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Abstract

Two-dimensional transition metal dichalcogenides (TMDs), an emerging family of layered materials,
have provided researchers a fertile ground for harvesting fundamental science and emergent
applications. TMDs can contain a number of different structural defects in their crystal lattices which
significantly alter their physico-chemical properties. Having structural defects can be either
detrimental or beneficial, depending on the targeted application. Therefore, a comprehensive
understanding of structural defects is required. Here we review different defects in semiconducting
TMDs by summarizing: (i) the dimensionalities and atomic structures of defects; (ii) the pathways to
generating structural defects during and after synthesis and, (iii) the effects of having defects on the
physico-chemical properties and applications of TMDs. Thus far, significant progress has been made,
although we are probably still witnessing the tip of the iceberg. A better understanding and control of
defects is important in order to move forward the field of Defect Engineering in TMDs. Finally, we also
provide our perspective on the challenges and opportunities in this emerging field.

1. Introduction

As a result of thermal equilibrium and the kinetics of
processing, all real materials contain structural defects
which could significantly affect their properties. This
statement is best represented by the development of
the silicon semiconductor industry over 50 years.
Engineering defects in silicon crystals constitutes a key
approach to controlling the transport characteristics
of silicon-based electronic devices. A critical example
of this is the controlled implantation of charge donors
and acceptors in silicon crystals to form p—n junctions.

Modern electronics require channel materials to
be ultra-thin, and therefore two-dimensional (2D)
materials are coming into play [1]. Graphene, a

prototype of all 2D materials, is not immune from
structural defects [2—6]. Soon after the first exfoliation
of graphene in 2004, several discrepancies between
theory and experiment encouraged researchers to view
graphene as a real material with defects [2—6], rather
than an infinitely large 2D layer with perfect periodi-
city. Therefore, defect engineering has emerged as a
key approach to understanding and modulating the
properties of graphene.

It is now timely to start studying structural defects
in other 2D materials, such as semiconducting trans-
ition metal dichalcogenides (sTMDs). Few-layered
sTMDs, in a common form of MX, (M = Mo, W;
X =S, Se), exhibit numerous fascinating properties
associated with their reduced thickness [7, 8]. For

©2016 IOP Publishing Ltd
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(a)
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Figure 1. Structural polytypes of pristine TMD layers. Chalcogen atoms are shown in yellow, and transition metal atoms are shown in
blue. (a) The 1H phase, (b) the 1T phase, (c) the distorted 1T, or 1T’ phase, (d) the 2H phase, (e) the 3R phase. Reprinted with
permission from [22]. Copyright 2015 Royal Society of Chemistry.

example, sSTMDs undergo a layer dependent transition
in their band structure from an indirect to a direct
band gap semiconductor [9, 10]. This transition
immediately makes sTMDs attractive in electronics
and optoelectronics [7, 11]. However, sSTMD based
devices show n- or p-type behavior, contradicting
what one would expect from a perfect crystal structure
without unsaturated bonds [12]. The typical device
mobilities extracted from experiments also lie way
below theoretical predictions [12]. Furthermore, pho-
toluminescence (PL) measurements have resolved an
emission peak within the optical band gap, which is
again not consistent with the band structure derived
based on a perfect crystal structure [13]. Raman
spectroscopy has also revealed an intensity increase of
the LA(M) mode, a phonon vibrational mode, as a
function of crystalline disorder [14]. Such observa-
tions point to a simple fact: structural defects in
sTMDs cannot simply be ignored [4, 15].

The motivation of this article is therefore to sum-
marize (1) which kinds of structural defects have been
observed in TMDs; (2) under what conditions struc-
tural defects are introduced into TMDs, and (3) to
what extent structural defects alter the properties of
TMDs. This article does not try to provide a compre-
hensive review about TMDs, which can be found else-
where [7, 8, 16-21]. We wish to deliver the message to
our readers that having structural defects in TMDs is
not necessarily disappointing or puzzling. As the field
progresses, it is expected to further understand defects
in TMDs, and to explore the novel applications defects
may enable.

The organization of this review is as follows: In
section 2, we classify structural defects according their
dimensionality and atomic structure. In section 3, we
summarize typical experimental approaches to gen-
erate structural defects. In section 4, we discuss how
structural defects significantly modulate electrical,
optical, vibrational, magnetic, and chemical proper-
ties of the TMDs. In the last section, we provide our

perspective on future directions about defect
engineering.

2. Classification of defects in TMDs

Before we discuss structural defects, we first introduce
structure polytypes of the defect-free (or pristine)
TMDs crystals (see figure 1) [22]. A single molecular
layer of MX, is formed by an atomic trilayer which
consists of two adjacent layers of chalcogen atoms (X)
covalently bonded by a layer of transition metal atoms
(M) forming an X-M-X layer configuration. Two
possible structural polytypes have been reported for a
monolayer MX,: the semiconducting trigonal pris-
matic phase (we adopt the notation 1H for mono-
layers; see figure 1(a); the 2H phase refers to bulk
crystals), and the metallic octahedral prismatic phase
(the 1T phase; see figure 1(b)) [23]. In certain cases, the
1T phase is not thermodynamically stable, and its
structurally distorted derivative, denominated as 1T’
can be observed instead (see figure 1(c)). When TMD
crystals have more than one atomic chalcogen—metal—
chalcogen (X-M-X) layer of the 1H phase bonded by
van der Waals (vdW) forces, additional polytypes
appear in account for variations in stacking orders. A
Bernal stacking (AbA BaB) yields the 2H phase (see
figure 1(d)), while an AbA CaC BcB stacking yields a
rhombohedral phase denominated as the 3R phase
(see figure 1(e)).

All above structural polytypes have attracted con-
siderable attention and have found themselves suitable
for certain applications [22]. This review does not
attempt to cover all those polytypes. We focus pri-
marily on the semiconducting 1H and 2H phases.

After introducing pristine crystal structures, we
now proceed to classify structural defects. By defini-
tion, 2D TMDs could be infinitely large within their
basal planes, but are only atomically thin perpend-
icular to the planes. Consequently, defects residing in
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Figure 2. An overview of defects in 2D TMDs. (a) Typical zero-dimensional defects such as vacancies, adatoms, dopants, squares, and
octagons. Reprinted with permission from [175]. Copyright 2000 American Physical Society. (b) Typical one-dimensional defects
such as grain boundaries, edges, and phase interfaces. Reprinted with permission from [29]. Copyright 2014 Nature Publishing
Group. (c) Typical two-dimensional defects such as folding, wrinkling, scrolling, rippling, and vertically stacked hetero-layers.
Reprinted with permission from [111]. Copyright 2013 Nature Publishing Group. Reprinted with permission from [176]. Copyright
2012 American Chemical Society. Reprinted with permission from [177]. Copyright 2013 Wiley.
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Figure 3. Zero-dimensional defects. (a) Atomic-resolution annular dark field (ADF) images showing different types of vacancy and
vacancy complexes in MoS, monolayers. Reprinted with permission from [24]. Copyright 2013 American Chemical Society. (b)
Comparison of binding energies for MoS, monolayers doped with transition metal atoms. Red, green and blue symbols correspond to
dopants in group four, five and six, respectively. Reprinted with permission from [36]. Copyright 2013 American Physical Society. (c)
TEM image showing MoS, monolayers substitutionally doped by Mn atoms. Reprinted with permission from [41]. Copyright 2015
American Chemical Society. (d) A schematic diagram showing four sites of adatoms adsorbed onto TMD lattices.

