorithm, because the brightness data is 

included in the previous Master Sky image.  However, utilizing this algorithm helps to 

eliminate the need for such an image [8, p. 37]. 

𝒂𝒏+𝟏 = 𝒂𝒏 ∑ ∑
(𝒅(𝒙,𝒚)∗𝓕−𝟏(𝑯(𝒇𝒙,𝒇𝒚)))

𝒂𝒏∗(𝓕−𝟏(𝑯(𝒇𝒙,𝒇𝒚)))+𝒃𝒏
𝒚𝒙                                             (2.7) 
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A multi-hypothesis test can be used to accomplish object detection.  This differs from the 

binary hypothesis test in that more than two hypotheses are examined.  To do this the 

probability that there are two objects in the image will be calculated, 𝑃(𝐷|𝐻2) and this 

will be compared with the probability that there is one object, 𝑃(𝐷|𝐻1), or that cell is 

empty, 𝑃(𝐷|𝐻0).    This method uses the same probability equation as SOD, that is, 

Eq.(1).  As with SOD, the algorithm then takes the log of 𝑃(𝐷|𝐻1),  to be used later.  For 

the binary object detector the substitutions would be:  𝐸(𝑑(𝑥, 𝑦)| 𝐻2) = 𝛼𝑛,1ℎ(𝑥 −

𝑢1, 𝑦 − 𝑣1) + 𝛼𝑛,2ℎ(𝑥 − 𝑢2, 𝑦 − 𝑣2) + 𝑏𝑛,  𝐸(𝑑(𝑥, 𝑦)|𝐻1) = 𝛼𝑛,1ℎ(𝑥 − 𝑢1, 𝑦 − 𝑣1) + 𝑏𝑛 

and 𝐸(𝑑(𝑥, 𝑦)|𝐻0) = 𝑏𝑛, where 𝑢1 and 𝑣1 are pixel positions for the first object(in the x 

and y directions, respectively) to object 1, 𝑢2 and 𝑣2  are coordinates (in the x and y 

directions, respectively) to object 2, and 𝛼𝑛,1 and 𝛼𝑛,2 are the brightnesses of object 1 and 

2, respectively.  This is summarized in a flow chart, shown below in Figure 2.  Finally, a 

LRT, similar to what is performed in SOD, is computed using the new probability values. 
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Figure 2: Flowchart of Previous BOD Method [8]. 

 

The ROC curve itself is a plot of the probability of a false alarm, 𝑃𝑓𝑎, at a given 

threshold, 𝑡, on the x-axis, with the probability of detection, 𝑃𝑑, (for the same threshold) 

on the y-axis.  In order to find the 𝑃𝑓𝑎, the image being analyzed would need to not have 

a second object.  Thus if the algorithm says a second object exists, it is a false alarm.  

This probability is equal to the area under the curve of the Probability Density Function 

(PDF) of the LRT, where Λ1 is the LRT produced with only a single object present, up to 

the current threshold value, 𝑡.  This is shown below in Eq. (2.8). 
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 𝑃𝑓𝑎 = ∫ P(Λ1)d
𝑡

−∞

Λ1 (2.8) 

𝑃𝑑 is calculated the in the same way as 𝑃𝑓𝑎 except that the PDF of Λ2 is utilized 

instead of Λ1.   Λ2 is the LRT produced when both objects are present.  This is 

represented below in Eq. (2.9). 

 𝑃𝑑 = ∫ P(Λ2)dΛ2

𝑡

−∞

 (2.9) 

The algorithm was tested on both simulated and measured data.  The simulated 

data utilized 85 Zernike polynomials to represent atmospherically induced aberrations 

and thus makes the assumption that the image data will be collected via a short exposure 

camera.  The images themselves consisted of a 128x128 pixel frame; simulating a 

snapshot that has already detected a single object through SOD, and truncated the 

snapshot to an area around that object for binary object detection.  Two-hundred 

different, random images were produced with Poisson background noise, to generate a 

complete ROC curve.  This was done both with only one object (for calculating 𝑃𝑓𝑎) and 

with two objects (for calculating 𝑃𝑑).   

The measured data was acquired from the Space Surveillance Telescope (SST).  

Some images were found in which a star passes by a geostationary object.  This allowed 

the binary detection algorithm to run on a measured data set which included an actual 

binary object.  Other frames in which the star was not present, the same geostationary 

satellite could be located.  With both sets of images, a ROC curve was able to be 

generated for the collected data as well as the simulated data. 
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In order to avoid counting the same object multiple times, once the program has 

detected an object, it looks around that object to see if there are any pixels which are 

brighter than that object by a predefined threshold factor.  This threshold was eventually 

set at a level that ensured a maximum false alarm detection of 10%.  Also, the assumption 

was made that the two point sources had to be separated by at least one pixel.  This 

decreased the false alarm rate further.  Some of the results of the simulation are shown 

below in Figure 3 and Figure 4.   

 

 

Figure 3: Probability of False Alarm with 1000 photon source [8, pp. 53-57]. 
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Figure 4: Probability of detection of 2 objects with a 1000 and a 500 photon source [8, 

pp. 53-57] 

 

 A disadvantage of this approach is that it attempts to solve everything 

simultaneously.  That is, it looks at all possible combinations of where the two objects 

may be at once and calculates that combination with the greatest probability.  If this were 

to be expanded to a third object, the computation time would increase exponentially.  If, 

instead, you locate a known object using SOD and scan each pixel nearby for a second 

object, the computations could not only be faster individually, but they could be run in 

parallel (since each pixel does not depend on the outcome of another).  This method was 

used as a starting point for developing the BOD approach described in this paper.   
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Source Extractor 

 Another common method of object detection is the Source Extractor, or 

SExtracor.  While this method is not designed primarily for binary object detection, it 

does focus on faint object detection which is a component of solving the problems stated 

in the introduction.  This method assumes the noise has a Gaussian distribution.  

Therefore, a different PDF is used. The PDF in Eq. (2.10) is used instead of the PMF in 

Eq. (1)  for the situation in which there is an object present, and is simplified to Eq. (2.11)  

if the brightness is 0 (meaning no object is present). 

 𝑃(𝐷|𝐻1) = ∏ ∏
1

√2𝜋𝜎
𝑒

−
(𝑑(𝑥,𝑦)−(𝛼ℎ(𝑥,𝑦)+𝑏𝑛))

2

2𝜎2

𝑦𝑥

 (2.10) 

 𝑃(𝐷|𝐻0) = ∏ ∏
1

√2𝜋𝜎
𝑒

−
(𝑑(𝑥,𝑦)−(0+𝑏𝑛))2

2𝜎2

𝑦𝑥

 (2.11) 

Λ3, where ln (Λ3) = Λ from Eq. (2), is defined as:   

Λ3 =

∏ ∏
1

√2𝜋𝜎
𝑒

−
(𝑑(𝑥,𝑦)−(𝛼ℎ(𝑥,𝑦)+𝑏𝑛))

2

2𝜎2
𝑦𝑥

∏ ∏
1

√2𝜋𝜎
𝑒

−
(𝑑(𝑥,𝑦)−(𝑏𝑛))2

2𝜎2
𝑦𝑥

 

=
∏ ∏ 𝑒

−
(𝑑(𝑥,𝑦)−(𝛼ℎ(𝑥,𝑦)+𝑏𝑛))

2

2𝜎2
𝑦𝑥

∏ ∏ 𝑒
−

(𝑑(𝑥,𝑦)−(𝑏𝑛))2

2𝜎2
𝑦𝑥

 

= ∏ ∏ 𝑒
−(𝑑(𝑥,𝑦)−(𝛼ℎ(𝑥,𝑦)+𝑏𝑛))

2
+(𝑑(𝑥,𝑦)−(𝑏𝑛))2

2𝜎2

𝑦𝑥

 

Expanding these terms yields: 
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Λ3 = ∏ ∏ 𝑒
−(𝑑(𝑥,𝑦)2−2(𝛼ℎ(𝑥,𝑦)+𝑏𝑛)𝑑(𝑥,𝑦)+(𝛼ℎ(𝑥,𝑦)+𝑏𝑛)2)+𝑑(𝑥,𝑦)2−2(𝑏𝑛𝑑(𝑥,𝑦))+𝑏𝑛

2

2𝜎2

𝑦𝑥

 

 

= ∏ ∏ 𝑒
−(𝑑(𝑥,𝑦)2−2(𝛼ℎ(𝑥,𝑦)+𝑏𝑛)𝑑(𝑥,𝑦)+(𝛼2ℎ2(𝑥,𝑦)+2𝛼ℎ(𝑥,𝑦)𝑏𝑛+𝑏𝑛

2)+𝑑(𝑥,𝑦)2−2(𝑏𝑛𝑑(𝑥,𝑦))+𝑏𝑛
2

2𝜎2

𝑦𝑥

 

