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We changed directions with the proposed work from midlevel control of articulated systems to design and control of series elastics actuators 
for snake robots. The ability to adapt to and locomote through unstructured terrain remains a key weakness in the abilities of all snake 
robots.  This problem partly stems from the fact that the gaits that we use to locomote are shape-driven (more accurately discrete-curvature 
driven), and our locomotion is primarily through rolling ground contact.  While the shape of the snake can deform significantly to adapt to 
an environment, our ability to locomote typically depends exploiting structure in the environment through careful choices of the snake's 
shape.





Force control is potentially a good perspective from which to approach the problem of adaptive control and locomotion.  One could argue 
that all of the snake robot's locomotion is a result of force interactions, rather than shape interactions.  A key development from the MIT Leg 
Lab to address this problem has been the series elastic actuator.  By essentially low-passing the output of the actuator, a series elastic 
actuator provides more accurate and stable force control and protects the drive components.  It also allows practical force sensing using 
common position-control sensors, such as potentiometers and encoders.  





We propose implementing a series elastic actuator in the context of our existing snake robots.  Specifically, we have built rotational elasticity 
into to the joints of each snake robot module, and used the rotational displacement of the elastic member to infer the torque exerted by the 
joint. We have begun developing controllers for this new system.
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Appendix B

Design and Architecture of a Series

Elastic Snake Robot

Like previous generations of our robots, the SEA Snake consists of a number of identical

1-DOF modules in which the actuated axes are oriented in the lateral and dorsal planes

of the robot. Most notably, this latest generation contains a series elastic actuator

in each module. This enables compliant motion over rough terrain and fine torque

control on each joint. Additionally, each module contains a 32-bit processor and 100

Mbps Ethernet data bus, a 400X improvement in bandwidth over the RS-485 serial

communications of our previous robot, the Unified Snake [102]. The modules also have

greater torque output, improved sealing, and a rugged tool-free interface. Table B.1

presents the specifications of the SEA Snake robot.

B.1 Mechanical Overview

Each module possesses a self-contained 1-DOF joint, allowing for a full 180� of rotation.

Modules are interfaced together and alternately aligned in accordance with the robot’s

lateral and dorsal planes. A typical robot consists of 16 modules linked together, with
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Table B.1: Overview of SEA Snake specifications.

Dimensions
Diameter: 5.1 cm
Length (module): 6.4 cm
Length (full 16 module robot): 1.174 m

Mass
Module: 205 g
Full 16 module robot: 3.657 kg

Actuation
Max Torque: 7 N-m
Max Speed: 33 RPM

Power
48 V
Current (resting): 40 mA
Current (max): 600 mA

Communication 100 Mbps Ethernet

Sensing

Angular Position and Velocity
Output Torque
3-axis Accelerometer
3-axis Gyro
Temperature
Voltage
Current
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Figure B.1: Photo of a SEA Snake Module. The module is 5 cm (2 in.) in diameter and provides
a 1-DOF rotary motion of +/- 90�.

unique head and tail modules.

A driving design requirement of the SEA Snake was ease of customization. In

addition to the 16 rotary DOF design, modules can be added, removed, interchanged,

or replaced with novel mechanisms. Any device meeting the interface requirements

can be included in the chain.

B.1.1 Motor-Geartrain

The SEA Snake modules are driven by a modified Maxon EC 20 flat motor with a

nominal speed of 9300 RPM. The steel pinion gear on the motor’s output shaft trans-

fers rotation through a geartrain containing 3 steel and brass compound gears. The

cumulative gear ratio is 349:1 to create high-torque joints. This motor and geartrain

combination provides a maximum output torque of 7 N-m and a maximum speed of

33 RPM.
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Figure B.2: Photo of the Series Elastic Actuated Snake Robot (SEA Snake).

B.1.2 Sealed Housing

The housing of each module is machined from 7075 aluminum and anodized red to

prevent wear and corrosion. Components are densely assembled inside to minimize

volume, as illustrated in the module cross-section in Fig. B.3. O-rings laid in machined

grooves seal the module at each interface. The robot meets IP66 standards, meaning it

is splash-proof. Future iterations will aim for IP68, or water submersible. Additionally,

an effort was made to minimize external fasteners in the design. The previous snake

robot, the Unified Snake, has 14 external fasteners per module, while the SEA Snake

modules have only 4.
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Figure B.3: CAD model cross-section of a SEA Snake module.

B.1.3 Mechanical Interface

The intermodular interface features a rugged, tool-less design. Modules are aligned

with dowel pins and matching recesses. A freely-spinning threaded collar, held in

place by a retaining ring, is turned by hand to lock adjacent modules together. An

electrical connection is made between two modules with spring-pin connectors on the

interface board touching target areas on the control board.

O-rings seal the collar at both ends. Modules can be connected and disconnected

quickly and repeatedly. The connections are secure and resist shock and stress. Any

device with matching threads, 48V and Ethernet compatibility can be interfaced with

a module, allowing for freedom of design and customization.
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Figure B.4: Photo of the modular SEA Snake interface. Dowel pins provide alignment while the
threaded collar mechanical secures and seals the modules. The electrical connection is made
with spring-pin connectors touching target areas on the control board.

B.1.4 Series Elasticity

The SEA Snake features series elastic actuators. A rubber elastomer bonded between

two rigid plates is torsionally sheared during actuation [80]. The elastomer’s tapered

conical cross section shown in Fig. B.5 is similar to the constant-shear-stress design

introduced in [80]. The spring here is different in that it is molded directly to the

output gear of our geartrain. The rigid plate on top is then attached to the output shaft

of the system through a number of pins. Another plate is swaged onto this assembly

in order to keep the output gear and output shaft aligned with the rest of the geartrain.

The elastomer is molded from Natural Rubber of Shore A Durometer 50. As a tor-

sional spring, its stiffness is roughly characterized by a spring constant of 12 N-m/rad

and a maximum rotational deflection of approximately 0.6 radians. Our research is

currently exploring ways to estimate the output torque from the elastomer deflection

and how to calibrate its parameters online [19].
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Figure B.5: CAD model cross-section of a module’s output shaft assembly. The rubber is
bonded to the tapered surfaces of the output gear and top washer. The output shaft is hollow,
allowing wires to pass through the center of rotation of the module.

B.1.5 Head and Tail Modules

Both a head and tail module were designed utilizing the custom modular interface and

they are pictured in Fig. B.6. In addition to providing their specialized functions, these

modules demonstrate the potential for the use of other modules that could easily be

integrated into the SEA Snake system.

