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Abstract. We propose an experimental scheme to observe prethermalization
and a dynamic phase transition in a one-dimensional XY spin chain with long-
range interactions and inhomogeneous lattice spacing, which can be readily
implemented with a recently developed trapped-ion quantum simulator. Local
physical observables are found to relax to prethermal values at an intermediate
timescale, followed by complete relaxation to thermal values at much longer
time. The physical origin of prethermalization is shown to result from a non-
trivial structure in the lower half of the energy spectrum. The dynamic behavior
of the system is shown to cross different phases when the interaction range is
continuously tuned, indicating the existence of a dynamic phase transition.
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The dynamic properties of isolated quantum many-body systems have garnered intense interest
in recent years [1, 2]. On the theory side, research has been centered on whether and how an
isolated quantum system approaches thermal equilibrium. While certain observables are found
to relax to equilibrium in some large systems [3–7], it remains unclear under what conditions
and on which timescale equilibration occurs in generic systems [8–11]. On the experimental
side, recent progress with cold atoms [12–14] and trapped ions [15–20] has made it possible
to simulate well controlled simple models, such as the one-dimensional (1D) Bose gas and
transverse field Ising model. These quantum systems can be well isolated from the environment
and have long coherence times, and their physical properties can be measured at the single-atom
level, providing an unprecedented opportunity for studying non-equilibrium dynamics in closed
interacting systems.

A particularly intriguing phenomenon in this context is prethermalization [21], which
has been shown to emerge in various theoretical setups [22–24], and has been experimentally
observed in ultracold atomic gas [14]. Prethermalization is characterized by the establishment of
a quasi-stationary state at an intermediate timescale, followed by relaxation to a stationary state
at a much longer timescale (thermalization). The physical origin of prethermalization, however,
is still elusive, and is speculated to be related to the quasi-integrability of the model [14, 23].

In this paper, we propose a new experimental scheme for observing and studying
prethermalization and a related dynamic phase transition in an XY spin model, which can
be implemented with the current trapped-ion quantum simulator of [19]. Our model features
long-range spin–spin interaction and an inhomogeneous lattice spacing, and unlike many other
systems, the prethermalization can occur already for as few as a dozen spins, allowing for
its observation in current experimental systems. The prethermalization found in this system
results from a non-trivial structure in the energy spectrum, which in turn arises due to a
combination of long-range interaction and inhomogeneous lattice spacing. In addition, by tuning
the range of interactions with an experimental knob, we find that the dynamic behavior of
this system exhibits three different phases: thermalization only, prethermalization followed
by thermalization and prethermalization only. The transition between these different phases
becomes sharper with an increasing number of spins, hinting at the existence of a dynamic
phase transition [25] in the thermodynamic limit.

1. Model and its dynamics

Our spin model is based on the experimental system of a chain of ions confined in a linear Paul
trap (figure 1). Through proper configuration of the Raman beams, the optical dipole force can
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Figure 1. Schematic view of the proposed experimental setup: a chain of N ions
are trapped along the z direction in a 1D harmonic linear Paul trap. The global
Raman beams generate a spin-dependent force along the x direction, resulting in
effective Ising-type interaction. To induce the dynamics, a focused laser beam is
applied on one end of the ion chain to selectively flip only the first spin.

generate an effective transverse field Ising model [16, 17, 26]

H =

N∑
i< j

Ji, jσ
x
i σ

x
j + B

N∑
i=1

σ z
i , (1)

where σi is the spin-1/2 Pauli matrix for the i th ion qubit. The interaction coefficients Ji j in
equation (1) are given by

Ji, j =�2
N∑

m=1

ηi,mη j,mωm

µ2 −ω2
m

,

where µ is the Raman beatnote frequency, � is the effective Rabi frequency, which is assumed
to be the same for all of the ions, {ωm} are the phonon mode frequencies of the ions in the
x direction and ηi,m are the Lamb–Dicke parameters measuring the coupling between the i th
ion and the mth phonon mode. We are interested in the region where B � max{Ji j}. In this
limit, the σ +

i σ
+
j and σ−

i σ
−

j terms in equation (1) will be energetically forbidden, and we end up
with the XY Hamiltonian

