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1 Statement Of The Problem Studied

Our research addressed how robots can achieve high performance levels. Major challenges include

the computational cost of planning high performance behavior, and modeling errors and unmodeled

dynamics. We used a variety of approaches based on optimal control and libraries of learned or

planned behavior to enable robots to achieve skilled performance.

In our test domain, legged locomotion through rough terrain, we use a hierarchy of abstracted

models and planning horizons to both consider a wide range of options and generate robust plans.

In our hierarchical planning approach, the most abstract model ignores dynamics and chooses the

path of a point (typically the robot center of mass (COM)) across a 2D cost map. This high level

plan would have a long planning horizon, planning at least to the perception horizon and possibly

further using any available map or building plan information. Many groups including us have used

Dynamic Programming to implement search at this level [13]. The next level down searches for

footsteps compatible with the COM path [10, 28, 29], typically using A* to search at this level, with

the value function generated by the higher level Dynamic Programming serving as the heuristic

function. This plan would only go as far as robot perception could see the terrain ahead. The next

level down would search for a COM trajectory (now including velocity) and orientation trajectory

that was compatible with the footstep plan [22], typically planning as far as the footstep plan

reached. Footsteps are locally adjusted during this search process. It is at this level that approaches

like Preview Control using the Linear Inverted Pendulum Model (LIPM) can be applied. Other

useful but simplified models include decoupled dynamics derived by considering leg motion in

the sagittal and coronal planes [26, 27], a 3D flywheel representing the upper body [21], and total

angular momentum [20]. This plan would also only go as far as robot perception could see the

terrain ahead. The bottom level generates a complete and fully coupled trajectory for the entire

robot consistent with a full model of the robot dynamics. This plan would typically be computed

for one or just a few steps. Obstacle avoidance would be implemented at each level. If a level was

unable to find a feasible plan due to obstacles, or could only find high cost plans, it would provide

the failed plan information to the higher level so that the higher level could generate a different

plan that avoided the failure. For example, if a COM or full body trajectory planner failed, it

would “poison” relevant footsteps and rerun the footstep planner to force it to choose a different

footstep sequence. Current approaches that do consider the full dynamics of the robot typically

only plan ahead for a short time interval using techniques like Quadratic Programming, due to the

computational cost of planning with the full robot dynamics [11, 24].

It has become clear that unmodeled dynamics are a major issue. Unmodeled dynamics can be

due to the presence of a torso, arms, head, or a jointed or flexible spine. Even if these body parts are

well-controlled with reasonable damping, their presence can drive other otherwise well-controlled

subsystems unstable or degrade performance. Combining simultaneous behaviors across the body

creates unmodeled dynamics for each subsystem. Other sources of unmodeled dynamics include

liquids in rigid or soft containers, non-rigidly attached (slung or tied) loads, and towed loads.

Ground dynamics and other contact dynamics (objects, people, and other robots) contribute un-

modeled dynamics, as does structural compliance. In biology, muscles, soft tissues, and flexible

joints are a major source of unmodeled dynamics. As a field we tend to exacerbate the problem

by ignoring actuator dynamics, ignoring state estimation dynamics, and by using simple or ap-
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proximate dynamics models. Electric motors have dynamics due to inductance and transmission

dynamics. Hydraulic systems have valve and oil flow dynamics. Series elastic actuators have the

dynamics of the resulting spring mass system. In control, it has been known that the dynamics of

a state estimator may drive an otherwise robust control design (for example an LQR design) un-

stable, and Loop Transfer Recovery Techniques (LTR) were developed to deal with this. In terms

of simplified models, center of mass models, LIPM models, planar models, and decoupled models

such as Raibert’s 3 part running control and our own decoupled walking control are common.

We are developed an approach that deals with unmodeled dynamics, based on gradient-based

policy optimization simultaneously using multiple models. We get efficiency from analytic gra-

dients, and robustness from designing with multiple models. This is an ideological switch from

using value iteration style optimal control design to policy optimization. We have done several

simulation studies that show the new approach is promising.

2 Humanoid Robot Implementation

Ben Stephens (graduated PhD student) led an effort to implement our control approaches on a hy-

draulic humanoid robot, the Sarcos Primus System [24]. He focused on the problem of controlling

push recovery for full-body force-controlled humanoid robots. The small base of support limits

the forces and torques that can be generated to recover balance. For large pushes, a change of

support can be achieved by stepping but cannot be performed instantaneously. A controller needs

to reason about future actions and the effects of strict constraints on the available contact forces.

The low impedance of the force-controlled joints allows the robot to achieve greater compliance

during interaction with other objects and the environment, but results in less stable balance.

2.1 Optimizing The Center of Mass Trajectory

Ben Stephens’s thesis demonstrated how a torque controlled robot can respond to large unknown

perturbations such as pushes and uneven or unstable ground. His thesis demonstrated the use of

simple models to approximate the dynamics and simplify the design of reactive balance controllers.

These simple models define distinct balance recovery strategies and improve state estimation. Push

Recovery Model Predictive Control (PR-MPC), an optimization-based reactive balance controller

that considers future actions and constraints using a simple COM model, is presented. This con-

troller outputs feasible controls which are realized by Dynamic Balance Force Control (DBFC), a

force controller that produces full body joint torques. Push recovery, walking and other force-based

tasks were tested both in simulation and in experiments on the Sarcos Primus hydraulic humanoid

robot. Specific contributions include the following. 1) Push recovery strategy decision surfaces

determined analytically by simple models: Using simple models of the robot dynamics and allow-

able reaction forces, the stability of certain push recovery strategies were described analytically

and used to determine which strategies to use based on the current state of the robot. 2) Push Re-

covery Model Predictive Control: Model predictive control was performed using simple models, a

special objective function and carefully chosen constraints to compute desired forces and footstep

locations that account for future actions and constraints. This controller is run continuously online

4



to reactively maintain balance, recover from pushes, and perform dynamic walking. 3) Dynamic

Balance Force Control: Full body joint torques was computed using simple models of the allow-

able contact and task forces and used to perform a variety of force-based tasks. 4) State estimation

with modeling error: Constructing Kalman filters by augmenting simple models with different

types of modeling error results in improved COM state estimation which is important for control.

5) Implementations on a hydraulic humanoid robot: The hydraulic humanoid robot is operated

in force-control mode by first determining desired joint torques based on a rigid body dynamics

model and then converting to a valve command using an independent joint level force-feedback

controller. Implementations presenting in the thesis include standing balance, lifting heavy ob-

jects, push recovery using hip strategy and stepping, dynamic walking and dancing in place using

human motion capture.

2.2 Inverse Dynamics Based on Quadratic Programming

Material from this section is discussed more fully in Chapter 5 and 7 of [24].

