
EXPOSING INTER-VIRTUAL MACHINE
NETWORKING TRAFFIC TO EXTERNAL

APPLICATIONS

THESIS

Charles E. Byrd, CW3, USA

AFIT-ENG-MS-16-M-006

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-16-M-006

EXPOSING INTER-VIRTUAL MACHINE NETWORKING TRAFFIC TO

EXTERNAL APPLICATIONS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cyber Operations

Charles E. Byrd, B.S.C.I.S.

CW3, USA

March 2016

DISTRIBUTION STATEMENT A:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-16-M-006

EXPOSING INTER-VIRTUAL MACHINE NETWORKING TRAFFIC TO

EXTERNAL APPLICATIONS

THESIS

Charles E. Byrd, B.S.C.I.S.
CW3, USA

Committee Membership:

Barry E. Mullins, Ph.D.
Chair

Timothy H. Lacey, Ph.D.
Member

Michael R. Grimaila Ph.D., CISM, CISSP
Member

AFIT-ENG-MS-16-M-006

Abstract

Virtualization is a powerful and fast growing technology that is widely accepted

throughout the computing industry. The Department of Defense has moved its focus

to virtualization and looks to take advantage of virtualized hardware, software, and

networks. Virtual environments provide many benefits but create both administra-

tive and security challenges. The challenge of monitoring virtual networks is having

visibility of inter-virtual machine (VM) traffic that is passed within a single virtual

host. This thesis attempts to gain visibility and evaluate performance of inter-VM

traffic in a virtual environment.

Separate virtual networks are produced using VMWare ESXi and Citrix XenServer

platforms. The networks are comprised of three virtual hosts containing a Domain

Controller VM, a Dynamic Host Configuration Protocol server VM, two management

VMs, and four testing VMs. Configuration of virtual hosts, VMs, and networking

components are identical on each network for a consistent comparison. Transmission

Control Protocol (TCP) and User Datagram Protocl (UDP) traffic is generated to

test each network using custom batch files, Powershell scripts, and Python code.

Results show standard virtual networks require additional resources (e.g., local

Intrusion Detection System) and more hands-on administration for real-time traffic

visibility than a virtual network using a distributed switch. Traffic visibility within a

standard network is limited to using a local packet capture program such as pktcap-uw,

tcpdump, or windump. However, distributed networks offer advanced options, such

as port mirroring and NetFlow, that deliver higher visibility but come at a higher

latency for both TCP and UDP inter-VM traffic.

iv

Acknowledgements

I would like to extend my deepest appreciation to my committee for their guidance,

direction, and education offered. Dr. Mullins, Dr. Lacey, and Dr. Grimaila are the

consummate professionals that I am pleased to know and work alongside. I would also

like to thank the rest of AFIT staff and faculty for the excellent education presented.

The education and challenges offered far exceeds any other I have attended.

The most important people I would like to thank are my wife and kids. The

understanding and encouragement they give is why I can do what I do. Last but not

least, I want thank my Lord, Jesus Christ, for his grace and mercy that allows me to

be where I am today.

v

Table of Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . ix

List of Tables . xii

List of Abbreviations . xiii

I. Introduction . 1

1.1 Background . 1
1.2 Motivation . 2
1.3 Research Goals and Hypothesis . 2
1.4 Approach . 3
1.5 Assumptions and Limitations . 4
1.6 Contributions . 4
1.7 Thesis Overview. 4

II. Background and Related Research . 5

2.1 Virtualization . 5
2.1.1 Hypervisor . 6
2.1.2 Virtual Machine . 8

2.2 Virtual Networking . 9
2.2.1 Virtual Switches . 9
2.2.2 Virtual Traffic . 10

2.3 The Kusnetzky Group Model of Virtualization . 11
2.3.1 Access Virtualization . 12
2.3.2 Application Virtualization . 13
2.3.3 Processing Virtualization . 13
2.3.4 Network Virtualization . 14
2.3.5 Storage Virtualization . 14
2.3.6 Security for Virtual Environment . 15
2.3.7 Management of Virtual Environment . 15

2.4 Virtual Privileges . 16
2.4.1 Protection Rings . 16
2.4.2 Domains . 18

2.5 Virtualization Techniques . 19
2.5.1 Full Virtualization . 19
2.5.2 Paravirtualization . 20
2.5.3 Hardware Assisted Virtualization . 21

vi

Page

2.6 Virtual Security . 22
2.7 Related Research . 24

2.7.1 Inter-VM Visibility in a Cloud Environment 25
2.7.2 Communication-Aware Inter-VM Scheduling 25

2.8 Summary . 26

III. Methodology . 28

3.1 Problem Definition . 28
3.2 Goals and Hypothesis . 29
3.3 Approach . 30
3.4 Experiment Factors . 31

3.4.1 Physical Infrastructure . 33
3.4.2 Physical Switch Configuration . 34
3.4.3 Hypervisor with Management Tools . 35
3.4.4 Virtual Machine Configuration . 36
3.4.5 VMWare ESXi Standard and Distributed Switch 37
3.4.6 Citrix XenServer Standard and Distributed

Switch . 39
3.5 Experiment Details . 41

3.5.1 Traffic Generation . 42
3.5.2 Traffic Capture . 43
3.5.3 Performance Data Collection . 46
3.5.4 Standard Configuration . 47
3.5.5 Distributed Configuration . 48

3.6 Summary . 49

IV. Results and Analysis . 50

4.1 Visibility Results and Analysis . 50
4.1.1 VMWare ESXi Standard Network . 51
4.1.2 Citrix XenServer Standard Network . 52
4.1.3 VMWare ESXi Distributed Network . 54
4.1.4 Citrix XenServer Distributed Network . 55

4.2 Performance Results and Analysis . 56
4.2.1 Performance Data . 56
4.2.2 Virtual Switch Comparison . 57
4.2.3 Vendor Comparison . 59

4.3 Summary . 60

V. Conclusions and Recommendations . 61

5.1 Research Conclusion . 61
5.1.1 Standard Switch . 61
5.1.2 Distributed Switch . 62

vii

Page

5.1.3 Performance . 62
5.2 Research Contributions . 63
5.3 Recommendation for Future Work . 63

Appendix A. Physical Switch Configuration . 64

Appendix B. Management Test Batch Code . 67

Appendix C. Management Test Powershell Code . 71

Appendix D. Virtual Machine Batch Source Code . 76

Appendix E. Virtual Machine Python Source Code . 77

Appendix F. Minitab - Data Summary Reports . 79

Bibliography . 87

viii

List of Figures

Figure Page

1 Virtual Host Architecture . 6

2 Hypervisor Types . 7

3 Standard vSwitch . 10

4 Distributed vSwitch . 10

5 OSI and TCP-IP Reference Model . 11

6 The Kusnetzky Group Model of Virtualization . 12

7 The Protective Rings . 17

8 Physical and Virtual Protective Rings . 17

9 Domain - Xen Architecture Design . 18

10 Full Virtualization . 20

11 Paravirtualization . 21

12 Hardware Assisted Virtualization . 22

13 Venom Vulnerability-VM Escape . 24

14 Frame Tag . 25

15 Packet Inspection Process . 26

16 CIVSched Architecture . 27

17 Inter-VM Traffic . 30

18 Distributed Virtual Network . 31

19 System Under Test . 32

20 ESXi Standard vSwitch . 38

21 ESXi Distributed vSwitch Configuration . 39

22 XenCenter Standard Configuration . 40

ix

Figure Page

23 DVSC Network Consolidation . 41

24 Protocol Testing Process . 43

25 OVS Interfaces . 45

26 Wireshark Filters . 46

27 Standard vSwitch Infrastucture . 47

28 Distributed vSwitch Infrastructure . 48

29 TCP and UDP Conversations . 50

30 Promiscuous Mode Setting . 52

31 ESXi Port Mirroring Configuration . 54

32 Virtual Switch TCP Traffic Means . 58

33 Virtual Switch UDP Traffic Means . 58

34 Vendor TCP Traffic Means . 59

35 Vendor UDP Traffic Means . 60

36 VLAN . 64

37 Gateway . 65

38 Switch Interfaces . 65

39 Switch Port Analyzer Monitor . 66

40 ESXi Standard TCP Summary Report . 79

41 ESXi Distributed TCP Summary Report . 80

42 ESXi Standard UDP Summary Report . 81

43 ESXi Distributed UDP Summary Report . 82

44 Xen Standard TCP Summary Report . 83

45 Xen Distributed TCP Summary Report . 84

46 Xen Standard UDP Summary Report . 85

x

Figure Page

47 Xen Distributed UDP Summary Report . 86

xi

List of Tables

Table Page

1 Experiment Factors . 32

2 Host Minimum Requirements . 33

3 Physical Host Specifications . 34

4 Management Laptop Specifications . 34

5 Physical Switch Specifications . 34

6 Hypervisor Specification . 36

7 Management Server Specification . 36

8 Virtul Machine Specification . 37

9 ESXi Standard Inter-VM Visibility Results . 52

10 Xen Standard Inter-VM Visibility Results . 53

11 ESXi Distributed Inter-VM Visibility Results . 55

12 Xen Distributed Inter-VM Visibility Results . 55

13 TCP Traffic Summary in Microseconds . 57

14 UDP Traffic Summary in Microseconds . 57

xii

List of Abbreviations

Abbreviation Page

IT Information Technology . 1

DoD Department of Defense . 1

DISA Defense Information Systems Agency . 1

LAN Local Area Network . 2

IDS Intrusion Detection System . 2

OS Operating System . 3

CPU Central Processing Unit . 5

RAM Random Access Memory . 5

NIC Network Interface Controller/Card . 5

VM Virtual Machines . 5

VMM Virtual Machine Manager . 6

OVF Open Virtualization Format . 8

OVA Open Virtualization Appliance . 8

vSwitch Virtual Switch . 9

vNIC Virtual Network Interface Cards . 9

VIF Virtual Interface . 9

PIF Physical Interface . 9

NAT Network Address Translation . 9

ICMP Internet Control Message Protocol . 11

TCP Transmission Control Protocol . 11

UDP User Datagram Protocol . 11

IP Internet Protocol . 11

xiii

Abbreviation Page

OSI Open System Interconnection . 11

SAN Storage Area Network . 14

NAS Network Attached Storage . 14

Dom0 Domain 0 . 18

DomU Domain User . 18

HAV Hardware Assisted Virtualization . 19

VT-x Intel Virtualization Technology . 21

AMD-V Advanced Micro Devices Virtualization . 21

FDC Floppy Disk Controller . 23

CIVSched Communication-Aware Inter-VM Scheduling 25

vSS vSphere Standard vSwitch . 30

OVS Open vSwitch . 30

vDS vSphere Distributed Switch . 31

DVSC Distributed Virtual Switch Controller . 31

SPAN Switch Port Analyzer . 31

RSPAN Remote SPAN . 31

SUT System Under Test . 32

CUT Component Under Test . 32

VLAN Virtual Local Area Network . 34

SSH Secure Shell . 35

CLI Command Line Interface . 35

GUI Graphical User Interface . 35

vMA vSphere Management Assistant . 35

XAPI Xen Application Programming Interface . 35

xiv

Abbreviation Page

IASE Information Assurance Support Environment 36

SHB DoD Secure Host Baseline Repository . 36

xv

EXPOSING INTER-VIRTUAL MACHINE NETWORKING TRAFFIC TO

EXTERNAL APPLICATIONS

I. Introduction

1.1 Background

Virtualization history dates back to the 1960’s but the technology as we know

it today started in the late 1990’s. The initial virtualization began with the IBM

mainframe in the 1960’s, and server virtualization was introduced by VMWare in

1999 [1]. Virtualization is an important factor in the Information Technology (IT)

industry and most recently a high priority for the Department of Defense (DoD). The

newly assigned director of the Defense Information Systems Agency (DISA), LTG

Alan Lynn, has made virtualization a priority. The director of DISA’s development

and business center, Alfred Rivera, stated “Virtualization will be a major focus for

the agency moving forward” [2]. The way ahead will require extensive research and

development primarily focusing on the topic of security.

Virtualization covers the complete spectrum of IT resources, including software,

hardware, and networking. The basic idea of virtualization is to consolidate physical

resources into a virtual environment. This consolidation is a key benefit of virtualiza-

tion but carries a higher level of risk management than traditional IT security. Risk

evaluation associated with virtualization must account for infrastructure complexity

and the ease of moving resources. The additional risk will require changes to security

policies and procedures needed for administering the vast DoD IT infrastructure.

1

The increased use of virtualizaion by the DoD brings more reliance on the different

vendors that offer it. VMWare and Citrix are two of the top providers supporting

enterprise-level virtualizaion. The variety of deployments they support vary from a

small Local Area Network (LAN) to large cloud-based infrastructures. The two plat-

forms have similar functionality but different methods of implementation. Therefore,

security policy deployment is platform dependent and must incorporate the network

and system administrator expertise. Both VMWare and Citrix have virtual network-

ing functionality built-in which minimizes network traffic on the physical network but

increases processing requirements from the host CPU. The focus of this research is to

determine the security implications of virtual networking by monitoring the visibility

and performance of traffic that passes through the virtual infrastructure.

1.2 Motivation

With the change from physical to virtual network came a paradigm shift in net-

work administration and a new set of challenges. Network administrators no longer

have a complete view of traffic passing through the network and must rely on server

administrators. Maintaining visibility by sending traffic to proper administrative roles

can increase the security of a network. An Intrusion Detection System (IDS), either

host or network based, also relies on network traffic for detecting security risks and

intrusions. An IDS may miss an indicator of risk or vulnerability if it does not have

complete visibility of network traffic. Providing visibility of inter-VM traffic offers an

increased awareness of network administration and security.