these 2D crystals could be classified according to their
dimensionality as zero-dimensional (point defects,
dopants or ‘non-hexagonal’ rings; see figure 2(a)),
one-dimensional (grain boundaries, edges, and in-

plane heterojunctions; see figure 2(b)) and two-
dimensional (layer stacking of different layers or vdW
solids, wrinkling, folding, and scrolling;
figure 2(¢)).

see
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2.1. Zero-dimensional defects in TMDs

The simplest and most abundant defects in TMDs are
vacancies, and the anti-sites that form on them (see
figure 2(a)). In synthetic TMD samples, six varieties of
intrinsic point defects are observed with regularity (see
figure 3(a)): single sulfur vacancies (Vs), double sulfur
vacancies (Vs,), a vacancy of a Mo atom and a triad of
its bonded S within one plane (Vy,s3), a vacancy of a
Mo atom and all six of its nearest neighbors (Vyyoss)s
an antisite, with Mo occupyinga Vg, (Mos;,), and a pair
of S atoms occupying a Mo position (S2y,) [24]. The
notable absence of Vi, from this list is likely due to its
tendency to complex with sulfur vacancies. With the
exception of Mos,, reconstruction of the structure is
minimal upon forming vacancies, and the defects
retain trigonal symmetries [24, 25]. Vg has the lowest
formation energy of these defects (~2 eV) [24-27], but
the exact value depends upon the chemical potentials
Uvo and  ps.  Given  thermal —equilibrium,
IMos2 = Hmo + 2pts and both piyg, and pg must be
less than their values in bulk (an ambiguous figure for
S, given its many allotropes) [25], the chemical
potentials are constrained to certain values. Itisa boon
to experimentalists when defect formation energy
calculations consider the full range of values for i,
and pg or at least the limiting sulfur rich and
molybdenum rich conditions [25]. Without a full
understanding of the thermodynamic parameters at
play, it is a challenge to rationally produce defects on
the lab bench.

It is also possible for other atomic species to
replace lattice atoms by substituting elements. When
considering the extent to which a foreign atom may
substitute onto a crystal lattice, the ion’s relative size,
electronegativity, valence, and end member crystal
structure are all relevant factors. The lanthanide con-
traction is a fortuitous periodic trend, which results in
comparable radii for the 4d and 5d transition metals.
This makes possible a wide variety of dopants from
across the transition metal block. Notably, the similar-
ity of W and Mo based on the criteria enumerated
above allows for the formation of complete solid solu-
tions in monolayer crystals [28]. In CVD grown TMD
crystals, the extent of Mo/W alloying is heavily depen-
dent on reaction kinetics, resulting in out- or in-plane
heterostructures [29, 30], or a hybrid morphology
[31]. S/Se alloying exhibits similar behavior [32-34].
While Mo/W and S/Se doping have been explored,
there are few reports on the electronic and magnetic
properties of other potential dopants (e.g. Mn, Co,
Ni, etc).

To date, almost the entirety of the transition metal
series has been examined with density functional the-
ory (DFT) as substitutional dopants in MoS, [35-40].
As can be seen by the calculated binding energies of
transition metal dopants (see figure 3(b)) [36], with the
exception of d” and d'® elements, the possibility of
substituting transition metal atoms onto the lattice
appears quite favorable. Several metallic dopants other

ZLinetal

than W have already been observed experimentally in
few to monolayer MoS, films, including Mn (see
figure 3(c)) [41], Nb [42, 43], Fe [44], Re [45], Au [45],
and Co [46]. Similarly, substitution of many potential
dopants onto chalcogen sites has been considered
computationally [35, 39, 47]. While chalcogen site
doping may be favorable in sulfur deficient crystals,
excepting oxygen [48-51], to our knowledge no sub-
stitutive dopants have been identified experimentally.
In addition to energy-dispersive x-ray spectroscopy
(EDX) and x-ray photoelectron spectroscopy (XPS),
two characterization techniques able to perform ele-
mental and structural analysis of dopant atoms are the
‘Z contrast’ annular dark field microscopy (ADF) [52],
a scanning transmission electron microscope (STEM)
technique so called because of its sensitivity to differ-
ences in atomic number, and extended x-ray absorp-
tion fine structure, which can provide information
such as coordination number and interatomic dis-
tances [43].

Rather than substituting onto the lattice, foreign
atoms can be adsorbed to the crystal’s surface. Such
adatoms, are another form of defect that is of especial
importance in 2D materials, due to their extreme
aspect ratios. In the case of 1H phase TMDs, there are
four positions available to an adsorbant (see
figure 3(d)): above the metal atoms (Tyy), above the
chalcogen atoms (Tcy), on a metal-chalcogen bond
(B), and above or within the center of hexagonal voids
(C) [53]. In multilayer flakes, the Ty; and Ty, sites are
equivalent to intercalated species due to the 2H phase’s
stacking sequence [25]. In the case of electron donat-
ing alkali adatoms on MoS,, Ty sites are predicted to
be most energetically stable with adsorption energies
approaching —1 eV in agreement with XPS data show-
ing suppressed signal from the transition metal atoms
[35, 54]. For many other potential adatoms
[35, 53, 55], even more favorable adsorption energies
have been predicted. Unsurprisingly, the most likely
adatoms to be observed in MoS, are Mo and S. While
both adatom species have been observed on multiple
sites via high angle ADF (HAADF) [24], it is predicted
that S adatoms are stable only at Ts, while Mo may rest
either at Ty; or C [25]. Adatoms may be quite mobile
under irradiation [45], and even at room temperature
[35]. Thus, an understanding of adatom mobility may
lead to insights into the kinetics and stability of TMD
synthesis at elevated temperatures. Finally, we note
that while not strictly zero-dimensional, some
researchers have adsorbed molecular charge donors/
acceptors to MoS, flakes [56].

2.2. One-dimensional defects in TMDs

Extrinsic sulfur line vacancies result from the agglom-
eration of sulfur vacancies which are usually produced
by electron bombardment [57]. Single- and double-
line vacancies are observed experimentally, both
aligned along the zig-zag direction (see figures 4(a) and
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Figure 4. One-dimensional defects. (a) High-resolution transmission electron microscopy (HRTEM) image and (b) structural model
showing a single vacancy line in MoS, monolayers. Reprinted with permission from [57]. Copyright 2013 American Physical Society.
(c)and (d) ADF images of 414P and 4/4E 60° grain boundaries in CVD MoS, monolayers. Structural models are overlaid on ADF
images. Reprinted with permission from [24]. Copyright 2013 American Chemical Society. () ADF image showing an inversion
domain in monolayer MoSe,. Reprinted with permission from [61]. Copyright 2015 American Chemical Society. (f) Structural
models showing Mo-terminated MoS, domains edges with different percentages of sulfur coverage. Reprinted with permission from
[63]. Copyright 2002 Elsevier Science (USA). (g) ADF image showing a 1D interface between monolayer MoS, and WS,. Reprinted
with permission from [29]. Copyright 2014 Nature Publishing Group.

