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Abstract

The Unisted States Air Force (USAF) use of Unmanned Aeriel Systems (UAS) has

expanded from reconnaissance to hunter/killer missions. As the UAS mission fur-

ther expands into aerial combat, better performance and larger payloads will have a

negative correlation with range and loiter times. Additionally, the Air Force Future

Operating Concept calls for “formations of uninhabited refueling aircraft...[that] en-

able refueling operations partway inside threat areas.” However, a lack of accurate

relative positioning information prevents the ability to safely maintain close forma-

tion flight and contact between a tanker and a UAS. The inclusion of cutting edge

vision systems on present and future refueling platforms may provide the information

necessary to support an Automated Aerel Refueling (AAR) mission by estimating

the position of a trailing aircraft to provide inputs to a UAS controller capable of

maintaining a given position. This research examines the ability of Structure from

Motion (SfM) to generate this relative navigation information. Previous AAR re-

search efforts involved the use of differential Global Positioning System (GPS), Light

Detection and Ranging (LiDAR), and vision systems. This research aims to leverage

current imaging technology to compliment these solutions. The algorithm used in this

thesis generates a point cloud by determining three dimensional (3D) structure from

a sequence of two dimensional (2D) images. It then utilizes Principal Component

Analysis (PCA) to register the point cloud to a reference model. The algorithm was

tested in a real world environment using a 1:7 scale F-15 model. Additionally, this

thesis conducts a study of common 3D rigid registration algorithms in an effort char-

acterize their performance within the AAR domain. Three algorithms are generated

and tested for runtime and registration accuracy on four point cloud data sets.
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TOWARD AUTOMATED AERIAL REFUEING: RELATIVE NAVIGATION

WITH STRUCTURE FROM MOTION

I. Introduction

The use of UASs in support of military operations began during the Civil War

when balloons loaded with explosives were used in an effort to destroy supply and

ammunition depots [40]. However, technology did not permit effective use until Viet-

nam when drones were first utilized for simple day reconnaissance with conventional

cameras. Successful operations quickly led to night photo operations, signals intel-

ligence, leaflet dropping and surface-to-air missile radar detection. UASs have since

become critical to many military operations driven by a dramatic increase in sensor,

guidance, and navigation technologies. These advances enabled operations to extend

past the limits of human endurance to that of the platform itself. The first modern

UAS systems (the RQ-4 Global Hawk & the MQ-1 Predator) were developed for re-

connaissance with a focus on long loiter times. Soon after, the Predator’s mission

was expanded to include armed reconnaissance. The past decade has seen continuous

expansion of UAS missions with their quick evolution leading to many hunter/killer

systems such as the MQ-4 Reaper. As this trend continues, UASs will become more

capable and complex while also playing a larger role on the battlefield [56].

As the UAS mission further expands into aerial combat, designs will focus on bet-

ter performance and larger, more complicated payloads. Such upgrades will have a

negative correlation to the range and loiter times that have become expected. The re-

quirement for a robust, AAR capability will become critical in order to efficiently and

effectively use these new systems to project force around the world, directly effecting
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the overall mission success of the USAF [6, 35, 56]. Further, the Air Force’s 2035 oper-

ating concept calls for the use of “formations of uninhabited refueling aircraft...[that]

enable refueling operations partway inside threat areas”[23].

Aerial refueling itself is a capability that came from the desire to maximize pro-

ductivity. On Oct. 5, 1922 a world endurance record for a single flight was set with

a flight time of 35 hours, 18 minutes, 30 seconds. The flight did not continue be-

cause of the limited amount of gasoline the Fokker T-2 could carry. Less than nine

months later the first successful mid-air refueling took place as gasoline was passed

between two DH-4B aircraft with a hose. Within another four months, the endurance

record, as well as 15 other world records, were broken by a flight using 16 refueling

contacts [1]. These monumental flights removed fuel capacity as a limiting factor,

extending mission times to that of the physical endurance of the crew.

Since then, the use of aerial refueling has become a critical piece of the United

States (US) Military’s strategic plan for projecting power around the world. Two

aerial refueling approaches are currently used by the military (hose-and-drogue and

flying boom). The hose-and-drogue system (Figure 1a) is reminiscent of the original

hose implementation discussed above. This method employs a flexible hose with a

drogue (i.e. a small windsock for stabilization) that trails the tanker. The receiving

platform inserts a probe into the hose making the connection required to begin the

transfer of fuel.

In the 1950s, the Cold War led to a rise in long-range bombing missions requiring

the need of a refueling system that could transfer larger amounts of fuel at a higher

rate. A second approach was developed that implemented a flying boom based system

(Figure 1b). Its rigid, telescoping tube uses an operator located on the tanker to

extend and insert the fuel nozzle into a receptacle on the refueling aircraft. The

refueling aircraft’s pilot focuses primarily on station keeping. While the hose-and-
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(a) Hose-and-drogue (b) Boom

Figure 1. Current US military aeriel refueling systems. All Marine Corps aircraft, Naval
aircraft and Air Force helicopters use the hose-and-drogue method for aerial refueling. 96% of Air
Force aircraft utilize the boom method for refueling.

drogue method can refuel multiple aircraft, it is only capable of transferring 1,500-

2,000 pounds of fuel per minute per hose. The boom system is capable of transferring

6,000 pounds of fuel per minute. Currently, AF helicopters and all Navy and Marine

Corps aircraft refuel using the hose-and-drogue, while 96% of Air Force aircraft are

refuelable with the flying boom [4]. The development of the KC-46 Pegasus refueling

platform has cemented the flying boom as the primary aerial refueling system for Air

Force aircraft.

In addition to underscoring the importance of the flying boom system, the KC-46

has also led to a paradigm shift in AAR research with the integration of state-of-the-

art visual sensors on the tanker platform. Rockwell Collins Remote Vision System

(RVS) includes sensors, graphics subsystems and 3D displays to provide operators

the depth cues necessary to safely and accurately control the boom during refueling

operations [31]. While the new systems provide the foundation for more advanced

refueling techniques, they do not currently provide relative positioning information

about the trailing aircraft. The AAR mission requires this information to facilitate

precise and continuous station keeping as at least two aircraft will make a mid-air

connection while others fly in close proximity. The benefits of safe close formation

flight extend beyond aerial refueling and may play a critical role in autonomous aerial
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combat operations currently conducted by manned systems [57, 27, 58]. Thus, the aim

of this thesis is to explore what capabilities may now be available with the inclusion

of the RVS and determine how close we are to having the position information needed

to facilitate a safe, robust AAR solution.

1.1 Problem Statement

The AAR problem requires a UAS to achieve a position proximate to a tanker

(manned or unmanned) and safely maintain close formation flight. This effort in-

vestigates the ability of an electro-optical imaging system and SfM based algorithm

to provide relative positioning information between a tanker and a receiver aircraft.

Additionally, this thesis aims to characterize the performance of well known 3D rigid

registration algorithms to provide empirical evidence supporting future AAR research

and implementations.

1.2 Overview

This thesis is organized as follows: Chapter II introduces the mathematical no-

tation used throughout this thesis and defines the relevant reference frames. It also

provides an overview of subject areas necessary to support the algorithm as well as

previous relative positioning and AAR research efforts. Chapter III presents pre-

liminary experimentation used to characterize the performance of SfM in the AAR

domain. Chapter IV introduces the methodology implemented in thesis by defining

a mathematical representation of the problem, detailing the role of each stage pf the

algorithm in solving the problem and presenting the experimental environment and

data collection techniques used to test the hypothesis. Chapters V and VI present the

relative navigation experiment and 3D rigid registration study conducted. Each chap-

ter states the objectives, discusses the necessary assumptions and limitations, details
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the experimental process and presents and analyzes the results. Finally Chapter VII

concludes the thesis by drawing conclusions from both experiments and discussing

their impacts on AAR research. This chapter also suggests areas for future work that

leverage and build on the results of this thesis.
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II. Background

This chapter provides an overview of the areas of study critical to the proposed

solution as well as previous research focusing within the AAR domain. First, math-

ematical notation is developed for use throughout the document. Next, necessary

reference frames are introduced followed by the mathematcial background required

to develop the algorithms in Chapters IV and V. Finally, an overview of past AAR

research is presented with a focus on relevent capabilities and performance.

2.1 Mathematical Notation

The following notation is used to represent mathematical concepts in this thesis:

Position: Positioning is the 6 degree of freedom (DOF) attitude of a rigid body

in 3D space, including location (x, y, z) and orientation (roll, pitch, and yaw).

Scalars: Scalars are represented by an italicized lowercase letter (a).

Points: Points are represented by italicized, lowercase letters with a dot (ṗ).

Sets: Sets are represented by italicized, uppercase letters where setA={A1, A2, . . . , An}.

Mean: Means are represented by lowercase, italicized letters with a bar (p̄).

Vectors: Vectors are represented by an italicized lowercase letter with an arrow

above (~v). The translation vector is denoted ~t.

Direction Cosine Matrix (DCM): DCMs are represented by the matrix R. A

DCM that converts from a world orientation to a body orientation is denoted Rbody
world.

Quaternions: Quaternions are denoted by a lowercase italicized q. A quaternion

that converts a world frame to a body frame is denoted qbodyworld.

Transformations Transformations consist of a rotation and a translation. While

homogenius equations are not used in this thesis, transformations will be represented

by ∆ where ∆y
x = [R|~t]yx = [Ry

x|~tyx].
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2.2 Reference Frames

Reference frames are critical in expressing locations and orientation with reference

to different objects. For this document the following references frames are utilized:

Tanker Frame: The tanker frame is an orthonormal basis in three dimensions,

with its origin located at the centroid of the tanker aircraft with a nose, right wing,

down orientation.

Receiver Frame: The receiver body frame is an orthonormal basis in three

dimensions with its origin at the centroid of the airframe with a nose, right wing,

down orientation.

Camera Frame: The camera frame is an orthogonal basis in three dimensions

with its origin located at the camera origin with a nose, right wing, down orientation.

It has a known translation from the tanker body frame with an approximate relative

orientation of −35◦ pitch and 180◦ yaw.

Image Frame: The image frame is an orthogonal basis in three dimensions with

a nose right wing, down orientation. It is equivalent to the camera frame at a specific

moment in time.

Refueling Frame: The refueling frame is an orthonormal basis in three dimen-

sions with a nose, right wing, down orientation. It has the same orientation and a

known translation from the tanker frame.

Virtual Model Frame: The virtual model frame is an orthonormal basis in

three dimensions with its origin at the centroid of the point cloud with a nose, right

wing down orientation. Its origin is colocated with the camera frame with with the

same orientation as the tanker frame.

SfM World Frame: The SfM frame is an orthonormal basis in threes dimensions

with an arbitrary origin and orientation.

Vicon World Frame: The Vicon world frame is an orthonormal basis in three
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dimensions with its origin on the floor at the center of the Vicon space with a north,

east, down orientation.

2.3 3D Rigid Transformations

A coordinate transformation is the mapping of the positioning of an object in one

frame to another. Rigid transformations ensure that the relative distances between a

set of points are maintained after the transformation has been applied [12]. A rigid

transformation can be modeled by the by the formula

o′ = ~t+Ro (1)

where o is an object (point, vector, etc) being transformed to o′ by a rotation, R, and

a translation, ~t. ~t represents a shift in the location or x, y and z directions. For a 3D

translation this requires that Equation 1 be expanded to


o′x

o′y

o′z

 =


tx

ty

tz

+R


ox

oy

oz

 . (2)

Given that a rigid transformation maintains the distances between all points, it

also preserves the angles between segments ensuring the structure of the object is

maintained throughout the operation which can be proven by the cosine law [12].

The rotation matrix, R, is a set of rotations around each axis that transform an

object into the desired orientation, or roll, pitch and yaw. DCMs representing these

rotations are determined according to Equation 3, inline with [61]. It should be noted

that this operation is not commutative.
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R = RzRyRx (3)

where

Rx =


1 0 0

0 cosΘx sinΘx

0 −sinΘx cosΘx

 Ry =


cosΘy 0 −sinΘy

0 1 0

sinΘy 0 cosΘy

 Rz =


cosΘz sinΘz 0

−sinΘz cosΘz 0

0 0 1

.

Tranformations combine the R and ~t components in such a way that Equation

1 can be denoted ∆o′
o = [R|~t]o′o [12]. Transformations can be combined by multi-

plying the rotations and adding the translation vectors after accounting for the new

orientation as shown in Equation 4.

∆o′′

o = ∆o′′

o′ ∆o′

o = [Ro′′

o′ R
o′

o |~to
′′

o′ +Ro′′

o′
~to

′

o ] (4)

Additionally, the inverse transformation can be used to move the object back to the

original frame by applying the transpose (or inverse due to orthogonality) of the

rotation matrix and the negative translation as shown in Equation 5.

∆o′′−1
o = ∆o

o′′ = [Ro′′−1
o | − ~to′′o ] = [Ro

o′′|~too′′ ] (5)

Rotations can also be represented as a quaternion, the quotient of two directed

lines in 3D space [30]. As defined in [29] a quaternion is a 4 × 1 vector consisting

of a scalar part, s, and a vector part, ~v. Unit quaternions simplify many rotation

operations when compared to rotation matrices (or DCMs). The inverse of a quater-

nion, q−1, reverses its transformation, converting back to the original orientation such

that if q = qba, then q−1 = qab . Assuming unit quaternions, the quaternion inverse is

identical to the quaternions conjugate q∗ where
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q∗ =



qs

−qx

−qy

−qz


.

Quaternions can be combined such that qba ⊗ qcb = qca. However quaternion com-

binations are more complex than combining DCMs requiring the graßman exterior

product defined as

q1 ⊗ q2 = q3 =

 q1q · q2s − q1~v ◦ q2~v

q1s · q2~v + q2s · q1~v + q1~v × q2~v

 (6)

where ◦ represents a vector dot product and × represents a vector cross product [28,

15].

While DCMs and quaternions both transform between reference frame orientations

they require fundamentally different operations. In order to conduct rigid transfor-

mations on 3D points with quaternions requires

0

~v′

 = q ⊗

0

~v

⊗ q−1 =



qs

qx

qy

qz


⊗



0

~vx

~vy

~vz


⊗



qs

−qx

−qy

−qz


(7)

Note that the transformation is not completed by simpy using q ∗

0

~v

 as when using

a DCM in Equation 1. This is due to quaternions operating in a four dimensional

(4D) space in which the vector part, ~v, consists of imaginary numbers. In order to

completely apply the transform, the vector must be converted back to the original 3D

space. Multiplying by an additional q−1 does this. Each of the imaginary numbers
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Figure 2. The pinhole camera model. The actual image is an inverse representation of the
scene capture by a sensor. The focal length is the distance between the sensor and the lens, modeled
as a pinhole. Reprinted as an element of the public domain [2].

are multiplied by a second imaginary number forcing the non-real values to become

1 because i2 = −1. This also takes the scalar part of the quaternion back to zero

ensuring the transformed point lies back in a 3D space.

2.4 Computer Vision

Computer vision is a field of study that aims to make useful decisions about real

objects and scenes based on images [66]. Digital imagery has enabled every scene to

be captured as a matrix, or possibly several matrices. Pixels in an image provide two

main types of data, direction and color. Each pixel is assigned a set values describing

its red, green and blue properties. Additionally, pixels are identified by their 2D

location in the camera’s vision plane. Each pixel is assigned a 2D vector identifying

its location from the top left corner of the image, the image origin (ṗi =

xp
yp

).