The head module includes a high-definition camera to provide the user with a live

video feed while the four LEDs are available for illuminating darker environments. The

head module housing is designed with fins to increase surface area and improve heat

transfer from the electronics to the surrounding environment. The LEDs are protected

by an o-ring sealed acrylic window while the camera’s lens is protected by an o-ring

sealed sapphire glass window.

In order to connect a tether to the snake, we custom-designed a tether connector

that is sealed and load-bearing. The connector uses keys and keyways to provide

a quick and very easy blind connection. Additionally, there are spring-loaded pins

within the connector which ensures that the connector’s housing bears all of the load.

The tail has this connector as well as a slipring integrated within its design.
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Figure B.6: Photos of SEA Snake head and tail modules.

B.2 Electronics Overview

While the electronics in the previous generation robot were robust, we set out to de-

sign the SEA Snake electronics with a focus on ease of development to facilitate future

research, such as more advanced control algorithms and onboard sensor fusion. To this

end, we moved from an 8-bit AVR processor to a 32-bit ARM Cortex M4F running at 7X

the clock speed. We also wanted to enable higher frequency external control and sen-

sor feedback and to move from analog to digital video. To satisfy these increased data

requirements we moved from a 250kbps RS-485 bus to a switched 100Mbps Ethernet

network.

B.2.1 Communication

One hindrance to adopting Ethernet in embedded devices is the size of the isolation

transformers typically required. Our solution was to integrate a three port Ethernet

switch into each module. This keeps the wire length down to a few centimeters, which

is far shorter than the electrical propagation distance during a single 10ns bit period.
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Figure B.7: Module Electronics Block Diagram.

This allowed us to relax the controlled impedance requirements, and to replace the

transformer isolation with capacitive isolation, which has a far smaller PCB footprint.

We do provide transformer isolation in the tail module to insure signal integrity over

the tether.

In addition to the Ethernet link each module has a full duplex differential serial link

to each of its immediate neighbors for future uses including ‘autonumbering’ of the

modules. We have implemented a system in which the modules communicate their IP

address to their immediate neighbors and the robot is able to self-discover the order in

which the modules are connected. This greatly aids in field maintenance and flexibility

of the robot as a research platform.

B.2.2 Electrical Interface

On the previous snake robot design the module interface was along the axis of rotation,

requiring us to create a custom connector to fit around the coaxial magnet used for
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position feedback. The SEA Snake design moves the module interface away from the

axis of rotation which has many advantages for the electrical interconnection. Because

we have more space for the interconnection we use spring contacts that mate with gold

plated PCB pads instead of very thin pins. This arrangement is much more tolerant to

misalignment, eliminating the problem of bent or broken pins. The new design also

moves the intermodule wiring terminations as far as possible from twisting motion

caused by joint rotation, greatly reducing the risk of fatigue failures at the crimp/solder

connections.

B.2.3 Motor Control

The SEA Snake is our first generation to include a brushless motor. We drive the motor

with an integrated single chip solution to which we add current sensing. The series

elastic member also required the addition of a second magnetic rotation encoder which

allows us to measure the deflection. We use a 48V system voltage and 36V motor

combined with thermal modeling to allow the system to safely exceed the continuous

operation ratings of the motor for brief periods.

B.2.4 Sensors

Every generation of our snake robot has benefited from rapid development in inertial

sensor technology driven by consumer electronics, with the current generation featur-

ing a single chip solution with 3-axis gyro, 3-axis accelerometer, and 3-axis magnetome-

ter which costs 1/3 the price of the 2-axis gyro from early in the previous generation.

We retained all the other sensing present in the previous generation including voltage

and temperature monitoring, but we also added a current sensor to measure the con-

sumption of the entire module in addition to the motor current measuring circuit. This

generation also adds externally visible PWM controlled RGB LEDs without sacrificing
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environmental sealing to provide immediate feedback on module status.

B.2.5 Camera Head

The use of Ethernet as the standard communication interface between modules enables

the use of readily available, IP security cameras as the basis for the head module

of the snake. In the Unified Snake architecture, the video was transmitted over a

dedicated, analog bus that supported only standard definition video. By moving to

an Ethernet-based camera, the video stream is piped over the same set of cabling as

the motion control commands. In addition, the bandwidth that is needed to transmit

a high definition video stream is a fraction of the total bandwidth available on the

system, paving the way for the use of multiple cameras and additional sensors.

The camera module that has been designed to be used for the SEA Snake is primarily

built around the circuit board and camera that were harvested from a commercially

available security camera. A custom circuit board was designed to provide power

to the camera, to support additional sensors such as an IMU and a pressure sensor,

as well as to control high-brightness LEDs for camera illumination. The camera and

electronics were packaged into a simple aluminum tube featuring the same standard

mechanical and electrical interface as the regular snake modules.

B.3 Firmware Overview

The SEA Snake robot is a research platform and is constantly reconfigured to support

new physical configurations, module types, and sensor types. In addition, researchers

with a range of experience must be able to use the platform for research in controls,

perception, and planning. To support these research goals, we developed a modu-

lar firmware that provides an API supporting both high-level and low-level control
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abstractions.

B.3.1 OS and Hardware Abstraction Layer

The core of the firmware is an RTOS that separates the setup and upkeep of vari-

ous hardware modules into separate threads. ChibiOS/RT1 was selected due to its

out-of-the-box support for STM32 Cortex processors and a hardware abstraction layer

supporting peripherals such as Ethernet (via the lwIP2 stack), serial, analog-digital

conversion, and pulse-width modulation. Each functional component of the module

is wrapped in a C++ class abstracting its setup and configuration into a statically-

initialized singleton. This wraps over the hardware abstraction layer provided by

ChibiOS, combining multiple hardware peripherals blocks related to each component.

For example, we internally initializes a serial interface, digital IO lines, and thread-

safety, but exposes only simple read and update functions. This allows non-technical

users to safely reconfigure hardware for specific purposes.

B.3.2 Communication

Modules communicate with each other and client software via Google Protocol Buffer3

messages. Protocol Buffers define a fixed serialization format for typed data structures

that is supported across multiple computing platforms. We ported the Google C++

library for Protocol Buffers to ChibiOS to allow messages to be encoded and decoded

on the SEASnake module.

Rather than providing remote-procedure calls (RPC), we define a single “meta”-

message which defines a number of optional fields that encode module parameters

and data streams. Any computing environment with Protocol Buffer support can then

1
http://www.chibios.org/

2
http://savannah.nongnu.org/projects/lwip/

3
https://code.google.com/p/protobuf/
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interact with the snake by sending and receiving streams of these meta-messages. An

advantage of this protocol is that it is fundamentally stateless and messages can be

handled transactionally, naturally supporting multiple concurrent asynchronous con-

nections.

