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Abstract

DoD health care requires reform with growing costs causing concerns of decreased

military capability. Porter in [1] proposes a radical strategy to fix current health care

delivery systems via organizing medical teams around patients with similar treatment

requirements. This is a clustering problem; how do you partition the set of patients

so that each group has similar treatment needs? We provide advances in clustering

theory relevant to this new health care strategy. In particular, we create fast certifi-

ably optimal k-means clustering using what is known as Probably Certifiably Correct

(PCC) algorithms which achieves state-of-the-art performance under certain models.

Inspired by the health-care clustering problem, we pay particular attention to a Bi-

partite Stochastic Block Model and produce an alternative PCC algorithm specific

to this model. We conclude by demonstrating the potential utility of applying these

clustering methods in health-care. Using conditional entropy as a metric, clusters ob-

tained from our methods vastly outperform partitions prescribed by subject matter

experts.
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CLUSTERING THEORY AND

DATA-DRIVEN HEALTH CARE STRATEGIES

I. Introduction

The military needs to fundamentally change the way it provides health care.

According to the Congressional Budget Office (CBO), health care costs in the De-

partment of Defense (DoD) are growing at an unsustainable rate: DoD health care

spending grew “rapidly as a share of the defense budget [from 2004 to 2014], outpac-

ing growth in the economy, growth in per capita health care spending in the United

States, and growth in funding for DoD’s base budget”[2]. The CBO projects this

trend to continue, with health care taking up a growing proportion of the DoD’s

budget until 2028 [2]. This is cause for concern, since it leaves less money for other

important defense programs, potentially hindering the overall capability of the U.S.

military [3]. In response, the DoD has made it a priority to find ways to save money

throughout the Military Health System [3].

Professor Michael Porter of the Harvard Business School offers a radical proposal

to deliver higher-quality health care with less money [1, 4]. His main idea is to

assign patients to different teams of medical professionals called Integrated Practice

Units (IPUs) according to medical needs. Since patients in a common IPU will have

similar needs, each IPU will be able to provide focused care. To date, the IPU

framework has found success in several isolated instances outside the DoD [1, 5]. In

response to this success, the Air Force Surgeon General has requested that the Air

Force Medical Service implement Porter’s IPU framework [6]. Following the 2015

Air Force Future Operating Concept [7], we seek a data-driven approach to the Air
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Force’s implementation of Porter’s strategy. Fortunately, in cooperation with the

711th Human Performance Wing, we have access to a large set of Air Force health

care data, in particular, the anonymized medical histories of all Air Force personnel,

retirees, and dependents over the course of a decade. The purpose of this thesis

is to leverage this dataset to initiate a data-driven partition of patients for IPU

assignments.

1.1 Partitioning Patients with Clustering Theory

Our task is to divide a population of patients according to similar health care

needs. In addition, we want our patient partition to be time-robust, meaning we

can expect patients assigned to a common IPU to have similar needs for an extended

period of time (say, five to ten years). Porter in [4] offers a patient partition consisting

of the following categories:

1. Healthy adults

2. Mothers and young children

3. Adults at risk of a chronic disease

4. Adults with a chronic disease

5. Adults with a rare condition

6. The disabled and the frail elderly.

Unfortunately, there is no analysis regarding the time-robustness of this categoriza-

tion. In this thesis, we examine time-robustness by dividing our ten-year database

of medical records: we use the first five years to create a partition, and then we use

the second five years to evaluate the partition by comparing patients’ medical usage.

This makes intuitive sense since patients with similar records should continue to have

2



related health care needs. We therefore seek a partition based on the first five years of

medical records which minimizes some notion of dissimilarity within divisions. This

is an instance of a fundamental machine learning task known as clustering.

Clustering is the general problem of partitioning a given finite set P into k subsets

A1, . . . , Ak such that some dissimilarity function is minimized. Usually, this function

is chosen for a specific purpose with an application in mind. In the context of the

Air Force health care problem, we desire to group patients in such a way that each

cluster has the most predictable health care needs. In particular, suppose a patient in

cluster t receives a diagnosis w with probability Pr(W = w|T = t). A common way

to quantify unpredictability of this random variable is called entropy H(W |T = t)

defined by

H(W |T = t) = −
∑
w∈W

Pr(w|t) log2

(
Pr(w|t)

)
.

Since we seek to minimize uncertainty over all clusters simultaneously, we consider

the natural weighted average of these entropies known as conditional entropy:

H(W |T) = −
∑
t∈T

Pr(t)
∑
w∈W

Pr(w|t) log2

(
Pr(w|t)

)
.

Here, W is a random variable of a patient being given a diagnosis w with W denoting

a set diagnoses, and T is a random variable to represent the partition to which a

patient belongs with support T . Originating in information theory, conditional en-

tropy describes how well a clustering T can be used to compress data while retaining

all of the information in the data. The lower the entropy, the more T says about

W . Although we assert conditional entropy is the appropriate metric to be used for

this problem, it is not a commonly used dissimilarity function. As one might then

suspect, the availability of software implementations of algorithms which find parti-

tions of minimal conditional entropy pales in comparison to more common clustering

3



algorithms.

One such algorithm, called Lloyd’s algorithm or the k-means algorithm [8],

seeks to solve the what is known as the k-means problem:

minimize
k∑
t=1

∑
x∈At

∥∥∥∥x− 1

|At|
∑
y∈At

y

∥∥∥∥2

2

(1)

subject to A1 t · · · t Ak = P.

This algorithm alternates between calculating centroids of proto-clusters and reassign-

ing points according to the nearest centroid. An illustration of an implementation

of Lloyd’s algorithm is given in Figure 1. Due to its algorithmic simplicity, the real

world applications of Lloyd’s algorithm to solve the k-means problem are numerous.

Take for example the case of image classification studied in [9] which used the k-

means algorithm to achieve state-of-the-art classification accuracy on two benchmark

databases commonly used in image classification. In [10], Lloyd’s algorithm was used

in medical image segmentation. The authors of [11] used it to map human vulnerabil-

ity to toxic chemicals in Shanghai. Artificial neural networks and Lloyd’s algorithm

were used in [12, 13] to perform market segmentation. In [14], Lloyd’s algorithm is

applied dynamically to a database of songs to create a recommender system. Di-

mensionality reduction on a set of climatological performance metrics is performed

in [15]. The work in [16] demonstrated the applicability of the Lloyd’s algorithm in

identifying geographic patterns in criminal activity and proposed their methodology

could be used in homeland security. The authors of [17] use Lloyd’s algorithm in

detecting outliers in network traffic. Clearly, this algorithm is versatile.

Moreover, Problem (1) is approximately derived from a related notion of entropy

[18]. As such, one might suspect that near-optimal k-means partitions are also good

clusterings under conditional entropy. In fact, under a certain reasonable distribu-

4
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(i) Update Centroids;
Completed Clustering

Figure 1. An Illustration of Lloyd’s Algorithm The following has been performed using the
k-means++ algorithm in MATLAB 2015a. Here we generate data for three clusters each having 200
points in R2 drawn uniformly from a ball of radius one with centers (0, 0), (2

√
2, 0), and (2

√
2, 2
√

2),
respectively. In (a), we randomly initialize cluster centroids according to the k-means++ initializa-
tion scheme. We indicate cluster centroids with a circle. In (b), (d), (f), and (h) we assign points
to clusters according to the nearest cluster centroid. A point is labeled as a ∗,+, or × depending
on cluster membership. In (c), (e), (g), and (i) we calculate cluster centroids based on the points
assigned to the previous clustering. Finally, we terminate the algorithm in (i) as the clustering does
not change upon one more iteration of Lloyd’s algorithm.

tion of data, the two objective functions are indeed closely related. Consider planted

clusters where the data is tightly packed around cluster centroids. The planted par-

tition gives a small k-means objective as all of the points are near their centriods. In

the case of conditional entropy, the probability of a datapoint being near a centroid

under the planted partition is close to either zero or one driving down entropy. Since
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the k-means problem has been extensively studied and quickly employed in various

real-world applications, and further relates to the conditional entropy objective we

desire, we seek a patient partition which optimizes the k-means objective in the hopes

that it will lead to low-entropy, time-robust patient clusterings.

1.2 Certifiably Optimal k-means Clustering

Despite its widespread use, speed and applicability, Lloyd’s algorithm has a few

shortcomings. First, solving problem (1) is NP-hard in general [19], so Lloyd’s algo-

rithm does not exactly solve the k-means problem. Rather, Lloyd’s algorithm (and

its variants [20, 21]) may converge to local minima of the k-means objective (e.g., see

section 5 of [22]). Furthermore, the output of Lloyd’s algorithm does not indicate

how far it is from optimal. As such, a slower algorithm that emits such a certifi-

cate may be preferable. Along these lines, convex relaxations provide a framework

to approach such NP-hard problems. This framework is known as the “relax and

round” paradigm: Given an optimization problem, first relax the feasibility region to

a convex set, optimize subject to this larger set, and then round the optimal solution

to a point in the original feasibility region.

One may seek approximation guarantees in this framework by relating the value of

the rounded solution to the value of the optimal solution. Sometimes, the rounding

step of the approximation algorithm is unnecessary because the convex relaxation

happens to find a solution that is feasible in the original problem. This phenomenon

is known as tightness (or integrality) of the convex relaxation. When exact recovery

occurs, the algorithm not only provides a solution, but also a certificate of its op-

timality thanks to a key concept in convex optimization called convex duality. We

refer the reader to [23, 24] for more information on this subject.

To date, the best convex relaxation of k-means is the semidefinite program (SDP)

6



Table 1. Comparison of k-means Clustering Algorithms

Clustering Method Certificate of optimality? Fast clustering?

Lloyd’s algorithm No Yes
Semidefinite relaxation in [22] Yes No
PCC algorithm (Chapter II) Yes Yes

proposed in [22]. Unfortunately, semidefinite programming is quite slow, especially

compared to Lloyd’s algorithm. On the other hand, Lloyd’s algorithm currently lacks

a performance guarantee for an optimal partitioning. One could attempt to resolve

this problem by creating a k-means solver which recovers planted clusters under a

model with a reasonable definition of a cluster. The solver, however, may not produce

a certificate of an optimal partitioning and the performance of the solver is overly

dependent on the data following the model for which it was designed, which is not

guaranteed.

Recently, Bandeira [25] combined fast solvers with the optimality certificates of

convex relaxations to produce a new class of algorithms: probably certifiably cor-

rect (PCC) algorithms. The main idea here is that in some cases, given an integral

solution of a convex relaxation, one may quickly compute a corresponding dual cer-

tificate. As such, given a solution from a fast solver, the computational burden of

demonstrating optimality is simply to check whether that certificate is dual feasible.

By applying the PCC framework, we achieve fast certifiable k-means clustering in

this thesis.

1.3 Overview

We provide new results in clustering theory and apply these results to partition

patients for the betterment of healthcare delivery in the Air Force. The following

subsections give more detail regarding the content of the thesis, organized by chapter.
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Note in this work we often refer the reader to the Appendix A for the proof of a

statement to maintain greater readability in the body of the thesis.

Obtaining and Certifying k-means Optimal Partitions.

Given a clustering of data (say, from some fast algorithm such as Lloyd’s algo-

rithm), how do we certify k-means optimality? Moreover, can we certify optimality

quickly? Currently, there is an answer to the former given in [22], but none to the

latter. In Chapter II, we use a convex relaxation of problem (1) to develop a different

certificate than the one given in [22], and then we leverage this certificate to develop

a fast k-means certifier.

More precisely, we develop our certificate by finding a sufficient, deterministic

condition on a set of points for which an SDP relaxation of the k-means problem is

integral. To do so, we begin with the SDP proposed in [22] and characterize all of

its dual certificates. With this characterization in mind, we seek to find a unique

dual certificate given a set of points. As a slow certification process would be useless

in applications, we provide a fast implementation of our prosed dual certificate that

we call the power iteration detector. We conclude Chapter II with an aside by

creating a 2-means solver that runs in quasilinear time which we call spectral k-

means clustering.

k-means under the Stochastic Ball Model.

The deterministic condition we derive in Chapter II is sufficient to certify op-

timality. Naturally, we ask ourselves how close our sufficient condition is to being

equivalent to k-means optimality. In other words, how “small” is the set of instances

of optimal partitions which our deterministic condition fails to certify? Additionally,

how does this condition perform relative to the certificate in [22]? It turns out that

8



in many cases, our certificate achieves state-of-the-art performance.

To measure the performance of our deterministic condition, it is useful to define a

distribution of points which we are tasked to cluster. We formalize a reasonable distri-

bution currently existing in the literature which we call the Stochastic Ball Model.

This model consists of balls of points each created from some rotation-invariant dis-

tribution. Notice in Figure 1, k-means was implemented on points distributed with

the Stochastic Ball Model. The sufficient condition in Chapter II is used to obtain a

lower bound on the minimum distance between centroids needed to guarantee planted

cluster recovery under the Stochastic Ball Model. If we wish to cluster points in Rm

into k clusters, our bound on the minimum inter-cluster distance demonstrates op-

timal performance if k = O(m1/2). We provide a brief discussion on the limitations

of our methodology and the applicability of k-means. In particular, we disprove a

conjecture made in [22] regarding the minimum inter-cluster distance for which the

k-means objective recovers planted clusters under the Stochastic Ball Model. Chap-

ter III concludes with a discussion on a new method called spectral k-means clustering

relevant for k = 2.

Bipartite Stochastic Block Model.

Despite the intuitiveness and usefulness of the Stochastic Ball Model, it is not

well-suited to model the Air Force health care dataset. To correct this mismatch,

Chapter IV provides a more appropriate model and analyzes different clustering al-

gorithms with this model.

A well-studied and commonly used generative model for social and biological net-

works is called the Stochastic Block Model (see [26, 27, 28, 29]). For this model,

a clustering amounts to a partition of a graph into well-connected subgraphs. Recent

work in [30] has demonstrated the utility of algorithms which exploit data exhibiting
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(U)

Diagnoses

(V )

Figure 2. Visualizing a BiSBM The following random graph was generated using MAT-
LAB.The partite on the left symbolizes a population of patients segmented into two sets U1, U2

with each vertex representing a patient. Similarly, the partite on the right symbolizes a set of diag-
noses segmented into two sets V1, V2 with vertices representing diagnoses. An edge between the two
partites symbolize a patient receiving a certain diagnosis. Here we generate a graph where edges
between vertices in Ur and Vs where r = s are drawn from a Bernoulli distribution with probability
p = 0.9. For edges in the graph between vertices in Ur and Vs where r 6= s are drawn from a
Bernoulli distribution with probability q = 0.1.

additional bipartite structure. This follows what is called the Bipartite Stochas-

tic Block Model (BiSBM) of which we give a visualization in Figure 2. Note that

our dataset is naturally bipartite: every patient and every medical condition may be

represented by a vertex, and we draw an edge whenever a patient exhibits a medi-

cal condition. Motivated by the applicability of this graph model, we demonstrate

theoretical performance guarantees for clustering under the BiSBM.

To pursue such guarantees, a precise definition of a BiSBM is required. Definitions

in the literature differ slightly between [31, 32] and [30]. Furthermore, we indepen-

dently developed a similar notion of a BiSBM which differs from those that exist in

the literature. As such, we provide a generalized BiSBM that encompasses all of the

pre-existing, closely related notions of the BiSBM.

Next, we develop a PCC algorithm for the BiSBM. By employing the “relax and

round” scheme, we devise a certificate for a maximum likelihood-based partition under

10



the BiSBM. We demonstrate guarantees of recovering two planted clusters of patients

with a thresholding algorithm. As it often happens that minimizing the k-means

objective suffices to find a threshold-based clustering, we may use any of the previously

discussed k-means algorithms to perform a thresholding. Furthermore, we provide an

extension of patient thresholding under a BiSBM using k-means to obtain a heuristic

to achieve bipartite planted cluster recovery. We provide numerical simulations which

indicate that this bipartite cluster recovery heuristic performs well for a large region

of the parameter space of our BiSBM. The PCC algorithm then concludes with an

application of the power iteration detector to the previously developed certificate for

a maximum likelihood partition with complexity time O(n2), where n denotes the

number of vertices in a partition. Chapter IV concludes with another aside. Namely,

we close a void in the literature by extending the power iteration detector to create a

fast PCC algorithm (with complexity O(n log n) for n vertices) for the more general

Stochastic Ball Model.

Creating a Robust Clustering for Air Force Health Care.

The DoD needs a plan to reduce the cost of health care. As discussed earlier,

we seek time-robust partitions of patients for assignments to different IPUs. From

a practical perspective, having too many clusters is undesirable. With this in mind,

we illustrate how to determine the best number of clusters by finding the greatest

decrease in conditional entropy as the number of clusters increase.

We apply Porter’s patient partition to the first half of our dataset of medical

records and calculate the conditional entropy of this partition on the second five

years of the dataset. Afterwards, we create k-means partitions of the first five years

of the dataset with the number of clusters ranging from two to ten. We measure

the conditional entropy of these k-means partitions. We demonstrate that all of the

11



k-means clusterings outperform Porter’s proposed partition in terms of conditional

entropy, with the 2-means clustering achieving the best performance overall.

Using the heuristic developed in Chapter IV to recover a planted partition under

the BiSBM, we provide a visualization of this bipartite structure which gives stark

contrast between the clusters in the 2-means partition.

With the k-means partitions outperforming Porter’s proposed partition, we have

successfully demonstrated a proof of concept for data-driven decision making in the

construction of IPUs in the Air Force. Of course, there are additional real-world

circumstances and constraints which ought to be considered before organizing large-

scale IPU assignments. In particular, modifications to Air Force policy would first

require more input from health care experts.
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II. Obtaining and Certifying k-means Optimal Partitions

In this chapter, we apply Bandeira’s ideas to the k-means problem. Before pro-

ceeding we refer the reader to [24] for a brief overview of duality and certificates in

convex programming and [23] for more detail regarding the topic of convex optimiza-

tion in general.

We begin by using the convex relaxation of the k-means problem employed in [22]

and characterize all of its dual certificates. Despite the relaxation not having a unique

dual certificate for a k-means optimal solution, we develop a different certificate than

the one developed in [22] which we design to certify a large family of k-means optimal

solutions. From this relaxation we develop a different certificate than the one devel-

oped in [22]. With this certificate in hand, we develop a method to quickly certify

a clustering of points achieves k-means optimality in quasilinear time. Namely, with

the creation of this fast k-means certifier we have created a PCC algorithm for the

k-means problem.

2.1 Previous Work

In this section we introduce the semidefinite relaxation of k-means which is pre-

sented in [22]. We conclude by characterizing all dual certificates of the SDP relax-

ation in a concise manner.

Let 1A denote the indicator function of A ⊆ {1, . . . , N}. Also, define the N ×N

matrix D by Dij := ‖xi − xj‖2
2. Then denoting ct := 1

|At|
∑

x∈At x, we have

1

|At|
Tr(D1At1

>
At) =

1

|At|
∑

xi,xj∈At

‖xi − xj‖2
2

=
1

|At|
∑

xi,xj∈At

‖(xi − ct)− (xj − ct)‖2
2 = 2

∑
xi∈At

‖xi − ct‖2
2,
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where the last step can be seen by expanding the square and distributing the sums.

As such, taking X :=
∑k

t=1
1
|At|1At1

>
At

, the k-means objective may be expressed as

k∑
t=1

∑
xi∈At

‖xi−ct‖2
2 =

1

2

k∑
t=1

1

|At|
Tr(D1At1

>
At) =

1

2
Tr

(
D

k∑
t=1

1

|At|
1At1

>
At

)
=

1

2
Tr(DX).

Observe that X satisfies several convex constraints, and so we may relax the region

of optimization to produce a convex program, namely, the semidefinite relaxation

proposed in [22]:

minimize Tr(DX) (2)

subject to Tr(X) = k

X1 = 1

X ≥ 0

X � 0

where X � 0 is a statement that the eigenvalues of X are nonnegative (more generally,

for square matrices K and L, if the greatest eigenvalue of L is no more than the least

eigenvalue of K, then K � L). The following is the dual program of (2):

minimize kz +
N∑
i=1

αi (3)

subject to zI +
N∑
i=1

αi ·
1

2
(ei1

> + 1e>i )−
N∑
i=1

N∑
j=i

βij ·
1

2
(eie

>
j + eje

>
i ) +D � 0

β ≥ 0

For notational simplicity, from this point forward, we organize indices according

to clusters. For example, 1a shall denote the indicator function of the ath cluster.

Also, we shuffle the rows and columns of X and D into blocks that correspond to

14



clusters; for example, the (i, j)th entry of the (a, b)th block of D is given by D
(a,b)
ij .

We also index α in terms of clusters; for example, the ith entry of the ath block of α

is denoted αa,i. For β, we identify

β :=
N∑
i=1

N∑
j=i

βij(eie
>
j + eje

>
i ).

Indeed, when i ≤ j, the (i, j)th entry of β is βij. We also consider β as having its rows

and columns shuffled according to clusters, so that the (i, j)th entry of the (a, b)th

block is β
(a,b)
ij .

With this notation, the following proposition characterizes all possible dual cer-

tificates of (2). The proof for the proposition is placed in Appendix A as it is merely

a more concise rewriting of the proof in [22]:

Proposition 1 (cf. [22]). Take X :=
∑k

a=1
1
na

1a1
>
a , where na denotes the number of

points in cluster a. The following are equivalent:

(a) X is a solution to the semidefinite relaxation (2).

(b) Every solution to the dual program (3) satisfies

Q(a,a)1 = 0, β(a,a) = 0 ∀a ∈ {1, . . . , k},

where Q is the matrix in the semidefinite constraint in (3).

(c) Every solution to the dual program (3) satisfies

αa,r = − 1

na
z +

1

n2
a

1>D(a,a)1− 2

na
e>r D

(a,a)1 ∀a ∈ {1, . . . , k}, r ∈ a.

The following section will leverage this result to identify a condition on D that

implies that the SDP (2) has an integral solution.
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2.2 Selecting a Dual Certificate

The goal is to certify when the SDP-optimal solution is integral. In this event,

Proposition 1 characterizes acceptable dual certificates (z, α, β), but this information

fails to uniquely determine a certificate. In this subsection, we will motivate the

application of additional constraints on dual certificates so as to identify certifiable

instances.

We start by reviewing the characterization of dual certificates (z, α, β) provided

in Proposition 1. In particular, α is completely determined by z, and so z and β are

the only remaining free variables. Indeed, for every a, b ∈ {1, . . . , k}, we have

( k∑
t=1

∑
i∈t

αt,i ·
1

2
(et,i1

> + 1e>t,i)

)(a,b)

=
∑
i∈a

αa,i ·
1

2
ei1
> +

∑
j∈b

αb,j ·
1

2
1e>j

= −1

2

(
1

na
+

1

nb

)
z +

∑
i∈a

(
1

n2
a

1>D(a,a)1− 2

na
e>i D

(a,a)1

)
1

2
ei1
>

+
∑
j∈b

(
1

n2
b

1>D(b,b)1− 2

nb
e>j D

(b,b)1

)
1

2
1e>j ,

and since

Q = zI +
k∑
t=1

∑
i∈t

αt,i ·
1

2
(et,i1

> + 1e>t,i)−
1

2
β +D,
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we may write Q = z(I − E) +M −B, where

E(a,b) :=
1

2

(
1

na
+

1

nb

)
11> (4)

M (a,b) := D(a,b) +
∑
i∈a

(
1

n2
a

1>D(a,a)1− 2

na
e>i D

(a,a)1

)
1

2
ei1
>

+
∑
j∈b

(
1

n2
b

1>D(b,b)1− 2

nb
e>j D

(b,b)1

)
1

2
1e>j (5)

B(a,b) =
1

2
β(a,b)

for every a, b ∈ {1, . . . , k}. The following is one way to formulate our task: Given D

and a clustering (which in turn determines E and M), determine whether there exist

feasible z and B such that Q � 0; here, feasibility only requires B to be symmetric

with nonnegative entries and B(a,a) = 0 for every a ∈ {1, . . . , k}. We opt for a slightly

more modest goal: Find z = z(D) and B = B(D) such that Q � 0 for a large family

of D’s.

Before determining z and B, we first analyze E:

Lemma 2. Let E be the matrix defined by (4). Then rank(E) ∈ {1, 2}. The eigen-

value of largest magnitude is λ ≥ k, and when rank(E) = 2, the other nonzero

eigenvalue of E is negative. The eigenvectors corresponding to nonzero eigenvalues

lie in the span of {1a}ka=1.

Proof. Writing

E =
k∑
a=1

k∑
b=1

1

2

(
1

na
+

1

nb

)
1a1
>
b =

1

2

( k∑
a=1

1

na
1a

)
1> +

1

2
1

( k∑
b=1

1

nb
1b

)>
,

we see that rank(E) ∈ {1, 2}, and it is easy to calculate 1>E1 = Nk and Tr(E) = k.
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Observe that

λ = sup
x∈RN
‖x‖2=1

x>Ex ≥ 1

N
1>E1 = k,

and combining with rank(E) ≤ 2 and Tr(E) = k then implies that the other nonzero

eigenvalue (if there is one) is negative. Finally, any eigenvector of E with a nonzero

eigenvalue necessarily lies in the column space of E, which is a subspace of span{1a}ka=1

by the definition of E.

When finding z and B such that Q = z(I−E) +M −B � 0, it will be useful that

I − E has only one negative eigenvalue to correct. Let v denote the corresponding

eigenvector. Then we will pick B so that v is also an eigenvector of M −B. Since we

want Q � 0 for as many instances of D as possible, we will then pick z as large as

possible, thereby sending v to the nullspace of Q. Unfortunately, the authors found

that this constraint fails to uniquely determine B in general. Instead, we impose a

stronger constraint:

Q1a = 0 ∀a ∈ {1, . . . , k}.

(This constraint implies Qv = 0 by Lemma 2.) To see the implications of this

constraint, note that we already necessarily have

(Q1a)a =
(

(z(I−E)+M−B)1a

)
a

= z(I−E(a,a))1+M (a,a)1−B(a,a)1 = z− z

na
11>1 = 0,

and so it remains to impose

0 = (Q1b)a =
(

(z(I − E) +M −B)1b

)
a

= −zE(a,b)1 +M (a,b)1−B(a,b)1 = −zna + nb
2na

1 +M (a,b)1−B(a,b)1. (6)
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In order for there to exist a vector B(a,b)1 ≥ 0 that satisfies (6), z must satisfy

z
na + nb

2na
≤ min(M (a,b)1),

and since z is independent of (a, b), we conclude that

z ≤ min
a,b∈{1,...,k}

a6=b

2na
na + nb

min(M (a,b)1). (7)

Again, in order to ensure z(I − E) + M − B � 0 for as many instances of D as

possible, we intend to choose z as large as possible. Luckily, there is a choice of B

which satisfies (6) for every (a, b), even when z satisfies equality in (7). Indeed, we

define

u(a,b) := M (a,b)1− zna + nb
2na

1, ρ(a,b) := u>(a,b)1, B(a,b) :=
1

ρ(b,a)

u(a,b)u
>
(b,a) (8)

for every a, b ∈ {1, . . . , k} with a 6= b. Then by design, B immediately satisfies (6).

Also, note that ρ(a,b) = ρ(b,a), and so B(b,a) = (B(a,b))>, meaning B is symmetric.