A pinhole model, shown in Figure 2, is commonly used for camera systems where

the actual image is an inverted representation of the scene being captured. Image

inversions can be accounted for by modeling an equivalent image plane in front of

the camera where the focal length, f, is the distance from the lens, modeled by the

pinhole, to the sensor that physically captures the image. Once the image plane has
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Figure 3. The image plane is a 2D model of the scene. The image plane provides 2D image
coordinates for every direction in the physical scene.

been derived, each point in the scene can be assigned a corresponding direction in the

camera frame (Figure 3). In many applications the focal length is unknown. Setting

it to 1 allows the direction to be represented as a normalized vector, ~pi=

xn
yn

, where

the origin is the center of the image plane. The relationship between the normalized

direction coordinates and the actual three dimensional location of the point in the

camera frame can be modeled by

xn
yn

 =

xc/zc
yc/zc

 (8)

where


x

y

z


c

is the 3D location in the camera frame. The relationship between the

pixel and normalized coordinates of a point in the image (Figure 4) is defined as

xp
yp

 =

fc 0

0 fc


xn
yn

+

nx/2

ny/2

 (9)

where fc is the focal length and ni is the number of pixels in the i dimension. Note,

that if the focal length is set to 1, the relationship is the offset between the origins of
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Figure 4. The relationship between pixel and normalized image coordinates. The pixel
coordinate plane has its origin at the top left corner of the image plane while the normalized coor-
dinate plane has its origin in the center of the image plane.

each coordinate plane. In order to fully determine the 3D location of an object the

camera calibration matrix, K, must be known. K models the intrinsic parameters of

the camera, such as distortion. Given K, the pixel location of an object is related to

the actual three dimensional location of the object in the camera frame by


xp

yp

1

 = K[I3x3|03x1]



xc

yc

zc

1


(10)

where [I3x3|03x1] is a 3x3 identity matrix combined with a 3x1 0 matrix,


1 0 0 0

0 1 0 0

0 0 1 0

.

If the position of the camera and the object are known in some arbitrary world frame

(such as in Figure 5), then a DCM can be used to identify the location of the object

in the camera frame with Equation 14. Therefore, the relation between the pixel
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Figure 5. The positioning of an object in the camera and world frames. Given the
positions of the camera and a feature in the world frame, the position of the feature in the camera
frame can be determined.

location of an object and its arbitrary world location is represented by

xp
yp

 = K[Rc
w| −Rc

w~cw]


objx

objy

objz


w

. (11)

In this equation ~cw is the location of the camera in the world frame while −Rc
w~cw

is the origin of the world frame expressed in the camera frame, or a translation vector

~t. K
[
R|~t
]

represents the camera matrix, P, that will translate any three dimensional

point in the scene into its corresponding pixel location. All of the calculations consid-

ered above can be derived from the information provided by a single image. However,

scene ambiguity remains due to the fact that a single image can not directly measure

scale.

In the same way humans use depth perception, epipolar geometry can be used on

a set of two offset images to solve for scale. If two images of the same object are taken

from different view points the 3D location of the object can be derived with the same

principles discussed above using the epipolar constraint. The epipolar constraint is

the relationship between a point correspondence, or the location of a single object in
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the two separate images , xn and x′n, modeled by

x′nTRxn = 0 (12)

T contains the translation values in matrix form such that T =


0 −tz ty

tz 0 −tx

−ty tx 0


from the translation vector ~t. TR is known as the essential matrix, E. By setting the

camera matrix of the first camera to P = K[I|0] the matrix of the second camera

becomes P ′ = K ′[R|~t]. Given the relative locations of the two cameras (~tw), the

bottom line of the triangle in Figure 6 is known as well as the angles from each

camera origin to a matched point, X. The 3D location of the point in each of the

camera frames can then be determined using basic trigonometric principles. While

E utilizes the camera coordinates, or extrinsic parameters R and ~t, the fundamental

matrix, F , accomplishes the same tasks using image (or pixel) coordinates by utilizing

intrinsic camera parameters. F tells how pixels (points) in one image are related to

the epipolar lines in the other image. While the essential matrix applies the epipolar

constraint as shown in Equation 19, the fundamental matrix applies the epipolar

constraint such that x′pFxp = 0. The relationship between E and F is simply K such

that

E = K ′TFK (13)

2.5 Feature Detection

In computer vision, feature detection is the process of identifying an image loca-

tion that is distinct in some manner. While no single definition exists for a feature

some important characteristics include uniqueness from other features in an image,
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Figure 6. The foundation of epipolar geometry. A feature identified in one image corresponds
to a location contained on a single line in a second image of the same scene. Reprinted as an element
of the public domain [53].

appearing in multiple images and corresponding to a stationary object in the real

world. These characteristics ensure the feature is identifiable in many images of the

same scene. A good feature is able to be identified based on salient characteristics

that are consistent through multiple images. While the feature itself should be robust

to different views its descriptor, the way it is represented and stored would ideally be

deduced in such a way that is scale, rotation and affine invariant. Determined by the

needs of the particular application, many types of features are used including corners,

lines, edges, faces, bar codes and point features.

One of the most prominent point features is known as Scale Invariant Feature

Transform (SIFT) [47]. While wide ranging research has led to the development of

many point features, SIFT is considered one of the more robust approaches. Using

a blurring technique SIFT detects locations that can be repeatedly identified from

multiple views of the same scene. With a difference-of-Gaussian approach, extrema

are found that represent major differences between two nearby scales of blurring.

Once locations are identified they are filtered to ensure chosen keypoints have a high

contrast with neighboring pixels and are not poorly localized along an edge. In order

to be able to continually identify the keypoints in subsequent images, SIFT uses a
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Figure 7. Examples of keypoints identified in an image. Each arrow represents a keypoint in
the image. The keypoints are uniquely charaterized by the direction and length of their corresponding
arrow.

descriptor that is based on the orientation of local image gradient directions. The

differences in pixel coloring surrounding each keypoint are quantified by the direction

of color change (direction of the arrow) and then weighted by the magnitude of the

color change (the length of the arrow), as shown in Figure 7.

The descriptor used to store and identify each keypoint is derived by creating

a vector containing the value of the 128 orientations surrounding it. This creates

a descriptor that is invariant to image location, scale and orientation. Normalizing

the vector will provide illumination invariance by removing the effects of a change in

variable that is constant across the set of pixels. Finally, in order to reduce the risk of

non-linear illumination changes that have different effects on 3D surfaces the influence

of large gradient magnitudes is thresholded to a small value. This puts a larger

emphasis on the distribution of orientations rather than matching magnitudes of large

gradients. Figure 8 illustrates an image of a model F-15 and its corresponding SIFT

features. Using robust features, such as SIFT, ensure applications that require feature

matches, or correspondences, throughout a set of images are able to continuously

provide stable information.
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Figure 8. SIFT fetures determined from the keypoints in Figure 7. Each red dot is a
SIFT feature that was identified as a robust feature that can be recognized from many different
perspectives.

2.6 Structure from Motion

SfM is the estimation of 3D structure from 2D information. The SfM concept was

first presented in [76] where Ullman’s Theorem states:“Given three distinct ortho-

graphic projections of four non-coplanar points in a rigid configuration, the structure

and motion compatible with the three views are uniquely determined up to a re-

flection about the image plane”, assuming correspondences between projections have

been established. Modern SfM implementations are based on the combination of

three major areas; feature detection and matching, multiview geometry, and bundle

adjustment. Similar to the approach discussed in Section 2.7, feature detection and

matching is used to generate a set of correspondences between multiple images. It

is common to filter the correspondences to reduce the likelihood of false correspon-

dences that have a negative effect on the accuracy of the model. The most prominent

point filtering algorithm is Random Sample Consensus (RANSAC) which is capa-

ble of filtering data containing a significant percentage of errors [21]. Once point

correspondences have been established, the epipolar geometry techniques previously

discussed can be extended to estimate object locations in more than two images using

multiview geometry.
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While two view epipolar geometry relies on the fundamental and essential matri-

ces, three views require the trifocal tensor (τ jki ), a 3x3x3 array of numbers relating

correspondences [34]. Like the fundamental matrix, the trifocal tensor is determined

by the three camera matrices. The relationship between three views uses a correspon-

dence between two lines and a point, ẋ ↔ l′ ↔ l′′. A point, ẋ, in one of the images

corresponds to points,ẋ′ and ẋ′′, in the other two images that reside on single lines,

l′ and l′′, in those images. The relationship between between the feature coordinates

in these three images can then be modeled by:

∑
ijk

xil′jl
′′
kτ

jk
i = 0 (14)

While this relationship provides a single linear relationship between the 27 ele-

ments of a tensor, point correspondences, x↔ x′ ↔ x′′, provide more equations. This

is due to the uncertainty that is removed by knowing the exact locations of the fea-

ture in all three images instead of only knowing its exact location in a single image.

It is only necessary to generate seven point correspondences to derive the trifocal

tensor linearly, while a minimum of six can be used with non-linear methods [34].

Three-view reconstruction enables the use of lines as well as point correspondences

to compute the projective reconstruction, avoiding unstable configurations possible

in two-view reconstruction. Given four views, a quadrifocal tensor can be computed,

though it is much more difficult to implement. Other techniques are possible in spe-

cific circumstances or given different assumptions, such as the use of an affine camera

model. However, reconstruction of greater than three views are typically completed

piece by piece on a sequence of images with two- and three-view techniques.

When implementing a piece by piece approach, a common methodology is bundle

adjustment (BA) [68]. BA is an iterative method that refines a reconstruction to

produce jointly optimal 3D structure and image parameter estimates. As new in-
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formation (images) is added to the sequence, BA continually adjusts all feature and

camera positions under consideration. An initial sparse reconstruction is established

using two or three images as discussed above. Another image is added to the sequence

and its intrinsic and extrinsic parameters are estimated from those of previous images.

Features present in the new image, matching those in previous images are compared

by pixel location. The new image’s parameters are then refined by minimizing the

re-projection error between the estimated pixel locations and those observed in the

image itself. This process is repeated iteratively for each new image added to the

sequence [68]. The reprojection error between pixel locations can be modeled by

y∑
a=1

z∑
b=1

= xa,b||qa,b − P (θa, pb)|| (15)

where θ is the camera model defining the estimated position and focal length of the

new image, p is the 3D position of each feature within a image, and P (θ, p) is the

predicted pixel location of the features. q is the observed pixel location of each feature.

y is the total number of images under consideration in the BA and z is the number of

features in the new image. If feature b is contained in image a, xa,b is one, otherwise

it is zero. BA aims to minimize the right side of Equation 15 by refining the camera

models as well as feature locations.

This minimization is a non-linear least squares problem typically solved with the

Lavenberg-Marquadt (LM) algorithm. Using the gradient of the error equation for

the current estimate, LM iteratively adjusts parameters by a certain delta. While

it only finds local minimums, if only one minimum exists it can be found with poor

initialization [26].

The SfM steps discussed above and much of the practical implementations of

SfM focus around projective reconstruction. This method utilizes uncalibrated cam-

eras and therefore must estimate camera parameters such as focal length, distortion
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coefficients and the geometric center of the images. This causes distortion in the

reconstruction which appear differently than the objects captured in a scene of the

Euclidean world viewed by humans. If fully calibrated cameras are used, meaning

the intrinsic parameters are known, ambiguities can be removed and a Euclidean

reconstruction can be accomplished [34].

The ability to accurately estimate camera parameters in order to establish relative

positioning between an object and an image makes SfM a valuable tool for navigation

as well as reconstruction. Much work has focused on the use of SfM for this purpose

including the use of calibrated images for the navigation of mobile vehicles [32, 33],

the use of uncalibrated images in batches [50], and the use of uncalibrated images by

sequential update [7, 72].

As SfM has matured, its use has spread to other applications outside of 3D recon-

struction, such as the navigation implementations discussed above. However, a major

drawback to SfM is its time complexity which is commonly accepted to be O(n4) for

n images [16]. While a combination of discrete and continuous optimization has been

shown to reduce the complexity to O(n3), the use of SfM in real-time applications

such as AAR requires a much more efficient implementation [16]. Wu suggest that

the efficiency of SfM can be dramatically increased by optimizing each piece of the

algorithm [82]. Feature matching is one of the most expensive steps in SfM, requiring

O(n2) time for n images to complete a full pairwise matching. However, for large

data sets a full pairwise matching may not be necessary. Rather, a subset of feature

matches could reduce the time complexity to O(n). An approach to achieve further

speed-up is to use preemptive feature matching in an effort to robustly and efficiently

identify only good matches, shown to be as little as 2-25% in large datasets [82]. This

is accomplished by sorting the SIFT features of each image into decreasing scale or-

der, generating a subset of images that need to be matched and then checking image
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compatibility. This check consist of matching the first h, parameter for subset size,

features of two images. If the number of matches is below a defined threshold the two

images are not considered together. If the number of matches exceeds the threshold

regular matching and geometry estimation are done. This approach can reduce the

pairs of image matches by up to 95% while still recovering sufficient good matches.

In an effort to minimize the amount of costly BA operations, a geometric sequence is

used. A full BA is only performed when the size of a model increases relatively by a

certain ratio, r, causing the full BA cost to become O(n
r
) as derived by

∞∑
t

TBA

(
n

(1 + r)t

)
= O

(
∞∑
t

n

(1 + r)t

)
= O(

n

r
). (16)

As the model grows, full BAs are conducted less, however, accuracy does not suffer

because full BAs always improve more for the parts with large errors. Accumulated

errors are minimized by consistently running partial bundle adjustment (pBA) on a

set number of added images, requiring only O(1) time each [82]. The total time spent

on full and partial BAs is reduced to O(n).

A third optimization step is re-triangulation. Drift occurs in point and image po-

sition estimates due to the accumulated loss of correct correspondences. Additional

correspondences are identified by increasing the threshold for reprojection errors be-

tween image pairs that produce few feature matches. Using a similar approach to

the one modeled in Equation 16, re-triangulation is achieved for r = 25, or when the

number of images is increased by 25%. The re-triangulation is then followed by a

full BA, still maintaining O(n) time. This approach was used in the development of

the visual Structure from Motion (vSfM) application, an open source tool and the

application utilized for SfM in this thesis. Figure 9 illustrates a 3D reconstruction

completed by vSfM.

The points outside of the camera circle are features that were identified and
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Figure 9. A 3D reconstruction generated by vSfM. A SfM 3D reconstruction showing the
rigid objects in a scene and the estimate position in of the images used to generate the reconstruction.

(a) Original Image (b) SfM Camera Model (c) Reconstruction Location

Figure 10. An image, its SfM representation, and its estimated positioning. The vSfM
representation of an image includes the estimated camera origin with an image plane containing the
original image. The camera representation is placed at its estimated position relative to the scene.

matched in the background of each image showing the 3D reconstruction of the entire

lab. The red points represent features identified in the red image. Figure 9 also clearly

illustrates the ability of SfM to produce relative positioning estimates for each image.

When operating vSfM the images are represented as four sided pyramids where the

base is the image plane and the point is the estimated camera origin (Figure 10).