This protocol is exposed identically over TCP sockets, UDP sockets, and the serial

interface between modules, allowing a variety of flexible communication strategies to

be used in various situations, depending on available bandwidth, required level of con-

trol, and interface hardware. Modules can propagate local information (such as topol-

ogy) by exchanging data over the serial interface to neighboring modules, while in-

expensive “dumb” components which contain only low-speed microcontrollers can be

bridged to Ethernet via neighboring modules to implement low-cost special-purpose

functions.

B.3.3 Motion Control

Modules support angular position, velocity, and torque control through cascaded PID

control, as shown in Fig. 8.6. Each PID controller runs at 1kHz, although target set-

points may be updated less frequently, typically at 100 - 200 Hz. Independent position

and velocity outer loops generate torque commands, which are combined with a de-

sired feed-forward torque to define a setpoint for output torque which is maintained

by the inner torque controller.

The inner torque controller is able to directly compare desired and actual output

torque by directly observing spring deflection as the difference between the two en-

coder positions. This error is used to compute a PWM command to the motor which

applies appropriate torque to the input of the spring and gear train.

In the proportional controller, additional features were added to help compensate

for common geartrain nonlinearities, as illustrated in Fig. B.8. To prevent oscillations
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Figure B.8: The modified proportional controller, showing the effect of the deadzone and punch
parameters on the output.

due to gear blacklash and sensor noise, we added a ‘deadzone’ within which errors are

assumed to be zero. To overcome geartrain stiction, a ‘punch’ factor (directional offset

represented by the blue dotted line) was added to help with stiction in the gear train.

Finally maximum output limits are also set for each controller. The dashed red line in

Fig. B.8 shows the output of a theoretical proportional controller, the black solid line

shows the output of our actual implementation. To mitigate windup of the integral

term we limit its output to the difference between the PD output and the a set output

level [67]. For example, using this method, if PD control already reaches this level the

integral term is reduced to 0.

B.3.4 Thermal Modeling

An important challenge for mobile robots is to safely extract as much performance as

possible out of their actuators. For brushless motors, the primary limitation on per-

formance is heat buildup in the motor windings [95]. We use online estimation of

each module’s motor winding temperature to fully exploit the motor’s performance

envelope beyond the continuous duty ratings. Figure B.10 shows a plot of the power
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Figure B.9: The response of the angular position (top), velocity (middle), and torque (bottom)
to a step input in position. This was performed on an unloaded module, and as such the torque
readings mostly reflect the static friction of the module’s shaft seals.

dissipation and estimated temperature of the motor windings while the motor is re-

peatedly stalled. The estimated winding temperature is based on a temperature sensor

near the motor, the sensed current draw of the motor, and a model of the internal

thermal resistances and capacitances of the motor similar to the method presented in

[94].

B.4 Conclusion and Future Work

The SEA Snake currently consists of a series of extremely capable 1-DOF modules.

However, there are a number of avenues of future work. These consist of ongoing

improvements to the existing modules, mostly in firmware, and the development of

different modules that share the electrical, mechanical, and software interfaces detailed
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Figure B.10: Top: Estimated temperature of the motor windings in a SEA Snake module, based
on the thermal model. Bottom: Dissipated motor power based on the measured current draw
and the resistance of the motor’s windings.

above.

The most exciting avenue for future work will be the creation of a number of

new modules for the snake robot, based on the modular interface. Possible future

modules include different head modules with cameras and other exteroceptive sens-

ing, battery and wireless communication modules for tetherless operation, tracked or

wheeled modules for improved mobility in rough terrain, and ‘hockey puck’ modules

that expose general purpose inputs and outputs to easily test external sensors like force

sensing skins.

We feel the architecture we have developed is general-purpose enough that topolo-

gies other than a snake may be feasible. For example, connecting a number of these

modules together to a central chassis would enable the rapid prototyping of a field-

ready legged robot with torque and position control on each of its joints.
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Chapter 4

Robust State Estimation

To help provide better feedback and improve an operator’s situational awareness, we

have integrated MEMS accelerometers and gyros into each module of our snake robots.

Prior work from our group has already used an extended Kalman filter (EKF) to fuse

these distributed sensors and achieve an estimate of the robot’s pose [76]. By using

knowledge of the robot’s cyclic controller (gait) and taking advantage of an averaged

body frame that we call the virtual chassis, we have been able to estimate a snake robot’s

orientation, even when it undergoes highly dynamic motions.

Unfortunately, our previous work has limitations in terms of its robustness in real-

world field use. Frequent communication dropouts or corrupted data from the mod-

ules would sometimes cause the EKF to diverge. Additionally, the need for the state

estimator to have explicit knowledge of the robot’s gait equation means that it has to

be tightly integrated with the gait framework that we use for control. This work ad-

dresses these issues with two contributions. First, we formulate the state estimation

problem in a way that leverages redundancies in the proprioceptive information pro-

vided by the robot’s joint angle encoders and inertial sensors. In particular, we are able

to redundantly estimate the robot’s kinematic state, the angles, angular velocities, and

angular accelerations of the robot’s joints) by using the inertial sensors in each module
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Figure 4.1: The Unified Snake robot, with markers attached for ground-truth motion capture.

to complement the readings from each module’s joint angle encoders. Second, we in-

troduce a novel outlier detector that can identify corrupted measurement data with a

minimal amount of tuning.

The methods and results in this thesis are an expansion of previous preliminary

results in state estimation [79]. Previous work assumed a second-order process and

measurement models and static process and measurement noise. In order to better

model the sensor data from the robot, this work moves to third-order kinematic mod-

els with noise models that are adjusted dynamically based on the estimated state. This

work also examines how the choice of body frame affects the accuracy of state estima-

tion and presents an alternative method for calculating an averaged virtual chassis body

frame. New results are presented for these improvements, and we provide analysis of

the practical benefits of distributed redundant sensing for robots.

4.1 Choice of Body Frame

In previous work [75, 76] we have demonstrated the benefits of using an averaged body

frame that we call the virtual chassis. The virtual chassis is a body frame that is aligned
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Figure 4.2: A montage of the robot in sidewinding, shown in five different positions spaced
evenly throughout one complete gait cycle. The top row of images show the pose of the robot
in a body frame fixed to the head link. The bottom row shows the pose corresponding to the
virtual chassis body fame at the same points in the gait cycle.

with the principle components of the robot’s overall shape, as shown in Fig. 4.2. The

calculation of this body frame is performed as part of the measurement model at every

iteration of the filter, using an SVD to identify the principle components of the robot’s

shape [76]. Details on the calculation of this body frame are presented in Appendix A.