(b)) [57]. This experimental result agrees with calcula-
tions which determine the formation energy of sulfur
line vacancies in the zig-zag direction exhibit lower
formation energies than those along the armchair
direction [58]. In all cases, the formation energies of
line vacancies are a function of the number of
vacancies, in the range of 5-6eV per vacancy for
lengths of 6-16 [58]. When the freestanding edge
regions are imaged by TEM, the orientation of line
defects also depends on the strain. Thus, strain may
serve as a means to select line vacancy orientations for
tuning electronic properties [57].

In addition to sulfur line vacancies, grain bound-
aries are often observed in TMD monolayers. In com-
parison to one-atom-thick materials, TMD grain
boundaries and the dislocation cores they are com-
prised of are quite complex. This is because three
atomic layers compose TMD monolayers (i.e. chalco-
gen—metal—chalcogen). As atoms are removed, the
structure relaxes in three dimensions, to form dreidel
shaped dislocations with a variety of ringed motifs that
are dependent on the grain boundary angle [59].

Patterns of two point-sharing four member rings (4l
4P) form mirror twin grain boundaries in synthetic
MoS, and MoSe, [24, 60], when grains meet at 60°
angles along the zig-zag direction (see figures 4(c) and
(d)). 4ME metallic edge-sharing line defects are
another possible 60° grain boundary morphology,
which can result in triangular inversion domains with
metallic edges (see figure 4(e)) [61]. The situation
becomes more complex for smaller angles, with 416,
418, 5|7, and 6l8 motifs appearing. HAADF-STEM
shows that on these low angle, and high strain (up to
58%) grain boundaries, sulfur atoms are quite mobile,
even under low accelerating voltages, resulting in dis-
location movement [62].

We now turn our attention to the most prominent
defects in TMD flakes, their edges. Synthetic TMD sin-
gle-crystalline islands most often adopt triangular
shapes with edges that appear sharp in microscopic
images. The triangular morphology of these flakes can
be explained through the 2D application of the Wulff
construction, which simply states that low energy
edges will be preferred. These surface energies are a
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function of the s, or the sulfur vapor potential. When
s is low (i.e., under low sulfur vapor pressures), MoS,
will adopt distorted hexagonal shapes rather than tri-
angles. Nanoscale calculations predict that under the
sulfur rich conditions prevalent during TMD growth,
(1010) Mo edges with either 50% or 100% S (see
figure 4(f)) are the most thermodynamically stable
[63]. Nevertheless, in CVD grown samples the Mo-
terminated edges with both 0% and 50% S coverage
have been observed, suggesting that CVD is a process
away from equilibrium [24].

Lateral hetero-interfaces constitute another form
of 1D defect. Lateral (inner/outer) heterostructures of
MoS,/WS,, MoSe,/WSe,, MoS,/MoSe,, and WS,/
WSe, have been reported recently [29, 30, 34]. Struc-
turally coherent sharp interfaces (see figure 4(g)) have
been observed as a result of covalent epitaxy between
two dissimilar TMD layers with similar lattice
constants.

2.3. Two-dimensional defects in TMDs

Perfect 2D materials have been predicted by theories as
unstable upon thermal fluctuation, but after the
discovery of graphene, it has gradually become clear
that suspended graphene could stablize by the forma-
tion of ripples, ie., finite surface roughness and
deformation [64]. Similarly, ripples with a typical
height on the order of nm have been observed in as-
synthesized MoS, monolayers (see figure 2(c))
[65, 66], and can be generated deliberately by scanning
a laser beam over MoS, monolayers [67]. Ripples
introduce strain into the materials, and could well
affect their electronic properties [65, 68].

In few-layered TMDs, adjacent layers are coupled
by vdW forces. The magnitude of vdW forces depends
sensitively on the interlayer spacing, which is corre-
lated to stacking configuration. Most synthetic few-
layered TMDs exhibit a Bernal stacking (AbA BaB...),
but derivations from this stacking configuration are
also possible, especially when TMD layers are stacked
manually via transfer techniques [69]. Due to the
handling of TMDs, it is also possible for flakes to fold
over onto themselves [70]. For those that assume the
1H phase, folding produces a structure distinct from
the 2H phase. As we will discuss in section 4, the vdW
interface has strong impact on the electronic and opti-
cal properties of few-layered TMDs, therefore the
interface associated with a stacking and layer orienta-
tion can be viewed as a 2D defect (see figure 2(¢)).

There is alarge family of known 2D materials, such
as graphene, hBN, TMDs, and layered oxides. Given
the similarity in their interlayer ‘bonding’, 2D materi-
als of different kinds can be placed one on top of
another, forming vertical heterostructures or vdW
solids (see figure 5(a)) [71]. When the top layer (e.g.
MoS,) has a crystal structural similar to the bottom
layer (e.g. graphene) (see figure 5(b)), their stacking
occurs via vdW epitaxy [72]. Compared to covalent

ZLinetal

epitaxy where adjacent layers are covalently bonded,
vdW epitaxy is more tolerant to lattice mismatch
between layers, thereby allowing a variety of 2D mate-
rials to be stacked in this way. The interfaces between
vertical hetero-layers can also be viewed as 2D defects
which generate new properties in the materials (see
figure 2(c)). For example, when there is lattice mis-
match, such as the cases of MoS,/MoSe, and WSe,/
graphene, vdW epitaxy results in periodic Moiré pat-
terns (see figure 5(c)) [73, 74], and each pattern results
in different optoelectronic properties that need to be
studied in more detail.

In closing our classification of defects, we draw
attention to the possibility of TMD Haeckelites [75].
In defective graphene and carbon nanotubes, Haeck-
elites are extended areas of 57 ring defects [76, 77]. In
analogy, the geometry of TMDs allows for the forma-
tion of 618 Haekelites (see figure 5(d)). The structure
and electronic properties of TMD Haeckelites have
been predicted for a wide number of TMD materials:
the semiconducting TMDs of Mo and W become
semi-metallic, while metallic NbS, and NbSe, become
small gap semiconductors [75]. Therefore, achieving
defect control in these 2D systems is very important in
order to tailor their electronic, optical and even magn-
etic properties.

3. Generation of defects in TMDs

The following subsections describe possible ways to
generate defects in 2D TMDs. For example, the
introduction of structural defects such as atomic
vacancies and grain boundaries could be achieved
under fluctuating growth conditions using chemical
vapor transport (CVT) or CVD. Those defects are
often unintentionally generated. However, the struc-
tural defects can be more deliberately generated post-
synthesis by several approaches, such as ion/electron
irradiation, plasma treatments and high-temperature
annealing in the presence of different gases. These
methods have started to be studied but should
continue to be developed in order to achieve defect
type and concentration control in TMD materials.