Now distributing the negative for the first term: 

 

= ∏ ∏ 𝑒
−𝑑(𝑥,𝑦)2+2𝛼ℎ(𝑥,𝑦)𝑑(𝑥,𝑦)+2𝑏𝑛𝑑(𝑥,𝑦)−𝛼2ℎ2(𝑥,𝑦)−2𝛼ℎ(𝑥,𝑦)𝑏𝑛−𝑏𝑛

2+𝑑(𝑥,𝑦)2−2(𝑏𝑛𝑑(𝑥,𝑦))+𝑏𝑛
2

2𝜎2

𝑦𝑥

 

Simplifying by cancelling terms gives: 

Λ3 = ∏ ∏ 𝑒
2𝛼ℎ(𝑥,𝑦)𝑑(𝑥,𝑦)−𝛼2ℎ2(𝑥,𝑦)−2𝛼ℎ(𝑥,𝑦)𝑏𝑛

2𝜎2

𝑦𝑥

 

Λ3 = ∏ ∏ 𝑒
2𝛼ℎ(𝑥,𝑦)(𝑑(𝑥,𝑦)−𝑏𝑛)−𝛼2ℎ2(𝑥,𝑦)

2𝜎2

𝑦𝑥

 

Converting Λ3 to Λ4by taking the natural log of both sides would now give 

Λ4 = ∑ ∑
2𝛼ℎ(𝑥, 𝑦)(𝑑(𝑥, 𝑦) − 𝑏𝑛) − 𝛼2ℎ2(𝑥, 𝑦)

2𝜎2

𝑦𝑥

 

=
2𝛼

2𝜎2
∑ ∑ ℎ(𝑥, 𝑦)(𝑑(𝑥, 𝑦) − 𝑏𝑛)

𝑦𝑥

−
𝛼2

2𝜎2
∑ ∑ ℎ2(𝑥, 𝑦)

𝑦𝑥

 

=
2𝛼

2𝜎2
(∑ ∑ ℎ(𝑥, 𝑦)(𝑑(𝑥, 𝑦) − 𝑏𝑛)

𝑦𝑥

−
𝛼

2
∑ ∑ ℎ2(𝑥, 𝑦)

𝑦𝑥

) 

Since Λ4 is compared to a threshold value, a variant of it can be defined as Λ5 = Λ4
2𝜎2

2𝛼
 

so that 
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Λ5 = ∑ ∑ ℎ(𝑥, 𝑦)(𝑑(𝑥, 𝑦) − 𝑏𝑛)

𝑦𝑥

−
𝛼

2
∑ ∑ ℎ2(𝑥, 𝑦)

𝑦𝑥

 

This step can be repeated to eliminate the remaining term that does not depend on the 

data, creating another term, Λ6 = Λ5 −
𝛼

2
∑ ∑ ℎ2(𝑥, 𝑦)𝑦𝑥 , simplifying the equation further 

to the expression found in Eq. (2.12). 

 Λ6 = ∑ ∑ ℎ(𝑥, 𝑦)(𝑑(𝑥, 𝑦) − 𝑏𝑛)

𝑦𝑥

 (2.12) 

While this method would ignore the PSF interference created by a second object, it does 

have an advantage that it does not need to know the brightness of the object at position 

(𝑥, 𝑦) in order to determine there is an object there.  The new threshold, Λ6, can be set to 

yield the desired 𝑃𝑓𝑎, just like SOD. 

Summary 

The current method for object detection in GEO has shortcomings in the area of 

binary object detection.  While several methods exist for detecting binary objects that are 

currently in use, they are not relevant to the proposed problems.  There is another method 

which functions similarly to the current detection method but is geared solely towards 

binary object detection in order to overcome SOD’s shortcomings.   
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III. Methodology 

Chapter Overview 

In this thesis the application of BOD is applied as a second pass scan, once SOD 

has detected a single object.  This BOD will then be run on the area around each detected 

object to check for any additional objects that may or may not be present. 

First this was run in simulation.  This involved creating a simulated image of one 

source and then simulating a second field with two objects present.  The images are then 

passed through a brightness detection algorithm to compute the brightness of the object, 

if there is one present.  Then, the new BOD algorithm was used to calculate 𝑃𝑓𝑎 and 𝑃𝑑 .  

These two arrays are used to produce a ROC curve.  The simulation was repeated using a 

Source Extractor like algorithm to produce a ROC curve and that curves were compared.  

Finally, the entire process was run a second time using a laboratory experiment to collect 

real data, in place of the simulated data. 

Source Field 

The source field that was simulated had a pair of objects.  One object, placed in 

the center is 10 times brighter than the dim object, spaced two pixels up and two pixels to 

the left of object one.  The wavelength (𝜆) of the light was assumed to be 0.5 ∗ 10−6 𝑚.  

The diameter of the aperture was assumed to be 0.5 m.  The angular displacement per 

pixel, for a Nyquist sampled image, is defined as 𝜃 =
𝜆

2𝐷
= 0.5 ∗ 10−6 𝑟𝑎𝑑.  By making a 

small angle approximation (∆𝑥 =  𝜃∆𝑧, where ∆𝑧 is the height and ∆𝑥 is the distance in 

the object plane), in geosynchronous orbit (so ∆𝑧 = 3.66 ∗ 108 𝑚), this 𝜃 translates to a 

distance of 183 𝑚.  This means that each pixel of separation corresponds to a physical 
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displacement of 183 𝑚 in geosynchronous orbit, which is consistent with a Raven class 

telescope.  The inverse Fourier transform of the product of is 𝑑(𝑥, 𝑦) we will be looking 

at equation (3.1).  Then, a small amount of background noise, 𝑏𝑛 is added to the system.  

The last step in creating the source data is to create Poisson noise for 𝑑(𝑥, 𝑦).  The two 

source fields are shown below in Figure 5 and Figure 6. 

 𝑑(𝑥, 𝑦) = ℱ−1 (𝐻(𝑓𝑥, 𝑓𝑦) ∗ ℱ(𝑜(𝑥, 𝑦))) + 𝑏𝑛 (3.1) 

 

Figure 5: Binary Object Source Field 

 

Figure 6: Single Object Source Field 
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Object Detection 

 Once the source field is created, the proposed algorithm proceeds to run through a 

brightness estimation algorithm similar to that in Capt Gessel’s work (Eq. (2.7)), for 1000 

iterations.  However, since BOD begin with the assumption that an object has already 

been detected and that it is looking for a second object, the LRT calculation is slightly 

different.  In this case the source image is assumed to be centered about the detected 

image (thus the detected image is at position (0,0) in the (x,y) coordinate system).  Now 

the code will check each pixel in a 128x128 grid to see if a second object is present.  In 

this case, we substitute 𝐸(𝑑(𝑥, 𝑦)|𝐻1) = 𝛼1,1000𝛿(0,0) ∗ ℎ(𝑥, 𝑦)  + 𝛼2,1000𝛿(𝑥, 𝑦) ∗

ℎ(𝑥, 𝑦) + 𝑏𝑛, and 𝐸(𝑑(𝑥, 𝑦)|𝐻0) = 𝛼1,1000𝛿(0,0) ∗ ℎ(𝑥, 𝑦) + 𝑏𝑛,  where 𝛼1,1000 is the 

1000th iteration of (Eq. (2.7)) for the object identified by SOD, 𝛼2,1000 is the 1000th 

iteration of (Eq. (2.7)), and in this case * represents convolution, for the hypothetical new 

object, for  𝑃(𝐷|𝐻1), and 𝑃(𝐷|𝐻0) in (Eq. (2.2)).  This step is also where we see the 

biggest difference between BOD and SOD.  In SOD the above substitution would simply 

be 𝐸(𝑑(𝑥, 𝑦)|𝐻1) = 𝑎1,1000 and 𝐸(𝑑(𝑥, 𝑦)|𝐻0) = 𝑏𝑛 since SOD makes the assumption 

that there are no other objects present.  Since the results of each calculation are not 

dependent upon any of the others, each pixel can be calculated in parallel, and thus 

simultaneously, with the rest, to save computation time.  This also enables the above 

substitution to be easily expanded for adding a third object.   

One-hundred frames were created with a second object and randomly generated 

Poisson noise, each of which were processed by the proposed algorithm, producing an 
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array of Λs.  The Cumulative Distribution Function (CDF) of a Gaussian is equal to the 

area under the curve, up to a threshold value [3, pp. 9-11].  The CDF to calculate the 

integrals described in Eqs. (2.8) and (2.9). 