The virtual chassis body frame has the advantage that it approximately separates

the robot’s internal shape changes from its external motions in the world, enabling

more accurate and stable state estimation with generic constant velocity process mod-

els. Additionally, the state of the snake robot in this body frame is more intuitive to

the operator, since the notions of up-down and left-right are aligned with the overall

shape of the robot (Fig. 4.3). We have leveraged this overall shape alignment of the

virtual chassis to infer ground contact for simple kinematic motion models [16, 17],

and we rely on it heavily as a visualization tool for designing new gaits and motions.

Results are presented in Section 4.5 on the effect that the choice body frame has on

the accuracy of state estimation. We investigate four different choices of body frame.

In addition to two different formulations of the virtual chassis, we use a body frame

fixed to the head module of the robot, and a body frame where the origin is at the

geometric center of the robot (as is done in the virtual chassis) but the orientation is
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Figure 4.3: An example of the virtual chassis body frame for various shapes of the snake
robot. Because the body frame is aligned with the principle components of the robot’s shape,
it helps separate the robot’s internal shape changes from its external motions, improving the
performance of lower-fidelity models for state estimation.

fixed to the orientation of the head module.

4.2 State Estimation

Snake robots are unique in both their locomotive capabilities as well as their challenges

to estimation and control. Previous work from our group demonstrated accurate esti-

mation of a snake robot’s orientation using the robot’s proprioceptive sensors [79]. To

explore more state of the art techniques, we implemented a UKF and a SSUKF in addi-

tion the conventional EKF, although we found that all three methods worked equally

well. All three filters used the same process and measurement models, as well as the

same values for process and measurement noises. An additional modification from

[79] is that this work moves from a second-order to third-order model for the robot’s

process and measurement models.
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4.2.1 Kalman Filter

All of the filters presented in this thesis extend the Kalman filter to non-linear systems.

At the heart of the filter are the state estimate, x̂k, its covariance, Pk, the robot’s sensor

measurements, zk, and the non-linear process and measurement models. The process

model, f , is a function that predicts the state of the robot given the state at a previous

timestep,

x̂k|k�1 = f (x̂k�1|k�1, Dt). (4.1)

The measurement model, h, is a function that generates expected sensor measurements,

ẑk, given the predicted state x̂k|k�1,

ẑk = h(x̂k|k�1). (4.2)

In the EKF, the state estimate is propagated through these non-linear functions, and

the functions are linearized at each iteration of the filter, resulting in the Jacobians Fk

and Hk that are first-order approximations of the functions f and h. This allows the

propagation of the state covariance between timesteps and the processing of measure-

ments into the state estimate.

In the UKF and SSUKF, a deterministically sampled set of states, called sigma

points, are chosen, propagated through the models, and then averaged in a way that

directly calculates the state mean and covariance. For an n-dimensional state vector,

the UKF uses 2n + 1 sigma points, and the SSUKF uses n + 2 sigma points.

In all of these filters, a process noise matrix, Q, is added to the state covariance at

every prediction step. A measurement noise matrix, R, is similarly used to tune the

confidence in sensor measurements. The parameters in Q and R are used to tune the

relative confidence of different states and measurements with respect to each other.
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The process model noise for all of the filter variants in this thesis is assumed to be

additive, and is incorporated before the state covariance is pushed through the process

model at each iteration. In both the EKF [111] and the UKF [51], this allows uncertainty

to be added only to the highest derivatives of state variables, relying on the process

model to appropriately distribute uncertainty to the lower derivatives.

4.2.2 State Vector

The state of the filter tracks the robot’s orientation, its inertial frame acceleration, and

its shape variables,

xk = [ ak qk wk ẇk qk q̇k q̈k ]T (4.3)

where a = [ ax ay az ] is robot’s world frame acceleration, q = [ q1 q2 q3 q4 ] is the

quaternion that describes the world frame orientation, w = [ wx wy wz ] is the robot’s

body frame angular velocity, and ẇ = [ ẇx ẇy ẇz ] is the robot’s body frame angular

acceleration.

For the rest of the state vector, assume a robot with m links with corresponding

joint angles, q = [ q1, . . . , qm ], velocities, q̇ = [ q̇1, . . . , q̇m ], and accelerations, q̈ =

[ q̈1, . . . , q̈m ]. This provides a third-order description of how the robot’s shape changes

over time.

Because the measurement model that generates expected IMU measurements re-

quires the robot’s full kinematic state, including the robot’s joint angles, velocities, and

accelerations in the state vector means that the filter can iterate at every timestep, even

if the robot does not report all (or even any) of its joint angles at a given timestep. Fur-

thermore, this formulation of the state means the the joint angles are being redundantly

estimated both directly, by observing the joint angles, and indirectly, by observing the

inertial readings at adjacent modules. For example, the gravity vectors observed by the
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accelerometers in two adjacent modules can indicate the joint angle of a module, and

the difference in angular velocities observed by the gyros in adjacent modules observe

a module’s joint angular velocity. In the Section 4.5, we show that this allows us to

track the angles of modules that fail to provide feedback, even for extended periods of

time.

4.2.3 Process Model

The process model we use for state estimation can be thought of as a generic damped

acceleration model that does not explicitly model the interaction of the world. As a

third-order model, the highest-order derivative in the state is acceleration.

Acceleration is estimated in a world frame assumed to be damped according to

âk = e�tDtâk�1. (4.4)

In our experience acceleration must be strongly damped (t ⇡ 20) for the filter to per-

form well on the real robot. We should note that this damping was necessary for

estimating the linear acceleration largely because it is extremely difficult to separate

out linear acceleration from sensed acceleration acceleration due to gravity using only

IMUs. The combination of noisy accelerometers, having only an approximate estima-

tion of orientation, and the fact that gravitational acceleration is typically an order of

magnitude greater than linear acceleration means that the estimate of acceleration is

usually quite poor. Solutions to this problem usually rely on well-identified models,

extremely accurate IMUs, particularly gyros, or observing the robot’s linear position

or velocity with a visual sensor or motion capture system.

Previous versions of our state estimators [75] actually assumed zero world frame ac-

celeration of the robot. Ignoring body frame acceleration resulted in good performance

at slow speeds, but became problematic when the snake robot executed fast motions.
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We have found that this damped third-order model provides a tunable compromise

between a stable but biased second-order model and the more technically accurate but

often unstable third-order model. The estimate of angular acceleration did not need to

be damped, since the numerous gyros in the robot directly observe the robot’s angular

velocity.