Finally, we necessarily have u(a,b) ≥ 0 (and thus ρ(a,b) ≥ 0) by (7), and we implicitly

require ρ(a,b) > 0 for division to be permissible. As such, we also have B(a,b) ≥ 0, as

desired.

Now that we have selected z and B, it remains to check that Q � 0. By construc-

tion, we already have Λ := span{1a}ka=1 in the nullspace of Q, and so it suffices to

ensure

0 � PΛ⊥QPΛ⊥ = PΛ⊥

(
z(I − E) +M −B

)
PΛ⊥ = zPΛ⊥ + PΛ⊥(M −B)PΛ⊥ .

Here, PΛ⊥ denotes the orthogonal projection onto the orthogonal complement of Λ.

Rearranging then gives the following result:
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Theorem 3. Take X :=
∑k

t=1
1
nt

1t1
>
t , where nt denotes the number of points in

cluster t. Consider M defined by (5), pick z so as to satisfy equality in (7), take B

defined by (8), and let Λ denote the span of {1t}kt=1. Then X is a solution to the

semidefinite relaxation (2) if

PΛ⊥(B −M)PΛ⊥ � zPΛ⊥ . (9)

We take a moment to emphasize the importance of Theorem 3. First, the theorem

is the sufficient deterministic condition for k-means optimality for which we have been

searching. That is, we can certify k-means optimality merely given a clustering of

data. Furthermore, the theorem allows us to create the fast k-means certifier which

fills the void in the literature of practically certifying k-means optimal partitions.

2.3 A Fast Implementation of the Dual Certificate

As discussed in the Introduction, a probably certifiably correct algorithm depends

on the ability to test whether a candidate solution is optimal. In this section, we

leverage the certificate (9) to provide such a test for the k-means problem. We first

show how to solve a more general problem from linear algebra, and then we apply

our solution to devise a fast test for k-means optimality.

Leading Eigenvector Hypothesis Test.

In this subsection, we are concerned with the following fundamental problem from

linear algebra:

Problem 4. Given a symmetric matrix A ∈ Rn×n and an eigenvector v of A, deter-

mine whether the span of v is the unique leading eigenspace, that is, the corresponding

eigenvalue λ has multiplicity 1 and satisfies |λ| > |λ′| for every other eigenvalue λ′ of
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A.

To solve this problem, one might be inclined to apply the power method:

Proposition 5 (Theorem 8.2.1 in [33]). Let A ∈ Rn×n be a symmetric matrix with

eigenvalues {λi}ni=1 (counting multiplicities) satisfying

|λ1| > |λ2| ≥ · · · ≥ |λn|,

and with corresponding orthonormal eigenvectors {vi}ni=1. Pick a unit-norm vector

q0 ∈ Rn and consider the power iteration qj+1 := Aqj/‖Aqj‖2. If q0 is not orthogonal

to v1, then

(v>1 qj)
2 ≥ 1−

(
(v>1 q0)−2 − 1

)(λ2

λ1

)2j

.

Notice that the above convergence guarantee depends on the quality of the initial-

ization q0. To use this guarantee, draw q0 at random from the unit sphere so that q0

is not orthogonal to v1 almost surely; one might then analyze the statistics of v>1 q0 to

produce statistics on the time required for convergence. The power method is typi-

cally used to find a leading eigenvector, but for our problem, we already have access to

an eigenvector v, and we are tasked with determining whether v is the unique leading

eigenvector. Intuitively, if you run the power method from a random initialization

and it happens to converge to v, then this would have been a remarkable coincidence

if v were not the unique leading eigenvector. Since we will only run finitely many

iterations, how do we decide when we are sufficiently confident? The remainder of

this subsection answers this question.

Given a symmetric matrix A ∈ Rn×n and a unit eigenvector v of A, consider the
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Algorithm 1: Power iteration detector

Input: Symmetric matrix A ∈ Rn×n, unit eigenvector v ∈ Rn, tolerance ε > 0
Output: Decision of whether to accept H0 or to reject H0 and accept H1 as

given in (10)
λ← v>Av
Draw q uniformly at random from the unit sphere in Rn

while no decision has been made do
if |q>Aq| > |λ| then

Print accept H0

else if (v>q)2 ≥ 1− ε then
Print reject H0 and accept H1

end
q ← Aq/‖Aq‖2

end

hypotheses

H0 : span(v) is not the unique leading eigenspace of A,

H1 : span(v) is the unique leading eigenspace of A.
(10)

To test these hypotheses, pick a tolerance ε > 0 and run the power iteration detector

(see Algorithm 1). This detector terminates either by accepting H0 or by rejecting

H0 and accepting H1. We say the detector fails to reject H0 if it either accepts

H0 or fails to terminate. Before analyzing this detector, we consider the following

definition:

Definition 6. Given a symmetric matrix A ∈ Rn×n and unit eigenvector v of A, put

λ = v>Av, and let λ1 denote a leading eigenvalue of A (i.e., |λ1| = ‖A‖2→2). We say

(A, v) is degenerate if

(a) the eigenvalue λ of A has multiplicity ≥ 2,

(b) −λ is an eigenvalue of A, or

(c) −λ1 is an eigenvalue of A.
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Theorem 7. Consider the power iteration detector (Algorithm 1), let qj denote q at

the jth iteration (with q0 being the initialization), and let πε denote the probability

that (e>1 q0)2 < ε.

(i) (A, v) is degenerate only if H0 holds. If (A, v) is non-degenerate, then the power

iteration detector terminates in finite time with probability 1.

(ii) The power iteration detector incurs the following error rates:

Pr
(

reject H0 and accept H1

∣∣∣ H0

)
≤ πε, Pr

(
fail to reject H0

∣∣∣ H1

)
= 0.

(iii) If H1 holds, then

min
{
j : (v>qj)

2 > 1− ε
}
≤ 3 log(1/ε)

2 log(λ1/λ2)
+ 1

with probability ≥ 1− πε.

Proof. Denote the eigenvalues of A by {λi}ni=1 (counting multiplicities), ordered in

such a way that |λ1| ≥ · · · ≥ |λn|, and consider the corresponding orthonormal

eigenvectors {vi}ni=1, where v = vp for some p.

For (i), first note that H1 implies that (A, v) is non-degenerate, and so the con-

trapositive gives the first claim. Next, suppose (A, v) is non-degenerate. If H1 holds,

then (v>qj)
2 → 1 by Proposition 5 provided q0 is not orthogonal to v, and so the

power iteration detector terminates with probability 1. Otherwise, H0 holds, and so

the non-degeneracy of (A, v) implies that the eigenspace corresponding to λ1 is the

unique leading eigenspace of A, and furthermore, |λ1| > |λ|. Following the proof of

Theorem 8.2.1 in [33], we also have

q>j Aqj =
q>0 A

2j+1q0

q>0 A
2jq0

=

∑n
i=1(v>i qj)

2λ2j+1
i∑n

i=1(v>i qj)
2λ2j

i

.
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Putting r := min{i : |λi| < |λ1|}, then

|q>j Aqj − λ1| =

∣∣∣∣∣
∑n

i=1(v>i qj)
2λ2j

i (λi − λ1)∑n
i=1(v>i qj)

2λ2j
i

∣∣∣∣∣
≤ |λ1 − λn|
‖Pλ1q0‖2

2

n∑
i=r

(v>i qj)
2

(
λi
λ1

)2j

≤ |λ1 − λn|
(

1− ‖Pλ1q0‖2
2

‖Pλ1q0‖2
2

)(
λr
λ1

)2j

,

where Pλ1 denotes the orthogonal projection onto the eigenspace corresponding to

λ1. As such, |q>j Aqj| → |λ1| > |λ| provided Pλ1q0 6= 0, and so the power iteration

detector terminates with probability 1.

For (ii), we first consider the case of a false positive. Taking v = vp for p 6= 1,

note that (v>qj)
2 > 1− ε implies

ε > 1− (v>qj)
2 = ‖qj‖2

2 − (v>p qj)
2 =

n∑
i=1
i 6=p

(v>i qj)
2 ≥ (v>1 qj)

2.

Also, since ‖Ax‖2 ≤ |λ1|‖x‖2 for all x ∈ Rn, we have that (v>1 qj)
2 monotonically

increases with j:

(v>1 qj+1)2 =

(
v>1

Aqj
‖Aqj‖2

)2

=
(λ1v

>
1 qj)

2

‖Aqj‖2
2

≥ (v>1 qj)
2

‖qj‖2
= (v>1 qj)

2.

As such, ε > (v>1 qj)
2 ≥ (v>1 q0)2. Overall, when H0 holds, the power iteration de-

tector rejects H0 only if q0 is initialized poorly, i.e., (v>1 q0)2 < ε, which occurs with

probability πε (since q0 has a rotation-invariant probability distribution). For the

false negative error rate, note that Proposition 5 gives that H1 implies convergence

(v>qj)
2 → 1 provided q0 is not orthogonal to v, i.e., with probability 1.

For (iii), we want j such that (v>qj)
2 > 1− ε. By Proposition 5, it suffices to have

(
(v>1 q0)−2 − 1

)(λ2

λ1

)2j

< ε.
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In the event that (v>1 q0)2 ≥ ε (which has probability 1−πε), it further suffices to have

ε−2

(
λ2

λ1

)2j

< ε.

Taking logs and rearranging then gives the result.

To estimate ε and πε, first note that q0 has a rotation-invariant probability distri-

bution, and so linearity of expectation gives

E
[
(e>1 q0)2

]
=

1

n

n∑
i=1

E
[
(e>i q0)2

]
=

1

n
E‖q0‖2

2 =
1

n
.

Thus, in order to make πε small, we should expect to have ε � 1/n. The following

lemma gives that such choices of ε suffice for πε to be small:

Lemma 8. If ε ≥ n−1e−2n, then πε ≤ 3
√
nε.

Proof. First, observe that (e>1 q0)2 is equal in distribution to Z2/Q, where Z has

standard normal distribution and Q has chi-squared distribution with n degrees of

freedom (Z and Q are independent). The probability density function of Z has a

maximal value of 1/
√

2π at zero, and so

Pr
(
Z2 < a

)
≤
√

2a

π
.

Also, Lemma 1 in [34] gives

Pr
(
Q ≥ n+ 2

√
nx+ 2x

)
≤ e−x ∀x > 0.
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Therefore, picking a = 5nε and x = n, the union bound gives

Pr
(

(e>1 q0)2 < ε
)

= Pr

(
Z2

Q
< ε

)
≤ Pr

(
Z2 < 5nε

)
+ Pr

(
Q > 5n

)
≤
√

10nε

π
+ e−n ≤ 3

√
nε.

Overall, if we take ε = n−(2c+1) for c > 0, then if H0 is true, our detector will

produce a false positive with probability O(n−c). On the other hand, if H1 is true,

then with probability 1− O(n−c), our detector will reject H0 after Oδ(c log n) power

iterations, provided |λ2| ≤ (1− δ)|λ1|.

Testing Optimality with the Power Iteration Detector.

In this subsection, we leverage the power iteration detector to test k-means op-

timality. Note that the sufficient condition (9) holds if and only if v := 1√
N

1 is a

leading eigenvector of the matrix

A :=
z

N
11> + PΛ⊥(B −M)PΛ⊥ =

z

N
11> + PΛ⊥(B −D)PΛ⊥ . (11)

(The second equality follows from distributing the PΛ⊥ ’s and recalling the definition

of M in (5).) As such, it suffices that (A, v) satisfy H1 in (10). Overall, given a

collection of points P = {xi}Ni=1 ⊆ Rm and a proposed partition A1 t · · · t Ak = P ,

we can produce the corresponding matrix A (defined above) and then run the power

iteration detector of the previous subsection to test (9). In particular, a positive test

with tolerance ε will yield ≥ 1− πε confidence that the proposed partition is optimal

under the k-means objective. Furthermore, as we detail below, the matrix–vector

products computed in the power iteration detector have a computationally cheap

implementation.

Given an m×na matrix Φa = [xa,1 · · ·xa,na ] for each a ∈ {1, . . . , k}, we follow the
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following procedure to implement the corresponding function x 7→ Ax as defined in

(11):

1. Compute νa ∈ Rna such that (νa)i = ‖xa,i‖2
2 for every a ∈ {1, . . . , k} in O(mN)

operations.

Let ν ∈ RN denote the vector whose ath block is νa.

2. Define the function (a, b, x) 7→ D(a,b)x such that D(a,b) = νa1
> − 2Φ>a Φb + 1ν>b .

Running this function costs O(m(na + nb)) operations.

3. Define the function x 7→ Dx such that D = ν1> − 2Φ>Φ + 1ν>, where Φ =

[Φ1 · · ·Φk].

Running this function costs O(mN) operations.

4. Compute µa = 1
2
( 1
n2
a
11> − 2

na
I)D(a,a)1 for every a ∈ {1, . . . , k} in O(mN) oper-

ations.

5. Define the function (a, b, x) 7→M (a,b)x such that M (a,b) = D(a,b) + µa1
> + 1µ>b .

Running this function costs O(m(na + nb)) operations.

6. Compute z = mina6=b
2na

na+nb
min(M (a,b)1) in O(kmN) operations.

7. Compute u(a,b) = M (a,b)1−z na+nb
2na

1 for every a, b ∈ {1, . . . , k}, a 6= b in O(kmN)

operations.

8. Compute ρ(a,b) = u>(a,b)1 for every a, b ∈ {1, . . . , k}, a 6= b in O(kN) operations.

9. Define the function x 7→ Bx such that the ath block of the output is given by

(Bx)a =
k∑
b=1
b6=a

u(a,b)u
>
(b,a)xb

ρ(b,a)

.

Running this function costs O(kmN) operations.
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10. Define the function x 7→ PΛ⊥x such that PΛ⊥ = I −
∑k

a=1
1
na

1a1
>
a .

Running this function costs O(N) operations.

11. Define the function x 7→ Ax such that A = z
N

11> + PΛ⊥(B −D)PΛ⊥ .

Running this function costs O(kmN) operations.

Overall, after O(kmN) operations of preprocessing, one may compute the function

x 7→ Ax for any given x in O(kmN) operations. (Observe that this is the same

complexity as each iteration of Lloyd’s algorithm, and as we illustrate in Figure 3,

the runtimes are comparable.)

2.4 Miscellaneous Extentions

In this section we employ a slightly different relax and round scheme to obtain a

fast 2-means solver as an aside. In [35], it was shown that k-means is equivalent to

the following program:

minimize Tr(DX) (12)

subject to X> = X

X2 = X

Tr(X) = k

X1 = 1

X ≥ 0

One may quickly observe that the SDP (2) we analyzed in Section 2.1 is a relaxation

of this program. In this section, we consider another relaxation of (12), obtained

by discarding the X ≥ 0 constraint (this is known as the spectral clustering re-

laxation [36, 37]). To analyze this relaxation, we first denote the m × N matrix

Φ = [x1 · · ·xN ]. Without loss of generality, the data set is centered at the origin so
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that Φ1 = 0. Letting ν denote the N × 1 vector with νi = ‖xi‖2
2, then

Dij = ‖xi − xj‖2
2 = ‖xi‖2

2 − 2x>i xj + ‖xj‖2
2 = (ν1> − 2Φ>Φ + 1ν>)ij.

As such, D = ν1> − 2Φ>Φ + 1ν>, and so the constraints X = X> and X1 = 1

together imply an alternative expression for the objective function:

Tr(DX) = Tr(ν1>X − 2Φ>ΦX + 1ν>X)

= Tr(ν1>X>)− 2 Tr(Φ>ΦX) + Tr(X1ν>)

= 2ν>1− 2 Tr(Φ>ΦX).

We conclude that minimizing Tr(DX) is equivalent to maximizing Tr(Φ>ΦX).

Next, we observe that the feasible X in our relaxation are precisely the rank-k

N ×N orthogonal projection matrices satisfying X1 = 1. This in turn is equivalent

to X having the form X = 1
N

11> + Y , where Y is a rank-(k − 1) N ×N orthogonal

projection matrix satisfying Y 1 = 0. Discarding the Y 1 = 0 constraint produces the

following relaxation of (12):

maximize Tr(Φ>ΦY ) (13)

subject to Y > = Y

Y 2 = Y

Tr(Y ) = k − 1

For general values of k, this program amounts to finding k−1 principal components of

the data. Recalling our initial clustering goal, after finding the optimal Y , it remains

to take X = 1
N

11> + Y and then round to a nearby member of the feasibility region

in (12). Below, we describe a suitable rounding procedure for the special case where
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k = 2.

When k = 2, the solution to (13) has the form Y = yy>, where y is a leading unit

eigenvector of Φ>Φ. Our task is to find a matrix of the form 1
|A|1A1>A + 1

|B|1B1>B with

A t B = {1, . . . , N} that is close to 1
N

11> + yy>. To this end, it seems natural to

consider

Aθ := {i : yi < θ}, Bθ := Acθ

for some threshold θ. Since the data is centered (Φ1 = 0), one may be inclined to take

θ = 0, but this will be a poor choice if the true clusters have significantly different

numbers of points. Instead, we select the θ which minimizes the k-means objective

of (Aθ, Bθ). Since we only need to consider N − 1 choices of θ, this is plausibly

tractable, although computing the k-means objective once costs O(mN) operations,

and so some care is necessary to keep the algorithm fast.

We will show how to find the optimal (Aθ, Bθ) in O((m + logN)N) operations

using a simple dynamic program. Order the indices so that y1 ≤ · · · ≤ yN . Then the

function to minimize is

f(i) :=
1

i

i∑
j=1

i∑
j′=1

‖xj − xj′‖2
2︸ ︷︷ ︸

vi

+
1

N − i

N∑
j=i+1

N∑
j′=i+1

‖xj − xj′‖2
2︸ ︷︷ ︸

vci

.

Expanding the square and distributing sums gives

vi+1 = vi + 2
i∑

j=1

‖xj‖2
2 − 4x>i+1

i∑
j=1

xj + 2i‖xi+1‖2
2,

and the vci ’s satisfy a similar recursion rule. As such, one may iteratively compute the

vi’s and vci ’s before computing the f(i)’s and then minimizing. Overall, the following

procedure finds the optimal (Aθ, Bθ) in O((m+ logN)N) operations:
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Algorithm 2: Spectral k-means clustering (for two clusters)

Input: m×N matrix Φ = [x1 · · ·xN ] of points to be clustered
Output: Clusters A tB = {1, . . . , N}
Subtract centroid 1

N

∑N
i=1 xi from each column of Φ to produce Φ0

Compute leading eigenvector y of Φ>0 Φ0

Find θ that minimizes the k-means objective of ({i : yi < θ}, {i : yi ≥ θ})
(A,B)← ({i : yi < θ}, {i : yi ≥ θ})

1. Sort the entries y1 ≤ · · · ≤ yN in O(N logN) operations.

2. Iteratively compute

s1(i) :=
i∑

j=1

xj, sc1(i) :=
N∑

j=i+1

xj, s2(i) :=
i∑

j=1

‖xj‖2
2, sc2(i) :=

N∑
j=i+1

‖xj‖2
2

for every i ∈ {1, . . . , N − 1} in O(mN) operations.

3. Compute v1 = 0 and vi+1 = vi + 2s2(i) − 4x>i+1s1(i) + 2i‖xi+1‖2
2 for every

i ∈ {1, . . . , N − 2} in O(mN) operations.

4. Compute vcN−1 = 0 and vci−1 = vci + 2sc2(i)− 4x>i s
c
1(i) + 2(N − i)‖xi‖2

2 for every

i ∈ {N − 1, . . . , 2} in O(mN) operations.

5. Compute f(i) = vi/i+v
c
i/(N−i) for every i ∈ {1, . . . , N−1} inO(N) operations.

6. Find i that minimizes f(i) and output {1, . . . , i} and {i + 1, . . . , N} in O(N)

operations.

Note that in the special case where m = 1, the above method exactly solves the

k-means problem when k = 2 in only O(N logN) operations. For comparison, [38]

leverages more sophisticated dynamic programming for the m = 1 case, but k is

arbitrary and the algorithm costs O(kN2) operations.

We call our proposed relax-and-round algorithm spectral k-means clustering

(due to its similarity to spectral clustering); see Algorithm 2. As a spectral method,
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this algorithm enjoys quasilinear computational complexity; see Figure 3 for an il-

lustration. In particular, when computing the leading eigenvector of Φ>0 Φ0, each

matrix–vector multiply in the power method costs only O(mN) operations.

In summary, this chapter demonstrated the creation of a different dual certificate

of the k-means relaxation used in [22]. Using this certificate, we created a fast k-

means certifier completing a PCC algorithm for the k-means problem. We further

demonstrated how the relax and round scheme can be used to create a 2-means solver.

In the next chapter we analyze the performance of our k-means certificate.
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Figure 3. Simulated Computational Complexity of Relevant Algorithms Take two unit
balls in R6 at distance 2.3 apart. For eachN ∈ {23, 24, . . . , 216}, we perform 300 trials of the following
experiment: Draw N/2 points uniformly at random from each ball, and then compute four different
functions: (a) MATLAB’s built-in implementation of k-means++, (b) a CVX implementation [39]
of the k-means SDP (2), (c) the power iteration detector (Algorithm 1) with A given by (11), and
(d) spectral k-means clustering (Algorithm 2). For each trial, we recorded the runtime in seconds.
Above, we plot the average runtime along with error bars for standard deviation. A line between
average spectral k-means runtimes for N ∈ {23, . . . , 29} and its upper error bar is omitted for
purposes of clarity as the standard deviation of runtimes in these instances were sufficiently large
that the lower bar would have been negative. For the record, the power iteration detector failed to
reject H0 (10) in at most 3% of the trials with N ≤ 27, but rejected H0 in every trial otherwise;
similarly, spectral k-means failed to recover the planted clusters in two of the trials with N = 23.
Our implementation of the k-means SDP was too slow to perform trials with N ≥ 27 in a reasonable
amount of time, so we only recorded runtimes for N ∈ {23, 24, 25, 26}. As the plot illustrates, the
other algorithms ran in quasilinear time, as expected.
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III. k-means under the Stochastic Ball Model

In the previous chapter we developed a sufficient, deterministic condition on a set

of points under which the SDP finds the k-means optimal solution. Now we desire to

test the performance of this condition. That is, we wish to see how close this sufficient

condition is to being equivalent to k-means optimality. As such, we require a set of

points upon which we perform our test of planted cluster recovery. We formalize

such a set of points called the Stochastic Ball Model and demonstrate our condition

achieves state-of-the-art performance under this model. As an aside, we demonstrate

how spectral k-means recovers planted clusters under this model with high probability

when k = 2.

3.1 Previous Work

Recall the “relax and round” paradigm discussed in the previous chapter. Instead

of solving a hard problem such as the k-means problem, we relax the feasibility region

and provide an approximation to the optimal solution in the rounding step. If in the

case where the convex relaxation happens to find a solution that is feasible in the

original problem, then the relaxation is called tight or integral. As the k-means

problem and other clustering algorithms have geometric interpretations, a natural

question to consider is when is a convex relaxation of geometric clustering tight? This

question seems to have first appeared in [40], which studies an LP relaxation of the k-

medians objective (a problem that is similar to k-means). This thesis proved tightness

of the relaxation provided the set of points P admits a partition into k clusters of equal

size, and the separation distance between any two clusters is sufficiently large. Later

on, [41] studied integrality of another LP relaxation to the k-medians objective. This

paper introduced a distribution on the input P , which we refer to as the stochastic
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Method Sufficient Condition Optimal? Reference

Thresholding ∆ > 4 Yes (simple exercise)

k-medians LP ∆ ≥ 4 No Theorem 2 in [40]
∆ ≥ 3.75 No Theorem 1 in [41]
∆ > 2 Yes Theorem 1 in [22]

k-means LP ∆ > 4 Yes Theorem 9 in [22]

k-means SDP ∆ > 2
√

2(1 + 1/
√
m) No Theorem 3 in [22]

∆ > 2 + k2/m No Theorem 11

Spectral k-means ∆ > ∆?, k = 2 Yes Theorem 12

Table 2. Summary of Cluster Recovery Guarantees under the Stochastic Ball Model
The second column reports sufficient separation between ball centers in order for the corresponding
method to provably give exact recovery with high probability. Here, ∆? = ∆?(D, k) denotes the
smallest value for which ∆ > ∆? implies that minimizing the k-means objective recovers planted
clusters under the (D, γ, n)-stochastic ball model with probability 1− e−ΩD,γ(n).

ball model:

Definition 9 ((D, γ, n)-stochastic ball model). Let {γa}ka=1 be ball centers in Rm.

For each a, draw i.i.d. vectors {ra,i}ni=1 from some rotation-invariant distribution D

supported on the unit ball. The points from cluster a are then taken to be xa,i :=

ra,i + γa.

Table 2 summarizes the state of the art for recovery guarantees under the stochas-

tic ball model. In [41], it was shown that the LP relaxation of k-medians will, with

high probability, recover clusters drawn from the stochastic ball model provided the

smallest distance between ball centers is ∆ ≥ 3.75. Note that exact recovery only

makes sense for ∆ > 2 (i.e., when the balls are disjoint). Once ∆ > 4, any two points

within a particular cluster are closer to each other than any two points from different

clusters, and so in this regime, cluster recovery follows from thresholding. For the

k-means problem, [22] provides a semidefinite relaxation and demonstrates exact re-

covery in the regime ∆ > 2
√

2(1+1/
√
m), where m is the dimension of the Euclidean

space. That work also conjectures that the result holds for optimal separation ∆ > 2.
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In this chapter we study the integrality of (2) under the Stochastic Ball Model and

investigate planted cluster recovery of our spectral k-means to the Stochastic Ball

Model.

3.2 Integrality of the Relaxation under the Stochastic Ball Model

First, we provide a new dual certificate for the k-means SDP from [22] and show

that ∆ > 2 +k2/m suffices under the Stochastic Ball Model. We compare this bound

to that in [22] and demonstrate that our bound is state-of-the-art when k = o(m1/2).

We first note that our sufficient condition (9) is implied by

‖PΛ⊥MPΛ⊥‖2→2 + ‖PΛ⊥BPΛ⊥‖2→2 ≤ z.

By further analyzing the left-hand side above (see Appendix A), we arrive at the

following corollary:

Corollary 10. Take X :=
∑k

t=1
1
nt

1t1
>
t , where nt denotes the number of points in

cluster t. Let Ψ denote the m×N matrix whose (a, i)th column is xa,i − ca, where

ca :=
1

na

∑
i∈a

xa,i

denotes the empirical center of cluster a. Consider M defined by (5), pick z so as

to satisfy equality in (7), and take ρ(a,b) defined by (8). Then X is a solution to the

semidefinite relaxation (2) if

2‖Ψ‖2
2→2 +

k∑
a=1

k∑
b=a+1

‖P1⊥M
(a,b)1‖2‖P1⊥M

(b,a)1‖2

ρ(a,b)

≤ z. (14)

Also in Appendix A, we leverage the stochastic ball model to bound each term in

Corollary 10, and in doing so, we identify a regime in which the data points typically
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satisfy the sufficient condition given in Corollary 10:

Theorem 11. The k-means semidefinite relaxation (2) recovers the planted clusters

in the (D, γ, n)-stochastic ball model with probability 1 − e−ΩD,γ(n) provided ∆ > 2 +

k2/m.