A major limitation of SfM is the assumption that the scene being reconstructed

is static with only the camera being in motion. Additional research has produced

several attempts at solving the dynamic Structure from Motion (dSfM) problem where

multiple structures in the scene have different motions relative to the camera [64, 74,

23



22]. While such techniques may be necessary for the AAR domain, they are beyond

the scope of this work.

The following terminology is used when discussing SfM in this thesis. The SfM

model is the underlying mathematical formula developed to estimate3 the location

of point correspondences and image positioning. Reconstructions are the visible

points generated that represent the estimated locations of correspondences in the

arbitrary SfM frame. Image position estimates are the location and orientation of

images in the arbitrary SfM frame. The term initial is used to reference the first

model,reconstruction and image position estimates produced by SfM on a set of im-

ages. The term quality is used to describe a model, reconstruction, and position

estimates that appear to accurately represent the scene and relative image locations.

2.7 Principal Component Analysis

Originally proposed by Pearson [59] and independently presented by Hotelling

[36, 37], PCA is a concept regularly applied in statistical data analysis for classifica-

tion and compression. It is based on the fact that the direction of largest variance

corresponds to the largest eigenvector of a set of data [8]. The principle components

identify the variables of greatest variance within the set of data [67]. The principal

components are determined by first computing a covariance matrix, C, which captures

the correlation between dimensions. While variance typically refers to the spread in

of data in a single dimension the covariance models described how two dimensions

vary together. The covariance between two dimensions, x and y, can be modeled as

σ2
xy = (xiyi). (17)
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This equation provides two important pieces of data. If σ2
xy = 0, then x and y are

entirely uncorrelated. If σ2
xy = σ2

xx, then x equals y. If the two sets of dimensional

data are converted into row vectors, such that ~x =

[
x1 x2 . . . xn

]
, Equation (17)

can be represented as the dot product matrix computation

σ2
xy =

~x~yT

n− 1
. (18)

This can be generalized to include additional dimensions by using matrix P to

represent a set of data with n variables such that

P =



~x

~y

~v3

...

~vn


=



x1 x2 . . . xn

y1 y2 . . . yn

v31 v32 . . . v3n

...
...

. . .
...

vn1 vn2 . . . vnn


where each row corresponds to the data of a particular variable while each column

corresponds to a particular measurement. C can now be generated for data in three

dimensions by

CP =
PP T

n− 1
=


σ2

11 σ2
12 σ2

13

σ2
12 σ2

22 σ2
23

σ2
13 σ2

23 σ2
33

 . (19)

The diagonal terms of C are the variance within a particular variable while the off-

diagonal terms are the covariance between two variables. Therefore, C describes all

relationships between pairs of variables within a set of data. C is a special matrix

that is square, real and symmetric.

It should be noted why an n − 1 term is used to compute the covariance ma-

trix. Known as Bessel’s correction, in statistical applications this increases the mean

squared error of the estimate by attempting to correct a bias in the population vari-
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ance [60]. The true population variance and covariance information is unknown, thus

the information derived from the data set is used to compute the residual values. Due

to the fact that a model, instead of the true value, is used to estimate the residual

data a degree of freedom must be removed from the residual vector to account for

any bias.

The eigenvectors of C can be derived using singular value decomposition (SVD)

producing

C = UΣV T . (20)

U is an orthogonal matrix composed of the eigenvectors of CCT . V is also an orthog-

onal matrix but is composed of the eigenvectors of CTC. Σ contains the eigenvalues

corresponding to the eigenvectors of both CCT and CTC. Due to C being square,

real and symmetric U=V producing

C = V ΣV T . (21)

In this way eigenvectors contained in V represent the principle components (i.e. axes

of greatest variance) of P . While the eigenvectors and eigenvalues of a set of data

provide much useful information, for the context of this thesis, their values are the

only area of interests.

2.8 SVD Registration Algorithm

Many algorithms have been developed to solve the 3D rigid registration prob-

lem. This work investigates the performance of three approaches, including SVD,

PCA, and Iterative Closest Points (ICP). The SVD approach attempts to minimize

the sum of Euclidean distances between known correspondences in two point clouds

using the cross-covariance matrix. ICP is an iterative SVD approach that utilizes
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the same cross-covariance matrix, though it estimates correspondences prior to each

iteration enabling it to disregard outliers and improve upon previous estimates [8].

PCA regstrations are based on the underlying geometry of the individual point clouds

providing a faster solution as it does not require the identification of correspondences.

The SVD approach is a solution to the classical least-squares problem of fitting

two 3D point sets [5]. Given two corresponding 3D point sets P and P ′ where ṗi and

ṗ′i are points represented as 3x1 column matrices then

ṗ′i = Rṗi + ~t+Ni (22)

where R is the rotation matrix, ~t is the translation vector and Ni is a noise vector.

The solution is found by minimizing

Σ2 =
N∑
i=1

||ṗ′i − (Rṗi + ~t)||2. (23)

It can be shown that if R̂ and t̂ are the solutions to Equation 22 then they can be

decoupled reducing Equation 23 to

Σ2 =
N∑
i=1

||q̇i − (Rq̇i)||2. (24)

where q̇i = ṗi − p̄ for p̄ = 1
N

N∑
i=1

ṗi [38].

The problem can then be solved in two parts. First, determine the R that mini-

mizes the sum squared error (Equation 24) and then compute the translation by

~t = p−Rp. (25)

Once Q and Q′ have been determined the 3x3 cross-covariance matrix can be calcu-
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lated by

Mx =
N∑
i=1

QQ′T . (26)

The SVD of Mx will produce

Mx = UΛV T (27)

where

R = V UT . (28)

If det(R) = +1, then R will minimize Equation 24. However, if det(R) = −1, the

solution has failed due to the point clouds being a reflection of each other. In this

case, the desired rotation can then be found by

R = V ′UT (29)

where V ′ =

[
v1, v2,−v3

]
.

2.9 Iterative Closest Points Algorithm

Like SVD, ICP also aims to minimize sum squared error (Equation 23) by analyz-

ing the cross-covariance between two sets of corresponding points [10]. However, ICP

uses a more elaborate approach that utilizes quaternions. It is assumed that point

correspondences between two point clouds are not known and must be estimated

prior to each minimization. Therefore an iterative approach is utilized to continually

improve alignment.

Each iteration of ICP begins with a nearest neighbor search between the two point

clouds, P1 and P2. The closest P2 point is then stored in a the point cloud, Pmatch,

where its index is the same as its corresponding point in P1. The centroid, or mean,
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of each point cloud is then determined by

p̄ =
1

N

N∑
i=1

ṗi (30)

Next the ICP algorithm determines the cross-covariance of the two point clouds

by

ΣP1Pmatch
=

1

N

N∑
i=1

(P1P
T
match)− p̄matchp̄1

T (31)

where ΣP1Pmatch
is the cross-covariance matrix. Next a Q matrix is made from

ΣP1Pmatch
, using auxiliary matrix A and auxiliary vector ~δ where A = ΣP1Pmatch

−

ΣT
P1Pmatch

and ~δ =


A23

A31

A12

. Given these two relations Q can be defined as

Q(ΣP1Pmatch
) =

trace(ΣP1Pmatch
) ~δT

~δ ΣP1Pmatch
+ ΣT

P1Pmatch
− trace(ΣP1Pmatch

)I

 (32)

The optimal quaternion rotation, q, is the eigenvector corresponding to the largest

eigenvalue of Q. The optimal translation can then be calculated as the difference

between the means of the sets corrected for the rotation as shown in Equation (33).

~t = p̄−R(q)p̄m (33)

The rotation and translation can then be applied to P using Equation (25). This

transformed set is then used to start a new iteration of the algorithm. The algorithm

will continue until a pre-determined parameter is achieved. Typically this parameter

is either a minimum change in distance between the two point clouds, a maximum

number of iterations or a maximum amount of time.
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2.10 Previous AAR Efforts

2.10.1 GPS.

GPS technology has led to many advances in positioning and navigation capabil-

ities. Its success has enabled it to support most critical areas of the USAF mission

and, consequently, has led to a heavy reliance on its avaiability and reliability. Given

GPS’s widespread integration, specifically in military weapon systems, it became the

primary focus in initial AAR efforts.

In 1994, GPS was used in a flight test investigating relative positioning of two air-

craft [44]. The approach placed two single frequency GPS receivers on each platform,

one on a 5 meter tail boom that was subjected to buffeting and a second mounted in a

more stable position on the fuselage. Using a robust carrier smoothing approach, the

system was able to achieve submeter accuracy Spherical Error Probable (SEP) with

a distance of 1 kilometer between aircraft. The use of GPS for autonomous station

keeping during close proximity flight was first demonstrated in 2002 by the National

Aeronautics and Space Administration (NASA)[3]. Two F-18 Hornets conducted a

concept flight using semi-autonomous techniques. However, the aircraft were never

closer than 56 feet throughout the flight.

In 2006 research was conducted as a joint effort between Air Force Research Lab-

oratory (AFRL), the Air Force Test Piot school, and Air Force Institute of Tech-

nology (AFIT) that utilized a more precise form of GPS known as carrier-phase

differential Global Positioning System (DGPS) to determine relative positioning in

real-time [71]. Using a wireless data-link, the receiver platform used the tanker posi-

tion as a local truth reference. The approach developed a new ambiguity resolution

technique based on special characteristics of the carrier-phase residuals. The sys-

tem successfully demonstrated automated close formation flight, culminating in more

than 11 hours of flight with a mean radial spherical error of 3.3 centimeters. Simul-
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taneously, additional research developed a flight controller that maintained relative

position [62]. This system successfully demonstrated GPS as a valid approach for

accurate relative positioning during close formation flight.

While GPS has proven to be a successful approach for relative positioning in close

formation flight, it is not able to meet the stringent fault-free integrity and accuracy

requirement of piloted aerial refueling. TO thie end research has been conducted

on the effect of sky-blockage caused by a large tanker flying above the receiving

aircraft during refueling missions [41], but with the emerging need for operations in

GPS denied environments, the AFRL is investigating alternative techniques for AAR

including inertial navigation, LiDAR, and optical solutions [79].

2.10.2 LiDAR.

LiDAR has historically aided navigation by determining surrounding environ-

ments [65]. It is useful in providing information in unpredictable environments such

as object tracking and plane detection [69]. However, this approach assumes a pre-

dictable environment free of objects in close proximity to the subject. While AAR

requires at least one other plane to fly in close proximity, the environment is much

more predictable because all planes involved are known before hand. This enables

the LiDAR system to search for specific objects and facilitate a more accurate po-

sition solution. In 2012, research was completed at AFIT on the use of LiDAR for

AAR position estimation [17]. During flight testing, a LiDAR system was located in

the nose cone of the receiver aircraft, providing a view fo the bottom of the tanker.

Using a high quality Inertial Navigation System (INS) to provide the attitude of each

aircraft, a modified ICP algorithm was used to fit the LiDAR measurements to a

model of the tanker aircraft. A second algorithm predicts LiDAR scans and com-

pares them to actual measurements while perturbing the estimated location of the
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Figure 11. A Custom LiDAR scan on the tanker. Previous AAR research utilized a LiDAR
system located on the receiver aircraft. The blue shperes are measurement points returned bu the
simulated LiDAR. Reprinted as an element o the public domain [17].

tanker. This solution was able to produce attitude and position estimates resulting in

root-mean-square (RMS) of 52 centimeters with Euler under 25 milliradians. However

the implementation could not perform in real-time averaging 12 seconds per position

estimate for both algorithms.

2.10.3 Computer Vision.

Multiple sensor fusion approaches for vision aided GPS are proposed in [24, 48, 49].

The machine vision portion of the solutions is divided into three distinct sections (fea-

ture extraction, detection and labeling, and pose estimation) with multiple methods

for each being discussed. Position and orientation estimates are determined by using

corner detectors to find features in a 2D image of the tanker. Next, known feature

locations are projected into the 2D image plane and aligned to the detected features

to determine the relative position. An extended kalman filter is used to combine the

machine vision estimate with the GPS data.

A popular technique in vision navigation is tracking specific known features through

frames. Such features correlate to known positions on a stored model of the aircraft.

The sensed location of these features provide an estimated relative position and orien-
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tation of the aircraft when compared to their locations on the model. This approach

was implemented using corner detection in [70]. After extracting the features, both

structural and painted corners, 3D pointing vectors were calculated to their locations

on the model. The vectors were then passed to a navigation algorithm that utilized

a Kalman filter and data-linked INS to determine the relative location and orienta-

tion. Flight testing of the system showed that each frame could produce at least 12

useful measurements with a detection error of 2.7 pixels for a 12.5 millimeter lens

and 1.95 pixels for a 25 millimeter lens. While the accuracy of the system was heav-

ily dependent on accurate navigation updates, the dominant source of error was the

estimation of features on the tanker. A similar approach applied red markers to the

tanker platform that were identified and matched to known locations by the vision

system located on the receiving aircraft [25].

A slightly different vision based tracking system for aerial refueling is the Vision-

Based Sensor and Navigation System (VisNav) [77]. Designed for a hose-and-drogue

system, multiple infra-red light emitting diodes (LED) were fixed to the drogue chute

with a known orientation. The vision system, located on the receiving aircraft, estab-

lished a data-link based connection with electronics mounted on the drogue in order

to activate each LED in a precise, predetermined sequence. The sensor on the re-

ceiving aircraft could then detect and distinguish each LED, determining its relative

distance and orientation. While this approach is seemingly robust, it relies on the

ability to establish a reliable communication link and would require retrofitting every

aircraft with a refueling capability as well as adding the LED system to every tanker.

Another technique for vision navigation, that does not utilize feature tracking, in-

stead generates rendered or pseudo-images of the tanker aircraft [80]. This approach

determines the relative positions of the aircraft by perturbing the relative attitude

and position states until a maximum correspondence with actual sensor imagery is
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(a) EO Sensor Image (b) Rendered Image (c) Model Overlay

Figure 12. Flight test imagery from previous monocular AAR effort. Previous monocular
research determined relative positioning state between a tanker and receiver by perturbing the
relative position and attitude state and generating rendered images until maximum correspondence
with actual sensor imagery is achieve. Reprinted as an element o the public domain [11].

achieved (Figure 13). This image rendering technique has been extensively studied for

multiple applications including machine vision [13], medical image registration [63],

object detection and pose estimation [46, 55]. Flight testing of this approach showed

it to be a viable approach to precision navigation for close formation flight [11]. 95%

relative navigation accuracies were achieved on the order of 35 centimeter within a

20meters (m) range. However, the periodic divergences on the order of 50 centime-

ter were observed possibly due to algorithm robustness issues where correspondence

minimization locked onto local minimums.