3.1. In situ generation of defects in TMDs

Among all synthesis methods to grow stoichiometric
and crystalline TMDs, CVT has been the most adopted
one to grow bulk large TMD crystals. In general, CVT
involves transport of vaporized TMD powders in a
sealed ampoule with a temperature gradient along its
length. Each CVT synthesis typically takes several days
to assure high-quality crystal growth at temperatures
around 1000 °C[78]. As-grown crystals usually exhibit
high degree of crystallinity, are usually free of contam-
ination from the transport agents (e.g. Bry, or ), and
have been used extensively for exfoliation and based
proof-of-concept research. For example, field effect
transistors (FETs) made from exfoliated TMD flakes
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Figure 5. Two-dimensional defects. (a) Schematic representation of vdW heterostructures made by stacking different 2D materials.
Reprinted with permission from [71]. Copyright 2013 Nature Publishing Group. (b) Cross-sectional transmission electron
microscopy (TEM) image showing a 2D interface between MoS, and graphene layers. Reprinted with permission from [72]. Copyright
2014 American Chemical Society. (c) Structural model showing a Moiré pattern in vertically stacked monolayer WSe, and graphene.
Reprinted with permission from [74]. Copyright 2015 American Chemical Society. (d) Relaxed structural models showing 8—4 MoS,

Haeckelites. Reprinted with permission from [75]. Copyright 2014 Institute of Physics.

exhibit n-type (e.g. MoS;) or p-type (e.g. WSey)
behavior [11, 12], indicating that the channel materials
are not defect-free. In fact, chalcogen vacancies and
inversion domains have been observed in synthesized
CVT crystals [79]. Each exfoliated flake naturally has
edges, where the atomic structure and the chemical
properties differ from the internal regions [80].
Besides single phase TMDs, CVT is also powerful in
synthesizing doped (or alloyed) TMD bulk crystals
[81]. Owing to the high growth temperature and long
growth time, CVT grown crystals often possess
structures with high spatial homogeneity. For exam-
ple, CVT synthesized Mo,W,_,S, crystals show uni-
form distribution of Mo and W atoms in the entire
crystal (see figure 6(e)) [28, 82], contrasting with
CVD-synthesized Mo, W, _,S, alloys with an in-plane
compositional gradient (see figures 6(b)—(d)) and
CVD MoS,/WS, heterostructures with a well-defined
phase boundary (see figure 6(a)) [29, 31]. Similarly,
CVT MoS,Se;_, alloys have randomly distributed S
and Se atoms, whereas CVD MoS,Se, , monolayers
can be homogeneous alloys [32, 33, 83], non-uniform
alloys [84], or phase-segregated heterostructures [34].
If we consider substitutional dopants as points defects,
CVT typically guarantees a uniform distribution of
point defects (see figure 6(e)), and more importantly,
the density of point defects could be fine-tuned by
adjusting the initial loading of reactants. A variety of
dopants have been added via CVT, for several
purposes, such as band gap engineering (Mo, W,
—xS,5e,_,) [28, 85, 86], and charge doping (p-type Nb
doping [43], and n-type Re doping [45]), but addi-
tional work in this area is needed. Other metal and
chalcogen dopants need now to be introduced in
monolayers and bulk crystals of TMDs.

Besides top-down synthesis methods such as the
aforementioned CVT-mechanical exfoliation, bot-
tom-up approaches have also found wide applications

given their scalability. CVD is a typical bottom-up
approach which involves chemical reduction of trans-
ition metal precursors by gaseous chalcogen pre-
cursors. When compared to CVT, CVD synthesis
takes place on shorter time scales, at lower tempera-
tures, and with more volatile precursors [87]. Owing
to the relative violence of the technique, a large variety
of defects can be generated and engineered in CVD-
grown TMDs. For example, by adjusting the flow of
sulfur vapor, it is possible to control the orientation
and optical properties of domain edges, and the overall
density of sulfur vacancies [88—90]. By varying the base
pressure inside CVD reaction chambers, one can syn-
thesize either isolated WS, triangular domains (see
figure 6(f)) or quasi-continuous WS, films (see
figure 6(g)) [88, 91, 92]. In principle, it is also possible
to control the average grain size together with density
of grain boundaries. By tuning growth temperatures
during synthesis of MoS,/WS, heterostructures, one
can selectively generate either 2D interfaces (see
figures 6(h) and (i)) or 1D interfaces (see figures 6(j)
and (k)) [29]. Different from CVT, a two-step growth
is feasible via CVD. The second step provides addi-
tional degrees of freedom to modify the properties of
the starting materials (materials obtained in the first
step). Two-step growth is particularly powerful when
the first and second step require sufficiently different
growth conditions or precursors. Examples of two-
step growths include partial sulfurization of CVD dis-
elenides [93], partial selenization of CVD disulfides
[93, 94], and formation of lateral junctions by in situ
switching precursors [30, 34]. Another distinct feature
of CVD is that the properties of resulting materials
depend largely on the choice of substrates [95]. The
flatness, lattice constants, thermal stability and clean-
ness of substrates affect the density of grain bound-
aries, angle of grain boundaries, shape of domain
edges, and domain orientations.
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Figure 6. In situ generation of defects. (a) Optical image showing a 1D interface in a CVD grown monolayer MoS,/WS, lateral
heterostructure. Reprinted with permission from [29]. Copyright 2014 Nature Publishing Group. (b) Optical image showing an
alloyed Mo, W, _,S, triangular domain with non-uniform optical contrast. Raman maps over this triangle are shown in (c) for the
MoS,-E' mode intensity and (d) the WS,-E’ mode intensity. Reprinted with permission from [31]. Copyright 2014 American Institute
of Physics. (¢) ADF image of homogenous Mo, s W, 5S, alloyed monolayer. Reprinted with permission from [82]. Copyright 2013
Nature Publishing Group. (f) PL map of isolated WS, monolayer domains grown by CVD at atmospheric pressure. Reprinted with
permission from [88]. Copyright 2013 American Chemical Society. (g) Digital photo showing a quasi-continuous large area WS, film
grown by CVD at alow pressure. Reprinted with permission from [92]. Copyright 2013 American Chemical Society. (h) Schematic
and (i) optical image of vertical MoS,/WS; heterostructure with a 2D interface grown by CVD at 850 °C. (j) Schematic and (k) optical
image of in-plane MoS,/WS, heterostructure with 1D interface grown by CVD at 650 °C. Reprinted with permission from [29].

Copyright 2014 Nature Publishing Group.

Bulk CVT- and CVD-synthesized disulfides and
diselenides belong to the 2H phase (or 1H for mono-
layer). Chemically exfoliated disulfides sheets consist
of 2H and 1T’ phases [22]. The 1T’ phase differs from
the 2H phase in atomic structure and the electronic
properties [22]. Here we would view the 1T’ phase as
an independent structural polytype rather than a
defective derivative from the 2H phase (see figure 1).
Therefore, the fascinating properties of the 1T TMDs
are unfortunately outside the scope of this article.
Readers interested in this topic are encouraged to read
arecent review by Voiryetal [22].

3.2. Ex situ generation of defects in TMDs

Besides in situ generation of defects during materials
synthesis, recent progress also highlights the possibi-
lity of post-synthesis defect engineering. Previously,
electron beam irradiation has been used to generate
defects in graphene and hexagonal boron nitride
(hBN) [5, 96]. Now this idea is extended to few-layered
TMDs. First-principles calculations suggest that the
threshold energy to generate chalcogen vacancies lies
on the order of tens to hundreds of keV, which is
accessible in state-of-the-art electron microscopes
[47]. Indeed, sulfur vacancies are generated when
TMD layers are subjected to energetic electron beams.
The sulfur vacancies are mobile upon irradiation,
migrating and agglomerating into vacancy lines (see
figure 7(a)) or nanoscale holes if transition metal

atoms are also removed (see figure 7(b)) [57, 97].
Interestingly, the electron beam damage can be
reduced by sandwiching TMD layers between gra-
phene layers, possibly because the highly electric and
thermal conductive graphene layers reduce the charge
and heataccumulations [97].