In order to verify that the Λ array was Gaussian, the values were put through the 

Lilliefors test, which is designed to tell how normal a particular distribution is.  The test 

first estimates the actual mean and standard deviation of the data.  It then calculates what 

the CDF of the data would be if the data were completely Gaussian.  Next, it computes 

the maximum error between the empirical distribution function and the CDF.  Lastly it 

assesses if this maximum error is statistically significant.  If it is not, the data is 

determined to be Gaussian. [9] 

In every case examined in this research, the Λ array was determined to be 

Gaussian.  Therefore, the CDF of the Λ array is equal to the 𝑃𝑑𝑒𝑡𝑒𝑐𝑡 (see Eq. (2.8)). This 

was then repeated on 100 frames without the second object, with the CDF yielding the 

𝑃𝑓𝑎.  In this case the threshold was given a range of 0.95 < 𝑡 < 1.05.  𝑃𝑑𝑒𝑡𝑒𝑐𝑡 and 𝑃𝑓𝑎 

were then linked together to produce a ROC curve for both BOD and SOD.  The resulting 

ROC curves are shown below, in Chapter IV. 

 

Additional Tests 

 Several additional source fields were simulated to observe the differences 

between BOD and SOD under different conditions.  This involved varying both the 

brightness and the distance between the points.  This was done to verify the hypothesis 

that BOD will be much better than SOD when the two sources are both close together and 
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one is much brighter than the other, and that the results will be more similar when the two 

sources are farther apart and closer in brightness.  Three different distances and three 

different brightness ratios were examined.  The results of this test can be found in 

Chapter IV. 

 This was done at two pixels separation, 10 pixel separation, and 100 pixel 

separation.  In this context, separation refers to both x and y coordinate difference, thus if 

the initial object is at (0,0), and the separation is 10 pixels, the second object is at pixel    

(-10,-10).  This was performed at equal brightness, a 10:1 brightness ratio (meaning that 

the second object is 1/10th the brightness of the first), and 100:1 brightness ratio (meaning 

that the second object is 1/100th the brightness of the first). 

  

Experimentation 

 In addition to the simulated input data listed above, the code was modified 

slightly process measured data.  To test this function, a laboratory level experiment was 

conducted involving a simulated star field created by viewing a LED (Light Emitting 

Diode) through a screen of pinholes.  A digital photograph was taken of this, through a 

telescope.  The resulting image was substituted for the single point simulated data 

described above.  Then a second pinhole was added and a second photograph was taken 

of this setup.  The result was substituted for the two point simulated source data listed 

above.  Images of the two point data are shown below in Figure 7 and Figure 8.  Figure 7 

shows what a single frame looks like and Figure 8 shows what several frames averaged 

together look like. 
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Figure 7: Single Frame of Collected Data for Two Nearby Sources of Differing 

Brightness 

 

Figure 8: Averaged Image of 100 frames of Collected Data of Two Nearby Sources of 

Differing Brightness 
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 Since the code assumes that the PSF is known, the code infers the PSF from the 

single point source by assuming that it is simply a point source, and thus its Fourier 

transform is a two-dimensional Dirac function.  That being the case, since the Fourier 

transform of the OTF is the PSF convolved with the object (in this case a point source), 

then the OTF is the inverse Fourier transform of the PSF times the object, which in this 

case simplifies to (Eq. (3.2)). 

𝐻(𝑓𝑥, 𝑓𝑦) = ℱ(ℎ(𝑥, 𝑦) ∗ 𝑜(𝑥, 𝑦)) 

𝐻(𝑓𝑥, 𝑓𝑦) = ℱ(ℎ(𝑥, 𝑦))ℱ(𝛿(𝑥, 𝑦)) = ℱ(ℎ(𝑥, 𝑦))  

 ℱ−1(𝐻(𝑓𝑥, 𝑓𝑦)) = ℎ(𝑥, 𝑦) (3.2) 

 The background level was removed by taking the average value of the image and 

subtracted that from every cell in the image.  Each value that is below zero is then set to 

zero.  This normalized the background to zero, removing much of the noise.  Without the 

background noise, the image of the single object is much closer to the PSF, thus the 

object is closer to actually being a point source.  The rationale for subtracting out the 

noise this way has to do with the Camera Calibration, as described below  

 After the OTF is calculated we can use (Eq.(2.7)).  After this, the procedure is 

followed just like above in the Object Detection section using the supplied data instead of 

a simulated input.  The resulting ROC curves are displayed below in Chapter IV along 

with the simulated results.   
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Camera Calibration 

 In calibrating a camera, it is important to remove the electrical bias and gain from 

the equation.  These values will be different for each photo-detector, and thus each pixel.  

To begin, the data for a specific cell (coordinates (𝑥, 𝑦) in the photodetector array) with a 

specific brightness level (denoted by the subscript 1)  (𝑑1(𝑥, 𝑦)) is expressed below in 

Eq. (3.3).  In this equation, 𝛾(𝑥, 𝑦) is the gain attached to the pixel being analyzed, 

𝑘1(𝑥, 𝑦) is the photocount for data set 1 at this location, 𝐵(𝑥, 𝑦) is the bias for this photo-

detector and 𝑛1(𝑥, 𝑦) is the noise for this data set at this location.  The gain and bias are 

properties of the pixel itself, whereas the photocount and the noise arenot.  The data set 

will have M samples, so in reality, instead of the data being simply 𝑑1(𝑥, 𝑦), the set 

includes 𝑑1,1(𝑥, 𝑦) (for the first sample) through 𝑑1,𝑀(𝑥, 𝑦) (for the last sample).  

However, for most of this process, the data will be analyzed as an array, rather than 

looking at the individual sample values. 

 

𝑑1(𝑥, 𝑦) = 𝛾(𝑥, 𝑦)𝑘1(𝑥, 𝑦) + 𝐵(𝑥, 𝑦) + 𝑛1(𝑥, 𝑦)                          (3.3) 

 

 In order to find the values of 𝛾(𝑥, 𝑦) and 𝐵(𝑥, 𝑦), it is necessary to collect a 

second set of data, referred to as 𝑑2(𝑥, 𝑦) (which will also contain M samples, as 

explained above).  Since we are looking at the same pixel, 𝛾(𝑥, 𝑦) and 𝐵(𝑥, 𝑦) do not 

change.  In the second image, 𝑘2(𝑥, 𝑦) is the photocountand 𝑛2(𝑥, 𝑦) is the background 

noise , as described in equation (3.4).   

𝑑2(𝑥, 𝑦) = 𝛾(𝑥, 𝑦)𝑘2(𝑥, 𝑦) + 𝐵(𝑥, 𝑦) + 𝑛2(𝑥, 𝑦)                         (3.4) 
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 Since 𝑘1(𝑥, 𝑦) and 𝑘2(𝑥, 𝑦) are photon counts, they are both Poisson [3, p. 90].  

This means that their mean and variance will be the same.  Here the mean of the 

photocount of the first data set will be described as 𝐸(𝑘1(𝑥, 𝑦)) = 𝑘1(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅   and that of 

the second data set is 𝐸(𝑘2(𝑥, 𝑦)) = 𝑘2(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ .   Since the data is not simply Poisson, 

however, the expected value requires some computation (where the mean of  𝑑1(𝑥, 𝑦) is 

𝑑1(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and the mean of 𝑑2(𝑥, 𝑦) is  𝑑2(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ).  The expected value of 𝑑1(𝑥, 𝑦) −

𝑑2(𝑥, 𝑦) can be expressed sd: 𝐸[𝑑1(𝑥, 𝑦) − 𝑑2(𝑥, 𝑦) = 𝐸[(𝛾(𝑥, 𝑦) 𝑘1(𝑥, 𝑦) + 𝐵(𝑥, 𝑦) +

𝑛1(𝑥, 𝑦)) − (𝛾(𝑥, 𝑦)𝑘2(𝑥, 𝑦) + 𝐵(𝑥, 𝑦) + 𝑛2(𝑥, 𝑦)) ] = 𝐸[𝛾(𝑥, 𝑦)(𝑘1(𝑥, 𝑦) −

𝑘2(𝑥, 𝑦)) + (𝑛1(𝑥, 𝑦) − 𝑛2(𝑥, 𝑦))]. 

Since Gamma is a constant it can get moved outside the expectation operator: 

𝐸[𝑑1(𝑥, 𝑦) − 𝑑2(𝑥, 𝑦) = 𝛾(𝑥, 𝑦)𝐸[𝑘1(𝑥, 𝑦) − 𝑘2(𝑥, 𝑦)] + 𝐸[𝑛1(𝑥, 𝑦) − 𝑛2(𝑥, 𝑦)] 

Although the two noise values are different, they should have the same average value, 

and will thus on average cancel each other out, leaving: 

 

𝛾(𝑥, 𝑦) (𝑘1(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝑘2(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) = 𝐸[𝑑1(𝑥, 𝑦) − 𝑑2(𝑥, 𝑦)]               (3.5) 

 

 While equation (3.5) is a much more concise way of looking a 𝛾(𝑥, 𝑦) it still 

contains a hurdle.  While 𝑑1(𝑥, 𝑦) and 𝑑2(𝑥, 𝑦) are known, 𝑘1(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝑘2(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  are not.  