When k = o(m1/2), Theorem 11 is near-optimal, and in this sense, it’s a significant

improvement over the sufficient condition

∆ > 2
√

2

(
1 +

1√
m

)
(15)

given in [22]. However, there are regimes (e.g., k = m) for which (15) is much

better, leaving open the question of what the optimal bound is. Conjecture 4 in [22]

suggests that ∆ > 2 suffices for the k-means SDP to recover planted clusters under

the stochastic ball model, but as we illustrate below, this conjecture is surprisingly

false.

Consider the special case where m = 1, D is uniform on {±1}, and k = 2.

Centering the two balls on ±∆/2, all of the points land in {±∆/2 ± 1}. The k-

means-optimal clustering will partition the real line into two semi-infinite intervals;

there are three possible ways of clustering these points. Suppose exactly N/4 of the

points land in each of the 4 positions. Then by symmetry, there are only two ways

to cluster: either we select the planted clusters, or we make the left-most location

its own cluster. Interestingly, a little algebra reveals that this second alternative is

strictly better in the k-means sense provided ∆ < 1 +
√

3 ≈ 2.7320. Also, in this

regime, as N gets large, the proportion of points in each position will be so close to

1/4 (with high probability) that this clustering will beat the planted clusters.

Overall, when m = 1 and k = 2, then ∆ ≥ 1 +
√

3 is necessary for minimizing

the k-means objective to recover planted clusters for an arbitrary D. As a relaxation,
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Figure 4. Exploring Bounds on ∆ under the Stochastic Ball Model (left) Take two unit
disks in R2 with centers on the x-axis at distance 2.08 apart. Let x0 denote the smallest possible
x-coordinate in the disk on the right. For each disk, draw N/2 = 50, 000 points uniformly at random
from the perimeter. Given θ, cluster the points according to whether the x-coordinate is smaller
than x0 +θ. When θ = 0, this clustering gives the planted clusters, and the k-means objective of the
planted clustering (divided by N) is 1. We plot this normalized k-means objective for θ ∈ [0, 0.2].
Since N is large, this curve is very close to its expected shape, and we see that there are clusters
whose k-means value is smaller than that of the planted clustering. (center) Take two intervals of
width 2 in R, and let ∆ denote the distance between the midpoints of these intervals. For each
interval, draw 10 points at random from its endpoints, and then run the k-means SDP. For each
∆ = 2 : 0.1 : 5, after running 2, 000 trials of this experiment, we plot the proportion of trials for
which the SDP was integral (dashed line) and the proportion of trials for which the SDP recovered
the planted clusters (solid line). In this case, cluster recovery appears to exhibit a phase transition
at ∆ = 4. (right) For each ∆ = 2 : 0.1 : 3 and k = 2 : 2 : 20, consider the unit balls in R20 centered
at { ∆√

2
ei}ki=1, where ei denotes the ith identity basis element. Draw 100 points uniformly from each

ball, and test if the resulting data points satisfy (9). After performing 10 trials of this experiment
for each (∆, k), we shade the corresponding pixel according to the proportion of successful trials
(white means every trial satisfied (9)). This plot indicates that our certificate (9) and not the proof
technique for Theorem 11 is to blame for Theorem 11’s dependence on k.

the k-means SDP recovers planted clusters only if minimizing the k-means objective

does so as well, and so it inherits this necessary condition, thereby disproving Con-

jecture 4 in [22]. Furthermore, as Figure 4 (left) illustrates, a similar counterexample

is available in higher dimensions.

To study when the SDP recovers the clusters, let’s continue with the case where

m = 1 and k = 2. We know that minimizing k-means will recover the clusters with

high probability provided ∆ > 1 +
√

3. However, Theorem 11 only guarantees that

the SDP recovers the clusters when ∆ > 6; in fact, (15) is slightly better here, giving

that ∆ ≥ 5.6569 suffices. To shed light on the disparity, Figure 4 (center) illustrates

the performance of the SDP. Observe that the SDP is often tight when ∆ is close to
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2, but it doesn’t reliably recover the planted clusters until ∆ > 4. We suspect that

∆ = 4 is a phase transition for cluster recovery in this case.

Qualitatively, the biggest difference between Theorem 11 and (15) is the depen-

dence on k that Theorem 11 exhibits. Figure 4 (right) illustrates that this comes

from (9), meaning that one would need to use a completely different dual certificate

in order to remove this dependence.

3.3 Miscellaneous Extensions

The previous chapter illustrated how to quickly test whether a proposed solution

to the k-means problem is optimal. In particular, this section has shown the test

will be successful with high probability if the data follow the stochastic ball model

with ∆ > 2 + k2/m. Lloyd’s algorithm is fast, and we can certify optimality, but

we have no guarantees prior to certification that the output of such a solver should

be optimal. Here we find a fast k-means solver with guarantees under the Stochastic

Ball Model for k = 2.

In doing so, we maintain the philosophy that our algorithm should not “see”

the stochastic ball model. Indeed, we view the stochastic ball model as a method

of evaluating clustering algorithms rather than a realistic data model. For example,

Lloyd’s algorithm can be viewed as an alternating minimization of the lifted objective

function:

f(A1, . . . , Ak, c1, . . . , ck) :=
k∑
t=1

∑
x∈At

‖x− ct‖2, A1t · · ·tAk = P, c1, . . . , ck ∈ Rm,

and since this function is minimized at the k-means optimizer (regardless of how the

data is distributed), such an algorithm is acceptable. On the other hand, one might

consider matching the stochastic ball model to the data by maximizing the following
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function:

g(c1, . . . , ck) :=
∑
x∈P

k∑
t=1

pD(x− ct), c1, . . . , ck ∈ Rm,

where pD(·) denotes the density function of D, which is supported on the unit ball

centered at the origin. One could certainly devise a fast greedy method such as

matching pursuit [42] to optimize this objective function (especially if pD is smooth),

but doing so violates our philosophy.

Recall in the previous chapter we developed a fast k-means solver called spectral

k-means which was designed without a particular distribution of points. As such, we

evaluate the performance of spectral k-means under the stochastic ball model. The

following results summarize such an evaluation of spectral k-means.

Theorem 12. Let ∆? = ∆?(D, k) denote the smallest value for which ∆ > ∆? implies

that minimizing the k-means objective recovers planted clusters under the (D, γ, n)-

stochastic ball model with probability 1 − e−ΩD,γ(n). When k = 2, spectral k-means

clustering (Algorithm 2) recovers planted clusters under the stochastic ball model with

probability 1− e−ΩD,γ(n) provided ∆ > ∆?.

See Appendix A for the proof. The main idea is that the leading eigenvector of

Φ0Φ>0 is biased towards the difference between the ball centers, and as the following

lemma establishes, this bias encourages spectral k-means clustering to separate the

planted clusters:

Lemma 13. Take two clusters contained in unit balls centered at γ and −γ with

‖γ‖2 > 1. If minimizing the k-means objective recovers these clusters, then spectral

k-means clustering (Algorithm 2) also recovers them, provided the leading eigenvector

z of Φ0Φ>0 satisfies |γ>z| > ‖z‖2.

Proof. Write Φ0 = Φ − µ1>, put θ := −µ>z, and observe that y = Φ>0 z is a leading
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eigenvector of Φ>0 Φ0. Then

yi = (xi − µ)>z = x>i z + θ (16)

for every i. Next, if |γ>z| > ‖z‖2, then a simple trigonometric argument gives that the

balls (and therefore the planted clusters) are separated by the hyperplane orthogonal

to z. Combined with (16), we then have that the clusters can be identified according

to whether yi < θ or yi > θ. It therefore suffices to minimize the k-means objective

subject to partitions of this form (for arbitrary thresholds θ), as so spectral k-means

clustering succeeds.

In this chapter we demonstrated our certificate often achieves state-of-the-art

performance under the Stochastic Ball Model. In the next chapter we examine a

model more closely related to the Air Force health care problem.
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IV. Bipartite Stochastic Block Model

In the context of the Air Force health care problem, there is an intrinsic bipartite

structure of the data which k-means ignores. That is, when inspecting a database

of medical histories, patients are easily distinguishable from medical conditions. As

such, we seek a model that exploits this structure. With this model in hand, we

seek guarantees and a PCC algorithm to find and certify clusters in the model. In so

doing, we realize we may reuse concepts and algorithms in the previous two chapters

with noticeable effect.

4.1 Previous Work

A well studied and commonly used generative model for social and biological

networks is called the Stochastic Block Model (see [26, 27, 28, 29]). In this model,

clusters do not consist of balls of points but are well connected subgraphs of a random

graph as shown in Figure 6b. There have been several variants of this model in the

literature to include a version we created independently, all of which have been called

the Bipartite Stochastic Block Model [30, 32]. Denoting [i] := {j ∈ N : j ≤ i}, we

provide a definition which encompasses all of these slightly differing models:

Definition 14 (Bipartite Stochastic Block Model (BiSBM)). Let U, V be vertex sets

partitioned as {Ui}ki=1, {Vj}lj=1, respectively. For every i ∈ [k], j ∈ [l], define a

probability distribution fij. Create a graph G where the number of edges (u, v), with

u ∈ Ui and v ∈ Vj are distributed according to fij. Edges do not exist between vertices

in U nor do they exist between vertices in V .

In [30], the authors proposed two BiSBMs where the probability distributions were

Poisson. The first model has no control over the degree of a vertex, while the second

model controls the expected degree of a vertex. The authors further devise an MLE
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based algorithm recovered planted clusters in synthetic data and detected clusters in

several real world datasets given only the graph G. In particular, authors used three

real world data sets. The first is the Southern Women Dataset, a common benchmark

for bipartite community detection algorithms collected by ethnographers to examine

the roles of race and class in dictating social interactions. The second is a dataset on

the malaria parasite P. falciparum which includes information on how the parasite’s

genes recombine to create a protein camouflage to evade the human immune system.

The third dataset is the Internet Movie Database (IMDb) from which the authors

extracted a bipartite network of actors and movies. The authors demonstrate the

utility of their novel algorithms which fits bipartite data to a BiSBM by showing how

these algorithms outperformed a Stochastic Block Model cluster recovery algorithm

presented in [43] on both the synthetic and real word data sets that followed a bipartite

structure.

Related work in [31, 32] use a different BiSBM where the probability distributions

are Bernoulli random variables where the expected value of this distribution tends to

zero as the number of vertices in U and V tend to infinity. They provide multiple

spectral algorithms which recover planted clusters with high probability.

We wish to apply the relax and round paradigm to a BiSBM. In this context,

the objective function to be used for the BiSBM will be the likelihood of a proposed

partition being the ground truth partition. Notice this objective function is different

from the k-means objective function which necessitates a completely new relaxation

and dual certificate. Although we could apply the k-means certificate to a clustering

under the BiSBM if we somehow interpret the clusters in Euclidean space, we instead

choose to consider a different objective function motivated by related work in the

Stochastic Block Model. The authors of [26, 44] used a “relax and round” scheme

to create a dual certificate that certifies that a user has found the planted clusters
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given only information of the graph G for the Stochastic Block Model. Using the proof

technique in [26, 44] for the Stochastic Block Model, we create a similar dual certificate

for our particular form of the BiSBM. We consider vertices U = {Ui}2
i=1, V = {Vi}2

i=1

and let the number of edges (u, v) in our BiSBM be distributed i.i.d. as follows:

|(u, v)| ∼

 Bernoulli p, if (u, v) ∈ (Ui, Vi)

Bernoulli q, else
(17)

for fixed p, q. We give a visualization of this BiSBM in Figure 5. Additionally, in this

chapter we present guarantees for a thresholding algorithm that recovers planted clus-

ters in one partite in our BiSBM. As such, we present a methodology for quickly per-

forming a one-partite thresholding in the hopes it may be used effectively in creating

patient partitions for the Air Force health care problem. We numerically demonstrate

that with a simple addition to this thresholding algorithm, we can recover planted

clusters in both partites in a large regime of p, q. We conclude with work on creating

a PCC algorithm for a particular form of this BiSBM and, as an extension, its cousin

the Stochastic Block Model.

4.2 Maximum Likelihood Based Certification

In this section we develop an SDP relaxation of an MLE based partition recovery

method for a particular BiSBM given only the graph G. We aim to find a dual

certificate and a regime of our probability parameters p, q for which we recover a

planted partition. As a special note, the techniques used in this section closely follow

Bandeira’s work with the Stochastic Block Model in [44].
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Figure 5. A Comparison of Models The following is performed in MATLAB 2015a. In (a) we
generate two Stochastic Balls of radius 1 with centers (-2,-2) and (2,2) using a uniform distribution
each having thirty points. In (b) we now consider the points generated in (a) to be vertices in
a graph. For each Stochastic Ball, pick 15 vertices and draw edges between them according to a
Bernoulli distribution with mean p = 0.4. Repeat the same procedure for the other 15 vertices in
the Stochastic Ball. Now draw edges between the vertices across the Stochastic Balls according to
a Bernoulli distribution with mean q = 0.1. Due to the bipartite structure of the graph, we move
the vertices to organize them in such a way as to exhibit this structure. Note the Stochastic Block
Model need not have its vertices possess a representation in Euclidean space. We merely use such a
representation to create an easy to understand visualization.

SDP Formulation and Relaxation.

Assume our BiSBM has |U | = |V | = n with n/2 vertices in each partition. Since

we could merely relabel the partitions without loss of generality, we enforce p > q.

Denoting E(G) to be the edge set of the graph G, let A ∈ R2n×2n be the adjacency

matrix of G where

Aij =

 1 if (i, j) ∈ E(G)

0 else.
(18)

For the sake of notation, we group the columns and rows of A so that the vertices in U

and V correspond to the first and last n rows and columns, respectively. Furthermore,

we also group the rows and columns to group the partitions of U and V . We illustrate
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the result of the shuffling of A:



U1 U2 V1 V2

U1 0 0 Bernoulli p Bernoulli q

U2 0 0 Bernoulli q Bernoulli p

V1 Bernoulli p Bernoulli q 0 0

V2 Bernoulli q Bernoulli p 0 0


.

Let g ∈ {±1}2n such that

gi =

 1 if vertex i ∈ U1 ∪ V1

−1 if vertex i ∈ U2 ∪ V2.
(19)

We note the information in A can be treated as observed data, g is ground truth while

g̃ ∈ {±1}2n represents our guess for the partition of G. Since there are n vertices in

both U and V , we should choose g̃ such that g̃>1 = 0.

We will now proceed with creating an SDP that optimizes an MLE as a function

of A and g̃. Similar to the notation used in Chapter II, we use 1U , 1V ∈ Z2n
2 to denote

an indicator function of the vertices in U and V , respectively. We further denote

Θ := 1U1>U + 1V 1>V and B := 2A− 11> + Θ. Observe that

Bij =


0 if i, j ∈ U or i, j ∈ V

1 if (i, j) ∈ E(G)

−1 otherwise.

(20)

Let X = g̃g̃> and Ω = 1U1>V + 1V 1>U . We wish to find a partition that maximizes

Pr(B|X) which is calculated as

Pr(B|X) = p〈
Ω+B

2
,Ω+X

2
〉/2(1− p)〈

Ω−B
2

,Ω+X
2
〉/2q〈

Ω+B
2

,Ω−X
2
〉/2(1− q)〈

Ω−B
2

,Ω−X
2
〉/2. (21)
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We reinterpret this probability as the likelihood Pr(B|X) and find the MLE which is

the partition maximizing (21). The corresponding log likelihood function is

L (X|B) =

〈
Ω + B

2
,
Ω +X

2

〉
log(p)

2
+

〈
Ω−B

2
,
Ω +X

2

〉
log

(1− p)
2

+〈
Ω + B

2
,
Ω−X

2

〉
log(q)

2
+

〈
Ω−B

2
,
Ω−X

2

〉
log

(1− q)
2

=
1

8
log

(
p(1− q)
q(1− p)

)
〈B, X〉+O(1)

which can be seen by expanding the inner products and identifying constants. In

order to maximize L (X|B), it is sufficient to maximize 〈B, X〉 as we have enforced

p > q. We write this maximization problem as

maximize 〈g̃g̃>,B〉 (22)

subject to g̃ ∈ {±1}2n.

Since X = g̃g̃>, we can equivalently write

maximize 〈X,B〉 (23)

subject to Xii = 1

X � 0

Rank(X) = 1.

Since the Rank(X) = 1 is a non-convex constraint, we wish to relax (23) to

maximize 〈X,B〉 (24)

subject to Xii = 1

X � 0
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Denoting W to be the dual variable to X, the dual program of (24) is

minimize Tr(W) (25)

subject to W −B � 0

W is diagonal.

Creating a Dual Certificate.

We now proceed to create a dual certificate for (24). The goal is to find a solution

W to (25) and for it to certify the unique integral solution X = gg> in the primal

(24).

Lemma 15. Denote G− as the degree matrix of the subgraph generated by the edges

occurring with probability p in G and G− as the degree matrix of the subgraph generated

by the edges occurring with probability q in G. The dual certificate to the semidefinite

relaxation (24) is

W = 2(G+ − G−) (26)

which certifies X = gg> as a solution to the semidefinite relaxation.

Proof. The dual certificate must be dual feasible so we require W to be diagonal and

W −B � 0. By complementary slackness of (24) and its dual (25), we desire gg> to

be complementary to W − B. That is, Tr((W − B)gg>) = 0. By cycling the trace,

we obtain

Tr
(
(W −B)gg>

)
= Tr

(
g>(W −B)g

)
= g>(W −B)g = 0.

Since W −B � 0, we obtain (W −B)g = 0. As Wg = Bg, we may write

Wg = Bg = (2A− 11> + Θ)g = (2A− 11> + 1U1>U + 1V 1>V )g = 2Ag
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where the last step can be seen by observing g is orthogonal to 1, 1U , and 1V . Recalling

W is diagonal and gi ∈ {±1} denotes community membership, we observe

Wii =
1

gi
(Wg)i =

2

gi
(Ag)i = 2

∑
j

Aijgj
gi

= 2

(
(G+)ii − (G−)ii

)
.

Notice this certifies X = gg>, but does not guarantee its uniqueness. If, however,

the nullspace of W−B is span(g), then complementary slackness guarantees unique-

ness. That is, uniqueness is guaranteed if the second smallest eigenvalue of W−B is

greater than zero. Using this fact and Lemma 15, we have the following main result

whose proof is in Appendix A

Theorem 16. If p > 1/2 and q < 1/2, then the semidefinite relaxation (24) recovers

the true partition with probability 1− ne−Ωp,q(n).

Notice this theorem is a statement regarding which BiSBMs or equivalently what

choices of p, q will allow a guarantee of the relaxation achieving an optimal partition.

In particular, the theorem guarantees the relaxation will give the optimal partition

by guaranteeing integrality in a certain regime of p, q. See Figure 6 for a simulation

which demonstrates the regime of p, q for successful certification of planted clusters.

At this stage, the only way to achieve this optimal partition is through an SDP

solver. These algorithms, however, are slow in practice and leave much to be desired

in runtime. As such, we pursue a fast algorithm that recovers planted partitions with

high probability with the hopes that the partitions will be near optimal. Additionally,

we create a thresholding algorithm and apply the power iteration detector to the dual

certificate (26) to complete the framework for a PCC algorithm.
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4.3 Thresholding

The goals of this section are two-fold: find guarantees that a thresholding algo-

rithm will recover planted clusters in one partite of a generalized BiSBM and develop

a fast thresholding algorithm to execute such a task. Furthermore, in this section we

consider a slightly more general model where |U | does not necessarily equal |V |.

The Case of Equal Size Clusters.

In this case our BiSBM has |U | = 2n and |V | = 2m with |U1| = |U2| = n. Taking

the adjacency matrix of G with the columns and rows shuffled as in Section 4.2, we

notice the off-diagonal m × n blocks are transposes of each other and the diagonal

blocks are zeros. For purposes of notation, we denote the biadjacency matrix Q to be

the block in A with rows corresponding to vertices in V and columns corresponding

to vertices in U . We can visualize Q in block form:

Q =

 Q11 Q12

Q21 Q22

 (27)

where each block is an m × n matrix with each entry in block Qrs is distributed

Bernoulli with probability p if r = s and is distributed Bernoulli with probability q

if r 6= s. We wish to perform a thresholding algorithm on the columns of Q where

Ur for r ∈ [2] form the clusters. Let xi, xj be columns in the same cluster. Denote

bl(·), b′l(·) as Bernoulli random variables with index l and with the input as the mean.
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The squared Euclidean distance between columns in the same cluster is given by

||xi − xj||22 =
m∑
l=1

(
bl(p)− b′l(p)

)2
+

m∑
l=1

(
bl(q)− b′l(q)

)2

=
m∑
l=1

bl
(
2p(1− p)

)
+

m∑
l′=1

bl′
(
2q(1− q)

)
= Binomial

(
m, 2p(1− p)

)
+ Binomial

(
m, 2q(1− q)

)
. (28)

Now let xi, xj be columns in different clusters. The squared Euclidean distance be-

tween columns in this case is given by

||xi−xj||22 =
2m∑
l=1

(
bl(p)−b′l(p)

)2
=

2m∑
l=1

bl(p+q−2pq) = Binomial(2m, p+q−2pq). (29)

Let

S := max
i,j∈Ur
r∈[2]
i 6=j

||xi − xj||22 and T := min
i∈U1
j∈U2

||xi − xj||22. (30)

Since it is possible to identify the the partition of U if S < T , we wish to show that

S < T with high probability. We proceed by bounding Pr(S ≥ T ) from above and

showing the bound approaches zeros as m becomes large. Define the random variables

S, T by

S ∼ Binomial
(
m, 2p(1− p)

)
+ Binomial

(
m, 2q(1− q)

)
(31)

T ∼ Binomial
(
2m, p+ q − 2pq)

)
(32)

so that S, T have the same distribution as any intra-cluster and inter-cluster distance,

respectively. Further denotes µS := E[S] and µT := E[T ]. The proof for the following

theorem is in Appendix A.

Theorem 17. Let p, q ∈ [0, 1] where p 6= q. For every ε > 0 and n ∈ N, there exists

m ∈ N such that Pr(S < T ) > 1− ε. That is, Pr(S < T )→ 1 as m→∞.
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That is, if there are sufficiently many vertices in one partite, thresholding the

other partite under this particular BiSBM is possible with high probability. The next

subsection achieves a similar result in a slightly more generalized BiSBM.

The Case of Unequal Size Clusters.

We now modify the graph G such that Ur is a set of nr vertices for r ∈ [2]. The

dimension of Q is now 2m× (n1 + n2). We can again visualize A in block form just

as in (27) where block Qrs is an m×nr matrix where where every entry in block Qrs

is distributed Bernoulli with mean p if r = s and is distributed Bernoulli with mean

q if r 6= s. We again wish to perform a thresholding algorithm on the columns of Q

where Ur for r ∈ [2] form the clusters.

Notice the distribution of the inter-cluster and intra-cluster distances in (28) and

(29) are not dependent on |U |. As such the distribution of these distances remain

unchanged. We define S, T just as before in (30) and S, T as in (31) and (32). We

proceed with the main result of this section which is proven in Appendix A.

Theorem 18. Let p, q ∈ [0, 1] where p 6= q. For every ε > 0 and n1, n2 ∈ N, there

exists m ∈ N such that Pr(S < T ) > 1− ε. That is, Pr(S < T )→ 1 as m→∞.

A corollary falls out from the choice of m in the proof of Theorem 18 which

presents a perspective on the relationship between m and n1, n2.

Corollary 19. Let p, q ∈ [0, 1] where p 6= q. If nmax := max(n1, n2), then Pr(S <

T )→ 1 as m→∞ where m = Ω
(

log(nmax)
)
.

Pursuing a Fast Thresholding Algorithm.

Now we aim to devise a fast algorithm which recovers planted clusters in one

partite where thresholding is possible. Certainly, we can threshold if we calculate a
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distance matrix, but doing so has cost O(n2) where |Ur| = n/2 for r ∈ [2]. It often

happens that minimizing the k-means objective will suffice to perform thresholding.

More precisely, for sufficiently balanced and separated clusters, the k-means optimal

clustering is the threshold clustering. As such, we can use any k-means heuristic to

threshold.

Although we may be sufficiently satisfied in partitioning U under the BiSBM for

purposes of finding patient partitions, it would be convenient to at least develop some

reasonable heuristic to gain insight into the partitioning of V . The rows of Q under

V1 and V2 have two distinctly different expected values: p1U1 + q1U2 for rows in V1

and q1U1 + p1U2 for rows in V2. As such, we can make an educated guess in which

partition a row of Q lies given the number of ones in columns of U1 versus the number

of ones in the columns of U2. With this motivation, we propose two options for a

heuristic. The first is to re-apply k-means to the rows of Q as they should have two

distinct centroids. This method, however, may not lead to equi-sized partitions of V .

The second method is to sort the rows where each row is assigned the quantity

eiQ1U1

n1

− eiQ1U2

n2

. (33)

After this sorting, assign the first m rows to V1 and the second set of m rows to

V2. We simulate this k-means inspired thresholding (with sorting) and measure the

performance of planted cluster recovery and present the results in Figure 6a. Notice

this heuristic for thresholding works reasonably well for large regime of p, q.

In the next section, we cover how to take an output of one of these fast thresholding

algorithms and certify optimality.
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4.4 A PCC Algorithm for the BiSBM

Now that we have a quasilinear time algorithm to find a threshold clustering,

we attempt to find a fast method to certify the clustering with the certificate from

Lemma 15. Since we intend to use Lemma 15, the BiSBM used in this section is the

same as the one in Section 4.2. We attempt to do so by use of the power iteration

detector. First, the number of nonzero entries in A has an expected value of O(n2).

As such, the complexity of the function x 7→ Bx and the computation of the diagonal

ofW are both O(n2). As demonstrated in the proof for Lemma 15 and Theorem 16, to

certify g̃g̃> as the unique optimal solution to the SDP relaxation, the dual certificate

required the following:

1. (W −B)g̃ = 0 by complementary slackness and dual feasibility of W ,

2. λ2(W −B) > 0 to demonstrate uniqueness

where λ2(·) denotes the second smallest eigenvalue of its input. We can check (W −

B)g̃ = 0 in O(n). As the thresholding algorithm may produce slightly unbalanced

clusters, it is necessary to check g̃>1Ur = g̃>1Vr = n/2 for r ∈ [2] which can also be

done in O(n). Now we require a method for finding the second smallest eigenvalue.

We can upper bound the largest eigenvalue in the following manner:

‖W −B‖2→2 ≤ ‖W||2→2 + ‖2A− 11> + Θ‖2→2

≤ ‖W||2→2 + ‖2A− 11>‖2→2 + ‖Θ‖2→2

≤ ‖W||2→2 + ‖2A− 11>‖F + ‖Θ‖2→2

= max
i
|Wii|+ 3n.

Denote λ := maxi |Wii|+3n which can be calculated in O(n). Assuming (W−B)g̃ =

0, then we know λ2(W − B) > 0 if and only if g̃ spans the leading eigenspace of
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λI −W + B. As such, we can apply the power iteration detector to test if g̃ is the

leading eigenvector of λI −W + B. Unfortunately, since x 7→ Bx takes O(n2), each

iteration of the power iteration detector also costs O(n2).

Notice the complexity of each iteration of the power iteration detector applied

to this BiSBM is a function of the sparsity of the adjacency matrix. In the next

section, we demonstrate how the power iteration detector applied to the more general

Stochastic Block Model can certify a maximum likelihood partition in quasilinear

time.