1.3 Research Goals and Hypothesis

The main goal of this research is to determine visibility of inter-VM traffic and

evaluate methods for capturing such data. Results define the visibility of traffic

2

and the approach taken on each virtual network. Researching the different options

available in capturing network traffic can assist with the implementation of an effective

security framework.

Other than security, size and performance are main criterias when determining

the type of virtual network to deploy. The size selection is based on the two types of

virtual networks available, standard for smaller and distributed for larger or enterprise

level. Efficiency of a network relies heavily on the performance. Performance testing

for different virtual networks is the secondary goal of this study. The goal is to capture

and evaluate the performance of internal and external network traffic. The results

can be an important distinction when determining the requirements of a specific type

of virtual network. Additionally, the performance data can provide insight for the

selection of a virtual platform.

It is believed that visibility into inter-VM traffic and performance is based upon

the virtual platform. Each platform is expected to offer different methods for gaining

traffic visibility and configurations for enhancing performance. It is hypothesized that

distributed networks for each platform offer higher visibility and lower performance

than a standard network.

1.4 Approach

The research approach encompasses a framework using DoD specifications. The

network infrastructure built reflects a scaled-down DoD network that may provide

results for visibility and performance of an actual network. The baseline for the

virtual environment is constructed using VMWare and Citrix virtual platforms. All

VMs instantiated use a DISA-approved Operating System (OS). Custom batch files,

Powershell scripts, and Python code provide the means for network traffic generation.

3

1.5 Assumptions and Limitations

This implementation assumes that all connected devices are authorized to be on

the network or added by an administrator. Tasks must be performed by a network

or domain level administrator. The evaluation is limited to a confined network with

no access to other networks.

Virtual networking traffic is broken down into several categories - production,

management, storage, and vMotion. The two traffic categories of concern for this

research are limited to production and management. Storage and vMotion traffic

deal primarily with host communications and should be included in future works.

1.6 Contributions

This thesis contributes to the future of virtualization within the DoD community.

Specific contributions include the ability to gain visibility of network traffic and obtain

performance standards for virtual networks. As the DoD maintains both large and

small networks, the process of gaining visibility and calculating performance provides

network engineers and administrators the tools necessary to build virtual networks

for different scenarios.

1.7 Thesis Overview

This thesis is organized into five chapters. Chapter 2 offers a detailed perspec-

tive of virtualization and the components that make up the technology. Chapter 3

provides the methodology used which includes physical infrastructure, virtual config-

uration, and tools to generate network traffic. Chapter 4 gives a summary of results

and analysis for each evaluation. Chapter 5 concludes this study and suggest recom-

mendations for future work.

4

II. Background and Related Research

This chapter describes virtualization and the different aspects of the technology.

Section 2.1 defines virtualization and the components that make up the virtual archi-

tecture. Section 2.2 introduces virtual networking and mechanisms used for commu-

nications. Section 2.3 outlines different models used for implementation of a virtual

environment. Section 2.4 covers the two privilege mechanisms used to regulate hard-

ware access to physical and virtual resources. Section 2.5 describes the techniques

that virtualization is built upon. Section 2.6 deals with security and vulnerabilities

of virtualization. Section 2.7 concludes the chapter by providing details on related

research conducted on Inter-VM traffic.

2.1 Virtualization

Virtualization has a long history that dates back to the 1960’s when IBM made

the first attempt to virtualize a mainframe OS [1]. Today it has become a powerful

and fast growing technology that has been widely accepted throughout the computing

industry. Computing concepts of virtualization use a software abstraction layer on

a single computer to separate logical devices or applications from the physical hard-

ware such as the Central Processing Unit (CPU), Random Access Memory (RAM),

Network Interface Controller/Card (NIC) and storage devices. The technology allows

for consolidation of multiple physical server resources onto a single computer called

a virtual host. The advantage of consolidation provides savings in hardware cost,

energy consumption, human effort, and management of resources.

A virtualization architecture provides the ability to reach a maximum utilization of

server resources. Figure 1 displays a general architecture overview of a virtual host.

Key components of the virtual host include Virtual Machines (VM), hypervisors,

5

and physical hardware. An understanding of each component is essential in how

virtualization operates. The physical hardware is the basic resources available on the

virtual host and is determinate on the virtual environment deployed. Sections 2.1.1

and 2.1.2 discusses the other components in further detail.

Figure 1. Virtual Host Architecture [3]

2.1.1 Hypervisor.

The hypervisor, also known as Virtual Machine Manager (VMM), is software

that operates between physical hardware and virtual machines on the virtual host.

The main responsibility of the hypervisor is to manage the interaction between VMs

and allocation of CPU, network I/O, memory processing, and storage resources of

physical hardware. The hypervisor must also balance the workload and secure the

physical resources without interrupting or disturbing other VMs. The two variations

of hypervisors are Type 1 and Type 2 as shown in Figure 2.

6

Type 1 hypervisors run directly on the server hardware without an OS beneath

it. Because there is no intervening layer between the hypervisor and the physical

hardware, this is also referred to as a bare-metal implementation. Without an inter-

mediary, the Type 1 hypervisor can directly communicate with the hardware resources

in the stack below it, making it more efficient than the Type 2 hypervisor [4]. Pro-

duction systems primarily use Type 1 hypervisors for operations. VMWare ESXi,

Microsoft Hyper-V, and Citrix XenServer are the most common Type 1 hypervisors.

A Type 2 hypervisor is a software application that operates using the existing OS

and coordinates with the host OS for access to hardware resources. Type 2 hypervisors

are typically used within a personal computing environment such as VMWare Fusion,

VMWare Workstation, Oracle VirtualBox, and Microsoft VirtualPC.

Figure 2. Hypervisor Types [5]

7

2.1.2 Virtual Machine.

Virtual machines, also known as guest machines, are the fundamental components

of virtualization. They act as their own entity and operate similar to a physical

machine. Resources from the physical host are shared between VMs and allocated

by the hypervisor through the VM interface. Figure 2 also displays the relationship

between VMs and where they reside within the hypervisor architecture. VMs consist

of both configuration and virtual disk files which describes the resources available for

utilization. A VM may be a virtual appliance or a fully functional OS running on top

of a virtual layer.

The way to manage and maintain the provisioning of VMs is through clones,

templates, and snapshots. Cloning of a VM creates an exact copy of the running

system and only requires minimum configuration changes such as hostname and IP

address. Similar to clones, templates use a framework of commonly used VMs to

provision additional VMs. The difference between templates and clones is that a

template cannot be operational and must be converted before use. Snapshots give

the ability to take a picture of the VM state and revert back to a specific date and

time. Snapshots are similar to incremental backups as they only save the information

that has changed since instantiation or a previous snapshot.

Portability and the distribution of VMs use a standard called Open Virtualization

Format (OVF). The goal of an OVF is to package a software application with an OS

on which it is certified into a format that is easily transferred from a vendor. The

final product from testing and development and into production is a pre-configured,

pre-packaged unit with no external dependencies [6]. An OVF file provides the ability

to export a VM for distribution or import to instantiate a new VM. The OVF stan-

dard also supports the Open Virtualization Appliance (OVA) file for exporting and

importing virtual appliances. Virtual appliances are pre-configured virtual machines

8

that are self-contained, self-consistent, software applications that provide a particular

service or services [6].

2.2 Virtual Networking

Virtual networking is a collection of virtual machines that are logically connected

to each other through a Virtual Switch (vSwitch). VMs obtain network access through

one or more Virtual Network Interface Cards (vNIC) using a Virtual Interface (VIF)

connected to a Physical Interface (PIF) on the host. Virtual networks can be config-

ured where VMs use a bridge to connect directly to a physical network, use Network

Address Translation (NAT) to share host IP addresses, or use host-only to allow for

internal traffic only.

2.2.1 Virtual Switches.

The host hypervisor is responsible for managing the virtual network and connec-

tion to the physical network. The connection between the host and physical network

is accomplished using a vSwitch. A vSwitch is a software-emulated virtual Ethernet

switch typically implemented within the virtualization infrastructure [7]. Connectiv-

ity between VMs on the same or different host is also managed by a vSwitch.

A physical host can have multiple vSwitches where typically one NIC is assigned

to each vSwitch. A vSwitch performs similar to a physical switch by forwarding

packets to designated ports using the layer 2 address of the destination. There are

two categories of vSwitches as illustrated in Figure 3 for standard and Figure 4 for

distributed. A standard vSwitch is a standalone virtual switch on a host that connects

internal VMs to each other or to the physical network. A distributed vSwitch acts

as a virtual switch connecting multiple host for a more robust administration of the

virtual network.

9

VM VM VM

Standard vSwitch

Physical Network

Host1

Physical Network Adapters

Virtual

Physical

Figure 3. Standard vSwitch [8]

VM VM VM VM VM

Distributed vSwitch

Physical Network

Physical Network Adapters

Host1 Host2

Virtual

Physical

Figure 4. Distributed vSwitch [8]

2.2.2 Virtual Traffic.

Production and Management are categories of virtual traffic that pertain to this re-

search. Production traffic is used to communicate between computing resources such

as VMs, Exchange services, security devices, and other domain services. Internal and

external traffic between VMs is an example of production traffic. Management traffic

provides the ability to administer virtual hosts, VMs, and virtual networking. Man-

10

agement traffic is passed between virtual hosts using management software packages

such as VMWare vCenter or Citrix XenCenter.

A consistent network traffic stream must be communicated between virtual hosts

and VMs to ensure accurate results for the experiments. The network traffic gener-

ated employs the network-layer protocol Internet Control Message Protocol (ICMP)

and the transport-layer protocols, Transmission Control Protocol (TCP) and User

Datagram Protocol (UDP) in conjunction with the Internet Protocol (IP) proto-

col. Figure 5 outlines the layers within the Open System Interconnection (OSI) and

TCP/IP reference models plus a list of example protocols associated with each layer.

Figure 5. OSI and TCP-IP Reference Model

2.3 The Kusnetzky Group Model of Virtualization

There are many forms of base virtualization that provide “Big Data,” clusters,

high-performance computing, extreme transaction processing, desktop virtualization,

and the most common server virtualization. The Kusnetzky Group Model of Virtu-

alization, illustrated in Figure 6, details the seven layers of virtualization and is a

reference model that provides an easier way to understand the complex environment

of virtualization [9]. The following sections discuss this model in detail.

11

Figure 6. The Kusnetzky Group Model of Virtualization

[9]

2.3.1 Access Virtualization.

Access virtualization is designed to make available applications and workloads

in a virtual environment. A remote device is used to display the user interface of

a remote application and accept input from the user. The remote application is

not dependent on the device making the call. An example would be using a thin

client that requires applications and services from another computer, such as servers

or mainframes. The ability to access applications and services on multiple devices

running different OSs is becoming more prevalent as technology changes. Microsoft

Terminal Services, Citrix XenApp, and Linux X-Windows are just a few applications

that provide access virtualization. The benefits of access virtualization are greater

agility, device independence, improved availability, greater security, cost reduction,

and access to Software as a Service (SaaS) applications in a cloud environment [9].

12

2.3.2 Application Virtualization.

Application virtualization entails the encapsulation of both client-side, known as

streaming, and server-side, known as remote applications. Encapsulation creates a

protected environment that isolates applications from the OS and other host appli-

cations. Isolation minimizes application compatibility issues and allows applications

to operate on different versions of the same OS. Client-side applications download re-

quired components to the local system and request additional components as needed.

Server-side applications operate from the server and run multiple instances allowing

more clients to access the applications simultaneously. The server-application pro-

vides an interaction with the clients through available interfaces or agents. The main

difference between access and application virtualization is that application virtual-

ization still relies on a portion of the application to be capable of running on the

device. Microsoft App-V, VMWare ThinApp, and Citrix XenApp are all applications

that provide application virtualization. The benefits of application virtualization

are greater application isolation, OS independence, improved availability, improved

performance or scalability, and cost reduction [9].

2.3.3 Processing Virtualization.

Processing virtualization has five forms: parallel processing monitors, workload

management monitors, high availability/fail over/disaster recovery monitors, virtual

machine software, and OS virtualization and partitioning. Using the five forms, pro-

cessing virtualization takes on two different types, make a single system appear to be

many or many systems appear to be one.

Processing virtualization does one of three things:

1. Encapsulates host OS so that many virtual systems can run on a single system

2. Links multiple systems together so that workloads will fail over if a system fails

13

3. Links systems together so an application or data can be spread across all of

them for performance or scalability

Server virtualization is an example of processing virtualization where multiple

servers with different functions can be isolated within a single physical host. Mi-

crosoft Hyper-V, VMWare ESXi, and Citrix XenServer are all products that provide

processing virtualization. The benefits of processing virtualization are greater appli-

cation isolation, OS independence, improved availability, improved performance or

scalability, cost reduction, optimization [9].

2.3.4 Network Virtualization.

Network virtualization creates an artificial view of the network that hides the

physical network from clients and servers. It provides functionality of network routing,

NAT, and network isolation. Cisco, HP, IBM, and Juniper systems all provide network

virtualization within a number of network or general purpose servers. The benefit of

network virtualization is improved network reliability, performance, and security [9].