The vision navigation research discussed above all implement a system based on

a single vision sensor (i.e. monocular vision). In an effort to leverage the new vision

systems organic to the KC-46A platform, research was conducted using a stereo vi-

sion approach [81]. Similar to the way humans perceive depth, stereo vision systems

obtain structural information about the scene from the geometric relationship of cor-

responding features seen by both cameras. By calculating the position of the trailing

aircraft with respect to where it is expected to be, a small amount of information can

be passed to the receiver describing its positioning. An autopilot can then maneuver

the platform into the desired refueling position. After generating a point cloud from
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(a) Left Image (b) Right Image (c) Point Cloud

Figure 13. A set of stereo images and the point cloud they generate. Previous computer
vision research generated point clouds by projecting pixels along there epipolar lines in a set of stereo
images. Reprinted as an element of the public domain [81].

the stereo images the algorithm fits it to a virtual model by applying the same ICP

algorithm used in [17]. Experimental results showed that the accuracy increased sig-

nificantly as the trailing aircraft approached the tanker. Within 17m, an accuracy

of +/- 10 centimeter was reached. The algorithm, however, was not able to support

real-time operations. Generation of the point cloud alone requires more than 1.3 sec-

onds. The ICP process, after being adjusted by a constant offset, took 5.22 minutes

to reach the minimum movement threshold (running 63 iterations) on a single set of

images. Speed-up was achieved by reducing the size of the point cloud, however this

had a negative effect on the accuracy.
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III. Experimental Environment & Preliminary
Experimentation

This chapter discusses the experimental environment developed for this thesis and

the initial experimentation used to better understand the performance of SfM in the

AAR domain. First the development of a 1:7 scale AAR environment is presented.

Next, the test data collection process is discussed followed by the techniques for ac-

quiring truth data. Finally, five preliminary experiments are presented and important

findings within the context of the AAR domain are discussed.

3.1 Experimental Environment and Data Collection

The use of a 1:7 scale modeled environment facilitated the collection of realistic

test data as well as accurate truth data. This section describes the environment and

outlines the data collection techniques and system used to generate truth data.

3.1.1 1:7 Scale Experimental Environment.

For testing purposes, a 1:7 scale environment served as the world frame. Within

this environment, a 1:7 scale F-15 model was used as the receiving aircraft. A pair of

cameras with fixed focal lengths were used to model the imaging system. The camera

frames were separated in the y direction by 1:7 of the distance believed to be used on

current tanker imaging systems. The cameras were connected to the same network

via a switch using an Ethernet chord. A central computer, on the same network, was

used to control image capture and store the images.

3.1.2 Data Collection.

The data collection consisted of 15 runs, each modeling the receiver’s approach

to the rear of the tanker. While the aircraft model remained stationary, the imaging
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(a) Side View (b) Imaging System View

Figure 14. The experimental environment. A zipline connected to two pieces of scaffolding
was used to model the appraoch of a receiver to the tanker’s imaging system.

system was connected to a pair of zip-lines. The zip-lines were tied to two support

platforms and increased at ∼ 12◦ away from the aircraft model. Figure 14 shows the

experimental environment and the perspective of the imaging system. The real world

movement between the aircraft and cameras is irrelevant because the imaging system

will only capture information based on the relative motion between the tanker and the

receiver, exactly like the cameras in our modeled environment. In order to facilitate

smooth image capturing, the cameras started next to the aircraft model and were

pulled back (up and away) from it. While the actual order of the images models the

receiving aircraft backing away from the tanker, simply reversing the order models an

approach. Each run lasted approximately 20 seconds and produced about 700 useful

images, modeling an image capture rate of about 35Hz.

3.1.3 Truth Data.

The data collection was conducted in a large Vicon chamber in order to simul-

taneously record the true relative positions of each camera and the aircraft model.

Vicon systems act like an indoor GPS by recording the instantaneous position and

orientation of objects of interest at a rate of 150hz. The system utilized for this
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(a) Reflective Nodes on Receiver Model (b) Reflective Nodes on Imaging System

Figure 15. The Vicon nodes located on the receiver model and the imaging system.
Each object was outfitted with reflective nodes to enable the Vicon system to recognize them and
determine their positioning within its world frame at a rate of 150Hz.

experiment included 60 infrared cameras mounted around a hangar. Each camera

emits an infrared signal and records the directions from which they return. Each

object is covered in reflective nodes with its orientation declared prior to recording

position data. This ensures that only objects of interest are recorded and objects

can be identified based on the pattern of reflection their nodes produce regardless of

location or orientation within the Vicon frame. Figure 15 shows the reflective nodes

on the aircraft model and the imaging system.

The Vicon system was located on the same network as the imaging system. The

network also included a GPS antenna as a standard, reliable timing source for time-

stamping the images and truth data. Utilizing the same timing source and using a

lower image capture rate then truth capture rate (35Hz vs 150Hz) ensured accurate

truth data for each image. An issue to note about the network was the difference in

time-stamping between the imaging and Vicon systems. While the cameras stamped

the images when they were taken (at the cameras) the Vicon data was stamped when

it was recorded (at the truth server). This means that the position estimates may
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include error due to the same timestamps representing truth data that was collected

sightly later than the image was taken.

The Vicon system provided x,y and z locations in meters, φ, θ, and ψ orientations

in radians and qObject
Vicon for the two cameras and the aircraft model in its reference

frame. This data was used to determine the true relative positioning between the

aircraft model and each image. First, each image was matched with its corresponding

truth data based on timestamps. Then the truth data for the location of the camera

corresponding to each image and the aircraft model were filtered out. The location

of the camera in the aircraft model frame, ~tcamera
model , was determined by


xcamera

ycamera

zcamera


rec

= qmodel
Vicon


xcamera − xmodel

ycamera − ymodel

zcamera − zmodel


Vicon

qmodel−1
Vicon . (34)

The orientation of the camera in the aircraft model frame was determined by

qcamera
model = qcamera

Vicon qVicon−1
model (35)

Due to the information now being known in the aircraft model frame the derived

orientation and location of the camera can be used to determine the true ∆Cx
receivert

being estimated by the approach described in the previous section.

3.2 Preliminary Experimentation

This thesis is the first time SfM has been introduced to the AAR domain. The

AAR problem consists of a well defined mission set with many known parameters

(i.e. receiver approach and stereo systems). Additionally, the SfM implementation

utilized in this thesis is known. Five preliminary experiments were conducted to
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(a) Nonrectified Image (b) Rectified Image

Figure 16. The rectification of flight imagery.

gain an understanding of how vSfM operates within the constraints of this thesis and

minimize the number of variables considered in the methodology. The conclusions

from this section were based on inspection and not quantitative analysis.

3.2.1 Rectified vs Non-Rectified Images.

In theory, SfM can operate with unrectified images to produce a projective re-

construction. However projective reconstructions can produce point clouds that are

not visibly equivalent to the scene SfM is attempting to reconstruct. An experiment

was conducted to determine the effect of rectified and non-rectified images on the

point clouds generated by the particular SfM application used in this thesis. Recti-

fied images were generated from the non-rectified images taken by the imaging system

(Figure 16).

A sample of 116 images from a single run were used to generate a 3D reconstruc-

tion. The reconstruction was run in batch mode where the application had access to

all images and performed a full bundle adjustment to accomplish the reconstruction.

While this is different than the sequential mode applied in later experiments, it cre-

ates a best case reconstruction as a reference for what is possible. It is assumed that

batch reconstructions are necessarily more accurate than sequential reconstruction
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(a) Reconstruction of Nonrectified Images (b) Reconstruction of Rectified Images

Figure 17. Reconstructions from rectified and nonrectified imagery. A reconsttruction
based on non-rectified images and a reconstruction based on rectified images. Distortion can be seen
in the non-rectified image where the support post lean out and the rear stabilizers bend in.

because they have access to all imagery from the start. The resulting reconstructions

are shown in Figure 17.

While the non-rectified reconstruction includes more points, which is good for

model fitting, it is clear that the rectified image set produced a superior underlying

model and therefore a superior reconstruction. The effect of image distortion seen

in the non-rectified reconstruction is surprising in that SfM is typically robust to the

distortion in uncalibrated imagery, i.e. it simultaneously estimates camera calibra-

tion matrices for individual cameras. The scaffolding (slanted outward) and the rear

stabilizers (slanted inward) should be vertical. Such errors are obviously wrong and

can be expected to cause problems when trying to align the derived point clouds to

the reference model. Looking at the estimated camera positions as they approach

the model it is clear that unrectified images are not producing an accurate scene re-

construction. In contrast rectified images preserved the slight offset between cameras

representative of the known offset in the imaging system and also yielded the expected

vertical properties in the scaffolding and rear stabilizers.

While rectified images facilitate superior reconstructions, a full stereo system is
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not necessary for SfM. Any single calibrated camera should produce similar results.

A reconstruction completed with standard camera phone images is shown in Figure

9.

3.2.2 Monocular vs Multiple Camera.

Initial experiments focused on using a monocular imaging system to evaluate if

SfM could conduct a reconstruction from the motion of a single camera. However

the availability of a second camera may provide additional perspective that may

prove useful given the offset between cameras. Therefore, a second experiment was

conducted to investigate the trade-off between monocular and multiple camera im-

plementations. The term multiple camera is used to illustrate that the system does

not have to be a stereo system with complete knowledge of both cameras. Such a

multi camera system can use any number of cameras in various locations. A single

run of rectified images from a stereo camera imaging system was used to complete

the reconstructions. In one reconstruction all images from both cameras were used

while in the other all the images from a single camera were used. When images from

multiple cameras were used vSfM produced an initial reconstruction from the first

two images, while the monocular sequence required 22 images to generate its initial

reconstruction. The ability of the multiple camera system to generate a useful model

based on the first set of images, which it could then adjust with future image sets,

is attributable to the translational perspective difference provided by the stereo con-

figuration. In contrast, the lack of parallax in the monocular image set resulted in a

much poorer reconstruction, evaluated by the camera position estimates (Figure 18a).

When the images are taken in real-time there is very little relative motion between

images. Therefore the monocular approach must wait until some minimum movement

is achieved while the multiple camera approach leverages the existing physical cam-
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(a) Monocular Position Estimates (b) Stereo Position Estimates

Figure 18. Monocular and multiple camera position estimates during reconstruction.
The monocular image position estimates should be in a single line. The multiple camera position
accurately model the offset contained in the imaging system.

era offset to generate enough parallax to create an initial reconstruction, which then

resulted in what appears to be a more accurate estimation of camera pose (Figure

18b).

Figure 18 shows the estimated image locations after each approach processes 22

images. Note that the multiple camera system has access to the 22 images well before

the monocular system. While the monocular images should be in a straight line, as

they are the sequential images from the left camera, they exhibit a large degree of

positional uncertainty that fails to capture the linear motion of the camera toward

the model. Furthermore, it was also noticed that the multiple camera reconstruction

was more representative of the actual scene throughout the entire image sequences.

While the monocular image set does eventually produce a quality model, the initial

model is essentially based on a single perspective of the receiving aircraft. Thus all

remaining experiments are conducted with a multiple camera system as to leverage

the benefits provided by the physical offset of the stereo camera setup.
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3.2.3 Image Capture Rates.

The superior performance of the multiple camera system showed that the per-

spective of images is just as important, if not more important, than the visible rep-

resentation of the scene in the image. It appears that more perspectives of a scene

will generate better reconstructions than the same amount of images from the same

or a only a few perspectives. This theory is underscored by the quality reproduction

shown in Figure 9 which utilized 43 different perspectives to generate highly accu-

rate image position estimates. Given the minimal motion between sets of real-time

images, another experiment was conducted to explore if images captured at a slower

rate could provide the same or better performance. Thus a set of 213 rectified images

from a single multiple camera run was down-sampled to represent a 15 Hertz (Hz)

image capture rate (107 images) from the initial 30 Hz rate. In this way, a third

set of images, the alternating set, was generated that alternated image capturing

between cameras. While this set still met the 15 Hz rate, it utilized less than half

of the images (52) in the other down-sampled set. The alternating set was able to

generate a quality model with 9 images, equating to 9 image capture iterations. The

15Hz set was able to generate a quality model with 17 images. It takes 2 images per

iteration and therefore would still require 9 image capture iterations resulting in the

same estimation performance with more image processing. The 30Hz set was not able

to produce a quality model with the images captured in its first 10 image capture

iterations thus implying that physical perspective changes are critical to the effective-

ness of the SfM reconstruction. This observation further underscores the theory that

the number of perspectives is more important than the number of images. This is

logical because images with little offset provide less new information than overlapping

images with large offsets. Astoundingly, the alternating set produced more accurate

image position estimates faster than the other sets. From these results the remainder
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of experiments will be conducted with images captured at 15 Hz from alternating

cameras.

3.2.4 Feature Matching Operations.

Typical SfM computation assumes unordered image sets, and thus completes a full

pairwise matching between all images. In the AAR domain, this means that every

new image that is captured must go through the feature matching process with every

previous image despite the sequential nature of the problem. When image capturing

lasts for extended periods of of time, a 15Hz capture rate produces thousands of

images, wherein a full pairwise feature matching event will not support a real-time

requirement. While Wu suggests ways to minimize matching efforts by filtering out

poor quality image pairs, another approach may be to use a sliding window to only

match the current image with a set number of past images [82].

This preliminary experiment investigates the effect of conducting feature matching

on a subset of images for each new image introduced. Three matching schemes were

used: full pairwise, sliding window and, seeded-sliding window. The sliding window

approach matches each new image to the previous 20 images. The seeded-sliding

window matches each new image to a 20 image subset of past images, s, determined

by

s = {Ix, I2x, I3x, . . . , I20x} (36)

where x = n
20

and n is the number of past images.

As expected, the reduced matching schemes take much less time than the full

pairwise matching scheme. To conduct image matching on the entire set the pairwise

scheme required 22 seconds (0.24 seconds/image)— a number that will increase as the

size of the image set grows. The sliding window and seeded sliding window approaches

required 8 seconds (.09 seconds/image), which should remain constant. While all
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(a) Full Pairwise (b) Sliding Window (c) Seeded Window

Figure 19. Position estimates provided by the feature matching schemes. Each of the fea-
ture matching schemes generate similar position estimates however, the realtive positioning between
cameras and the focal lengths are different for each.

three approaches provide image position estimates that maintain the known camera

offset (Figure 19), the seeded sliding window scheme produces the best estimates in

that they maintain a constant forward movement throughout the sequence and clearly

maintain the alternating laft/right pattern of the two cameras operating at 15 Hz.

This observation leads to the idea that efficiencies are gained from matching with

older images while avoiding the need to match to all previous images.

3.2.5 Occlusion Robustness.

Knowing that SfM incorporates past information in the reconstruction fornewly

introduced images leads to interesting possibilities such as providing position estima-

tions for features occluded in the new image. This experiment tests the ability of SfM

to develop useful point clouds for an object that is not fully visible in the scene. In

the AAR domain, aircraft occlusion is expected (though not addressed in this thesis)

given the fact that the boom is between the imaging system and the receiving aircraft.

Additionally, as the receiving aircraft moves in and out of the system’s field of view,

occlusions may be significant as large portions of the receiver are beyond the camera’s

field of view (Figure 20a). Such occlusions cannot result in the inability to produce
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(a) Image with Occlusion (b) Occluded Image Point Cloud

Figure 20. Point cloud generated for image with mass occlusion. An image with nearly
half of the plane occluded generated a full point cloud using the information available from previous
images. The position of the nose points in the image frame are accurately estimated even though
they are not included in the image.

accurate estimates. Approaches that generate point clouds for each image [17], or

sets of images [81], as independent measurements risk loosing information when part

of the receiving aircraft is not included in the image. Figure 20b shows the point

cloud generated for an image in which the receiving aircraft is partially occluded by

utilizing information about the occluded features from previous images.