4.5 Miscellaneous Extensions

The original problem for which a PCC algorithm was developed was community

recovery under the stochastic block model [25] (whose notation we borrow for use in

this section). For this random graph, there are two communities of vertices, each of

size n/2, and edges are drawn independently at random with probability p if the pair of

vertices belong to the same community, and with probability q < p if they come from

different communities. Given the random edges, the maximum likelihood estimator

for the communities is given by the vertex partition of two sets of size n/2 with

the minimum cut. Given a partition of the vertices, let X denote the corresponding

n × n matrix of ±1s such that Xij = 1 precisely when i and j belong to the same

community. Given the adjacency matrix A of the random graph, one may express

the cut of a partition X in terms of Tr(AX). Furthermore, X satisfies the convex

constraints Xii = 1 and X � 0, and so one may relax to these constraints to obtain

a semidefinite program and hope that the relaxation is typically tight over a large

region of (p, q). Amazingly, this relaxation is typically tight precisely over the region

of (p, q) for which community recovery is information-theoretically possible [26].

Given A, put B := 2A − 11> + I, and given a vector x ∈ Rn, define the corre-
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Figure 6. Simulated BiSBM Planted Cluster Recovery and Certification In all figures,
the axes denote values of p, q. (left) Let n = 200 denote the size of U, V , respectively. For values of
p, q = 0 : 0.01 : 1, randomly generate a biadjacency matrix Q according to the BiSBM in Section 4.2.
Run k-means++ in Matlab 2015a with k = 2 on the columns of Q and sort the rows based on the
difference of the sum of entries in each 2-means clustering of the columns. Check if it returned the
planted partition. Test if the k-means clustering is k-means optimal with Theorem 3 using matrix
norms (instead of the power iteration detector). Determine if the dual certificate in Lemma 15
certifies the integral solution. The shade of a pixel is determined by the k-means++ output being:
(a) the planted partition and certified as k-means optimal–white; (b) the planted partition– gray; (c)
not the planted partition–black. (center) Using the same data from the figure on the left, the color
of a pixel is now determined by if the k-means++ output was: (a) MLE optimal and not k-means
optimal–white (b) Both MLE and k-means optimal–light gray (c) Only k-means optimal–dark gray
(d) Not optimal–black. (right) Let n = 200. For values of p, q = 0 : 0.01 : 1, run 30 trials of the
above experiment. A pixel is white if the partition was certified as MLE optimal every time and was
not certified as being k-means optimal. Conversely, a pixel is black if this event never happened.
This shows the region where the MLE certificate outperforms the k-means certificate. (Note: In the
figure in the left, there were 2 false positives for the MLE certifier and 17 false positives occurred in
the trials for the figure on the right. We attribute these errors either to some numerical instability
when p ≈ q or due to the fact that our guarantee only holds with high probability as the number
of vertices grows large. It may be the case that in this regime of p, q where we observe the false
positives that the number of vertices is not sufficiently large. Unfortunately, these false positives
seem to occur in the same regime as when the MLE certificate outperforms the k-means certificate.)

sponding n × n diagonal matrix Dx by (Dx)ii := xi
∑n

j=1 Bijxj. In [25], Bandeira

observes that, given a partition matrix X by some means (such as the fast algorithm

provided in [45]), then X = xx> is SDP-optimal if both x>1 = 0 and the second

smallest eigenvalue of Dx − B is strictly positive, meaning the partition gives the

maximum likelihood estimator for the communities. However, as Bandeira notes, the

computational bottleneck here is estimating the second smallest eigenvalue of Dx−B,

and he suggests that a randomized power method–like algorithm might suffice, but
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leaves the investigation for future research.

Here, we show how the power iteration detector fills this void in the theory. First,

we note that in the interesting regime of (p, q), the number of nonzero entries in A is

O(n log n) with high probability [26]. As such, the function x 7→ Bx can exploit this

sparsity to take only O(n log n) operations. This in turn allows for the computation

of the diagonal of Dx to cost O(n log n) operations. Next, note that

‖Dx −B‖2→2 ≤ ‖Dx‖2→2 + ‖2A− 11>‖2→2 + ‖I‖2→2

≤ ‖Dx‖2→2 + ‖2A− 11>‖F + 1 = max
i
|(Dx)ii|+ n+ 1 =: λ,

and that λ can be computed in O(n) operations after computing the diagonal of Dx.

Also, it takes O(n) operations to verify x>1 = 0. Assuming x>1 = 0, then the second

smallest eigenvalue of Dx − B is strictly positive if and only if x spans the unique

leading eigenspace of λI − Dx + B. Thus, one may test this condition using the

power iteration detector, and furthermore, each iteration will take only O(n log n)

operations, thanks to the sparsity of A.
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V. Creating a Robust Clustering for Air Force Health Care

5.1 Motivation and Previous Work

The Department of Defense (DoD) health care costs are growing more than twice

as fast as economy-wide medical inflation. This creates a concern that cannot be

ignored. That is, the extremely fast-paced health care costs may reduce resource

availability for other important defense programs, and as such undermine the overall

capability of the United States military. Given this serious concern, the DoD and

Department of Veteran Affairs (VA) are currently re-engineering their health infor-

mation technology systems and infrastructure.

In recent years, the authors of [1], sought to find a fundamentally new strategy

that the authors claim will fix health care. They claim that the current system aims

to optimize the wrong objective function. Examples of such objectives include max-

imizing access to care (even if the quality is poor), containing costs, and boosting

profits. The right objective function, loosely defined, is to maximize “value for pa-

tients, where value is defined as the health outcomes achieved that matter to patients

relative to the cost of achieving those outcomes.” In [1], the strategy for this value

based health care has six components:

• Organize into Integrated Practice Units (IPUs)

• Measure Outcomes and Costs for Every Patient

• Move to Bundled Payments for Care Cycles

• Integrate Care Delivery Systems

• Expand Geographic Reach

• Build an Enabling Information Technology Platform.

58



The authors of [1] cite multiple case studies where such strategy either fully or par-

tially implemented has given good results and outperforms the current, predominant

form of health care. We focus our attention on the first component. The motivation

for an IPU is to restructure the way clinicians are organized to deliver care to organize

around the patient and their needs. To demonstrate its effectiveness, the authors of

[5] documented how a West German migraine headache center was able to lower costs

by 20% and achieved a 54% improvement in symptoms in patients by restructuring

to create an IPU. As a result, the center was able to expand adding more locations

in new cities and develop new programs in conditions such as vertigo, rheumatoid

arthritis, and acute back pain.

An IPU as given in [1] is described as fulfilling eleven main requirements:

• An IPU is organized around a medical condition or a set of closely related

conditions (or around defined patient segments for primary care).

• Care is delivered by a dedicated, multidisciplinary team of clinicians who devote

a significant portion of their time to the medical condition.

• Providers involved are members of or affiliated with a common organizational

unit.

• Takes responsibility for the full cycle of care for the condition, encompassing

outpatient, inpatient, and rehabilitative care as well as supporting services.

• Incorporates patient education, engagement, and follow-up as integral to care.

• Utilizes a single administrative and scheduling structure.

• Co-located in dedicated facilities.

• Care is led by a physician team captain and a care manager who oversee each

patient’s care process.
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• Measures outcomes, costs, and processes for each patient using a common in-

formation platform.

• Providers function as a team, meeting formally and informally on a regular basis

to discuss patients, processes and results.

• Accepts joint accountability for outcomes and costs.

We restrict our attention to the first requirement of an IPU. For this requirement,

[1] gives the examples of kidney and eye disorders for patients with diabetes and

palliative care for those with metastatic cancer. The same researchers have applied

the IPU model to primary care in [4]. The first step in creating an IPU model is

to identify partitions of a population of patients with similar needs, challenges, and

ways to best access care. Certainly, the value of a health care system under this new

model is a function of the choice of partition of the patient population. As such, it

is natural to ask what patient population constitutes an optimal partition. That is,

given a patient population and their medical data, how does one create a partition

that maximizes the value of the health care system? In [4] the authors give what

seems to be a reasonable set of categories of a patient population that one might use

to create a patient partition:

1. Healthy adults

2. Mothers and young children

3. Adults at risk of a chronic disease

4. Adults with a chronic disease

5. Adults with a rare condition

6. The disabled and the frail elderly.
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Notice a person could be included in more than one category as listed above. For

example, a mother of a young child could also be diagnosed with a chronic disease. As

such, we interpret the above set of categories to follow a certain hierarchy. That is, a

patient is assigned to the partition requiring the most attention. Given the categories

above, we can merely assign a patient to the highest labeled partition for which he

or she is a member. Returning to the example, the mother of the young child would

be assigned to partition 4 as she has a chronic disease. For reasons that will soon be

evident, we call this partition the baseline partition.

The authors do not give much justification for this partition (or its motivating

categorization) other than the fact it seems reasonable and state that there is no

partition that will be optimal for every possible patient population. Moreover there

seems to be little work currently in the literature of a methodology for determining

how to create an optimal patient partition. Additionally, to our knowledge there

seems to be no statistical work done in determining such a partition given a patient

population.

Thus, our aim is to fulfill two goals in this chapter: to create a statistically based

methodology for finding good patient partitions for the IPU model and provide a

proof of concept of this IPU framework applied to Air Force personnel and their

dependents. In particular, we seek to find a clustering of Air Force personnel and

their dependents which is more robust to time than the baseline partition.

To this end we first apply the baseline partition to the dataset used in the IRB

study. We detail this work in Appendix B as much of the methodology is merely check-

ing if a patient meets certain properties. We do however build a classifier for adults

at risk of a chronic disease. Next, we present alternate partitions that outperform

the baseline partition in terms of conditional entropy based on a direct application of

k-means.
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5.2 The Dataset

Our database is taken from the Military Health System Data Mart (M2), the

Medical Performance Reporting System (MEPRS), and the Preventive Health As-

sessment Individual Medical Readiness (PIMR) dataset. Our dataset after cleaning

consists of 5,245,379 visits between 2003 and 2012 for 730,296 patients. In each visit

information listed in Table 3 is recorded. In our analysis, we use the diagnosis codes

instead of the procedural codes as the goal is to find common conditions for which

we can create IPUs, not common procedures. Furthermore, there are more diagnoses

recorded in the dataset than there are procedures. As the data was collected prior to

1 October, 2015, the diagnoses are all coded in ICD-9-CM. In the cleaning process,

visits without a primary diagnosis were not considered. Additionally, patients with

recorded ages that exceed ten years in difference were also excluded from considera-

tion. In other words, if there existed two hospital visits with the same patient ID and

the ages of the patient recorded for the two visits exceeded ten years, we remove all

hospital visits with this patient ID. The reader may notice that SEX and GENDER

have the same description, despite the subtle difference in the definition of the words

themselves. In the dataset SEX and GENDER agree whenever one of them is not

blank. Since entries in SEX have more blanks, we use GENDER instead. We surmise

the reason for two redundant elements is an artifact of combining databases.

5.3 Determining Time-Robustness and Optimal k

Here we describe the methodology in how we measured how robust to time a

patient partition is and how to select the best number of clusters.

We first formulate our observed data M as a matrix, where the rows correspond

to patients and the columns correspond to ICD codes and where an entry of M cor-

responds to how many times a patient was given a certain ICD coding. As motivated
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Table 3. Description of the Dataset

Variable Name Variable description
SPONSOR PAY GRADE Sponsor’s pay grade
APPTYPE Appointment type
FMP Family Member Prefix
DX1 Principal Diagnosis
DX2 Diagnosis 2
DX3 Diagnosis 3
DX4 Diagnosis 4
PATCAT Patient Category
FULL COST Cost of the visit
PX1 Principal Procedure
PX2 Procedure 2
PX3 Procedure 3
PX4 Procedure 4
GENDER Sex of the patient
SPONSOR SERVICE Sponsor’s branch of service
BEN CAT Beneficiary category
PROVIDER SPECIALTY Provider specialty code
COUNTABLE VISIT Flag for a countable visit
YEAR Year of visit
AGE Age of patient in years
CLINIC SERVICE Clinic service coding
DUP DATE FLAG Flag for duplicated dates
MAJCOM Major Command
PERSONID Patient ID number
FAMILYID Patient’s family ID number
PROVIDERID Patient’s provider ID number
CLINICID Patient’s clinic ID number
SEX Sex of the patient
DAFSC Patient’s Duty Air Force Specialty Code
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in previous work in [46], we only used the category code of an ICD coding inM. For

example, if a patient received multiple concussions with ICD codes of 850.0, 850.11

and 850.12, we would record the patient having been given an ICD coding of 850

three times. Note that for an ICD code using the character ‘E’ in the first entry, the

category code consists of the first four entries. In all other cases, the category coding

corresponds to the first three alphanumeric entries.

We will end up running some clustering algorithm on the rows of M to find

clusters of patients. At the same time we wish to evaluate the partition in terms

of its predictive power. Intuitively, a patient should stay in the same partition as

the conditions he or she has should not vary greatly. Certainly, given enough time

a patient will change groups, so we restrict the time period for which our prediction

should hold. As such, we train our model on the first five years of data M1 and test

our partition using the second five years of the data M2. To measure the quality of

our clustering we use entropy conditioned on assigned clusters to measure the amount

of information in our proposed clustering, that is, a measure of how well our partition

summarizes the patient population. This conditional entropy is expressed as

H(W |T) = −
∑
t∈T

Pr(t)
∑
w∈W

Pr(w|t) log2

(
Pr(w|t)

)
(34)

where W is a random variable denoting a patient being given an ICD code w with W

denoting the set of all three digit ICD codings and T is a random variable denoting

the partition to which a patient belongs with T being the support of T. Denoting nt

to be the number of patients in the tth partition and n to be the number of patients

in M2, we can express the following estimates of the probabilities required to to be

calculated in (34);

Pr(t) =
nt
n

and Pr(w|t) =
1>tM2ew
1>tM21

.

64



where 1 and e act as indicator functions of their respective subscripts in the usual

manner.

Now a determination must be made in which patients are represented inM1 and

M2. Naturally, there is a motivation to include all of the patients in M. There are

patients, however, who are recorded as exclusively visiting only in the first five years

or the second five years of our data set. As such, if we include all of the patients

observed over the course of the ten year span in M1, we will have zero rows in M1

andM2. If there is a zero row inM1 when we train our model, k-means will merely

create a cluster of zero rows. A cluster of zero rows is equivalent identifying a cluster

of patients with no medical histories. If we have no information on them, we should

not be able predict their medical behavior in the future. On the other hand, if there

is a zero row in M2, it will have no effect on entropy. As such, we include only the

patients who have medical records in both the first five years and the second five

years. We denote M1,M2 to describe medical histories of patients who have medical

records in both the first five years and the second five years with rows organized such

that the ith row in both M1,M2 corresponds to the same patient.

Now we briefly discuss the motivation behind our methodology behind choosing

the best number of clusters k. Unfortunately, in the context of unsupervised learning,

there only exist well-motivated heuristics for picking k. We use a popular heuristic

called the “elbow method”. We choose the k which results in the largest drop in

conditional entropy (or the greatest desired change in the desired clustering metric)

forming what looks like an elbow when plotted with varying k. Assume in the planted

clustering, there are k∗ clusters. When k < k∗, the pigeonhole principle dictates

that at least one of the clusters contains at least two of the planted clusters. As

such, moving from identifying this one cluster into the appropriate number of planted

clusters should yield a large change in the clustering metric. Once k ≥ k∗, the
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improvement in the clustering metric tends to be marginal. Thus, the k which resulted

from the largest single step improvement is utilized as k∗. As such, we seek the largest

single step decrease in conditional entropy.

5.4 Employing k-means on Air Force Personnel

In this section, we briefly mention why k-means was used to find patient partitions.

More importantly, we detail how the best k-means clustering is achieved and give a

visualization of this clustering.

Although the objective functions for k-means and conditional entropy look dissim-

ilar, it was shown in [18] that the k-means objective function is approximately derived

from the minimum entropy principle when Rényi quadratic entropy is used. Further-

more, under a certain distribution of data, the two objective functions are closely

related. Consider data with low variance in entry-wise differences between points in

the same planted cluster. A k-means optimal clustering will have small entry-wise

differences. That is, the data from one planted cluster viewed one dimension at a

time will be tightly packed around the mean. As such, the conditional probability of

data being near to its assigned cluster centroid will be close to 1 (or 0 if assigned to

an incorrect cluster). This near deterministic nature leads to the conditional entropy

to be almost optimal. As such, it is reasonable to think minimizing k-means may lead

to high performing clusterings under conditional entropy. Furthermore, the k-means

problem and its heuristics are commonly used in data science and are available in

many statistical packages. As such, any difficulty arising from replicating this analy-

sis on another dataset of patient medical histories will not come from the availability

of software implementations of this algorithm. Additionally, we require a clustering

algorithm to determine the best number of clusters. It happens that when we examine

k = 2, we are essentially performing the thresholding algorithm omitting row-sorting
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described in Chapter IV. Having established the utility of k-means, we now describe

the methodology of obtaining our k-means based partition.

We first would like to transform M1 such that k-means will obtain a clustering

which approximates a minimal entropy clustering. As we have demonstrated the

intuition for minimizing the entry-wise differences between points in the same cluster,

we transform M1 to M̃1 such that any positive entry in M1 is a 1 in M̃1 and zero

elsewhere. For each value of k ranging from k = 2 to 10, we perform 10 trials

of k-means++ in MATLAB 2015a on M̃1 and retain the partition with the lowest

entropy. Since we will vary k, we desire to find the best number of clusters in the

data. As summarized in Table 4 and Figure 9, we notice every k-means partition for

k > 1 outperforms the baseline model. Notice the largest drop off in entropy occurs

between k = 1 and k = 2. As such, we conclude that under the k-means model, the

best partitioning uses two clusters. An illustration of the data matrix M2 with the

patients organized by cluster for our 2-means model is presented in Figure 7. Notice

the two cluster patient partition has an interpretation in the context of a BiSBM due

to our results on thresholding. To complete the thresholding heuristic as described in

Section 4.3 (i.e. perform row sorting on Q), we sort the columns of M2 according to

a sorting of the quantity (33). We obtain another illustration of M2 from this sorting

in Figure 8 which provides a starker contrast between the two clusters.
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Figure 8. A Visualization of the Data Under the Best 2-means Clustering with Sorted
ICD codings A black dot denotes a patient being given a certain ICD coding at least once between
the years 2008-2012. The patients are sorted by cluster on the horizontal axis and the vertical axis
denotes ICD codings. We sort the ICD codings using the quantity of the expected value of an
ICD coding being given to a patient in cluster 2 minus the expected value of a patient in cluster 1
receiving the same coding. The ICD codings are sorted with the least values of this difference at
the bottom and the greatest at the top. The labels on the vertical axis merely indicate the ith ICD
code from the bottom.
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Figure 9. A Comparison of the Patient Partitions with Conditional Entropy The
vertical axis denotes the conditional entropy measured in bits of information. The horizontal axis
denotes the number of clusters k. For each value of k, the minimum entropy obtained over 10 trials
is displayed for the k-means model.

Table 4. Summary of Clustering Entropies

Method Minimum Entropy Average Entropy Std Dev of Entropy

Degenerate 6.7447 - -
Baseline 6.6557 - -
k-means
with k=

- - -

2 5.7144 5.7276 0.0418
3 5.7020 5.7104 0.0036
4 5.6921 5.7037 0.0096
5 5.6822 5.6880 0.0056
6 5.6824 5.6924 0.0093
7 5.6707 5.6841 0.0102
8 5.6597 5.6735 0.0090
9 5.6584 5.6763 0.0121
10 5.6354 5.6595 0.0126

70



VI. Conclusions and Future Work

In summary, this thesis demonstrates the utility of clustering in Air Force health

care reform and provides advances in clustering theory relevant to applying the IPU

framework to the Air Force. We created a fast certifier for k-means optimality and

a fast 2-means solver called spectral k-means which achieves state-of-the-art perfor-

mance. Additionally, we created a PCC algorithm for a BiSBM and found guarantees

for single-partite planted cluster recovery under a class of BiSBMs. Finally, we demon-

strated a patient partition derived from k-means with an interpretation in the BiSBM

that is more robust to time than the currently existing partition in the literature for

the IPU framework. We conclude with areas for future work:

Future Work in the Theory

• Let ∆?(D, k) denote the smallest value for which ∆ > ∆? implies that min-

imizing the k-means objective recovers planted clusters under the (D, γ, n)-

stochastic ball model with probability 1 − e−ΩD,γ(n). What is ∆?? It was con-

jectured in [22] that ∆? = 2, but as we demonstrated in Section 3.2, this is not

the case.

• Let ∆?
SDP(D, k) denote the smallest value for which ∆ > ∆?

SDP implies that

solving the k-means SDP recovers planted clusters under the (D, γ, n)-stochastic

ball model with probability 1−e−ΩD,γ(n). What is ∆?
SDP? Considering Section 3.2

and Figure 4(center), we suspect the SDP exhibits a performance gap: ∆?
SDP >

∆?.

• Is there a single dual certificate for the k-means SDP that typically certifies

planted clusters under the stochastic ball model whenever ∆ > ∆?
SDP? Does

this certification have a quasilinear-time implementation similar to Section 2.3?
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• Is there a quasilinear-time k-means solver that typically solves k-means un-

der the stochastic ball model whenever ∆ > ∆?? In particular, is there a

quasilinear-time initialization of Lloyd’s algorithm that meets this specification?

Following the philosophy of Section 3.3, such algorithms should be designed so

as to not “see” the stochastic ball model.

• Work in [31, 32, 30] had p → 0 as n → ∞ in their BiSBMs. The advantage of

this constraint is that the model better represents real world data and as such

a clustering algorithm devised under this model should better fit real world

bipartite data. For this reason, finding a probably certifiably correct algorithm

for a BiBSM with this constraint should prove to be more applicable to real

world data. As such, does the BiSBM in [30] create a more robust model for

IPU organization than k-means?

• Currently, our MLE based certifier on our BiSBM certifies an optimal solution

only if p > 1/2 and q < 1/2. Using perhaps a different “relax and round”

scheme, is it possible to increase the regime of p, q in certifying our BiSBM if

we enforce the constraint of p→ 0 as n→∞?

• Recall the k-means optimal clustering is the threshold clustering for reasonably

balance clusters and sufficient inter-cluster seperation. Given this relationship,

what are the bounds on cluster imbalance and inter-cluster separation for which

this relationship holds?

Future Work in the Application

• Is there another way to visualize the set of patient medical histories which al-

lows us to cluster the patients? Additionally, t-distributed stochastic neighbor

embedding described in [47] may also provide a nice way to perform a dimen-
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sionality reduction on our data to which we may cluster afterwards.

• This thesis provided a proof of concept for this IPU framework using statistically

based methods which prove to give more time-robust clusterings than the only

existing partition in the literature. As this work provides a proof of concept,

much more work needs to be done in identifying meaningful, time-robust patient

segmentations that can be employed in the Air Force.
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Appendix A. Miscellaneous Proofs

A.A Deriving the Dual Program of the k-means Relaxation

To derive the dual of (2), we consider the general setting of cone programming

(e.g., see [24]). Given closed convex cones K and L in real finite-dimensional vector

spaces and a linear operator A, the dual of

maximize 〈c, x〉 (35)

subject to b− Ax ∈ L

x ∈ K

is given by

minimize 〈b, y〉 (36)

subject to A∗y − c ∈ K∗

y ∈ L∗

where A∗ denotes the adjoint of A, while K∗ and L∗ denote the dual cones of K and

L, respectively. In our case, c = −D, x = X, and K is simply the cone of positive

semidefinite matrices (as is K∗). Before we determine L, we need to interpret the

remaining constraints in (2). To this end, we note that Tr(X) = k is equivalent to

〈X, I〉 = k,X1 = 1 is equivalent to having

〈
X,

1

2
(ei1

> + 1e>i )

〉
= 1 ∀i ∈ {1, . . . , N},
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and X ≥ 0 is equivalent to having

〈
X,

1

2
(eie

>
j + eje

>
i )

〉
≥ 0 ∀i, j ∈ {1, . . . , N}, i ≤ j.

(These last two equivalences exploit the fact that X is symmetric.) We can express

the remaining constraints in (2) as using a linear operator A that sends any matrix

X to its inner products with {〈X, 1
2
(ei1

> + 1e>i )〉}Ni=1, {〈X, 1
2
(eie

>
j + eje

>
i )〉}Ni,j=1,i≤j,

and I. The remaining constraints in (2) are equivalent to having b − Ax ∈ L where

b = k ⊕ 1⊕ 0 and L = 0⊕ 0⊕RN(N+1)/2
≥0 . Writing y = z ⊕ α⊕ (−β), the dual of (2)

is then given by

minimize kz +
N∑
i=1

αi (37)

subject to zI +
N∑
i=1

αi ·
1

2
(ei1

> + 1e>i )−
N∑
i=1

N∑
j=i

βij ·
1

2
(eie

>
j + eje

>
i ) +D � 0

β ≥ 0

A.B Proof of Proposition 1

The proof of Proposition 1 relies on the following standard result:

Proposition 20 (e.g., see [24]). Suppose the primal program (35) and dual program

(36) are feasible and bounded.

(a) Strong duality. The primal program (35) has optimal value val if and only if

the dual program (36) has bounded optimal value val.

(b) Complementary slackness. The decision variables x and y are optimal in

(35) and (36), respectively, if and only if

〈A∗y − c, x〉 = 〈y, b− Ax〉.
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Proof of Proposition 1. (a)⇔(b): By complementary slackness, (a) is equivalent to

having both

〈A∗y − c,X〉 = 0

and

〈y, b− A(X)〉 = 0. (38)

Since Q � 0, we have

〈A∗ − c,X〉 = 〈Q,X〉 =

〈
Q,

k∑
t=1

1

nt
1t1
>
t

〉
=

k∑
t=1

1

nt
1>t Q1t ≥ 0,

with equality if and only if Q1a = 0 for every a ∈ {1, . . . , k}. Next, we recall that

y = z ⊕ α ⊕ (−β), b − A(X) ∈ L = 0 ⊕ 0 ⊕ RN(N+1)/2
≥0 , and b = k ⊕ 1 ⊕ 0. As such,

(38) is equivalent to β having disjoint support with {〈X, 1
2
(eie

>
j + eje

>
i )〉}Ni,j=1,i≤j, i.e.,

β(a,a) = 0 for every cluster a.