2.3.5 Storage Virtualization.

Storage virtualization provides tools to present an artificial view of a storage en-

vironment. Storage servers must directly support the variety of storage virtualization

being implemented. An example is a remote device or service providing data looks as

if it is directly attached to the local system. Storage devices include CD/DVD drives,

traditional drives, or solid state technology. Storage virtualization is typical con-

figured using Storage Area Network (SAN) if attached locally or Network Attached

Storage (NAS) if accessed over the network. EMC, Hitachi, HP, IBM, and NetApp

provide industry-standard servers supporting storage virtualization. The benefits of

14

storage virtualization are high availability/fail over/disaster recovery, improved stor-

age performance, and making storage resource server available to everyone [9].

2.3.6 Security for Virtual Environment.

Security for Virtual Environment touches all layers of the Kusnetzky Group Model

of Virtualization. It refers to the tools necessary to control access and use of all other

layers of virtualization technology. There are two approaches used for securing a

virtual environment. The first is to add a small piece of software, known as an agent,

to a virtual device. This requires the device to perform security processes locally

but is a daunting task for managing in a large environment. The second approach is

to capture streams of network communication between virtual resources and direct it

through a security appliance server. This approach removes any processing on devices

and allows for detecting worms, viruses, malware, and other vulnerabilities circulating

in the environment. CA, Cisco, HP, IBM, and Juniper Systems provide security

products for virtual environments which protect both computing and networking.

The goal of security in a virtual environment is simple, protect all information and

computing resources so that only authorized use is made of them [9].

2.3.7 Management of Virtual Environment.

Management of Virtual Environment is the second layer that touches all layers

of the Kusnetzky Group Model of Virtualization. It refers to the tools necessary to

install virtual environments and to watch, analyze, control, automate, and optimize

what they are doing. The management of virtual environment has become a critical

layer for virtualization. Management involves many aspects of both virtualized client-

side and server-side resources. Both resources include the creation of VM images while

setting proper parameters, and installation/update of the OS. Managing client-side

15

resources also include configuring user data, application installation, and adjusting

application configurations. Managing virtualized server resources include workload

management, automation of virtual environment workload, policy management, and

orchestration of server workloads. CA, HP, IBM, VMWare, and Xen all have products

for managing network environments. Management of virtual environment focuses

on automating functions to reduce the need for manual intervention and creates an

optimal environment that complies with the organizational service-level goals and

policy [9].

2.4 Virtual Privileges

Operating systems are developed to run directly on bare-metal hardware and have

the privileges of owning the computer system [3]. In a virtual environment, the guest

OS must maintain these privileges while adding the virtual layer. Virtualization

regulates this access to physical hardware with one of two privilege mechanisms. The

x86 architecture utilizes Protection Rings, while Linux and other variances of Unix

use Domain privileges.

2.4.1 Protection Rings.

Protection rings are used to isolate the OS from untrusted user applications. In

an x86 architecture, there are four different levels (rings) that range from 0 to 3.

These levels determine which processor commands are executed. Ring 0 is where the

OS kernel operates and has the highest level privilege. Ring 0 also has unrestricted

access to physical resources. Rings 1 and 2 are allocated for device drivers. All other

code, such as applications, typically operate in ring 3 with less privileges and cannot

directly access any physical resources [10]. Figure 7 displays the different privilege

levels with corresponding x86 architecture components.

16

Figure 7. The Protective Rings [11]

The separation of physical and virtual rings provide virtual machines the environ-

ment similar to physical machines. Figure 8 shows the difference between a physical

and virtual machine in regards to protective rings. An OS on a physical machine op-

erates directly on top of the hardware in ring 0. A VM OS typically operates above

ring 0 where the hypervisor or VMM resides. The VMM manages the interaction

between VM and hardware resources.

Physical

Figure 8. Physical and Virtual Protective Rings [3]

17

2.4.2 Domains.

Domains are VMs running a Linux OS and instantiated on a virtual host within

which a guest OS executes. Domain 0 (Dom0) is a privilege domain started by the

Xen hypervisor at boot time. Dom0 is also referred to as the driver domain, the

privileged domain, or the control domain [12]. Dom0 is responsible for running all

device drivers for the hardware. Domain User (DomU), also known as guest domain,

is an unprivileged domain that has no special access to hardware and is assigned to

guest machines on the virtual host. The kernel for each DomU comes from the Dom0

filesystem [13]. The DomU frontend for device drivers connects to the backends of the

Dom0 drivers. Application and user requests are sent directly to physical resources

(e.g., CPU and RAM) for processing only. The interactions between Dom0, DomU,

hypervisor, and physical hardware is shown in Figure 9.

Figure 9. Domain - Xen Architecture Design [14]

18

2.5 Virtualization Techniques

Hardware management in a virtual environment can be a difficult task. Adminis-

trators must understand the difference between physical and virtual hardware when

managing the environment. There are several methods developed on the configuration

of OS and hypervisor to emulate physical hardware. Hypervisors handle privileged

level instructions differently depending on which method is used. The three most

commonly used virtualization techniques are Full Virtualization, Paravirtualization,

and Hardware Assisted Virtualization (HAV).

2.5.1 Full Virtualization.

Full virtualization isolates the VM OS from the physical hardware using a virtu-

alization layer. Binary translation is used to intercept VM OS code, translate the

code, and then execute code using the host machine hardware. The binary image of

the OS is manipulated at runtime while user-level code is directly executed on the

processor for high performance virtualization [15]. The VM OS does not require any

modifications due to OS being unaware of being virtualized. Full virtualization allows

the virtual host to virtualize any x86 OS and offers the best solution for security and

portability [3]. Figure 10 displays the full virtualization protective ring layers and

how they communicate. The binary image of the VM OS in ring 1 communicates with

physical hardware through a hypervisor in ring 0. It is the hypervisors responsibility

to perform translation of binary code, and allocate hardware resources. Ring 3 has

direct access to physical hardware for processing of user applications and requests

but cannot perform any modifications.

19

Figure 10. Full Virtualization [3]

2.5.2 Paravirtualization.

Paravirtualization in the English term means “alongside virtualization”. It refers

to the communication directly between hypervisor and VM OS kernel for improved

performance. In paravirtualization, the OS knows it is virtualized and only a portion

of the system resources are abstracted. Modification to the OS kernel is used to replace

non-virtualizable instructions with hypercalls which communicate directly with the

hypervisor [3]. The hypervisor provides hypercall interfaces for other critical kernel

operations like interrupt handling, memory management and time keeping [16]. The

concept of paravirtualization has a lower virtualization performance overhead than full

virtualization but portability is an issue [3]. Figure 11 displays the paravirtualized

ring layers. The hypervisor and paravirtualized VM OS work in conjunction with

each other within ring 0. Ring 3 operates the same as full virtualization giving user

applications and requests direct access to physical hardware for processing only.

20

Figure 11. Paravirtualization [3]

2.5.3 Hardware Assisted Virtualization.

Hardware Assisted Virtualization minimizes the host system involvement of man-

aging privilege instructions. Privileged as well as sensitive calls are set to automati-

cally trap to the hypervisor and handled by hardware, removing the need for either

binary translation or paravirtualization. First generation of HAV technology includes

Intel Virtualization Technology (VT-x) and Advanced Micro Devices Virtualization

(AMD-V) which did not become available until 2006 [3]. Both hardware technolo-

gies target privileged instructions with a new CPU execution mode which allows the

VMM to run in a new root mode below ring 0 as shown in Figure 12. The new root

mode makes ring 0 available for use by only unmodified VM OSs. Ring 3 operates

same as previous virtualization techniques.

21

Figure 12. Hardware Assisted Virtualization [3]

2.6 Virtual Security

Virtual security in a networking environment brings additional attack vectors

that need to be guarded against. Isolation is the biggest key to virtual network

security. Production traffic should be separated from management traffic by allocating

a separate physical connection and virtual switch.

Security threats to a virtualized environment fall into a number of categories,

centered mostly on the hypervisor. The categories are Hyperjacking, VM escape, VM

hopping, and inter-VM traffic [17].

Hyperjacking is the process of injecting a roque hypervisor and taking control

of the virtual host. A popular example of hyperjacking was demonstrated in 2006.

Joanna Rutkowska used hardware virtualization to developed the undetectable rootkit

called “Blue Pill” which executed within a VM to create the Blue Pill hypervisor [18].

Blue Pill was used to implement a network backdoor, keylogger, and other malware.

22

VM escape is defined as an exploit in which the attacker runs code on a VM that

allows an OS running within the VM to break out and interact directly with the

hypervisor [19]. This violates the isolation concept discussed earlier which opens the

host OS, VMs, and network to further attacks. A well-known VM escape vulnerability

is called “Venom” [20]. Venom uses the Floppy Disk Controller (FDC), which is added

to new VMs by default. Even if the virtual floppy drive is disabled, the vulnerable

FDC code remains active and exploitable by attackers on Xen or Quick Emulator

hypervisors. The vulnerability may allow attackers to escape from the confines of

an affected VM guest and obtain code-execution access to the host which potentially

give adversaries significant elevated access to the host local network and adjacent

systems [20]. Figure 13 shows the steps how Venom maneuvers within a host and

throughout a network. The first step is to attack the virtual floppy drive code on a

VM. If successful, the attacker escapes the confines and moves laterally within the

host or network [20]. In 2012, the US-CERT published a warning about another VM

escape vulnerability. The vulnerability is a malware called “ring3 attacker” which

attacked ring0 (kernel) and caused privilege escalation [21].

VM hopping, also referred to as hyper or guest jumping, is the process of moving

from one VM to another using vulnerabilities within the infrastructure or hypervisor

[17]. Due to the ability to hop and control other VMs, this attack violates the heart

of “confidentiality, integrity and availability” security [22].

Inter-VM traffic is the focus of this research and further discussed in Section 3.3.

The security issue with inter-VM traffic is the inability to gain full visibility of packets

being passed within the same host. Unlike virtual networks, traditional networks have

the ability to monitor and send all network traffic to a security device for intrusion

detection.

23

Figure 13. Venom Vulnerability - VM Escape [20]

2.7 Related Research

The increased use of cloud computing and server consolidation has made inter-

VM traffic security more relevant. Research on inter-VM traffic includes using packet

inspection, comparing virtual platforms, and performance testing.

24

2.7.1 Inter-VM Visibility in a Cloud Environment.

Benzidane et al. used a packet inspection approach to perform research on inter-

VM traffic [17]. The focus was to manage inter-VM traffic, analyze it, and prevent

non-compliant packets from being passed. The key component and centerpiece of

inter-VM traffic security for packet inspection is the master and slave agents. Cre-

dentials and slave agent synchronization is maintained by the master agent. Slave

agents place a frame tag within the IP packet which contains data origin authen-

tication, integrity, and sending VM information. Figure 14 shows the construction

of a frame tag within an IP packet. The receiving VM agent performs the packet

inspection process to determine if the packet is compliant to the rule set allocated

by the master agent. The complete process is outline in Figure 15. The proposed

research has not been implemented in a wide-scale environment and future works are

scheduled to use a dynamic approach for generating packet inspection rules [17].

Figure 14. Frame Tag [17]

2.7.2 Communication-Aware Inter-VM Scheduling.

Guan et al. investigated the manner in which the Xen hypervisor or VMM sched-

uler handles the latency of inter-VM traffic [23]. The baseline VMM scheduler man-

ages the physical resources and is agnostic to the communication performance be-

tween VMs. Communication-Aware Inter-VM Scheduling (CIVSched) was developed

to work in conjunction with the VMM scheduler to decrease the latency of communica-

25

Figure 15. Packet Inspection Process [17]

tion between the hypervisor and VM. The five modules highlighted in Figure 16 make

up the components of CIVSched. The CivMonitor is a core component that extracts

data from network traffic and coordinates with the CivScheduler and PidScheduler for

processing. The AutoCover module discovers co-located VMs and maintains a map-

ping table for faster lookup. The run queue within the hypervisor is then reordered

by the CivScheduler for inter-VM traffic. The results of this technique lowered the

response time between two inter-VMs but is limited to a virtual host with a single

CPU. Future work is scheduled for multi-CPU systems [23].

2.8 Summary

This chapter introduces the main concepts of virtualization, covering the hypervi-

sor, VMs, virtual networks, and virtual traffic. The Kusnetzky Group Model of Vir-

tualization offers a reference to better understand the complexity of virtualization.

Virtual privilege mechanisms use protective rings and domains to offer protection

between the VM OS and hardware access. The different techniques of full virtual-

ization, paravirtualization, and HAV handle the difficult tasks of virtual hardware

management. Hyperjacking, VM escape, and VM hopping are security threats that

26

Figure 16. CIVSched Architecture [23]

violate the concept of isolation. Related research for inter-VM traffic includes using

agents for visibility in a cloud environment and methods to improve latency between

the VMs and hypervisor.

27

III. Methodology

This chapter presents the methodology used for evaluating the visibility and per-

formance of inter-VM traffic within a virtualized environment. Section 3.1 defines the

specific problem to be address during this research. Section 3.2 describes the goals

and hypothesis for the research. Section 3.3 renders an overview of inter-VM traffic

and basic understanding of the communication path. Section 3.4 details the factors

related to the experiment, and Section 3.5 outlines the process used to conduct the

experiment.