H ≈ HXY =

∑
i< j

2Ji, j(σ
+
i σ

−

j + h.c.)+ B
∑

i

σ z
i . (2)

A unique feature of the Hamiltonians (1) and (2) realized with the ion system is that the
interaction characterized by Ji j is long ranged, and the interaction range is readily tuned
by changing the beatnote frequency µ. In particular, in a range of µ, Ji j can be roughly
approximated by a power-law decay with Ji j ∼ |i − j |−α, where α varies from 0 to 3 when we
tuneµ [19]. In the following analysis, for a givenµ, we fit the coefficient Ji j with Ji j ∼ |i − j |−α

and use the fitting parameter α as an indicator of the range of interaction.
The 1/rα Ising model (equation (1)) with no transverse field (essentially classical) can

be analytically solved [27, 28]. Its dynamic properties have also been recently studied in
[24, 29], where it is found that if α is smaller than the dimensionality of the system, the total
interaction energy per site diverges, drastically changing the dynamics after a global quantum
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quench, with possible emergence of prethermalization. However, the long range XY model
(equation (2)) contains non-commuting terms and is generally not exactly solvable, making
its dynamic properties largely unknown. Here, we consider a particularly interesting setup
that shows rich dynamic properties and is practical for experimental demonstration. We first
initialize all of the spins through optical pumping to the spin down state with σ z

i = −1, which
is an eigenstate of HXY and hence stationary. We then use a focused laser beam to flip the first
spin (left end ion) to σ z

i = 1 (see figure 1). The starting state |ψ(0)〉 = | ↑↓↓ · · · ↓〉 is no longer
an eigenstate of HXY , and is subject to the dynamics with |ψ(t)〉 = eiHXY t/h̄

|ψ(0)〉. We consider
the time evolution of the local observables 〈σ z

i (t)〉 and their correlations 〈σ z
i (t)σ

z
j (t)〉, which

can be directly measured in the experiments. For convenience of description of the dynamics,
we introduce the operator

C =

N∑
i=1

fi
σ z

i + 1

2
,

where the coefficients fi ≡ (2i − N − 1)/(N − 1) are equally distributed between [−1, 1] from
i = 1 to N . The expectation value of C varies between [−1, 1], and physically measures the
relative position of the spin excitation. It is easy to check that 〈ψ(0)|C |ψ(0)〉 = −1, meaning
that the spin excitation is initially at the left edge of the chain. We also note that for any state
with spatial inversion symmetry around the center of the chain, 〈C〉 = 0.

2. Prethermalization and dynamic phase transition

To explore the dynamic behavior, we first perform numerical calculations by using exact
diagonalization of an N = 16 ion chain, which corresponds to the current size of the
experimental trapped ion quantum simulator in [19]. As shown in figure 2, we choose two
parameter settings with the corresponding fitting parameter α ≈ 2.6 and 0.52, which represent,
respectively, the short-range and the long-range interactions. The distributions of the exact
coupling coefficients Ji j are shown in figure 2 for these two cases. Note that our calculation
is based on the approximated XY Hamiltonian (equation (2)). However, we have numerically
verified that the relative differences of the calculated 〈C〉 and 〈σiσ j〉 obtained by solving the
original transverse field Ising Hamiltonian (equation (1)) are negligible at all times (<10−3)
when B > 1000J0. It is worth mentioning that the error caused by the non-

∑
i σ

z
i -conserving

terms from the finite B field does not accumulate over time: the population of our state
outside of the single excitation subspace can be estimated as ε ∼