This section describes the current implementation of the full-body controller on our Sarcos

humanoid robot. The biped dynamics equations can be augmented with additional virtual con-

straints, or objectives. The resulting set of equations can be solved for the joint torques that can

realize those objectives. When many objectives are added, the system of equations may become

over-constrained, and can be solved using weighted least-squares. The weights have to be adjusted

to describe the relative importance of the objectives. This weight-tuning is often done manually.

The objectives used in the weighted-objective inverse dynamics include linear and angular mo-

mentum regulation, torso angle regulation, torque minimization, and desired COP control.
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where JT is the Jacobian associated with the torso angle, Kpθ and Kdθ are torso gains, and DC

relates the contact forces to the COP such that

DC =

[

0 0 PLX −COPX−des 0 −1 0 0 0 PRX −COPX−des 0 −1 0

0 0 PLY −COPY−des 1 0 0 0 0 PRY −COPY−des 1 0 0

]

(2)

In order to solve Eq. (1), the objectives are weighted by multiplying each side of the equation by a

matrix WID that is diagonal in the objective weights such that

WID= diag
([

wDYN
T ,wCON

T ,wCOM
T ,wANG

T ,wHIP
T ,wTOR

T ,wCOP
T
])

(3)

Each of these weight vectors correspond to the objective rows in Eq. (1). Example values are

given in Table 1. The dynamics and constraints are given the highest weight. When controlling a
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Weight Value

wDYN 1.0
wCON 1.0
wCOM

[

0,0,1.0e−2
]

wANG 1.0e−4

wHIP 1.0e−2

wTOR 1.0e−4

wCOP 1.0e−2

Table 1: Objective weight values for weighted objective inverse dynamics control.

desired COP, the x and y components of the COM objective are given zero weights. The angular

momentum objective can be given a low weight to allow the optimization to sacrifice angular

momentum regulation in order to achieve better COM control.

Given an equation of the formWAx=Wb, the unknown vector x can be solved using quadratic

programming. QP is used because of constraints on the elements of x such as COP constraints and

torque limits. This QP optimization is run at every time step, the torques are extracted from x and

are applied to the robot. Generally, low gain PD controls are also added to these torques to stabilize

the system and bias towards a reference pose.

3 Fast Optimization of Bipedal Walking

In this section we describe our work on abstract models and fast optimization of the COM trajectory

of bipedal walking using time varying linearized models. In planning stepping patterns over rough

terrain, we need to estimate costs of arbitrary stepping patterns. We generalize Preview Control

to linear dynamic models that include angular momentum of the torso and swing and stance legs.

and use it to predict the costs of arbitrary stepping patterns. Our key idea is to use a second order

gradient-based trajectory optimization method, Differential Dynamic Programming (DDP), so that

optimal robot trajectories can be found and movement timing adjusted based on the Hessian (2nd

derivative) of the cost with respect to the trajectory. Given linear dynamic models and quadratic

cost models, this approach finds the optimal trajectory after two backward and two forward passes

along the candidate trajectory. The approach can also be applied to nonlinear dynamics and more

complex nonlinear cost functions, with more passes along the trajectory typically required and the

risk of a local optimum. Our approach can take advantage of simpler nonlinearities such as bilinear

dynamics and low order polynomial costs and optimize those more quickly. Our approach has its

roots in Dynamic Programming, and the computation of a value function and its derivatives is a

key component.
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3.1 Dynamic Programming

Dynamic Programming provides a way to find globally optimal control laws (policies), u= u(x),
which give the appropriate action u for any state x [8, 9]. Dynamic Programming takes as input a

one step cost function L(x,u) (a.k.a. “reward” or “loss”) function and the dynamics of the problem

to be optimized (expressed in discrete time): xk+1 = f(xk,uk). We use discrete time in this paper,

with k as a time index. It is equally easy to use continuous time.

One approach to Dynamic Programming is to approximate the value functionV (x) (the optimal

total future cost from each state V (x) = minuk ∑∞
k=0L(xk,uk)), by repeatedly solving the Bellman

equation V (x) =minu(L(x,u)+V (f(x,u))) at sampled states x j until the value function estimates

have converged. Typically the value function and control law are represented on a regular grid.

Some type of interpolation is used to approximate these functions within each grid cell. If each

dimension of the state and action is represented with a resolution R, and the dimensionality of

the state is dx and that of the action is du, the computational cost of the conventional approach is

proportional to Rdx ×Rdu and the memory cost is proportional to Rdx . This is known as the Curse

of Dimensionality [8].

Our group has proposed several Dynamic Programming approaches that produce globally op-

timized value functions that can be used in a value function-based planning approach [2, 18, 25,

17, 3, 6, 5, 7, 26, 23, 27].

3.2 Differential Dynamic Programming

To avoid the curse of dimensionality while still solving linear and nonlinear problems efficiently,

we use Differential Dynamic Programming [12, 14, 2, 4], which is a trajectory optimization ap-

proach which applies Dynamic Programming along a trajectory. This approach can find glob-

ally optimal trajectories for problems with time-varying linear dynamics and quadratic costs, and

rapidly converges to locally optimal trajectories for problems with nonlinear dynamics or costs.

Globally optimal solutions for higher order dynamics and costs, such as bilinear or quadratic dy-

namics and quartic costs, can also be found using a small number of “passes” through the trajectory

using higher order versions of DDP. This approach modifies (and complements) existing approx-

imate Dynamic Programming approaches in a numbers of ways: 1) We approximate the value

function and policy using many local models (quadratic for the value function, linear for the pol-

icy) along the trajectory. 2) We use trajectory optimization to directly optimize the sequence of

commands u0,N−1 and the corresponding states x1,N . 3) Refined local models of the value function

and policy (control law) are created as a byproduct of our trajectory optimization process.

3.3 Local models of the value function and policy

We represent value functions and policies using Taylor series approximations at each time point.

At each sampled state xp the local quadratic model for the value function is:

V p(x) =V
p
0 +V

p
x x̂+

1

2
x̂TV

p
xxx̂ (4)
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where x̂ = x− xp is the vector from the sampled state xp to the query x, V
p
0 is the constant term,

V
p
x is the first derivative with respect to state at xp, and V

p
xx is the second spatial derivative at xp.

The local linear model for the policy is:

up(x) = u
p
0 −Kpx̂ (5)

where u
p
0 is the constant term, and Kp is the first derivative of the local policy with respect to state

at xp and also the gain matrix for a local linear controller. V0, Vx, Vxx, and K are stored with each

sampled state.

These local models are created using Differential Dynamic Programming (DDP) [12, 14, 2, 4].