The quaternion, q̂k, representing the orientation of the robot is updated based on

the estimated angular velocities at that timestep. We perform a discrete-time update

developed by van der Merwe et al. [97]

q̂k = exp(�1
2

YDt) q̂k�1 (4.5)

Y =

2

66666664

0 wx wy wz

�wx 0 �wz wy

�wy wz 0 �wx

�wz �wy wx 0

3

77777775

. (4.6)

The body frame angular velocities of the robot, w, are assumed to update according

to the body frame angular accelerations, and the body frame angular accelerations are

assumed to be constant across timesteps,

ŵk = ŵk�1 + ˆ̇wk�1Dt (4.7)

ˆ̇wk = ˆ̇wk�1. (4.8)

The shape of the robot is also estimated in the state of the filter. This is achieved by

estimating the snake robot’s joint angles, q̂, their angular velocities, ˆ̇q, and their angular
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accelerations, ˆ̈q. These are updated by according to standard third-order model,

q̂k = q̂k�1 + ˆ̇qk�1Dt +
1
2

ˆ̈qk�1Dt2. (4.9)

ˆ̇qk = ˆ̇qk�1 + ˆ̈qk�1Dt. (4.10)

ˆ̈qk = ˆ̈qk�1. (4.11)

The angular velocities of the joints are further modified by a weighted combination

of the estimated velocities from the third-order model integration, ˆ̇qk, and the com-

manded angular velocities at the current timestep, q̇cmd
k ,

ˆ̇qk = (1� l) ˆ̇qk + lq̇cmd
k . (4.12)

Even though ˆ̇qk is modified in this equation we have overloaded the notation, since

the filter could be run without this step if commands are unavailable. The weighting

parameter l ranges from 0 to 1 and controls how much of the commanded angular

velocity is mixed into the state. A value of 1 essentially overwrites the estimated joint

angle velocities at each iteration, whereas a value of 0 turns the filter into a constant-

velocity model that has no knowledge of the robot’s controls. Since the robot’s joints

often deviate significantly from their commanded trajectories, this parameter is set

relatively low, around 0.25.

4.2.4 Measurement Vector

Our latest snake robot provides feedback measurements from single-axis joint angle

encoders, 3-axis accelerometers and a 3-axis gyros located in each module. This means

that the vector of measurements in the filter has 7m dimensions, where m is the total

number of modules in the robot,
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zk = [ fk ak gk ]T. (4.13)

In (4.13), each element is a vector containing the measurements of a corresponding

sensor type for all the modules throughout the snake robot. f is the robot’s joint angle

measurements from its encoders, a is the accelerometer measurements, and g is the

gyroscope measurements.

4.2.5 Measurement Model

Our measurement model is a kinematic model that takes into account the robot’s shape

variables and its inertial state. In the following section, the superscript i indicates the

module for which a measurement is predicted and the hat operator denotes a predicted

measurement, rather than a sensed measurement from the robot.

Expected joint angle measurements are predicted directly from the estimated angles

in the state vector (4.3),

f̂k = q̂k. (4.14)

Using the estimated joint angles, q̂, and joint angle velocities, ˆ̇q, joint angle accel-

erations, ˆ̈q, accelerometer and gyro measurements for each module can be predicted

using the finite time-differencing approach detailed below. This approach allows us to

fuse all of the robot’s IMUs into a single estimate of the robot’s orientation as well as

couple the IMUs to the encoders to redundantly estimate the robot’s shape.

Accelerometers have the property that they measure an acceleration due to gravity

in addition to lateral acceleration due to motion. For this reason our model treats

these two sources of acceleration separately and sums them to generate the predicted

accelerometer measurement for each module,
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âi
k = âi

gravity + âi
motion. (4.15)

Acceleration due to gravity is predicted by transforming the estimated gravity vector

ĝ from the world frame into the frame of each module

âi
gravity = (Ŵi

k)
T(V̂k)

Tĝ (4.16)

where Ŵi is the estimate of the rotation matrix that describes the orientation of module

i in the body frame, and V̂ is the estimate of the rotation matrix representation of the

quaternion pose q in the state vector (4.5).

Acceleration due to a module’s motion is further split into two components,

âi
motion = âi

internal + (Ŵi
k)

T(V̂k)
Tâ (4.17)

Acceleration due to the robot’s internal shape changes in the body frame, âi
internal,

is predicted by double-differentiating the position of the module in the body frame,

based on the full kinematic state. Finally, the estimated world frame acceleration of

the entire robot is incorporated by rotating the world frame acceleration â from filter’s

state estimate into the frame of each module.

The predicted gyro measurements for each module are generated by differentiating

the orientation of the robot at two nearby timesteps [63]. If Ŵi
k and Ŵi

k�1 are rotation

matrices that describe the orientations of module i in the body frame at two timesteps,

then gyro measurements due to the robot’s motion in the body frame at two timesteps,
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k and k� 1 can be approximated by

2
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77775
⇡

Ŵi
k(Ŵi

k�1)
T

Dt
. (4.18)

The complete prediction for each gyro is the angular velocity from (4.18) plus the

robot’s body frame angular velocity from the current state estimate, (4.8), rotated into

the coordinate from of each module using Ŵi
k

ĝi
k = w̄i + (Ŵi

k)
Tŵk. (4.19)

This finite-differencing approach has allowed us to generate expected readings for all

of the robot’s IMUs and encoders, based on the current state estimate, x. While our

numerical approach somewhat computationally expensive, this part of the measure-

ment model has been implemented in C++ using the Eigen matrix library, allowing the

remaining sections of the filter to run in Matlab, in real time, on a standard desktop

computer.

4.2.6 State-Based Noise Adjustment

To improve the accuracy of the Gaussian noise assumption for the models and sensors,

the additive process and measurement noise matrices, Q and R, are modified based on

the current state estimate. Intuitively, if the robot is moving, the model should be less

certain about the current estimate than if the robot is standing still. This matches real-

world observation, where it can be readily observed that readings from the robot’s

sensors, particularly the accelerometers, are much noisier during fast motions than

when the robot is still or moving slowly.
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The process noise parameters are inflated based on the current state estimate and

corresponding tuning parameters. The block of the process noise matrix corresponding

to body frame angular acceleration, ˆ̇w, is adjusted according to the magnitude of body

frame angular acceleration, ˆ̇w, and body frame angular velocity ŵ. The additive noise

for joint angle accelerations, ˆ̈q, are similarly inflated according to the squared value of

the estimated joint angular accelerations, ˆ̈q, and joint angular velocities, ˆ̇q.

The measurement noise parameters are also inflated based on the current state esti-

mate. The additive noises for the accelerometers, a, in each module are inflated based

on the magnitude of the gyro measurements for that module. Of all the modifications

in this section, this in particular led to better performance of the filters compared to

our previous work, since the accelerometers become particularly noisy when the robot

is in motion.