Plasma treatment has also proven effective to gen-
erate a variety of defects in TMD layers. Oxygen
plasma treatment introduces O-Mo bonds (see
figures 7(c) and (d)) [49-51], while argon plasma can
be used to create sulfur vacancies [98], and to even
remove entire TMD layers [99]. Moreover, SFs, CF,,
and CHF; plasma treatments can ripple and separate
TMD layers [100]. In the future, it is possible that these
techniques could be developed further in such a way
that they could control the chemical functionalization
and layer number in TMD or vdW systems. Further
calculations on the effects of different functional
groups or molecules on these systems should also be
carried out.

Thermal annealing has also been employed to cre-
ate sulfur vacancies and form Mo—O bonds in TMDs
(see figure 7(e)) [13, 51, 101]. Alternative physical
approaches for ex situ defects engineering include «
particle bombardment [13], Mn™" ion bombardment
[14], proton beam irradiation [102], ozone (O5) treat-
ment [103], and laser illumination [80, 104], but
detailed characterization studies on these defective
systems are still needed.
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Figure 7. Ex situ generation of defects. (a) HRTEM image showing electron beam irradiation induced formation of single line vacancy
(SV) and double line vacancy (DV) in monolayer MoS,. Reprinted with permission from [57]. Copyright 2013 American Physical
Society. (b) HAADF image showing beam radiation induced formation of nanoscale holes in monolayer MoS,. Reprinted with
permission from [97]. Copyright 2013 American Chemical Society. (c) and (d) XPS spectra of as-prepared, thermally annealed, and
O-plasma treated MoS,. O-plasma treatment introduces O—Mo bonds. Reprinted with permission from [51]. Copyright 2014
American Chemical Society. (e) XPS spectra of as-exfoliated and thermally annealed MoS,. Annealing introduces O—Mo bonds.
Reprinted with permission from [101]. Copyright 2014 American Institute of Physics.
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4. Properties and applications of
defective TMDs

In the following subsections, we demonstrate how
different defects can alter the properties of TMDs. In
certain cases, defects can widen the potential applica-
tions of TMDs. In other cases, defects provide a
limiting factor for reliability and homogeneity in
otherwise pristine materials.

4.1. Electronic properties of defective TMDs

As a semiconducting analogy to semi-metallic gra-
phene and insulating hBN, Mo§; has great potential in
electronics and optoelectronics [11]. The device per-
formance of atomically thin MoS, FETs depends on a
variety of factors, including the material’s quality,
thickness, substrate, contacts, environment, and sur-
face functionalization. Here we focus primarily on the
effects of intrinsic structural defects on the transport
characteristics. Zero-dimensional structural defects,
such as sulfur vacancies (see figure 3(a)), are the most
common defects in exfoliated and CVD MoS, mono-
layers [24]. Sulfur vacancies introduce unpaired elec-
trons into the lattice, n-doping the material [105]. PL
measurements and first-principles calculations reveal
that sulfur vacancies lead to the formation of a non-
zero density of states within the band gap [13, 24, 106].

Localized electronic states are created around sulfur
vacancies, and when the carrier density is low,
electrons transport via hopping between localized
defect states [106]. In addition to sulfur-deficient
MoS,, sulfur-rich (or molybdenum-deficient) MoS,
has also been reported to show a p-type transfer
behavior [105]. Both n- and p-type transports have
been identified even from different regions of the same
MoS, sample (see figures 8(a) and (b)). Thus, it is
evident that further efforts should be devoted to the
control of local stoichiometry. Other point defects
such as foreign atoms can also alter the electronic
properties of TMDs. Doped TMDs such as Mo,W,;
S35, Mo,W;_,Se, and MoS,Se;, , alloyed mono-
layers have been synthesized [28, 31-33, 82—
86, 93, 94]. In these cases, doping induces an appreci-
able modulation in the band gap, as confirmed by PL
measurements (see figure 8(c)). Notably, the band gap
value does not change linearly with the stoichiometry,
owing to the bowing effect [28]. Nb atoms can p-dope
MoS,, which has been proposed theoretically and
confirmed by transport measurements [35, 42, 43]. Re
atoms are predicted by DFT to be n-type dopants [35],
but experimental verification is lacking, and further
measurements are needed.

1D defects such as vacancy lines, inversion
domains, and grain boundaries also affect the
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Figure 8. Electronic properties. (a) and (b) I-V curves from MoS,/Au contacts. (a) and (b) are measured from different regions of the
same sample, showing opposite transfer behaviors. Reprinted with permission from [105]. Copyright 2014 American Chemical
Society. (c) PL spectra of alloyed Mo, ,W,S, monolayers with various compositions. Reprinted with permission from [28]. Copyright
2013 American Chemical Society. (d) STM image of monolayer MoS, with a grain boundary separating two grains. (e) Band gap
profile in the proximity of the grain boundary shown in (d), measured by STS. Reprinted with permission from [107]. Copyright 2015
Nature Publishing Group. (f) Top: schematic representation of a memristor based on MoS, with a bisecting grain boundary. Bottom:
I-V curves showing gate-tunable memristive behaviors. Reprinted with permission from [110]. Copyright 2015 Nature Publishing
Group. (g) -V characteristics showing a p—n diode behavior. The device is based on a lateral heterojunction composed of p-type WSe,
and n-type WS, monolayers. An optical image of the device is shown as inset. Reprinted with permission from [34]. Copyright 2014
Nature Publishing Group. (h) DFT calculated band structure of WSe,/MoS; hetero-bilayers with the A-type stacking configuration.

Group.

The direct gap transition is indicated by a vertical arrow. Reprinted with permission from [111]. Copyright 2013 Nature Publishing

electronic properties of TMD layers. Sulfur line vacan-
cies can interconnect into a triangular loop, encom-
passing an inversion domain rotated 60° from its
surroundings. The change of stoichiometry at the edge
of the inversion domains introduces mid-gap states,
which are contributed primarily by the Mo orbitals
[79]. Similarly, in MoSe, monolayers grown by mole-
cular beam epitaxy, deviation from the stoichiometry
in a Se-deficient condition leads to the formation of
inversion domains defined by Se-deficit mirror twin
boundaries. Theoretical calculations suggest that the
conductance of the mirror twin boundaries is

enhanced as a result of additional spatially localized
states within the band gap [60]. Depending on the
atomic structures, grain boundaries in MoS, can be
either sulfur-deficient or molybdenum-deficient, and
therefore locally n-dope or p-dope the material [90].
Band gap variation in the proximity of grain bound-
aries have been detected by scanning tunneling micro-
scope (STM)/ scanning tunneling spectroscopy (STS)
(see figures 8(d) and (e)), suggesting local changes in
the electronic structure [107]. Line defects can also
reduce the rotational symmetry of the two-dimen-
sional basal plane, and raise in-plain anisotropy in
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quantum conductance [108]. Grain boundaries in
CVD grown MoS, monolayers modulate the in-plane
electrical conductivity [90], while grain boundaries in
metal organic chemical vapor deposition (MOCVD)
grown polycrystalline MoS, monolayer films show less
disturbance on the spatial homogeneity of transport
characteristics [109]. Although considerable efforts
have been devoted to eliminating grain boundaries
and building devices on large single crystalline MoS,
domains, polycrystalline MoS, has recently found new
applications in gate-tunable memristors where grain
boundaries play an essential role (see figure 8(f)) [110].
Hetero-interfaces between two stitched dissimilar
TMD monolayers are another type of 1D defect that
have begun to draw attention. Recent advances in
synthesis allow lateral epitaxial growth of MoS,/WS,
and WS,/WSe, in-plane heterostructures, where the
1D interfaces serve as p-n junctions (see
figure 8(g)) [29, 34].