This local trajectory optimization process is similar to linear quadratic regulator design in that a

value function and policy is produced. In DDP, value function and policy models are produced at

each point along a trajectory. Suppose at a time step i we have 1) a local second order Taylor series

approximation of the optimal value function:

V i(x) =V i
0+Vi

xx̂+
1

2
x̂TVi

xxx̂ (6)

where x̂ = x− xi. 2) a local second order Taylor series approximation of the robot dynamics (fix
and fiu correspond to A and B of the linear plant model used in linear quadratic regulator (LQR)

design):

fi(x,u) = fi0+ fixx̂+ fiuû+
1

2
x̂Tfixxx̂+ x̂Tfixuû+

1

2
ûTfiuuû (7)

where û = u− ui, and 3) a local second order Taylor series approximation of the one step cost,

which is often known analytically (Lxx and Luu correspond to Q and R of LQR design):

Li(x,u) = Li0+Li
xx̂+Li

uû+
1

2
x̂TLi

xxx̂+ x̂TLi
xuû+

1

2
ûTLi

uuû (8)

Given a trajectory, one can integrate the value function and its first and second spatial deriva-

tives backwards in time to compute an improved value function and policy. We utilize the “Q

function” notation from reinforcement learning: Q(x,u) = L(x,u) +V (f(x,u)). The backward

sweep takes the following form (in discrete time):

Qi
x = Li

x+Vi
xf
i
x; Qi

u = Li
u+Vi

xf
i
u (9)

Qi
xx = Li

xx+Vi
xf
i
xx+(fix)

TVi
xxf

i
x (10)

Qi
ux = Li

ux+Vi
xf
i
ux+(fiu)

TVi
xxf

i
x (11)

Qi
uu = Li

uu+Vi
xf
i
uu+(fiu)

TVi
xxf

i
u (12)

∆ui = (Qi
uu)

−1Qi
u; Ki = (Qi

uu)
−1Qi

ux (13)

Vi−1
x =Qi

x−Qi
uK

i; Vi−1
xx =Qi

xx−Qi
xuK

i (14)

where subscripts indicate derivatives and superscripts indicate the trajectory index. After the back-

ward sweep, forward integration can be used to update the trajectory itself:

uinew = ui−∆ui−Ki(xinew−xi) (15)
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Figure 1: Example System.

We note that the cost of this approach grows at most cubically rather than exponentially with

respect to the dimensionality of the state. When the dynamics are linear and the cost function

is quadratic in the states and actions, DDP finds the globally optimal solution after a backward

sweep to compute the second order terms such as Vxx and K, a forwards trajectory simulation,

a backward sweep to compute the first order terms such as Vx and ∆u, and a second forwards

trajectory simulation. The initial backward sweep can be performed before any footstep constraints

are known, as the ZMP locations only affect Vx and ∆u.

3.4 Example

We will show how our approach can be applied to a linear 3D model that includes angular momen-

tum of the legs and torso. Figure 1 shows the system, with a torso and two legs. For this simple

example the models in the sagittal and coronal directions are the same. In each direction the first

element of the configuration a1 is the stance ankle angle. The second element of the configuration

a2 is the angle of the torso with respect to vertical. The third element of the configuration a3 is

the angle of the swing leg with respect to the stance leg. The stance leg has mass m1 = 10.9kg,
moment of inertia I1 = 0.57kgm2 about the center of mass (COM), and length l1 = 0.77m. The
torso has mass m2 = 65kg and moment of inertia I2 = 4.3kgm2 about the COM, and the swing

leg has mass m3= 12.6kg and moment of inertia I3= 0.85kgm2 about the COM. The locations of

the centers of mass of each link relative to the hip are given by l1cm = 0.37m, l2cm = 0.4m, and
l3cm= 0.43m. The linearized dynamics in both the sagittal and coronal planes are given by:

q̈=M−1(Gq+ ττ) (16)

with q= (a1,a2,a3). The elements of M are given by: m11 = I1+ I3+m1∗ (l1− l1cm)2+m2∗

l12+m3∗ (l1− l3cm)2, m12 = m21 = m2∗ l1∗ l2cm, m13 =m31 =−I3+m3∗ l3cm∗ (l1− l3cm),
m22 = I2+m2 ∗ l2cm2, m23 = m32 = 0, and m33 = I3+m3 ∗ l3cm2, and the elements of G are

given by: g11 = g∗ ((l1− l1cm)∗m1+ l1∗m2+(l1− l3cm)∗m3), g12 = 0, g13 = g∗ l3cm∗m3,

g21 = 0, g22 = g∗ l2cm∗m2, g23 = 0, g31 = g∗ l3cm∗m3, g32 = 0, and g33 = g∗ l3cm∗m3. The

Coriolis and centripetal forces do not appear in a linearization about zero velocity. This results in

a linearized model with state x= (a1, ȧ1,a2, ȧ2,a3, ȧ3) and action u= (τ1,τ2,τ3), which includes
the torques on the stance leg at the stance ankle, the torso at the hip, and the swing leg at the hip.

xk+1 = Axk+Buk (17)
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A=

















1.0018 0.01 −0.0011 0 0.0002 0

0.3565 1.0 −0.2211 0 0.0444 0

−0.0024 0 1.0024 0.01 −0.0003 0

−0.4862 0 0.4746 1.0 −0.0605 0

0.0003 0 0.0003 0 0.9991 0.01
0.0551 0 0.0691 0 −0.1805 1.0

















(18)

B= 0.001∗

















0.0032 −0.0043 −0.0010
0.6355 −0.8667 −0.1987

−0.0043 0.0093 0.0014
−0.8667 1.8608 0.2710
−0.0010 0.0014 0.0160
−0.1987 0.2710 3.1944

















(19)

In this example we only model a standing phase (one second) followed by single support phases

with no intervening double support phase. The discussion section describes how double support

phases can be added. The timing and location of each foot step is specified, and the goal is to find

a trajectory of the system that minimizes the optimization criteria in each direction:

cost = ∑(xTQx+uTRu)/2 (20)

where Q = diag(0.01,0.01,0.01,0.01,1,0.01) and R = diag(1,0.01,0.01). Because the system

is unstable in balance with respect to the center of pressure (COP) or zero moment point (ZMP),

the effect of this cost function is to drive the system to balance over the specified foot locations.

Penalty functions are used to drive the swing leg to the next foot location with zero velocity at

touchdown, implementing this requirement as soft constraints. Vxx is initialized to the quadratic

cost function generated by a steady state linear quadratic regulator (dlqr(A,B,Q,R) in Matlab).

At this point the second order quantities and feedback gains can be computed backwards in

time:

Qi
xx = Li

xx+(fix)
TVi

xxf
i
x (21)

Qi
ux = Li

ux+(fiu)
TVi

xxf
i
x (22)

Qi
uu = Li

uu+(fiu)
TVi

xxf
i
u (23)

Ki = (Qi
uu)

−1Qi
ux (24)

Vi−1
xx =Qi

xx−Qi
xuK

i (25)

Since the system is linear, fxx, fux, and fuu are all zero and the second order quantities can be

precomputed without knowledge of the actual footstep locations or system trajectory. This com-

putation does require knowledge of the footstep timing in order to enforce the footstep touchdown

constraints.