(b)⇔(c): Take any solution to the dual program (3), and note that

Q(a,a) = zI +

(
k∑
t=1

∑
i∈t

αt,i ·
1

2
(ei1

> + 1e>i )

)(a,a)

− β(a,a) +D(a,a)

= zI +

(∑
i∈a

αa,i ·
1

2
(ei1

> + 1e>i )

)(a,a)

+D(a,a),

where the 1 vectors in the second line are na-dimensional (instead of N -dimensional,

as in the first line), and similarly for ei (instead of et,i). We now consider each entry
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of Q(a,a)1, which is zero by assumption:

0 = e>r Q
(a,a)1

= e>r

(
zI +

∑
i∈a

αa,i ·
1

2
(ei1

> + 1e>i ) +D(a,a)

)
1

= z +
∑
i∈a

αa,i ·
1

2
(e>r ei1

> + e>r 1e>i ) + e>r D
(a,a)1

= z +
∑
i∈a

αa,i ·
1

2
(naδir + 1) + e>r D

(a,a)1. (39)

As one might expect, the na linear equations determine the variables {αa,i}i∈a. To

solve this system, we first observe

0 = 1>Q(a,a)1

= 1>

(
zI +

∑
i∈a

αa,i ·
1

2
(ei1

> + 1e>i ) +D(a,a)

)
1

= naz +
∑
i∈a

αa,i ·
1

2
(1>ei1

>1 + 1>1e>i 1) + 1>D(a,a)1

= naz + na
∑
i∈a

αa,i + 1>D(a,a)1,

and so rearranging gives

∑
i∈a

αa,i = −z − 1

na
1>D(a,a)1.
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We use this identity to continue (39):

0 = z +
∑
i∈a

αa,i · (naδir + 1) + e>r D
(a,a)1

= z +
na
2
αa,r +

1

2

∑
i∈a

αa,i + e>r D
(a,a)1

= z +
na
2
αa,r +

1

2

(
−z − 1

na
1>D(a,a)1

)
+ e>r D

(a,a)1

and rearranging yields the desired formula for αa,r.

(c)⇔(a): Take any solution to the dual program (3). Then by assumption, the

dual objective at this point is given by

kz +
k∑
t=1

∑
i∈t

αt,i = kz +
k∑
t=1

∑
i∈t

(
− 1

nt
+

1

n2
t

1>D(t,t)1− 2

nt
e>i D

(t,t)1

)

= −
k∑
t=1

1

nt
1>D(t,t)1

= −Tr(DX),

i.e., the primal objective (2) evaluated atX. SinceX is feasible in the primal program,

we conclude that X is optimal by strong duality.

A.C Proof of Corollary 10

It suffices to have

‖PΛ⊥MPΛ⊥‖2→2 + ‖PΛ⊥BPΛ⊥‖2→2 ≤ z. (40)

We will bound the terms in (40) separately and then combine the bounds to derive

a sufficient condition for Theorem 3. To bound the first term in (40), let ν be the

N × 1 vector whose (a, i)th entry is ‖xa,i‖2
2, and let Φ be the m × N matrix whose
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(a, i)th column is xa,i. Then

D(a,i),(b,j) = ‖xa,i−xb,j‖2
2 = ‖xa,i‖2

2− 2x>a,ixb,j + ‖xb,j‖2
2 = (ν1>− 2Φ>Φ + 1ν>)(a,i),(b,j),

meaning D = ν1> − 2Φ>Φ + 1ν>. With this, we appeal to the blockwise definition

of M (5):

‖PΛ⊥MPΛ⊥‖2→2 = ‖PΛ⊥DPΛ⊥‖2→2 = ‖PΛ⊥(ν1> − 2Φ>Φ + 1ν>)PΛ⊥‖2→2

= 2‖PΛ⊥Φ>ΦPΛ⊥‖2→2 = 2‖ΦPΛ⊥‖2
2→2 = 2‖Ψ‖2

2→2.

For the second term in (40), we first write the decomposition

B =
k∑
a=1

k∑
b=a+1

(
H(a,b)(B

(a,b)) +H(b,a)(B
(b,a))

)
,

where H(a,b) : Rna×nb → RN×N produces a matrix whose (a, b)th block is the input

matrix, and is otherwise zero. Then

PΛ⊥BPΛ⊥ =
k∑
a=1

k∑
b=a+1

PΛ⊥

(
H(a,b)(B

(a,b)) +H(b,a)(B
(b,a))

)
PΛ⊥

=
k∑
a=1

k∑
b=a+1

(
H(a,b)(P1⊥B

(a,b)P1⊥) +H(b,a)(P1⊥B
(b,a)P1⊥)

)
,

and so the triangle inequality gives

‖PΛ⊥BPΛ⊥‖2→2 ≤
k∑
a=1

k∑
b=a+1

‖H(a,b)(P1⊥B
(a,b)P1⊥) +H(b,a)(P1⊥B

(b,a)P1⊥)‖2→2

=
k∑
a=1

k∑
b=a+1

‖P1⊥B
(a,b)P1⊥‖2→2,
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where the last equality can be verified by considering the spectrum of the square:

(
H(a,b)(P1⊥B

(a,b)P1⊥) +H(b,a)(P1⊥B
(b,a)P1⊥)

)2

= H(a,a)

(
(P1⊥B

(a,b)P1⊥)(P1⊥B
(a,b)P1⊥)>

)
+H(b,b)

(
(P1⊥B

(a,b)P1⊥)>(P1⊥B
(a,b)P1⊥)

)
.

At this point, we use the definition of B (8) to get

‖P1⊥B
(a,b)P1⊥‖2→2 =

‖P1⊥u(a,b)‖2‖P1⊥u(b,a)‖2

ρ(a,b)

.

Recalling the definition of u(a,b) (8) and combining these estimates then produces the

result.

A.D Proof of Theorem 11

In this section, we apply the certificate from Corollary 10 to the (D, γ, n)-stochastic

ball model (see Definition 9) to prove our main result. We will prove Theorem 11

with the help of several lemmas. Figure 10 provides a graphical guide to how the

Lemmas are used in proving this Theorem.

Lemma 21. Denote

ca :=
1

n

n∑
i=1

xa,i, ∆ab := ‖γa − γb‖2, Oab :=
γa + γb

2
.
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Lemma 21

Lemma 22

Lemma 23

Lemma 24

Lemma 25

Lemma 26

Lemma 27

Lemma 28

Theorem 11

Figure 10. A directed graph to illustrate the development of the Lemmas in proving Theorem 11
where the predecessor of a statement is included in the statement’s proof.

Then the (D, γ, n)-stochastic ball model satisfies the following estimates:

‖ca − γa‖2 < ε w.p. 1− e−Ωm,ε(n) (41)∣∣∣∣ 1n
n∑
i=1

‖ra,i‖2
2 − E‖r‖2

2

∣∣∣∣ < ε w.p. 1− e−Ωε(n) (42)∣∣∣∣ 1n
n∑
i=1

‖xa,i −Oab‖2
2 − E‖r + γa −Oab‖2

2

∣∣∣∣ < ε w.p. 1− e−Ω∆ab,ε
(n) (43)

Proof. Since Er = 0 and ‖r‖2
2 ≤ 1 almost surely, one may lift

Xa,i :=

 0 r>a,i

ra,i 0


and apply the Matrix Hoeffding inequality [48] to conclude that

Pr

(∥∥∥∥ n∑
i=1

ra,i

∥∥∥∥
2

≥ t

)
≤ me−t

2/8n.
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Taking t := εn then gives (41). For (42) and (43), notice that the random variables in

each sum are iid and confined to an interval almost surely, and so the result follows

from Hoeffding’s inequality.

Lemma 22. Under the (D, γ, n)-stochastic ball model, we have D(a,b)1 − D(a,a)1 =

4np+ q, where

pi := r>a,i(γa −Oab) +
∆2
ab

4

qi := 2n(xa,i −Oab)
>
(

(ca − cb)− (γa − γb)
)

+

( n∑
j=1

‖xb,j −Oab‖2
2 −

n∑
j=1

‖xa,j −Oab‖2
2

)

and |qi| ≤ (6 + 2∆ab)nε with probability 1− e−Ωm,∆ab,ε(n).

Proof. Add and subtract Oab and then expand the squares to get

e>i (D(a,b)1−D(a,a)1) =
n∑
j=1

‖xa,i − xb,j‖2
2 −

n∑
j=1

‖xa,i − xa,j‖2
2

= n

(
− 2(xa,i −Oab)

>(cb −Oab) +
1

n

n∑
j=1

‖xb,j −Oab‖2
2

)

− n
(
− 2(xa,i −Oab)

>(ca −Oab) +
1

n

n∑
j=1

‖xa,j −Oab‖2
2

)
= 2n(xa,i −Oab)

>(ca − cb)

+

( n∑
j=1

‖xb,j −Oab‖2
2 −

n∑
j=1

‖xa,j −Oab‖2
2

)
.

Add and subtract γa − γb to ca − cb and distribute over the resulting sum to obtain

e>i (D(a,b)1−D(a,a)1) = 2n(xa,i −Oab)
>(γa − γb) + q

= 4n
(
ra,i + (γa −Oab)

)>
(γa −Oab) + q.
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Distributing and identifying ‖γa−Oab‖2
2 = ∆2

ab/4 explains the definition of p. To show

|qi| ≤ (6 + 2∆ab)nε, apply the triangle and Cauchy–Schwarz inequalities to obtain

|qi| ≤
∣∣∣∣2n(xa,i −Oab)

>
(

(ca − cb)− (γa − γb)
)∣∣∣∣

+

∣∣∣∣ n∑
j=1

‖xb,j −Oab‖2
2 −

n∑
j=1

‖xa,j −Oab‖2
2

∣∣∣∣
≤ 2n

(
‖ra,i‖2 + ‖γa −Oa,b‖2

)(
‖ca − γa‖2 + ‖cb − γb‖2

)
+

∣∣∣∣ n∑
j=1

‖xb,j −Oab‖2
2 −

n∑
j=1

‖xa,j −Oab‖2
2

∣∣∣∣
≤ 2n

(
1 +

∆ab

2

)(
‖ca − γa‖2 + ‖cb − γb‖2

)
+

∣∣∣∣ n∑
j=1

‖xb,j −Oab‖2
2 −

n∑
j=1

‖xa,j −Oab‖2
2

∣∣∣∣.
To finish the argument, apply (41) to the first term while adding and subtracting

E‖r + γa −Oab‖2
2 = E‖r + γb −Oab‖2

2,

from the second and apply (43).

Lemma 23. Under the (D, γ, n)-stochastic ball model, we have

∣∣∣∣ 1n1>D(a,a)1− 2nE‖r‖2
2

∣∣∣∣ ≤ 4nε w.p. 1− e−Ω∆ab,ε
(n).

Proof. Add and subtract γa and expand the square to get

1

n
e>i D

(a,a)1 =
1

n

n∑
j=1

‖xa,i − xa,j‖2
2 = ‖ra,i‖2

2 − 2r>a,i(ca − γa) +
1

n

n∑
j=1

‖ra,j‖2
2.
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The triangle and Cauchy–Schwarz inequalities then give

∣∣∣∣ 1n1>D(a,a)1− 2nE‖r‖2
2

∣∣∣∣
=

∣∣∣∣ n∑
i=1

(
‖ra,i‖2

2 − 2r>a,i(ca − γa) +
1

n

n∑
j=1

‖ra,j‖2
2

)
− 2nE‖r‖2

2

∣∣∣∣
≤ n

∣∣∣∣ 1n
n∑
i=1

‖ra,i‖2
2 − E‖r‖2

2

∣∣∣∣+ 2
n∑
i=1

|r>a,i(ca − γa)|+ n

∣∣∣∣ 1n
n∑
j=1

‖ra,j‖2
2 − E‖r‖2

2

∣∣∣∣
≤ n

∣∣∣∣ 1n
n∑
i=1

‖ra,i‖2
2 − E‖r‖2

2

∣∣∣∣+ 2
n∑
i=1

‖ca − γa‖2 + n

∣∣∣∣ 1n
n∑
j=1

‖ra,j‖2
2 − E‖r‖2

2

∣∣∣∣
≤ 4nε,

where the last step occurs with probability 1− e−Ω∆ab,ε
(n) by a union bound over (42)

and (41).

Lemma 24. Under the (D, γ, n)-stochastic ball model, we have

1>D(a,b)1− 1>D(a,a)1 ≥ n2∆2
ab − (6 + 4∆ab)n

2ε w.p. 1− e−Ωm,∆ab,ε(n).

Proof. Lemma 22 gives

1>D(a,b)1− 1>D(a,a)1 = 1>(4np+ q)

≥ 4n
n∑
i=1

(
r>a,i(γa −Oab) +

∆2
ab

4

)
− (6 + 2∆ab)n

2ε

≥ 4n

(
n(ca − γa)>(γa −Oab) +

n∆2
ab

4

)
− (6 + 2∆ab)n

2ε.

Cauchy–Schwarz along with (41) then gives the result.

Lemma 25. Under the (D, γ, n)-stochastic ball model, there exists C = C(γ) such
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that

min
a,b∈{1,...,k}

a6=b

min(M (a,b)1) ≥ n∆(∆− 2) + Cnε w.p. 1− e−Ωm,γ,ε(n),

where ∆ := min
a,b∈{1,...,k}

a6=b

∆ab.

Proof. Fix a and b. Then by Lemma 22, the following holds with probability 1 −

e−Ωm,∆ab,ε(n):

min
(
D(a,b)1−D(a,a)1

)
≥ 4n min

i∈{1,...,n}

(
r>a,i(γa −Oab) +

∆2
ab

4

)
− (6 + 2∆ab)nε

≥ n∆2
ab − 2n∆ab − (6 + 2∆ab)nε,

where the last step is by Cauchy–Schwarz. Taking a union bound with Lemma 23

then gives

min(M (a,b)1)

= min
(
D(a,b)1−D(a,a)1

)
+

1

2

(
1

n
1>D(a,a)1− 1

n
1>D(b,b)1

)
≥ min

(
D(a,b)1−D(a,a)1

)
− 1

2

(∣∣∣∣ 1n1>D(a,a)1− 2nE‖r‖2
2

∣∣∣∣+

∣∣∣∣ 1n1>D(b,b)1− 2nE‖r‖2
2

∣∣∣∣)
≥ n∆ab(∆ab − 2)− (10 + 2∆ab)nε

with probability 1 − e−Ω∆ab,ε
(n). The result then follows from a union bound over a

and b.

Lemma 26. Suppose ε ≤ 1. Then there exists C = C(∆ab,m) such that under the
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(D, γ, n)-stochastic ball model, we have

‖P1⊥M
(a,b)1‖2

2 ≤
4n3∆2

ab

m
+ Cn3ε

with probability 1− e−Ωm,∆ab,ε(n).

Proof. First, a quick calculation reveals

e>i M
(a,b)1 = e>i D

(a,b)1− e>i D(a,a)1 +
1

2

(
1

n
1>D(a,a)1− 1

n
1>D(b,b)1

)
,

1

n
1>M (a,b)1 =

1

n
1>D(a,b)1− 1

2

(
1

n
1>D(a,a)1 +

1

n
1>D(b,b)1

)
,

from which it follows that

e>i P1⊥M
(a,b)1 = e>i M

(a,b)1− 1

n
1>M (a,b)1

=

(
e>i D

(a,b)1− 1

n
1>D(a,b)1

)
−
(
e>i D

(a,a)1− 1

n
1>D(a,a)1

)
= e>i P1⊥(D(a,b)1−D(a,a)1).

As such, we have

‖P1⊥M
(a,b)1‖2

2 = ‖P1⊥(D(a,b)1−D(a,a)1)‖2
2

= ‖D(a,b)1−D(a,a)1‖2
2 − ‖P1(D(a,b)1−D(a,a)1)‖2

2. (44)

To bound the first term, we apply the triangle inequality over Lemma 22:

‖D(a,b)1−D(a,a)1‖2 ≤ 4n‖p‖2 + ‖q‖2 ≤ 4n‖p‖2 + (6 + 2∆ab)n
3/2ε. (45)

We proceed by bounding ‖p‖2. To this end, note that the pi’s are iid random variables

whose outcomes lie in a finite interval (of width determined by ∆ab) with probability

86



1. As such, Hoeffding’s inequality gives

∣∣∣∣ 1n
n∑
i=1

p2
i − Ep2

1

∣∣∣∣ ≤ ε w.p. 1− e−Ω∆ab,ε
(n).

With this, we then have

‖p‖2
2 = n

(
1

n

n∑
i=1

p2
i − Ep2

1 + Ep2
1

)
≤ nEp2

1 + nε (46)

in the same event. To determine Ep2
1, first take r1 := e>1 r. Then since the distribution

of r is rotation invariant, we may write

p1 = r>a,1(γa −Oab) + ‖γa −Oab‖2
2 =

∆ab

2
r1 +

∆2
ab

4
,

where the second equality above is equality in distribution. We then have

Ep2
1 = E

(
∆ab

2
r1 +

∆2
ab

4

)2

=
∆2
ab

4
Er2

1 +
∆4
ab

16
. (47)

We also note that 1 ≥ E‖r‖2
2 = mEr2

1 by linearity of expectation, and so

Er2
1 ≤

1

m
. (48)

Combining (45), (46), (47) and (48) then gives

‖D(a,b)1−D(a,a)1‖2 ≤
(

4n3∆2
ab

m
+ n3∆4

ab + 16n3ε

)1/2

+ (6 + 2∆ab)n
3/2ε. (49)

To bound the second term of (44), first note that

‖P1(D(a,b)1−D(a,a)1)‖2 =
1√
n

∣∣∣1>D(a,b)1− 1>D(a,a)1
∣∣∣. (50)
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Lemma 24 then gives

∣∣∣1>D(a,b)1− 1>D(a,a)1
∣∣∣ ≥ 1>D(a,b)1− 1>D(a,a)1 ≥ n2∆2

ab − (6 + 4∆ab)n
2ε (51)

with probability 1− e−Ωm,∆ab,ε(n). Using (44) to combine (49) with (50) and (51) then

gives the result.

Lemma 27. There exists C = C(γ) such that under the (D, γ, n)-stochastic ball

model, we have

ρ(a,b) ≥ n2
(
∆2
ab −∆(∆− 2)

)
− Cn2ε w.p. 1− e−ΩD,γ,ε(n).

Proof. Recall from (8) that

ρ(a,b) = u>(a,b)1 = 1>M (a,b)1− nz = 1>M (a,b)1− n min
a,b∈{1,...,k}

a6=b

min(M (a,b)1). (52)

To bound the first term, we leverage Lemma 24:

1>M (a,b)1 = 1>D(a,b)1− 1

2
(1>D(a,a)1 + 1>D(b,b)1)

=
1

2

(
1>D(a,b)1− 1>D(a,a)1

)
+

1

2

(
1>D(b,a)1− 1>D(b,b)1

)
≥ n2∆2

ab − (6 + 4∆ab)n
2ε

with probability 1 − e−Ωm,∆ab,ε(n). To bound the second term in (52), note from
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Lemma 23 that

min(M (a,b)1)

= min
(
D(a,b)1−D(a,a)1

)
+

1

2

(
1

n
1>D(a,a)1− 1

n
1>D(b,b)1

)
≤ min

(
D(a,b)1−D(a,a)1

)
+

1

2

(∣∣∣∣ 1n1>D(a,a)1− 2nE‖r‖2
2

∣∣∣∣+

∣∣∣∣ 1n1>D(b,b)1− 2nE‖r‖2
2

∣∣∣∣)
≤ min

(
D(a,b)1−D(a,a)1

)
+ 4nε

with probability 1− e−Ω∆ab,ε
(n). Next, Lemma 22 gives

min
(
D(a,b)1−D(a,a)1

)
≤ n∆2

ab + (6 + 2∆ab)nε+ 4n min
i∈{1,...,n}

r>a,i(γa −Oab).

By assumption, we know ‖r‖2 ≥ 1 − ε with positive probability regardless of ε > 0.

It then follows that

r>(γa −Oab) ≤ −
∆ab

2
+ ε

with some (ε-dependent) positive probability. As such, we may conclude that

min
i∈{1,...,n}

r>a,i(γa −Oab) ≤ −
∆ab

2
+ ε w.p. 1− e−ΩD,ε(n).

Combining these estimates then gives

min(M (a,b)1) ≤ n∆2
ab − 2n∆ab + (10 + 2∆ab)nε w.p. 1− e−ΩD,∆ab,ε(n).

Performing a union bound over a and b then gives

min
a,b∈{1,...,k}

a6=b

min(M (a,b)1) ≤ n∆2 − 2n∆ + (10 + 2∆)nε w.p. 1− e−ΩD,γ,ε(n).
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Combining these estimates then gives the result.

Lemma 28. Under the (D, γ, n)-stochastic ball model, we have

‖Ψ‖2→2 ≤
(

(1 + ε)σ√
m

+ ε

)√
N w.p. 1− e−Ωm,k,σ,ε(n),

where σ2 := E‖r‖2
2 for r ∼ D.

Proof. Let R denote the matrix whose (a, i)th column is ra,i. Then

Ψ = R−
[
(c1 − γ1)1> · · · (ck − γk)1>

]
,

and so the triangle inequality gives

‖Ψ‖2→2 ≤ ‖R‖2→2 +
∥∥∥[(c1 − γ1)1> · · · (ck − γk)1>

]∥∥∥
2→2

≤ ‖R‖2→2 +

(
n

k∑
a=1

‖ca − γa‖2
2

)1/2

,

where the last estimate passes to the Frobenius norm. For the first term, since D is

rotation invariant, we may apply Theorem 5.41 in [49]:

‖R‖2→2 ≤ (1 + ε)σ

√
N

m
w.p. 1− e−Ωm,σ,ε(n).

For the second term, apply (41). The union bound then gives the result.

Proof of Theorem 11. First, we combine Lemmas 26, 27 and 28: For every δ > 0,
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there exists an ε > 0 such that

2‖Ψ‖2
2→2 +

k∑
a=1

k∑
b=a+1

‖P1⊥M
(a,b)1‖2‖P1⊥M

(b,a)1‖2

ρ(a,b)

≤ 2

(
1 + ε√
m

+ ε

)2

nk +
k∑
a=1

k∑
b=a+1

4n3∆2
ab/m+ Cn3ε

n2(∆2
ab −∆(∆− 2))− Cn2ε

≤ n

(
2k

m
+

4

m

k∑
a=1

k∑
b=a+1

∆2
ab

∆2
ab −∆(∆− 2)

+ δ

)
(53)

with probability 1− e−ΩD,γ,ε(n). Next, the uniform bound ∆ab ≥ ∆ implies

∆2
ab

∆2
ab −∆(∆− 2)

=
1

1−∆(∆− 2)/∆2
ab

≤ 1

1−∆(∆− 2)/∆2
=

∆

2
.

Combining this with (53) and considering Lemma 25, it then suffices to have

2k

m
+

4

m
·
(
k

2

)
· ∆

2
< ∆(∆− 2).

Rearranging then gives

∆ > 2 +
2k

m∆
+
k(k − 1)

m
,

which is implied by the hypothesis since ∆ ≥ 2.

A.E Proof of Theorem 12

Put g = γ/‖γ‖2 and let z have unit 2-norm. Since ‖Φ>0 z‖2 ≥ ‖Φ>0 g‖2, then

considering Lemma 13, it suffices to show that the containment

S1 :=

{
v ∈ Sm−1 : |〈g>v〉| ≤ 2

∆

}
⊆
{
v ∈ Sm−1 : ‖Φ>0 v‖2 < ‖Φ>0 g‖2

}
=: S2
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holds with probability 1− e−Ωm,∆(N). To this end, we will first show that each v ∈ S1

is also a member of S2 with high probability, and then we will perform a union bound

over an ε-net of S1.

We start by considering ‖Φ>v‖2 and ‖Φ>g‖2. Decompose xi as either γ + ri or

−γ+ ri depending on whether xi belongs to the ball centered at γ or −γ. Let w with

‖w‖2 = 1 be arbitrary. Then

(x>i w)2 = ((±γ + ri)
>w)2 = (±γ>w + r>i w)2 = (γ>w)2 ± 2(γ>w)(r>i w) + (r>i w)2,

and so E(x>i w)2 = (γ>w)2 + E(e>1 r)
2. Linearity of expectation then gives

E
[
(x>i g)2 − (x>i v)2

]
= (γ>g)2 − (γ>v)2 = ‖γ‖2(1− (g>v)2) ≥ 1− 4

∆2
.

Since |(x>i g)2 − (x>i v)2| ≤ 2(1 + ∆/2)2 almost surely, we may apply Hoeffding’s

inequality to get

‖Φ>g‖2
2−‖Φ>v‖2

2 =
N∑
i=1

(
(x>i g)2− (x>i v)2

)
≥ N

(
1− 4

∆2

)
−s w.p. 1−e−Ω∆(s2/N).

(54)

For a properly chosen t, rearranging gives that ‖Φ>v‖2 < ‖Φ>g‖2. Instead, we will

use (54) to prove the closely related inequality ‖Φ>0 v‖2 < ‖Φ>0 g‖2. Letting µ denote

the centroid of the columns of Φ, we know by (41) that ‖µ‖2 ≤ δ with probability

1− e−Ωm,δ(N). In this event, every w with ‖w‖2 = 1 satisfies

∣∣‖Φ>0 w‖2 − ‖Φ>w‖2

∣∣ =
∣∣‖(Φ + µ1>)>w‖2 − ‖Φ>w‖2

∣∣
=
∣∣‖Φ>w + 1µ>w‖2 − ‖Φ>w‖2

∣∣ ≤ ‖1µ>w‖2 ≤
√
Nδ. (55)
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Furthermore,

‖Φ>0 w‖2 = ‖(Φ− µ1>)>w‖2 ≤ ‖Φw‖2 + ‖1µ>w‖2 ≤
√
N

(
∆

2
+ 1 + ‖µ‖2

)
,

where the last inequality follows from Cauchy–Schwarz along with the fact that

‖xi‖2 ≤ ∆/2 + 1 for every i. Taking a supremum over w then gives

‖Φ>0 ‖2→2 ≤
√
N

(
∆

2
+ 1 + ‖µ‖2

)
≤
√
N

(
∆

2
+ 1 + δ

)
w.p. 1− e−Ωm,δ(N). (56)

In (54), pick s = (N/2)(1− 4/∆2) =: c1(∆)N . Then taking a union bound with (55)

gives

(
‖Φ>0 v‖2 −

√
Nδ
)2 ≤ ‖Φ>v‖2

2 ≤ ‖Φ>g‖2
2c1(∆)N ≤

(
‖Φ>0 g‖2 +

√
Nδ
)2 − c1(∆)N

with probability 1− e−Ωm,∆,δ(N). Expanding both sides and rearranging then gives

‖Φ>0 v‖2
2 ≤ ‖Φ>0 g‖2

2 + 2
√
Nδ
(
‖Φ>0 v‖2 + ‖Φ>0 g‖2

)
− c1(∆)N

≤ ‖Φ>0 g‖2
2 −

(
c1(∆)− 4δ

(
∆

2
+ 1 + δ

))
︸ ︷︷ ︸

c2(∆)

N,

where the last step follows from (56). Thus, picking δ = δ(∆) sufficiently small ensures

c2(∆) > 0. Since c2(∆)N ≤ ‖Φ>0 g‖2
2 − ‖Φ>0 v‖2

2 = (‖Φ>0 g‖2 + ‖Φ>0 v‖2)(‖Φ>0 g‖2 −

‖Φ>0 v‖2), we further have

‖Φ>0 g‖2 − ‖Φ>0 v‖2 ≥
c2(∆)N

‖Φ>0 g‖2 + ‖Φ>0 v‖2

≥ c3(∆)
√
N,

where the last inequality takes c3(∆) := c2(∆)/(∆/2 + 1 + δ), following (56).