When TMD monolayers are stacked along the ver-
tical direction, the top layer interacts with the bottom
layer via vdW force. The vdW interface can be viewed
as a 2D defect which brings in new properties. For
example, single phased semiconducting TMDs such as
MoS, and WSe, experience a direct to indirect gap
transition when the layer number goes beyond just
one. However, first-principles calculations predict
that hetero-bilayers are not necessarily indirect band
gap semiconductors [111]. It is possible that a stacked
hetero-bilayer has a direct band gap in energy lower
than that of each constituent layer (see figure 8(h))
[111]. The electronic properties of homo- and hetero-
bilayers depend on the original properties of each con-
stituent layer, on the stacking angle and inter-layer
spacing [29, 73, 112—121]. Moreover, new functional-
ities such as vertical rectifying junctions, photodiodes,
and resonant tunneling diodes have been achieved in
stacked MoS,/WSe, layers [122—124].

4.2. Optical properties of defective TMDs

Optical properties of semiconducting TMD layers are
strongly correlated to their electronic properties [7].
Defect induced changes in electronic band structure
are often accompanied by appreciable changes in
excitonic transitions [125]. An example given in
section 4.1 shows that dopants induce band gap
variation in semiconducting TMD monolayers, as well
as a shift in the PL peak energy (see figure 8(c)). Beside
the changes at band edges, subtle changes within the
band gap can also introduce evident features in PL
spectra. In exfoliated MoS, monolayers with bi-sulfur
vacancies generated by controlled plasma irradiation,
a PL peak is observed with an energy below the band
gap value (see figure 9(a)), attributable to neutral
excitons bound to defects [13, 125]. Edges, common
1D defects in CVD grown TMD triangular single-
crystalline domains, emit visible light with intensity
similar or higher than that from the interior regions
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[88, 89]. The extraordinary edge PL emission can be
understood by first principles calculations: with edge
periodicity, transition metal valence states, and oxygen
adsorption at edges taken into account, calculations
show the edges of 2D TMDs can be semiconduct-
ing [126].

As discussed above, TMD layers are free of dan-
gling bonds, and can be stacked vertically via vdW epi-
taxy. An atomically sharp 2D interface between
adjacent layers can introduce novel optical properties
that are absent in each layer when the stacked layers
are sufficiently coupled. For example, as we have dis-
cussed in section 4.1, vdW stacking offers a possibility
to tune the electronic band structure, and to enable
new excitonic transitions in hetero-bilayers. This has
been observed experimentally in mechanically stacked
MoS,/WSe, bilayers, that showed a strong PL emis-
sion at ~1.50-1.56 eV, lower than the band gap energy
of MoS, (~1.87¢e¢V) and WSe, (~1.64eV) (see
figure 9(b)) [114]. Similarly, in CVD grown MoS,/
WS, hetero-bilayers, a PL peak at lower energy
(~1.4 eV) was observed [29]. Notably, this novel exci-
tonic transition is spatially indirect, i.e. electrons and
holes are from opposite layers due to type II band
alignment in hetero-bilayers [114, 127].

TMDs could also share the same crystal structure
and similar lattice constants, so they can be stitched
together laterally without significant lattice misfit.
MoS,/WS, and MoSe,/WSe, in-plane heterojunc-
tions have been synthesized directly by vapor deposi-
tion methods [29, 30]. The transition from the first to
the second phase occurs within an atomically sharp
phase boundaries. The interface emits visible light
with an energy lying between band gap values of the
two phases, and with an intensity much stronger than
those from both sides (see figure 9(c)) [29, 30].

Monolayer TMDs do not exhibit inversion sym-
metry, therefore certain nonlinear optical processes,
such as second harmonic generation (SHG) are pro-
nounced in monolayers [128-130]. The intensity of
SHG signal depends on factors such as crystal orienta-
tion, excitation wavelength, and topological defects
such as grain boundaries, and domain edges. In CVD
grown polycrystalline MoS, monolayer films, SHG is
reduced in intensity along grain boundaries as a result
of destructive interference of waves from neighboring
grains [131]. These grain boundaries, though atom-
ically thin and optically invisible, can be directly map-
ped out by second harmonic microscopy (see
figure 9(d)). Molybdenum terminated zig-zag domain
edges, on the contrary, enhance second harmonic
response locally, as a result of changes in the electronic
properties at 1D edges, where the translational sym-
metry of the 2D domains is broken [131]. Ideally, 2H
(or Bernal) stacked TMDs with an even number of lay-
ers do not generate second harmonic signal [128—130].
However, if even-layered TMDs have a non-ideal
stacking configuration, the SHG is not necessarily
quenched. It has been shown using artificially stacked
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spectra for monolayer MoS,, WSe,, and their hetero-bilayers. Reprinted with permission from [114]. Copyright 2014 the National
Academy of Sciences of the United States of America. (c) Left panel: PL intensity map of a MoSe,/WSe, lateral heterostructure. The
colored arrows indicate regions of MoSe,, WSe, and their interface. PL spectra taken from indicated regions are shown on the right
panel. Reprinted with permission from [30]. Copyright 2014 Nature Publishing Group. (d) Left panel: Optical image of a
polycrystalline MoS, monolayer film. SHG image from the same area is shown in the right panel, where grain boundaries are
visualized. Reprinted with permission from [131]. Copyright 2014 AAAS. (e) Optical images of artificially stacked MoS, bilayers with
various stacking angle (6). Their corresponding SHG intensity maps are shown in (f). Reprinted with permission from [69]. Copyright

2014 American Chemical Society.

MoS, bilayers that the SHG signal is recovered when
the stacking order deviates from the intrinsic 2H
stacking, owing to the lack of inversion symmetry [69].
Moreover, the intensity of SHG depends on the stack-
ing angle which modulates the interference of second
harmonic signal generated from each constituent
TMD layer (see figures 9(e) and (f)). It is very likely that
other nonlinear optical effects could be observed in
different 2D systems, and research should concentrate
on the synthesis of doped heterolayers.

4.3. Vibrational properties of defective TMDs

Raman spectroscopy is an ideal and non-destructive
technique to study the vibrational properties of 2D
TMDs, as it provides rich information about different
physical and structural properties of the samples
[23, 78, 132—137]. In particular, Raman spectroscopy
has been extensively used to identify number of layers
[136, 138, 139], and to study the effects of charge-
doping [140], strain [141, 142], and disorder [14, 96].
Interpreting Raman spectra of 2D TMDs requires
understanding of the crystal symmetry. Here we