The dynamics are now integrated forward in time from a known initial state, using the opti-

mized feedback gains. The resulting trajectory does use optimal feedback gains, but does not use

knowledge of the future (preview control). This forward pass requires knowledge of the footstep

locations and timing, as it is creating costs that will be compensated for in the optimization process.
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Figure 2: A: HIP and ZMP Sagittal Trajectories, B: Torso Sagittal Trajectory, C: Foot Sagittal

Trajectory.
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Figure 3: A: HIP and ZMP Coronal Trajectories, B: Torso Coronal Trajectory, C: Foot Coronal

Trajectory.

Now the first order quantities are integrated backwards in time, bringing information to the

present about future footstep locations and other constraints, and future costs:

Qi
x = Li

x+Vi
xf
i
x (26)

Qi
u = Li

u+Vi
xf
i
u (27)

∆ui = (Qi
uu)

−1Qi
u (28)

Vi−1
x =Qi

x−Qi
uK

i (29)

The dynamics are now integrated forward in time a second time from the known initial state,

using both the optimized feedback gains and feedforward command ∆u. The optimal trajectory is

the result (Figures 2-3).

3.5 Discussion

Although this is a trajectory optimization approach, it is very fast and can be applied online. The

computation costs are comparable to Preview Control [15]. For linear dynamics and quadratic

costs, the second order quantities can be precomputed, just as they are in Preview Control. Our

approach avoids the need to plan in terms of the third derivative of position variables (jerk), and

the need to use integral control to accurately maintain constraints. In the linear dynamics/quadratic
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cost case additional iterations are not required to handle complex models, as is done in [19]. Opti-

mal time varying control gains are produced for online feedback control. The value function used

by this approach can be used to optimize the timing of footsteps, as described below. Footstep

locations can be locally optimized given a quadratic cost function for allowable footstep locations.

Our key idea is to use second order gradient-based trajectory optimization, so that optimal robot

trajectories can be found and movement timing adjusted based on the Hessian (2nd derivative) of

the cost with respect to the trajectory. Given linear dynamic models and quadratic cost models,

this approach finds the optimal trajectory after two backward and two forward passes along the

candidate trajectory. The approach can also be applied to nonlinear dynamics and more complex

nonlinear cost functions, with more passes along the trajectory typically required and the risk of

a local optimum. Our approach can take advantage of simpler nonlinearities such as bilinear or

quadratic dynamics and low order polynomial (cubic or quartic) costs and optimize those more

quickly.

We have demonstrated how Preview Control can be generalized to handle angular momentum

of the torso and legs. In this section we discuss how other aspects of locomotion can be handled.

3.6 Adjusting Footstep Locations and Timing

It is easy in this approach to adjust footstep locations during optimization. The user must specify

quadratic cost functions for each footstep location.

Using the value function, we can advance or delay future step timings (choosing j below) based

on the predicted trajectory and resulting cost:

min j

[

k+ j

∑
k

L(xi,ui)

]

+V (xk+ j+1) (30)

3.7 Double Support and Using Arm and Body Contact

There are two ways to handle multiple contacts as in double support and when using an arm or

having parts of the body in contact with the environment. The first is to simply allocate specified

fractions of the total force to each contact. The second is to allow the optimization process to

determine an optimal allocation of contact forces and torques. Our approach can allocate forces,

and handle constraints on non-negativity of contact forces, in our four pass approach for linear

systems, if the constraints do not change from active to inactive status, or vice versa during the

optimization. The optimization must repeat backward and forward passes until the status of the

constraints remain the same for four passes.

3.8 Yaw Orientation and Estimating the Cost of Turning

Estimating the cost of potentially multiple turns versus sideways steps is an important part of foot-

step planning. Handling a facing direction and the yaw orientation anisotropy of the body can be

handled in several ways. We believe the most significant effect is a strong yaw orientation de-

pendence of the one step cost function, reflecting the need to avoid leg collisions. Less important
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orientation effects include weaker actuation and smaller range of leg motion in the sideways direc-

tion, at least for many robots if not humans. The need to point sensors in the direction of travel and

orient arms can be handled largely by neck and torso twist. Viewing the torso as a cylinder and the

pelvis as a point leads to approximately isotropic body dynamics with respect to pelvis and torso

yaw orientation.

Yaw orientation dependence of the cost function is likely to be an “even” function due to

left/right yaw symmetry, requiring a quadratic dependence on yaw, and an overall quartic cost

function. As described previously, we believe this can be handled by either using second order

DDP as a nonlinear trajectory optimizer, or using a higher order (fourth order) version of DDP

with up to fourth order Taylor series of the value function, dynamics, cost function, and policy. We

leave handling yaw orientation as future work.

3.9 Knee Angle and Height Management

Knee behavior becomes important for traversing variable height terrain and taking long steps. A

linear model is not of much use for optimizing the knee angle, as minimizing knee force takes

advantage of a strong kinematic non-linearity. We believe a low order polynomial approach can

be used to model the knee, but leave this for future work. One approach to handle both the stance

and swing knee is to generate their desired motion as a function of the overall stance or swing leg

angle. It may be the case that correctly optimizing knee behavior needs to take into account the

rolling of the foot from heel strike to toe off.

3.10 Other Applications

[16] describe the application of preview control for bracing for a future impact. We could apply

our technique to the same problem.

4 Globally Optimal Planning Methods

Eric Whitman (graduated PhD student) led an effort to develop global optimization approaches

for our humanoid robot and other complex systems by decomposing these systems into weakly

coupled components. He developed an optimal controller for an Instantaneously Coupled System

(ICS) which was designed by coordinating multiple lower- dimensional optimal controllers. He

augmented subsystems of the ICS with coordination variables, and then used value functions to

coordinate the augmented subsystems by managing trade offs of the coordination variables. He

presented simulation and robot results on his globally optimal control approach. He applied this

method to humanoid walking and presented a controller for a 3D simulation that uses multiple co-

ordinated policies generated using Dynamic Programming. His controller optimizes center of mass

motion as well as footstep timing and location, and it can react in real time to perturbations and

accumulated modeling error. He presented walking perturbation experiments as well as standing

balance results from a force controlled humanoid robot.