However, they can be found by looking back at the variance of the data sets.  The 

variance of the two data sets can be expressed below in equation (3.6) and equation (3.7). 
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 𝜎1
2(𝑥, 𝑦) = 𝐸[(𝑑1(𝑥, 𝑦) − 𝑑1(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

2
] (3.6) 

 𝜎2
2(𝑥, 𝑦) = 𝐸[(𝑑2(𝑥, 𝑦) − 𝑑2(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

2
]                              (3.7) 

Expanding equation (3.6) yields: 

𝜎1
2(𝑥, 𝑦) = 𝐸 [(𝛾(𝑥, 𝑦)𝑘1 + 𝐵(𝑥, 𝑦) + 𝑛1(𝑥, 𝑦) − (𝛾(𝑥, 𝑦)𝑘1(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝐵))

2

]

= 𝐸 [(𝛾(𝑥, 𝑦)(𝑘1 − 𝑘1(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) + 𝑛1(𝑥, 𝑦))
2

]

= 𝐸 [𝛾(𝑥, 𝑦)2(𝑘1 − 𝑘1(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
2

+ 2𝑛1(𝑥, 𝑦)𝛾(𝑥, 𝑦)(𝑘1 − 𝑘1(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

+ 𝑛1(𝑥, 𝑦)2] 

= 𝛾(𝑥, 𝑦)2𝑘1(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝜎𝑛,1
2 (𝑥, 𝑦)                                                 (3.8) 

 

In equation (3.8), 𝜎𝑛
2 is the variance of the additive noise.  .   

By subtracting the two variances and dividing by the difference of the means, it 

now becomes possible to solve for gamma [10, p. 23].  This is expressed in equation 

(3.9). 

 

𝜎1
2(𝑥, 𝑦) − 𝜎2

2(𝑥, 𝑦) = 𝛾(𝑥, 𝑦)2 (𝑘1(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝜎𝑛1
2 (𝑥, 𝑦) − 𝑘2(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝜎𝑛,2

2 (𝑥, 𝑦)) 

𝜎1
2(𝑥, 𝑦) − 𝜎2

2(𝑥, 𝑦) = 𝛾(𝑥, 𝑦)2(𝑘1(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝑘2(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 

Then dividing by the difference of the means of the data, 

𝛾(𝑥, 𝑦) =
𝜎2

2(𝑥,𝑦)−𝜎1
2(𝑥,𝑦)

𝐸(𝑑2(𝑥,𝑦)−𝑑1(𝑥,𝑦))
                                               (3.9) 
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 Now if 𝑘1(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 2𝑘2(𝑥, 𝑦),̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ then 𝜎2
2 ≥  𝜎1

2 , but if 𝜎2
2 =  𝜎1

2 𝑘1(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0 and 

𝑘2(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0 then there is no light reaching the photo-collector.  In this instance it is 

possible to calculate 𝐵(𝑥, 𝑦).  If 𝑘1(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0 and the mean of 𝑛1(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0, then 

equation (3.3) simplifies to 𝐸[𝑑1(𝑥, 𝑦)] = 𝐵(𝑥, 𝑦).  So by finding a data set in which the 

pixel is dark, and subtracting out the data value of that pixel, you can subtract out the bias 

value of that pixel from future data sets.  

Three Object Analysis  

 As stated above, it is possible to extrapolate this method further and detect a third 

object after already finding two binary objects.  While it is possible to run the algorithm, 

as is to find a third object, there are some improvements that can be made, if that is the 

end goal.  To do this requires a third pass after detecting the second object.  After the 

second object has been detected, the scene is run through the process one more time, this 

time accounting for the second identified object.  To do this, substitute𝐸(𝑑(𝑥, 𝑦)|𝐻1) =

𝛼1,1000𝛿(0,0) ∗ ℎ(𝑥, 𝑦)  + 𝛼2,1000𝛿(𝑥1, 𝑦1) ∗ ℎ(𝑥, 𝑦) + 𝛼3,1000𝛿(𝑥, 𝑦) ∗ ℎ(𝑥, 𝑦) + 𝑏𝑛, 

(where 𝑥1 & 𝑦1 are the x and y coordinates of the known second object) and 

𝐸(𝑑(𝑥, 𝑦)|𝐻0) = 𝛼1,1000𝛿(0,0) ∗ ℎ(𝑥, 𝑦) + 𝛼2,1000𝛿(𝑥1, 𝑦1) ∗ ℎ(𝑥, 𝑦) + 𝑏𝑛.  This 

method will be referred to as Three Object Detector (TOD).  As you can see, it should be 

simple enough to expand this method further to include even more objects in a cluster, 

should such a need arise.  This procedure is useful for a scenario in which we have 

already identified two bright objects and a dim object is between them (as shown in 

Figure 9), as well as if there is one bright object and two dim objects hiding in its vicinity 

(as shown in Figure 10).  For the experiment, both of these scenarios were tested.  For the 
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first scenario (with two bright objects and one dim object) the two bright objects were the 

same brightness and were about half of a PSF apart from one another (four pixels in this 

case), with a dim object (1% the brightness of the two bright objects) halfway in between 

them.  In the other example, the two dim objects (each 1% the brightness of the bright 

object) are equally spaced around the bright object, about one fourth of a PSF from the 

bright object (two pixels, in this case). 

 Due to the difficulties faced by both algorithms in the most severe case above 

(with one dim object in between two bright objects) the threshold values needed to be 

changed.  This is because in the original threshold range (0.95 to 1.05) SOD was 

completely unable to detect the middle object.  The threshold range used in this 

experiment was 0.1 to 1.1.  Additionally, the number of thresholds tested needed to be 

increased because TOD’s 𝑃𝑓𝑎 jumped from 0 to 1 in only a few samples, creating a very 

low resolution curve.  The number of sample threshold was increased from 10,000 to 

1,800,000 accounting for both the increased resolution and the increased range.  While 

these changes were only needed for the most severe case, they were left in place for the 

less severe case in order to create a fair comparison. 
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Figure 9: Three Object Cluster With Two Bright Objects and One Dim 

 

Figure 10: Three Object Cluster with Two Dim Objects around a Bright Object 
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Summary 

The simulated data is made by creating a source field which it can use in a 

simulated experiment.  The algorithm is initialized by looking at each pixel and 

estimating what the brightness would be if there were an object present in that pixel.  

Next, BOD looks at the probability that an object of the estimated brightness is present in 

the given pixel versus the probability that there is no object in the given pixel.  By 

making the assumption that there is already one object in the vicinity, the algorithm takes 

into account the effect of that detected object’s PSF in calculating this probability.  This 

assumption also allows for a reduction in calculation time and should be easily converted 

into a triple object detection algorithm, should the need arise.  

The resulting LRT is compared against a threshold value.  If it is greater than that 

value, an object is said to be present, if it is less than the value the pixel is said to be 

empty.  This gives us the 𝑃𝑓𝑎 (if the source has only one object) and 𝑃𝑑 (if the source has 

two objects and the second object is in the pixel being analyzed).  By matching the 𝑃𝑓𝑎 

and 𝑃𝑑 to their respective thresholds, a ROC curve can be produced.  This curve is 

compared against the output of the same source fields in SOD. 

Next, a laboratory level experiment was conducted and the images taken were 

used as inputs to BOD, showing its ability to detect dim objects close to brighter ones 

using measured data.  The PSF was calculated from a single point image. The PSF was 

then used to find the 𝑃𝑓𝑎.  𝑃𝑑 was calculated by an experiment with two point sources of 

light present.  The image was processed by both BOD and SOD algorithms and the 

resulting ROC curves were compared, like the simulated data. 
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IV. Analysis and Results 

Chapter Overview 

BOD performed better than or equal to SOD in all cases.  As predicted, the 

difference was greatest when the two objects were closest together, and when one was 

significantly dimmer than the other.  The basis for comparison was to look at the ROC 

curves side by side as well as 𝑃𝑑𝑒𝑡𝑒𝑐𝑡 when 𝑃𝑓𝑎 = 10−9 (which is a 𝑃𝑓𝑎 level commonly 

used in orbital detection).  This 𝑃𝑑𝑒𝑡𝑒𝑐𝑡 value will be referred to as the “detection rate” for 

a given scenario.   