3.1 Problem Definition

This research evaluates and compares server virtualization solutions that leverage

manageability and security for the DoD networks. Server virtualization has changed

the way network traffic is passed and monitored. In a traditional network, traffic is

forwarded through physical switches and managed by network administrators. In a

virtualized environment, network traffic is passed through a virtual switch installed on

a virtual host server managed by server administrators. The movement of networked

components from physical to virtual environments is an added challenge for network

administration and security. Virtual traffic passed within the virtual host is processed

by the hypervisor but does not offer visibility to an IDS or network management

system. The network administrator no longer maintains complete control of network

traffic and must rely on system administrators to expose inter-VM traffic to the

physical network. Technology provides several avenues to capture inter-VM traffic

but implementation of a secure solution requires additional research. This research

focuses on maintaining security for both physical and virtual networks while also

managing virtual network traffic.

28

3.2 Goals and Hypothesis

The objective of this research is to evaluate the different methods that provide

visibility of inter-VM traffic. The goal is to expose inter-VM network traffic to exter-

nal applications for security and administration. Visibility and the ability to manage

traffic is a large determining factor for the security level within the virtual network.

There are many vendors that furnish virtualization frameworks; this research eval-

uates the performance of VMWare ESXi 5.5 and Citrix XenServer 6.5 in passing

transport-layer traffic through multiple virtual switch configurations. VMWare ESXi

is a proprietary product that uses the vSphere hypervisor, and Citrix XenServer is

an open source product that uses the Xen Project hypervisor.

The first research goal is to construct a network environment that uses DISA

specifications to assess optimum visibility into inter-VM traffic on each hypervisor

and virtual switch. The second goal is to evaluate performance of inter-VM and

external traffic within each virtual network configuration. The overall goal is to

assist in the DoD decision-making process by determining which virtual framework

provides higher visibility of inter-VM traffic and offer performance levels for each

virtual network.

The hypothesis for this research is that visibility into inter-VM traffic is dependent

upon the type of hypervisor and virtual switch used. The expectation is that each

hypervisor has multiple methods available and may give different results of visibility

for inter-VM traffic. Since distributed switches involve larger networks, it is hypoth-

esized that there are more options available than standard switches when capturing

inter-VM traffic.

29

3.3 Approach

This section outlines a high-level approach for using different hypervisors, vir-

tual switches, and protocols to obtain the visibility of inter-VM traffic. This section

describes the basic configuration used to fulfill the research goals.

Administration of a virtual network requires a thorough understanding of inter-

VM traffic and how packets are passed internally. Figure 17 displays the basic inter-

VM traffic pattern within a single host. VM(X) initiates traffic by sending packets

to the hypervisor. The hypervisor then evaluates the packet header for destination

information and determines if the traffic should be sent internally or to the physical

network. If the destination is internal, traffic is passed to the destination VM(Y) using

a VMWare vSphere Standard vSwitch (vSS) or XenServer Standard Open vSwitch

(OVS) which bypasses the physical network. At this point, all traffic is only visible

to the source VM(X) and destination VM(Y), virtual switch, and hypervisor. The

lack of inter-VM traffic visibility causes both administration and security issues.

Figure 17. Inter-VM Traffic

As shown in Figure 18, transferring network connections from a standard vSwitch

to a distributed vSwitch gives administrators the ability to oversee both physical

30

and virtual network traffic. Both VMWare vSphere Distributed Switch (vDS) and

XenServer Distributed Virtual Switch Controller (DVSC) give network administra-

tors more control and visibility of network traffic by passing virtual traffic to network

management tools. Traffic passed by VM(X) is sent to the distributed switch for pro-

cessing before being sent to VM(Y). The distributed switch manages the connection

and provides additional features for traffic collection such as Switch Port Analyzer

(SPAN), Remote SPAN (RSPAN), Port Mirroring, sFlow, and NetFlow.

Figure 18. Distributed Virtual Network

3.4 Experiment Factors

There are four experiments conducted using a variety of components and configu-

rations. The key configuration factors are standardized-configured hardware, hyper-

31

visor with management tools, virtual switch type, and protocol used to send traffic.

As shown in Figure 19, the System Under Test (SUT) represents the hardware com-

ponents of the virtual host and the Component Under Test (CUT) which are the

components of interest for the experiment (e.g., hypervisor and virtual switch). As

traffic enters the SUT, processes are performed within the CUT which provide traffic

visibility and performance outcomes for analysis. The experiment factors are listed

in Table 1.

Hypervisor
Virtual Switch

Visibility

Performance

RAM NICCPU

Virtualization
Tools

Workload
(ICMP/UDP/TCP)

Switch
Configuration

Figure 19. System Under Test

Table 1. Experiment Factors

Factor Level

Hypervisor ESXi, Xen Project
vSwitch Type Standard, Distributed
Protocol ICMP, TCP, UDP
Evaluation Technique Initial, Packet Capture, Promiscuous, Port Mirroring

32

The basic metric for comparing visibility of inter-VM traffic is if the traffic is visible

to external sources. Performance comparison is based on a collection of duration

times of TCP and UDP connections between VMs, measured in microseconds (µs).

Comparing the ability to view inter-VM traffic and performance of virtual networking

components is based on using two products, VMWare ESXi and Citrix XenServer.

The CUT for each experiment is listed below.

1. ESXi Standard Network (vSS)

2. Xen Project Standard Network (OVS)

3. ESXi Distributed Network (vDS)

4. Xen Project Distributed Network (DVSC)

3.4.1 Physical Infrastructure.

The experiment consist of three physical hosts connected to a single switch. Two

physical hosts support the production and management traffic, while the third is used

for visibility of network traffic. To obtain accurate results, the physical hosts must

meet the specifications required to support the virtualization framework. VMWare

ESXi and Citrix XenServer maintain different minimum requirements for their virtual

platforms. Table 2 compares the host minimum requirements for each vendor.

Table 2. Host Minimum Requirements

Product VMWare ESXi 5.5 XenServer 6.5

CPU Dual Core 64-bit x86 Single Core 64-bit x86
NIC 1GigE 100Mbit/s
Memory 4GB 2GB
Disk 10GB 16GB

33

Physical resources available for the experiment include three servers, a laptop,

and a manageable switch. The specifications for each physical component is listed in

Tables 3-5.

Table 3. Physical Host Specifications

Type Specification

Model Dell Poweredge R415
CPU AMD Opteron(tm) 2600MHz - Dual Core
NIC Broadcom NeXtreme II BCM5716 - 1GigE
RAM 64GB - DDR3 1600 MT/s
Disk 450GB

Table 4. Management Laptop Specifications

Type Specification

Model Dell Precision 4500
CPU Intel i7 M640 2.8GHz
NIC Intel 82577LM - 1GigE
RAM 8GB
Disk 465GB

Table 5. Physical Switch Specifications

Type Specification

Model Cisco Nexus 3048TP
Switching Layer 2 and 3
Ethernet 48 fixed 10/100/1000-Mbps ports
Management Two 10/100/1000-Mbps ports
Console One RS-232 serial port

3.4.2 Physical Switch Configuration.

Several tasks are required to configure the physical switch for operations. The

switch configuration tasks include setting up a Virtual Local Area Network (VLAN),

VLAN Gateway, trunk or access ports, and SPAN monitoring. PuTTy telnet client

[24] provided access with direct connection to the console port using an RS232 cable,

34

or Secure Shell (SSH) once the gateway is configured. Appendix A provides step-by-

step commands for implementing each task. Below is a list of simple commands for

verifying the physical switch configuration.

� show vlan name <VLAN Name> (VLAN status and ports)

� show interface vlan <VLAN #> (VLAN gateway status)

� show interface brief (Physical switch interfaces, mode: trunk or access)

� show monitor session <Session #> (Only if SPAN is required)

3.4.3 Hypervisor with Management Tools.

The hypervisor and management tools work closely together and are core compo-

nents for any virtualized platform. Each platform has its own version of hypervisor

and management tools to support the physical resources of the virtual environment.

The management tools render a detailed view of the network while assisting in testing

the hypervisor.

As discussed in Section 3.2, VMWare includes the vSphere hypervisor and Citrix

uses the Xen Project hypervisor. Both are Type 1 bare-metal hypervisors that provide

the virtualization environment for their respective physical host. A major difference

between the two hypervisors is the virtualization techniques discussed in Section 2.5.

vSphere applies full virtualization while XenCenter employs paravirtualization. Table

6 compares some of the key characteristics of each hypervisor.

The ability to manage the hypervisor within a virtualized environment is done

either through a Command Line Interface (CLI) or Graphical User Interface (GUI).

The options to manage VMWare using CLI include PowerCLI for Powershell, vSphere

Management Assistant (vMA) for perl, or the built-in ESXi command shell. Citrix de-

veloped the Xen Application Programming Interface (XAPI) toolstack that provides

35

Table 6. Hypervisor Specification [25]

Product vSphere Xen Project

Max Host 512 500(Win)/650(Linux)
Max CPU per Host 320 (logical) 160 (logical)
Max RAM per Host 6TB 1TB
Max RAM per VM 1TB 192GB
OVF Support Yes Yes
Guest OS Support Comprehensive Good

“xe” for CLI management. The GUI management tools used for this experiment are

VMWare vCenter Server and Citrix XenCenter Server. vCenter and XenCenter both

offer a centralized location to view and manage their perspective virtual environ-

ments. vCenter is installed using an OVA and is a separate deployed VM. XenCenter

is an executable that is installed on the management laptop. Both provide similar

functionality as it pertains to management.

Table 7. Management Server Specification [25]

Product vCenter XenCenter

Virtual and Physical Limited No
Cross Vendor Mgmt Limited No (native)
Browser Based Mgmt Yes No
Security ESXi Firewall Basic (Netscaler)
P2V Stand-alone only No

3.4.4 Virtual Machine Configuration.

The VM baseline emulates systems placed on a DoD network. Guidelines for

creating and implementing the OS images are found on the DISA Information Assur-

ance Support Environment (IASE) website [26]. The IASE maintains the DoD Secure

Host Baseline Repository (SHB) as a framework to simplify deploying systems that

are compliant with Information Assurance requirements [26]. Table 8 outlines the

basic configuration for VMs created using the SHB images.

36

Table 8. Virtul Machine Specification

Name Windows OS (Enterprise) CPU’s RAM Disk Size

W2K8SP1-DC Server 2008 R2 - SP1 2 16GB 40GB
W2K8SP1-DHCP Server 2008 R2 - SP1 2 16GB 40GB
WIN7SP1-11 WIN7 - SP1 1 8GB 60GB
WIN7SP1-12 WIN7 - SP1 1 8GB 60GB
WIN7SP1-13 WIN7 - SP1 1 8GB 60GB
WIN7SP1-14 WIN7 - SP1 1 8GB 60GB
WIN7SP1-MGT WIN7 - SP1 1 16GB 60GB
WIN7SP1-SPAN WIN7 - SP1 1 4GB 60GB

Once created and configured, an OVF is generated from each image to ensure

all systems are identical for both virtual infrastructures. Each hypervisor required

additional tools for proper integration with the VM. To integrate the VM, it must

have VMWare tools or XenServer tools installed depending on the hypervisor. These

tools provide the required virtualization device drivers and a management agent.

3.4.5 VMWare ESXi Standard and Distributed Switch.

The VMWare ESXi virtual network is built upon a vSS and has been around since

the early implementation of ESX. The vSS is still popular today due to the simplicity

it offers. The vSS is responsible for routing traffic internally between VMs on a single

host and for communications to external networks. Small computing environments

typically utilize vSS as their networking infrastructure. VMWare recommends sep-

arating virtual networks by creating a different vSS and connecting each to its own

physical NIC. As shown in Figure 20, the initial vSS consist of a VMkernel network

(vSwitch0) and virtual NIC (vmk0) for host management. VM Network (vSwitch1) is

added for VM traffic. vSwitch0 uses vmnic0 physical adapter, and vSwitch1 connects

to vmnic1 physical adapter for connectivity to the physical network.

A VMWare ESXi vDS is a vSwitch that is co-located with a vCenter Server on a

virtual host. The vDS is used predominately within an enterprise-level network and

37

Figure 20. ESXi Standard vSwitch

provides the additional capability of NIC teaming, Link Layer Discovery Protocol

(LLDP), VLAN-based SPAN (VSPAN), Link Aggregation Control Protocol (LACP),

Private VLAN, NetFlow, and Port Mirroring. Administration of the vDS can be

performed through the VMWare vSphere client but the web client must be used

to access full functionality available. A vDS manages network traffic between any

physical switch, vSS, or VM that is connected to the distributed switch. As shown

in Figure 21, two distributed switches called MGT DSwitch and VM DSwitch are

created to separate the management traffic from the production traffic. Physical

adapter management is accomplished through the DSwitch-DVUplink port groups.

DVUplink port groups consolidate physical adapters and offer additional capabilities

(e.g., NIC teaming or fail over). The separate Monitor port group is created on the

production network for port mirroring functionality.

38

MGT_DSwitch

VM_DSwitch

Figure 21. ESXi Distributed vSwitch Configuration

3.4.6 Citrix XenServer Standard and Distributed Switch.

The Citrix XenServer virtual network has two network stack options for standard

virtual switching (OVS and Linux bridge) with OVS being the default. Determining

the current vSwitch is accomplished by typing “cat /etc/xensource/network.conf”

using the CLI. OVS is a Linux-based platform that gives production-level switching

to the virtual environment and supports advanced features discussed in Section 3.3.

39

Also, the Linux bridge cannot be managed by XenServer. The standard-level OVS is

instantiated on a host and is configured as a stand-alone vSwitch.