13



5 Inverted Pendulum Models

Taesoo Kwon (Postdoc) explored physical simulation of humans by abstracting human behavior

via inverted pendulum/cart models. He has done this in the context of walking, running, and

various gymnastic flips and jumps. The simplified inverted pendulum/cart model lacks the degrees

of freedom found in human models, so he analyzed a captured reference motion in a preprocessing

step and used that information about human running patterns to supplement the balance algorithms

provided by the inverted pendulum. At run-time, the controller plans a desired motion at every

frame based on the current estimate of the pendulum state and a predicted pendulum trajectory. By

tracking this time-varying trajectory, our controller creates a running character that dynamically

balances, changes speed and makes turns. The initial controller can be optimized to further improve

the motion quality with an objective function that minimizes the difference between a planned

desired motion and a simulated motion. He demonstrated the power of his approach by generating

running motions at a variety of speeds (3m/s to 5m/s), following a curved path, and in the presence

of disturbance forces. In recent results, he has also developed control systems for simple gymnastic

flips and jumps.

6 Trajectory Library

Chenggang Liu (visiting PhD student) led an effort to develop our first prototype of a behavior

library using trajectory-based optimal control approaches. He explored biped standing balance and

walking control using a library of optimal trajectories. These behaviors are formulated as optimal

control problems. For walking, Liu took advantage of a parametric trajectory optimization method

to find the periodic steady-state trajectory. He then used Differential Dynamic Programming (DDP)

to generate a library of optimal trajectories and locally linear models of the optimal control law,

which are used to construct a more global control law.

The utility and performance of the proposed method is evaluated using simulated walking con-

trol of a planar five-link biped robot. He used the steady-state trajectory and its local models to

initialize the trajectory library. He applied horizontal impulsive perturbations of different magni-

tudes at the hip during walk. If the simulated robot fell down after a perturbation, He added a new

trajectory segment to the library. The proposed controller using this trajectory library was evalu-

ated using a variety of perturbations at the hip. The resulting trajectory converges to the periodic

steady-state trajectory and the walking speed is maintained after the perturbation. For continuous

perturbations, the controller’s responses to a continuous forward push shows that the robot walks

slightly faster than the desired walking speed when the push is applied. The phase portrait of the

motion of one virtual leg shows that the proposed controller drives the robot’s trajectory back to

the limit cycle of normal walking after the push. The proposed controller was also evaluated us-

ing walking on inclines. Simulation results show the proposed controller generated using a level

ground still works. The average velocity of the center of mass nearly does not change. Model er-

rors are inevitable during system modeling, so he evaluated the proposed controller using walking

control with a model error. The vertical component of the ground reaction force increases but the

robot can still walk. The walking speed nearly does not change in this simulation. The controller
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drives the robot’s trajectory to a different limit cycle because of the model error. An analytical

foot-ground contact model (rigid body impact model) is employed for offline controller construc-

tion. The resultant controller is evaluated using other foot-ground contact models, such as a spring

damper model. For the spring damper contact model, the joint between the stance leg’s end and

the ground is modeled as a planar joint of three degrees of freedom (DoFs) and the whole system

has seven DoFs. The proposed controller generated using a rigid body impact model transfers well

to spring damper models of different spring constants. He compared the proposed controller with

a trajectory tracking controller with fixed optimized gains. For normal walking, the cost for the

trajectory tracking controller is 3.661, while the corresponding cost for the proposed controller

was 2.951. For walking in the presence of an impulsive perturbation of 5 Newton-seconds, the cost

for the former was 21.679, the corresponding cost for the later was 3.697. He used a parametric

trajectory optimization method to solve the periodic steady-state trajectory in regular walking at a

specified speed, which is used as an initial trajectory for Differential Dynamic Programming (DDP)

to re-optimize and generate local models of the value function and the control law. He also used

DDP to generate additional optimal trajectory segments to cover a larger portion of state space.

By formulating the optimal control problem with an infinite time horizon, he got time-invariant

locally linear models of the optimal control law, which are then used to construct a more global

control law for biped walking. The results show lower cost from the proposed controller than a

trajectory tracking controller using optimal gains. The simulated planar walking controller based

on a trajectory library currently handles quick and continuous pushes, pushes of different sizes,

inclines, model perturbations (wrong mass), and ground model variations (ground stiffness).

Our trajectory library approach is based on our previous work on trajectory libraries:

1. Use the best available trajectory optimizer (SQP, DDP) to locally optimize each trajectory.

2. Use second order gradient descent (DDP) to compute a second order value function approx-

imation

V (x) =V0+Vxx+0.5xTVxxx (31)

and optimal gains K= ∂u/∂x along the trajectory.

3. Check for compatibility of value functions across neighboring trajectories to reduce the ef-

fect of local minima and policy discontinuities.

4. V (x) can be used as terminal penalty for receding horizon or model predictive control

(MPC).

7 Editing The Library

Kwang Won Sok (visiting PhD student) has explored momentum based editing techniques for tra-

jectory library data. He presented an integrated framework for interactive editing of the momentum

and external forces in a trajectory. Allowing user control of the momentum and forces provides a

powerful and intuitive editing tool for dynamic motions. To make a higher jump, for example, the
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user simply increases the linear momentum in the vertical direction, while our system automati-

cally calculates a motion that maintains both the same landing position and physical plausibility.

Our key insight is using trajectory optimization based on normalized dynamics to simultaneously

propagate momentum and force space changes. He demonstrated the approach with edits of long

sequences of dynamic actions, including kicks, jumps, and spins.

8 Using Simple Functions to Represent Plan Databases

We showed that optimal stepping trajectories and trajectory cost for a walking biped robot can be

encoded as a simple function of initial state and footstep sequence. Given an initial state and the

sequence of foot placements on uneven terrain, our quadratic function provides a reliable estimate

of the state trajectory and the required effort for the optimal walking motion. In order to find this

encoding, we built a database of optimal walking trajectories for a 3D humanoid model by sam-

pling the input space (initial state and footstep sequence) and solving a physically-based trajectory

optimization problem for each sample. Then, the function coefficients were obtained by fitting to

the data using least squares. The performance of the proposed method is evaluated by comparing

the function values with other optimal walking motion data generated with different footstep sam-

ples. As an application, we use the quadratic function to calculate the effort cost used in finding

an optimal footstep sequence with an A* algorithm. Our study shows that a simple function can

be effectively used to encode optimal walking and this provides us a fast alternative to optimizing

walking dynamics of a full body model online.

9 Footstep Planning

We explored footstep planning taking into account dynamics. Most cost functions for footstep

planning in the literature are designed based on only terrain information. The risk and effort

necessary to achieve a pattern of footsteps is ignored or taken into account heuristically. As a

first step in considering risk and effort in footstep planning, we developed cost functions modeled

on those that reflect metabolic cost in human gait. This allowed us to rapidly evaluate proposed

footstep patterns. We had to invent a cost function for the energy cost of turning. Our energy cost

and terrain cost are combined to obtain an optimal step planning sequence using A* search.