∑
i, j(Ji j/B)2, which is

independent of time and can be made arbitrarily small by choosing a sufficiently large B.
In practice, as J0 ∼�(ηx/N )(ηx�)/(µ−ωx), and a trapped ion quantum simulator requires
ηx � 1 and ηx�� µ−ωx [26], �> 1000J0 is typical for N > 10 ions (see [19] and also
example parameters in figure 2). Since the transverse magnetic field is generated by a resonant
carrier transition [16, 17], by splitting the Raman laser power evenly between the two sidebands
alongwith the carrier transition, B > 1000J0 can be readily achieved. Moreover, ε decreases
with increasing N , as the Ji j will scale down faster than 1/N for a given laser power [30].

For these choices of parameters, the short-time dynamics with t ∈ [0, 2/J0] for 〈C〉 is
shown in figures 3(a) and (b). In the short-range interaction case, we observe that the spin
excitation, initially located at the left edge of the chain, travels almost coherently to the other
side and oscillates back and forth with relatively small dispersion. In contrast, in the long-range
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Figure 2. (a) Distribution of Ji j for short-range interactions with the beatnote
frequency set at µ= 5.2 MHz, a trap frequency in the z direction of ωz =

100 kHz, and ηx�= 40 kHz. The corresponding fitting parameter α ≈ 2.6 in this
case. (b) Distribution of Ji j for long-range interactions withµ= 5.02 MHz, ωz =

600 kHz, ηx�= 3.9 kHz, and the corresponding fitting parameter α ≈ 0.52. In
both cases we choose a trap frequency in the x direction of ωx = 5 MHz and
average interaction strength J0 =

∑
i 6= j Ji j/N 2

= 20 Hz. Note that all of the
frequencies here are angular frequencies.

interaction case, the spin excitation diffuses and somehow gets locked before it reaches the
middle of the chain (with 〈C〉 ≈ −0.4).

To clarify the long-time dynamics, we use the finite-time-averaged quantity A(t), defined
as A(t)≡

1
t

∫ t
0 〈A(τ )〉 dτ for the observable A [31, 32], thereby averaging out temporal

fluctuations on short time scales (the following dynamic behaviors are qualitatively the same
even without performing any time averaging). The long-time dynamics is shown in figures 3(c)
and (d). In the short-range interaction case, the spin excitation position C , as well as the
spin correlations σ z

i σ
z
j , relax to the stationary values at T0 ≈ 10/J0 = 500 ms. In the long-

range interaction case, the observables first reach quasi-stationary (prethermal) values at a
timescale T0, and further relax to the stationary (thermal) values at a much longer timescale
(∼104T0). The emergence of prethermalization in the long-range interaction case is signaled by
a nonzero value of C at the intermediate timescale T0. We can use C as an order parameter
to characterize different dynamic behaviors. By continuously tuning the effective interaction
range (indicated by the fitting parameter α) with the beatnote frequency µ, we find that (see
figure 4) prethermalization only takes place when α is smaller than a critical value (αC ≈ 1.3
for N = 16). For larger system size, the prethermalization–thermalization transition still occurs,
but αC becomes smaller and the transition becomes sharper. For the particular case α = 0, the
system has uniform coupling and its dynamics can be solved exactly. The exact solution shows
that the system stays in the prethermal state forever with C =

2
N − 1 [33].

3. Mechanism of prethermalization and dynamic phase transition

We now give a physical explanation of why prethermalization and the variety of observed
dynamic behaviors occur in this model. The distinctive short-time dynamics of 〈σ z

i (t)〉
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Figure 3. (a), (b) Short-time dynamics of σ z
i and C for short-range (a) and long-

range (b) interactions. (c), (d) Long-time dynamics of time-averaged C and σ z
i σ

z
j

for (c) short-range and (d) long-range interactions. The parameters for the short-
range and the long-range interactions are the same as in figure 2.