Comparing the area under the curves gives an objective comparison method for 

the two curves.  However, in some cases, it is not possible to reasonably differentiate 

between the two ROC Curves, at least to the level of precision to which Matlab is 

capable.  So, in these cases, 𝑃𝑑𝑒𝑡𝑒𝑐𝑡 at was plotted against the log10(𝑃𝑓𝑎), instead of the 

𝑃𝑓𝑎.  This serves to amplify the differences between the two graphs to the point where 

they are discernable.  To give a numerical comparison between the graphs, the area under 

each curve was calculated (thus the higher area was the superior method).  Due to 

variances in the curves, 100 iterations were generated each sample containing different 

random Poisson noise, with each iteration tested by both BOD, SOD, and Source 

Extractor.  This generated a set of three ROC curves (as well as detection rates), one for 

each method.  This process was repeated 20 times for each scenario, creating 20 sets of 

ROC curves, allowing for a mean and variance to be calculated for the area under the 

curve.   
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Results of Simulation Scenarios 

 The first set of data to be examined will be the two object simulated scenarios.  

The bright object was set to 10,000 photons for all scenarios, and the background level 

was set to an average of 10 photons per pixels in all simulations.  The brightness of the 

second object was varied to give different brightness ratios.  The second objects location 

was also varied, to give data points at different distances. 

Of the two object cases, the scenario with the brighter object being ten time 

brighter than the dim object will be first.  This scenario was divided into two 

subcategories, based upon the offset of the two objects (two pixel and ten pixel offsets).  

This means that if object one is located at position (0,0), then object two will be located 

at position (2,2) or (10,10) respectively.  Since the PSF is approximately eight pixels 

across (that is, it spreads from the object, four pixels in each direction), the closer of the 

two conditions is still within one PSF length and the longer of the two is about two and a 

half PSF’s from one object to the other.  An image of this is shown in Figure 11 

 For this scenario, ROC curves are shown in Figure 12.  The average areas under 

the two sets of curves are 1 (to the maximum precision available in Matlab) and a 

standard deviation of 0 (creating a series of “perfect” ROC curve) for BOD and 1 with a 

standard deviation of 0 for SOD.  The Source Extractor, also had an average area 1 with a 

standard deviation of 0.  Since no clear difference can be determined (to within Matlab’s 

displayed significant digits) semilog-x plots were also produced.  This is done, as 

discussed above, by taking the log10(𝑃𝑓𝑎) and plotting it against the 𝑃𝑑𝑒𝑡𝑒𝑐𝑡 from the 

previous plots.  This will apply more emphasis to the left side of the plot, which is the 

area we are most interested in.  The semilog-x plots are shown in Figure 13.  The 
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detection rate at 𝑃𝑓𝑎 = 10−9  was 0.999999999999895 (shown to full precision to denote 

that it is not equal to 1) for SOD with a standard deviation of 2.92 ∗ 10−13 and the 

average detection rate was 1 with a standard deviation of 0 (to machine precision) for 

BOD.  This means that if the threshold value, Λ, from Eq. (2.2), were set to a value such 

that 𝑃𝑓𝑎 = 10−9, the BOD method would be able to detect an object in this scenario, 

every time.   (For the Source Extractor method, the average detection rate was only 

7.62 ∗ 10−24 with a standard deviation of 2.65 ∗ 10−36.  At this distance and brightness 

level, the two newer methods perform very similarly. 

Using a semilog-x plot enables the viewer to visibly detect the differences 

between the SOD and BOD.  This is a useful tool when the two graphs appear similar 

initially and it is difficult tell which is actually better in a given range.  In this case, 

Source Extractor’s performance is so bad, in logspace, that it doesn’t even appear on the 

graph.  In some future examples, semilog-x plots will no longer be necessary because it 

will be apparent from the standard ROC curve which method is superior.  As the light 

differential and distance between the two sources becomes greater, the original ROC 

curves will look more and more different. 
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Figure 11: Image of 2x2 pixel offset where the bright object is 10,000 photons the dim 

object is 1,000 photons with an average background level of 10 photons per pixel. 

 

Figure 12: ROC Curves of two sources separated by 2x2 pixels where the bright object is 

10,000 photons the dim object is 1,000 photons with an average background level of 10 

photons per pixel. 
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Figure 13: Semilog-x ROC Curve of two sources separated by 2x2 pixels where the 

bright object is 10,000 photons the dim object is 1,000 photons with an average 

background level of 10 photons per pixel. 

 

 The next scenario to be examined involves moving the second source 10x10 

pixels away from the first source.  The relative brightness remained unchanged, so that 

the second source was still 1/10 the brightness of the first source.  An image of this 

scenario is displayed in Figure 14.  The average area under these two sets of curves is 1 

for SOD with a standard deviation of 4.412 ∗ 10−17, and about 1 with a standard 

deviation of 2.547 ∗ 10−17for SOD.  In this case, both tests yield a “perfect” ROC Curve, 

up to 15 decimal places (Matlab’s precision level) and thus the two are visually 
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standard deviation of 0, for all three methods.  This means that in all tests, the second 

object was able to be detected all of the time when 𝑃𝑓𝑎 = 10−9.  The similarities are not 

surprising considering how closely the two methods performed when the second object 

was only 2x2 pixels offset with the same brightness. 

 

Figure 14: Image of 10x10 pixel offset where the bright object is 10,000 photons the dim 

object is 1,000 photons with an average background level of 10 photons per pixel. 

 

The next experiment was to change the brightness of the dim object to 1% that of the 

bright object.  This allows the PSF of the bright object to better mask that of the dim 

object.  As before, the pixel offset was initially set to 2x2 to look at the most severe case.  

An image is displayed below in Figure 15.  Here we see a much greater difference 
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necessary.  Sample ROC curves are shown in Figure 16. The average of the areas under 

the 20 samples of the BOD ROC curves was 0.910 with a standard deviation of 0.0197.  

The average under the corresponding SOD ROC curves was 0.843 with a standard 

deviation of 0.0266.  Source Extractor had a mean area of 0.915 with a standard deviation 

of 0.0415.  The average detection rate at  𝑃𝑓𝑎 = 10−9 was 0.616 for BOD, 1.71 ∗ 10−5 

for SOD, and 2.5 ∗ 10−4 for Source Extractor.  This paints a much clearer picture that 

BOD outperforms SOD when the brightness differences are severe and the objects are 

close together.  Since these areas and detection rates were lower, this was the most 

difficult scenario for both methods to detect due to the dimness of the second object 

coupled with their proximity to each other. 

 

Figure 15: Image of 2x2 pixel separation where the bright object is 10,000 photons the 

dim object is 100 photons with an average background level of 10 photons per pixel. 
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Figure 16: ROC Curve of two sources separated by 2x2 pixels where the bright object is 

10,000 photons the dim object is 100 photons with an average background level of 10 

photons per pixel. 

 

 The final scenario for the two-object system was one with a 10 pixel offset and 
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found in Figure 19.  The average area under the ROC curve for the BOD method was 

0.9967 with a standard deviation of 0.0019.  The average area under the ROC curve for 

the SOD method was 0.9983 with a standard deviation of 0.0011.  For Source Extractor 

the average area was 0.99995 with a standard deviation of 4.42 ∗ 10−5. The performance 
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for BOD was 0.9876 and 0.9861 for SOD.  The detection rate for Source Extractor was 

0.349 at that point.  Once again, the BOD method proves to be the superior object 

detection algorithm.  Additionally, these four tests demonstrate that the displacement 

between the two objects as well as their relative brightness to one another affect the 

outcome in the same direction as expected. This demonstrates that the greater the relative 

brightness difference, the greater the difference between the two methods, and the greater 

the distance between the two objects, the closer the two methods will perform to one 

another.   

 

Figure 17: Image of 10x10 pixels where the bright object is 10,000 photons the dim 

object is 100 photons with an average background level of 10 photons per pixel. 

 

20 40 60 80 100 120

20

40

60

80

100

120



42 

 

Figure 18: Semilog-x ROC Curve of two sources separated by 10x10 pixels where the 

bright object is 10,000 photons the dim object is 100 photons with an average 

background level of 10 photons per pixel. 

 

Figure 19: ROC Curve of two sources separated by 10x10 pixels where the 

bright object is 10,000 photons the dim object is 100 photons with an average 

background level of 10 photons per pixel. 
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Results of Laboratory Data 

For the laboratory results, 100 samples were utilized to create each ROC curve, 

but only one ROC curve per method was produced.  The image of the sources itself (after 

averaging all frames together) is displayed in Figure 20.  The ROC curves are displayed 

in Figure 21 and semilog-x ROC curves are displayed in Figure 22.  The area under the 

curve for the BOD method is 0.936 and the area under the curve for SOD was 0.937.  The 

Source Extractor method had an average area of 0.987. The detection rate for BOD is 

0.779, 0.780 for SOD, and for the Source Extractor method, effectively 0.  Measurements 

of the brightness of the two objects relative to one another reveals that the bright object, 

in this scenario, is a little more than two times brighter than the dim object (814 

photoelectrons as opposed to 357 photoelectrons).  This ratio was found by taking the 

sum of the image with only the first light and comparing it to the sum of the image with 

both lights.  Looking at the length of the PSFs reveals that they are 1.5 PSF lengths apart.  