The initial OVS created during installation consists of a Network0 (Management)

and Network1 (Production). Each separate virtual network created is connected to its

own physical NIC. Network0 uses NIC0 physical adapter, and Network1 connects to

NIC1 physical adapter. VLANs are enabled by configuring separate networks on each

physical adapter allowing communications with a physical switch trunk port. Fig-

ure 22 displays the XenCenter standard network configuration for both the manage-

ment and production networks. The virtual host management network configuration

is found within the IP Address Configuration block. Production traffic is configured

using the VLAN network (19-VLAN20-1) added to Network1.

Figure 22. XenCenter Standard Configuration

The distributed-level OVS extends the security and management functionality,

such as traffic filtering and Netflow. OVS is designed to manage multiple physical

servers similar to VMWare vDS [27]. The OVS for a distributed environment is

similar to standard in the ability to manage through the console. The DVSC is used

to manage the XenServer distributed network which brings visibility, security, and

40

control to the XenServer virtual network. The controller provides a centralized server

to manage the behavior of multiple individual vSwitches such that they appear as a

single vSwitch[28]. Figure 23 shows how DVSC consolidates physical interfaces on

separate virtual hosts to create a single virtual network. Consolidation allows VM

access to the single network from multiple virtual host.

Figure 23. DVSC Network Consolidation

3.5 Experiment Details

This section details the implementation of the experiments. The research virtual

environment is developed to resemble a scaled-down model of a DoD domain. Multiple

host configurations are designed to create an environment that equally evaluates

the factors discussed in Section 3.4. Section 3.5.1 provides an overview of traffic

generation and Section 3.5.2 discusses the packet capture methods used. Section

41

3.5.3 outlines the performance data collection process. Sections 3.5.4 and 3.5.5 discuss

standard and distributed configurations respectively.

3.5.1 Traffic Generation.

Generating traffic for the experiments is accomplished at different levels using

custom source code executed on the management and test VMs. The objective is

to minimize the processing done on the test VMs. Batch files, Powershell scripts,

and Python code are placed on each system to create and capture ICMP, TCP, and

UDP traffic for evaluation. Traffic is also captured using either a SPAN port on the

physical switch or through port mirroring within the hypervisor management tools.

Initiation of all testing begins with the management VM (WIN7SP1-MGT). As

annotated in Appendix B, batch files located on WIN7SP1-MGT trigger the start of

testing. The batch files contain variables that are passed to the Powershell scripts.

The variable data consist of the vendor, protocol used, internal or external, the last

octets of test VMs, and number of iterations to perform. The Powershell source code

shown in Appendix C performs the majority of tasks during testing by interacting

with the domain controller and sending required data to the VMs for processing.

The purpose of the VM batch file code listed in Appendix D is to perform the

function sent by the management VM. The types of functions include starting and

stopping the WinDump [29] program, running the ICMP test, or sending request to

the Python code. The Python source code provided in Appendix E, carries out the

instructions to start or stop the protocol servers and initiate protocol testing. The

complete process outlined in Figure 24 generates a packet capture file to be viewed

using the Wireshark Network Protocol Analyzer [30] for data collection and analysis.

42

WIN7SP1-MGT
Test VM (Source) Test VM (Destination)

Traffic

(1) Start Windump

(2) Start Protocol Server

(3) Start Protocol Test

(5) Stop Protocol Server

(6) Stop Windump

(7) Write Windump File

Data:
 Vendor
 Protocol
 Test
 Packets
 Source
 Destination

(4) Protocol Testing

Figure 24. Protocol Testing Process

3.5.2 Traffic Capture.

VMWare developed an enhanced packet capture and analysis tool called pktcap-

uw. ESXi 5.5 virtual hosts installs the tool by default and replaces the tcpdump-uw

tool used in previous versions. The tcpdump-uw tool only captures packets at the

vmkernel interface level while pktcap-uw captures at all levels within the hypervisor

[31]. The pktcap-uw commands must be run using the built-in ESXi CLI. An example

of pktcap-uw commands used within the experiment are listed below. To access the

built-in ESXi command shell, SSH must be enabled on the virtual host.

1. Display Virtual Switch Info:

� net-stats -l

43

2. Check for pktcap-uw Processes:

� lsof — grep pktcap-uw — awk ’print $1’ — sort -u

3. Stop pktcap-uw Processes:

� kill $(lsof — grep pktcap-uw — awk ’print $1’ — sort -u)

4. Start pktcap-uw Capture:

� pktcap-uw –switchport 50331669 -o /tmp/WIN7SP1-14.pcap &

– -switchport (PortNum from command #1)

– -o (Output file location and name)

XenServer uses the TCPDUMP program [32] that allows for packet capture and

provides the ability to view inter-VM traffic on a single host. Physical interfaces,

virtual bridges, and VIF components, as shown in Figure 25, can be captured using

tcpdump [33]. The information needed to perform a tcpdump capture include the VM

name, dom-id, and device number. This data is obtained from a host using the server

console or CLI. Below are steps used to perform a tcpdump capture on VM named

WIN7SP-11.

1. Get dom-id:

� xe vm-list name-label=WIN7SP1-11 params=dom-id

2. Get device:

� xe vif-list vm-name-label=WIN7SP1-11

3. Run tcpdump:

� tcpdump -i vif22.0 -s 0 -w /WIN7SP1-11.pcap

44

– -i (Interface)

– -s (Include packet header and entire contents of the data payload)

– -w (Write location for pcap file)

Figure 25. OVS Interfaces

The XenServer OVS also supports packet capture using port mirroring. SPAN

must be setup to send all traffic on the physical switch to the network interface of a

packet capture host and in turn make the traffic available to the virtual switch. The

VM interfaces reside within a XAPI bridge. The XAPI bridge configures and controls

VMs on a Xen-enabled host [34]. Packet forwarding is accomplished by setting up

port mirroring as shown in the list below [35]. The commands provide a list of bridges

and ports available, port mirroring setup, and how to stop port mirroring.

1. List OVS Bridges:

� ovs-vsctl list-br

2. List OVS Ports:

� ovs-vsctl list-ports xapi1

3. Start Port Mirroring:

45

� ovs-vsctl – set Bridge xapi1 mirrors=@m \(Identify bridge used)

� – –id=@v9 get ports vif22.0 \(Identify port used)

� – –id=@m create Mirror name=MyMirror select-all=true output-port=@v9

(Send all traffic to port in previous line)

4. Stop Port Mirroring:

� ovs-vsctl clear bridge xapi1 mirrors

3.5.3 Performance Data Collection.

Section 3.5.1 provides the basic guideline for generating traffic for evaluating vir-

tual switch performance. The basic task used WinDump [29] on each VM to collect

a packet capture. The packet capture included either TCP or UDP communications

between internal and external hosts. Using Wireshark to review captured files, data

is gathered from the statistical conversations tool and custom filters. Figure 26 shows

the custom filters used to parse captured traffic. Four different VMs are used to send

each traffic type to ensure uniformity between host. For example, internal traffic is

captured from both WIN7SP1-11 to WIN7SP1-12 and WIN7SP1-13 to WIN7SP1-14

on the same host in which they are contained.

Figure 26. Wireshark Filters

46

3.5.4 Standard Configuration.

The standard configuraton experiment consists of two objectives. The first is to

build a baseline network as outlined in Section 3.4 and generate network traffic for

evaluation. The second is to determine the extent of visibility for inter-VM traffic

to external sources of both ESXi and XenServer hosts. Inter-VM traffic is contained

within the vSwitch when the destination is on the same host as the source. Scripting

network traffic using a stream of ICMP messages and TCP or UDP segments ensures

that the source and destination reflects traffic as internal or external. Configuring

SPAN on the physical switch enables port mirroring to view all data being passed

to the physical network. Port mirroring copies each packet and forwards it to a net-

work monitoring port that has a management system connected. Figure 27 shows

the topology for the standard vSwitch configuration on two production hosts and a

management host for packet capture. Each production host is responsible for manag-

ing their respective production and management vSwitches. The management host

captures port mirroring traffic and determines if inter-VM traffic is visible to external

devices. The management host is not considered part of the domain infrastructure.

Virtual Host 1

Hypervisor

VM VM VM

WIN7SP1
12

WIN7SP1
11

W2K8SP1
DC

Virtual Host 2

Hypervisor

Virtual Host 3

VM VM

WIN7SP1
14

WIN7SP1
13

VM

W2K8SP1
DHCP

Hypervisor Hypervisor

WIN7SP1
SPAN

Physical Switch

Port Mirror Traffic

Production Traffic

vSwitch2 vSwitch2 vSwitch2vSwitch1 vSwitch1 vSwitch1

Management Traffic Management Traffic

VM

Figure 27. Standard vSwitch Infrastucture

47

3.5.5 Distributed Configuration.

The goal for the distributed configuration experiment is to determine the amount

of visibility of inter-VM traffic in a distributed environment. Section 3.4.6 gives

details on the differences of standard and distributed vSwitches. The distributed

configuration moves vSwitch management from each individual host to a centralized

host for managing vSwitches on multiple hosts. Figure 28 shows the topology of

three virtual host in a distributed configuration. The distributed vSwitch manages

the production traffic for all hosts and is co-located with ESXi vCenter or XenServer

DVSC management server for configuration. All virtual host are considered part of

the domain infrastructure.

Virtual Host 1

Hypervisor

VM VM VM

WIN7SP1
12

WIN7SP1
11

W2K8SP1
DC

Virtual Host 2

Hypervisor

Virtual Host 3

Distributed vSwitch

VM VM

WIN7SP1
14

WIN7SP1
13

VM

W2K8SP1
DHCP

Mgmt
Server

Hypervisor Hypervisor

WIN7SP1
SPAN

Physical Switch

Production Traffic

Production TrafficProduction Traffic

vSwitch2 vSwitch2 vSwitch2vSwitch1 vSwitch1 vSwitch1

Management Traffic Management Traffic

VM VM

Figure 28. Distributed vSwitch Infrastructure

Distributed vSwitches also open many different avenues for capturing the inter-

VM traffic, such as virtual port mirroring. As in the standard configuration, port

mirroring is also used in a distributed environment but configured through the virtual

management tool instead of the physical network. An example of port mirroring in a

distributed virtual network is using VMWare ESXi vDS and vSphere web client. The

port mirroring options available through the vSphere web client are listed below.

48

1. Distributed Port Mirroring - Mirror packets from a number of distributed

ports to other distributed ports on the same host. If the source and the desti-

nation are on different hosts, this session type does not function.

2. Remote Mirroring Source - Mirror packets from a number of distributed

ports to specific uplink ports on the corresponding host.

3. Remote Mirroring Destination - Mirror packets from a number of VLANs

to distributed ports.

4. Encapsulated Remote Mirroring (Layer3) Source - Mirror packets from

a number of distributed ports to remote agents’ IP addresses. The virtual

machines traffic is mirrored to a remote physical destination through an IP

tunnel.

5. Distributed Port Mirroring (legacy) - Mirror packets from a number of

distributed ports to a number of distributed ports and/or uplink ports on the

corresponding host.

3.6 Summary

The problem with virtualization is the network administrator’s visibility of inter-

VM traffic on the physical network. This chapter discusses the approach taken to

gain a basic understanding of the inter-VM traffic visibility and performance. The

experiment factors covers both physical hardware configuration and virtual manage-

ment specifications required for the research. Furthmore, experiment details provide

information on the traffic generation, packet capture, and network diagrams used for

overall assessment.

49

IV. Results and Analysis

This chapter outlines the results and analysis of visibility and performance for

inter-VM traffic. Using the scripts discussed in Section 3.5.1, network traffic is gener-

ated and collected for both visibility and duration performance. A collection of 10,000

connections are captured for each TCP and UDP protocol. Each TCP connection

consists of nine packets with a total size of 548 bytes, and each UDP connection con-

sists of two packets with total size of 115 bytes. Figure 29 displays a single TCP and

UDP connection viewed within Wireshark. Section 4.1 provides results for inter-VM

traffic visibility and Section 4.2 outlines the performance results for VM traffic and

vendor.

Figure 29. TCP and UDP Conversations

4.1 Visibility Results and Analysis

Complete visibility of network traffic enhances security by having the ability to

detect possible attacks within the whole network. Inter-VM visibility evaluation for

50

ESXi and XenServer standard networks are covered in Sections 4.1.1 and 4.1.2 while

distributed networks are covered in Sections 4.1.3 and 4.1.4.

4.1.1 VMWare ESXi Standard Network.

Three evaluations for visibility are accomplished using an ESXi standard network.

The evaluations of the vSS include initial install, pktcap-uw program, and promiscuous

mode. Connectivity between VMs is verified using the ping application.

The first evaluation is to determine the real-time visibility of inter-VM traffic

within a host using the initial installation of ESXi. A review of the Wireshark packet

capture provided the outcome of no inter-VM traffic being exposed to the external

network. Only traffic with an external destination is visible and provides monitoring

capability to an administrator or IDS.

Due to the lack of visibility on initial installation, pktcap-uw is used for a second

evaluation of inter-VM traffic visibility. A limitation to the pktcap-uw tool is the

packet capture (pcap) file location. The pcap file is maintained on the virtual host

and must be downloaded for analysis. WinSCP [36] is a file transfer program that

provides a secure method for transferring the pcap files. Packet captures using pktcap-

uw cannot be analyzed in real-time and requires additional administrative tasks to

accomplish the analysis. Results also reveal no inter-VM traffic being exposed to the

external network but a complete capture of network traffic is obtained within the

pcap files for analysis. By itself, pktcap-uw does not alleviate any vulnerability and

only visibility of external traffic is able to be monitored in real-time.

The final vSS evaluation conducted uses promiscuous mode. By default, a VM

can only receive traffic directly sent to it. Setting a portgroup or virtual switch to

promiscuous mode causes the VMs to detect all traffic passed on the virtual switch.