In this way SfM clearly demonstrates an ability to use information from multiple

images to generate accurate point clouds, from which relative positioning can be

estimated, even when much of the receiver is not visible in the image.
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IV. SfM Relative Navigation Experiment

This chapter presents an approach that determines relative position with SfM.

The chapter is organized as follows. First, the proposed algorithm is presented and

discussed in detail. Next, the experimental design is presented by detailing the objec-

tive, assumptions & limitations, and the experimental process. Next, the results are

presented and analyzed. Finally, the chapter concludes with a discussion of lessons

learned and their impact in the AAR domain.

4.1 SfM Relative Positioning Algorithm

The proposed algorithm consist of six main stages: 1) image capture, 2) image

rectification, segmentation and masking, 3) sequential SfM, 4) SfM to camera frame

transform , 5) PCA registration and 6) relative position estimation (Figure 21). Each

of the stages supports the computation of the solution to the overarching problem of

relative positioning for AAR problem defined as:

Given a set of tanker cameras, C, recording a receiving aircraft,

determine the relative positioning between the receiving aircraft

and the optimal refueling position at time t such that

∆optimal
receivert

= ∆optimal
tanker ∆tanker

Cx
∆Cx

receivert
(37)

where ∆optimal
tanker is the known rigid offset between the origin of the

tanker frame and the optimal refueling position and ∆tanker
Cx

is the

known rigid offset between the tanker frame and the frame of a

particular camera, Cx.

While the AAR problem is solved by determining ∆optimal
receivert

the true focus of the

proposed algorithm is estimating ∆Cx
receivert

, the relative position of the receiving air-
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Figure 21. The proposed algorithm flowchart. The algorithm includes 6 stages responsible
for estimating the relative position of the receiver from a sequence of images.

Figure 22. Raw image captured by the imaging system. A sample image, it,x output by the
image capture stage. It is associated with a particular camera, Cx, and a particular time, t.

craft and a camera at time t. Each of the algorithm stages and how they contribute

to determining ∆Cx
receivert

are discussed in turn.

4.1.1 Image Capture.

The first stage is responsible for capturing an image ,i, and associating it with

the specific camera, Cx, and time, t. SfM is a robust system with respect to image

capture. It can operate as a monocular, stereo, or many camera system. SfM derives

all information about a scene directly from the images, therefore any number and type

of cameras can be used in the same reconstruction. The set of cameras that contain

the receiving aircraft in their field of view, C = {C1, C2, . . . , Cn}, will be utilized to

capture images and contribute to the reconstruction. Such an approach provides the

maximum amount of perspectives, shown in Section 3.2 to be positively correlated

with point cloud quality.. Figure 22 shows a sample image as initially captured in

stage 1.
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(a) Rectified Image (b) Masked Image

Figure 23. The captured image after each step of processing. Examples of rectified and
masked images. The masked image represents a useful image that is added to the image set I.

4.1.2 Rectification, Segmentation & Masking.

The second stage processes the images captured in stage 1, i, to prepare then for

use in the reconstruction conducted in stage 3. This stage first rectifies the image

such that the pixel information can support an accurate reconstruction. Additionally,

this stage considers the problem of dSfM [64, 74, 22]. While other aircraft can be

kept out of the field of view of the imaging system there will still be relative motion

in most cases, most commonly the ground moving in the opposite direction as the

receiving aircraft. In order to account for this an image masking technique is proposed.

Common segmentation techniques are capable of identifying objects in an image.

Once the receiving aircraft has been identified a solid color mask can be used to

cover all pixels not associated with it. Any features identified in the next stage will

be part of the rigid airframe and therefore all identified points will have the same

relative motion. Once i has been adequately processed and is suitable for SfM it will

be added to the image set, I, in chronological order where It,x was captured at the

current timestep. Figure 23a shows a rectified version of the image, which is then

masked in Figure 23b to isolate the receiver.
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Figure 24. The image position estimates of an entire run. Each dot in the diagonal
line represents the estimated position of an image during the a run. While each image is added
individually the final image will have knowledge of the positioning of all previous images.

4.1.3 Sequential SfM.

The third stage provides the relative positioning between the reconstruction of the

receiver and It,x in the arbitrary SfM reference frame. Using I for inputs, SfM will

sequentially consider each It,x as discussed in Section 2.5. First, the SIFT algorithm,

discussed in Section 2.3, will be used to identify features. Then It,x will be matched

to a representative subset of past images in I as discussed in Section 3.4. If a quality

initial model has not been generated a complete BA will be conducted to generate a

new model based on the additional information provided by It,x. If a quality model has

already been established, It,x will be added to the reconstruction based on the current

model and a pBA will be completed. Once It,x has been added to the reconstruction,

its estimated position in the arbitrary SfM world frame, ∆
It,x
SfM, is known. The locations

of each point in the 3D reconstruction are also known in the SfM world frame providing

the point set PSfM. Figure 24 shows the 3D reconstruction of an entire approach.

Each colored dot in the straight line represents the position of an image as well as

the position of the a camera at the time each image was taken.
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Figure 25. Receiver position estimates after reference frame transform. The relative
positioning of the receiver for an entire run after the reference frame transform from the SfM frame
to the image frame.

4.1.4 SfM to Image Frame Transform.

The fourth stage moves the reconstructed point cloud, PSfM, into the image frame

producing the point cloud representation of the receiver aircraft, Preceiver. First, a

reference space transform is completed to move PSfM into It,x’s reference frame. This

can be accomplished by using the relation between the SfM frame and It,x’s frame

derived by sequential SfM.

ṗIt,x = ∆
It,x
SfM ∗


ṗSfM,x − Ix

ṗSfM,y − Iy

ṗSfM,z − Iz


SfM

(38)

Figure 25 shows the approach from Figure 24 after the reference frame has been

transformed from the SfM frame to the camera frame. During operations each point

cloud will be considered independently, however Figure 25 clearly illustrates the effect

of transforming the point clouds into the camera frame where the camera is stationary

and the aircraft is rising and moving forward on approach.

After the point cloud has been transformed in the image frame it must be scaled

to reflect the real world size of the receiver. SfM has no knowledge of the scene
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(a) Virtual Model Points for Scaling (b) Point Cloud Points for Scaling

Figure 26. The points used to scale the SfM point cloud. The camera maintains a clear
view of the y dimension (wings) of the receiver. Scaling the based on the wingtip to wingtip distance
transforms the point locations into real world space.

outside of the images it considers, including scale. While it can relatively determine

where points are in the camera’s frame, it can not determine the actual distance

between points in the scene. Therefore, SfM establishes an arbitrary scale to be used

for its reconstruction and camera position estimates. In order for the true relative

position of the point cloud to be accurately represented for registration, the point

cloud must be scaled to its correct real world size. Due to the straight forward

approach of the receiver in the AAR scenario, which only includes movement in

the x and z directions, the wingspan (y-axis of the receiver frame) is clearly visible

and parallel to the camera’s y-axis. The receiver’s wingspan is known and therefore

provides a reference point for size. A scaling factor can be computed by determining

the maximum and minimum y values of the point cloud and scaling it to match the

wingtip to wingtip distance of the virtual model, Pmodel, a real world sized point cloud

used for registration in the next stage. Figure 26 shows the maximum and minimum

y values in the virtual model and a SfM generated point cloud.

Once the maximum and minimum y-values of the point cloud have been deter-
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(a) Size & location in SfM frame (b) True size & location after scaling

Figure 27. The initial point cloud generated by SfM is of arbitrary size. Scaling the point
cloud transforms it into the correct size and realtie location.

mined the scaling factor, γ, can be determined by Equation 39.

γ =
Pmodel,y−max − Pmodel,y−min

PIt,x,y−max − PIt,x,y−min

(39)

The actual location of the points from the receiver can then be determined by simply

multiplying PIt,x by the scaling factor as shown in Equation 40. Once scaled, the

points are now at the exact location of their features relative to the camera at time,

t and therefore are considered to be an accurate model of the receiver, receivert.

receivert = γPIt,x (40)

Figure 27 illustrates the effect of this scaling on the point cloud shown in Figure 26.

4.1.5 PCA Registration.

While the location of each point in the point cloud is known in the camera frame

individually, the actual position of the receiver is still unknown. In order to determine

the ∆Cx
receivert

needed to solve Equation 37, a virtual point cloud, Pm, is used. Pm is
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an exact point cloud model of the receiver with a known relative orientation in the

camera frame. Therefore ∆Cx
receivert

can be defined as

∆Cx
receivert

= ∆Cx
Pm

∆Pm
receivert

(41)

where ∆Cx
Pm

is known and ∆Pm
receivert

is determined by the following 3D rigid regis-

tration.

First, receivert is centered on the origin by subtracting its centroid, r̄t, from each

point. This also co-locates receivert with Pm. Using the PCA computations dis-

cussed in Section 2.6, the principal components of the centered receivert, Vreceivert , are

determined. The R contained in ∆Pm
receivert

solves the problem

RPm
receivert

Vreceivert = VPm . (42)

Therefore RPm
receivert

is computed by

RPm
receivert

= VPmV
T

receivert (43)

Equation 43 will generate correct values for the rotation matrix, however, in three

dimensions there are 4 possible axis orientations. It is possible that the R derived in

Equation 43 models an incorrect orientation of receivert with respect to Pm. A simple

check is used to determine the correct orientation. Given the orientation provided in

R, the other three orientations can be found by manipulating the diagonal values to

produce the following four matrices.
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Figure 28. The four possible axis orientations in 3D space. In 3D space there are four
axis orientation, assuming the right hand rule. It is critical to verify the estimated rotation matrix
conforms to the correct orientation.

Figure 29. The relationship between the trace and angle of rotation corresponding to a
DCM. The trace and angle of rotation are negatively correlated. Therefore, the DCM that contains
the highest trace is associated with the minimum rotation.


R1,1 R1,2 R1,3

R2,1 R2,2 R2,3

R3,1 R3,2 R3,3



−R1,1 R1,2 R1,3

R2,1 −R2,2 R2,3

R3,1 R3,2 R3,3



−R1,1 R1,2 R1,3

R2,1 R2,2 R2,3

R3,1 R3,2 −R3,3



R1,1 R1,2 R1,3

R2,1 −R2,2 R2,3

R3,1 R3,2 −R3,3


Of these, the matrix corresponding to the smallest angle of rotation has the correct

orientation. Using the trace of a matrix, the rotation angle can be calculated by:

Θ =
180 ∗ cos−1( trace(R)−1

2
)

π
(44)

Due to R being orthonormal, all diagonal values are between -1 and 1. Therefore the
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(a) Relative Positioning (b) Alignment after 3D Rigid Registration

Figure 30. The 3D rigid registration of a generated point cloud and a the virtual model.
The virtual model is aligned to a point cloud located in its position estimated by SfM. The better
the alignment, the more accurate the relative positioning estimate.

sum of the 3 values on the diagonal must be contained in [-3,3]. Figure 29 shows that

given these constraints there is a strictly negative correlation between the trace and

the angle of rotation of the matrix. Therefore the R with the largest trace must be

the true rotation matrix that aligns receivert to Pm. Once RPm
receivert

has been verified,

the translation, ~tPm
receivert

, associated with ∆Pm
receivert

can be computed with Equation 33.

Figure 30 shows the relative positioning of receivert and Pm before and after a 3D

rigid registration.

4.1.6 Relative Positioning Estimation.

The relative positioning problem can now be solved using Equations 37 and 41 as

follows.

∆Cx
receivert

= ∆Cx
Pm

∆Pm
receivert

∆optimal
receivert

= ∆optimal
tanker ∆tanker

Cx
∆Cx

receivert

The estimated ∆optimal
receivert

is then communicated to the receiver. Standard autopilots can

use this information to correct the receiver’s current position to achieve the optimal

refueling position.
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4.2 Experimental Objective

This experiment aims to test the feasability of the SfM relative navigation aglo-

rithm in the AAR domain. Specifically, the algorithms ability to estimate ∆Cx
receivert

will be tested for accuracy in each of the six degrees of freedom.

4.3 Assumptions & Limitations

The performance of the algorithm was quantitatively tested in a modeled environ-

ment. The environment aims to accurately represent the real world, however, some

assumptions were necessary.

Boom Occlusion: During an actual refueling the rigid boom would be in the field

of view of both cameras occluding sections of the receiving aircraft. This would cause

a dynamic environment and cause problems for a basic SfM implementation. For

this thesis a boom was not included in the imagery allowing the experiments to focus

solely on the ability to estimate the relative positioning between the cameras and the

model aircraft.

Imaging System Configuration: The imaging system consists of a pair of electro-

optic cameras that are assumed to have the same, but scaled down, relative positioning

and view to those included on a tanker vision system. The position and orientation of

the imaging system with respect to the tanker is known. The left and right cameras

are separated along the y-axis by a known baseline and are aligned along the x- and

z-axes. The cameras share an overlapping field of view.

Camera Model: The cameras used in this thesis are assumed to follow the pinhole

camera model, with a fixed focal length and field of view.

Rigid Body: The F-15 model is a rigid body which does not flex during imaging.

Therefore, it is assumed that the receiver is rigid as well, with no changes to its form

(wing deflection, flaps, ailerons, landing gear, etc.)
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System and Error are Scalable: The 1:7 scale imaging system and F-15 model

represent a full-scale system. The error reported by the 1:7 scale system can be lin-

early scaled.

Image Masking vs Manual Point Removal: The experimental environment was

not a dynamic scene and therefore did not require image segmentation and masking

prior to SfM. However, the reconstructions included points for objects other than the

aircraft model which were manually removed from the point clouds. It is assumed

that the same images with masked backgrounds would produce the same point clouds.

4.4 Process

Rectified images from the data collection were down-sampled as described in Sec-

tion 3.3 and used as inputs to vSfM. The application did not allow for matching to be

conducted between a new image and past images already included in a reconstruction.

Therefore, all images were input into the application and feature identification and

matching were conducted simultaneously and stored. Each image was then added se-

quentially to develop the reconstruction as described for the proposed solution. The

reconstructions for each image were then saved. A separate program was used to con-

duct the reference space transform to generate the point clouds in the camera frame.

MeshLab was then used to remove any points assumed to not be associated with the

aircraft model. Finally, MATLAB was used to scale the generated point cloud and

conduct the 3D rigid registration. The estimated ∆Cx
receivert

for each point cloud was

saved for analysis. A total of 121 point clouds from three runs were generated and

utilized for this test.
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Figure 31. The orientation estimate errors. The central marks are the medians, the edge of
the boxes are the 25th and 75th percentiles, the whiskers extend to the most extreme data points not
considered to be outliers and the outliers are plotted individually as red + marks. The orientation
estimates had a high error rate specifically with respect to pitch.