Since the two objects are more than a PSF separated, and since the brightness are close in 

magnitude, it is expected that the two methods would perform roughly the same. 
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Figure 20: Image of First Experiment, with a bright object of approximately 814 photons, 

a dim object of approximately 357, and a background level of about 134 photons per 

pixel. 

 

Figure 21: ROC Curve of First Experiment, with a bright object of approximately 814 

photons, a dim object of approximately 357, and a background level of about 134 photons 

per pixel. 
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Figure 22: Semilog-x ROC Curve of the first experiment. 
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The Source Extractor method had an area of 0.504.  This is depicted in Figure 24.  The 

detection rate for BOD is 0.363 and 1.28 ∗ 10−15 for SOD.  The Source Extractor 

method had a detection rate of 0.  This is shown in the semilog-x ROC curve in Figure 

25. 
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Figure 23: Image of Second Experiment, with a bright object of approximately 3,134 

photons, a dim object of approximately 972, and a background level of about 376 photons 

per pixel. 

 

Figure 24: ROC Curve for Second Experiment, with a bright object of approximately 

3,134 photons, a dim object of approximately 972, and a background level of about 376 

photons per pixel. 
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Figure 25: Semilog-x ROC Curve for Second Experiment. 

Three Object Detection 

Lastly, the BOD algorithm was modified slightly to detect a third image.  The 

new method, TOD (Three Object Analysis), was subjected to two different scenarios.  In 

the first, and arguably more interesting of the two scenarios, there are two bright objects 

on either side of a dim object.  In both cases, the dim object was 1% the brightness of the 

bright object.  As in the previous simulations, 20 samples were generated using random 

Poisson noise.     

The first scenario to be analyzed is that with two bright objects and a dim object 

midway between them.  The results of TOD, with the assumption that both bright objects 
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this scenario is displayed in Figure 26.  The ROC curves are displayed in Figure 27 the 

semilog-x ROC curve is displayed in Figure 28.  The areas under the three curves were 

tabulated for each method.  The average area under the ROC curves for TOD were 

0.7962 with a standard deviation of 0.02469.  The average for BOD was 0.7416 with a 

standard deviation of 0.03291, and for SOD the average was 0.7581 with a standard 

deviation of 0.03650.  The average detection rates were 0.1623, 3.200 ∗ 10−06, and 

1.741 ∗ 10−6 for TOD, BOD, and SOD, respectively.  With this great of a brightness 

difference, TOD’s benefits are apparent. 

 

Figure 26: Image of Three Object Scenario, the two bright objects are 10,000 photons and 

are spaced 4x4 pixels apart with the dim object is 100 photons halfway between them and 

an average background level of 10 photons per pixel. 
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Figure 27: ROC Curves for Three Object Scenario, the two bright objects are 10,000 

photons and are spaced 4x4 pixels apart with the dim object is 100 photons halfway 

between them and an average background level of 10 photons per pixel. 

   

Figure 28: Semilog-x ROC Curves for Three Object Scenario, the two bright objects are 

10,000 photons and are spaced 4x4 pixels apart with the dim object is 100 photons 

halfway between them and an average background level of 10 photons per pixel.  
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Finally, this paper examined the scenario in which there is one bright object in 

between two dim objects.  The results of TOD, with the assumption that the bright object 

and one dim object have been detected, were compared to both that of BOD, with the 

assumption that only the bright object has been detected, and that of SOD.  An image of 

the scenario is displayed in Figure 29. Sample semilog-x ROC curves are shown below in 

Figure 30.  The areas under the three curves were tabulated for each method.  The 

average area under the ROC curves for TOD was always exactly 1 (so there was no 

standard deviation).  The average for BOD was 1 with a standard deviation of 3.602 ∗

10−17, and for SOD the average was almost 1 with a standard deviation of 2.547 ∗

10−17.  Because the area was approximately 1 in each case, the ROC curves themselves 

are not displayed, as they are visually indistinguishable from one another.  For BOD and 

TOD, the detection rate in all trials was 1.  For SOD it was close, at 0.999999999997207 

(again, shown to full precision to denote that it is not quite 1).  It was expected that the 

three methods would perform similarly in this scenario because it closely matches the 

two object scenario with the dim object being 1:10 the brightness of the bright object, 

with a pixel offset of 2x2.  In this case, the third object barely interferes with the PSF at 

all, at the point in question.  
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Figure 29: Image of Three Object Scenario, the two dim objects are 100 photons and are 

spaced 4x4 pixels apart with the bright object is 10,00 photons halfway between them 

and an average background level of 10 photons per pixel.  

 

Figure 30: Semilog-x ROC Curves for Three Object Scenario, the two dim objects are 

100 photons and are spaced 4x4 pixels apart with the bright object is 10,00 photons 

halfway between them and an average background level of 10 photons per pixel. 

20 40 60 80 100 120

20

40

60

80

100

120

-350 -300 -250 -200 -150 -100 -50 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log
10

(P
false

 
alarm

)

P
d
e
te

c
t

Semilog-x ROC curve

 

 

SOD

BOD

TOD



52 

 

Varying Parameters 

 The last simulation that was run was one in which the entire simulation was run 

multiple times at each distance.  They started at a distance of one pixel, and went to 10 

pixels (so that it exceeded a full PSF width apart).  For this, a fixed brightness ratio of 

100:1 was used in all experiments.  20 simulations were run at each distance, with 

different random noise generated in each scenario.  In all cases, Source Extractor had a 

higher area under the curve, but had a much lower detection rate.  BOD’s detection rate 

was better in all cases, although as the points get gets farther apart, the advantage 

diminishes. 

 

Figure 31:ROC Curve Areas for Varying Distance Simulations with 1:100 Brightness 
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Figure 32: Detection Rates for Varying Distance Simulation for 1:100 Brightness Ratio. 
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Figure 33: ROC Curve Areas for Varying Brightness Simulation with 2x2 pixel offset. 

 

Figure 34: Detection Rates for Varying Brightness Simulation with 2x2 pixel offset. 
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Summary 

In all two object cases, the BOD method performs equal to or better than the SOD 

method.  However, SOD did perform better than expected, especially in the 10:1 

brightness cases.  In some cases it was necessary to look at the plot as a semilog-x 

scenario in order to be able to visually discern the differences between the two ROC 

curves.  Source Extractor demonstrated remarkably poor detection rates in all scenarios, 

when compared with BOD, or even SOD.  As expected, the farther apart the two objects 

were the closer the results of the two methods, and the greater the difference in 

brightness, the greater the difference in the results of the two methods.  The brightness 

seemed to play a greater role than proximity, in determining how much better BOD 

would perform than SOD.  TOD performed as expected, beating out BOD and SOD in 

both three object cases in ROC curve area, as well as detection rate.  The first test 

scenario demonstrated that, outside of one PSF-width, SOD and BOD will bot h perform 

almost identically.   
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V.  Conclusions and Recommendations 

Chapter Overview 

This chapter will begin by reviewing the results of the study as well as drawing 

conclusions from the results.  Next it will be used to comment upon the significance of 

these results.  Then recommendations will be made for action based upon these 

conclusions.  Finally recommendations will be made for continued research in this area. 

Conclusions of Research 

Reviewing the results, it should be obvious that BOD outperforms SOD in 

general.  In the first laboratory experiment, they both performed similarly, due to the lack 

of PSF masking occurring.  Therefore it can be concluded that BOD is a superior method 

for detecting binary images than the methods currently in use.  Additionally, while BOD 

can detect a third object easier than SOD, BOD is also easily expanded into TOD, which 

is superior to both methods, for detecting three object clusters. 

Significance of Research 

Comparing BOD to other methods, such as Pan-starrs, this method creates its own 

“master image” rather than depending on what that had been created a previous night.  

The advantage of recreating its own image each time is that it will not be adversely 

affected if the image changed.  A disadvantage is that it will take slightly longer to 

process the image, since two scans will be necessary. 
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Another advantage of BOD over SOD deals with detecting more than two objects.  

The previous binary detection method also fails to perform in this area.  While BOD can 

outperform SOD in detecting three objects on its own, it can easily be expanded to scan 

for additional objects, such as using TOD for a three object cluster.  It would be fairly 

simple, should the need arise, to expand this to as many terms as necessary.  It is 

important to acknowledging that an additional scan would be necessary for each 

additional object to be scanned for which could be time consuming if the number of 

clustered objects is too high. 