Figure 30 shows the location for setting a portgroup to promiscuous mode.

51

Figure 30. Promiscuous Mode Setting

A virtual switch using promiscuous mode broadcasts traffic to all VMs but does

not pass inter-VM traffic to the external network. Promiscuous mode can benefit

an enterprise IDS by allowing the administrator to install a separate VM to perform

IDS functions on each local host. The IDS VM can collect data in real-time and

communicate with the enterprise IDS for security.

The overall results reveal that no inter-VM traffic is exposed to the external net-

work using a vSS. Table 9 shows the results based upon the methods and protocols

evaluated. The ability to monitor or manage real-time inter-VM traffic on a vSS net-

work requires additional administrative tasks or the deployment of other resources,

such as local IDS.

Table 9. ESXi Standard Inter-VM Visibility Results

Evaluation ICMP TCP UDP

Initial No No No
PKTCAP-UW No No No
Promiscuous No No No

4.1.2 Citrix XenServer Standard Network.

Three evaluations for visibility are accomplished using a XenServer OVS network.

The evaluations include initial install, tcdump utility, and port mirroring. Connec-

tivity between VMs is verified using the ping application.

52

The first evaluation is to determine the visibility of inter-VM traffic within a host

using the initial installation of XenServer. A review of the Wireshark packet capture

provided the same outcome as ESXi standard network. The results reveal that no

internal traffic is being exposed to the external network and is open to vulnerabilities.

The next option for inter-VM traffic is using the tcpdump program. Tcpdump

requires the use of SSH and WinSCP to transfer the pcap file to a system for analysis.

SSH is enabled by default and is a vulnerability if not managed properly. The pcap

file delivered a complete view of inter-VM traffic but real-time analysis cannot be

performed due to traffic not visible to the physical network.

With the proper amount of physical interfaces, the use of port mirroring to forward

traffic on a standard configuration is possible but not within the scope of this research.

The physical interface must be designated for port mirroring only since it disables

the interface for full operations.

The overall results reveal that no inter-VM traffic is exposed to the external net-

work using a standard OVS. Table 10 shows that all OVS options evaluated cannot

pass inter-VM traffic to the physical network. The ability to monitor or manage the

inter-VM traffic on the current standard OVS network requires additional adminis-

trative tasks or deployment of other resources. Similar to ESXi standard, the options

available for capturing inter-VM traffic require a packet capture program on local

host and transfer to external source or installing a local IDS VM on each virtual host.

Table 10. Xen Standard Inter-VM Visibility Results

Evaluation ICMP TCP UDP

Initial No No No
Tcpdump No No No
Port Mirroring No No No

53

4.1.3 VMWare ESXi Distributed Network.

The initial evaluation of the vDS begins with the same criteria as the vSS. Evalua-

tion of an initial installation, pktcap-uw, and promiscuous mode provide a comparison.

The vDS evaluation results demonstrate a similar outcome as vSS and did not show

any difference between the two types of virtual switches. No real-time inter-VM traffic

was visible to the external network using the evaluation methods.

Additional vDS testing for inter-VM traffic includes port mirroring. Setting up

port mirroring requires some infrastructure changes. The first item is to remove the

SPAN configuration from the physical switch. The next change is to add the packet

capture VM (WIN7SP1-SPAN) to the domain. Encapsulated Remote Mirror-

ing (Layer3) Source option is selected within the web client for port mirroring.

Figure 31 shows the configuration used for this evaluation.

Figure 31. ESXi Port Mirroring Configuration

54

The evaluation of port mirroring provides the desired results. Port mirroring

exposes real-time inter-VM traffic to the external network and a complete view of

network traffic for packet capture and security.

Table 11 lists the outcome for the ESXi distributed switch visibility of inter-VM

traffic. The basic functionality of vDS is similar to vSS but the advanced options

provide greater functionality for administration and security.

Table 11. ESXi Distributed Inter-VM Visibility Results

Evaluation ICMP TCP UDP

Initial No No No
PKTCAP-UW No No No
Promiscuous No No No
Port Mirroring Yes Yes Yes

4.1.4 Citrix XenServer Distributed Network.

A complete traffic visibility evaluation was not performed on a Citrix XenServer

distributed network using the DVSC. Initial install and tcpdump evaluations using

SPAN on the physical switch resulted in external visibility only. Advanced options,

such as port mirroring, are unavailable due to the inability to obtain a license for the

version of XenServer 6.5. The only version available for download is DVSC version 6.2

which the functionality is being deprecated and no longer available in future releases

[37]. Also, the DVSC version 6.2 only supports RSPAN for port analysis while the

Cisco Nexus physical switch only supports SPAN and Encapsulated Remote SPAN.

Table 12. Xen Distributed Inter-VM Visibility Results

Evaluation ICMP TCP UDP

Initial No No No
Tcpdump No No No

55

4.2 Performance Results and Analysis

Latency and the comparative cost within different virtualization implementations

is key to the overall performance of the network. Latency in terms of this evaluation

is defined as the duration time for each transport-layer conversation. Since TCP is

a connection-oriented protocol, duration time for each session starts with a three-

way handshake and finishes with a shutdown acknowledgment from the destination

VM. Duration time for UDP entails only a data packet sent by the source VM and a

response by the destination VM. Studies show both TCP and UDP communications

may see degradation in a cloud-based or small virtualization environment due to the

virtual host performing both computing and networking responsibilities [38]. The

latency cost of implementing a virtual environment relies on the vendor, type of

virtual switch, and type of traffic used (e.g., internal or external).

4.2.1 Performance Data.

The Minitab Statistical Analysis Tool [39] is used to analyze data captured dur-

ing evaluation. Minitab offers the Anderson-Darling Normality statistic [40] which

measures how well a set of data is distributed. A smaller p-value defines how well the

data is distributed. The experiment results reflect a p-value of less than 0.005 and

interprets the data as well distributed with a 95% confidence interval. Appendix F

provides detailed Minitab summary reports used for calculating overall traffic com-

parison. Tables 13 and 14 offer a data summary to reflect the 95% confidence interval,

minimum, maximum, and mean duration time for each virtual switch, including in-

ternal and external traffic.

56

Table 13. TCP Traffic Summary in Microseconds

Switch Traffic Min Mean Max 95% CI

ESX Standard Internal 0.7 0.855 1.3 0.8539 - 0.8562
ESX Standard External 0.8 1.034 1.4 1.0327 - 1.0352
ESX Distributed Internal 0.7 0.913 1.8 0.9111 - 0.9140
ESX Distributed External 1.0 1.253 1.8 1.2515 - 1.2546
XEN Standard Internal 0.8 1.020 1.1 1.0187 - 1.0214
XEN Standard External 1.0 1.185 1.5 1.1837 - 1.1872
XEN Distributed Internal 1.1 1.441 2.0 1.4390 - 1.4433
XEN Distributed External 1.2 2.029 2.8 2.0256 - 2.0316

Table 14. UDP Traffic Summary in Microseconds

Switch Traffic Min Mean Max 95% CI

ESX Standard Internal 0.3 0.393 0.9 0.3922 - 0.3934
ESX Standard External 0.3 0.491 0.9 0.4902 - 0.4922
ESX Distributed Internal 0.3 0.404 1.0 0.4031 - 0.4044
ESX Distributed External 0.4 0.618 1.0 0.6168 - 0.6192
XEN Standard Internal 0.3 0.481 0.8 0.4800 - 0.4820
XEN Standard External 0.4 0.563 1.0 0.5614 - 0.5639
XEN Distributed Internal 0.6 0.839 1.3 0.8375 - 0.8412
XEN Distributed External 0.8 1.351 1.9 1.3489 - 1.3538

4.2.2 Virtual Switch Comparison.

With TCP being widely used in today’s network environment, it is important to

know the effect of virtualization on different types of network traffic. The results are

determined by calculating the average duration time of traffic between VMs.

Figure 32 shows the internal and external TCP traffic duration means on each

virtual switch for comparison. As shown in the visibility test, distributed switches

offer more functionality in administration and security but come with a latency cost.

The cost of using a distributed switch for internal TCP traffic increased by 7% on ESXi

and 34% on XenServer. The cost increased 19% and 53% respectively for external

TCP traffic. The TCP traffic latency cost is relatively substantial and should be

consider before deploying a distributed switch infrastructure.

57

Figure 32. Virtual Switch TCP Traffic Means

Figure 33 shows the UDP traffic duration means for internal and external traffic

on each virtual switch. Similar to TCP, the data reflects an average performance for

sending UDP traffic. The cost of using a distributed switch for internal UDP traffic

increased by 3% on ESXi and 54% on XenServer. The cost increased 23% and 82%

respectively for external UDP traffic.

Figure 33. Virtual Switch UDP Traffic Means

58

4.2.3 Vendor Comparison.

Comparison of vendors requires knowledge of virtualization technology and speci-

fications of different providers. Further details are found in Section 2.5 that describes

the different technologies considered and Table 6 details the hypervisor specifications

between ESXi and XenServer.

Vendor comparison provides a performance evaluation for passing inter-VM traffic

within a virtual environment. Figure 34 provides results in a side-by-side view of

switch type and traffic by vendor. Based upon the results, ESXi communicated TCP

traffic 18% faster on vSS than Xen OVS and 45% on vDS over Xen DVSC. UDP traffic

displayed similar results, as shown in Figure 35, the ESXi vSS is 20% faster than Xen

OVS and ESXi vDS is 70% faster than Xen DVSC. The overall results shows that a

VMWare ESXi platform has a lower duration time than Citrix XenServer platform

when processing the generated VM traffic.

Figure 34. Vendor TCP Traffic Means

59

Figure 35. Vendor UDP Traffic Means

4.3 Summary

This chapter presents and analyzes the data collected for inter-VM traffic visibil-

ity and performance. The results for visibility show initial configuration for neither

standard or distributed virtual switches offer visibility of inter-VM traffic. It is deter-

mined that standard switches require additional resources and extensive administra-

tion. The results also show inter-VM traffic is more accessible to distributed switches

when using the advanced functionality (e.g., port mirroring and NetFlow).

Additionally, traffic visibility comes with a latency cost when implementing a

distributed switch over a standard switch. The cost of TCP and UDP traffic increased

for both ESXi and XenServer when using a distributed switch. The results also

indicate that VMWare ESXi vSS and vDS outperforms Citrix XenServer OVS and

DVSC when transmitting both TCP and UDP traffic.

60

V. Conclusions and Recommendations

This chapter summarizes the research performed in this study. Section 5.1 presents

the conclusions reached during experimentation. Section 5.2 discusses the impact and

contributions of this research. Section 5.3 presents potential future work.

5.1 Research Conclusion

The main research goal of determining inter-VM traffic visibility is successful

for three out four network switches. Visibility testing on the XenServer DVSC was

minimal due to physical switch constraints and inability to obtain DVSC license for

current version. Inter-VM traffic is not visible on initial installation of a virtual switch

and requires additional configuration depending on the type of switch. Methods

used for obtaining traffic visibility are based upon the vendor and type of switch

implemented. A summary of results for a standard switch can be found in Section

5.1.1 and distributed switch in Section 5.1.2.

The secondary goal of performance provided a latency cost for using a distributed

switch over standard switch and a comparison of VMWare and Citrix virtual plat-

forms. The results provide additional information that can be used to determine if

the advanced options of a distributed switch outweigh the latency cost. The vendor

comparison revealed that a proprietary solution using full virtualization outperformed

an open source solution using paravirtualization. The summarization of performance

results are covered in Section 5.1.3.

5.1.1 Standard Switch.

A standard virtual switch offers no visibility of inter-VM traffic to the external

network. The use of a packet capture program, such as pktcap-uw for ESXi and

61

tcpdump for XenServer, are required to gain inter-VM traffic visibility. Use of a

packet capture program for administration also requires a method to move the pcap

file from a virtual host to a different location where the file is analyzed. The other

option is to install an additional VM on the same virtual host that performs as an IDS

or other management type system. To obtain complete visibility with this option,

promiscuous mode must be enabled on the virtual switch. Port mirroring is available

on the XenServer OVS but not tested.

5.1.2 Distributed Switch.

The distributed switch has the same ability to gain inter-VM traffic visibility

as a standard switch but offers more advanced functionality. Distributed switches

offer advanced functionality such as port mirroring and Netflow. A successful port

mirroring session was accomplish using ESXi vDS but not XenServer DVSC. The

version of DVSC required could not be obtained for the research.

5.1.3 Performance.

The overall performance shows a standard switch is faster than distributed switch

when processing networking traffic. The latency cost difference for internal TCP

traffic was 7% on ESXi and 34% on XenServer and external was 19% and 53% re-

spectively. Internal UDP traffic was more significant showing a difference of only 3%

on ESXi but 54% on XenServer. The cost also increased 23% and 82% respectively

for external UDP traffic.

Overall vendor results show that VMWare ESXi is faster than Citrix XenServer.

The difference in latency cost for both TCP and UDP traffic on the XenServer OVS

and DVSC was higher than an ESXi vSS and vDS.

62

5.2 Research Contributions

This research contributes to the DoD focus as it moves into the fast growing tech-

nology of virtualization. Additionally, the research brings up critical considerations

that must be taken when introducing virtualization into a networking environment.

A key consideration is how the level of network traffic visibility correlates with

the ability to secure the network. Multiple options for gaining traffic visibility are

identified in this research and provides an administrator with a additional information

for monitoring and securing the network.