(figures 3(a) and (b)) can be explained by examining the energy spectrum of HXY in the
single spin excitation subspace (shown in figure 5(a)). In the short-range interaction case, the
energy spectrum is close to linear. This is because HXY can be roughly approximated with only
neighboring interaction, and due to inhomogeneous lattice spacing, {Ji,i+1} are similar to those in
the ‘quantum mirror’ model [34, 35], resulting in a near dispersion-free spin wave propagation
until nonlinearity sets in. On the other hand, the energy spectrum for the long-range interaction
case is highly nonlinear, so the dynamics of the spin excitation is strongly dispersive.

The reason for a prethermal stage in the long-time dynamics, however, is much more
complicated. Naively, the spin flip–flop matrix Ji j varies smoothly among sites for any α ∈

(0, 3), so the spin excitation should continuously diffuse from one end of the chain to the whole
chain, and is not expected to get trapped somewhere in the middle for a long time. The two stage
dynamics indicates that there are two different timescales implicit in the Hamiltonian, which is
not at all obvious by looking at the Ji j . The time dynamics of any physical observable is simply
given by

〈A(t)〉 =

∑
m,n

ρmn(0)Anm ei(Em−En)t/h̄,

where ρmn(0) is the initial state’s density matrix element in energy basis, the different timescales
of the dynamics can be understood by computing the eigenenergy differences {Em − En}, as
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specified in figure 1, and the N = 64, N = 256 cases use the same parameters
except that ωz is scaled down by ωz ∝

√
ln N/N to maintain chain stability.

done in figure 5. In the short-range interaction case (figure 5(b)), all {Em − En} are continuously
distributed from J0 to 100J0, so a single-stage relaxation is expected after T ∼ T0 = 10/J0. In
the long-range interaction case (figure 5(c)), most {Em − En} still fall into the range of 1–100J0,
but there is a striking separate (i.e. gapped) branch at the much lower rate (∼10−6 J0). This
branch results from the near-degenerate pairs ({E2k − E2k−1}) of the eigenenergies (figure 5(a))
that make up the first half energy spectrum, and the number of these pairs scale up with system
size N . Note that if we put the ions into a ring trap so that the lattice is translationally invariant,
we find that there is no separate branch of the {Em − En} (figure 5(d)), and hence there is
no prethermalization even with long-range interactions. The appearance of near-degenerate
pairs {E2k − E2k−1}) in the spectrum of our model seems to arise from the combined effect
of long-range interactions and inhomogeneous lattice spacing. Intuitively, from figure 2(b), the
inhomogeneity causes the middle part of the chain to have smaller flip–flop interactions Ji j than
the ends, potentially leading to a metastable state where the spin excitation is roughly localized
in the left half of the chain. However, the existence of two distinct timescales is primarily due
to the structure of the energy spectrum, which is not trivially related to inhomogeneity. We are
still investigating if there is a wide class of inhomogeneous lattices that can give rise to similar
dynamics.

Figure 5(e) shows that the thermal values can be well predicted by the DE, defined as

ρDE = ρmn(0)δmn.

In the large N limit, under certain conditions implicit in the eigenstate thermalization
hypothesis [3–5], the DE prediction will match the canonical ensemble prediction for
thermalized states in classical statistical physics.
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Figure 5. (a) Energy spectrum in the single spin excitation subspace for
N = 16 spins with short and long-range interaction. (b)–(d) Scatter plot of
the eigenenergy differences {Em − En} for N = 256 spins with (b) short-range
interaction (α = 2.4), (c) long-range interaction (α = 0.74) and (d) long-range
interaction (α = 0.74) but with ions confined in a ring geometry with equal
spacing. (e) Comparison of prethermal values of σ z

i (blue circle, taken at t =

T0 = 500 ms) with partial diagonal ensemble (PDE) prediction (blue solid line)
and thermal values (red square, taken at t = 5 × 103s) with diagonal ensemble
(DE) prediction (red dashed line) based on long-range interaction pattern Ji j

shown in figure 2(b).