At this point, we know that if v ∈ S1, then v ∈ S2 with probability 1− e−Ωm,∆(N).
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It remains to perform a union bound over an ε-net of S1 to conclude that S1 ⊆ S2

with high probability. To this end, pick ε < c3(∆)/(∆/2 + 1 + δ), consider an ε-net

Nε of S1, and suppose

‖Φ>0 v‖2 ≤ ‖Φ>0 g‖2 − c3(∆)
√
N ∀v ∈ Nε. (57)

Then for every x ∈ S1, there exists v ∈ Nε such that ‖x− v‖2 ≤ ε, and so (56) gives

‖Φ>0 x‖2 ≤ ‖Φ>0 ‖2→2‖x− v‖2 + ‖Φ>0 v‖2

≤
√
N

(
∆

2
+ 1 + δ

)
ε+ ‖Φ>0 g‖2 − c3(∆)

√
N

< ‖Φ>0 g‖2,

as desired. To measure the probability of the success event (57), a standard volume

comparison argument establishes the existence of an ε-net of size |Nε| ≤ (1+2/ε)m; see

Lemma 5.2 in [49]. As such, the union bound gives that (57) occurs with probability

1− e−Ωm,∆(N).

A.F Proof of Theorem 16

Recall Lemma 15 demonstratedW serves as a dual certificate which may yield the

integral solution. More precisely, we have yet to prove the dual certificate uniquely

yields the integral solution gg>. Since g is in the nullspace of W − B as a result of

satisfying complementary slackness, it is sufficient to show the second smallest eigen-

value of this matrix denoted λ2(W−B) is positive. SinceW−B is a random matrix,

we instead demonstrate λ2(W−B) > 0 with high probability. The strategy is to use

Matrix Bernstein presented as Theorem 1.4 in [48] in our concentration argument of

λ2(E[W−B]). Figure 11 is a graphical representation of how the proceeding lemmas
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Lemma 15 Proposition 29

Lemma 30

Lemma 31

Lemma 33

Lemma 32

Lemma 34

Lemma 35 Lemma 36

Lemma 37

Theorem 16

Figure 11. A directed graph to illustrate the development of the Lemmas in proving Theorem 16
where the predecessor of a statement is included in the statement’s proof.

build to the theorem statement.

Proposition 29 ((Matrix Bernstein) Theorem 1.4 in [48]). Consider a finite sequence

{Xi} of independent, random, self-adjoint matrices with dimension d. Assume that

each random matrix satisfies

E[Xi] and λmax(Xi) ≤ R almost surely.

Then, for all t ≥ 0,

Pr

(
λmax

(∑
i

Xi

)
< t

)
≥ 1− d · exp

(
−t2/2

ζ + Rt/3

)
where ζ :=

∥∥∥∥∥∑
i

E(X2
i )

∥∥∥∥∥ .
Lemma 30. Under the BiSBM used in Section 4.2, with p, q ∈ [0, 1] and p > q,

E[A] =
p− q

2
(gg> − Ξ) +

p+ q

2
(11> −Θ)

where Ξ :=
∑2

i=1

∑2
j=1 1Ui1

>
Uj

+ 1Vi1
>
Vj
−
∑2

i,j=1
i 6=j

1Ui1
>
Uj

+ 1Vi1
>
Vj

.
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Proof. Per the definition of A, we can write

2E[A] = 2p
2∑
i=1

1Ui1
>
Vi

+ 1Vi1
>
Ui

+ 2q
2∑

i,j=1
i 6=j

1Ui1
>
Vj

+ 1Vi1
>
Uj

= (2p− q + q)
2∑
i=1

1Ui1
>
Vi

+ 1Vi1
>
Ui

+ (2q − p+ p)
2∑

i,j=1
i 6=j

1Ui1
>
Vj

+ 1Vi1
>
Uj

= (p− q)

 2∑
i=1

1Ui1
>
Vi

+ 1Vi1
>
Ui
−

2∑
i,j=1
i 6=j

1Ui1
>
Vj

+ 1Vi1
>
Uj


+ (p+ q)

2∑
i,j=1

1Ui1
>
Vi

+ 1Vi1
>
Ui
. (58)

Notice we can express gg> and 11> as

gg> =
2∑
i=1

1Ui1
>
Ui

+ 1Vi1
>
Vi

+ 1Ui1
>
Vi

+ 1Vi1
>
Ui
−

2∑
i,j=1
i 6=j

1Ui1
>
Uj

+ 1Vi1
>
Vj

+ 1Ui1
>
Vj

+ 1Vi1
>
Uj

= Ξ +
2∑
i=1

1Ui1
>
Vi

+ 1Vi1
>
Ui
−

2∑
i,j=1
i 6=j

1Ui1
>
Vj

+ 1Vi1
>
Uj

and

11> =
2∑

i,j=1

1Ui1
>
Uj

+ 1Vi1
>
Vj

+ 1Ui1
>
Vj

+ 1Vi1
>
Uj

= Θ +
2∑

i,j=1

1Ui1
>
Vi

+ 1Vi1
>
Ui
,

respectively. Substitution of gg> − Ξ and 11> − Θ into (58) and division by 2 gives

the result.

Lemma 31. Under the BiSBM used in Section 4.2 with W being the dual certificate

defined in Lemma 15, we can write

λmin(E[W −B]span(g)⊥) = nmin(2p− 1, 1− 2q, p− q).
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Proof. Employing Lemma 58, we calculate E[W −B]:

E[W −B] = E[2(G+ − G−)]− E[2A− 11> + Θ]

= n(p− q)I −
(
(p+ q)E[11> −Θ] + (p− q)E[gg> − Ξ]

)
+ 11> −Θ

= n(p− q)I − (1− p− q)(11> −Θ) + (p− q)Ξ− (p− 1)gg>.

Notice the eigenvectors in span(g)⊥ are spanned by {1, 1U − 1V , 1U1 − 1U2 , 1V1 − 1V2}.

Calculating the corresponding eigenvalues and taking the minimum concludes the

proof.

Lemma 32. Define bij(·) to be a Bernoulli random variable with indices i, j and the

input as the mean. Under the BiSBM used in Section 4.2 with W being the dual

certificate defined in Lemma 15, we can write

W − E[W ] =
2n∑
i=1

n/2∑
j=1

X1(i, j) + X2(i, j)

where X1(i, j) := 2eie
>
i

(
bij(p)− p

)
and X2(i, j) := 2eie

>
i

(
q − bij(q)

)
.

Proof. Consider W −E[W ]. By the definition of W and the linearity of expectation,

W − E[W ] = 2(G+ − G−)− 2E[G+ − G−]

= 2(G+ − E[G+])− 2(G− − E[G−]). (59)

Observe

E[G+] =
2n∑
j=1

np

2
eje
>
j and E[G−] =

2n∑
j=1

nq

2
eje
>
j .
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Using this observation and the definition of G+ and G−, we continue (59):

W − E[W ] = 2
2n∑
i=1

eie
>
i

−np
2

+

n/2∑
j=1

bij(p)

+ 2
2n∑
i=1

eie
>
i

nq
2
−

n/2∑
j=1

bij(q)


= 2

2n∑
i=1

n/2∑
j=1

eie
>
i

(
bij(p)− p

)
+ 2

2n∑
i=1

n/2∑
j=1

eie
>
i

(
q − bij(q)

)

=
2n∑
i=1

n/2∑
j=1

2eie
>
i

(
bij(p)− p+ q − bij(q)

)

=
2n∑
i=1

n/2∑
j=1

X1(i, j) + X2(i, j).

Lemma 33. Under the BiSBM used in Section 4.2 with W being the dual certificate

defined in Lemma 15, the following inequality holds:

|λ2(W −B)− λ2(E[W −B])| ≤ ||W −B− E[W −B]||2→2.

Proof. Denote

J := (W −B)span(g)⊥

J ′ := E[W −B]span(g)⊥

η := max(||J ||22→2, ||J ′||22→2).
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Now,

|λ2(W −B)− λ2(E[W −B])| = |λmin(J )− λmin(J ′)|

= |λmin(J )− η + η − λmin(J ′)|

=
∣∣||ηI − J ′||22→2 − ||ηI − J ||22→2

∣∣
≤ ||ηI − J ′ − (ηI − J )||22→2

= ||J − J ′||22→2.

By Lemma 32, g is in the nullspace of E[W − B] and g is in the nullspace of W by

construction. Since the spectral norm outputs the largest eigenvalue in magnitude, the

inclusion of a zero eigenvalue will not change the spectral norm. Thus, ||J −J ′||22→2 =

||W −B− E[W −B]||2→2.

Lemma 34. Define b′ij(x) to be a Bernoulli random variable with mean x and indices

i, j. Under the BiSBM used in Section 4.2, we can write

E[B]−B =

n/2∑
i=1

3n/2∑
j=n+1

X3(i, j) +
n∑

i=n/2+1

2n∑
j=3n/2+1

X3(i, j)

+
2n∑

i=3n/2+1

3n/2∑
j=n+1

X4(i, j) +
n∑

i=n/2+1

3n/2∑
j=n+1

X4(i, j)

where X3(i, j) := 2(eie
>
j + eje

>
i )(p− b′ij(p)) and X4(i, j) := 2(eie

>
j + eje

>
i )(q − b′ij(q))

Proof. By the definition of B,

E[B]−B = E[2A− 11> + Θ]− 2A+ 11> −Θ

= 2(E[A]−A).

Per the definition of A and the way we shuffled the columns and rows by which
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partition a vertex lies, we can write

A =

n/2∑
i=1

3n/2∑
j=n+1

(eie
>
j + ejei>)b′ij(p) +

n∑
i=n+1

2n∑
j=3n/2+1

(eie
>
j + ejei>)b′ij(p)

+
2n∑

i=3n/2+1

n/2∑
j=1

(eie
>
j + eje

>
i )b′ij(q) +

n∑
i=n/2+1

3n/2∑
j=n+1

(eie
>
j + eje

>
i )b′ij(q).

Similarly, we can write

E[A] =

n/2∑
i=1

3n/2∑
j=n+1

(eie
>
j + eje

>
i )p+

n∑
i=n+1

2n∑
j=3n/2+1

(eie
>
j + eje

>
i )p

+
2n∑

i=3n/2+1

n/2∑
j=1

(eie
>
j + eje

>
i )q +

n∑
i=n/2+1

3n/2∑
j=n+1

(eie
>
j + eje

>
i )q.

Combining these expressions gives the result.

Lemma 35. Consider the matrices Xl(i, j) defined in Lemmas 32 and 34. For all

appropriate i, j, l

λmax

(
Xl(i, j)

)
≤ 2p

Proof. By linearity of expectation, W−B−E[W−B] =W−E[W ] +E[B]−B. By

Lemma 32, we have W−E[W ] written as a sum of X1(i, j) and X2(i, j). Observe for

i ∈ [2n], j ∈ [n/2]

λmax(X1(i, j)) ≤ 2(1− p) and λmax(X2(i, j)) ≤ 2q.

Similarly in 34, we have E[B] −B written as a sum of X3(i, j) and X4(i, j). Notice

for i, j ∈ [2n]

λmax(X3(i, j)) ≤ 2p and λmax(X4(i, j)) ≤ 2q.

Taking the maximum of these upper bounds gives the result.
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Lemma 36. Under the BisBM used in Section 4.2,

∥∥∥∥∥∑
l

∑
ij

E[X2
l (i, j)]

∥∥∥∥∥ = 2(n+ 2)
(
p(1− p) + q(1− q)

)
.

Proof. We begin by calculating E[X2
l (i, j)] for l ∈ [3]. In the case of l = 1,

E[X2
1(i, j)] = E

[(
2eie

>
i (bij(p)− p

)2
]

= 4
(
eie
>
i

)2 E[(bij(p))
2 − 2pbij(p) + p2]

= 4eie
>
i (p− 2p2 + p2)

= 4eie
>
i p(1− p).

A similar calculation shows E[X2
2(i, j)] = 4eie

>
i q(1− q). Consider the case of l = 3.

E[X2
3(i, j)] = E

[(
2(eie

>
j + eje

>
i )(p− b′ij(p)

)2
]

= 4(eie
>
j + eje

>
i )2E[(b′ij(p))

2 − 2pb′ij(p) + p2]

= 4(eie
>
i + eje

>
j )(p− 2p2 + p2)

= 4(eie
>
i + eje

>
j )p(1− p).

A similar calculation shows E[X2
4(i, j)] = 4(eie

>
i +eje

>
j )q(1−q). Notice

∑
E[X2

l (i, j)]
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is a sum of diagonal matrices. Moreover,

∑
l

∑
ij

E[X2
l (i, j)]

=
2n∑
i=1

n/2∑
j=1

E[X2
1(i, j)] + E[X2

2(i, j)] +

n/2∑
i=1

3n/2∑
j=n+1

E[X2
3(i, j)]

+
n∑

i=n+1

2n∑
j=3n/2+1

E[X2
3(i, j)] +

2n∑
i=3n/2+1

n/2∑
j=1

E[X2
4(i, j)] +

n∑
i=n/2+1

3n/2∑
j=n+1

E[X2
4(i, j)]

=
2n∑
i=1

n/2∑
j=1

4eie
>
i

(
p(1− p) + q(1− q)

)
+

2n∑
i=1

eie
>
i p(1− p) +

2n∑
i=1

eie
>
i q(1− q)

= 2(n+ 2)
(
p(1− p) + q(1− q)

)
I.

The result follows from the sum being merely a multiple of the identity.

Lemma 37. Under the BisBM used in Section 4.2, with p > 1/2 and q < 1/2,

t2/2

ζ + Rt/3
= Ω(n)

where

t := λ2(E[W −B])

ζ :=

∥∥∥∥∥∑
l

∑
i,j

E[X2
l (i, j)]

∥∥∥∥∥ .
and where R is chosen to be a function solely of p satisfying R ≥ λmax (Xl(i, j)) for

all appropriate i, j, l.

Proof. First denote

α := min(2p− 1, 1− 2q, 2(p− q)) and β := 2
(
p(1− p) + q(1− q)

)
.
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By Lemma 31, we know t = nα. Additionally, we may choose R := 2p by Lemma 35.

Applying Lemma 36, we know

t2/2

ζ + Rt/3
=

n2α2/2

(n+ 2)β + 2pnα/3
= n

α2

2(1 + 2/n)β + 4pα/3
.

Since n ≥ 1,

t2/2

ζ + Rt/3
≥ n

α2

6β + 4pα/3

which is the result.

Proof of Theorem 16. By Lemma 15, we know using W = 2(G+ − G−) will certify

gg> as being optimal in the semidefinite relaxation. All that is left to show is gg>

as being the unique solution to (24) by demonstrating W − B has a nullspace of

dimension one. Denoting λ2 to represent the second smallest eigenvalue, we must

demonstrate λ2(W −B) > 0. Since W −B is random, we will utilize λ2(E[W −B]).

By Lemma 31, we know λ2(E[W−B]) > 0 when p > 1/2 and q < 1/2. To demonstrate

λ2(W −B) > 0, it suffices to show

|λ2(W −B)− λ2(E[W −B])| < λ2(W −B).

By Lemma 33,

|λ2(W −B)− λ2(E[W −B])| ≤ ‖W −B− E[W −B] ‖ .

As such, it suffices to show

‖W −B− E[W −B] ‖ < λ2(E[W −B]). (60)
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Using Proposition 29 and Lemma 37, we bound the probability of 60 occurring:

Pr

(
‖W −B− E[W −B] ‖ < λ2 (E[W −B])

)
≥ 1− 2ne−Ω(n).

A.G Proof of Theorem 17

Here we prove Theorem 17 using two versions of the Chernoff Bound.

Proposition 38 (Chernoff Bound). Let W1, . . . ,Wn be random variables such that

0 ≤ Wi ≤ 1 for every i ∈ [n]. Let W :=
∑n

i=1Wi and µ := EW . For any ε ≥ 0,

Pr
(
W ≥ (1 + ε)µ

)
≤ exp

(
− ε2

2 + ε
µ

)

and

Pr
(
W ≤ (1− ε)µ

)
≤ exp

(
−ε

2

2
µ

)
.

For the proof of the first bound see [50], and for the proof of the second bound

see [51].

Lemma 39. If p, q ∈ [0, 1], then µS ≤ µT . Moreover, if p 6= q, then µS < µT .

Proof. We begin by calculating µS using linearity of expectation and properties of a

Bernoulli random variable.

µS = E

(
m∑
l=1

bl(2p(1− p)) +
m∑
l′=1

bl′(2q(1− q))

)

=
m∑
l=1

E [bl(2p(1− p))] +
m∑
l′=1

E [bl′(2q(1− q))]

= 2mp(1− p) + 2mq(1− q)

= 2m(p+ q − p2 − q2).
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Now calculate µT .

µT = E
2m∑
l=1

bl(p+ q − 2pq) = 2m(p+ q − 2pq).

Consider µT − µS.

µT − µS = 2m(p+ q − 2pq)− 2m(p+ q − p2 − q2) = 2m(p− q)2 ≥ 0

with equality when p = q. Thus, when p 6= q, µS < µT .

Proof of Theorem 17. Let p, q ∈ [0, 1] such that p 6= q. Let ε > 0 and n ∈ N. Define

α := p(1− p) + q(1− q) and β := p+ q − 2pq. Let m ∈ N such that

m >
2(β + 3α)

(β − α)2
log

(
2n

ε

)
. (61)

Notice we cannot allow p = q as that would imply β − α = 0. By an application of

DeMorgan’s law, for all t > 0, we have Pr(S < T ) = 1 − Pr(S ≥ t or t ≥ T ). As

such, showing Pr(S ≥ t or t ≥ T ) < ε for all t > 0 is sufficient to prove the result.

Let t > 0 and consider the quantity Pr(S ≥ t or t ≥ T ). Taking the union bound,

we obtain

Pr(S ≥ t or t ≥ T ) ≤
∑
i,j∈Ur
r∈[2]
i 6=j

Pr(‖xi − xj‖2
2 ≥ t) +

∑
i∈U1
j∈U2

Pr(‖xi − xj‖2
2 ≤ t)

=

n(n−1)∑
i=1

Pr(S ≥ t) +
n2∑
j=1

Pr(T ≤ t)

as the maximum number of distinct intracluster distances per cluster is given by
(
n
2

)
and the maximum number of distinct intercluster distances are given by n2. Define
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ψ := t− µS and φ := µT − t. As such,

Pr(S ≥ t or t ≥ T ) ≤
n(n−1)∑
i=1

Pr(S ≥ t) +
n2∑
j=1

Pr(T ≤ t)

=

n(n−1)∑
i=1

Pr(S ≥ µS + ψ) +
n2∑
j=1

Pr(T ≤ µT − φ)

= n(n− 1) Pr(S ≥ µS + ψ) + n2 Pr(T ≤ µT − φ)

≤ n2 Pr(S ≥ µS + ψ) + n2 Pr(T ≤ µT − φ)

= n2 Pr

(
S ≥

(
1 +

ψ

µS

)
µS

)
+ n2 Pr

(
T ≤

(
1− φ

µT

)
µT

)
.

(62)

Since (62) holds for arbitrary t, we can redefine ψ and φ in terms of τ := µS+µT
2

so

that ψ = τ − µS and φ = µT − τ . Notice ψ
µS

= β−α
2α

> 0 and φ
µT

= β−α
2β

> 0 as

Lemma 39 implies β > α > 0. By Proposition 38,

Pr(S ≥ t or t ≥ T ) ≤ n2 exp

(
−
(
ψ

µS

)2
µS

2 + ψ/µS

)
+ n2 exp

(
−
(
φ

µT

)2
µT
2

)

≤ n2 exp

(
− ψ2

2µS + ψ

)
+ n2 exp

(
− φ2

2µT

)
.

By Lemma 39, µS, µT , ψ, φ are expressible in terms of m,α, β. We make the bound

in terms of m,α, and β.

Pr(S ≥ t or t ≥ T ) ≤ n2 exp

(
− m2(β − α)2

4mα +m(β − α)

)
+ n2 exp

(
−m

2(β − α)2

4mβ

)
≤ n2 exp

(
−m(β − α)2

β + 3α

)
+ n2 exp

(
−m(β − α)2

4β

)

A quick calculation using the fact that β > α > 0 will show

exp

(
−m(β − α)2

β + 3α

)
> exp

(
−m(β − α)2

4β

)
. (63)
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Employing this inequality, we obtain

Pr(S ≥ t or t ≥ T ) < 2n2 exp

(
−m(β − α)2

β + 3α

)
= 2 exp

(
2 log(n)−m(β − α)2

β + 3α

)
.

As such, it follows from (61) that

2 exp

(
2 log(n)−m(β − α)2

β + 3α

)
< ε.

That is,

Pr(S ≥ t or t ≥ T ) < ε.

Thus, Pr(S < T ) = 1 with high probability.

A.H Proof of Theorem 18

of Theorem 18. Let p, q ∈ [0, 1] such that p 6= q. Let ε > 0 and n1, n2 ∈ N. Define

α := p(1 − p) + q(1 − q) and β := p + q − 2pq and nmax = max(n1, n2). Let m ∈ N

such that

m >
2(β + 3α)

(β − α)2
log

(
3nmax
ε

)
. (64)

Notice we cannot allow p = q as that would imply β − α = 0. Just as in Theorem 17

showing Pr(S ≥ t or t ≥ T ) < ε for all t > 0 is sufficient to prove the result. Let

t > 0 and consider the quantity Pr(S ≥ t or t ≥ T ). Taking the union bound, we
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obtain

Pr(S ≥ t or t ≥ T ) ≤
∑
i,j∈Ur
r∈[2]
i 6=j

Pr(‖xi − xj‖2
2 ≥ t) +

∑
i∈U1
j∈U2

Pr(‖xi − xj‖2
2 ≤ t)

=

(n1
2 )+(n1

2 )∑
i=1

Pr(S ≥ t) +

n1n2∑
j=1

Pr(T ≤ t)

as the maximum number of distinct intracluster distances per cluster is given by(
n1

2

)
+
(
n1

2

)
and the maximum number of distinct intercluster distances are given by

n1n2. Define ψ := t− µS and φ := µT − t. As such,

Pr(S ≥ t or t ≥ T ) ≤
(n1

2 )+(n1
2 )∑

i=1

Pr(S ≥ t) +

n1n2∑
j=1

Pr(T ≤ t)

=

(n1
2 )+(n1

2 )∑
i=1

Pr(S ≥ µS + ψ) +
n2∑
j=1

Pr(T ≤ µT − φ)

=

((
n1

2

)
+

(
n1

2

))
Pr(S ≥ µS + ψ) + n1n2 Pr(T ≤ µT − φ)

≤
(
n1(n1 − 1)

2
+
n2(n2 − 1)

2

)
Pr(S ≥ µS + ψ)

+ n1n2 Pr(T ≤ µT − φ)

≤ (n2
1 + n2

2) Pr

(
S ≥

(
1 +

ψ

µS

)
µS

)
+ n1n2 Pr

(
T ≤

(
1− φ

µT

)
µT

)
≤ 2n2

max Pr

(
S ≥

(
1 +

ψ

µS

)
µS

)
(65)

+ n2
max Pr

(
T ≤

(
1− φ

µT

)
µT

)
.

Since (65) holds for arbitrary t, we can redefine ψ and φ in terms of τ := µS+µT
2

so

that ψ = τ −µS and φ = µT − τ . Observe the proof for Lemma (64) does not depend
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on |U |. Notice ψ
µS

= β−α
2α

> 0 and φ
µT

= β−α
2β

> 0 as Lemma 39 implies β > α > 0. By

Proposition 38,

Pr(S ≥ t or t ≥ T ) ≤ 2n2
max exp

(
−
(
ψ

µS

)2
µS

2 + ψ/µS

)
+ n2

max exp

(
−
(
φ

µT

)2
µT
2

)

≤ 2n2
max exp

(
− ψ2

2µS + ψ

)
+ n2

max exp

(
− φ2

2µT

)
.

By Lemma 39, µS, µT , ψ, φ are expressible in terms of m,α, β. We make the bound

in terms of m,α, and β.

Pr(S ≥ t or t ≥ T ) ≤ 2n2
max exp

(
− m2(β − α)2

4mα +m(β − α)

)
+ n2

max exp

(
−m

2(β − α)2

4mβ

)
≤ 2n2

max exp

(
−m(β − α)2

β + 3α

)
+ n2

max exp

(
−m(β − α)2

4β

)

By using (63), we obtain

Pr(S ≥ t or t ≥ T ) < 3n2
max exp

(
−m(β − α)2

β + 3α

)
= 3 exp

(
2 log(nmax)−m

(β − α)2

β + 3α

)
.

As such, it follows from (64) that

3 exp

(
2 log(nmax)−m

(β − α)2

β + 3α

)
< ε.

That is,

Pr(S ≥ t or t ≥ T ) < ε.

Thus, Pr(S < T ) = 1 with high probability.
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Appendix B. Modeling Methodology

B.A The Baseline Model

In this subsection, we describe how we create the baseline model given a set

of patients and their medical histories. In evaluating the model we perform the

procedure described in Section 5.3.

Following Section 5.3, we formulate our data as an adjacency matrix with the

rows corresponding to patients and the columns corresponding to compressed three

digit ICD-9 codings a patient was given in their medical history. Recall the patient

partition given in [4] is given by

1. Healthy adults

2. Mothers and young children

3. Adults at risk of a chronic disease

4. Adults with a chronic disease

5. Adults with a rare condition

6. The disabled and the frail elderly

where we assign a patient to a the partition with the highest label number for which he

or she is a member. As the partition follows a certain hierarchy, we identify a patient

as being healthy if he or she is not in any of the other partitions. We identified the

disabled by merely checking if they had any of the corresponding ICD-9-CM codes

for any of the severe or chronic disabilities for which a person could seek Medicaid or

Medicare coverage as described by the CFR Title 42, 435, 1010. We used the list of

ICD-9 codes provided by the Texas Department of Aging and Disability Services for

approved diagnostic codes following this federal regulation. Similarly, we identified
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the chronically ill as those having a chronic illnesses associated with a high probability

of death as used and described in [52, 53]. The list of ICD-9 codes used in [52] are given

by the Dartmouth Atlas of Health Care. Since there does not exist a comprehensive

list of ICD-9 codes for all rare diseases, we restricted our attention to those with

an ICD coding as given by Orpha.net. We used a web scraper to pull the ICD-10

codings of the rare diseases in their database to generate our list, which we present in

Table 5. Since we require ICD-9 codes, we map our list of rare conditions in ICD-10

notation to ICD-9 notation. We use the 2014 general equivalency mapping provided

by the Centers for Medicare and Medicaid Services, and present the translated ICD-9

codes in Table 6. In this case, as with all the other partitions, if there is a list of ICD

codes which describe medical conditions required for membership in a partition, we

compress the ICD code to three digits to allow for a direct comparison between the

patient histories and the test for inclusion in a partition.

According to [54], frailty is a state of increased vulnerability to poor resolution of

homeostasis following a stress, which increases the risk of adverse outcomes including

falls, delirium and disability. The authors of [55] created a well cited model called

the Rockwood Index that performed well in predicting frailty in older adults partially

based on medical history. The Rockwood index uses a weighted sum of 70 variables,

each being a possible condition that may reasonably occur to a frail elderly person.