Table 1. Orientation Errors by Run

Run Roll (radians) Pitch (radians) Yaw (radians)

Run 1 0.1828(±0.7856) 1.1295(±0.4217) 0.5431(±1.1085)

Run 2 0.3234(±0.041) 1.2885(±0.0638) 0.1234(±0.0961)

Run 3 0.0223(±0.8673) 1.1555(±0.5861) 0.6031(±1.374)

Total 0.2305(±0.6027) 1.2365(±0.3685) 0.3328(±0.6027)

4.5 Results & Analysis

4.5.1 Orientation Accuracy.

The estimates derived for the relative orientation between the receiving aircraft

and the cameras, RCx
receivert

, are presented in Figure 31. The central mark is the median,

the edges of the box are the 25th and 75th percentiles, the whiskers extend to the

most extreme data points not considered to be outliers, and the outliers are plotted
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(a) Camera Perspective (b) Side Perspective

Figure 32. A sample point cloud geneated by SfM. The shape of the receiver can be recognized
in the camera’s perspective. The side view shows the lack of rear stabilizers and some outlier points
in the front.

individually as red + marks. Table 1 presents the mean and standard deviations of

the orientation errors for each run.

The primary cause for the high errors is the inability of SfM to generate repre-

sentative point clouds of the receiving aircraft. Figure 32 shows multiple views of

a point cloud generated when considering 76 images. While the general shape of

the receiving aircraft can be recognized from the camera’s perspective, the side view

clearly shows a lack of rear stabilizers and what may be an abundance of noise in

front of the aircraft. These reconstruction errors are the result of weaknesses in SfM

when dealing with minimal perspectives.

The preliminary experimentation, Sections 3.2 and 3.3, showed that it is important

to have many different perspectives of the reconstructed scene. The relative motion

in this experiment, and in AAR, is mostly forward motion. This is essentially the

expansion of a single perspective as the receiving aircraft approaches the tanker. The

particular perspective, looking straight at the front of the receiving aircraft, minimizes

the visible portion of the rear stabilizers and makes it hard to identify correspondences

between images. Therefore, the rear stabilizers are not reconstructed and are not

represented in the generated point clouds.
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(a) Virtual Model Principal Components (b) Point Cloud Principle Components

Figure 33. The principal components of the virtual mode and a SfM generated point
cloud. The difference in principal components between the virtual model (left) and a generated
point cloud.

The poor quality of the generated point clouds directly prevented the PCA based

registration from being able to accurately register the virtual model. As discussed

in Chapter 4, PCA registrations have low operation times because the alignment

method is based on the underlying geometry of the point clouds and not a least-

squares fitting of point correspondences determined by an expensive nearest neighbor

search. It works best when the point clouds are normally distributed, geometrically

similar and contain no outliers [9]. Therefore, when the underlying geometry of the

generated point clouds is fundamentally different than that of the virtual model the

principal components will not align as expected. The principal components of the

virtual model and a SfM generated point cloud are shown in Figure 33.

While SfM was able to consistently produce point clouds with similar principal

components, the differences from the virtual model make it impossible for PCA to

accurately register the model and therefore produce accurate RCx
receivert

estimates. Fig-

ure 34 illustrates a typical registration from this experiment. The blue virtual model

was registered to the black point cloud in the experiment. The different principal
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(a) PCA Registration (b) PCA Registration Side Perspective

Figure 34. The PCA registration of the virtual model to a point cloud. The virtual
model, blue, after being registered to a SfM point cloud using a PCA registration. The different
principal components forced the registration to align the wrong axes.

components forced the PCA registration to align the wrong axes leading to the large

error in pitch estimation. This result is reflected in the high pitch errors shown in

Figure 31.

The primary cause of orientation error in this experiment is the inability of SfM

to generate representative point clouds due to limited perspectives of the receiving

aircraft. The PCA registration algorithm performed exactly as expected by deter-

mining the correct principal components of the point clouds under consideration and

aligning the virtual model to the point clouds. If SfM generated representative point

clouds of the receiving aircraft, then the PCA registration would have been able to

determine accurate estimates for RPm
receivert

.

Additionally, the AAR scenario is concerned with the effect of distance on errors.

It has been shown that error rates are negatively correlated with the distance between

the tanker and the receiving aircraft [81]. Figure 35a models the relationship between

orientation error and distance. The errors remain constant with the exception of two

sets of outiers clustered around two distances, approximately 3.5m and 2.7m. These
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distances correspond to the spot in each run where the initial point clouds were

generated by SfM (2.7418m for Run 1, 3.5263m for Run 2, 3.5040m for Run 3).

(a) Orientation Error vs Distance (b) Orientation Error vs Number of Images

Figure 35. The orientation errors presented against distance and the number of images
considered while generating the point cloud. The charts present individual data points and
the mean and standard deviations of 0.1 meter or 5 image interval sets of data. The outliers The
distance between the receiver and cameras has no effect on the accuracy of the orientation estimates.
The accuracy errors reach a near constant value after 30 images were considered in each run. The
initial point clouds were generated with the information fewer images causing erratic errors.

Figure 35b models the relationship between orientation error and the number of

images considered during the point cloud generation stage. The initial point clouds

in a run are generated from a model based on a minimal amount of images. As more

images are added to the dataset, the model is refined by partial bundle adjustments

and the reconstruction, and therefore point clouds, become more representative of

the actual scene. While the estimates based on few images are noisy, the estimates

based on more than 30 images produce steady errors. The relationship between

number of images considered and distance is obviously negatively correlated for each

run, however different runs start and end in different relative locations. Therefore, the

error rates are clearly dependent on the number of images considered and independent

of distance.
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Figure 36. The location estimate errors. The location estimate errors are very high due to
the use of the orietnation estiamtes in their computation.

4.5.2 Location Accuracy.

Table 2. Location Errors by Run

Run X (meters) Y (meters) Z (meters)

Run 1 -0.293(±1.2925) -0.2904(±0.755) 2.7605(±1.7091)

Run 2 0.0616(±0.2834) -0.1155(±0.8201) 3.9555(±0.6852)

Run 3 -0.4217(±1.4207) -0.148(±0.833) 3.557(±2.6733)

Total -0.1606(±1.0212) -0.1854(±0.8004) 3.4827(±1.712)

The estimates derived for the relative location between the receiving aircraft and

the cameras, ~tCx
receivert

, are presented in Figure 31. The central mark is the median,

the edges of the box are the 25th and 75th percentiles, the whiskers extend to the

most extreme data points no considered to be outliers, and the outliers are plotted

individually as red + marks. Table 2 presents the mean and standard deviations of

the orientation errors for each run.

Figure 37 shows the relations between location error and distance and number of
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(a) Location Error vs Distance (b) Location Error vs Number of Images

Figure 37. The location errors plotted against distance and the number of images
considered suring point cloud generation. Like the orientation errors, the location errors have
no correlation with slant distance and appear to reach a steady state when 50 or more images were
used to generate the point clouds.

images considered during point cloud generation. Like the orientation errors discussed

previously, the errors are closely related to the number of images considered and

independent of distance.

The errors are again very large throughout the experiment. Similar to the orienta-

tion errors, the location errors start noisy but eventually become very consistent after

a certain amount of images are considered. However, once the errors become constant

they are still very large. This is caused by two problems, primarily the reliance on

relative orientation to determine location and forward motion.

The PCA registration process, described in Section 4.X, first aligns the virtual

model to the generated point cloud to determine Rreceivert
Pm

and ~treceivert
Pm

. These values

are then used to determine ~tCx
receivert

by

~tCx
receivert

= RCx
Pm

(p̄m −RreceiverTt
Pm

receivert) (45)

where RCx
Pm

is the known rotation between the camera frame and the virtual model
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Figure 38. The true slant range plotted against the estimated slant range. Focusing solely
on slant range isolates the location estimates from the orientation estimates. The algorithm was
generally able to determine the direction of relative motion as the cameras approached the receiver.

frame, both located at the camera origin. Rreceivert
Pm

is the estimate determined by

aligning principal components, discussed in the previous sections. Due to the es-

timated orientation being used to derive the estimated location, high orientation

errors directly cause high errors in location estimates. This can be shown by ignor-

ing orientation and focusing solely on the slant ranges. While the estimated and

true dimensional distances between the receiver origin and the camera origin, shown

in Figure 37, are very different due to poor orientation estimation, the slant ranges

should be similar because the Euclidean distance between the receiver and camera are

independent of orientation. Figure 38 shows the relationship between the estimated

and true distances between the receiver and cameras.

The trend line shows a positive correlation between the estimated and true slant

ranges. As the cameras get closer to the receiver, the estimates generally reflect the

relative motion. To show the effect of orientation estimate accuracy of the accuracy

of location estimates, the location estimates were re-computed using the true relative
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(a) Estimated Orientation based Location Errors (b) True Orientation based Location Errors

Figure 39. The location errors computed by using the true orientations. The location
errors greatly improve when the true relative orientations are used to in the computations.

orientations. Figure 39 shows updated location errors when the true orientations are

used for calculations.

As expected, the location errors are improved when accurate orientations are

used. While the mean error in the x direction increased from -0.1606 to .5735, the

mean error in the y dimension decreased from -0.1854 to -0.076 and the z dimension

decreased from 3.4827 to -0.9486. Therefore, much of the location estimate errors

can be attributed to the unrepresentative point clouds that lead to high orientation

estimate errors. However, once this problem is accounted for large errors still exist.

This is believed to be the result of the forward motion problem, a known problem

in SfM. The error data supports this assumption based on the fact that the receiver

approaches the cameras at a constant positive x and negative z direction (rising and

moving forward). The error caused from this direction of motion would then be

expected to be in the x and z dimensional estimates. Figure 39 shows that this is

the case. The mean of the error in the y direction is approximately 3 inches while

the means in the x and z directions are much larger at 22.57 inches and 37.34 inches

respectively.
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While the forward motion problem is rarely seen in most commercial applications

of SfM, the recent push for autonomous driving has increased its visibility [78]. For-

ward motion causes scale change in the domain of the image that can cause significant

deformations even while restricting attention to regions that remain visible between

images [75]. This leads to the presence of a large number of local minima in the

least-squares error of the reprojection [54] [14]. Imposing a bound on the depth of

the reconstructed scene has been shown to be a theoretical solution to the forward

movement problem [78]. This technique enables many of the local minima to be

avoided by showing that they do not really exist. The forward motion problem was

practically addressed in a humanoid system by integrating visual and inertial mea-

surements into a single coherent ego-motion state [75]. Both sensor types are passive

and have complementary failure modes allowing the inertial sensor to account for the

forward motion problem of the visual sensors.

4.6 Discussion

The SfM based approach utilized in this experiment did not facilitate accurate

relative positioning estimates. It is believed that the SfM application was able to

generate accurate position estimates in its arbitrary world frame. However, the re-

construction was not good enough to generate representative point clouds for regis-

tration. Therefore, the positioning accuracy in the SfM frame could not be leveraged

to provide accurate positioning estimates in the receiver frame. The poor reconstruc-

tions are attributed to the lack of perspectives used to generate the reconstruction.

The straight on view of the rear stabilizers make it hard for correspondences to be

identified and therefore they don’t show up in the reconstruction or point clouds.

The loss of this important information has a major effect on the variance contained

in the generated point clouds. The lack of variance in the −z direction prevents PCA
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from identifying the correct principle components leading to the misalignment of the

point clouds and incorrect orientation estimates. Due to the use of the orientation

estimates to determine the location estimates, the unrepresentative point clouds also

directly reduce the accuracy of the relative location estimates.

Additionally, forward motion, a well known and documented problem with SfM,

causes additional error in the location estimates. The straight approach is similar to

the expansion of a single perspective and therefore does not add much new informa-

tion with each image. Figure 38 clearly shows that SfM can recognize the forward

movement between images. However the high x and z directional errors, the po-

sitional changes on approach, indicate the inability of SfM to determine the exact

amount of movement in each direction.

In this experiment all of the error can be contributed to the SfM phase. However,

it should be noted that all SfM computations were conducted using the single vSfM

application. This application was primarily designed for the purpose of generating 3D

reconstructions with very large image sets. Its focus was not on highly accurate posi-

tion estimations and no additional effort was included to account for forward motion.

In AAR, the problem of having minimal perspectives available for reconstruction can

be solved by using cameras located on other locations of the tanker, such as out on

the wings, farther forward or on the boom. The forward motion problem is also well

understood and focus on addressing it has increased due to its effects on autonomous

driving. The combined visual and inertial approach discussed above is particularly

suited to AAR given the inertial data readily available on both the tanker and receiver

platforms.

Nearly all of the error can be attributed to the problems in SfM. The other phases

of the proposed solution worked as expected. The high error rates identified in this

experiment are not a reflection of the PCA registration’s capabilities. PCA identified
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and aligned the principal components of each point cloud as expected. However, the

major weakness of PCA was underscored in this experiment. Given unrepresentative

point clouds, or point clouds with outliers, a PCA based registration can not provide

accurate position estimates. This was understood and accepted in order to achieve

a faster registration time. If representative and normally distributed point clouds

without outliers can not be generated then a slower, but more robust registration

algorithm should be used, such as ICP or SVD.
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V. 3D Rigid Registration Study

This chapter presents a trade space study focused on the performance of common

3D rigid registration algorithms in the AAR domain. First, the objectives of the study

are presented. Next, the relevant assumptions and limitations are stated. Next, each

of the registration algorithms are presented and described. Next, the experimental

process presented. Next, the results are presented and analyzed. Finally, the chapter

is concluded by a discussion on the results in the context of AAR.

5.1 Objectives

It has been shown that there is a trade-off between the accuracy and runtime of 3D

rigid registration algorithms [9]. Understanding the performance of each is critical to

developing a robust solution for AAR. Additionally, the technique used to generate

point clouds can have major effects on the solution’s ability to estimate ∆Cx
receivert

.

This study will compare the performance of the three main 3D rigid registration

algorithms, ICP, SVD and PCA. To gain a better understanding of each algorithm’s

performance throughout the AAR space multiple sets of point clouds will be utilized,

each generated by a different process. The accuracy and runtime will be recorded to

facilitate discussion of the relative performance between algorithms and data sets.

5.2 Assumptions and Limitations

RMS as an error measurement: Truth data was not available for two of the

point cloud data sets used in this study. RMS is used to quantitatively measure the

accuracy of alignments. It is assumed that the accuracy of a 6DOF position estimate

is a function of the alignment accuracy and that a smaller RMS value suggests the

ability to generate more accurate position estimates.
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Figure 40. The receiver approaches the tanker with a known orientation. The receiver
approaches the tanker in the x and −z directions while maintaining the same relative orientation,
modeled by the red arrow. Once the optimal refueling position is achieve the receiver maintains a
constant relative positioning during contact, modeled by the yellow arrows.

Receiver maintains a known, constant orientation: It is assumed that an

AAR mission consists of standard, controlled maneuvers where the receiver aircraft

maintains a constant orientation relative to the tanker. On approach, the receiver will

utilize a constant translation in the x and −z directions while maintaining its heading

(orientation). During contact there will only be nominal relative motion between the

receiver and tanker.

5.3 Algorithms

In order to minimize the variables effecting the results of this study, each of

the three algorithms were modeled in MATLAB with identical code outside of the

individual registration techniques. The PCA registration algorithm utilized in this

study is identical to implementation in the relative navigation experiment. This

section discusses the specific SVD and ICP implementations used in this study.