As prethermalization is due to an emergent small scale of energy differences in the
Hamiltonian, to predict the prethermal values here, we can define the PDE:

ρPDE =

{
ρmn(0)δmn, |νm − νn|& 1/T0,

ρmn(0), |νm − νn| � 1/T0,
(3)

where {νm} are the eigenenergies. We find that the PDE can accurately predict the prethermal
values of local observables σ z

i , as shown in figure 5(d). Roughly speaking, the prethermalization
timescale is determined by the average level spacing (∼10/J0), and the thermalization timescale
is determined by the minimum level spacing (∼104/J0 as in figure 5(d)).

The dynamic phase transition can be associated with breaking of the lattice inversion
(parity) symmetry, reminiscent of symmetry breaking in the equilibrium phase transitions. Our
Hamiltonian HXY is symmetric under the space inversion around z = 0 (figure 1), but we start
from an initial state that does not have this symmetry. The thermal state, with no memory of the
initial state, is described by the diagonal ensemble ρDE and restores this symmetry as C = 0.
However, the prethermal state does not restore the Hamiltonian symmetry due to its non-zero
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C value, which indicates that some ‘memory’ of the initial state is preserved in the prethermal
state. The intermediate timescale T0 for observation of the prethermal state gives a microscopic
interpretation of why this state can break the parity symmetry: one cannot distinguish the near-
degenerate pairs of eigenstates in the energy spectrum, so linear combinations within each pair
are allowed. Since the two eigenstates of the pair have either even or odd parity, their linear
combinations can break the parity symmetry. The dynamic phase diagram shown in figure 4
also has the hint of two non-analytical points: one is where C becomes non-zero, representing
the appearance of prethermalization, and the other is where C approaches 2

N − 1 (α → 0),
representing the disappearance of thermalization. Note that the thermodynamic limit of our
system is not well defined, as to keep a linear ion chain stable, the length of the chain L cannot be
kept proportional to N as N becomes large. Thus, it is not clear if a dynamical phase transition
point can be obtained in some generalized thermodynamic limit (we are also limited by a finite
number of lattice sites that can be studied using our numerical methods).

4. Discussion of experimental detection and summary

The transverse field Ising Hamiltonian equation (1) has already been experimentally simulated
in [19] for the N = 16 ions, and highly efficient in situ measurement of spin polarization (σ z

i )
and spin correlation (σ z

i σ
z
j ) has been demonstrated. The XY Hamiltonian (equation (2)) can thus

be readily obtained by turning up the effective transverse magnetic field. The non-equilibrium
initial state preparation requires a focused laser beam, but is relatively easy due to the large ion
spacing near the ends. The laser power and trap frequencies used for generating the interaction
pattern Ji j shown in figure 2 are within current experimental reach [17, 19]. The observation of
prethermalization and the dynamic phase transition shown in figures 3 and 4 only requires the
spin decoherence time to be longer than T0 = 10/J0 = 500 ms, and coherence times of up to 2.5 s
have been experimentally achieved by using the hyperfine qubit of Yb+ ions [36]. However, the
second stage of thermalization for the long-range interaction case requires much longer times,
and is beyond current experimental reach, similar to the experiment on prethermalization using
cold atoms in [14].

In summary, we have proposed a novel scheme to observe a peculiar prethermalization
phenomenon and dynamic phase transitions in a trapped ion quantum simulator. The required
conditions can be realized by using current experimental technology. We provide an explanation
of the mechanism of prethermalization and the dynamic phase transition in our proposed model.
We believe that the wealth of interesting dynamic properties for a system with continuously
tunable range of interactions is far from exhausted.
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Note Added: After completion of this work, we became aware of [37], in which similar local
quench dynamics yields results consistent with the work presented here on the short-time
behavior of small versus large α power law interaction, and [38], which studies entanglement
growth following a global quench of the Hamiltonian given by equation (1) under different α.
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