Performance is an additional consideration for virtualization. The performance

difference between a standard and distributed virtual switch is a determining factor

on which to implement. Research shows that the standard switch is faster but requires

more administration for security.

5.3 Recommendation for Future Work

There are many paths that can be taken as future work. Future work could include

integrating the research methods with a host-based security system or further testing

the advanced features of virtual networking. Virtualization also offers the means to

easily transfer resources from one host to another, such as vMotion within VMWare

ESXi. Capturing the traffic from resource movements and analyzing for possible

threats or performance degradation. Another path is to analyze the visibility of

traffic from a host with VMs using SAN or NAS. A more in depth study of additional

options within an OVS standard with multiple NIC may offer further capabilities in a

smaller network. Obtain the DVSC version that is compatible with XenServer 6.5 for

enterprise-level comparison. Software Defined Networking (SDN) is another avenue

that can be incorporated using the research conducted. SDNs include resources that

control network traffic that could have an effect on visibility of inter-VM traffic.

63

Appendix A. Physical Switch Configuration

1. VLAN

� configure terminal

� vlan 20

� name VM

� no shutdown

� exit

� interface ethernet 1/25 (repeat for each required interface)

� switchport access vlan 20

� show vlan name 20

Figure 36. VLAN

2. VLAN Gateway

� configure terminal

� interface vlan 20

� ip address 192.168.20.1 255.255.255.0

� show interfaces vlan 20

64

Figure 37. Gateway

3. Trunk Port

� configure terminal

� interface ethernet 1/25 (repeat for each required interface)

� switchport trunk allowed vlan 20

� switchport mode trunk

� spanning-tree port type edge

4. Access Port

� configure terminal

� interface ethernet 1/31

� switchport mode access

� switchport access vlan 20

Figure 38. Switch Interfaces

65

5. Switch Port Analyzer

� configure terminal

� monitor session 1

� exit

� interface ethernet 1/27 (destination interface)

� switchport monitor

� exit

� monitor session 1

� destination interface ethernet 1/27

� source interface ethernet 1/25 both

� source interface ethernet 1/26 both

� source vlan 20

� exit

� no monitor session 1 shut

� show monitor session 1

Figure 39. Switch Port Analyzer Monitor

66

Appendix B. Management Test Batch Code

1. C:\PS Scripts\InterVMTest.bat

@echo o f f

power she l l . exe −command ”& C:\ PS Scr ipt s \1 StartTest . ps1 xen icmp in t 11 12 250”

timeout 298

echo .

power she l l . exe −command ”& C:\ PS Scr ipt s \1 StartTest . ps1 xen tcp i n t 11 12 250”

timeout 298

echo .

power she l l . exe −command ”& C:\ PS Scr ipt s \1 StartTest . ps1 xen udp in t 11 12 250”

timeout 298

echo .

power she l l . exe −command ”& C:\ PS Scr ipt s \1 StartTest . ps1 xen icmp ext 11 13 250”

timeout 298

echo .

power she l l . exe −command ”& C:\ PS Scr ipt s \1 StartTest . ps1 xen tcp ext 11 13 250”

timeout 298

echo .

power she l l . exe −command ”& C:\ PS Scr ipt s \1 StartTest . ps1 xen udp ext 11 13 250”

timeout 298

echo .

power she l l . exe −command ”& C:\ PS Scr ipt s \1 StartTest . ps1 xen icmp in t 13 14 250”

timeout 298

echo .

power she l l . exe −command ”& C:\ PS Scr ipt s \1 StartTest . ps1 xen tcp i n t 13 14 250”

timeout 298

echo .

power she l l . exe −command ”& C:\ PS Scr ipt s \1 StartTest . ps1 xen udp in t 13 14 250”

timeout 298

echo .

power she l l . exe −command ”& C:\ PS Scr ipt s \1 StartTest . ps1 xen icmp ext 13 12 250”

timeout 298

echo .

power she l l . exe −command ”& C:\ PS Scr ipt s \1 StartTest . ps1 xen tcp ext 13 12 250”

timeout 298

echo .

power she l l . exe −command ”& C:\ PS Scr ipt s \1 StartTest . ps1 xen udp ext 13 12 250”

timeout 298

echo .

67

echo Packet Capture Completed

echo .

t imeout 10

2. C:\PS Scripts\PingAll.bat

@echo o f f

echo System Ping Test has s t a r t ed .

echo .

ping 192 . 1 68 . 2 0 . 1

timeout 3

echo .

ping 192 . 1 68 . 2 0 . 2

timeout 3

echo .

ping 192 . 1 68 . 2 0 . 3

timeout 3

echo .

ping 192 . 168 . 20 . 11

timeout 3

echo .

ping 192 . 168 . 20 . 12

timeout 3

echo .

ping 192 . 168 . 20 . 13

timeout 3

echo .

ping 192 . 168 . 20 . 14

timeout 3

echo .

echo Ping Test i s complete

echo .

t imeout 3

68

3. C:\PS Scripts\SystemReset-Part1.bat

@echo o f f

echo Checking f o r Windump pro c e s s e s .

echo .

power she l l . exe −command ”& C:\ PS Scr ipt s \5StopWinDump . ps1”

echo .

echo System r e s e t Part 1 has s t a r t ed .

echo .

power she l l . exe −command ”& C:\ PS Scr ipt s \1 StartTest . ps1 xen icmp in t 11 12 5”

timeout 90

echo .

power she l l . exe −command ”& C:\ PS Scr ipt s \1 StartTest . ps1 xen icmp in t 12 11 5”

timeout 90

echo .

power she l l . exe −command ”& C:\ PS Scr ipt s \1 StartTest . ps1 xen icmp in t 13 14 5”

timeout 90

echo .

power she l l . exe −command ”& C:\ PS Scr ipt s \1 StartTest . ps1 xen icmp in t 14 13 5”

timeout 90

echo .

echo System r e s e t Part 1 i s complete when a l l boxes are c l o s ed .

echo .

echo Run Part 2

echo .

pause

4. C:\PS Scripts\SystemReset-Part2.bat

@echo o f f

echo System r e s e t Part 2 has s t a r t ed .

echo .

power she l l . exe −command ”& C:\ PS Scr ipt s \1 StartTest . ps1 xen icmp in t 11 12 5”

timeout 60

echo .

power she l l . exe −command ”& C:\ PS Scr ipt s \1 StartTest . ps1 xen icmp in t 12 11 5”

timeout 60

echo .

power she l l . exe −command ”& C:\ PS Scr ipt s \1 StartTest . ps1 xen icmp in t 13 14 5”

timeout 60

echo .

69

power she l l . exe −command ”& C:\ PS Scr ipt s \1 StartTest . ps1 xen icmp in t 14 13 5”

timeout 60

echo .

echo System r e s e t Part 2 i s complete when a l l boxes are c l o s ed .

echo .

echo Run Part 3

echo .

pause

5. C:\PS Scripts\SystemReset-Part3.bat

@echo o f f

echo System r e s e t Part 3 has s t a r t ed .

echo .

power she l l . exe −command ”& C:\ PS Scr ipt s \1 StartTest . ps1 xen icmp in t 11 12 3”

timeout 10

echo .

power she l l . exe −command ”& C:\ PS Scr ipt s \1 StartTest . ps1 xen tcp i n t 11 12 3”

timeout 10

echo .

power she l l . exe −command ”& C:\ PS Scr ipt s \1 StartTest . ps1 xen udp in t 11 12 3”

timeout 10

echo .

power she l l . exe −command ”& C:\ PS Scr ipt s \1 StartTest . ps1 xen icmp ext 11 13 3”

timeout 10

echo .

power she l l . exe −command ”& C:\ PS Scr ipt s \1 StartTest . ps1 xen tcp ext 11 13 3”

timeout 10

echo .

power she l l . exe −command ”& C:\ PS Scr ipt s \1 StartTest . ps1 xen udp ext 11 13 3”

timeout 10

echo .

echo System Reset i s complete

echo .

t imeout 10

70

Appendix C. Management Test Powershell Code

1. C:\PS Scripts\1StartTest.ps1

$vend = $args [0]

$proto = $args [1]

$ t e s t = $args [2]

$ s r c = $args [3]

$dst = $args [4]

$pkt = $args [5]

$ t s r c = ”WIN7SP1−$ s r c ”

$ tds t = ”WIN7SP1−$dst ”

$startwindump = {

s t a r t−proce s s power she l l −argument ”C:\ PS Scr ipt s

↪→ \2StartWinDump . ps1 $vend $proto $ t e s t $ t s r c

↪→ $ tds t ”

&$ s t a r t s e r v e r

}

$ s t a r t s e r v e r = {

i f ($proto −eq ’ tcp ’ −or $proto −eq ’udp ’) {

s t a r t−proce s s power she l l −argument ”C:\

↪→ PS Scr ipt s \3 Sta r tSe rve r . ps1 $proto

↪→ $ tds t ”

&$ s t a r t t e s t

}

e l s e {

&$ s t a r t t e s t

71

}

}

$ s t a r t t e s t = {

s t a r t−proce s s power she l l −argument ”C:\ PS Scr ipt s

↪→ \4 Protoco lTes t ing . ps1 $proto $ t s r c $ tds t

↪→ $pkt $ t e s t ”

}

Write−Host

Write−Host ”Vendor : ” $vend ” Protoco l : ” $proto ” Test

↪→ Type : ” $ t e s t

Write−Host ” Source : ” $ t s r c ” Des t inat i on : ” $ tds t

Write−Host

&$startwindump

2. C:\PS Scripts\2StartWinDump.ps1

$vend = $args [0]

$proto = $args [1]

$ t e s t = $args [2]

$ s r c = $args [3]

$dst = $args [4]

$ tdate = Get−Date −format yyyyMMddHHmm

Invoke−Command Compute rName $ s r c −Scr iptB lock { C:\

↪→ Intervm\Batch\StartWinDump . bat $us ing : vend $us ing :

↪→ proto $us ing : t e s t $us ing : s r c $us ing : dst $us ing :

↪→ tdate }

72

3. C:\PS Scripts\3StartServer.ps1

$proto = $args [0]

$dst = $args [1]

Invoke−Command Compute rName $dst −Scr iptB lock { C:\

↪→ Intervm\Batch\StartTCPUDPServer . bat $us ing : proto }

4. C:\PS Scripts\4ProtocolTesting.ps1

$proto = $args [0]

$ s r c = $args [1]

$dst = $args [2]

$pkt = $args [3]

$ t e s t = $args [4]

$p r o t o t e s t i n g = {

switch ($proto) {

icmp { &$ test i cmp ; break }

tcp { $ s tpr = 5 ; &$ tes tudptcp ; break }

udp { $ s tpr = 4 ; &$ tes tudptcp ; break }

}

}

$ test i cmp = {

Invoke−Command Compute rName $ s r c −Scr iptB lock { C:\

↪→ Intervm\Batch\TestICMP . bat $us ing : dst $us ing : pkt }

&$ f i n i s h

}

$ testudptcp = {

73

Invoke−Command Compute rName $ s r c −Scr iptB lock

↪→ { C:\ Intervm\Batch\TestTCPUDP. bat $us ing :

↪→ dst $us ing : proto $us ing : pkt }

Invoke−Command Compute rName $dst −Scr iptB lock

↪→ { C:\ Intervm\Batch\StopServer . bat $us ing :

↪→ s tp r }

&$ f i n i s h

}

$ f i n i s h = {

Invoke−Command Compute rName $ s r c −Scr iptB lock

↪→ { C:\ Intervm\Batch\StopWinDump . bat }

New−PSDrive −Name X −Root \\ $ s r c \c$\ Intervm\

↪→ Capture −PSProvider Fi leSystem

cd X:

Move−Item −Path . /vm* −Dest inat i on C:\ Capture\

cd C:\ PS Scr ipt s

}

&$p r o t o t e s t i n g

5. C:\PS Scripts\5StopWinDump.ps1

$computers = Get−ADComputer −F i l t e r ’Name − l i k e ”WIN7SP1

↪→ −1*” ’ | Foreach−Object { $.Name }

Invoke−Command Compute rName $computers −Scr iptB lock {

↪→ C:\ Intervm\Batch\StopWinDump . bat }

74

6. C:\PS Scripts\6StopServer.ps1

$computers = Get−ADComputer −F i l t e r ’Name − l i k e ”WIN7SP1

↪→ −1*” ’ | Foreach−Object { $.Name }

Invoke−Command Compute rName $computers −Scr iptB lock {

↪→ C:\ Intervm\Batch\StopServer . bat }

75

Appendix D. Virtual Machine Batch Source Code

1. C:\Intervm\Batch\StartTCPUDPServer.bat

@echo o f f

echo %1 Server s t a r t ed on %computername%

python c :\ Intervm\%1Server . py

2. C:\Intervm\Batch\StartWinDump.bat

@echo o f f

echo %computername% WinDump Co l l e c t i on s t a r t ed on %1 f o r %2 pro to co l and %3

↪→ t r a f f i c

S ta r t C:\ Intervm\WinDump. exe − i 1 −q −w C:\ Intervm\Capture\vm %6 %1 %2 %3 from

↪→ %4 t o %5− −n −C 30 −W 10 −U −s 0

3. C:\Intervm\Batch\StopServer.bat

@echo o f f

f o r / f ” tokens=%1” %%a in (’ n e t s t a t −aon ˆ | f i nd ”0 . 0 . 0 . 0 : 1 2 0 0 0 ” ’) do t a s k k i l l