5.3.1 Modified SVD algorithm.

The core of the SVD algorithm used in this study is based on the original paper

discussed in Section 2.8 and was retrieved from [20]. However, a modification is
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(a) Virtual Model (blue) & Point Cloud (b) Centroid based Co-location

Figure 41. Generated point cloud in realtive position and co-located with the virtual
model. The generated point cloud models the aprraoch of the receiver at a certain time. The same
point cloud and virtual model co-located using a centroid based alginment.

necessary to account for the fact that correspondences are not known a priori. There is

enough information known about the scenario to estimate point correspondences with

reasonable accuracy. The receiver approaches the tanker with a constant translation

in the x and z directions. Throughout the mission the receiver will maintain a nearly

identical orientation to that of the tanker. Figure 40 illustrates the approach path

and relative orientation of the tanker and receiver during AAR.

Due to the constant relative orientation between the tanker and the receiver a

virtual model can be used for alignment that exists in the same relative orientation.

Simply co-locating the virtual model and generated point cloud by aligning their

centroids provides enough of an alignment to generate accurate estimated correspon-

dences. Figure 41 shows the relative position of the virtual model and a generated

point cloud of a receiver on approach and the same two point clouds after a centroid

based alignment.

It is believed that once the virtual model and generated point cloud are co-located

a simple nearest neighbor search will provide estimated correspondences capable of

supporting a SVD based registration. The registration will then determine the exact
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relative positioning to account for the orientation changes caused by both expected

and unexpected changes in the mission environment.

5.3.2 ICP algorithm.

The ICP implementation utilized in this study was originally developed for use

in [42] and was retrieved from [43]. Due to ICP being an iterative approach, multi-

ple runs were completed in an effort to establish a relationship between number of

iterations and runtime and accuracy.

5.4 Process

In an effort to span the AAR research space, four sets of generated point clouds

are utilized. The SfM point clouds from the SfM relative navigation experiment

are the first data set used for testing. The second data set is comprised of point

clouds generated by a block matching stereo reprojection technique [19]. These point

clouds are based on images collected in the same experimental environment used in

this thesis. Additionally, stereo reprojection point clouds generated from simulated

images, utilized in [81], were used. While these point clouds were generated from data

collected in a different environment, they are more representative of the receiving

aircraft and provide information on performance in an ideal environment. Finally,

a fourth set of point clouds was generated by applying random transformations to

the virtual model itself. This provides an ideal data set where the point clouds are

exactly representative of the virtual model and provides a best case scenario. The

same 5001 point virtual model is used for alignment with each data set.

Due to the lack of true positional data for two of the data sets, accuracy is mea-

sured by the RMS distance between the transformed virtual model and the generated

point cloud. RMS is a statistical measure defined as the square root of the arithmetic
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(a) RMS=4.1299 meters (b) RMS=1.265 meters (c) RMS= 0.44708 meters

Figure 42. Examples of registrations producing different levels of accuracy. The first
registration has an RMS of 4.1299 meters, the second has an RMS of 1.265 meters and the third has
an RMS of 0.44708 meters

mean of the squares of the distance between points. RMS values are calculated for

each registration by

RMS =

√√√√ n∑
1

|| ˙receiveri − Ṗm,i||2

n
(46)

where n is the number of points in the generated point cloud, ˙receiveri is a point in the

generated point cloud and Ṗm,i is the nearest point in the virtual model to ˙receiveri.

This metric is chosen because it is independent of the number of points contained

in the point clouds. Lower RMS values represent a better registration. Figure 42

illustrates registrations with the associated RMS values.

After the registration algorithms estimate ∆receivert
Pm

, the transformation is applied

to the virtual model. The MATLAB functions knnsearch() and rms() are then used

to determine the nearest neighbors and RMS values. The run times are determined

at the microsecond level using the MATLAB tic() and toc() functions.

5.5 Results & Analysis

5.5.1 SfM Point Cloud Data Set.

The same point clouds used in the proposed approach experiment were reused

in this section in an effort to leverage the conclusions drawn about the PCA based
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registration algorithm in the experiment. These point clouds do not include rear

stabilizers and contain many outliers. An example of the point clouds included in

this data set can be seen in Figure 32. A total of 120 SfM generated point clouds were

used. They contained an average of 344 points with a maximum of 607 points and a

minimum of 155 points. The runtimes and accuracy of each algorithm are presented

in Figure 43. The mean and standard deviation of the run times and accuracies are

shown in Table 1. The ICP naming convention identifies the number of iterations

used such that ICP 15 indicates the ICP algorithm was used for 15 iterations. ICP

25, 50, 75 and 100 were left off of the run time chart to ensure the differences between

the PCA, SVD and ICP 1 run times remain visible.

(a) Registration Algorithm Runtimes (b) Registration Accuracy

Figure 43. The runtime and accuracy of registration algorithms using SfM generated
point clouds. The PCA algorithm was the fastest followed by the SVD algorithm. However,
the SVD algorithm was much more accurate than both PCA and ICP. ICP could not achieve the
accuracy of SVD after 100 iterations.

The run time results are as expected with PCA and SVD being the fastest and

ICP increasing at a constant rate as the amount of iterations increase. While PCA

should be by far the fastest, it was expected that the SVD and ICP 1 algorithms

would be much closer because they are both a least squares fitting of estimated near-

est neighbors. The large difference in mean run time (8.1698ms vs 21.4354ms) is
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Table 3. Run time and accuracy of registration algorithms with SfM point clouds

Algorithm Run Time(ms) Accuracy(RMS)

PCA 0.4664(±0.1181) 3.5781(±0.4986)

SVD 8.1698(±1.0755) 1.1292(±0.3013)

ICP 1 21.4354(±3.5250) 6.2756(±2.5222)

ICP 2 46.5608(±7.3197) 4.4606(±2.0819)

ICP 5 117.3177(±19.3816) 3.0178(±1.6210)

ICP 10 238.8407(±36.0451) 2.4225(±1.5267)

ICP 15 370.7458(±51.7846) 2.2006(±1.5275)

ICP 25 614.8(±81.9967) 1.9949(±1.5403)

ICP 50 1252.4(±152.6862) 1.8133(±1.5664)

ICP 75 1780.3(±260.6574) 1.7934(±1.7146)

ICP 100 2439.0(±311.6705) 1.7188(±1.5892)

not a function of the approaches but of the specific implementations. It is believed

that the MATLAB knnsearch() used as part of the SVD algorithm is more efficient

than the nearest neighbor search implemented in the ICP algorithm. Therefore, a

more efficient ICP implementation would be much closer to the runtime of the SVD

algorithm for a single iteration. The accuracy data is also as expected. The high

PCA RMS values reflect the alignment issues identified in the previous experiment.

The SVD algorithm performs the best. This is due to the accuracy of the estimated

correspondences after the virtual model is collocated with each point cloud. ICP per-

formed the worst, ans was not able to meet the accuracy of SVD after 50 iterations.

ICP’s poor accuracy is due to the existence of local minima when the generated point

cloud is not represetnative of the rear stabilizers. For the SfM data set, SVD is the

best approach. While the PCA algorithm is much faster (0.4664ms vs 8.1698ms) its
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accuracy is much worse. However, if the generated point clouds were more repre-

sentative of the receiving aircraft and similar to the virtual model, PCA would have

performed much better without an increase in runtime. This conclusion was shown

in the proposed approach experiment.

5.5.2 Stereo Reprojection Data Set.

The point clouds contained in this data set were generated for a seperate experi-

ment utilzing images from the same experimental environment used in this thesis [19].

A block matching stereo reprojection technique was used to generate the point clouds.

A total of 99 point clouds were used in this data set. They contained an average of

510 points with a maximum of 891 points and a minimum of 213 points. The point

clouds in this data set have a wide range of qualtiy with the initial point clouds (cam-

eras farther from the receiver) being very unrepresentative and the later point clouds

being very representative. Figure 44 shows the first and 90th point clouds from the

camera’s perspective.

(a) Initial Point Cloud (b) Final Point Cloud

Figure 44. Sample point clouds from the stereo reprojection data set. The first point
cloud generated by stereo re projection is unrecognizable. The final point cloud in the data set is
more representative of the receiver though the wings are still under represented.

The initial point cloud is unrecognizable but is believed to contain points from the
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rear stabilizers at the top and some points along the center of the body at the bottom.

The 90th point cloud is more representative of the receiver and includes however, the

wings are not equally represetnative. Many of the point clouds in this data set are

lacking points from the wings. This is expected to induce similar errors as the last

data set in for the PCA algorithm. The run times and accuracy of each algorithm

are presented in Figure 45. The mean and standard deviation of the run times and

accuracies are shown in Table 2. ICP 25 and ICP 50 were not considered with this

data set because the ICP algorithm was able to produce more accurate registrations

than both PCA and SVD with 5 iterations.

(a) Registration Algorithm Runtimes (b) Registration Algorithm Accuracy

Figure 45. The runtime and accuracy of registration algorithms with stereo reprojection
generated point clouds. The PCA algorithm was the fastest followed by SVD and then ICP. The
SVD algorithm was the most accurate though ICP was able to achieve better accuracy with 5
iterations.

The mean run times all increased on this set of data due to the greater number

of points in the point clouds. While the PCA algorithm does not require a nearest

neighbor search, its runtime is still dependent on the number of points due to the use

of the covariance matrix which multiplies the matrix form of the point cloud. The

average number of points increases by 48% (344 to 510), leading to a similar increase

in run time for all three algorithms; 52% for PCA, 57% for SVD and 48% for
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Table 4. Run time and accuracy of registration algorithms with Stereo Reprojection point clouds

Algorithm Run Time(ms) Accuracy(RMS)

PCA 0.7131(±0.1411) 1.6709(±0.9917)

SVD 12.8605(±1.7716) 1.5175(±0.2369)

ICP 1 31.8619(±4.9793) 3.9385(±1.6153)

ICP 2 66.5901(±10.2256) 2.82(±1.2368)

ICP 5 168.1202(±26.9767) 1.3891(±0.7649)

ICP 10 301.8012(±62.9133) 1.229(±0.5441)

ICP 15 423.6173(±50.8338) 1.0869(±0.5479)

each ICP iteration. Additionally, the ICP algorithm maintains a linear time increase

as the number of iterations increase. The small sample sizes in the two data sets

prevent these increases from being considered benchmarks, however they provide a

useful generalization on the relationship between point cloud size and algorithm run

time.

The accuracy generally improved on this data set. The PCA algorithm was much

more accurate, reducing its RMS value approximately 46% on average. This suggest

that the majority of the stereo reprojection generated point clouds had principal

components similar to the virtual model. However, the standard deviation increased

by about 98% illustrating the poor quality of the initial point clouds relative to the

later point clouds. The SVD algorithm was slightly less accurate on this data set

than the SfM generated point clouds. However, it still performed better and was

much more consistent than the PCA algorithm on average. This indicates that the

correspondence estimation step is very robust and able to accurately handle partial

point clouds. The ICP algorithm’s natural robustness to outliers an ability to align

partial point clouds is shown in this data set. While the first iteration has a high RMS
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value, the registration converges quickly (in few iterations) and is able to achieve an

RMS value lower than both PCA and SVD in 5 iterations.

5.5.3 Stereo Reprojection PCs from simulated imagery.

The point clouds contained in this data set were originally generated for a previous

AAR research effort [81]. The images used were generated by a simulation of an aerial

refueling. While a similar block matching stereo reprojection technique to the last

data set was used, the point clouds in this data set are much more representative of

the actual receiving aircraft. Figure 46 shows a typical point cloud from this data

set.

(a) Top Perspective (b) Front Perspective

Figure 46. A sample point cloud from the simulated stereo reprojection data set.

The point clouds in this data set are the most representative of the receiver.

While there is some noise is many of the point clouds the entire receviing aircraft is

represented throughout the entire data set. A total of 304 point clouds were used

in this data set. Each point cloud contains exactly 500 points. The run times and

accuracy of each algorithm are presented in Figure 47. The mean and standard

deviation of the run times and accuracies are shown in Table 3. Again, ICP 25 and
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ICP 50 were not considered with this data set because the ICP algorithm was able

to produce more accurate registrations than both PCA and SVD with 10 iterations.

(a) Registration Algorithm Runtimes (b) Registration Algorithm Accuracy

Figure 47. The runtime and accuracy of registration algorithms with stereo rpejection
generated point cluods from simulated imagery. PCA was again the fastest algorithm followed
by SVD and then ICP. The overall accuracy fo the algorithms was far better on the simulated data
set. ICP required 5 iterations to achieve the PCA accuracy adn 10 iterations to achieve the SVD
accuracy.

Table 5. Run time and accuracy of registration algorithms with stereo reprojection point clouds
from simulated imagery

Algorithm Run Time(ms) Accuracy(RMS)

PCA 0.7102(±0.0802) 0.5758(±0.0493)

SVD 10.2941(±2.2173) 0.4553(±0.0351)

ICP 1 31.3663(±1.4525) 0.6831(±0.1382)

ICP 2 63.5284(±3.9771) 0.6434(±0.1349)

ICP 5 160.5530(±11.8782) 0.5407(±0.1056)

ICP 10 326.8919(±16.2147) 0.4575(±0.0794)

ICP 15 485.6474(±20.8700) 0.4325(±0.0648)

The run times of this data set are similar to those of the stereo reprojection data

set. This was expected given the similar point clouds size (500 points vs 510 points).
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Like the previous two data sets, the ICP algorithm’s time increases linearly with the

number of iterations. Thea accuracy of the registrations with this data set are by far

the best. All of the algorithms produce more accurate registrations with this data

set than any one could produce on average in the previous data sets. This result

underscores the importance of generating representative point clouds and suggest

that the quality of the generated point clouds has a greater effect on accuracy than

the registration approach.

5.5.4 Ideal Data Set.

The point clouds contained in this data set were generated by applying random

transformations to the virtual model. The generated point clouds represent an ideal

data set because each point cloud has an exact correspondence in the virtual model.

In the previous data sets, the point clouds consisted of features identified on the

surface of the receiver. These were then fit a virtual model that included points

located within and under of the receiver. This enabled the algorithms to achieve

low RMS values by aligning the generated point clouds with the more dense internal

locations in the virtual model. Figure 48 illustrates this concept.

Figure 48. An alignment with artifically low RMS value. The registration algorithm
aligned the generated point cloud within the virtual model. The RMS computation based on nearest
neighbors will produce a low value, suggesting an accurate alignment. A true registration would
align the pint cloud to the top of the virtual model.

The transformations used to generate the point clouds were determined by ran-

domly inducing orientations changes between -5 and 5 degrees about all three axes.

Additionally, the translations were generated by randomly choosing offsets in each
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direction though an effort was made to keep the relative positioning within the scope

of the AAR scenario. With respect to the virtual models reference frame, the ran-

dom translations were bounded in pixels by [-50 -5] in the x direction, [-5 5] in the y

direction and [-5 25] in the z direction. A total of 100 point clouds were generated for

this data set. They contained the same 5001 points contained in the virtual model.

The run times and accuracy of each algorithm are presented in Figure 49. The mean

and standard deviation of the run times and accuracies are shown in Table 4.

(a) Registration Algorithm Runtimes (b) Registration Algorithm Accuracy

Figure 49. The runtime and accuracy of registration algorithms with ideal point clouds.
The relative runtime performance remained the same across all data sets. SVD was slightly more
accurate the PCA which is surprising considering the point clouds had identical principal components
as the virtual model. ICP required 50 iterations to achieve the accuracy of the PCA and SVD
algorithm.