10 Policy Optimization

We explored a policy optimization approach to designing behavior controllers. We developed a

new approach to efficient robust policy design. We developed efficient algorithms to calculate first

and second order gradients of the cost of a control law with respect to its parameters, to speed up

policy optimization. We have also developed ways to accurately take derivatives of the dynamics

of rigid body systems, and found a formulation for rigid body dynamics that further supports ef-

ficient derivatives as well as symbolic generation of the dynamics equation and reduction of the
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computational cost by manually refining the code. This approach achieves robustness by simulta-

neously designing one control law for multiple models with potentially different model structures,

which represent model uncertainty and unmodeled dynamics. Providing explicit examples of pos-

sible unmodeled dynamics during the control design process is easier for the designer and is more

effective than providing simulated perturbations to increase robustness, as is currently done in

machine learning. The approach supports the design of deterministic nonlinear and time varying

controllers for both deterministic and stochastic nonlinear and time varying systems, including

policies with internal state such as observers or other state estimators. We highlight the benefit of

control laws made up of collections of simple policies where only one component policy is active

at a time. Controller optimization and learning is particularly fast and effective in this situation

because derivatives are decoupled.

10.1 Taking Derivatives

Taking derivatives of the dynamics is a key component of policy optimization. It is also useful in

creating state estimators based on the Kalman filter, using implicit integration in simulation, per-

forming trajectory optimization using first and second order gradient techniques like Differential

Dynamic Programming, using dual control techniques to design controllers for stochastic systems,

performing sensitivity analysis, and using constrained inverse dynamics.

When Lagrangian dynamics are used to eliminate constraint forces, dynamics for rigid body

systems have the form:

q̈=M−1(q)
(

C(q, q̇)+G(q)+ J T(q)u
)

(32)

q is a generalized coordinate, q̇ is a generalized velocity, and q̈ is a generalized acceleration.

M(q) is the inertia matrix, which depends on the current configuration. C(q, q̇) are the Coriolis

and centripetal terms, which depend on the configuration and quadratically on the velocity. G(q)
are the gravity terms, which depend on the configuration. u are actuator forces mapped to the

generalized forces by a configuration dependent Jacobian J (q).
The gradient with respect to a configuration variable qi is:

∂q̈

∂qi
=

∂M−1(q)

∂qi

(

C(q, q̇)+G(q)+ J T(q)u
)

+M−1(q)

(

∂C(q, q̇)

∂qi
+

∂G(q)

∂qi
+

∂J T(q)

∂qi
u

)

(33)

We note that
∂M−1(q)

∂qi
=−M−1(q)

∂M(q)

∂qi
M−1(q) (34)

and that
∂M−1(q)

∂qi
,M−1(q), and ∂M(q)

∂qi
are symmetric matrices, sinceM(q) is symmetric.

The gradient with respect to a velocity variable q̇i is:

∂q̈

∂q̇i
= M−1(q)

(

∂C(q, q̇)

∂q̇i

)

(35)
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The second derivative with respect to two configuration variables qi and q j is:

∂2q̈

∂qi∂q j

=
∂2M−1(q)

∂qi∂q j

(

C(q, q̇)+G(q)+ J T(q)u
)

+
∂M−1(q)

∂qi

(

∂C(q, q̇)

∂q j

+
∂G(q)

∂q j

+
∂J T(q)

∂q j

u

)

+
∂M−1(q)

∂q j

(

∂C(q, q̇)

∂qi
+

∂G(q)

∂qi
+

∂J T(q)

∂qi
u

)

+M−1(q)

(

∂2C(q, q̇)

∂qi∂q j

+
∂2G(q)

∂qi∂q j

+
∂2J T(q)

∂qi∂q j

u

)

(36)

We note that

E1=M−1(q)
∂M(q)

∂qi

∂M−1(q)

∂q j

(37)

∂2M−1(q)

∂qi∂q j

= −E1T−M−1(q)
∂2M(q)

∂qi∂q j

M−1(q)−E1 (38)

and that
∂2M−1(q)

∂qi∂q j
and

∂2M(q)
∂qi∂q j

are symmetric matrices.

The second derivative with respect to a configuration variable qi and a velocity variable q̇ j is:

∂2q̈

∂qi∂q̇ j

=
∂M−1(q)

∂qi

(

∂C(q, q̇)

∂q̇ j

)

+M−1(q)

(

∂2C(q, q̇)

∂qi∂q̇ j

)

(39)

The second derivative with respect to two velocity variables q̇i and q̇ j is:

∂2q̈

∂q̇i∂q̇ j

= M−1(q)

(

∂2C(q, q̇)

∂q̇i∂q̇ j

)

(40)

10.2 A Dynamics Formulation That Best Supports Symbolic Dynamics

We are building on a dynamics formulation that makes deriving dynamics equations easier and

best supports symbolic dynamics and efficient derivatives, the Natural Orthogonal Complement

Approach developed by Angeles and colleagues [1]. This approach handles constrained dynamics,

unlike Newton-Euler dynamics. A key aspect of this approach is that only derivatives of a kine-

matic quantity, a Jacobian, are necessary. Lagrangian dynamics are not as effective for symbolic

dynamics, as derivatives of energy (a more complex quantity) are required as well as generation of

many terms which are later canceled.

We will describe this dynamics formulation applied to planar systems (since handling 3D rota-

tions complicates the notation). The masses and moments of inertia of each of n bodies can be put
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along the diagonal of a matrixM :

M =























m1 0 · · ·

0 m1 0 · · ·

0 0 I1 0 · · ·

...
...

...
...

· · · 0 mn 0 0

· · · 0 mn 0

· · · 0 In























(41)

A corresponding vector expresses the motion of each of the n bodies in inertial coordinates:

X =
(

ẋ1, ẏ1, θ̇1, · · · , ẋn, ẏn, θ̇n
)T

(42)

We can express the velocities in inertial coordinates as a Jacobian matrix times the velocities in

generalized coordinates:

X = J(q)q̇ (43)

The kinetic energy can be expressed as:

K=
1

2
X TMX =

1

2
q̇TJT(q)M J(q)q̇ (44)

The potential energy for a system in which the Y axis is vertical is the sum of the potential

energies of the bodies: P = ∑bmbGyb. The yb can be expressed as a nominal value y0b plus the

effect of the appropriate Jacobian Jyb(q), so the potential energy is also expressed in terms of the

same Jacobians:

P= ∑
b

mbG(J
yb(q)(q−q0)+ y0b) (45)

In Lagrangian dynamics, the contribution of the kinetic energy to the dynamics equation for

the ith generalized coordinate is given by

d

dt

(

∂K

∂q̇i

)

−
∂K

∂qi
(46)

The contribution of the potential energy is

∂P

∂qi

∣

∣

∣

∣

q=q0

= ∑
b

mbG
∂Jyb(q)

∂qi
(47)

Given that:

E2= JT(q)M J̇(q) (48)

The first term in the kinetic energy equation above is

d

dt

(

∂K

∂q̇i

)

= JT(q)M J(q)q̈+(E2+E2T)q̇ (49)
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We note that

J̇(q) = ∑
i

(

∂J(q)

qi
q̇i

)

(50)

With

E3(i) = JT(q)M
∂J(q)

qi
(51)

then

E2= ∑
l

E3(l)q̇l (52)

The dynamics equation for the ith generalized coordinate is given by:

Fi =
[

JT(q)M J(q)q̈+(E2+E2T)q̇
]

i
−

1

2
q̇T

(

E3(i)+E3T(i)
)

q̇+
∂P

∂qi
(53)

where Fi is the generalized force corresponding to the ith generalized coordinate.