review briefly the symmetry of the 2D TMDs for the
trigonal prismatic phases (i.e. 1H and 2H phases). The
symmetries of TMDs are layer dependent. TMDs with
an odd number of layers are non-centrosymmetric,
whereas TMDs with an even number of layers are
centrosymmetric [78]. The 1H phase has three Raman
active phonon modes which are assigned to the
irreducible representation of the Dy, group as A’j, E/
and E”. The A’} mode corresponds to the out-of-plane
atomic displacement where the upper and lower layers
of chalcogen atoms vibrate in-phase but in opposite
directions. In the case of the E/ and E” modes, the
atomic displacements are in the plane. The E’ repre-
sents a mode in which the chalcogen atoms move in-
phase and the metal atoms move in the opposite
direction, whereas the E” mode involves only the in-
plane vibration of the chalcogen atoms, but in opposite
directions. The E” mode is forbidden in a common
backscattering Raman experiment, in which the inci-
dent laser beam is perpendicular to the basal plane of
TMD layers [136].
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The bulk 2H TMDs have four first-order Raman
active phonon modes represented by the irreducible
representations of the Dg}, group and are assigned as
Ajg Eig Elyg, and E?y,. The first three modes have
similar origins as the A’;, E” and E’ modes in the 1H
polytype. Thus, the E;; mode is also not observable in
a common backscattering Raman experiment. The
mode E%,, originates from the vibration of adjacent
rigid layers with respect to each other, and appears in
the low-frequency range [136]. Note that above obser-
vable Raman modes originate from a first-order pro-
cess and involve phonons only at the I point which is
the center of the Brillouin zone (BZ) [136]. This con-
striction is a direct consequence of conservation of
momentum. However, in the presence of structural
defects which can serve as scattering centers to enable
momentum conservation, phonon modes within the
interior or at the edges of the BZ such as the long-
itudinal acoustic (LA) mode near and at the M and K
points can be activated. Therefore by tracking the
defect activated Raman modes, we can gather impor-
tant  information about  structural  defects
[14, 96,136, 143, 144].

Considering that many researchers in the 2D com-
munity are very familiar with Raman spectroscopy of
graphene [143, 144], we first give an example of study-
ing defective graphene by Raman scattering [96].
Figure 10(a) depicts a Raman spectrum of defective
graphene, which displays three main Raman features,
the D, G and 2D (or G’) bands. Here D band play a key
role in understanding defects. The G band corre-
sponds to the E,, phonon in the center of BZ. The D
band is a disorder-induced band. This band involves
an in-plane transverse optical (iTO) phonon near the
K or K’ points in the BZ that become Raman active
activated via defects in the graphene lattice. For exam-
ple, structural defects in graphene can be ex situ gener-
ated by ion irradiation. By changing the ion dose, one
can change the average distance between defects (Lp),
or equivalently the defect density. As shown in the
figure 10(b), the defect density has an evident correla-
tion with the Raman intensity ratio of the D band over
the Gband, i.e., I(D)/I(G).

Similarly, defects in monolayer MoS, can be cre-
ated intentionally via Mn" ion bombardment [14].
High dose of ion bombardment significantly enhances
the relative intensity of the LA mode at M point (see
figure 10(c)). The LA mode has a similar origin as the
D-band in graphene since they both involve phonons
near the edge of BZ and are activated by structural
defects. Similar to defective graphene, in defective
MoS, monolayers, the Raman intensity ratio I(LA)/
I(A")) or I(LA)/I(E’) could serve as an indicator to
quantify the defect density (see figure 10(d)). Similarly,
defects in other semiconducting chalcogenides such as
WSe,, WS,, MoSe,, etc are also expected to be char-
acterized by analyzing the evolution of the LA mode as
well as other resonant modes such as 2LA at the M
point as the number of defects increase within mono-
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or few-layers. Progress along this direction is likely to
be reported in due course.

The low-frequency range is relatively less explored
for 2D materials, mainly due to the lower intensities of
the low-frequency peaks compared to the E' and A/
modes, and because these peaks typically lie outside
the range (<100cm ') of conventional Raman
spectroscopy systems. The two most significant peaks
in the low frequency region for layered 2D materials
are the rigid shear mode, involving the relative motion
of atoms in adjacent layers, and the layer-breathing
(LB) mode, involving out-of-plane displacements of
atoms in adjacent layers. Naturally these modes are
absent in the Raman spectrum from monolayer TMDs
and only appear for two layers and above. The shear
mode, also called the C mode for coupling, was first
shown to vary in frequency as a function of graphene
layers [145]. Similar to the case of graphene, the C
mode has been measured by different groups in
mono- and few-layered MoS,, and WSe, [146-149].
For example, it is located at 35 cm™! for bulk MoS,
and decreases in frequency down to ~20cm™ ' in
bilayer MoS,. On the other hand, the LB mode, which
is absent in bulk MoS,, increases in frequency. Since
odd (even) layers lack (possess) inversion symmetry,
the scaling of the C and LB modes are different with
decreasing layer thickness [148, 149].

In addition to the C and LB modes, under resonant
or near-resonant conditions (for example with a laser
energy of 1.96 eV) a new peak has been observed at
~40 cm™ ! in monolayer MoS, [147, 150]. Since this
peak appears in the monolayer, it cannot be assigned
to one of the rigid layer modes. Instead, the peak has
been assigned to either electronic Raman scattering
caused by the spin—orbit splitting of the conduction
band [147], or to occurring from a strong resonance
between excitons and polaritons [150]. Its origin is
therefore unclear, and further theoretical and exper-
imental works are required to fully understand the
nature of this resonant peak.

Owing to the relative difficulty in obtaining spec-
tral data in the low-frequency region, thus far low-fre-
quency Raman spectroscopy has been the focus of just
a few studies. With increasing opportunities for pre-
paring heterostructures with different layered TMDs
(vdW solids), the low-frequency modes are very useful
for directly measuring interlayer coupling in 2D mate-
rials. Recent studies have shown the appearance of a
new LB mode and suppression of the C mode in
stacked MoS,/MoSe, and MoS,/WSe, hetero-
structures, whose frequency decreases with increasing
stacking mismatch angle [151]. In addition, the rela-
tive intensities and frequencies of the C and LB modes
have shown to vary (much more reliably than the high
frequency modes) depending on stacking orientation
(i.e. between the 2H and 3R configurations) in MoSe,/
WSe, heterostructures [152]. Raman spectroscopy in
the low frequency range therefore offers the opportu-
nity to investigate the effect of dopants, interface
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Figure 10. Vibrational properties. (a) Raman spectra of graphene with various defect densities, indicated by Lp. The laser energy used
to measureis 2.41 eV. (b) Raman intensity ratio I(D)/I(G) of graphene with various defect densities. Laser energies used for
measurements are 2.41, 1.96 and 1.58 eV. Reprinted with permission from [96]. Copyright 2011 American Chemical Society. (c)
Raman spectra of monolayer MoS, with various defect densities, indicated by Lp. (d) Raman intensity ratio I(LA)/I(E’) and I(LA)/
I(A'}) of monolayer Mo$S, with various defect densities. Laser energies used for measurements are 2.33 eV. Reprinted with permission
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coupling, intercalants, and lattice mismatch in a wide
variety of heterostructures or vdW solids composed of
2D TMDs.