The increase of points contained in the point clouds from approximately 500 to

5000 initially appears to have had a much larger effect on the PCA and ICP algorithms

when compared to the SVD algorithm. However, this is believed to be related to the

efficiency of the MATLAB knnsearch() function used to estimate correspondences in

the SVD implementation. This function appears to scale much better than the nearest

neighbor search utilized in the ICP implementation. However, the PCA algorithm

is still by far the fastest. The ICP algorithm maintains the linear growth in time
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Table 6. Run time and accuracy of registration algorithms with ideal point clouds

Algorithm Run Time(ms) Accuracy(RMS)

PCA 4.7284(±0.3053) 0.3777(±0.2050)

SVD 16.720(±1.2284) 0.3774(±0.1125)

ICP 1 139.0(±2.9239) 5.0593(±2.3346)

ICP 2 280.0(±5.2809) 3.2621(±1.359)

ICP 5 711.1(±16.5669) 2.0951(±0.5383)

ICP 10 1415.8(±16.6051) 1.5957(±0.4163)

ICP 15 2116.7(±21.3136) 1.212(±0.3473)

ICP 25 3528.9(±28.2423) 0.6316(±0.3028)

ICP 50 7021.2(±44.0616) 0.2464(±0.3275)

associated with additional iterations, though the runtime of each iteration grew to

approximately 140ms.

With respect to accuracy, it surprising to see that none of the algorithms were able

to achieve near 0 RMS values given that the point clouds were identical to the virtual

model. In the previous experiment is was assumed that if representative point clouds

were generated the PCA algorithm would have been able to accurately determine the

relative positioning. However, the results from this data set suggest that there may

be additional errors resulting form the PCA algorithm. It is also interesting to note

the similar accuracies provided by both the SVD and PCA algorithms. This suggest

that the registration based on the similarities between the covariance of two point

clouds can be just as accurate as rotations based on the cross-covariance between

point clouds, without the need for an expensive nearest neighbor search. However,

the additional information available to the SVD algorithm may support the smaller

standard deviation. This data set also showed that the ICP algorithm can provide
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better accuracy than the PCA and SVD algorithms given enough time. The fact

that it took between 25 and 50 iterations to provide greater accuracy than the other

two algorithms while only taking 5 or 10 in the previous data sets is a reflection on

the abilities of SVD and PCA given representative point clouds. This illustrates an

important relationship between point cloud quality, accuracy and run time.

5.6 Discussion

This study illuminated many important relationships with respect to 3D rigid reg-

istrations within the AAR scenario. With respect to runtime, PCA is the fastest. This

is directly related to not requiring an expensive nearest neighbor search. However, its

runtime is still related to the size of the generated point clouds do to the calculation

of the covariance matrix. SVD is much slower than PCA on all data sets, however its

runtime of 8-17ms in this study shows that a slightly more efficient implementation

may be able to support the AAR time requirement. The ICP algorithm is the slowest.

Each iteration requires a nearest neighbor search where the time complexity grows

with the size of the point cloud. The relationship between runtime and iterations

is strictly linear allowing for an accurate estimate of the runtime associated with a

certain amount of iterations.

An important observation with respect to accuracy is that all algorithms were

more accurate on the data sets consisting of quality point clouds. RMS values less

than 0.5 were achieved for the ideal and simulated data sets. The data sets derived

from real world imagery were much less representative of the receiver and produced

RMS values ranging from 1.0869 to 3.57 for the each algorithm. For the data sets

considered in this study, SVD was consistently the most accurate. With the exception

of the SfM data set, SVD was only slightly better than PCA, however PCA never

produced lower mean RMS values. Additionally, SVD was always more consistent
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than PCA, producing smaller values for the standard deviation of RMS with every

data set. ICP eventually exceeded the accuracy of SVD and PCA on three of the data

sets, requiring 5, 10 and 50 iterations. On the SfM data set, ICP could not achieve

the accuracy of SVD after 100 iterations. There is a positive correlation between the

quality of the generated point clouds and the number of iterations required for ICP

to achieve the accuracy of SVD.

Based on the results of this study SVD is the best algorithm for the AAR sce-

nario. While the PCA is much faster, it can not achieve the accuracy and consistency

provided by SVD, even with an ideal data set. ICP was able to eventually achieve

the accuracy of SVD, however, the additional iterations lead to elevated runtimes

unsuitable for AAR. However, it is important to note that as the quality of the point

clouds degrades ICP required less iterations to achieve the accuracy of SVD. The

success of the SVD algorithm in this study is directly related to the initial relative

orientation of the virtual model with respect to the generated point cloud. Due to

the specific and constant angle of approach by the receiver in the AAR scenario, the

virtual model can be developed to have a similar relative orientation to the camera

frame. This generates accurate correspondence estimates after the virtual model is

colocated with the generated point cloud.
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VI. Conclusion & Future Work

This thesis presents a method for relative positioning estimation for aerial refu-

eling using SfM. In this chapter, conclusions regarding the research and analysis

are discussed. Additionally, recommendations for future research are presented to

facilitate continued progress toward AAR.

6.1 Conclusion

The SfM based relative positioning solution was not successful in accuratly esti-

mating receiver positions. However, SfM has the potential to contribute to a robust

relative navigation solution. It provides unique capabilities and the primary sources

of error in this thesis are well understood and documented with available solutions.

These solutions combined with the scenario specific performance characterizations

identified in this thesis provide a solid foundation for a successful SfM implementa-

tion.

Preliminary experimentation highlighted the importance of the number of perspec-

tives. The superior performance of a stereo system over a monocular system showed

that even a slight offset produces more useful information. Additionally, the equiva-

lent accuracy of down sampled image sets showed the lack of new useful information

provided by images taken from essentially the same perspective, foreshadowing the

forward motion problem. An additional optimization of SfM for AAR is the use of

a seeded sliding feature matching scheme. Because not much additional information

is obtained in successive images, a full pairwise feature matching is not necessary.

Matching a new image to a small amount of past images will reduce runtimes while

still utilizing previously available information. A capability unique to SfM, is the

ability to generate full point clouds for images that have large amounts of occlusion.
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Due to its ability to utilize information from past images, if the the receiver moves

out of the field of view or is occluded by another object (such as the boom) point

cloud quality will not be affected.

The proposed approach experiment highlighted the primary problems with a SfM

based solution. The lack of perspectives in the image data prevented an accurate

reconstruction and consequently poor quality point clouds. Specifically, the rear

stabilizers of the receiver were not reconstructed because the single, straight on per-

spective prevented correspondences between images. The PCA registration algorithm

was not able accurately align the generated point cloud to the virtual model, produc-

ing relative orientation estimates with high errors. The relative orientation estimates

also had high errors. This was partially caused by using the orientation estimates to

calculate the location estimates. When the true orientation data was utilized to com-

puted the location, the location errors decreased. While this correction allowed to the

algorithm to generally estimate the direction of movement between images, the esti-

mates still had an abundance of error in the x and z locations but not the y location.

This additional error was the result of the forward motion problem, characterized by

the receivers constant approach in the x and −z directions. Forward motion is a well

documented problem in SfM. The abundance of local minima prevent an accurate

estimate of camera locations within the reconstruction. The performance of the PCA

registration algorithm was unable to be characterized given the poor quality point

clouds generated by SfM. However, the runtime averaged less than 1
2
ms over the entire

experiment, well within the ideal time for supporting AAR.

The 3D rigid registration study showed that the modified SVD algorithm was the

most efficient when considering runtime and accuracy. The PCA algorithm was by

far the fastest throughout the entire study. However, PCA was never more accurate

than SVD, even on ideal set of point clouds that were exact replications of the virtual
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model. The fact that PCA could not align the principal components of identical point

clouds suggest that it was not as accurate as it was assumed to be in the proposed

approach experiment. The ICP algorithm was able to achieve better accuracy than

PCA and SVD on three of the four data sets, however it took between 5 and 50

iterations. There was also a positive correlation between the quality of the generated

point clouds and the number of iterations required by ICP to achieve the accuracy

of SVD. The runtime of both SVD and ICP is heavily dependent on the size of the

point clouds being considered. However, the ICP runtime increases linearly with the

amount of iterations.

6.2 Future Work

This section discusses future work that can leverage this thesis and further AAR

research. This thesis marks the first time SfM has been considered in AAR research,

therefore there are many different areas of research available for future analysis.

6.2.1 SfM Implementation optimized for AAR.

This thesis relied on the open source vSfM application to generate point clouds.

However, this application was developed as a visual 3D reconstruction system for

operating on very large sets of images. It was not designed for relative navigation

and is therefore not optimized for an AAR scenario. The development of an AAR

specific SfM implementation that accounts for dSfM, forward motion, and minimal

perspectives may provide far better reconstructions and therefore positioning esti-

mates. Additionally, an AAR specific implementation may account for many of the

other stages necessary in the approach proposed in this thesis. The SfM to image

frame transformation can easily be included in the reconstruction leading to a more

efficient algorithm by minimizing the amount of step necessary to generate estimates.
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Some real-time and near real-time SfM algorithms have been successfully implemented

for determining the ego-motion of an object [52, 18, 51].

6.2.2 Sensor Fusion.

Of the three major problems identified in this thesis, two have known solutions

that can be implemented with the use of additional senors. The problem of a small

number of perspectives can be solved with additional vision sensors. A single camera

located away from the center line of the tanker will produce an additional perspective

enabling a higher quality reconstruction.

The forward motion problem is well understood and has become a major research

focus with the rise of the autonomous vehicle effort. A successful solution was imple-

mented in a humanoid system using a cheap inertial sensor to determine ego-motion

[75]. Simultaneous use of inertial and imagery data forms a robust system because

both of the sensors are passive and have complimentary failure modes. The abun-

dance of inertial data available on military aircraft makes this approach a low hanging

fruit that can potentially negate much of the errors in this thesis.

6.2.3 Solving the Dynamic Structure from Motion Problem.

The primary barrier to the successful implementation of SfM based relative posi-

tioning is the dSfM problem. While the problem is well understood and documented

any proposed solutions are computationally expensive. The proposed image segmen-

tation and masking solution was not implemented in this thesis and therefore is not

known to work. Many of the useful features were along the edge of the wings which

could be problematic if segmentation is not consistent. Many other solutions have

been proposed including optical flow based methods [39, 45] and using epipolar cri-

terion to segment the features and individually reconstructing objects [73].

92



Bibliography

1. “First Air-to-Air Refueling”. World Wide Web Page. Available at
https://www.nationalmuseum.af.mil/factsheets/factsheets.

2. “Pinhole-camera.svg”. World Wide Web Page. Available at
https://commons.wikimedia.org/wiki/File:Pinhole-camera.svg.

3. An Overview of Flight Test Results for a Formation Flight Autopilot. Technical
Report Technical Report NASA/TM-2002-210729, Edwards Air Force Base, 2002.

4. Air Force Aerial Refueling Methods: Flying Boom versus Hose-and-Drogue. Tech-
nical report, Congressional Research Service, 2006.

5. Arun, K.S., Thomas Huang, and Steven Blostein. “Least-Squares Fitting of Two
3-D Point Sets”. IEEE Transactions n Pattern Analysis and Machine Intelligence,
9(5):698–700, 1987.

6. Barfield, A.F. “An Equivalent Model for UAV Automated Aerial Refueling Re-
search”. AIAA Modeling and Simulation Technologies Conference, August, 2005.

7. Beardsley, Paul, Andrew Zisserman, and David Murray. “Navigation using affine
structure from motion”. Third European Conference on Computer Vision, 801:85–
96, 1994.

8. Bellekens, Ben. “A Benchmark Survey of Rigid 3D Point Cloud Registration
Algorithms”. International Journal of Advances in Intelligent Systems, 118–127,
2015.

9. Bellekens, Spruyt V. Berkvens R., B. and M. Weyn. “A Survey of Rigid 3D
Pointcloud Registration Algorithms”. AMBIENT 2014: The Fourth International
Conference on Ambient Computing, Applications, Services and Technologies, 8–
13, 2014.

10. Besl, Paul and Neil McKay. “A method for registration of 3-D shapes”. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 14(2):239–256, 1992.

11. Calhoun, S.M. “Flight Test Evaluation of Image Rendering Navigation for Close-
Formation Flight”. Proeedings fo the 25th International Technical Meeting of The
Satellite Division of the Institute of Navigation, 826–832, 2012.

12. Casselman, Bill. Mathematical Illustrations: A manual of Geometry and
PostScript. Cambridge University Press, 2004.

13. Chang, F. “The Hausdorff Distance Template Matching Algorithm Based on
Kalman Filter for Target Tracking”. Proceedings of the IEEE International Con-
ference on Automation and Logistics, 2009.

93



14. Chiuso, Alessandro, Roger Brockett, and Stefano Soatto. “Optimal Structure
from Motion: Local Ambiguities and Global Estimates”. International Journal
of Computer Vision, 39(3):195–228, 2000.

15. Clifford, William. “Applications pf Grassmann’s Extensive Algebra”. American
Journal of Mathematics, 1(4):350–358, 1878.

16. Crandall, David, Andrew Owens, Hoah Snavely, and Dan Huttenlocher.
“Discrete-continuous optimization for large-scale structure from motion”. Com-
puter Vision and Pattern Recognition, 3001–3008, 2011.

17. Curro, Joseph. Automated Aerial Refueling Position Estimation Using A Scan-
ning LiDAR. Master’s thesis, Air Force Institute of Technology, 2012.

18. Davison, Andrew J. “Real-time simultaneous localisation and mapping with a
single camera”. Proceedings of the Ninth International Confrerence on Computer
Vision, 1403–1410, 2003.

19. Denby, Bradley. Toward automated aerial refueling: Real-time position estimation
with stereo vision. Master’s thesis, Air Force Institute of Technology, 2016.

20. Evans, Frank. “ROT3DFIT”. MATLAB Newsgroup, November 2001.

21. Fischler, Martin and Robert Bolles. “Random Sample Consensus: A Paradigm
for Model Fitting with Applications to Image Analysis and Automated Cartogro-
phy”. Communications of the Association for Computing Machinery, 24(6):381–
395, 1981.

22. Fitzgibbon, A. and A. Zisserman. “Multibody Structure and Motion: 3-D Recon-
struction of Independently Moving Objects”. European Conference on Computer
Vision, 891–906, 2000.

23. Force, United States Air. “Air Force Future Operating Concept: A View of the
Air Force in 2035”, September 2015.

24. Fravolini, Marco Mammarella Giampiero Campa Marcello Napolitano, Mario and
Mario Perhinschi. “Machine Vision Algorithms for Autonomous Aerial Refueling
for UAVs Using the USAF Refueling Boom Method”. Inovations in Defence
Support Systems, 95–138, 2010.

25. Fravolini, M.L. “Evaluation of Machine Vision Algorithms for Autonomous Aerial
Refueling for Unmanned Aerial Vehicles”. Journal of Aerospace Computing, In-
formation, and Communication, 4, 2007.

26. Gavin, Henri. “The levnberg-marquardt method for nonlinear lest squares curve-
fitting problems”. Department of Civil and Environmental Engineering, Duke
University, 1–15, 2013.

94



27. Giulietti, F. “Autonomous Formation Flight”. IEEE Control Systems Magazine,
20(6):34–44, 2000.

28. Graßmann, Hermann. “Die Lineale Ausdehnungslehre - Ein neuer Zweig der
Mathematik”. 1844.
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