4.2.7 Using Partial Measurement Data

Due to noise in the robot’s communications, around 5% of the robot’s sensor data

is missing at a given update step. In the case of intermittent electrical connections

between the modules this percentage can increase even further. Furthermore, when

using the snake robots aggressively in the field, modules frequently reset due to their

electrical protection circuitry. In these cases an individual module may drop out for

2-3 seconds before rebooting. During this time the module’s joint is rotating freely, but

there is no direct measurement of its joint angle. Thus, it is desirable to have a method

that uses the robot’s myriad of other sensors to mitigate these problems.

Missing measurement data can be accommodated in any Kalman filter by only pre-

dicting expected measurements for the observed sensors and appropriately resizing the

innovation covariance matrix during the filter’s update step. An alternative approach

that is simple to implement is one where the missing measurement data is replaced
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with a value of 0, and that measurement’s corresponding value in the additive mea-

surement noise matrix, R, is increased to 106 for that timestep. This causes the filter

to effectively ignore the measurement during the update step and is often simpler to

implement than dynamically resizing the covariance and state at every iteration.

4.3 Outlier Detection

As mentioned in the previous section, the Kalman filter can be easily modified to ac-

commodate incomplete measurements during its iteration. However, corrupted mea-

surements and outliers that violate the filter’s assumption of Gaussian noise are much

more problematic [89, 90]. In robotic systems that undergo heavy field use, it is not

uncommon for sensors to become unresponsive or miscalibrated. And because these

erroneous measurements from an unresponsive sensor can severely disrupt the state

estimate, it is beneficial to detect such outliers automatically from the observed sensor

data.

4.3.1 Kalman Filter Update

The Kalman filter, and its non-linear variants, updates the estimated state based on a

weighted average that takes into account the measurement innovation, which is the

difference between the expected measurements, ẑk, generated from the measurement

model, and the observed measurements, zk, from the robot’s sensors,

x̂k|k = x̂k|k�1 + Kk(ẑk � zk),

The proper weighting of the update is determined by the Kalman gain matrix, Kk.

In the calculation of this matrix, there is an intermediate step where the innovation

covariance, Sk, is calculated. The relevant steps in the respective EKF and UKF /
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SSUKF algorithms are presented here for clarity.

In the linear Kalman filter and the EKF, the innovation covariance and Kalman gains

are determined based on the estimated covariance and the Jacobian of the measurement

model,

Sk = HkPk|k�1HT
k + R,

Kk = Pk|k�1HT
k S�1

k .

In the UKF and SSUKF, the innovation covariance and Kalman gains are determined

directly from matrices, Pzz
k and Pxz

k , derived from the sampled sigma points [39], and

additive measurement noise,

Sk = Pzz
k + R,

Kk = Pxz
k S�1

k .

The Mahalanobis distance for the residual error between the predicted measure-

ment vector, ẑk = h(x̂k|k�1), and the observed measurement vector, zk,

dk = (ẑk � zk)
TS�1

k (ẑk � zk),

gives an indication of the likelihood of the measurements.

4.3.2 Algorithm

To detect outliers our method computes, for each sensor s, a Mahalanobis distance that

excludes sensor s from the measurement vector. In the following section we will use
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superscripts �s to clarify that they are quantities where sensor s has been excluded. To

exclude these elements, we define the following selection matrix,

Y�s =

2

64
IM⇥M 0M⇥3 0M⇥N

0N⇥M 0N⇥3 IN⇥N

3

75 ,

where M is the number of elements in the measurement vector zk that precede sensor

�s, N is the number of elements in zk that follow sensor �s, and 3 is the number of

elements in the measurement vector that correspond to sensor �s (the x � y� z axes

of an accelerometer or gyro).

This process of excluding the elements of and calculating the Mahalanobis distance

of the remaining elements of
⇥
S�s

k
⇤�1 incorporates information on how the sensors are

coupled by the process and measurement models. A simpler, more naive, alternative

to this approach would be to calculate the Mahalanobis distance of the 3 ⇥ 3 block

of
⇥
S�s

k
⇤�1 corresponding to each sensor directly. This assumes that each sensor is

independent, which in some cases may be an appropriate assumption.

The Mahalanobis distance associated with excluding sensor �s can be written as

follows,

d�s
k = (ẑ�s

k � z�s
k )T ⇥

S�s
k

⇤�1
(ẑ�s

k � z�s
k ), (4.20)

where z�s
k = Y�szk, ẑ�s

k = Y�sẑk, and S�s
k = Y�sSk(Y�s)T.

For each excluded sensor�s, a Mahalanobis distance d�s
k that is significantly smaller

than dk means that the excluded component is likely to be an outlier. Sorting the set

of distances for each sensor ranks the sensor measurements in order of likeliness. We

then discard a fixed number of the least likely sensor measurements (the ones that are

most likely to be outliers) and calculate the mean, µk, and standard deviation, sk, of the

remaining Mahalanobis distances, presumed to be inliers. For our implementation, we
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choose to discard 4 sensors from the measurement vector, or one quarter of the robot’s

sensors.

Finally, for each sensor �s, a new metric is computed that compares the Maha-

lanobis distance d�s
k to the mean and variance of the Mahalanobis distances of the

presumed inliers,

w�s
k =

�
d�s

k � µk
�2

s

2
k

.

We then consider all sensors, including the initially discarded sensors, and decide

whether each one is an inlier or outlier by thresholding the metric w�s
k at some level, x.

When w�s
k is large, the sensor is likely to be an outlier and when this metric is small,

the sensor measurement is likely to be an inlier. If the measurement is determined to be

an outlier, the innovation covariance is resized to exclude the measurement, just as is

done for missing data. Alternatively, a simple approximation to dynamically resizing

the measurement innovation is to simply set the measurement’s corresponding element

in R to a comparatively large value, such as 106.

In a sense, w�s
k is a Mahalanobis distance of Mahalanobis distances, and is in many

ways akin to data clustering. Since this value is based on the overall uncertainty of

all of similar sensors in the robot, we are able to pick a single static threshold that is

valid at all times. For example, if the process model predicts the state of the robot

poorly, or if the filter is poorly tuned, all of the measurements might have a large

absolute uncertainty. However, this method relies on the relative uncertainty between

measurements to determine outliers.