4.4. Magnetic properties of defective TMDs

Compared to the electronic and optical properties, the
magnetic properties of layered MoS, and WS, remain
less exploited. Diamagnetism and ferromagnetism
have been observed in different samples of MoS,
[153, 154], but the overall saturated magnetization in
bulk MoS, is not large enough to be utilized in
applications such as spintronics. To render MoS, truly
magnetic, additional efforts have been made to tailor
the material’s microstructure. Irradiation has proven
an effective method of enhancing ferromagnetism in
bulk MoS,, presumably by generation of vacancies
[153]. Scaling down the thickness of MoS, serves as
another way to induce magnetism. Experimentally,
several types of magnetism, including diamagnetism,
paramagnetism and ferromagnetism have been identi-
fied in different samples of mono- and few-layered
MoS; [155, 156]. Considering magnetic moments may
be highly localized in samples, global magnetization
measurements themselves may not provide enough

spatial resolution to discover the origins of magnetic
ordering. To this end, first-principles calculations have
shed some light. Spin polarized calculations suggest
that one-dimensional edges of two-dimensional MoS,
or WS, carry non-zero net magnetic moments asso-
ciated with unpaired electrons (see figure 11(a))
[155, 157]. The edge ferromagnetism agrees with the
experimental observation that TMD nanosheets pos-
sess larger magnetizations than their bulk counter-
parts. Grain boundaries also induce two types of long-
range magnetic orderings in the host nanosheets
depending on the tilt angles of grain boundaries [158].
Low angle boundaries composed of stitched 517
dislocation cores exhibit ferromagnetic behavior while
high-angle boundaries’ 418 rings are antiferromagnetic
(see figure 11(b)). Besides utilizing native synthetic
defects in TMDS, an alternative strategy to introduce
magnetic ordering is to dope the materials. Therefore,
the full series of 3d transition metal atoms, including
Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and, Zn have been
considered as substitutional dopants within the frame-
work of DFT [36, 38, 40, 159-162]. Mn, in particular,
seems to be a promising candidate for the introduction
of long-range ferromagnetic ordering into the host
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Figure 11. Magnetic properties. (a) A structural model of WS,
nano-ribbons with zig-zag edges. The calculated distribution
of spin density is overlaid. Reprinted with permission from
[157]. Copyright 2014 American Institute of Physics. (b) DFT
calculated grain boundary magnetism in monolayer MoS, as
afunction of tilt angle (f). Considering the grain boundary
energies (Egp), a small tilt angle (0 < 47°) favors 5|7 disloca-
tions, whereas a high tilt angle (¢ > 47°) favors 418 disloca-
tions. Grain boundaries composed of 5|7 dislocations are
ferromagnetic (FM), indicated by a positive exchange cou-
pling parameter (J) in the 1D Ising model. Grain boundaries
composed of 418 dislocations are antiferromagnetic (AFM),
indicated by a negative J. Reprinted with permission from
[158]. Copyright 2013 American Chemical Society.

material [38, 40]. Significantly, calculations suggest
Mn doped MoS, monolayers can exhibit a Curie
temperature above room temperature, which is
appealing for application in diluted magnetic semi-
conductors. Recently, doping Mn atoms into MoS,
monolayers has been achieved by using a modified
CVD process, in which dimanganese decacarbonyl
(Mn,(CO);) powders were added as Mn precursors,
and graphene was used as a growth substrate [41].
Along this line, further experimental studies on Mn
doping induced magnetism are expected.

4.5. Chemical properties of defective TMDs

Because pristine TMD basal planes are largely chemi-
cally inert, introducing a reasonable amount of defects
is crucial in chemical applications. MoS, can be
extracted from mines and has long been considered as
a low-cost catalyst for producing hydrogen, a clean
alternative to fossil fuels, via hydrogen evolution
reaction (HER) [163]. Bulk MoS, shows a relatively
low catalytic activity, while when thinned down to few
or monolayers the performance is significantly
improved. Owing to the rapid progress in the synthesis
of atomically thin layers, MoS, has been revisited in
recent years as an effective catalyst [8, 20, 164]. The
active sites for HER lie along one-dimensional edges of
MoS, nanosheets while the basal planes are catalyti-
cally inert, as confirmed by recent experiments and
DFT calculations [163, 165]. Efforts have been there-
fore made towards creating or exposing more active
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edges. It has been demonstrated that by quickly
sulfurizing molybdenum films deposited on a flat
substrate, MoS, sheets are formed with basal planes
perpendicular to the growth substrate, thereby expos-
ing a high density of one-dimensional edges (see
figures 12(a) and (b)) [166]. The vertically standing
MoS, layers can also form on curved substrates such as
nanotubes, in which case the density of exposed edges
is further increased [167]. Another strategy to enhance
catalytic performance is generating new edges via
defect engineering [168]. The basal planes of MoS,
sheets can be cracked chemically to introduce addi-
tional defects with unsaturated bonds (see
figures 12(c) and (d)) [169, 170]. Besides increasing
edge density, incorporating foreign atoms, introdu-
cing the metallic 1T phase, and forming nanocompo-
sites, have also proven feasible strategies to make MoS,
a more efficient catalyst [169, 171-174]. However, the
possibilities are endless if we consider other TMDs
different from MoS, and their heterostructures.

5. Conclusions and perspective

In this review, we have categorized structural defects in
2D semiconducting TMDs based on their dimension-
alities and atomic structure. We have summarized
pathways to generating structural defects, including
in situ generation during the materials synthesis, and
ex situ generation after synthesis. Defects significantly
alter the original electrical, optical, vibrational, magn-
etic, and chemical properties of materials. However, it
is encouraging that the effects of structural imperfec-
tions in 2D TMDs are not necessarily detrimental. In
certain cases, defects provide benefits to material
properties, enhancing device performance, and
enabling unprecedented functionalities.

Given the short history of research on 2D TMDs,
the study of their structural defects is still in its infancy
and most of the work summarized here corresponds to
MoS,. In the years to come, three complementary
directions may become attractive to researchers enter-
ing this field. The first is to avoid defects by synthesiz-
ing high-quality materials. For example, efforts will
continue towards increasing the grain size of CVD
TMDs and reducing the number of grain boundaries.
This direction is particularly important for proof-of-
concept studies, for setting a baseline of the so-called
intrinsic properties, and for applications which
require large-scale spatial homogeneity such as elec-
tronics. The second potential direction is the rational
creation and utilization of defects. Towards this end,
more work about basal plane chemical functionaliza-
tion (see figure 13) is expected as well as studies of how
defects affect mechanical and thermal properties of
TMDs. At present, atomic scale understanding and
manipulation of defects remains a challenge. For
example, the dynamics of local defect formation,
migration and reconstruction are largely unexplored.
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Figure 12. Chemical properties. (a) TEM image of vertically aligned MoS, layers, MoSe, layers, and a schematic presentation showing
exposed edge sites. (b) Polarization curves of vertically aligned Mo$, layers, MoSe, layers, and blank glassy carbons showing their HER
performances. Reprinted with permission from [166]. Copyright 2013 American Chemical Society. (c) Schematic representations of
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defect-free and defect-rich MoS, nanosheets. (d) Polarization curves

and several other materials as indicated. Reprinted with permission from [170]. Copyright 2013 Wiley.
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Figure 13. Surface functionalization. A scheme showing that
S vacancies in MoS; sheets can be passivated by thiol
conjugation. Reprinted with permission from [178]. Copy-
right 2013 American Chemical Society.

It is also challenging for experimentalists to introduce
defects of specific types into desired locations and at
controlled concentrations. The third potential direc-
tion is to heal defects, i.e. to convert defective TMDs
into highly crystalline materials after synthesis. Given
the high temperature and complicated dynamics dur-
ing synthesis, it is impractical to fully avoid defects.
Therefore, it may be necessary to develop approaches
to eliminate certain synthetic defects after the fact.
Recent advances in electron microscopy, optical
spectroscopy, optoelectronics, and first-principles cal-
culations have been bringing us new knowledge about
defects on an almost daily basis. In light of this, it is not
overly ambitious to expect breakthroughs in afore-
mentioned directions to be on the horizon with joint
efforts from physicists, chemists, materials scientists
and engineers.
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