For planar systems, much of the Lagrangian dynamics cancel:

0=
[

E2Tq̇
]

i
−

1

2
q̇T

(

E3(i)+E3T(i)
)

q̇ (54)

and the dynamics equation for the ith generalized coordinate is given by:

Fi =
[

JT(q)M J(q)q̈+JT(q)M J̇(q)q̇
]

i
+

∂P

∂qi
(55)

10.3 Derivatives Of Our Dynamics Approach

We will show how our dynamics formulation supports taking derivatives. For the planar example:

M(q) = JT(q)M J(q) (56)

Ci(q, q̇) =
[

JT(q)M J̇(q)q̇
]

i
=

[

∑
l

q̇lJ
T(q)M

∂J(q)

∂ql
q̇

]

i

(57)

Gi(q) =
∂P

∂qi
(58)

The following derivatives are now straightforward:

∂M(q)

∂q j

= E3( j)+E3T( j) (59)

E4( j,k) = JT(q)M
∂2J(q)

∂q j∂qk
(60)

E5( j,k) =

(

∂J(q)

∂q j

)T

M
∂J(q)

∂qk
(61)
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∂2M(q)

∂q j∂qk
= E4( j,k)+E4T( j,k)+E5( j,k)+E5T( j,k) (62)

∂Ci(q, q̇)

∂q j

=

[

∑
l

q̇l (E4( j, l)+E5( j, l)) q̇

]

i

(63)

∂Ci(q, q̇)

∂q̇ j

=

[

E3( j)q̇+∑
l

q̇lE3(l)i( j)

]

i

(64)

i( j) is a vector that is all zeros except for a 1 in the jth position.

E6( j,k, l) =

(

∂J(q)

∂q j

)T

M
∂2J(q)

∂qk∂ql
(65)

E7( j,k, l) = JT(q)M
∂3J(q)

∂q j∂qk∂ql
(66)

∂2Ci(q, q̇)

∂q j∂qk
=

[

∑
l

q̇l
(

E6( j, l,k)+E6T(l, j,k)+E6(k, j, l)+E7( j,k, l)
)

q̇

]

i

(67)

∂2Ci(q, q̇)

∂q j∂q̇k
=

[

(E4( j,k)+E5( j,k)) q̇+∑
l

q̇l (E4( j, l)+E5( j, l)) i(k)

]

i

(68)

∂2Ci(q, q̇)

∂q̇ j∂q̇k
= [E3( j)i(k)+E3(k)i( j)]i (69)

∂Gi(q)

∂q j

=
∂2P

∂qi∂q j

(70)

∂2Gi(q)

∂q j∂qk
=

∂3P

∂qi∂q j∂qk
(71)

In general, the only derivatives that actually need to be computed are the first, second, and third

derivatives of the Jacobian with respect to configuration generalized coordinates. All other deriva-

tives are computed using the chain rule (matrix multiplication). Forming and taking derivatives

of dynamics equations now boils down to manipulating the Jacobian matrix (a purely kinematic

construct).

11 Neuromuscular Model

We extended a previous neuromuscular model of human locomotion. This forward-dynamic model

represents the human musculoskeletal system as a planar, seven segment system modeling the

trunk as well as the thighs, shanks and feet (Fig. 4a). The segments are connected by revolute

joints, which model hip, knee and ankle. The joints are actuated by seven Hill-type muscle models
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(a) foot extension (b) neuromuscular model implementation

Figure 4: Details of existing neuro-musculo-skeletal model of human locomotion. (Left) Each

leg is actuated by seven Hill-type muscle models that are controlled by muscle reflexes. The

model does not use desired joint paths; it generates its motor control signals Sm entirely from

sensory feedback. (Right) The model’s sensorimotor control is synthesized element by element by

translating a bipedal spring-mass model into an articulated one.

per leg, representing major leg muscles or muscle groups active in human walking (soleus, SOL;

gastrocnemius, GAS; tibialis anterior, TA; vastii group, VAS; hamstring group, HAM; gluteus

maximus, GLU; and grouped hip flexors, HFL; Fig. 4a). The muscle models consist of contractile

elements, who take motor control signals Sm from 0% to 100% as input, combined with series and

parallel elasticities. Each muscle’s force translates into a joint torque contribution τm, j = Fmrm(ϕ j)
at the joints j it spans, using variable moment arms rm(ϕ j) that mimic the physiological moment

arms observed for these muscles and joints.

The muscle stimulations are generated by the model’s sensorimotor control. The control con-

sists of separate stance and swing phase reflexes which are based on sensory signals measuring

the muscle state (mostly homonymous, positive force or length feedbacks marked by F+ and L+

in Fig. 4b). To reflect neural transport delays, these signals are time-delayed, as well as multiplied

by a gain, and fed back into sum blocks that represent alpha motor neurons and produce muscle

stimulations. The sensory feedback pathways that are used in the model have been synthesized el-

ement by element by translating a bipedal spring-mass model into an articulated one, and encoding

compliant leg behavior and other principles of legged dynamics and control into muscle reflexes

control (A-F in Fig. 4b).

We extended this model by adding a detailed foot to increase the model’s potential for predict-

ing human control strategies for balance, tripping, slipping and rough ground adaptations (Fig. 6).

The foot represents the main dynamical components of the human foot, including the longitudinal

foot arch with metatarsal and metatarsal-phalangeal joints, as well as the plantar fasciae and biar-

ticular muscle actuators flexing and extending the toe. With F+ control of the toe flexor muscle

and L+ control of the toe extensor, the foot model seamlessly integrates into the existing walking

model, and generates steady-state kinematics, kinetics and muscle activities that compare to human

patterns (Fig. 7).

We implemented an optimization algorithm for key control parameters of the neuromuscular
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Figure 5: Terrain adaptation of neuromuscular model with predicted muscle activation outputs.