Compared to thresholding on the Mahalanobis distance alone, outliers with this

method tend to be extremely obvious, often greater than 100 standard deviations from

the mean. Setting the detection threshold, x, to a value between 10 and 50 has been

shown to work well for our system, regardless of sensor type or the robot’s motion.
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Finally, since this algorithm makes the assumption that some fraction of the sensors

must be inliers, it has the benefit that it ensures an upper limit on the number of

sensors that can be discarded as outliers, as long as x is not set too low (setting x > 3

standard deviations). This allows outlier detection to be performed even when a filter

is still being debugged or is poorly tuned, and the absolute Mahalanobis distances

could be unusually large or small.

4.3.3 Efficient Implementation

One drawback of the outlier detection algorithm, as presented thus far, is the need to

invert S�s
k for each sensor in order to compute d�s

k as computed in (4.20). For our 16-

link snake robot that has 2 inertial sensors per module, the accelerometer and the gyro,

performing this for a typical 16-link robot would require 32 inversions of a 109-by-109

matrix. This is a significant computational expense during real-time operation.

Ideally, it would be beneficial to compute the inverse of the innovation covariance,

S�1
k , only once and then to somehow efficiently infer, for each sensor s, the matrix

⇥
S�s

k
⇤�1. By definition,

⇥
S�s

k
⇤�1

=
⇥
Y�sSk(Y�s)T⇤�1. But unfortunately,

⇥
S�s

k
⇤�1 6=

Y�sS�1
k (Y�s)T, otherwise we would compute

⇥
S�s

k
⇤�1 directly from S�1

k . This is not

possible because Y�s is not an orthogonal matrix.

Instead, we can leverage the Woodbury matrix identity [72], to perform a low-rank

correction to the relatively large matrix S�1
k . This allows us to efficiently obtain the

matrix
⇥
S�s

k
⇤�1, which we require for computing the Mahalanobis distance in Eq. (4.20).

First, we define the following matrix that can be used to rearrange the elements of the

innovation so that the elements corresponding with sensor �s are last,

G�s =

2

64
 ���� Y�s ����!

03xM I3x3 03xN

3

75 ,
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Using this matrix, we can rearrange the inverse of the innovation covariance matrix as

follows,

[S0k]
�1 =

h
G�sSk(G�s)T

i�1
= G�sS�1

k (G�s)T =

2

64
A B

BT C

3

75 .

Using the Woodbury matrix identity to invert the matrix [S0k]
�1, we obtain,

S0k =

2

64
(A� BC�1BT)�1 ⇠

⇠ ⇠

3

75 .

Above, the ⇠ indicates regions of the matrix from the Woodbury matrix identity that

are omitted for clarity. Since the upper left component of S0k is equal to the matrix S�s
k ,

due the existence of Y�s in G�s, we can simply invert the upper left component of S0k,

⇥
S�s

k
⇤�1

= A� BC�1BT. (4.21)

In (4.21), C is the inverted covariance of the sensor being excluded. This form

only requires the inversion of C, which in our case is 3-by-3. Thus, we can efficiently

calculate the inverse of the innovation covariance,
⇥
S�s

k
⇤�1 for each test of a sensor s

by performing a small update to the full inverse of the innovation covariance matrix

S�1
k . A summary of the algorithm that we use for outlier detection is provided in

Algorithm 1.

4.4 Experiment

To test the accuracy of the different state estimators, multiple trials of the snake robot

were performed in a Vicon motion capture system. During these trials, the robot was

remotely controlled through a wide variety of motions, some of which were quite fast
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Figure 4.4: A montage of the snake robot’s movements in one of the motion capture trials. The
robot does a combination of motions that include slithering forward, sidewinding right and
left, and turning in place clockwise and counter-clockwise. This montage corresponds to the
plots that are presented in the results section.
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Figure 4.5: A comparison of the orientation of the head module from motion capture (solid
line) compared to the state estimate of the filter (dashed line). The results presented are for the
SSUKF, although the UKF and EKF performed similarly.
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Algorithm 1 Outlier Detection Procedure
1: for each �s do
2: S0�1

k  G�sS�1
k (G�s)T

3: [A, B, C] extractBlocks
⇣

S0�1
k

⌘

4:
⇥
S�s

k
⇤�1  A� BC�1BT

5: z�s
k = Y�szk

6: ẑ�s
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7: d�s
k = (ẑ�s

k � z�s
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S�s
k

⇤�1
(ẑ�s

k � z�s
k )

8: end for
9: [µk, sk] statistics_of_inliers

�
d�s

k for all s)
10: for each �s do

11: w�s
k  

(d�s
k �µk)

2

s

2
k

12: if w�s
k > x then

13: Mark s as outlier
14: end if
15: end for

and abrupt. The pose of the head module was tracked by the motion capture system

to provide ground truth. This was then compared to the filter’s estimate for pose of

the head module, which is dependent on the estimate of the entire state of the robot.

Figure 4.5 shows a montage of the robot during one of these trials.

To demonstrate the advantages of redundant state formulation, we simulated miss-

ing data and complete module dropouts. To test the outlier detection algorithm, we

simulated corrupted data on the robot’s inertial sensors similar to what is seen when

a module is poorly calibrated or programmed incorrectly.

4.5 Results

Overall, the EKF, UKF and SSUKF performed comparably. The filters were all able

to run in real time on the feedback data coming from the robot, about 20 Hz. A

comparison of the errors of the estimated head module orientation, converted to Euler

angles, for each filter is presented in Table 4.1. This is the averaged error for 3 different
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Filter Performance Comparison
Euler Angle Errors (degrees)

Roll Pitch Yaw
EKF 3.3 3.9 13.4
UKF 3.2 3.8 11.3
SSUKF 3.2 3.8 10.9

Table 4.1: The accuracy of various non-linear Kalman filters in estimating the Euler angle
orientation of the head module of the snake robot. All of the filters perform comparably.

motion capture trials where the robot was driven in a wide variety of speeds and

directions. The accuracy in yaw is significantly worse than pitch and roll because it is

being dead-reckoned based on the filter’s integration of estimated angular velocities.

Figures 4.5 and 4.6 show a comparison of the estimated head module orientation

from the SSUKF compared the motion capture data for one of the trials. To provide a

meaningful comparison the quaternion orientations of the head have been converted

into Euler angles.

4.5.1 State-Based Noise Adjustment

Table 4.2 shows the performance of the EKF, UKF, and SSUKF without dynamically ad-

justing the process and measurement noises based on the estimated state, as described

in Section 4.2.6. There was no measurable benefit of tuning the noises dynamically

for pitch and roll, and all of the filters performed comparably. However, there was a

significant improvement in the dead-reckoned yaw performance for all of the filters.