Recommendations for Action 

Since this method has not only been tested on actual data, but has outperformed 

existing methods of binary object detection, it would be logical to implement this 

algorithm on SSA platforms.  This would give us the ability to potentially detect a spy 

satellite in close proximity to one of our orbital assets, as well as detecting space debris 

that might be clustered together.  Without the ability to reliably detect these threats we 

would have no means of countering them.  Since this can be accomplished without the 

use of adaptive optics or additional hardware and since Matlab is a fairly universal 

software tool, this methods implementation should be fairly straightforward and cost 

effective. 

Recommendations for Future Research 

The next step for this project could be code optimization.  Due to the way the 

code calculates each pixel independently of the others, parallelization should 

substantially decrease computation time for implementation.  Many other function might 
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be able to be cleaned up to increase the programs speed as well.  Perhaps an investigation 

from a computer science point of view might be the most valuable next step. 

Summary 

While methods currently exist for detecting objects in GEO, these methods have 

difficulty detecting binary objects, such as a spy satellite hiding near one of our satellites, 

or space debris near one of our assets.  This is especially notable when one object is much 

dimmer than the other.  However, the BOD method outlined in this paper is not only 

adept at detecting objects in these scenarios, but can easily be expanded into new 

algorithms should the need arise to detect more than two objects clustered together.  

Since it does not rely upon a previously created master image, it is also more able to 

adapt to changes than other current methods.  Additionally, since it does not depend on 

any additional hardware it should be relatively inexpensive to implement.  Therefore, it 

would be logical to use BOD with current SSA assets. 
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Appendix 

clear all 
close all 
clc 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 
%Begin testing for Probability of Detection                               

% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 
testsize = 20;   %sets the number of "tests" to run 

  
for s = 1:testsize 
%user defined variables 
N = 128;            %size of source field matrix 
bn = 10;            %level of background noise 
Offset = -2;         %distance from central object to tertiary 

object(in  
                    %pixels of source plane) 
Offset2 = 2;        %distance from central object to the object you are   
                    %looking for (in pixels of source plane) 
star = 10000;       %brightness of center object 
samples = 100;      %number of expirements   
star2 = 0;          %brightness of tertiary object 
                    %NOTE: set equal to 0 for binary object scenario 
star3 = star/100;    %brightness of the object you are looking for 
R0 = 20;             %seeing parameter for atmospheric turbulance 

  
binary=bn*ones(N,N); % make source plane, with background noise 

  
pos = floor(N/2);        %defines the center of the matrix 
binary(pos,pos)=star+bn;   %places bright star at center of source 

plane 
binary(pos+Offset,pos+Offset)=star2+bn;    %places dim star at offset  
binary(pos+Offset2,pos+Offset2)=star3+bn;  %places third object in 

plane  

  
otf1=Make_otf(64,0,N,1,zeros(N,N));     %creates OTF of telescope pupil 

  
otf2=Make_long_otf(50,50/128,N,R0);     %creates atmospheric OTF  
                                        %NOTE: assumes long exposure 

  
tot_otf=otf1.*fftshift(otf2);           %computes total OTF of system 
                                        %NOTE: uses Frouenhoffer 
                                        %approximation 

  
data_mean=real(ifft2(fft2(binary).*tot_otf));  %computes image  

  
testsum = sum(sum(data_mean));          %sanity check for total 

photocount 
                                        %should be 

star+star2+star3+N^2*bn 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 
%Set up for Binary Hypothesis Test                                        

% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 
%sets up denominator for "null" hypothesis 
x0 = zeros(N,N); 
x0(pos,pos) = 1; 
xf = fft2(x0); 

  
%sets up denominator for "detection" hypothesis 
x2 = zeros(N,N); 
x2(pos+Offset,pos+Offset) = 1; 
xf2 = fft2(x2); 

  
x3 = zeros(N,N); 
x3(pos+Offset2,pos+Offset2) = 1; 
xf3 = fft2(x3); 

  
%sets up the "bases" for the two hypothesis, base = one object, base2 = 
%second object.  For three object scenarios, the third object is 

ignored 
%since this detection algorithm only looks for one object. 
base = real(ifft2(tot_otf.*xf));    
base2 = real(ifft2(tot_otf.*xf2)); 
base3 = real(ifft2(tot_otf.*xf3)); 

  
brightS = ones(samples,1)*star;  %sets up initial guess of dim object 
gammaS = zeros(samples,1);   %initializes matrix of PH1/PH0 in logspace 

  
bright = ones(samples,1)*star;  %sets up initial guess of dim object 
gamma = zeros(samples,1);   %initializes matrix of PH1/PH0 in logspace 

  

  
figure(4) 
imagesc(data_mean) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 
%Begin testing for Probability of Detection                               

% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 
for i=1:samples 

  
data(:,:,i)=poissrnd(data_mean); 

  
%begins iterative process of determining brightness of dim object (if 

there 
%were one at this location).  n=number of iterations 
for n = 1:1000 
    iiS = real(base3*brightS(i)+bn); 
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    brightS(i) = brightS(i).*sum(sum(real(data(:,:,i)./iiS).*base3)); 

     
    ii = base*star+base3*bright(i)+bn; 
    bright(i) = bright(i).*sum(sum(real(data(:,:,i)./ii).*base3)); 

  
end 

  
%Assigns the two hypotheses (PH1 = probability that threre is a second 
%object, PH0 is the probability that there is not) 
PH1S = sum(sum(data(:,:,i).*log(bn+brightS(i)*base3)))... 
    -brightS(i)-bn*N^2; 
PH0S = sum(sum(data(:,:,i).*log(bn)))-bn*N^2; 

  
PH1 = sum(sum(data(:,:,i).*log(bn+star*base+bright(i)*base3)))... 
    -star-bright(i)-bn*N^2; 
PH0 = sum(sum(data(:,:,i).*log(bn+star*base)))-star-bn*N^2; 

  
%gamma = log likelihood ratio 
gammaS(i) = PH0S/PH1S; 

  
gammaSa(i)=sum(sum((data(:,:,i)-bn).*base3)); 

  
gamma(i) = PH0/PH1; 

  
%This segment is used to display progress of computation 
disp([num2str(i/samples*100),'% done with pdetect, first half of test 

',num2str(s),' out of ',num2str(testsize)]) 
end 

  

  

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 
%Begin testing for Probability of False Alarm                             

% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

  

  
%remove second star from binary field (replaces cell with background 

noise) 
binary(pos+Offset2,pos+Offset2)=bn;  

  
data_mean=real(ifft2(fft2(binary).*tot_otf));  %creates new image 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 
%Set up for Binary Hypothesis Test                                        

% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 
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brightS = ones(samples,1)*star;  %resets guess of dim object 
gamma2S = zeros(samples,1);   %reinitializes matrix of PH1/PH0 in 

logspace 
%begins null experiment 

  
gamma2Sa = zeros(samples,1);   %reinitializes matrix of PH1/PH0 in 

logspace 
%begins null experiment 

  
for i=1:samples 

  
data(:,:,i)=poissrnd(data_mean); 

  
%begins iterative process of determining brightness of dim object (if 

there 
%were one at this location).  n=number of iterations. 'base2' remains 

the 
%same as in the detection section 
for n = 1:1000 
    iiS = base3*brightS(i)+bn; 
    brightS(i) = brightS(i).*sum(sum(real(data(:,:,i)./iiS).*base3)); 

     
    ii = base*star+base3*bright(i)+bn; 
    bright(i) = bright(i).*sum(sum(real(data(:,:,i)./ii).*base3)); 

  
end 
%Assigns the two hypotheses (PH1 = probability that threre is a second 
%object, PH0 is the probability that there is not) 
PH1S = sum(sum(data(:,:,i).*log(bn+brightS(i)*base3)))... 
    -brightS(i)-bn*N^2; 
PH0S = sum(sum(data(:,:,i).*log(bn)))-bn*N^2; 

  
PH1 = sum(sum(data(:,:,i).*log(bn+star*base+bright(i)*base3)))... 
    -star-bright(i)-bn*N^2; 
PH0 = sum(sum(data(:,:,i).*log(bn+star*base)))-star-bn*N^2; 

  
%gamma = log likelihood ratio (inverted because we are in log 

likelihood) 
gamma2S(i) = PH0S/PH1S; 

  
gamma2Sa(i)=sum(sum((data(:,:,i)-bn).*base3)); 

  
gamma2(i) = PH0/PH1; 

  
%This segment is used to display progress of computation 
disp([num2str(i/samples*100),'% done with pfa, second half of test 