Only 50 of these variables have ICD codes associated with them, and as we only

have access to a patients’ medical history labeled in ICD coding, we restrict our

modified Rockwood index using only these fifty variables. Those variables and their

associated ICD codings that were used in the baseline model are listed in Tables 7

and 8. Motivated by the methodology of [55], we identify a patient as being frail

elderly if the patient is at least 65 years old and has at least 36 of the physical deficits

in our subset of the conditions in the Rockwood index.
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Table 5. ICD-10 Codes for Rare Conditions

A05.1 A06.0 A77.1 A93.2 A96.0 B22.2 B34.0 B44.0 B44.1 B56.0
B57.0 B60.1 B60.1 B67.5 B76.0 B78.0 B81.0 B81.3 C15 C18.1
C22.0 C24.1 C38.0 C49 C53 C54 C56 C60.0 C63 C64
C73 C74 C74.0 C78.6 C83.3 C84.4 C88.3 C91.0 C91.5 C91.7
C92.0 C92.2 C92.4 C92.5 C92.6 C92.7 C94.0 C94.2 C94.3 C94.5
C94.7 C95.0 C96.0 C96.2 C96.5 D01.4 D12.6 D13.6 D27 D35.0
D36.0 D45 D46.7 D47.4 D48.1 D55.3 D56.0 D58.8 D59.0 D59.1
D60.0 D61.0 D64.0 D64.3 D65 D68.4 D69.0 D69.1 D69.2 D69.3
D69.4 D69.8 D70 D72.8 D74.0 D75.1 D80.0 D80.5 D81.0 D81.3
D82.2 D82.4 D82.8 D84.8 E03.1 E16.1 E20.1 E20.8 E22.0 E23.0
E23.2 E23.6 E24.0 E24.3 E24.8 E25.0 E25.8 E26.1 E26.8 E27.1
E27.2 E27.4 E28.8 E30.1 E31.0 E31.8 E34.5 E34.8 E70.2 E70.3
E71.1 E71.3 E72.0 E72.1 E72.2 E72.3 E72.5 E72.8 E74.0 E74.4
E75.0 E75.1 E75.2 E75.4 E76.0 E76.2 E77.1 E77.8 E78.6 E79.8
E80.2 E80.3 E80.5 E83.1 E83.2 E83.3 E83.4 E83.5 E85 E85.0
E85.1 E85.3 E85.4 E85.8 E88.0 E88.1 E88.2 E88.8 F84.1 G04.0
G11 G11.0 G11.1 G11.2 G11.3 G11.4 G11.8 G12.1 G12.2 G20
G23.0 G23.1 G24.1 G24.8 G31.0 G31.8 G37.3 G37.4 G40.3 G40.4
G40.5 G40.8 G54.0 G54.5 G58.0 G60.0 G60.1 G60.2 G60.8 G61.0
G61.8 G70.0 G70.8 G71.0 G71.1 G71.2 G71.3 G71.8 G72.3 G72.4
G72.8 G93.0 G95.0 G98 H16.2 H16.8 H18.5 H20.0 H26.0 H31.2
H33.0 H35.0 H35.5 H44.0 H47.2 H49.4 H53.5 H83.3 H90.3 H90.5
I00 I15.1 I42.8 I45.5 I45.6 I60.9 I71.0 I73.8 I74.4 J61
J80 J84.0 J84.1 J98.0 K00.0 K00.2 K00.5 K03.5 K06.1 K07.1
K22.0 K52.8 K60.3 K72.0 K75.4 K76.8 K86.1 L12.3 L40.2 L43.8
L56.4 L60.3 L63.0 L63.1 L65.8 L66.4 L67.8 L68.1 L81.4 L81.7
L81.8 L85.0 L93.2 L98.2 L98.5 L98.8 M02.8 M06.1 M31.0 M31.3
M31.8 M32.8 M35.8 M60.8 M62.8 M79.2 M87.0 M89.0 M89.5 M91.1
M92.4 M93.2 M93.9 N10 N25.8 N85.6 O26.6 P28.4 P35.8 Q01.0
Q02 Q04.0 Q04.2 Q04.3 Q07.0 Q10.4 Q11.0 Q11.2 Q12.0 Q13.1
Q13.8 Q16.0 Q20.8 Q21.1 Q21.2 Q21.4 Q22.2 Q22.8 Q23 Q23.0
Q23.8 Q24.5 Q25.1 Q25.4 Q25.7 Q25.8 Q26.8 Q27.3 Q30.1 Q30.8
Q39.5 Q41.0 Q43.1 Q44.2 Q44.6 Q44.7 Q45.1 Q45.3 Q51.0 Q55.5
Q61.1 Q61.5 Q64.3 Q68.8 Q71.0 Q71.3 Q72.0 Q72.3 Q72.5 Q73.0
Q73.8 Q74.0 Q74.3 Q74.8 Q75.0 Q75.1 Q75.4 Q75.8 Q76.3 Q76.4
Q76.8 Q77.0 Q77.2 Q77.3 Q77.4 Q77.5 Q77.7 Q77.8 Q78.0 Q78.2
Q78.8 Q79.4 Q79.6 Q79.8 Q80.2 Q80.3 Q80.8 Q81.2 Q82.0 Q82.4
Q82.5 Q82.8 Q83.1 Q84.2 Q84.3 Q84.6 Q84.8 Q86.0 Q86.8 Q87.0
Q87.1 Q87.2 Q87.3 Q87.4 Q87.5 Q87.8 Q89.7 Q93.0 Q93.5 Q99.8
R82.1 T37.5 T40.0 T43.0 T50.4 T56.8 T62.2 T78.3 T86.0 Y43.2
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Table 6. ICD-9 Codes for Rare Conditions

005.1 006.0 082.1 066.1 078.7 079.0 117.3 484.6 117.3 086.3
086.0 122.5 126.0 126.2 126.3 126.8 127.2 127.1 127.7 153.5
155.0 156.2 164.1 187.1 193 197.6 203.80 202.50 202.60 277.89
211.3 211.6 229.0 207.10 207.11 207.12 238.4 289.89 238.1 282.3
282.43 282.8 283.0 283.0 28.481 285.0 285.0 286.6 286.7 287.0
287.1 287.2 287.31 287.39 287.8 289.7 289.0 279.04 279.05 279.2
277.2 279.8 279.8 279.8 279.3 243 251.1 275.49 252.1 253.0
253.2 253.3 628.1 253.5 253.8 255.0 255.0 255.0 255.2 255.2
255.14 255.41 255.41 256.8 259.1 258.1 258.8 259.8 270.7 270.7
270.8 271.0 271.8 330.1 271.8 272.7 272.7 272.5 277.2 277.89
277.4 686.8 277.31 277.39 277.39 277.39 272.6 272.8 334.2 334.0
334.3 334.2 334.8 334.1 334.8 335.11 332.0 333.0 333.0 333.6
337.9 341.20 341.21 323.9 341.8 353.0 353.5 354.8 356.0 356.1
356.2 356.3 356.0 356.8 357.0 359.1 359.0 359.89 359.89 359.3
348.0 336.0 370.8 389.11 389.12 389.14 389.18 389.10 389.14 389.16
390 405.91 425.2 425.4 426.6 426.7 426.81 430 444.22 501
518.82 520.0 520.2 520.5 521.6 523.8 530.0 565.1 571.42 577.1
577.8 696.1 697.0 692.82 703.8 704.09 704.09 704.09 701.8 704.2
704.1 709.09 709.09 709.09 701.1 695.4 695.89 701.8 709.8 714.2
447.5 710.0 710.5 710.8 729.2 590.10 590.11 621.5 770.82 771.2
742.0 742.1 742.2 742.2 742.2 743.65 743.03 743.06 743.10 743.30
743.45 744.01 745.19 745.7 745.8 745.5 745.60 745.61 745.69 745.8
746.09 746.1 746.3 746.89 746.85 747.10 747.20 747.21 747.29 747.29
747.49 748.1 748.1 750.4 750.7 751.1 751.3 751.61 751.62 751.60
751.69 751.7 751.7 752.31 752.49 752.69 753.16 753.17 755.51 755.52
756.9 755.4 755.4 755.53 755.54 755.56 755.57 755.59 754.89 755.8
756.0 756.0 756.0 756.0 754.2 756.3 756.4 756.3 756.59 756.4
756.4 756.4 756.4 756.51 756.52 756.53 756.59 75.671 756.83 756.81
756.82 756.89 756.9 757.1 757.1 757.1 757.39 757.0 757.31 757.32
757.2 757.39 757.6 757.4 757.5 757.5 757.8 760.71 760.79 755.55
756.0 759.81 759.89 759.89 759.89 759.7 758.5 758.39 758.81 758.89
791.3
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Table 7. The Items in the Modified Rockwood Index with Corresponding ICD-9 codes,
Part I

Description of physical deficit used
in modified Rockwood model

ICD-9 Coding Used

History of thyroid disease 246
Thyroid problems 246
History of diabetes mellitus 250
Mood problems 296

296.82
Depression (clinical impression) 296.20-296.26

296.30-296.36
Paranoid features 297.9
Restlessness 307.9
Feeling sad, blue, depressed 311
History relevant to cognitive impairment or loss 331
Family history relevant to cognitive impairment or loss 331
History of Parkinsons disease 332
Tremor at rest 333.1
Postural tremor 333.1
Intention tremor 333.1
Seizures, generalized 345
Seizures, partial complex 345.4

345.5
Arterial hypertension 401.9
Myocardial infarction 410
Arrhythmia 427
Congestive heart failure 428
Cardiac problems 429
History of stroke 434.91
Cerebrovascular problems 437
Lung Problems 518
Gastrointestinal problems 520-579
Breast problems 610-612
Skin problems 680-686
Skin problems 690-698
Skin problems 700-709
Musculoskeletal problems 710-739
Clouding or delirium 780.09
Syncope or blackouts 780.2
Sleep changes 780.5

780.7
Tiredness all the time 780.71

780.79
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Table 8. The Items in the Modified Rockwood Index with Corresponding ICD-9 codes,
Part I

Description of physical deficit used
in modified Rockwood model

ICD-9 Coding Used

Memory changes 780.93
Short-term memory impairment 780.93
Long-term memory impairment 780.93
Bradykinesia 781
Irregular gait pattern 781.2
Poor limb coordination 781.3
Poor coordination, trunk 781.3
Poor muscle tone in limbs 781.99
Poor standing posture 781.99
Impaired vibration 782
Head and Neck Problems 784
Headache 784
Peripheral pulses 785.9
Respiratory problems 786
Urinary incontinence 788.3
Abdominal problems 789
Presence of snout reflex 796.4
Falls E800-E888
Family history of degenerative disease V17.2
Impaired mobility V49.89
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Due to the nature of the dataset, we cannot directly identify if a female is a

mother. As such we create a reasonable set of properties a mother would satisfy that

are accessible in the data. The properties we used are as follows:

• The person is female.

• There is a child with the same family ID

• The person is at least 10 years older than the eldest child in the family.

The reader may notice the odd minimum age for a mother. According to [37], there

exist live births for mothers between the ages of 10 and 15 at a rate of 0.6 per 1000

births in 2005. Due to the large size of the dataset, it may be possible that a teen

pregnancy within this age range may occur and so we account for this in the minimum

age of a mother. To identify a person as a mother, there necessarily has to be a child

in the database. As such, we identify any person under the age of 18 as being a child

as that is the age range for a pediatricians’ practice. Furthermore, for purposes of

simplicity we label a person a child even if he or she becomes an adult during the five

year span.

Lastly, we are left with identifying people at risk of chronic conditions, and to cre-

ate such a classifier is not trivial. We can easily identify those with chronic conditions

and those without such conditions. Given the data, we cannot identify if a person is

at risk of a chronic condition. For example, we know if a person engages in behaviors

such as heavy smoking and severe lack of physical activity, a person is more likely

to suffer a chronic condition. We need some sort of machinery to predict if a person

is likely to get a chronic condition based on their medical history. Work has been

done to this extent in [56, 46, 57] where different recommender systems are devised

that output a list of conditions a person may get in the future based on their medical

histories. These recommender systems, however, are too computationally expensive
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for our purposes. As such, we devise our own Principal Component based classifier.

The idea behind our method is to find a direction where the variance of the

chronically diseased is small and the variance of the non-chronically diseased is high.

In so doing we hope a clustering algorithm will identify all of the chronically diseased

and some of the non-chronically diseased in one cluster and all other patients in

another cluster. In other words, the first cluster will be the patients who either

have a chronic condition or will likely get chronic condition, and the second cluster

consists of people who are not at risk of a chronic condition. As such, we wish to find

a direction ṽ that maximizes ṽ>M>
0M0ṽ and minimize ṽ>D>0 D0ṽ whereM0 denotes

the centered matrix of patients and their medical histories and D0 is a centered matrix

of chronically ill patients and their medical histories. As such, we can formulate our

problem as a regularization:

maximize ṽ>(M>
0M0 − ξD>0 D0)ṽ

subject to ‖ṽ‖2 = 1

with ξ being a regularization parameter. Assuming a ξ is picked, our classifier is as

listed in Algorithm 3.

We briefly describe how we selected the value of ξ for our model. We considered

values of ξ ∈ {2−10, 2−9, . . . , 220} and for each value of ξ, we attempt to create a

classifier with good cross-validation results in identifying the chronically ill as being

in the at-risk category. As we wish to perform a cross-validation, we randomly choose

our hold out set of chronically diseased patients. As such, roughly ten classifiers

were created for each value of ξ where each classifier was trained under a different

randomly selected training set. We select a value of ξ = 26 as it gave the most

promising classification accuracy (in identifying the chronically ill as being in the at-

risk category) of 60% or higher. In selecting a classifier for the model, we additionally
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Algorithm 3: A Classifier for being at risk of a chronic condition

Input: Centered matrices M0,D0 as defined in the text with patients in the
training set,
a regularization parameter ξ,
and an unclassified patient’s medical history h which is centered on
the mean of M0

Output: Classification f the patient as “at risk” or “not at risk” of a chronic
condition

Compute the leading eigenvector v of M>
0M0 − ξD>0 D0

Apply k-means to the rows of M0v to find two clusters and their centroids
Identify the cluster with the majority of the chronically diseased as the

“at risk” cluster
Denote the cluster centroids cat risk and cnot at risk, apropriately
Find the vector ∆̂ := cat risk − cnotat risk

if ∆̂h > 0 then
Classify patient as “at risk”

else
Classify patient as “not at risk”

end

impose another constraint: the classifier should place more non-chronically ill people

in the not at risk category than in the at risk category. We admit that we are imposing

a bias here, but we wish our classifier to be slightly more discerning than a classifier

that says more than half of the population that does not have a chronic condition is

at risk for one.

We select the best classifier for our particular choice of ξ in the following manner.

We run 30 trials of cross-validation where in each trial we randomly select a third of

the chronically ill and a third of the non-chronically ill for the hold out set. Further-

more, we enforce each trial to satisfy the mentioned condition on the non-chronically

ill. So if a trial does not satisfy this condition, we do not retain the results of the trial.

We take the classifier that performed the best under cross validation (classification

accuracy of 70.61%) to identify the people at risk.
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B.B Important Code Used in Modeling

Here we present the code that was used in Chapter V. The reader may notice that

in certain instances a line ends prematurely such that if the code were to run “as is”

an error would result. Due to some of the lines exceeding margins, we merely continue

the line of code on a new line here in thesis. Where these breaks occur should be

fairly evident (every line break of this type is not followed by a semi-colon).

Code for creating the Baseline model.

In this subsection we present the code used in creating the Baseline model.

create baseline.

The following MATLAB code creates the baseline model using the first five years.

filename4adjmatrix= ’I:\My Documents\MATLAB\thesis\Create Baseline

\WORKSPACE DATAFIRSTCOLLAPSEDsparse_Adjmatrix.mat’;

% ’I:\My Documents\MATLAB\thesis\Create Baseline\WORKSPACE

DATASECONDCOLLAPSEDsparse_Adjmatrix.mat’;

% function [IDX,entropy,crossvalidationresults]=create_baseline(

filename4adjmatrix)

%initialize --------------------------

loaddata=load(’I:\My Documents\MATLAB\thesis\Create Baseline\

WORKSPACE DATA\cleaned_data_4baseline_CAO29SEP.mat’);

AGE=loaddata.AGE;

PERSONID=loaddata.PERSONID;

FAMILYID=loaddata.FAMILYID;

N=max(size(AGE));

IDX=zeros(N,8);
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[All_patients,ia_P,ic_P] =unique(PERSONID,’stable’);

%Note: all_patients = [patient(ia_p)

%Note: patient = all_patients(ic_p)

loadtemp=load(’I:\My Documents\MATLAB\thesis\Create Baseline

\WORKSPACE DATA\unique_CLPSDDX.mat’);

unique_CLPSDDX=loadtemp.unique_CLPSDDX;

loadtemp=load(filename4adjmatrix);

sparse_Adjmatrix=loadtemp.FIRST_COLLAPSEDsparse_Adjmatrix;

% adjmatrix=loadadj.SECOND_COLLAPSEDsparse_Adjmatrix;

filename4results=’I:\My Documents\MATLAB\thesis\Create Baseline\

WORKSPACE DATA\Baseline_results.mat’;

%get frail elderly --------------

[frail,frail_ill_in_adj]=get_frail(unique_CLPSDDX,ic_P,

sparse_Adjmatrix,AGE); %created&works

%label as frail elderly/disabled (col: 8, val 6)

IDX(frail,8)=6;

save(filename4results,...

’IDX’,’-append’)

clear frail

%get disabled --------------

[disabled,disabled_ill_in_adj]=get_disable(unique_CLPSDDX,ic_P,

sparse_Adjmatrix); %created&works

%label as frail elderly/disabled (col: 7, val 6)

IDX(disabled,7)=6;
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save(filename4results,...

’IDX’,’-append’)

clear disabled

%get adults with rare conditions --------------

DX1=loaddata.DX1;

DX2=loaddata.DX2;

DX3=loaddata.DX3;

DX4=loaddata.DX4;

[rare_ppl,rare_ill_in_adj]=get_rare_ppl_new(All_patients,DX1,DX2,DX3,

DX4,PERSONID); %created

%label adults with rare conditions (col: 6, val 5)

IDX(rare_ppl,6)=5;

save(filename4results,...

’IDX’,’-append’)

clear rare_ppl DX1 DX2 DX3 DX4

%get chronically ill adults --------------

[chronic_ill,chronic_ill_in_adj]=get_chronic_adults(unique_CLPSDDX,

ic_P,sparse_Adjmatrix); %created&works

%label chronically ill adults (col: 5, val 4)

IDX(chronic_ill,5)=4;

save(filename4results,...

’IDX’,’-append’)

clear chronic_ill
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%get adults at risk of devoloping chronic diseases --------------

trials4Xvalidation=30;

rowsnot2include=union(frail_ill_in_adj,disabled_ill_in_adj);

rowsnot2include=union(rowsnot2include,rare_ill_in_adj);

rowsnot2include=union(rowsnot2include,chronic_ill_in_adj);

rows2include=setdiff(1:size(sparse_Adjmatrix,1),rowsnot2include);

clear rowsnot2include

[cols4chronic,whochronic,whoNOTchronic,Ac_PSD,Dc_PSD,Ac,Dc]=

setup4getrisk(rows2include,unique_CLPSDDX,sparse_Adjmatrix);

fprintf(’chronic_risk: setup complete\n’)

[chronic_risk,crossvalidationresults,common_sensecheck,where_cmn_sns]=

get_chronic_risk_PCAmotivatedwcrossvalidation(whochronic,

whoNOTchronic,Ac,Dc,trials4Xvalidation);%created

fprintf(’chronic_risk: cross validation complete\n’)

save(filename4results,...

’IDX’,...

’crossvalidationresults’,...

’common_sensecheck’,...

’where_cmn_sns’,’-append’);

fprintf(’chronic_risk: get chronic risk complete\n’)

%label as being at risk of developing chronic diseases (col: 4, val 3)

IDX(chronic_risk,4)=3;

clear chronic_risk

fprintf(’chronic_risk complete\n’)
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%get children and adults ---------------

[children,~]=get_children(PERSONID,AGE); %created&works

%label children (col: 3, val 2)

IDX(children,3)=2;

save(filename4results,...

’IDX’,’-append’)

fprintf(’children complete\n’)

%get mothers --------------

GENDER=loaddata.GENDER;

YEAR=loaddata.YEAR;

[eldest_child_ages]=get_mothers_precompute(children,AGE,PERSONID,

FAMILYID,YEAR);

mothers=get_mothers_new(children,AGE,PERSONID,FAMILYID,GENDER,YEAR,

eldest_child_ages);

%label mothers (col: 2, val 2)

IDX(mothers,2)=2;

save(filename4results,...

’IDX’,’-append’)

clear mothers

clear children

clear GENDER YEAR FAMILYID

fprintf(’mothers complete\n’)

%get all other adults not already labeled
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%see logical indexing in labeling of IDX %created&works

%label as healthy adults (col: 1, val 1)

IDX(~any(IDX,2),1)=1;

save(filename4results,...

’IDX’,’-append’)

clear healthy

fprintf(’healthy complete\n’)

%calculate entropy from labels/IDX --------------

%change format from hospital visits to unique patients

clear AGE

clear eldest_child_ages

maxedIDX=max(IDX,[],2);

save(filename4results,...

’maxedIDX’,’-append’)

clear IDX

maxedIDX4Adj=zeros(size(All_patients,1),1);

parfor i=1:size(All_patients,1)

maxedIDX4Adj(i)=max(maxedIDX(All_patients(i)==PERSONID));

disp(i)

end

save(filename4results,...

’maxedIDX4Adj’,’-append’)
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fprintf(’maxedIDX4Adj complete\n’)

clear sparse_Adjmatrix

YEAR=loaddata.YEAR;

secondhalfpersonid=zeros(max(size(PERSONID)),1);

secondhalfpersonid(YEAR>=2008)=PERSONID(YEAR>=2008);

num_visits=zeros(size(All_patients,1),1);

parfor i=1:size(All_patients,1)

num_visits(i)=sum(All_patients(i)==secondhalfpersonid);

end

save(filename4results,...

’num_visits’,’-append’)

fprintf(’num_visits complete\n’)

get frail.

The following MATLAB code is designed to find the frail elderly in the population.

%--------------

%Author: Takayuki Iguchi

%Last Modified: 14 Dec 2015

%Program Description:

% Finds the frail elderly in a population.

%Input:

% -all_diagnosis : A list of unique 3 digit ICD codings that occur
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% in the dataset.

% -ic_p: An output from the unique command applied to PERSONID.

% This array orders a unique list of patients according to hospital

% visits as ordered out in the dataset.

% -sparse_Adjmatrix : An N x m sparse array where rows correspond

% to patients and columns correspond to a 3 digit ICD coding. An

% entry in this array corresponds to the number of times a patient

% has been given an ICD coding.

% -AGE : A list of patient ages organized by hospital visit.

%Output:

% -frail: A list of the frail elderly organized by hospital visit.

% -frail_ill_in_adj: A list of those identified as being frail

% (not taking into account age) per the modified Rockwood index.

%--------------

function [frail,frail_ill_in_adj]=get_frail(all_diagnosis,ic_p,

sparse_Adjmatrix,AGE)

%load 3 digit ICD codings from modified Rockwood index

stuff=load(’I:\My Documents\MATLAB\thesis\Create Baseline\

Frail Elderly\CLPSDhierarchical_subset_of_Rockwood_index1.mat’);

list=stuff.hierarchicalsubsetofRockwoodindex1;

[~,L]=size(list);

list(end+1,:)={’’};

patients_score=zeros(size(sparse_Adjmatrix,1),1);

percent=50/70;
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min_age=65;

for i=1:L

%initialize while loop

cont=true;

codes4indexhit=find(strcmp(list(:,i),’’),1,’first’)-1;

cols4frail=zeros(L,1);

patients_hit=zeros(size(sparse_Adjmatrix,1),1);

j=1;

while cont

temp=list{j,i};

%get column of a Rockwood index condition in adj matrix

if isnumeric(temp)

temp=num2str(temp);

temp=find(strcmp(temp,all_diagnosis));

else

temp=find(strcmp(temp,all_diagnosis));

end

if numel(temp)~=0

cols4frail=temp(1);

cols4frail=cols4frail(cols4frail~=0);

patients_hit=patients_hit+any(sparse_Adjmatrix(:,

cols4frail),2);
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end

if j>=codes4indexhit

cont=false;

else

j=j+1;

end

end

patients_score=patients_score+any(patients_hit,2);

end

%find the frail people in the adj matrix

frail_ill_in_adj=(patients_score>=percent*L);

frail_ill_in_adj=find(frail_ill_in_adj==1);

%find the frail elderly organized by hospital visits

frail=frail_ill_in_adj(ic_p);

age_requirement=(AGE>=min_age);

frail=age_requirement.*frail;

frail=find(frail==1);

end
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get disable.

The following MATLAB code is designed to find the patients with disabilities in

a population.

%--------------

%Author: Takayuki Iguchi

%Last Modified: 14 Dec 2015

%Program Description:

% Finds the disabled people in a population.

%Input:

% -all_diagnosis : A list of unique 3 digit ICD codings that occur

% in the dataset.

% -ic_p: An output from the unique command applied to PERSONID.

% This array orders a unique list of patients according to hospital

% visits as ordered out in the dataset.

% -sparse_Adjmatrix : An N x m sparse array where rows correspond

% to patients and columns correspond to a 3 digit ICD coding. An

% entry in this array corresponds to the number of times a patient

% has beengiven an ICD coding.

%Output:

% -disabled: A list of the frail elderly organized by hospital

% visit.

% -disabled_ill_in_adj: A list of those identified as being

% disabled in the adjacency matrix.

%--------------

function [disabled,disabled_ill_in_adj]=get_disable(all_diagnosis,ic_p,
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sparse_Adjmatrix)

%load ICD codings for disabilites

stuff=load(’I:\My Documents\MATLAB\thesis\Create Baseline\

Disability codes\DiagnosticCode4Disabilities.mat’);

list=stuff.DiagnosticCode4Disabilities;

%get columns for the disabilities

L=max(size(list));

cols4disabled=zeros(L,1);

for i=1:L

temp=list(i);

if isnumeric(temp)

temp=num2str(temp);

temp=find(strcmp(temp,all_diagnosis));

else

temp=find(strcmp(temp,all_diagnosis));

end

if numel(temp)~=0

cols4disabled(i)=temp(1);

end

end

cols4disabled=cols4disabled(cols4disabled~=0);

%pull columns from adj matrix corresponding to diabilities

disabled_sparse_Adjmatrix=sparse_Adjmatrix(:,cols4disabled);
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%find disabled patients in adj matrix

[N,m]=size(disabled_sparse_Adjmatrix);

disabled_ill_in_adj=zeros(N,1);

for i=1:N

if ~isequal(disabled_sparse_Adjmatrix(i,:),zeros(1,m))

disabled_ill_in_adj(i)=1;

end

end

%find disabled patients organized by hospital visit

disabled=disabled_ill_in_adj(ic_p);

disabled=find(disabled==1);

end

get rare ppl new.

The following MATLAB code is used to find patients with a rare condition in the

Baseline model.

%--------------

%Author: Takayuki Iguchi

%Last Modified: 14 Dec 2015

%Program Description:

% Finds the patients with a rare condition in a population.

%Input:

% -All_patients : A list of unique patient ID numbers.
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% -DX1: A list of primary diagnoses organized by hospital visit.

% -DX2: A list of secondary diagnoses organized by hospital visit.

% -DX3: A list of tertiary diagnoses organized by hospital visit.

% -DX4: A list of quatrinary diagnoses organized by hospital visit.

% -PERSONID: A list of patient ID numbers organized by hospital

% visit.

%Output:

% -rare_ppl: A list of the patients with a rare condition

% organized by hospital visit.