(a) foot extension (b) neuromuscular model implementation

Figure 6: Foot extension of neuromuscular model.

23



Figure 7: Model monitors and human model walking. The model behavior is shown in five panels

detailing the joint kinematics (ϕ) and net torques (M) as well as the leg muscle activations (A)

for hip, knee, ankle and toe, allowing for detailed experimental comparison with human subject

walking.
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reflexes that uses the covariance matrix adaptation evolutionary strategy (CMA-ES). Our imple-

mentation of the CMA-ES algorithm samples a population of N solutions from the space of control

parameters and initial conditions according to a multivariate normal distribution, evaluates these

solutions based on a cost function, and uses the M best solutions to reshape the covariance matrix

of the normal distribution. This procedure repeats until the overall best solution does not change

for G generations. Typical values are N=15, M=13, and G=50.

To identify the control parameters for human-like walking solutions at different speeds, we

used

J = 10(ẋavg− ẋtgt)+COT (72)

as the cost function in the optimization where ẋtgt is a target walking speed, and ẋavg and COT are

the average walking speed and the cost of transport in steady walking. For humans, reported values

of the COT are 3.3–3.6 Jkg−1m−1 for walking at the preferred speed of 1.2ms−1. We assumed that

an individual simulation had achieved steady walking as soon as the leg joint positions do not

change significantly relative to the touch-down position between subsequent heel-strikes.

For the three subsequent steady-state gait cycles, we computed the average cost of transport,

COT = EM/(m xd), where m is the body mass, xd is the distance travelled, and EM is the total

metabolic energy. We estimated EM as the sum of metabolic energies expended by all muscles, us-

ing the muscle energy model by Umberger et al. (2003). To test the sensitivity of the optimization

results, we compared three different model configurations that differ in the actual foot model that

is implemented.

For the three neuromuscular models with the baseline, human, and passive ankle-foot config-

urations, the optimization minimizes the COT while trying to maintain the target speed xtgt . At a

typical human walking speed of 1.2ms−1, all three configurations show similar COT of about 3.6

Jkg−1m−1, which matches human data.

For slower speeds, the cost substantially rise again in accordance with human data. For faster

speeds, humans show increasing COT as well. We find this increase only for the model with

the human-like foot. The difference could be related either to an opportunity to construct legged

systems more efficient than humans, or to the optimization getting stuck in a local minimum in this

preliminary study.

The control parameters that had the most consistent changes with speed in the three model

configurations are as follows: The reference lean Θre f for trunk balance control shows a clear

increase with speed for all models (a). Note that for the human model, the value Θre f largely

diverges from the other two models at slow speeds, because the optimization found a marching

gait that is unlike ’normal’ walking. For the swing leg motion, the F+ gain of the GLU and the

length offset lo f f ,HAM of the HAM (for the L- suppression of the HFL) show a clear trend consistent

among all three models (b). The F+ gain prevents excessive forward swings while lo f f ,HAM defines

the onset of the shank rotation passively overtaking the thigh to straighten the swing leg. A larger

value delays that onset indicating larger strides, which are contained by a more aggressive GLU.

Finally, for the stance control, the F+ gains of SOL and GAS show consistent increase with speed

for the baseline and passive configurations, suggesting a clear contribution to forward propulsion

(c). This trend does not show for the model with the human foot, which may be related to the

marching gait identified at very slow speeds and the added propulsion that TFL provides.

25



Our initial results indicate that we have a sufficiently fast algorithm implementation that deliv-

ers model optimizations in realistic time frames. This optimization has indicated several control

parameters that show consistent changes with speed.

To obtain more human-like walking solutions, we have added a “pain” term in the cost function

of our optimization that penalizes unphysiological joint angles. This has resulted in human-like

walking solutions from very slow to fast walking (0.8ms−1 to 1.8ms−1). In addition, we have

investigated speed increments of 0.2ms−1. This increased resolution led to nine key control pa-

rameters of walking at different speeds, which cluster around three dynamic categories. The first

is trunk forward lean. It correlates nearly linearly with speed as larger trunk lean balances the

effects of gravitational forces, impact forces, and the larger forces generated by hip extensors that

provide forward propulsion. The second category is the prevention of knee overextension which is

induced by inertial coupling from the increased ankle push-off and from the increased hip extensor

torques. The third category is the accelerated swing motion at higher speeds, which is generated

by increased hip flexion torques in double support, automatically entraining faster knee flexion

again due to inertial coupling. With a second optimization step, we have identified speed transition

controllers that attract the model into the previously identified steady walking solutions at different

speeds.

We seek to achieve these large speed transitions robustly in uneven terrain. Toward this goal, we

have recently included rough terrain in our speed optimization. For walking speeds from 0.8ms−1

to 1.8ms−1, we have identified controls that tolerate shallow random ground (∆y= 0.7cm±0.4cm
mean±s.d. with max step of +1.2cm and min step of -1.8cm). With the same method, we currently

obtain local feedback controls for walking at 1.3ms−1 in more challenging terrain (∆y = 2.6cm±

2cm mean±s.d. with max step of +7.7cm and min step of -6.9cm).

We have integrated into the neuromuscular model a hip controller that seeks to place the leg

into explicit targets. The targets are derived from the bipedal linear inverted pendulum model,

an extension of the linear inverted pendulum model which does not require predefined swing leg

times. The explicit placement control of the hip flexor resulted in auto-adaptation from slow to

normal speed walking (0.8ms−1 to 1.4ms−1) without changes in other control parameters (Fig.

1). Larger speed changes still require changes of the nine key control parameters identified in the

previous quarter, mainly due to the undesired shank dynamics.

We developed a 3D dynamic contact model and integrated it into our simulation environment.

We introduced the pelvis width but locked the roll DOF at the hips. Applying the previous planar

reflex control to the 3D model, we identified the roll stability about the ankle and the yaw moment

induced by the swing-leg as main issues; without additional biomechanical design or control the

model fell after few steps. To resolve these issues we studied the influence of a three-contact foot

on yaw stability and of adding passive roll motion at the ankle on roll stability. Using these two

extensions, our model achieves weakly stable walking at 1.3ms−1.

12 Summary Of The Most Important Results

• We implemented balance, walking, and push recovery on our humanoid robot.
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• We developed a two level optimization-based controller for walking: optimization of the

COM trajectory followed by inverse dynamics using quadratic programming.

• We developed a globally optimal approach to high level control of bipedal walking based on

dynamic programming applied to weakly coupled subsystems.

• We developed a prototype behavior library, and a method to edit the library entries.

• We discovered that it was possible to approximate the library using simple functions.

• We developed a way to improve behaviors using policy optimization.

• We developed an approach to footstep planning that takes into account robot dynamics.

• We improved our neuromuscular model of human walking.
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