We believe this is primarily because the state-based noise adjustment allows the gyros

being trusted more heavily for fast motions, while at the same time trusting the more

noisy accelerometers less.
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Filter Performance - Without
Dynamic Noise Adjustment
Euler Angle Errors (degrees)

Roll Pitch Yaw
EKF 2.9 3.4 36.3
UKF 2.9 3.4 34.7

SSUKF 3.1 3.3 24.3

Table 4.2: The accuracy of the various filters in estimating the orientation of the head module
of the snake robot, without dynamically adjusted process and measurement noise. The filters
perform similarly as when noises are not dynamically tuned, with the exception that dead-
reckoned yaw estimation is significantly worse.

SSUKF Performance - Missing Data
Euler Angle Errors (degrees)

Roll Pitch Yaw
Baseline 3.2 3.8 10.9
25% Missing 3.6 3.9 9.4
50% Missing 5.6 5.8 26.5
75% Missing 9.0 11.1 57.5

Table 4.3: The accuracy of the SSUKF in predicting the Euler angle orientation of the head
module of the snake robot. The filter performs well even with half of the robot’s data being
excluded. Even when 50% of the data is excluded the filter continues to run well, although
accuracy begins to be degraded for larger amounts of feedback loss.

4.5.2 Partial Measurement Data

Under normal circumstances, our snake robot drops about 5% of its data due noise

and errors in its communications. To simulate more adverse conditions, we randomly

selected and removed higher proportions of the robot’s feedback data. The results are

summarized in Table 4.3.

We simulated prolonged module dropouts by eliminating all of the feedback data

(joint angles, gyros, accelerometers) from a module in the robot for the entirety of the

same data set shown in Fig. 4.5 and Fig. 4.6. For the data presented here, the joint

angles and inertial sensors were unavailable for the entire run in modules 3, 6, 7 and

12. Even if up to 4 modules were eliminated the filter still converged and estimated
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SSUKF Performance - Dropped Modules
Euler Angle Errors (degrees)

Roll Pitch Yaw
Baseline 3.2 3.8 10.9
Missing 4 Modules 4.0 4.3 59.1

Table 4.4: The accuracy of the SSUKF in the presence of missing data from multiple modules
for the entire run. These results are for the same trial as shown in Fig. 4.4. Feedback from a
quarter of the snake robot (modules 3,6,7 and 12) was eliminated.
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Figure 4.7: A comparison of the actual and estimated joint angle for module 7 in the snake
robot. No feedback was available to the filter for modules 3,6,7 and 12 during the entire trial,
but the joint angle is able to be estimated from the feedback from the remaining modules.

the pose of the head reasonably well (Table 4.4).

The accuracy of a missing joint angle being estimated by the filter is shown in more

detail by Figs. 4.7 and 4.8. While the error of the estimated joint angle is as much as

10� at times, the filter does a reasonable job of estimating the joint angle even while

the robot is undergoing significant motion. It is also worth noting that the estimated

uncertainty of the joint angle is appropriately captured by the filter.

4.5.3 Different Body Frames

Based on our previous experience, we believe that the choice of body frame can effect

the accuracy of state estimation, and as such we ran the SSUKF in four different body

frames. As a baseline comparison, the first body frame was fixed to the head module
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Figure 4.8: The error for estimating a missing joint angle for an entire trial. The red line is the
error of the estimated angle, and the dotted lines are the 3s bounds of the estimated covariance.
After the filter converges it tracks the joint angle reasonably well, with a mean absolute error
of 3 degrees.

of the robot. The second was a body frame where the orientation was fixed to the head

module, while the origin was located at the geometric center of the robot. The last

two body frames were the original virtual chassis [77] and the modified virtual chassis

presented in Appendix A.

The results of using these different body frames in the SSUKF are presented in Table

4.6. Compared to our previous work that used simpler process models [75], the benefits

of an averaged body frame over a fixed frame were less pronounced. However, we do

note that the three averaged body frames provide a varying degrees of improvement in

dead-reckoning the robot’s yaw. We suspect that this improvement is due to the naive

third-order kinematic model being a more accurate prediction of the averaged motion

of the robot than the motion of any individual module.

4.5.4 Redundant IMUs

Finally, we wanted to better quantify any improvements in estimating the robot’s ori-

entation that result from having a large number of IMUs distributed throughout the

robot. Figure 4.9 shows the error of the estimated head module orientation using in-

creasing numbers of IMUs, starting at the first module behind the head and adding

more IMUs tail-ward.

It is interesting to note that there is very little improvement in the estimated pitch
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SSUKF Performance - Corrupted IMU Data
Euler Angle Errors (degrees)

Roll Pitch Yaw
Outlier Detection OFF 6.7 4.7 30.7
Outlier Detection ON 3.3 3.8 12.4
Baseline (Clean Data) 3.2 3.8 10.9

Table 4.5: The accuracy of the SSUKF when accelerometer and gyro feedback from quarter of
the robot (modules 3, 6, 7, and 12) was corrupted. With the outlier detection, the filter performs
almost as well as with clean data.

and roll, while there is a dramatic improvement in dead-reckoned yaw. This indicates

that for practical purposes the main limitation of low-cost IMUs is the bias drift of

the gyros. The improvement in yaw by incorporating n gyros roughly follows the
p

n

trend we would expect, up until about 8 modules. We suspect that past this point,

the noise in the velocities of the robot’s joint angles limits the usefulness of having the

gyros distributed throughout the moving modules of the robot. However, we should

point out that having these extra IMUs is still advantageous for making up for missing

joint angle measurements or failed modules as shown in Section 4.2.7.

4.5.5 Outlier Detection

To test our method of outlier detection, feedback data from the IMUs was corrupted by

having its sign reversed for the entire trial. For the data presented in Table 4.5, modules

3, 6, 7 and 12 had their IMU data corrupted. When running the outlier detection, the

filter performs on par with its normal baseline performance. However, it is worth

noting that the redundant state formulation is robust enough to remain stable even

without the outlier detection, albeit with degraded performance.
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SSUKF Performance - Different Body Frames
Euler Angle Errors (degrees)

Roll Pitch Yaw
Head-Fixed Frame 5.4 4.2 17.4
Head-Fixed Orientation / COM 4.1 4.1 14.0
Virtual Chassis [76] 3.2 3.8 10.0
Alternate Virtual Chassis 3.1 3.6 10.8

Table 4.6: The accuracy of various of the SSUKF in estimating the Euler angle orientation
of the head module of the snake robot using different body frames for the filter process and
measurement models. An averaged body frame improves performance slightly, although the
amount improvement depends heavily on the nature of the robot’s motion.
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Figure 4.9: Error of the estimated head module orientation using increasing numbers of IMUs
for the state estimate. Using additional IMUs provides little improvement in the estimation of
pitch and roll, but greatly reduces the dead-reckoning error in yaw.
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