% -rare_ill_in_adj: A list of those identified as having a rare

% condition organized by appearance in the adjacency matrix.

%--------------

function [rare_ppl,rare_ill_in_adj]=get_rare_ppl_new(All_patients,DX1,

DX2,DX3,DX4,PERSONID)

% load ICD codings for rare diseases

stuff=load(’I:\My Documents\MATLAB\thesis\Create Baseline\

pull_rare_diseases\orphanet_rarediseases_translated2_ICD9.mat’);

list=stuff.unique_rare_list_in_ICD9;

list=unique(list);

list=list(2:end);

%find the hospital visits corresponding to a rare condition

temp=ismember(DX1,list);

temp=temp+ismember(DX2,list);
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temp=temp+ismember(DX3,list);

temp=temp+ismember(DX4,list);

rare_ppl=find(temp>0);

%find the patients with a rare condition as organized in the

%adj matrix

rare_ill_in_adj=zeros(size(All_patients,1),1);

parfor i=1:size(All_patients,1)

rare_ill_in_adj(i)=max(temp(All_patients(i)==PERSONID));

disp(i)

end

rare_ill_in_adj=rare_ill_in_adj(rare_ill_in_adj~=0);

end

get chronic adults.

The following MATLAB code is designed to find the chronically ill in a population.

%--------------

% Author: Takayuki Iguchi

% Last modified: 14 Dec 2015

% Program description:

% -This program is is designed to identify the chronically ill in a

% patient poplulation.

% -We use the list of chronic diseases coded in ICD-9-CM provided by

% the Dartmouth Atlas:
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% <http://www.dartmouthatlas.org/downloads/methods/

% Chronic_Disease_Codes.pdf>

%

% Inputs:

%

% -all_diagnosis : A list of the unique ICD codes that occur in

% the database.

% -ic_p : A permutation of the list of unique person ID numbers to

% the list of person ID numbers arranged by visit.

% -sparse_Adjmatrix : A sparse adjacency matrix with rows

% corresponding to a patient and columns corresponding to 3 digit

% ICD codings. An entry in this array coresponds to how many times a

% patient was given a certain ICD coding.

%

% Outputs:

%

% -chronic_ill : A list of indices corresponding to which hospital

% visits were from people with a chronic condition somewhere in their

% medical history.

% -chronic_ill_in_adj: A list of indices corresponding to which

% patient (i.e. which row in the adjacency matrix) has a chronic

% condition in their medical history.

%--------------

function [chronic_ill,chronic_ill_in_adj]=get_chronic_adults(

all_diagnosis,ic_p,sparse_Adjmatrix)
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% Load list of chronic conditions

stuff=load(’I:\My Documents\MATLAB\thesis\Create Baseline\

Dartmouth list of Chronic diseases\list_of_chronic_diseases.mat’);

list=stuff.list_of_chronic_diseases;

% Find columns corresponding to chronic conditions

L=max(size(list));

cols4chronic=zeros(L,1);

for i=1:L

temp=list{i};

if isnumeric(temp)

temp=num2str(temp);

temp=find(strcmp(temp,all_diagnosis));

else

temp=find(strcmp(temp,all_diagnosis));

end

if numel(temp)~=0

cols4chronic(i)=temp(1);

end

end

cols4chronic=cols4chronic(cols4chronic~=0);

% Pull columns from Adj matrix corresponding to chronic conditions

chronic_sparse_Adjmatrix=sparse_Adjmatrix(:,cols4chronic);

% Find patients with a chronic condition in Adj matrix
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[N,m]=size(chronic_sparse_Adjmatrix);

chronic_ill_in_adj=zeros(N,1);

for i=1:N

if ~isequal(chronic_sparse_Adjmatrix(i,:),zeros(1,m))

chronic_ill_in_adj(i)=1;

end

end

% Find patients with a chronic condition organized by hospital visit

chronic_ill=chronic_ill_in_adj(ic_p);

chronic_ill=find(chronic_ill==1);

end

setup4getrisk.

This program details the preliminary computations performed in building a clas-

sifier to detect if a patient is at risk of a chronic disease.

%--------------

% Author: Takayuki Iguchi

% Last modified: 14 Dec 2015

% Program description:

% -This program performs preliminary calculations to create a

% classifier that detects if a person is at risk of a chronic

% condition.

% -We use the list of chronic diseases coded in ICD-9-CM provided by

% the Dartmouth Atlas:

136



% <http://www.dartmouthatlas.org/downloads/methods/

% Chronic_Disease_Codes.pdf>

%

% Inputs:

%

% -rows2include: A list of rows (i.e. patients) in the adjacency

% matrix that are not disabled, frail elderly, nor have a chronic

% condition.

% -All_diagnosis : A list of the unique ICD codes that occur in the

% database.

% -sparse_Adjmatrix : A sparse adjacency matrix with rows

% corresponding to a patient and columns corresponding to 3 digit

% ICD codings. An entry in this array corresponds to how many times

% a patient was given a certain ICD coding.

%

% Outputs:

%

% -cols4chronic: A list of columns corresponding to chronic

% conditions.

% whochronic: A list of patients with chronic conditions.

% whoNOTchronic: A list of patients without chronic conditions.

% -Ac_PSD: The mean corrected sums of squares and cross products

% matrix for the adjacency matrix.

% -Dc_PSD: The mean corrected sums of squares and cross products

% matrix for the adjacency matrix of chronically ill patients.

% -Ac: A centered version of the adjacency matrix without the
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% columns corresponding to chronic conditions.

% -Dc: A centered version of the adjacency matrix of chronically

% ill patients without columns corresponding to chronic conditions.

%--------------

function [cols4chronic,whochronic,whoNOTchronic,Ac_PSD,Dc_PSD,Ac,Dc]=

setup4getrisk(rows2include,All_diagnosis,sparse_Adjmatrix)

% only consider patients not already classified as disabled,

% frail elderly,

sparse_Adjmatrix=sparse_Adjmatrix(rows2include,:);

sparse_Adjmatrix=sparse_Adjmatrix(any(sparse_Adjmatrix,2),:);

% load ICD codings for chronic conditions

stuff=load(’I:\My Documents\MATLAB\thesis\Create Baseline\

Dartmouth list of Chronic diseases\list_of_chronic_diseases.mat’);

list=stuff.list_of_chronic_diseases;

list=collapseICD(list);

% Find columns in Adj matrix corresponding to chronic conditions

L=max(size(list));

cols4chronic=zeros(L,1);

for i=1:L

temp=list{i};

if isnumeric(temp)

temp=num2str(temp);

temp=find(strcmp(temp,All_diagnosis));
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else

temp=find(strcmp(temp,All_diagnosis));

end

if numel(temp)~=0

cols4chronic(i)=temp(1);

end

end

cols4chronic=cols4chronic(cols4chronic~=0);

chronic_sparse_Adjmatrix=sparse_Adjmatrix(:,cols4chronic);

% find patients with and without a chronic condition

whochronic=find(any(chronic_sparse_Adjmatrix,2));

whoNOTchronic=setdiff(1:max(size(sparse_Adjmatrix)),whochronic);

where2pull4append=any(chronic_sparse_Adjmatrix,2);

append_sparse_matrix=sparse_Adjmatrix(where2pull4append,:);

% clean workspace

clear list

clear temp

clear temparray

clear i

clear L

clear num_test_ppl

clear samplesize

clear stuff

clear subset_idx_begin
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clear subset_idx_end

clear collapse_chronic_icd

clear collapse_list

% calculate the centered data matrices without the columns

% corresponding to chronic conditions

Ac=sparse_Adjmatrix-ones(size(sparse_Adjmatrix,1),1)*(sum(

sparse_Adjmatrix,1)./size(sparse_Adjmatrix,1));

Dc=append_sparse_matrix;

Dc=Dc-ones(size(Dc,1),1)*(sum(Dc,1)./size(Dc,1));

Ac(:,cols4chronic)=[];

Dc(:,cols4chronic)=[];

% calculate the mean corrected sums of squares and cross

% products matrix

Ac_PSD=Ac’*Ac;

Dc_PSD=Dc’*Dc;

end

get chronic risk PCAmotivatedwcrossvalidation.

This program finds the patients at risk of a chronic disease by creating a classifier

that performs the best in cross validation over all 30 trials.

%--------------

% Author: Takayuki Iguchi
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% Last modified: 14 Dec 2015

% Program description:

% -This program creates a classifier that identifies patients

% who are at risk of a chronic condition. We perform

% cross-validation until we have enough instances where our

% expectations (below) are met. We then select the best

% performing classifier and implement it on the entire dataset

% to obtain the patients who are at risk of a chronic

% condition who do not already have one.

% -Note that we impose our bias that the majority of

% non-chronically ill people should not be at at-risk of a

% chronic condition.

%

% Inputs:

%

% whochronic: A list of patients with chronic conditions.

% whoNOTchronic: A list of patients without chronic conditions.

% -Ac: A centered version of the adjacency matrix without the

% columns corresponding to chronic conditions.

% -Dc: A centered version of the adjacency matrix of chronically

% ill patients without columns corresponding to chronic conditions.

% -trials: The number of trials to be performed (which also meet

% our expectations.

%

% Outputs:

%
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% -chronic_risk: A list of patients at-risk of a chronic condition.

% -crossvalidationresults: A record of the crossvalidation for

% each trial to include those that do not meet our expectations.

% -common_sensecheck: A record of the proportions of patients

% who are chronically ill in the at-risk cluster and the

% proportion of the non-chronically ill in the at-risk cluster.

% -where_cmn_sns: A record of which trials met our expectations.

%--------------

function [chronic_risk,crossvalidationresults,common_sensecheck,

where_cmn_sns]=get_chronic_risk_PCAmotivatedwcrossvalidation(

whochronic,whoNOTchronic,Ac,Dc,trials)

% initialize loop to perform cross validation

crossvalidationresults=[];

common_sensecheck=[];

where_cmn_sns=[];

IDX_opt=zeros(size(Ac,1),1);

cross_opt=0;

cont=true;

successfull_cmn_sense=0;

count=1;

while cont

% pull 2/3 of nonchronic and chronic, respectively
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num_whochronic=max(size(whochronic));

num_pull_whochronic=floor(2*num_whochronic/3);

pull_whochronic=randsample(1:max(size(Dc)),num_pull_whochronic);

Ac_PSD_pulled=Ac(pull_whochronic,:)’*Ac(pull_whochronic,:);

Dc_PSD_pulled=Dc(pull_whochronic,:)’*Dc(pull_whochronic,:);

% find principal components of the regularization

i=6;

lambda=2^i;

A=Ac_PSD_pulled-lambda*Dc_PSD_pulled;

[V,~]=eigs(A);

% run k-means the PCA scores for a subset of the components

[IDX,~,~]=kmeans(Ac*V(:,2),2);

% record the proportions of patients who are chronically ill

% in the at-risk cluster and the proportion of the

% non-chronically ill in the at-risk cluster.

if max(size(find(IDX(whochronic)==1)))>=max(size(find(

IDX(whochronic)==2)))

common_sensecheck(count,1)=max(size(find(IDX(

whochronic)==1)))/max(size(whochronic));

common_sensecheck(count,2)=max(size(find(IDX(whoNOTchronic)=

=1)))/max(size(whoNOTchronic));

else

common_sensecheck(count,1)=max(size(find(IDX(whochronic)==2)))
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/max(size(whochronic));

common_sensecheck(count,2)=max(size(find(IDX(whoNOTchronic)==2

)))/max(size(whoNOTchronic));

end

% determine if the majority of non-chronically disease people

% are in the not-at risk cluster (i.e. test if the clustering

% meets our expectations

if max(size(find(IDX(whochronic)==1)))>=max(size(find(IDX(

whochronic)==2)))

if max(size(find(IDX(whoNOTchronic)==1)))<max(size(find(IDX(

whoNOTchronic)==2)))

fprintf(’meets our expectations!\n’)

successfull_cmn_sense=successfull_cmn_sense+1;

where_cmn_sns(end+1)=count;

end

else

if max(size(find(IDX(whoNOTchronic)==2)))<max(size(find(IDX(

whoNOTchronic)==1)))

fprintf(’meets our expectations!\n’)

successfull_cmn_sense=successfull_cmn_sense+1;

where_cmn_sns(end+1)=count;

end

end

% test if we have enough trials which conforms to expectations
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if successfull_cmn_sense>=trials

cont=false;

end

%find vector between centroids

c2c_kmeans=sum(Ac(IDX==1,:),1)/size(IDX==1,1)-

sum(Ac(IDX==2,:),1)/size(IDX==2,1);

c2c_kmeans=c2c_kmeans/norm(c2c_kmeans);

if max(size(find(IDX(whochronic)==1)))>=max(size(find(IDX(

whochronic)==2)))

means_atrisk =sign(c2c_kmeans*(Ac(randsample(find(IDX==1),

1),:))’);

else

means_atrisk =sign(c2c_kmeans*(Ac(randsample(find(IDX==2),

1),:))’);

end

%get remaining 1/3 of chronic and inner prod with normal to

%hyperplane; threshold

testchron=setdiff(1:max(size(whochronic)),pull_whochronic);

testvec_chron=c2c_kmeans*(Dc(testchron,:))’;

whichinDcatrisk=(sign(testvec_chron)==means_atrisk);

% calculate crossvalidation results
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crossvalidationresults(count)=sum(whichinDcatrisk)/max(size(

testvec_chron));

% store information regarding best cross validation results

if crossvalidationresults(count)>cross_opt

cross_opt=crossvalidationresults(count);

IDX_opt=IDX;

Acx=Ac*V(:,1);

Ac2x=Ac*V(:,2);

Ac3x=Ac*V(:,3);

end

% show progress

disp([count,successfull_cmn_sense,crossvalidationresults(count)])

% increment counter/pointer

count=count+1;

end

% Using the best clustering under cross validation,

% find the people who are at risk of a chronic

% condition who does not already have one.

if max(size(find(IDX_opt(whochronic)==1)))>=max(size(find(IDX_opt(

whochronic)==2)))

chronic_risk=find(IDX_opt==1);

else
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chronic_risk=find(IDX_opt==2);

end

chronic_risk=setdiff(chronic_risk,whochronic);

% save results

filename=’I:\My Documents\MATLAB\thesis\Create Baseline\WORKSPACE DATA

\Baseline_results.mat’;

save(filename,’chronic_risk’,’crossvalidationresults’,

’common_sensecheck’,’where_cmn_sns’,’-append’)

end

get children.

This program finds the patients who are children in the dataset.

%--------------

% Author: Takayuki Iguchi

% Last modified: 14 Dec 2015

% Program description:

% -This program finds children and adults who were children

% at some point in time in the dataset.

%

% Inputs:

%

% -AGE : A list of patient ages organized by hospital

% visit.

% -PERSONID : A list of patient ID numbers organized by
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% hospital visit.

%

% Outputs:

%

% -children: A list of patients who are children organized by

% hospital visit.

% -update_info: A list of adult patients who were children in the

% dataset organized by hospital visit.

%--------------

function [children,update_info]=get_children(PERSONID,AGE)

max_age=18;

N=max(size(AGE));

unique_PPL=unique(PERSONID);

N_unique=max(size(unique_PPL));

update_info_data{N,1}=[];

children_data{N,1}=[];

parfor i=1:N_unique

where=find(PERSONID==unique_PPL(i));

ages=AGE(where);

if max(ages)<max_age

children_data(i)={where};

elseif min(ages)<max_age

where_child=where(ages<max_age);

where_adult=where(ages>=max_age);
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children_data(i)={where_child};

update_info_data(i)={where_adult};

end

disp(i)

end

children=[];

update_info=[];

for i=1:N_unique

children=vertcat(children,children_data{i});

update_info=vertcat(update_info,update_info_data{i});

disp(i)

end

children=sort(children);

update_info=sort(update_info);

end

get mothers precompute.

The following MATLAB code is designed to find the eldest child in each family

and their ages.

%--------------

%Author: Takayuki Iguchi

%Last Modified: 14 Dec 2015

%Program Description:

% Finds eldest child in each family and records their ages.

%Input:
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% -children : A list of indices denoting the position of children

% in the dataset organized by hospital visit.

% -AGE : A list of patient ages organized by hospital

% visit.

% -PERSONID : A list of patient ID numbers organized by hospital

% visit.

% -FAMILYID : A list of family ID numbers organized by

% hospital visit.

% -FAMILYID : A list denoting the year the hospital visits occured.

% Output:

% -eldest_child_ages : A list of the eldest child in each family.

%--------------

function [eldest_child_ages]=get_mothers_precompute(children,AGE,

PERSONID,FAMILYID,YEAR)

families_w_children=unique(FAMILYID(children));

%find the oldest child in each family

n=max(size(families_w_children));

eldest_child_ages=zeros(n,1);

parfor i=1:n

familyid=families_w_children(i);

if familyid~=-1 && ~isnan(familyid)

children_in_family_id=PERSONID(intersect(children,find(

familyid==FAMILYID)));

uni_children_in_family_id=unique(children_in_family_id);

maxage=-1;
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for j=1:max(size(uni_children_in_family_id))

temp=zeros(size(PERSONID,1),1);

temp(PERSONID==uni_children_in_family_id(j))=AGE(PERSONID=

=uni_children_in_family_id(j));

[tempage,temp_location]=max(temp);

if tempage>maxage

maxage=tempage;

if numel(temp_location)>1

temp_location=find(YEAR==max(YEAR(temp_location)));

end

max_location=temp_location;

end

end

eldest_child_ages(i)=YEAR(max_location)-maxage;

end

disp([i,n])

end

end

get mothers new.

The following MATLAB code identifies mothers of the children in the dataset.

%--------------

%Author: Takayuki Iguchi

%Last Modified: 14 Dec 2015

%Program Description:

% Finds the mother in each family.
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%Input:

% -children : A list of indices denoting the position of children

% in the dataset organized by hospital visit.

% -AGE : A list of patient ages organized by hospital

% visit.

% -PERSONID : A list of patient ID numbers organized by hospital

% visit.

% -FAMILYID : A list of family ID numbers organized by

% hospital visit.

% -FAMILYID : A list denoting the year the hospital visits occured.

% -YEAR : A list of the years a hopsital visit was made.

% -eldest_child_ages : A list of the eldest child in each family.

% Output:

% -mothers : A list of patients who are identified as being mothers

% organized by hospital visit.

%--------------

function mothers=get_mothers_new(children,AGE,PERSONID,FAMILYID,GENDER

,YEAR,eldest_child_ages)

mothers=zeros(size(PERSONID,1),1);

families_w_children=unique(FAMILYID(children));

N=size(PERSONID,1);

for index=1:N

if strcmp(GENDER(index),’F’)

familyid=FAMILYID(index);
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if familyid~=-1

age_of_person=AGE(index);

if age_of_person>9

familyid_match=(familyid==families_w_children);

if any(familyid_match)

eldest_childage =eldest_child_ages(familyid_match

==1);

if age_of_person-YEAR(index)+eldest_childage>9

mothers(index)=index;

end

end

end

end

end

disp([index,N])

end

mothers=unique(mothers(mothers~=0));

end

Code for the k-means model.

In this subsection we present the code used in generating the k-means model.

find best entropy and record kmeans output version correct.

This MATLAB script creates k-means models for k = 2 to k = 10 with a random

initialization.

%--------------
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%Author: Takayuki Iguchi

%Last Modified: 1 Feb 2016

%Program Description:

% This program creates the k-means model by running multiple trials

% for each value k specified. The program then selects the best

% model based on conditional entropy and retains information

% regarding it. Furthermore, in this program k-means runs on the

% first five years of medical history after it has been transformed

% into a 0-1 matrix. Namely, any 0 remains a 0 and any positive

% entry turns into a 1.

%--------------

% load data --------------

%load data from the first five years

filename4adjmatrix= ’I:\My Documents\MATLAB\thesis\Create Baseline

\WORKSPACE DATAFIRSTCOLLAPSEDsparse_Adjmatrix.mat’;

loadtemp=load(filename4adjmatrix);

sparse_AdjmatrixFIRST=loadtemp.FIRST_COLLAPSEDsparse_Adjmatrix;

%load data from the second five years

filename4adjmatrix=’I:\My Documents\MATLAB\thesis\Create Baseline

\WORKSPACE DATASECONDCOLLAPSEDsparse_Adjmatrix.mat’;

loadtemp=load(filename4adjmatrix);

sparse_AdjmatrixSECOND=loadtemp.SECOND_COLLAPSEDsparse_Adjmatrix;

%clean workspace
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clear loadtemp

%print progress

fprintf(’Completed loading data\n’)

%initialize filename for where to save data

filename4kmeanscalcs=’I:\My Documents\MATLAB\thesis\

Create kmeans model\WORKSPACE DATA\

entropy_experiments_k2to10_corrected.mat’;

% use only patients in both year groups --------------

people_exist_1=any(sparse_AdjmatrixFIRST,2);

people_exist_2=any(sparse_AdjmatrixSECOND,2);

people_exist_1and2=people_exist_1.*people_exist_2;

sparse_AdjmatrixFIRST=sparse_AdjmatrixFIRST(people_exist_1and2==1,:);

sparse_AdjmatrixSECOND=sparse_AdjmatrixSECOND(people_exist_1and2==1,:);

fprintf(’Completed pulling only patients in both year groups\n’)

clear people_exist_1

clear people_exist_2

% make Adjmatrices 0-1 matrices

sparse_Adjmatrix1st_01=sparse_AdjmatrixFIRST;

sparse_Adjmatrix1st_01(sparse_Adjmatrix1st_01>1)=1;

% parameter control --------------
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kmin=10;

kmax=10;

trials=4;

% initialize variables to record trials

[N,m]=size(sparse_Adjmatrix1st_01);

Harray =zeros(kmax-kmin+1 ,1);

Harray_av =zeros(kmax-kmin+1 ,1);

Harray_std =zeros(kmax-kmin+1 ,1);

sumdarray =zeros(kmax ,kmax-kmin+1);

Carray =zeros(kmax ,m ,kmax-kmin+1);

IDXarray =zeros(N ,kmax-kmin+1);

IDXarray4all=zeros(N ,kmax-kmin+1,trials);

Htrials4all =zeros(kmax-kmin+1,trials);

count=1;

Hbest=realmax;

where_best=1;

fprintf(’Completed initializing for loop on k.\n’)

% perform trials --------------

for k=kmin:kmax

%initialize trials for a specific value of k

fprintf([’Initializing for trials when k=’,num2str(k),’.\n’])

IDXtrials =zeros(N ,trials);
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Ctrials =zeros(k ,m ,trials);

sumdtrials =zeros(k ,trials);

Htrials =zeros(1 ,trials);

if k==kmin

save(filename4kmeanscalcs,...

’Harray’,...

’Harray_av’,...

’Harray_std’,...

’sumdarray’,...

’Carray’,...

’IDXarray’)

end

%print progress

fprintf(’Completed initializing for loop on trials.\n’)

%perform trials for a specific value of k

parfor ts=1:trials

%calculate and record k-means clustering based on first

%5 years

[IDXtemp,Ctemp,sumdtemp] = kmeans(full(sparse_Adjmatrix1st_01)

,k);

IDXtrials(:,ts)=IDXtemp;

Ctrials(:,:,ts)=Ctemp;

sumdtrials(:,ts)=sumdtemp;
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%print progress

fprintf([’completed kmeans on first half for k=’,num2str(k),’

, trial=’,num2str(ts),’\n’])

fprintf([’Completed k-means for ts=’,num2str(ts),’ and when

k=’,num2str(k),’.\n’])

%calculate conditional entropy of the clustering

[Htrials(ts),~]=entropy_calc_correct(IDXtrials(:,ts),

sparse_AdjmatrixSECOND);

%print progress

fprintf([’completed calculating entropy for k=’,num2str(k),’,

trial=’,num2str(ts),’\n’])

fprintf([’Trial: ts=’,num2str(ts),’ and when k=’,

num2str(k),’ Complete.\n’])

c=clock;

fprintf([’Time: ’,num2str(c(4)),’ : ’,num2str(c(5)),’hrs\n’])

end

%record important information from trials for specific value of k

[Harray(count),where_opt]=min(Htrials(Htrials~=0));

Htrials4all(count,:)=Htrials;

Harray_av(count)=mean(Htrials(Htrials~=0));

Harray_std(count)=std(Htrials(Htrials~=0));

if sum(Htrials==0)>0
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fprintf(’There was a case of zero entropy??\n’)

end

IDXarray(:,count)=IDXtrials(:,where_opt);

IDXarray4all(:,count,:)=IDXtrials;

Carray(1:k,:,count)=Ctrials(:,:,where_opt);

sumdarray(1:k,count)=sumdtrials(:,where_opt);

if Harray(count)<Hbest

Hbest=Harray(count);

where_best=count;

IDXbest=IDXtrials(:,where_opt);

Cbest=Ctrials(:,:,where_opt);

sumdbest=sumdtrials(:,where_opt);

end

%save important information from trials for specific value of k

save(filename4kmeanscalcs,...

’Harray’,...

’Harray_av’,...

’Harray_std’,...

’sumdarray’,...

’Carray’,...

’IDXarray’,...

’Hbest’,...

’where_best’,...

’IDXbest’,...

’Cbest’,...
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’sumdbest’,...

’IDXarray4all’,...

’Htrials4all’,...

’-append’);

%print progress

fprintf([’Completed saving when k=’,num2str(k),’.\n’])

%increment pointer

count=count+1;

end

Miscellaneous code.

In this subsection we present miscellaneous, but important code.

entropy calc correct.

The following MATLAB code calculates the conditional entropy with which we

concern ourselves.

%--------------

%Author: Takayuki Iguchi

%Last Modified: 8 Feb 2015

%Program Description:

% This function calculates the conditional entropy of a patient

% being given a diagnosis given he/she is in a particular cluster.

%Input:

% -adjmatrix : An N x m array with rows corresponding to patients
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% and columns corresponding to possible diagnoses/ ICD codings.

% -IDX : An N x 1 array describing the the cluster to which a

% patient belongs.

% Output:

% -H : The conditional entropy aforementioned.

% -Harray : A k dimensional array (k being the number of clusters)

% with the conditional entropy H(Y|X=x), i.e., the entropy of a

% a diagnosis being given to a patient given the patient is in

% cluster x.

%--------------

function [H,Harray]=entropy_calc_correct(IDX,adjmatrix)

%initialize

unique_IDX=unique(IDX);

num_clusters=max(size(unique_IDX));

parray=zeros(num_clusters,size(adjmatrix,2));

Harray=zeros(num_clusters,1);

num_pats=size(adjmatrix,1);

num_diag_given=sum(sum(adjmatrix));

for i=1:num_clusters

%calculate the number of patients in a cluster

num_pat_in_clust=sum(IDX==unique_IDX(i));

p_of_x=num_pat_in_clust/num_pats;
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%for each 3 digit ICD code, calculate the conditional probability

%of a diagnosis occuring in the ith cluster

parray(i,:)=sum(adjmatrix(IDX==unique_IDX(i),:),1);

parray(i,:)=parray(i,:)/sum(parray(i,:));

temp_p=parray(i,:);

%by convention 0 log(0) := 0.

temp_p=temp_p(temp_p~=0);

%calculate the conditional entropy H(Y|X=x).

Harray(i)=sum(-temp_p.*log2(temp_p))*p_of_x;

end

%calculate the conditional entropy H(Y|X).

H=sum(Harray);

end
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