↪→ /F /PID %%a

4. C:\Intervm\Batch\StopWinDump.bat

@echo o f f

t a s k k i l l / f /im ”WinDump. exe ”

5. C:\Intervm\Batch\TestICMP.bat

@echo o f f

echo ICMP Test ing Started

echo From %computername% to %1

ping −n %2 − l 1460 %1

6. C:\Intervm\Batch\TestTCPUDP.bat

@echo o f f

echo From %computername% to %1

python C:\ Intervm\Protoco lTest . py %1 12000 %2 %3

76

Appendix E. Virtual Machine Python Source Code

1. C:\Intervm\ProtocolTest.py [41]

Modif ied code found at http :// j ohna l l e n . us /?p=236

Author : John Al len

Date : Feb 10 , 2010

Last : Dec 19 , 2015

import sys

import socket

import time

host = sys . argv [1]

port = in t (sys . argv [2])

proto = sys . argv [3]

t e s t = in t (sys . argv [4])

whi l e 1 :

i f proto == ”udp ” :

s = socket . socke t (socket .AF INET , socke t .SOCKDGRAM)

e l s e :

s = socket . socke t (socket .AF INET , socke t .SOCK STREAM)

s . s e t t imeout (5)

t ry :

i f proto == ”udp ” :

s . sendto (”udp t e s t data ” , (host , port))

modif iedMessage , se rverAddres s = s . recvfrom (2048)

s . shutdown (2)

p r i n t ” Su c c e s s f u l UDP connect ion : host ” + host + ” port ” + s t r (port)

t e s t = t e s t − 1

e l s e :

s . connect ((host , port))

sentence = ” tcp t e s t data”

s . send (sentence)

modi f i edSentence = s . recv (1024)

s . shutdown (2)

p r i n t ” Su c c e s s f u l TCP connect ion : host ” + host + ” port ” + s t r (port)

t e s t = t e s t − 1

except Exception , e :

t ry :

77

errno , e r r t x t = e

except ValueError :

p r i n t ” Su c c e s s f u l UDP connect ion : host ” + host + ” port ” + s t r (port)

e l s e :

i f e r rno == 107 :

p r i n t ” Success connect ing to ” + host + ” on UDP port : ” + s t r (port)

e l s e :

p r i n t ”Cannot connect to ” + host + ” on port : ” + s t r (port)

p r i n t e

i f t e s t == 0 :

sys . e x i t (0)

s . c l o s e

time . s l e e p (1)

2. C:\Intervm\TCPServer.py [42]

from socket import *

s e rve rPor t = 12000

s e rve rSocke t = socket (AF INET , SOCK STREAM)

se rve rSocke t . bind ((’ ’ , s e rve rPor t))

s e rve rSocke t . l i s t e n (1)

whi l e 1 :

connect ionSocket , addr = se rve rSocke t . accept ()

sentence = connect ionSocket . recv (1024)

c ap i t a l i z edS en t en c e = sentence . upper ()

connect ionSocket . send (c ap i t a l i z edS en t en c e)

connect ionSocket . c l o s e ()

3. C:\Intervm\UDPServer.py [42]

from socket import *

s e rve rPor t = 12000

s e rve rSocke t = socket (AF INET , SOCKDGRAM)

se rve rSocke t . bind ((’ ’ , s e rve rPor t))

whi l e 1 :

message , c l i en tAddre s s = se rve rSocke t . recvfrom (2048)

modif iedMessage = message . upper ()

s e rve rSocke t . sendto (modif iedMessage , c l i en tAddre s s)

78

Appendix F. Minitab - Data Summary Reports

Figure 40. ESXi Standard TCP Summary Report

79

Figure 41. ESXi Distributed TCP Summary Report

80

Figure 42. ESXi Standard UDP Summary Report

81

Figure 43. ESXi Distributed UDP Summary Report

82

Figure 44. Xen Standard TCP Summary Report

83

Figure 45. Xen Distributed TCP Summary Report

84

Figure 46. Xen Standard UDP Summary Report

85

Figure 47. Xen Distributed UDP Summary Report

86

Bibliography

1. J. Brodkin. With long history of virtualization behind it, IBM
looks to the future. Last Accessed: Jan 25, 2016, 2009.
http://www.networkworld.com/article/2254433/virtualization/with-long-history-
of-virtualization-behind-it–ibm-looks-to-the-future.html .

2. M.B. Walker. DISA zeroing in on virtualization. Last Accessed:
Jan 25, 2016, 2015. http://www.fiercegovernmentit.com/story/disa-zeroing-
virtualization/2015-11-02 .

3. VMWare Inc. Understanding Full Virtualization, Paravirtualiza-
tion, and Hardware Assist. Last Accessed: Jan 25, 2016, 2007.
https://www.vmware.com/files/pdf/VMware paravirtualization.pdf .

4. M. Portnoy. Virtualization Essentials. Sybex, May 2012.

5. R. Pavlicek. Securing Your Cloud With the Xen Hypervisor. Last Accessed: Jan
25, 2016, 2013. http://www.slideshare.net/buildacloud/securing-your-cloud-with-
xen-by-russell-pavlicek .

6. Distributed Management Task Force Inc. Open Virtualization
Format White Paper. Last Accessed: Jan 25, 2016, 2014.
http://www.dmtf.org/sites/default/files/standards/documents/DSP2017 2.0.0.pdf .

7. Distributed Management Task Force Inc. Virtual Networking Man-
agement White Paper. Last Accessed: Jan 25, 2016, 2012.
http://dmtf.org/sites/default/files/standards/documents/DSP2025 1.0.0.pdf .

8. VMWare Inc. VMWare vSphere Basics. Last Accessed: Jan 25, 2016, 2011.
https://pubs.vmware.com/vsphere-50/topic/com.vmware.ICbase/PDF/vsphere-
esxi-vcenter-server-50-basics-guide.pdf .

9. D. Kusnetzky. Virtualization: A Manager’s Guide. O’Reilly Media, June 2011.

10. K. Chandrasekaran. Essentials of Cloud Computing. CRC Press, 2015.

11. M. Fawzi. Virtualization and Protection Rings Welcome
to Ring -1 Part i. Last Accessed: Jan 25, 2016, 2009.
https://fawzi.wordpress.com/2009/05/24/virtualization-and-protection-rings-
welcome-to-ring-1-part-i/ .

12. X. Li, H. Sun, and Q. Wen. An approach for secure-communication between
XEN virtual machines. In Cloud Computing and Intelligent Systems (CCIS),
2012 IEEE 2nd International Conference on, volume 01, pages 283–286, Oct
2012.

87

13. XenProject. Domain. Last Accessed: Jan 25, 2016, 2011.
http://wiki.xen.org/wiki/Domain.

14. Citrix Inc. XenServer Tech Info. Last Accessed: Jan 25, 2016, 2015.
https://www.citrix.com/products/xenserver/tech-info.html .

15. R. Kumar. An Importance of Using Virtualization Technology in Cloud Com-
puting. 1(2), Feb 2015.

16. D. Marinescu. Cloud Computing. Elsevier Inc., May 2013.

17. K. Benzidane, S. Khoudali, F. Leila, and A. Sekkaki. Toward inter-VM Visibility
in a Cloud Environment using Packet Inspection. In Telecommunications (ICT),
2013 20th International Conference on, pages 1–5, May 2013.

18. J. Rutkowska. Introducing Blue Pill. Last Accessed: Jan 25, 2016, 2006.
http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.html .

19. M. Rouse. Virtual Machine Escape. Last Accessed: Jan 25, 2016, 2009.
http://whatis.techtarget.com/definition/virtual-machine-escape.

20. D. Goodin. Extremely serious virtual machine bug threatens
cloud providers everywhere. Last Accessed: Jan 25, 2016, 2015.
http://arstechnica.com/security/2015/05/extremely-serious-virtual-machine-
bug-threatens-cloud-providers-everywhere/ .

21. R. Naraine. US-CERT warns of guest-to-host VM escape vulnerability. Last
Accessed: Jan 25, 2016, 2012. http://www.zdnet.com/article/us-cert-warns-of-
guest-to-host-vm-escape-vulnerability/ .

22. Y. Shoaib and O. Das. Pouring Cloud Virtualization Security Inside Out. Last
Accessed: Jan 25, 2016, 2014. http://arxiv.org/abs/1411.3771 .

23. B. Guan, J. Wu, Y. Wang, and S.U. Khan. CIVSched: A Communication-
Aware Inter-VM Scheduling Technique for Decreased Network Latency between
Co-Located VMs. Cloud Computing, IEEE Transactions on, 2(3):320–332, July
2014.

24. S. Tatham. PuTTY SSH and Telnet Client. Last Accessed: Jan 25, 2016, 2015.
http://www.putty.org/ .

25. R. Macek. WhatMatrix - Virtualization Comparison. Last Accessed: Jan 25,
2016, 2015. https://www.whatmatrix.com/comparison/Virtualization.

26. DISA Field Security Operations. DoD Secure Host Baseline Repository.
Last Accessed: Jan 25, 2016, 2015. https://disa.deps.mil/ext/cop/iase/dod-
images/Pages/index.aspx .

88

27. Open vSwitch. Production Quality, Multilayer Open Virtual Switch. Last Ac-
cessed: Feb 2, 2016, 2014. http://openvswitch.org/ .

28. Citrix Inc. Citrix XenServer 6.2.0 vSwitch Controller User Guide. Last
Accessed: Jan 25, 2016, 2013. http://docs.citrix.com/content/dam/en-
us/xenserver/xenserver-62/dvs controller.pdf .

29. Riverbed Technology. WinDump, tcpdump for Windows using WinPcap. Last
Accessed: Jan 25, 2016, 2006. https://www.winpcap.org/windump/ .

30. Wireshark Foundation. Wireshark Network Protocol Analyzer. Last Accessed:
Jan 25, 2016, 2015. https://www.wireshark.org/ .

31. VMWare Inc. Using the pktcap-uw tool in ESXi 5.5
and later (2051814). Last Accessed: Jan 25, 2016, 2015.
http://kb.vmware.com/selfservice/microsites/search.do?language=en US&cmd=displayKC&externalId=2051814 .

32. L. MartinGarcia. TCPDUMP and LIBPCAP. Last Accessed: Jan 25, 2016, 2015.
http://www.tcpdump.org/ .

33. Citrix Inc. How to Capture a Network Trace from a XenServer Physical Interface,
Virtual Bridge, and VM Virtual Interface. Last Accessed: Jan 25, 2016, 2014.
http://support.citrix.com/article/CTX120869 .

34. Linux Foundation. What is XAPI? Last Accessed: Jan 25, 2016, 2013.
http://www.xenproject.org/developers/teams/xapi.html .

35. Open vSwitch. Open vSwitch Manual ovs-vsctl(8). Last Accessed: Feb 2, 2016,
2016. http://openvswitch.org/support/dist-docs/ovs-vsctl.8.txt .

36. M. Prikryl. WinSCP SFTP, SCP and FTP client for Windows. Last Accessed:
Jan 25, 2016, 2014. https://winscp.net/eng/docs/introduction.

37. Citrix Inc. Deprecated Feature: Distributed Virtual Switch Con-
troller for XenServer 6.2.0. Last Accessed: Jan 25, 2016, 2013.
http://support.citrix.com/article/CTX137336 .

38. R. Shea, F. Wang, H Wang, and J. Liu. A deep investigation into network
performance in virtual machine based cloud environments. In INFOCOM, 2014
Proceedings IEEE, pages 1285–1293, April 2014.

39. Minitab Inc. Minitab statistical analysis. Last Accessed: Feb 9, 2016, 2016.
https://www.minitab.com/en-us/ .

40. Minitab Inc. The Anderson-Darling Statistic. Last Accessed: Feb 10,
2016, 2016. http://support.minitab.com/en-us/minitab/17/topic-library/basic-
statistics-and-graphs/introductory-concepts/data-concepts/anderson-darling/ .

89

41. J. Allen. Python Connectivity Check Script. Last Accessed: Jan 25, 2016, 2010.
http://johnallen.us/?p=236 .

42. J.F. Kurose and K.W. Ross. Computer Networking - A Top-Down Approach.
Addison-Wesley, 6th edition, 2013.

90

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

24–03–2016 Master’s Thesis Aug 2014 — Mar 2016

Exposing Inter-Virtual Machine Networking Traffic to External
Applications

Byrd, Charles, E., CW3, USA

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-16-M-006

Intentionally Left Blank

DISTRIBUTION STATEMENT A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Virtualization has become a powerful and fast growing technology. The Department of Defense is focused on taking
advantage of virtualized hardware, software, and networks. Virtual environments create administrative and security
challenges in having visibility of inter-virtual machine (VM) traffic. This thesis attempts to gain visibility and evaluate
performance of inter-VM traffic. Separate virtual networks using VMWare ESXi and Citrix XenServer that comprise of
three virtual host containing a computing domain of eight VMs. Configuration of all components are identical on each
network for a consistent comparison. Transport-layer traffic is generated to test each network using batch files,
Powershell scripts, and Python scripts. The results show standard virtual networks require additional resources and more
hands-on administration for real-time traffic visibility than a distributed switch. Traffic visibility within a standard
network is limited to using programs such as pktcap-uw, windump, or tcpdump. However, distributed networks offer
advanced options, such as port mirroring, that deliver higher visibility but come at a higher latency cost.

Inter-VM, vSwitch, ESXi, XenServer

U U U U 107

Dr. Barry E. Mullins, AFIT/ENG

(937) 255-3636, x7979; barry.mullins@afit.edu