',num2str(s),' out of ',num2str(testsize)]) 
end 

  
detected_brightness = mean(brightS); 
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H = lillietest(gammaS); %test for normality of data 
mu = (mean(gammaS));    %the mean threshold value for detection 
stdev = (std(gammaS));  %the standard deviation for threshold values 
H2 = lillietest(gamma2S); %test for normality of data 
mu2 = (mean(gamma2S));    %the mean threshold value for detection 
stdev2 = (std(gamma2S));  %the standard deviation for threshold values 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 
%                     Calculating The threshold for SOD                   

% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

  
%calculates possible endpoints of threshold array 
t1 = mu+10*stdev; 
b1 = mu-10*stdev; 
t2 = mu2+10*stdev2; 
b2 = mu2-10*stdev2; 
%turns endpoints into an array and sorts them 
threshmat = sort([t1 b1 t2 b2]); 
%finds the smaller of the two standard deviations 
stepsize = sort([stdev stdev2]); 

  
%assigns the lowest of the above endpoints as the minimum threshold 

value, 
%the highest as the maximum value, and the smallest of the two standard 
%deviations as the stepsize to create the threshold array 
threshS = [threshmat(1):stepsize(1)/100:threshmat(4)]; 
%computes probability of false alarm per threshold 
pfaS = cdf('norm',threshS,mu2,stdev2); 
%computes probability of detection per threshold 
pdetectS = cdf('norm',threshS,mu,stdev); 

  
%finds the 10% probability of false alarm level.  Doesn't always work 

right 
%based upon the exact value of pfa(end10) (the larger pfa(end10) is, 

the 
%less accurate the result) 
end10S = find(pfaS>10^-9,1); 
pfa10S = pfaS(1:end10S); 
pdetect10S = pdetectS(1:end10S); 
detection_rateS(s) = pdetectS(end10S) 

  
%computes the area under the curve for this experiment 
firstS = find(pfa10S>0,1); 
ROC_intS(s) = trapz(pfaS,pdetectS); 
LOG_ROC_intS(s) = trapz(log10(pfaS(firstS:end)),pdetectS(firstS:end)); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 
%                     Calculating The threshold for "old-SOD"             

% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 
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detected_brightness = mean(brightS); 
H = lillietest(gammaSa); %test for normality of data 
mu = (mean(gammaSa));    %the mean threshold value for detection 
stdev = (std(gammaSa));  %the standard deviation for threshold values 
H2 = lillietest(gamma2Sa); %test for normality of data 
mu2 = (mean(gamma2Sa));    %the mean threshold value for detection 
stdev2 = (std(gamma2Sa));  %the standard deviation for threshold values 

  
%calculates possible endpoints of threshold array 
t1 = mu+10*stdev; 
b1 = mu-10*stdev; 
t2 = mu2+10*stdev2; 
b2 = mu2-10*stdev2; 
%turns endpoints into an array and sorts them 
threshmat = sort([t1 b1 t2 b2]); 
%finds the smaller of the two standard deviations 
stepsize = sort([stdev stdev2]); 

  
%assigns the lowest of the above endpoints as the minimum threshold 

value, 
%the highest as the maximum value, and the smallest of the two standard 
%deviations as the stepsize to create the threshold array 
threshSa = [threshmat(1):stepsize(1)/100:threshmat(4)]; 
%computes probability of false alarm per threshold 
pfaSa = 1-cdf('norm',threshSa,mu2,stdev2); 
%computes probability of detection per threshold 
pdetectSa = 1-cdf('norm',threshSa,mu,stdev); 

  
%finds the 10% probability of false alarm level.  Doesn't always work 

right 
%based upon the exact value of pfa(end10) (the larger pfa(end10) is, 

the 
%less accurate the result) 
end10Sa = find(pfaSa>10^-9,1); 
pfa10Sa = pfaSa(1:end10Sa); 
pdetect10Sa = pdetectSa(1:end10Sa); 
detection_rateSa(s) = pdetectS(end10Sa) 

  
%computes the area under the curve for this experiment 
firstSa = find(pfa10S>0,1); 
ROC_intSa(s) = -trapz(pfaSa,pdetectSa); 
LOG_ROC_intSa(s) = 

trapz(log10(pfaSa(firstSa:end)),pdetectSa(firstSa:end)); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 
%                     Calculating the Threshold for BOD                   

% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

  
detected_brightness = mean(bright); 
H = lillietest(gamma); %test for normality of data 
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mu = (mean(gamma));    %the mean threshold value for detection 
stdev = (std(gamma));  %the standard deviation for threshold values 
H2 = lillietest(gamma2); %test for normality of data 
mu2 = (mean(gamma2));    %the mean threshold value for detection 
stdev2 = (std(gamma2));  %the standard deviation for threshold values 

  

  
%calculates possible endpoints of threshold array 
t1 = mu+10*stdev; 
b1 = mu-10*stdev; 
t2 = mu2+10*stdev2; 
b2 = mu2-10*stdev2; 
%turns endpoints into an array and sorts them 
threshmat = sort([t1 b1 t2 b2]); 
%finds the smaller of the two standard deviations 
stepsize = sort([stdev stdev2]); 

  
%assigns the lowest of the above endpoints as the minimum threshold 

value, 
%the highest as the maximum value, and the smallest of the two standard 
%deviations as the stepsize to create the threshold array 
thresh = [threshmat(1):stepsize(1)/100:threshmat(4)]; 
%computes probability of false alarm per threshold 
pfa = cdf('norm',thresh,mu2,stdev2); 
%computes probability of detection per threshold 
pdetect = cdf('norm',thresh,mu,stdev); 

  
%finds the 10% probability of false alarm level.  Doesn't always work 

right 
%based upon the exact value of pfa(end10) (the larger pfa(end10) is, 

the 
%less accurate the result) 
end10 = find(pfa>10^-9,1); 
pfa10 = pfa(1:end10); 
pdetect10 = pdetect(1:end10); 
detection_rate(s) = pdetect(end10) 

  
%computes the area under the curve for this experiment 
first = find(pfa10>0,1); 
ROC_int(s) = trapz(pfa,pdetect); 
LOG_ROC_int(s) = trapz(log10(pfa(first:end)),pdetect(first:end)); 
end 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 
%                   Computing the statistical outputs                     

% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 
%the statistics for the area under the ROC curves: 
mean_area_Single = mean(ROC_intS) 
std_area_Single = std(ROC_intS) 
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%the statistics for the detection rate at 10% probability of false 

alarm: 
mean_detection_rate_10_Single = mean(detection_rateS)   
std_detection_rate_10_Single = std(detection_rateS) 

  
%the statistics for the area under the ROC curves: 
mean_area_Old_SOD = mean(ROC_intSa) 
std_area_Old_SOD = std(ROC_intSa) 

  
%the statistics for the detection rate at 10% probability of false 

alarm: 
mean_detection_rate_10_Old_SOD = mean(detection_rateSa)   
std_detection_rate_10_Old_SOD = std(detection_rateSa) 

  
%the statistics for the area under the ROC curves: 
mean_area = mean(ROC_int) 
std_area = std(ROC_int) 

  
%the statistics for the detection rate at 10% probability of false 

alarm: 
mean_detection_rate_10_Double = mean(detection_rate)   
std_detection_rate_10_Double = std(detection_rate) 

  

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 
%                          Produces the Plots                             

% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 

  
%plots ROC curve on semilog-x plot 
figure(1) 
plot(log10(pfaSa),pdetectSa,log10(pfaS),pdetectS,log10(pfa),pdetect) 
legend('Source Extractor','SOD','BOD') 
title('Semilog-x ROC curve') 
xlabel('log_1_0(P_f_a_l_s_e _a_l_a_r_m)') 
ylabel('P_d_e_t_e_c_t') 

  

  
%looks at the false alarm detection and detection probability based on 
%threshold 
figure(2) 
subplot(2,1,1) 
plot(threshS,pfaS,thresh,pfa) 
legend('SOD','BOD') 
title('False Alarm Rate') 
xlabel('Threshold') 
ylabel('P_f_a_l_s_e _a_l_a_r_m') 
subplot(2,1,2) 
plot(threshS,pdetectS,thresh,pdetect) 
legend('SOD','BOD') 



67 

title('Object Detection Rate') 
xlabel('Threshold') 
ylabel('P_d_e_t_e_c_t') 

  
%plots ROC curve 
figure(3) 
plot(pfaSa,pdetectSa,pfaS,pdetectS,pfa,pdetect) 
legend('Soure Extractor','SOD','BOD') 
title('ROC Curve') 
xlabel('P_f_a_l_s_e _a_l_a_r_m') 
ylabel('P_d_e_t_e_c_t') 
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